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Abstract

In this paper, we develop a systematic method for deriving bounds on the stationary distribution

of stable Markov chains with a countably infinite state space. We assume that a Lyapunov function

is available that satisfies a negative drift property (and, in particular, is a witness of stability), and

that the jumps of the Lyapunov function corresponding to state transitions have uniformly bounded

magnitude. We show how to derive closed form, exponential type, upper bounds on the steady-state

distribution. Similarly, we show how to use suitably defined lower Lyapunov functions to derive

closed form lower bounds on the steady-state distribution. We apply our results to homogeneous

random walks on the positive orthant, and to multiclass single station Markovian queueing systems.

In the latter case, we establish closed form exponential type bounds on the tail probabilities of the

queue lengths, under an arbitrary work conserving policy.

1 Introduction

In this paper, we consider discrete time stable Markov chains with a countably infinite state space.

Our main objective is to provide bounds on its stationary distribution, assuming that stability and the

existence of the stationary distribution can be established using a suitable Lyapunov function.

Markov chains are a central object in the theory of discrete time stochastic processes and are used

widely for modeling various biological, engineering, and economic processes. The stability of Markov

chains has been studied intensively in the last decades, with much of this research being motivated
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within the context of queueing networks. Although, there are various techniques that can establish

stability, methods based on Lyapunov functions seem to be most general and have been widely used.

The idea is similar to the original use of Lyapunov functions, in establishing stability of deterministic

dynamical systems, by showing that a certain "potential energy" (Lyapunov) function must decrease

along any trajectory. The analogous property in the stochastic context is to require that, other than a

"small" subset of the state space, the expected change of the Lyapunov function is negative; see [23] for a

comprehensive survey. Numerous researchers have used the Lyapunov function method for the stability

analysis of Markov chains with special structure. For example, the stability of homogeneous random

walks in the nonnegative orthant was considered in [9, 20, 21, 22], and exact conditions for stability

were derived when the state space is the nonnegative integer lattice Z2 or Z3 [20, 22, 9]. Furthermore,

numerous papers have studied the Markov chains that arise in Markovian queueing networks. In this

context, special types of Lyapunov functions (quadratic, or piecewise linear) have proven to be very

effective tools for stability analysis (see [4, 8, 9, 14, 13, 15, 16, 17, 18]).

Besides the stability problem, which is addressed in the above cited works, a major topic in the study

of Markov chains refers to performance analysis. Namely, given a Markov chain, we would like to obtain

information on its stationary distribution, if it exists. This is simple, in principle, for finite-state Markov

chains because the stationary distribution can be computed exactly. The problem is, however, highly

nontrivial when the state space is infinite: before studying the properties of the stationary distribution,

one needs to establish its existence, which amounts to the stability problem discussed earlier. Some of

the existing literature provides bounds on the moments of the stationary distribution [4, 16, 17]. Closer

to our objectives is the work of Hajek [12], who proves exponential type upper bounds on the tail of

the distribution of hitting times and of tail of the distribution of the state during a transient period.

Exponential type steady-state bounds can also be obtained by taking limits as time converges to infinity.

Dai and Harrison [5] have considered the performance problem for a continuous-time Markov process

(reflected Brownian motion in a positive orthant). They constructed a numerical (as opposed to closed

form) procedure for bounding the stationary distribution of such process.

In this paper, we propose a general method for the performance analysis of infinite state Markov

chains, based on Lyapunov functions. By using such functions and by exploiting certain equilibrium

equations, we prove exponential type upper and lower bounds on the stationary distribution. The

only conditions required are that the Lyapunov function has negative drift (outside a "small" set) and

that the jumps of the Lyapunov function are uniformly bounded. Our method does not construct the

desired Lyapunov function. Instead, we assume that such a function has already been constructed in
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the course of stability analysis. This is not a significant drawback, because stability analysis must

precede performance analysis, and it typically involves the construction of a Lyapunov function, often

by systematic methods. In a sense, our main point is that whenever one succeeds in constructing a

Lyapunov function to establish the stability for a Markov chain, the same Lyapunov function can be

used to derive performance bounds as well, with little extra effort.

The structure and the contributions of the paper are as follows. In the next section, we introduce our

model - Markov chain with a countable state space. We introduce the notions of Lyapunov and lower

Lyapunov functions. The lower Lyapunov function is introduced exclusively as a means for establishing

lower bounds on stationary distribution, and is not required to be a witness of stability.

