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Abstract

While the pace of technical innovation in the semiconductor industry continues to
accelerate, business processes and supply chain techniques have not kept up.
Microprocessor performance improvement continues to follow Moore’s Law, but
increased variability has complicated efforts to accurately forecast demand and set
inventory targets. Products are becoming more complex, often containing assemblies of
multiple parts. Lifecycles are becoming shorter; made possible by technology
breakthroughs and efficient manufacturing ramp-ups. Demand and supply are ever more
stochastic and non-stationary. Inventory is one of the few ways that a firm can buffer
themselves from the inherent and increasing variability, while still meeting required
service levels.

We explore the sources of the variability in the semiconductor supply chain. On the
supply side, we evaluate variability in throughput time, yield and other factors not
explicitly considered in standard models. Here, we primarily focus on the natural
stochasticity of the manufacturing process and disregard the variability arising from
forecasting of these supply parameters. For demand, the natural stochastic process is not
well understood, so we evaluate the forecast error and use it as a proxy for demand
variability. We then apply these data to the base-stock model — constrained by its
associated assumptions - to calculate inventory targets required to meet a certain level of
service. Using a two-node base-stock model in conjunction with the actual variability
data, we develop inventory estimates across the network and evaluate tradeoffs between
different inventory strategies. We then determine what each variability parameter
contributes to inventory. The combination of a simple yet representative model of the
semiconductor supply chain with actual data from the variability characterization
provides the tools to make powerful recommendations to reduce variability and decrease
inventories throughout the supply network.
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1 INTRODUCTION AND OVERVIEW

The objective of this thesis is to present a framework for assessing the impact of
variability in the semiconductor supply chain and implement it with actual data. We
evaluate variability in the supply network related to supply and demand parameters and
incorporate the data into a two-node, base-stock, inventory model which helps determine
how much inventory should be kept to buffer from this variability. By identifying which
variability sources are driving inventory, recommendations to reduce variability are made
such that the company can reduce the inventory required to meet a particular service
level. This research was conducted within Intel Corporation’s eBusiness Group (eBG)

from June through December 2003.

1.1 INDUSTRY AND COMPANY BACKGROUND

The semiconductor industry is unique among its high-technology peers in many
ways. Intel, like may other high-tech firms, has extremely short lifecycles and large
Research and Development budgets. However, unlike software companies, for example,
semiconductor makers require large investments in manufacturing capacity.
Semiconductor manufacturers spend billions of dollars on new factories every few years
to stay on the top of the product development curve. Likewise, manufacturing of
microprocessors is an exceedingly complex process, which requires not only superior
technical skills, but also distinctive organizational capabilities such as strong leadership,
collaboration and project management. This combination of cutting-edge technology,
high capital costs, long manufacturing lead times, complex supply chains and short
product lifecycles make for a challenging industry. These challenges provide the barriers

to entry that make semiconductor manufacture such a lucrative business.
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By understanding and mastering these complexities, Intel has been very
successful since its founding in 1968. The company has grown to become the largest
provider of computer microprocessors in the world, garering over 80% market segment
share' and over $25B in revenue in 2004%. However, slowing growth in the core
microprocessor business (internally called Intel Architecture Group or IA) has prompted
the company to diversify its product lines in recent years. Expansion into new markets
has come partly from organic growth and partly from acquisitions. This has led to the
formation of two additional business units within Intel. These businesses, the Intel
Communications Group (ICG) and Wireless Communications and Computing Group
(WCCQG) are focused on high growth areas like wireless networking, flash memory,
embedded communications devices and integrated processors for mobile devices.
Recently, it was announced that these two groups are merging into one under the Intel
Communications Group®.

It should be noted that IA and ICG are dramati'ca]ly different businesses. The x86
processor” is the most popular standard for desktop and mobile computing and competes
with small players like AMD, Transmeta and Sun. On the other hand, ICG products are in
much more competitive markets, with strong competitors like Qualcomm, Texas |
Instruments and Samsung. As a result, the demand forecasting and inventory
management processes are quite different between the two businesses. In particular, the

demand for ICG parts can be considered “perishable”, since customers can readily get

! InfoWorld: http://www.infoworld.convarticle/04/02/03/HNintelamd_1.html

22003 Intel Annual Report: http://www.intel.com/intel/annual03/

? Intel Press Release: http://www.intel.com/pressroom/archive/releases/20031210corp.htm

* The x86 processor is the general name for several generations of processors including the 386, 486 and
Pentium®. :
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competitive products elsewhere in the marketplace. On the other hand, demand for
Pentium® or Celeron® chips is less perishable, since switching suppliers often requires
large investments of time and money. As a result, a customer is likely to wait for supply
to become available, or take a substitute product with a similar specification rather than
switching to a competitor. This market dynamic has dramatic implications for inventory
management. Our analysis of supply chain variability focuses on the processor business,
since this is where the majority of profit is made and where many of the supply chain

challenges lie.
1.2 VARIABILITY IN THE SUPPLY NETWORK

By carrying inventory (or in some cases, extra capacity) manufacturing firms can
insulate or buffer their performance from the effects of supply chain variability. The
amount of inventory a company must hold to meet required or a desired customer service
level (CSL) depends on the level of variability in supply and demand. If one could predict
with 100% certainty’ what future demand and supply will be, and there were sufficient
flexibility in production rates, one would not need any inventory.