In Section 3, we state and prove the main results. We modify the Lyapunov function, using suitable

thresholds, we write down the corresponding equilibrium equation, and we derive upper and lower

bounds on the steady-state tail probabilities. These bounds are of exponential type and are expressed

in terms of primary parameters of the Lyapunov function - drift and maximal jump. Bounds on the

expected value of the Lyapunov function (in steady-state) are also obtained. Compared to Hajek's

bounds, our bounds are simpler and are expressed in terms of the primary parameters. Also, unlike

[12], we construct both upper and lower bounds on stationary tail probabilities. On the other hand,

our approach is restricted by the boundedness assumption on the jump sizes of the Lyapunov function,

whereas [12] only assumes that the jumps are of exponential type.

In Section 4, we apply our bounds to Markov chains with special structure, namely, homogeneous

random walks. In Section 4.1, we derive upper and lower bounds on the tail distribution and expectation

of a random walk in steady-state using linear Lyapunov functions. In Section 4.2, we apply our bounds

to a Markovian multiclass single station queueing system. Using the results of Section 3, we derive

exponential type upper and lower bounds on the steady-state distribution of the queue lengths. The

bounds are in closed form and are expressed in terms of the arrival and service rates. In [2] we obtain

explicit upper and lower bounds on the tail probabilities and expectations of queue lengths in multiclass

queueing networks using piecewise linear Lyapunov functions We conclude with some open questions

and some possible directions for strengthening the results of the paper.

2 Homogeneous Markov Chains and Lyapunov Functions

Let {Q(t); t = 0,1, 2,..., } be a discrete-time, discrete-state, time-homogeneous Markov chain that

takes values in some countable set X. For any two vectors x, x' C X, let p(x, x') denote the transition
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probability

p(x, x') = Pr{Q(t + 1) = x Q(t) = x}.

A stationary distribution is defined as a function r : X -* R such that Kr(x) > 0 for all x E X,

E Tr(x) = 1,
xEX

and

7r(x) = E r(x')p(x',x), Vx E X. (1)
X'EX

The existence (and uniqueness) of a stationary distribution, is often taken as the definition of stability;

it is usually established by constructing a suitable Lyapunov function.

We now introduce our definitions of Lyapunov and lower Lyapunov functions. As discussed in

the introduction, our goal is to use Lyapunov functions for performance analysis (specifically, upper

bounds), under the assumption that the Markov chain is stable. On the other hand, the notion of

a lower Lyapunov function is introduced exclusively as a means of getting the lower bounds on the

stationary distribution of a Markov chain, and can be unrelated to the Lyapunov function used to

establish stability or upper bounds. In the definition below, and in the rest of the paper, we use R+ to

denote the set [0, oo).

Definition 1 A nonnegative function

is said to be a Lyapunov function if there exist some y > 0 and B > O, such that for any t, and any

x C X that satisfies @(x) > B, there holds

E[e)(Q(t + 1)) I Q(t) = x] < I(x)- 'y.

Also a nonnegative function

: X o-+ R+

is said to be a lower Lyapunov function if there exists some y > 0 such that for any t, and any x E X,

there holds

E[q(Q(t + 1)) I Q(t) = x] > )(x) -y.

Remarks:

1. The terms /y and B will be called the drift and exception parameters, respectively.
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2. Usually, for c) to be a witness of stability, it is required that the set {x : 4>(x) < B} be finite.

We do not require it here, although in all of the examples to be considered later, this set is just a

singleton, namely, the set {0}. For now, we simply assume that a stationary distribution exists.

So, in principle, our Lyapunov function -c may not be a witness of stability.

3. We could introduce an exception parameter B in the definition of the lower Lyapunov function,

as well. This would unnecessarily complicate the derivations of the results, and is not required for

the examples here and in [2].

JFrom now on, we assume that the Markov chain Q(t) is positive recurrent. This guarantees that

there exists a unique stationary distribution ir and ir(x) can be interpreted as the steady-state probability

Pr,{Q(t) = x} of state x. We will use E,[.] we denote the expectation with respect to the probability

distribution wr . For any function D : X -4 R++ let

Vmax K- sup C(x')- ((x)l, (2)
x,2xEX:p(zx,x2)>0

and

Vmin = inf (I,(x') - 'I(x)). (3)
x,x' E X:p(z,x')>O,~('))> (x)

Namely, vmaz is the largest possible magnitude of the change in i( during an arbitrary transition, and

vmin is the smallest possible increase of O. Also, let

Pmax = sup A p(x, x') (4)
zEX XE 'X,~(z)< (z')

and

Pmin = inf p(x,x') (5)
z'EX,D(2)<'(/')

Namely, Pmax and Pmin are tight upper and lower bounds on the probability that the value of (g increases

during an arbitrary transition. We will be interested in Lyapunov functions with finite vmax, and lower

Lyapunov functions with positive Vmin and Pmin-

As an illustration, consider a multidimensional random walk Q(t) on the nonnegative lattice Z+

with unit step lengths. Namely, for any z = (zl,..., Zn) E Z_ and z' = (z4,... ,zn) E Z+, we assume

that p(z, z') can be positive only if z' - z = ek for some k = 1, 2,..., n, where ek is the k-th unit vector.

For any z = (z 1,... , Zn) E set ( (z) = zi. Then (D is a linear lower Lyapunov function with

Vmin = 1 and -y = 1. This is a special case of the random walks that we will consider in Section 4.1.
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As another illustration, suppose that the state is an n-dimensional vector. Consider a piecewise

linear Lyapunov function of the form I)(z) = maxj Ljz, where each Lj is a nonnegative vector in Rn .

Notice that this Lyapunov function has bounded jump size vmax, if the underlying process has bounded

jumps, which holds true for random walks that model queueing networks.

3 Upper and Lower Bounds on the Stationary Probability Distribu-

tion

In this section, we derive upper and lower bounds on the stationary distribution of Markov chains

that admit Lyapunov and/or lower Lyapunov functions. We will show that whenever a Markov chain

has a Lyapunov function with a finite maximal step size Vmax, certain exponential type upper bounds

hold. Similarly, whenever a Markov chain has a lower Lyapunov function with a positive minimal step

size vmin and positive Pmin, certain exponential type lower bounds hold. The key to our analysis is a

modified Lyapunov function, defined by

(x) =max {c, (x) (6)

for some c C R, and the corresponding equilibrium equation

E, [;a(Q(t))] = E7 [4(Q(t + 1))] (7)

For all of the results in this paper, we will be assuming that

Er[?(Q(t))] < oo. (8)

As we will see later, this is a checkable property for most of the cases of interest. For example, if Q(t)

is a homogeneous random walk in a positive orthant (see Subsection 4.1) and 4i is a linear Lyapunov

function of the form Q((x) = L'x, then (8) follows from E,[Q(t)] < oo, which holds whenever the random

walk is stable. Property (8) allows us to rewrite (7) in an equivalent form

E~ [41(Q(t + 1)) - 1(Q(t))] = O, (9)

which will be used to derive upper and lower bounds on tail probabilities of the Markov chain.

Lemma 1 Consider a Markov chain Q(t) with stationary probability distribution 7r, and suppose that

1 is a Lyapunov function with drift .y and exception parameter B, such that E,[Q(t)] is finite. Then,
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for any (possibly negative) c > B - vmax, there holds

Pr, {c + vmax < (Q(t))} < Pmaxlvmax Pr{C-v < o((t))} (10)
- Pmaxlmax ± - Vmax < \IJJM

where vmax and Pmax are defined in (2) and (4), respectively.

Proof: Let us fix c as in the statement of the lemma, and consider the function 5(x) introduced in

(6). Since E,[Q(t)] is finite and ir is a stationary distribution, we have that (9) holds, which we rewrite

as

7 r(x) (E[b(Q(t + 1)) I Q(t) = x] - @(x)) = O. (11)
x

We decompose the left-hand side of the equation above into three parts and obtain

0 =x C: ir(x) (E[j(Q(t + 1)) I Q(t) = XI - b($)) (12)

+ - i (X) (E[,(Q(t + 1)) I Q(t) = x ] - (x)) (13)
x: C-Vmax<C(Z)<C+Vmax

+ _ 7r(x) (E[~(Q(t + 1)) I Q(t) = x]-(x)). (14)
x: C+vmax<I(x)

As we will see below, the advantage of using the modified function (x) = max{c, ~(x) } is that it allows

us to exclude the states x C X with low values of <(x) from the equilibrium equation (11), without

affecting the states x with high value of @(x).