In many high-tech businesses, inventory is a relatively insignificant piece of the
balance sheet. For example, Microsoft only holds $0.64B in inventories for a company
with $32B in revenue®. Intel holds 3.5 times as much inventory to support slightly less
revenue’. This is primarily because Microsoft has the benefit of quick manufacturing in
response to new demand. Microsoft needs only to burn some more CDs if actual demand

exceeds forecasted demand. This is in dramatic contrast to Intel, where manufacturing

* In this context, 100% certainty implies perfect forecasting and no variability.
¢ 2003 Microsoft Annual Report: http://www.microsoft.com/msft/ar.mspx
72003 Intel Annual Report: http://www.intel.com/intel/annual03/

15



lead times of several weeks require safety stocks to be held in order to service potential
excess orders or shortages in production. In addition, the cost of a processor is far greater
than the cost of a CD. Due to these factors, mistakes in supply chain planning can cost
semiconductor companies billions of dollars in write-offs of obsolete inventory. Worse,
in a constrained environment, production of the wrong product takes capacity from the
right product, doubling the cost of mistakes.

An important corollary to the question of how much inventory to hold is where a
firm should hold it. The microprocessor manufacturing operation includes two main
parts, the Fab/Sort (F/S or Fab) process and the Assembly/Test (A/T) area. The first
major inventory point lies between F/S and A/T and the second inventory point is
between A/T and the customer. Material between F/S and A/T are held in what is called,
Assembled Die Inventory (ADI) and finished goods are held in what is called
Components Warehouse (CW). Our analysis uses a two-node model to evaluate the
A impact of variability on inventory levels. In particular, we evaluate throughput time
(TPT) and yield variability of both F/S and A/T as well as demand variability to the end

customer.
1.3 PROJECT APPROACH AND FINDINGS

The project was divided into two major components. First we quantified the
variability from various sources in the current process. This was called the variability

characterization part of the project. Then we used a two-node stochastic model of the

semiconductor supply network to understand the impact of this variability on inventory.

This was called the inventory analysis part of the project. The variability characterization

provided a necessary foundation for the inventory analysis. Throughout both parts of the
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project, we drew conclusions and developed recommendations to reduce variability and
inventory in the network.

Quantification of variability can take on many forms, with diverse and often
conflicting results. Details such as what metrics to use, which data sources to analyze and
what level of granularity to evaluate require significant consideration. In addition,
compromises must be made between what analysis is desired and what analysis is
possible given the data available. We considered all available data sources, and
developed a standard method of statistical analysis, which was consistently employed
throughout the variability study. Another difficult aspect of the variability assessment is
the question of what variability you want to evaluate. In particular, there are at least two
types of variability that manifest themselves in a supply chain planning context. The first
one is the natural stochastic nature of a given parameter. For example, the mean
throughput time of the A/T process may be three days, but for a variety of reasons, some
products emerge in two days and others are produced in four days. Expediting, machine
breakdowns and re-testing are just some of the factors that cause TPT to behave
stochastically. In addition to this “natural” source of variability relating the stochastic
nature of sequential and re-entrant processing, there is the issue of forecasting, which is a
separate supply chain variability problem. If we use forecasts of parameters like TPT to
make production schedules and set inventory targets, then the difference between
forecasted val.ues and actual values of parameters like TPT introduce still more variability
in the system. We refer to this source of variability as “forecast” variability. In general,
the natural demand generation processes for most products are so poorly understood that

we cannot evaluate the natural stochasticity of demand. The demand generation process
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involves numerous macroeconomic factors and demand can change dramatically based
on small changes in any one of these dependencies. As a result, we rely solely on forecast
error as a measure of demand variability. On the other hand, supply variables change
more slowly such that forecasts can be quite accurate. Therefore, we ignore forecast
variability and we use natural variability to describe supply-side variability.

The major recommendation of the variability part of the project is to begin to
measure the variability, reduce it where possible and manage the remainder. Specifically,
we recommend monitoring the variability in the supply chain as you would a
manufacturing process. This includes the collection of historical forecasts and actuals,
implementation of the metrics and indicators described above, flagging of exceptions and
subsequent investigation with the development of recommendations-to prevent
recurrence. Variability should then be reduced by using less detailed data where possible
to simplify analyses. This can be accomplished by reducing the time horizon of planning
and reducing the time or product granularity. Finally, we recommend managing the
remainder by explicitly accounting for the variability inherent in the supply chain.
Control limits or range forecasts should be developed. No changes should be made unless
parameters are outside these limits.