We now analyze each of the summands in (12) separately.

1. To analyze the first summand in Equation (12), observe that for any x, x' with D(x) _< c-vmax < c

and p(x, x') > 0, the definition of vmaz implies that

(x' ) < @(x) + Vmax < C - Vmax + Vmax = C.

Therefore, ~(x) = $(x') = c. We conclude that for all x with D(x) < c - vmax,

E[4(Q(t + 1)) I Q(t) = x] -4(x) = c - c = 0.

2. We now analyze the third summand in Equation (12). For any x, x' with 4(x) > c - vmax and

p(x, x') > 0, we again obtain from the definition of vmax that

1(x') > 'D(x) - Vmax > C + Vmax - V/max = C.
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Therefore, <(x) = @(x) and c(x') = D(x'). Also, by assumption, c + vmax > B. We conclude that

for all x with @(x) > c + vmax,

E[dF(Q(t + 1)) I Q(t) = x] - @(x) = E[I(Q(t + 1) I Q(t) = x] -<>(x) < -y,

where the last inequality holds since ((x) > B and k5 is a Lyapunov function with drift parameter

7y.

3. Considering the four possibilities (4(x) = c or P(x), and N(x') = c or I(x'), we can easily check

that for any two states x, x', there are only the following two possibilities: either

o < i(x') - ,(x) < D(x')- ~(x),

or

4(x')- @(x) < 4(x')- 4(x) < O.

Therefore, for any x, we have

Ef[I(Q(t + 1)) I Q(t) = x]- <(x) = Z p(x, x')(I(x') - ())
zX':(z')>,(z)

+ E p(x, x') (i(x')- @(x))

< E p(x,x')(4(x') - (x))
zx':(z')>(,(z)

< E p(X,X')Vmax
z,:,(Z')>4(Z)

< Pmaxl-'max·

We conclude that for all x C X, and, in particular, for all x satisfying c - Ymax < (z) < c + ,max,

we have

E[4(Q(t + 1))IQ(t) = x] - (z) < PmaxVmax.

We now incorporate the analysis of these three case into Equation (12), to obtain

o < o+ E 7r(x)Pmax'max + (-Y) E 'r(x).
x:c-vmax < P(z)<C+vmax x:c+-max <P(Z)

We then use the equality

E 7r(xx)= r(x)- 5 7r(x),
ZX:C-Vmax<4)(Z)<C+ maz z :c-Vmax<Ž(z) x:C+vmax<>(X)
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to replace the first sum of probabilities in the previous inequality, divide by PmaxVmax + ', and obtain

Eq. (10). U

We now state and prove a similar result involving Lyapunov functions and lower bounds on tail

probabilities.

Lemma 2 Consider a Markov chain Q(t) with stationary probability distribution 7r, and suppose that

45 is a lower Lyapunov function with drift y, such that E, [4((Q(t))] is finite. Then, for any c > O, we

have

Pr1'{c < 4(Q(t))} > Pminmin Pr{C- mi 4Q(t))}, (15)Pminl'min ± 2 -y

where vmin and Pmin are defined in (3) and (5).

Proof: Let us select an arbitrary c > 0. We again consider the function 4(x) = max(c, @4(x)), and the

equilibrium equation (9), which we rewrite as

0 = _)C r(x) (E[k(Q(t + 1)) I Q(t) = x]- 4(x)) (16)
x: D(x)<c-(1/2)vmin

+ E r(x) (E[1(Q(t + 1))lQ(t) = x]- (x)) (17)
x: c-(1/2)_in<4<(X)<C

+ E 1r(x)(E[4>(Q(t+ 1)) Q(t) = x]- <(x)) (18)
z: c<@(x)

We now analyze each of the summands in the above identity.

1. For any x with 4)(x) > c, we have <D(x) = Ib(x). So,

E ir7() (E[ (Q(t + 1)) I Q(t) = x]- (x))
x: D(x)>c

= 5£ r(x) (E [(Q(t + 1)) I Q(t) = x]- (x))
x: e(x)>c

> y w(x) (E[4I(Q(t + 1)) I Q(t) = x]- (x))
x: (x)_>c

> (-Y) E r(x).
x: _,(x)_>c

2. For any x with ~4(x) < c - (1/2)vmin, we have 4(x) = c. So,

E r(x) (E[4(Q(t + 1)) I Q(t) = ]-(x))
x: 4)(x)<c-(1/2)vmin

= : / ) (x) (E<[(Q(t + 1)) I Q(t) = x]-c) > 0.
x: ()(x)<c-(1/2)min9
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3. We next consider the case where x satisfies

c-(1/2)vmin < @(x) < c. (19)

We have 4(x) = c. If x' is such that p(x, x') > 0 and <(x') > @(x), then ((x') _> (x) + vmin >

c + (1/2)vmin. In particular, ~(x') = @(x') and

(X ') - ((x) > c + (1/2)vmin - c = (1/2)vin.

If p(x, x') > 0 and b(x') _< (x) < c, then N(x') = c, and ~(x') - $(x) = 0. We conclude that for

any x satisfying (19), we have

E[4(Q(t + 1)) I Q(t) = x] -b() = E p(x') ) - (x))
X': ~(z')>:(z)

+ E p(x, x') (4(X') - (x))
XI: '(z')<1(z)

- E p(x, ') ((') - (x))
xI: ~(z')>: ,(z)

> Pmin(1/2)vmin.

We incorporate our analysis of the three summands into Equation (16), to obtain

0 > E 7r()(1/2)pminj"min + (--Y) Z 7r().
z:c-(1/2)jmin <42(z)<c z:c< D(z)

We also have

E i(x) = E (x)- E r(x).
x:c-(1/2)vmi <D(z)<c :c--(1/2)'mji <<>(z) z:c<~(z)

Using this and dividing the previous inequality by (1/2)pminvmin + y, we obtain Eq. (15).

We now are ready to state and prove the main result of the paper.

Theorem 3 Consider a Markov chain Q(t) with stationary probability distribution 7r.

1. If there exists a Lyapunov function 1 with drift term y > 0, and exception parameter B > O, such

that E, [{)(Q(t))] is finite, then for any m = 0,1,..., we have

Pr,7 {4(Q(t)) > B + 2vmam} < ( Pmaxzmax )m+
PmaxImax ± '7

As a result,

E,T[4(Q(t))] < B + 2pmax (Vmax) 2
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2. If there exists a lower Lyapunov function · with drift term y > O, such that E, [b(Q(t))] is finite,

then for any m = 0, 1,..., we have

Prr{ (Q(t)) > (l/2)Vninm} > ((12>/2) 

As a result,
> Pmin(Vmin )2

4-y

Proof: To prove the first part, let c = B - vmax. By applying Lemma 1, we obtain

Prr{B < Pm(Q(t)) < Pmaxvmax Pr{B -2vmax < 4(Q(t))}
Pmaxvmax + 7

< Pmax2 max

Pmaxvmax +- '

We continue similarly, using c = B + vmax, c = B + 3 vmax, c = B + 5 vmax, ,.... By applying again

Lemma 1, we obtain the needed upper bound on the tail distribution.

For the expectation part, note that

E1T[,(Q(t))] < B Pr{eI)(Q(t)) < B} +

E(B+ 2vmax(m + 1))Prir{B + 2umaxm < ((Q(t)) < B + 2vmax(m+ 1)}
m=O

=B.Pr,{(Q(t)) •B} + Prr{(()) < B} B {B + 2vmam < (Q(t)) < B + 2vmax(m + 1)
m=O

+2vmax ~ (m + 1)Prr{B + 2vmaxm < D(Q(t)) < B + 2vmax(m + 1)}.
m=O

But

S (m + 1)Prir{B + 2vmaxm < m(Q(t)) < B + 2vmax(m + 1)}
m=O

- E Prr{B + 2vmaxm < (D(Q(t))}.
m=0

Applying the bounds on the tail distribution, we obtain

E,r[i(Q(t))] < B + 2"manx Pmavma 
m=O Pmazvmax ma

_ 2pmaa (max )2
B+ =

To prove the second part of the theorem, let c = vmin/2, c = vmin, c = 3vmin/2,.... Then, by

applying Lemma 2, we obtain

Prir{r(Q(t))(1/2)vminm} > ((1/2)pmi r ) Pr{(Q(t)) > }

- (1/2)PminPmin q- ')m
(1/2)PminVmin + )m
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For the expectation part, note that

EE[,(Q(t))] S> 2 v vminrmPrr{(1/2)Pvminm < K(Q(t)) < (1/2)±min(m + 1)).
m=0O

But

o00
2 A vminmPrir{(1/2)vminm < D(Q(t)) < (1/2)vmin(m + 1)
m=O

1

= 2 Vmin. 5 Pr{(1/2)vminm 

Using the lower bounds on the tail probability distribution we obtain

1 (1/2)pminVmin m Pmin(min)2

2 ()) (1/2)pminmin +Y ) 4'y
m=l

This completes the proof of the theorem. U

4 Applications

In this section, we apply Theorem 3 to finding bounds for random walks in the positive orthant, and

for multiclass single station Markovian queueing systems.