In the second part of the project, we present a two-node supply chain model using
supply and demand variability data® to calculate the cost of this variability, in terms of
units of inventory. By identifying what factors are driving these costs, we make several
recommendations for reducing variability in the system. The primary recommendation

resulting from this work is that a paradigm shift — from judgment to data — is required.

# The supply and demand data shown in this thesis has been masked to protect confidentiality.
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Specifically, Intel must change its inventory management strategy from “don’t stock out”
to “set a service level, and calculate an inventory target”. Service level and variability
should be analyzed - and inventory targets should be set - based on the attributes éf the
products. For example, stage of product lifecycle (ramp vs. end of life), relative volumes
(high-volume vs. low-volume) and market attributes (desktop-value vs. mobile-
performance) could be used to set targets since they are a major driver of variability.
Finally, the company must quickly move toward global inventory optimization through
data sharing, common tools and collaboration. This includes the development a multi-
echelon stochastic optimization which should utilize a consistent and robust set of data
sources. This will require better measurement of service levels and automated supply and
demand data feeds.

We believe that if the recommendations described above are implemented, Intel
will be well positioned to succeed in the coming era of intense global supply chain

competition.
1.4 OVERVIEW OF THESIS

In this chapter, we have discussed the supply chain challenges for Intel and the
semiconductor industry as a whole. We have laid the foundation for our evaluation of the
variability in the supply network and its impact on the corporation in terms of inventory
necessary to meet required service levels.

In the next chapter, we review the background of the project as well as prior work
in the field. Chapter 3 discusses our analysis of variability in supply and demand. Chapter

4 uses this characterization as a basis to present a two-node stochastic supply chain model
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with which to analyze the impact of variability on inventory. In Chapter 5 we present

conclusions and key insights for this thesis.
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2 PROJECT DESCRIPTION AND LITERATURE REVIEW

In this section we discuss the background of the variability work that was done
from June through December 2003 and the relevant literature that has formed the

foundation for our research.

2.1 PROBLEM STATEMENT AND PROJECT DESCRIPTION

Like most forward-thinking manufacturing companies, Intel has dedicated
significant resources toward improving supply chain efficiency. Many in the company
believe that supply chain improvement is the next great challenge for the company to
overcome. Like the implementation of “Theory of Constraints” and similar
transformational ideas over the last 35 years, Intel’s leaders expect supply chain
optimization to help provide the stimulus for the: next period of growth.

We strongly agree with the assessment that mastery of the supply chain is the next
great frontier in Intel’s corporate evolution. Intel has become successful by mastering
technical product development in the 1980°s and by mastering high-tech manufacturing
in the 1990’s. If successful in using the supply network to their advantage, we believe
that Intel can experience another period of exponential growth. If not, then they may
someday be overtaken by nimbler, more efficient, competitors. We believe that such
expertise will not only provide the stimulus for the next period of growth, but may even
provide the basis for another inflection point in the history of the company.

Intel has placed significant resources toward developing a set of capabilities and
tools for achieving the goal of supply network excellence. In particular, the Edge-to-Edge
(e2e) program was formed in 2000. Spanning the eBusiness Group (eBG) and Intel

Supply Network Group (ISNG), the stated Edge-to-Edge Vision is to “Make Intel's
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supply network planning capability a competitive advantage”. The term Edge-to-Edge
intimates the enormity of this task, with the transformation affecting everyone from one
edge of the organization to the other. Together with cross-functional business unit teams,
e2e has the responsibility to implement business process changes and new capabilities
within the businesses. This is a challenging task, since it requires significant and
simultaneous changes to data, processes and tools.

These challenges are significant in their own right, but the change agents who are
tasked with making the supply chain a competitive advantage also have history to
contend with. According to senior technical people in the company, such efforts have
been tried numerous times in the past. In fact, one person counted seven different
attempts at “supply chain management” or “reengineering” and noted that most of them
failed because they were implemented under the guise of information technology
projects, rather than business process changes requiring new capabilities, tools and
training. Significant effort has been spent to avoid these problems in the current effort
within e2e.

Within the last two years, several important initiatives have been launched within
e2e. Some have been completed successfully, while others have struggled to meet their
objectives. Managers within the organization often cite a lack of basic data, or failure to
recognize significant resultant paradigm shifts as reasons for the lack of success within
certain projects. When a project to implement multi-echelon inventory optimization was
being readied for launch, management sponsored our work to identify, evaluate, quantify,
reduce and manage the sources of variability which affect inventory strategy. Many of the

observations and recommendations are applicable to other projects as well, and
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significant collaboration with interested parties has occurred throughout the course of the

effort.

2.2 CURRENT AND FUTURE SUPPLY NETWORK OPERATION

Intel has undergone significant transformation over the past few years. Some have
been proactive changes designed to gain efficiency improvements. Others have come
about as a result of the constant competitive pressures in the marketplace. One
particularly striking example of a change that has come about as a result of the dynamic
nature of the marketplace is the number and diversity of products that Intel provides. In
decades past, Intel sold relatively few products. But today, Intel sells a dizzying array of
products including desktop/mobile/server processors, 16/32/64 bit cpus, multi-chip
products, chipsets, flash memory and wireless devices. Along with the increase in the
number of products, the complexity of manufacturing and managing them has exploded
as well.

In many ways, Intel’s supply chain has not evolved with the escalating
complexity of the business. One example of this is the fact that the majority of the tools
that are used to manage the supply chain are spreadsheet-based. There have been
improvements in specific areas, like the installation of an ERP system and the
implementation of demand management software. However, these have been primarily
localized improvements and have not been part of a holistic supply network information
strategy. In addition, when these tools are not implemented in a cross-functional way,
their usefulness to others in the organization is limited. For example, an ERP system
implemented by finance is often virtually unusable to the supply chain organization

because it has not been implemented to present data at the right level of granularity for
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supply chain managers. Once architected, it often requires significant technical skills to
acquire appropriate-supp]y chain data from such a system. In the absence of sophisticated
tools to manage the complex data, perform what-if scenarios and make decisions, a
library of spreadsheets has been created to fill the void.

Nevertheless, the spreadsheets that are used to run the supply chain are quite
robust. Many have embeidlded macros that get data from different data sources and
perform complex transformations and calculations. Such analysis may be sophisticated,
but it is often used in isolation. Though the results are shared across organizations in
order to make planning decisions, the only person who understands the transformations
that were done and the éssumptions that underli¢ the calculations is the person who
created it. And in some cases the spreadsheet has been handed down from the creator
without documentation of these assumptions.

Such towers of “information isolation” create numerous problems in the
implementation of advanced supply chain techniques. It has been shown that supply
chain efficiency increases with additional information sharing. But sharing of resulits is
not the same as sharing information. In particular, when a spreadsheet is sent from one
person to another for review and action, if the person does not know what data was used
in the analysis or what assumptions were made, they are likely to need clarification or
question the results. One of the major goals of Edge-to-Edge is to reduce the amount of
work that is required by creating and using spreadsheets i;l this way. The vision is that a
group of supply chain experts will sit at the same table, with the same data and a set of
numerical optimization tools with which to run scenarios, until all can agree to a supply

chain strategy for a given planning horizon.
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An initial step in this direction has been the implementation of linear optimization
programs to optimize wafer starts over give time horizons. While the technical
implementation of these tools has been outstanding, the business success has been
questioned. Specifically, the data required to run the models takes hundreds of hours to
collect and the optimality of the results has been debated. The reason, some believe, is
that the data used to run the optimizations is highly variable. And since linear programs
treat data as point values, this variability may be obscuring the true behavior of the
independent variables. In other words, the optimizers may be optimizing noisy signals
leading to non-optimal solutions. Worse yet, the optimizers could actually amplify the
noise. The supply chain work completed from June to December 2003 has helped Intel

understand this interaction between variability and important supply network variables.
2.3 LITERATURE REVIEW

In order to capitalize on the latest research and thinking in the fields of variability
analysis, forecasting and inventory management, we based our work on several masters’
theses from recent Leaders for Manufacturing and MIT Ph.D. graduates as well as
industry experts.

Margeson [2003] develops a forecasting and inventory model for short lifecycle
products with seasonal demand patterns. This paper was the precursor to our project.
Margeson develops a new method of exponential smoothing designed to contend with the
highly stochastic, non-stationary demand and lead times present in Intel’s supply chain.

Graban [1999] presents a methodology for planning inventories under significant

variability in his work at a semiconductor manufacturer. Extending prior work by Black
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[1998], Graban develops a two-node stochastic supply chain model which allows for the
evaluation of the impact of different sources of variability on the supply chain.

Black [1998] describes an extension to the base-stock inventory model in his
work. He uses the principles and implications of the base-stock model and extends its
reach by showing how yield variability can be incorporated.

Coughlin [1998] tackles the difficult questions of non-normality and stochasticity
in his assessment of the inventory policies at an assembly facility. Gilpin [1995], Miller
[1997], Hetzel [1993] also provide insights into variability analysis, forecasting and
inventory management in their theses.

Willems [1998] provides numerical formulations of the stochastic optimization
problem involved with the placement of safety stocks in a multi-echelon inventory
context. Together with Graves, this work forms the foundation of one approach to multi-
echelon inventory optimization. This approach formulates the stochastic nature of the
problem as a deterministic optimization with the stochastic issues handled by appropriate
safety stock levels.