4.1 Random Walks in the Nonnegative Orthant

Theorem 3 provides a simple tool for analyzing the stationary probability distribution of homogeneous

random walks in the nonnegative integer lattice Z+.

One-dimensional random walk in Z+

To illustrate the method we start with a simple case of an one-dimensional random walk in Z+, where

exact results can be easily derived. In this way we obtain insight on the quality of the bounds our

method produces. Suppose that

Pr{Q(t+1) =m+1 I Q(t) =m} =p, m =0,1,2,...,

Pr{Q(t + 1) = m-1 Q(t) = } = 1-P-p, m=1,2,...,

and

Pr{Q(t+ 1) = 0 Q(t) =0} 1-p.
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We assume that p < 1/2, to ensure stability. For this Markov chain, and with D(x) = x, we have

E,[Q(t)] < oo, B = 0, y = 1 - 2p, Vmax = vmin = 1, and Pmax = Pmin = p. Applying Theorem 3, we

obtain

Pr7 {Q(t) > 2m} = Pr{Q(t) > 2m + 1} i ( + 2m+l :

p __p __

1-p )-p

and
Pr, (1/2)p m p m

Prr{Q(t) } > ((1/2)p + 2-3p)

Notice that rate of decay ( Ip) in the upper bound is slower than the correct one 1p (which can

be derived by elementary methods). Nevertheless, this factor converges to zero as p decreases to zero,

which is in agreement with the exact result. Similarly, the factor 2 -P- in the lower bound is not exact,

but converges to one, when p converges to 1/2. Regarding expectations, Theorem 3 yields

_ 2 pP < E[Q(t)] < 2p
4(1 - 2p) - 1 - 2p

Comparing to the correct value of E,[Q(t)], which is I P2p , we see that our bounds are accurate within

a small constant factor.

State-homogeneous random walk in Z+_ with bounded steps

We now consider a random walk Q(t) = (Q(t), Q 2(t),... ,Q=(t)) E Z+, of the form described below.

For any A C {1, 2,... ,n}, let

ZA = {X E Z: xZi > 0, fori E A, xi = 0, fori / A}.

As in [10] we call these sets faces. We assume that our random walk is state-homogeneous in the following

sense. For each A C {1, 2, ... , n}, there exists a vector 0A E GR
n such that for all x E ZA

E[Q(t + 1)IQ(t) = x] = X + OA.

Namely, the expected step of the random walk depends only on the face the walk is currently on. This

includes the special case where the distribution of the step during a transition depends only on the face

the walk is currently on. We refer to that special case as state-homogeneous in distribution.

We assume that our random walk has bounded steps, that is,

= sup{Ix'-xl :p(x,x') >0} < oo,
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where we use the notation Ixl = nlIxil. State-homogeneous random walks with bounded steps

can be used to model single-class exponential type queueing networks (classical Jackson networks) and

multiclass exponential type queueing networks, operating under a preemptive priority scheduling policy.

We now establish that whenever there exists some linear Lyapunov function, certain exponential bounds

hold on the stationary probability distribution of such random walks.

Theorem 4 Consider a state-homogeneous random walk in Zn with expected step OA for each nonempty

A C {1, 2,..., n}. Suppose that there exists a nonnegative vector L E Rn and some y > O, such that for

all non-empty A C {1, 2,..., n}, we have

L'OA < -7.

Then, the random walk is positive recurrent. The corresponding stationary probability distribution 7r

satisfies

Pr r{L'Q(t) > 2vm} ( LmaxV ) m = 0,1,2,.
Lmaxv + +{

and

[ ( 2(Lmax v) 2
E,4L'Q(t)] •

where Lmax = maxi<i<({Li}.