The other vein of multi-echelon inventory optimization research has focused on
the dynamic programming (DP) and simulation approach. Significant work in this field is
described by Tayur [1999]. Although this approach is not utilized in our work, it is
mentioned here for completeness.

In the area of forecasting, the foundational work is provided in Mullick,
Chambers and Smith [1971]. More recently, Armstrong and Collopy [1992] and
Armstrong and Fildes [1995] provide a comprehensive review of different forecasting

methodologies in their papers from The International Journal of Forecasting. They
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evaluate the performance of numerous forecasting error measurements in their
relationship to decision-making, robustness to outliers, reliability, and sensitivity. In a
subsequent article [2000], they provide an alternative error measure used in our work.

There is a rather large body of work concerned with forecasting of short lifecycle
products in general and semiconductors in particular. Murty [2000] presents a simplified
version using discretization techniques that overcome some of the difficulties associated
with the DP approach.

To deal with the complexities of forecasting semiconductors, several combination
methods have been developed. Cakanyildirim and Roundy [2002] present the SeSDFAM
demand forecast accuracy model which addresses autocorrelations and non-stationarity.
Zhang, Et. Al. [2003] describes a combination technique which uses time series and
marketing forecasts to develop demand signals.

In his brief article, A Process Control Approach to Forecast Measurement,
Johnson [2003] brings numerous issues related to forecast measurement to the forefront.
In particular, the response of people who are measured (often incorrectly) in the accuracy
of their forecasts is evaluated.

Discussion of the psychological foundations of forecasting bias is presented in
Maudlin’s [2003] publication, “Thoughts from the Frontline”.

In her analysis of current trends in manufacturing, Kilgore [2002] identifies-
several production issues that are causiﬁg problems in inventory management. These
trends - including mass customization, outsourcing and shorter lifecycles - are
challenging existing inventory tools. She discusses numerous inventory planning tools

which purport to combat these challenges.
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3 ANALYSIS OF VARIABILITY IN THE SUPPLY NETWORK

Business decisions depend greatly on whether we believe that the variation we see
1s indicative of a fundamental change in a system or whether it is “normal” variation.
However, many aspects of business are not structured in a way that makes such
Variabilityv differences explicit. For example, when a forecast is made for sales of a
particular product in the 3" Quarter, the value is usually presented as a single number.
This type of report misleads us into thinking that there is no variability associated with
the forecast. An equally troubling misuse of variability is to assign cause to natural
random variations. For example, when new financial results are reported, pundits often
attempt to link recent company actions with the increase or decrease, even though these
fluctuations may just be the result of natural variability in the business climate.

Without a characterization of the background variability in a given process, there
is no way to know whether the changes you observe are caused by special events (and
therefore require action) or are simply natural variability in the process you are
observing. The difference is important; because taking action on something that is
exhibiting normal variability can amplify the noise and send the system out of control.
This chapter describes such a variability characterization for Intel’s supply network and
the resulting recommendation: to measure the variability, reduce it where possible and
manage the remainder. Specifically, we recommend monitoring the variability in the
supply chain as you Would a manufacturing process. Such monitoring should include the
collection of historical forecasts and actuals, usage of metrics and indicators described
above, flagging of exceptions and investigation with development of recommendations to

prevent recurrence. Variability should then be reduced by using less detailed data where
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possible to simplify analysis. This could be accomplished by reducing the time horizon of
planning and reducing the time or product granularity. Finally, we recommend managing
the remainder by explicitly accounting for the variability inherent in the supply chain.
Control limits or range forecasts should be developed. No changes should be made unless

parameters are oﬁtside these limits.
3.1 MEASURING VARIABILITY

Traditionally, manufacturing organizations have completed variability analyses in
order to understand and control process parameters which impact quality. The
foundations of statistical process control lie with Deming [1986], Juran [1988] and
Ishikawa [1985] but there has been significant recent work in applying these concepts to
supply chain management.

There are several reasons that such a characterization of the semiconductor supply
chain is needed. First, there is a desire for the company to use variability data to perform
comparisons and benchmarking. Specifically, a firm may want to use information on
variability of supply and demand to allocate capacity to certain products, to compare
projects or simply to educate the organization. The second potential use for variability
data is as an input into models, optimizations and simulations. Existing linear
optimizations use precise data to develop specific recommendations concerning how
many wafers to start without any sense of how noisy these signals are. A proper
variability characterization provides the models with critical data concerning the quality
of the inputs. In addition, future multi-echelon inventory optimization efforts at Intel will

require data on the variability of yield, throughput time and demand.
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3.1.1 Variability Data — Absolute vs. Relative Measurement

These two separate and distinct needs for variability data are both quite important,
but require different types of variability data. For the purposes of comparison, relative
variability (in percent) is desired, to account for differences in volume between products
or businesses. On the other hand, numerical methods (optimizations and the like) require
absolute (in units) variability, since these distributions are often closer to normal than

relative distributions.

Figure 3-1. Absolute and Relative Variability Distributions

| L L

Representative Absolute Variability Distribution Representative Relative Variability Distribution

As one can see in Figure 3-1, the distribution of absolute variability is more normal, with
a high, symmetrical peak. Through the tails don’t die rapidly ]ike other well-behaved
distributions; it is clearly closer to a normal distribution than the highly skewed, relative
variability distribution. This makes distributions of units more appropriate for numerical
work even though relative measures are needed for comparison purposes.
3.1.2 Variability Types — Natural vs. Forecast

In the case of both absolute and relative data, a key question to answer in advance
of performing a statistical variability analysis is which type of variability you wish to
measure: natural variability or forecast variability. The disﬁnction is subtle, but
important. We define natural variability as the backward-looking, historical variability of
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a parameter in a process. This type of variability is the variability of actual parameter
results. For example, if the past three results for US GDP growth are 3%, 4% and 6%,
then one measure of the natural variability is the range of those actual data points or 3%.
Such a measure might be appropriate if the distribution of GDP results over time 1s
deemed to be stationary, or unchanging. On the other hand, forecast variability is the
variability that is introduced to the system by inaccurate forecasting. This type of
variability is extremely important for non-stationary processes. A non-stationary process
is one where the mean or variation is changing over time. In this case, the historical
variability is not an accurate predictor of future variability. As a result, the primary
indicator of process variability in such a process is the error in forecasts. Of course, this
result depends on the assumption that the forecast is being used to make decisions within
a business. If this is true, and the underlying process is non-stationary, then forecast
variability is a significant contributor to overall system variability. A graphical
description of natural and forecast variability is presented in Appendix A — Graphical
Representation of Aggregation and Variability Type.

Many difficulties arise when one tries to quantify the contributions to variability
from natural causes and from forecast error, since these terms occur naturally together.
Adding to the difficulty is the fact that, within an organization, forecasts are often
confused with targets, goals or some hybrid. This difference results from the level of
confidence that the forecaster attributes to their number. In general, a target can be
defined as a forecast which is attained over approximately half of the measurements. Or
in statistical terms, a target is a forecast reached 50% of the time. A goal, on the other

hand, is often considered to be more challenging than a target. In contrast to a target, a

31



goal may be set so that the value is only achieved 10% of the time. The asshmptions
underlying the forecasts are quite important and defined differently among different
people, organizations and companies. As a result, one must be careful when using
forecast error as the primary signal in a variability study.

In addition to the canonical differences between the two types of variability, there
are implementation differences as well. The way an organization measures natural
variability differs from the way that forecast variability is measured and monitored. The
primary metric used to describe natural variability or variability of a stationary process
typically is the standard deviation of the distribution of observations. While most models
incorporate the assumption of normality, real data is rarely normal. In extreme cases of
non-normality, standard deviation ceases to be an accurate depiction of variability.
Needless to say, blindly entering mean and standard deviation values into models without
checking the underlying distribution can lead to misleading results.

In the case of forecast variability, where historical variance is not an accurate
predictor of future variance, we use differences between forecasts and actuals as a proxy
for variability. In particular, forecast bias shows whether forecasts are, on average, higher
or lower than actuals and is simply calculated as forecasted value minus actual value.
Since a systematic bias should be easily corrected by making changes to the forecasting
process, the error of forecasts can be more insightful than bias. The error of a given
forecast point is the absolute value of the bias for that forecast point.” Lastly, the
variability of the errors can be calculated as a measure of the spread of errors and hence

the standard deviation of forecast errors. In both the case of natural and forecast

° While true for individual forecast points, this is not correct for summary statistics, like average error. This
is due to the effects of averaging positive and negative errors.
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variability, the relative variability can be calculated by dividing variability by the mean
error. Since the variability of a parameter usually increases in proportion to its mean
values, the coefficient of variation (CV) is a way to normalize the variability to compare
across products. However, in most supply chain problems, the variability relative to mean
demand is more insightful than variability to mean error. By scaling the variability to
mean demand (typically actual demand, not forecasted demand) we can use these values
to model inventory of products with different volumes. We call this relative variability
the pseudo-CV.

Another difference between natural variability and forecast variability is in the
data available and the nature of the distributions of the data. In the case of natural
variability, there is a rather robust understanding of the underlying stochastic processes
that can cause variability. For example, throughput time variability is caused by random
events like machine breakdowns, re-testing due to quality failures and human error. There
1s non-random human intervention, in the form of expedited lots and opportunistic
preventative maintenance, but the contribution of these to overall variation, we judge to
be small. The judgment is supported by the fact that distributions of TPT are more
normally distributed than other parameters studied.