Proof: The assumptions of the theorem imply that Q (x) = L'x is a Lyapunov function with drift y

and exception parameter B = 0. Positive recurrence then follows from the existence of the Lyapunov

function (see [23]). Note that for this Lyapunov function, we have vmax < Lmaxz. Also Pmax < 1. The

result follows directly from the first part of Theorem 3. U

We now use the second part of Theorem 3 to get lower bounds that apply to state-homogeneous in

distribution random walks (possibly, with v = oo), using practically any nonnegative linear function with

integral components. As mentioned above, for random walks that are state-homogeneous in distribution

the distribution of a step depends only on the face that the walk is currently on. Formally, for every

A c {1, 2,..., n}, for every x1, x2 E ZA and for every Ax E Z n, the probabilities of transitions from xl

to xl + Ax and from x2 to x2 + Ax are the same, that is,

p(i, X1 + Ax) = p(x 2, 2 + AX).

Theorem 5 Consider a positive recurrent random walk which is state-homogeneous in distribution. Let

OA be the expected steps and let 7r be the stationary distribution. For any nonnegative n-dimensional
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vector L with integer components, we define

y = -min{L'OA : L'OA < 0).

Then

Pr fL'Q(t) > 2 - (1/2)pLin 
- !- ( 1/2)pmin~ + 3

for all m = O, 1, 2,..., and

E4r[L'Q(t)] > Pmin

47,

where

Pin = min Pr{L'Q(t + 1) - L'Q(t) > O I Q(t) E ZA}}.

Remark. Note that pmin depends only on the distributions of 2n different step vectors Ax, and

can be calculated in finite time by considering the 2n different faces ZA.

Proof: We consider a linear lower Lyapunov function '((x) = L'x. By definition, y is a drift of this

function. The minimal increase of the value of this Lyapunov function is not smaller than one, since

both L and Q(t) have integer components. Also for this lower Lyapunov function, we have Pmin = pmin.

The result is obtained then by applying the second part of Theorem 3. a

4.2 Single Station Markovian Queueing System

In this subsection we apply the results of Theorem 3 to a class of single station Markovian queueing

systems, operating under an arbitrary Markovian policy. We construct upper and lower bounds on tail

probabilities and expectation of queue lengths and, in particular, we show that the tail probabilities

decay exponentially.

The system is described as follows. There is a single arrival stream of customers which are served at

a single processing station n times, and then leave the system. Such systems are often called re-entrant

lines (see [15]). The arrival process is assumed to be Poisson with rate A. The service times at subsequent

stages (classes) k = 1, 2,..., n are independent and exponentially distributed, with rates /l1,/ 2,. . ., ln

respectively. The processing station serves the customers at different stages in an arbitrary fashion,

subject to only two conditions:

(a) The scheduling policy is work conserving: the station must be busy whenever there are customers

waiting for service.
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(b) The scheduling policy is Markovian. Specifically, the selection of which customer to serve next is

a function of the vector of all queue lengths, which constitutes the state of the system. We allow

scheduling policies to be preemptive. In fact, most nonpreemptive policies would not have the

Markovian property as defined here.

The exponentiality assumption on the interarrival and service times, together with the Markovian

assumption, allow us to resort to uniformization (see Lippman [19]). This is a method for sampling

a continuous time system to obtain a discrete time system with the same steady-state probability

distribution. We rescale the parameters, so that A + Ei2=li = 1 and consider a superposition of

n + 1 Poisson processes with rates A, l1,.. ., /n, respectively. The arrivals of the first Poisson process

correspond to external arrivals into the network. The arrivals of the process with rate Ptk correspond

to service completions of class k customers, if the server is actually working on a class k customer,

or they correspond to "imaginary" service completions of an "imaginary" customer, if the server is

currently idle or working on customers from other classes. Let Ts,s = 1, 2,... be the sequence of

event times, that is, times at which one of these n + 1 Poisson processes registers an arrival. Let

Q(t) = (Ql(t), Q2 (t),... , Q(t)) be the vector of (random) queue lengths at time t. Since the scheduling

policy is Markovian, the process Q(Ts), s = 0, 1,... , is a Markov chain. It is well known that every work

conserving scheduling policy is stable (i.e., the Markov chain Q(T7) is positive recurrent), whenever

P < 1, (20)
k=l - k

and every policy is unstable, if this condition is violated. Let Pk = A//lk and

n

Pk = EPi-
i=k

In particular, (20) can be rewritten as p = p+ < 1. iFrom now on, we assume that (20) holds. Let ir

denote a stationary distribution of the original Markov chain Q(t), corresponding to some work con-

serving policy w. As a result of uniformization, this is also the stationary distribution of the embedded

Markov process, on which we can now concentrate.