In the case of forecast variability, there are weaker arguments describing the
underlying stochastic process. In forecasting demand, for example, there has been
copious research dedicated to a causal model of demand and the resulting variability of
demand. However, most models fail to accurately predict the future because their model
describing the stochastic nature of demand is not robust to new information. In addition,

demand forecasts are subject to much more manipulation than the throughput time of a
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process. Employees are diligently doing their best to meet the forecasts, and thus there is
a high peak around zero error.

In addition, forecasters suffer from well known self-deception biases which have
been characterized by psychologists. These include over-optimism, over-confidence and
conservatism. Over-optimism manifests itself in the fact that there will typically be a
higher number of over-forecasts (F-A>>0) than under-forecasts (F-A<<0) and they will
be of greater magnitude. Over-confidence means that people are surprised more often
than they expect to be. According to Maudlin [2003], when you ask people to make a
forecast with 98% confidence, the correctness of their predictions is only about 60-70%!
So if a forecaster is making a judgment with 50% confidence, we might expect far lower
accuracy. Lastly conservatism bias leads people to cling to their forecasts until
indisputable proof is presented to the contrary. This leads to large errors propagating
longer than they might otherwise. Statistically speaking, this means that the right tail of
the Forecast Error distribution will be longer and larger than the left tail, which we

empirically see in the data.
3.1.3 Variability Metrics — MPE vs. APE

Since there are a significant number of different variability measurements,
selection of metrics which minimize potential undesirable impacts is an important
foundation to any variability characterization. There are several metrics discussed in the
literature which could be used to measure forecast bias, forecast error and variability.
Some result in misleading summary statistics. For example, Mean Percent Error is a

common way to measure relative forecast bias.
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Equation 1. Mean Percent Error

ForecastedValue — ActualValue
ActualValue

MPE =

However, since our data has high numbers of positive outliers and since the MPE
measurement is bounded by -100 and positive infinity (see Appendix B — Bounded
Nature of MPE and APE), the average MPE over hundreds of observations can be
skewed high. Though technically accurate, such high average error results often provide a
barrier to discussion and an unfair representation of a forecaster’s ability or track record.

A measurement which mitigates the effects of these outliers is desirable. Collopy
and Armstrong [2000] discuss an alternative to MPE, called Average Percent Error

(APE), in which the forecast bias is divided by the average of forecasts and actuals.

Equation 2. Average Percent Error

APE = ForecastedValue — ActualValue

Avg(Forecast, Actual)

This has the effect of minimizing the impact of outliers and bounds the results from -200
to 200. Though its usefulness in optimization is quite limited, it is an effective way to
compare variability across businesses or products. We use both an error (absolute value)
and a bias (signed) version of this APE measurement in our work, since the standard error
measurement, Mean Absolute Percent Error (MAPE), suffers from the same skewness
problem as MPE.

As discussed previously, forecast variability statistics suffer from significant data
issues, like large positive outliers. It is tempting to simply exclude these outliers in order
to create a well-behaved, truncated distribution. Such cropping not only underestimates

the actual variability, but also excludes the points which often contain the most important
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information. For example, a data point which represents forecast error of 1,000 percent
probably presents opportunities for learning and continuous improvement. On the other
hand, these points may represent extraordinary demand or extraordinary supply. From an
inventory modeling perspective, such extraordinary demands can be handled quite
differently within models. In early work in modeling safety stocks, Simpson [1958]
describes the concept of maximum reasonable demand. He assumes that safety stock
should be adequate to cover a certain maximum demand level. Above this level, he
implicitly assumes, the firm would perform the extraordinary actions (like expediting)
required to meet the higher demand. Other models, like those of Hanssmann [1959] do
not require such an assumption. It is impottant to understand the interaction between this
assumption of maximum reasonable demand and the large positive outliers we see in the
demand forecast error distribution. Large differences in conclusions can result from using
raw demand data versus applying the Simpson assumption to demand data.

The conservation equation for inventory is shown in Equation 3 below.

Equation 3. Conservation Equation for Inventory

BeginningOnHand +Supply — Demand = EndingOnHand
Assuming that the actual inventories themselves have zero variation'?, the safety stock
required to meet demand with some specified service level is determined by the
variability in supply and the variability in demand. Assuming that inventories can be

determined accurately, supply and demand parameters account for all of the variability in

19 As an aside, inventories themselves do not necessarily have zero variation. Often, policies like adjusting
the inventory number in a computer system based on the physical count can actually amplify noise in the
supply chain.
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the supply chain. The specific parameters within these two groups are described in detail

below.