Any scheduling policy w satisfying the Markovian assumption can be described as a function w:

Z_7 -+ {0, l}n , where for any x E Z+, the vector w(x) = (w 1(x),..., w(x)) is interpreted as follows:

we have Wk(z) = 1 if the server works on a customer of class k, and Wk(z) = 0, otherwise. We require

that Wk(X) = 1 only if Xk > 0. We will use ek, for k = 1,..., n, to denote the k-th unit vector. We also

adopt the convention eo = en+l = 0. Let us assume that the parameters have been rescaled so that
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A + 4n=l/ bi = 1. Then, it is easily seen that the transitions of the embedded Markov chain Q(Ts) take

place as follows:

Q(Tr) + el, with probability A,

Q(7s+l) = Q(7s) + ek+1 - ek, with probability itkwk(Q(rs)), (21)

Q(rs), with probability E k k(1 - wk(Q(7s)).

Consider the vector L = (p+, p2,..., p+)/A. We then have

In

E[L'Q(T+ l)IQ(rs)1 L'Q(i+) + p+ + 1+ E Ikwk(Q(Ts))(Pk+lI - P)-

k=1

But Pk+ Pk -PA/=/k. Also, whenever Q(Ts) f 0, work conservation implies that

n

E Wk(Q(s)) = 1
k=l

Therefore,

E[L'Q(Ts+i) IQ(r)] = L'Q(7) + p- 1,

whenever Q(T%) f 0.

Assuming that p < 1, we see that D(x) = L'x is both a Lyapunov and a lower Lyapunov function,

with drift y = 1 - p and exception parameter B = 0, under any work conserving Markovian policy.

Note that
1 n

O(Q(t)) = P p+ Q(t)
k=l

is the workload in the system, i.e., the total time required to process existing customers, assuming

that no future arrivals occur. We now determine the parameters Vmax, vrmin, Pmax associated with our

Lyapunov function 4(x) = L'x. The arrival of a new customer into the system corresponds to a positive

increase, equal to p/A. The departure of a class k customer corresponds to a negative change, equal

to Pk+l- P+ = -Pk Therefore, vmin = p/A. Also, since p > Pk for all k, we also have vmax = P/A.

Furthermore, Pmax = Pmin = A. The following result is then obtained.

Theorem 6 In a single station re-entrant line with arrival rate A and service rates /11, /2,.. . n,

for which p < 1, the following bounds hold on the steady-state number of customers, under any work

conserving Markovian policy: { p +Q i(t) m} <p+
F r, \ 2p -'

and

Pr, { i=lP Qi(t) > m} ( p )
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for m = 0, 1, 2,.... Also,
2 1 2p2

4(1 - p) < E pQi(t) < 1 P

Proof: The result is obtained by applying Theorem 3 and cancelling A. D

Remarks.

1. The expected value of Enk= p+Q(t) can be calculated to be exactly equal to _P2J using other

techniques (see, for example, [3]). Thus, the bounds provided by our methods are are correct up

to a small constant factor. However, the bounds on the tail distributions are new results.

2. Theorem 6 can be extended to multiclass single station systems with multiple arrival streams and

probabilistic routing. The bounds are again explicit, but are not expressed solely in terms of the

load factors p, Pk (see [11]).

5 Conclusions

We have proposed a general method for the performance analysis of infinite state Markov chains. By

considering suitably thresholded Lyapunov functions and by writing down certain equilibrium equa-

tions, we have derived exponential type upper and lower bounds on the stationary distribution of a

Markov chain, under the assumption that the Lyapunov function has uniformly bounded jump sizes.

We have applied our bounds to homogeneous random walks in the nonnegative orthant and to Markovian

multiclass single station queueing systems.

It would be interesting to investigate whether Theorem 3 can be extended from Markov chains to

continuous-time processes, like reflected Brownian motion or to non-Markovian processes. Also, it would

be interesting to determine whether the bounded jump size condition can be relaxed. This would allow

us to use broader classes of Lyapunov functions, e.g., we might apply quadratic Lyapunov functions to

the study of random walks.
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