3.2 VARIABILITY IN SUPPLY PARAMETERS

3.2.1 Sources of Variability in Supply

In most manufacturing supply networks, the primary sources of variation on the
supply side of the conservation equation are throughput time and yield. However, if we
specifically consider the semiconductor supply chain, we can postulate the existence of
several secondary sources. For example, there is variability in how products get separated
into speed bins after testing. A more obscure source of variability is the mapping between
manufactured items and salable products. In the semiconductor manufacturing process,
different wafer types made through different processes can produce the same product. A
finished product is the result of a set of probabilistic events throughout the manufacturing
process so there is a many-to-many relationship between wafers started and products
produced. This complex relationship requires numerous mappings between production
names and finished product names. These mappings are done manually and are prone to
error; creating yet another source of variability in the process. However, like the speed
bin parameter, it is difficult to determine what the relationship between the mapping
variances and inventory might be. As a result, these sources of variability are not
considered in our model.

On the other hand, the relationship of throughput time or yield variability to
inventory is well known. The higher the variability of throughput time or yield, the more

safety stock must be held to meet a given service level. This is because with higher
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variability, there is less certainty that you will produce enough product - on time - to meet

demand. Therefore, additional inventory is needed to prevent stock-outs.
3.2.2 Supply Variability — Data, Types and Metrics

As discussed before, the primary source of variability for supply parameters is
natural variability. As opposed to demand parameters, forecast variability of supply
parameters is not considered in our treatment because, although forecasts of these
parameters are generated as part of the business process, the forecasts are usually quite
accurate. This is a result of their relatively stationary behavior and well-behaved
distributions'' of TPT and yield data. Whereas a particular sku'? sold to a customer may
only exist for a few months before becoming obsolete, a wafer type'? may exist for
months or years. This gives engineers the ability to forecast supply-side values with
greater accuracy.

The issué of data aggregation becomes important in the analysis of both supply
and demand variability. In the case of supply parameters, data could be analyzed at the
lot level or it could be aggregated to the weekly level'®. For that matter, the data could be
aggregated by family instead of lot and yearly instead of weekly. The key decision is
which level of aggregation is most appropriate for the requirements of the supply chain
work. The variability of TPT measured in weekly level of aggregation will be much

higher than the level of variability as measured by yearly aggregation. Since variability

"' In this case well-behaved implies a distribution with a high peak and rapidly dying tails.

12 For the purposes of this analysis, a sku is defined as the lowest level in the product hierarchy. Several
different skus make up a product family. It is primarily a demand-side term in that a customer orders a
particular sku.

13 A wafer type is a supply-side product description used to describe products in the factory. A single wafer
type may produce several different skus and perhaps even skus within different product families. The

_ rough equivalent to a sku in the supply side product hierarchy is called a die.
'* The weekly level might consist of an average of all lots produced in a particular week.
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drives inventory, dramatically different results and recommendations will result. The
relationship between levels of aggregation is described by the sum of variances. Under
the assumption of independent and identically distributed (i.i.d.) and normal data, the
variance'” of monthly data should be 2 times'® that of weekly data. So, in theory, we
could easily convert between different levels of aggregation. In practice, however, the
data is auto-correlated'” and non-normal which makes such conversions difficult. Since
converted results for different levels of aggregation can be quite different, it becomes
important to identify which level is appropriate to the decision that must be made, and
analyze the raw data at that level of aggregation. The importance of aggregation is that it
signifies a level of substitutability. If a particular sku cannot be substituted for another
sku in the eyes of the customer, then the right level of aggregation should be the sku
level. On the other hand, if one wafer can be substituted for another wafer in the Fab,
then wafer level of aggregation may be appropriate. For supply parameters, we view the
relevant aggregation as wafer or lot level for F/S and die level in A/T. A graphical
representation of the concept of aggregation is shown in Appendix A — Graphical

Representation of Aggregation and Variability Type.
3.2.3 Throughput Time Example of Supply Variability
To demonstrate the salient aspects of supply variability, we use TPT as an

example. The TPT of a given lot is calculated by taking the time that the last processing

step was completed and subtracting the time that the first processing step started. By

'* This is true for absolute variance (measured in units, die, wafers, etc), not relative variance (measured in
percent). The special properties of i.i.d variances do not apply to percentages.

'® Two is derived from the square root of 4 weeks.

' Auto-correlation implies that variability in one week is linked to variability in another week and is more
common for products with non-perishable demand. For example, if you overforecast the demand for this
week, the forecast error for next week will tend to be overforecasted as well.
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taking all of these throughout times for given lots, we plot the distribution of throughput
times for the Fab section of the process. As shown below, it is well behaved and roughly

normally distributed.

Figure 3-2. Distribution of F/S Throughput Time

However, A/T throughput time looks quite different. Rather than a normal curve, the
distribution looks exponential in nature. There is a high concentration of data around the

mean, but extremely long right tail.
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Figure 3-3. Distribution of A/T Throughput Time

The long tail results from the advanced testing and diagnostics that are done in A/T such
that certain units spend much more time to pass through. A/T is quite flexible and high
priority lots can be expedited. Thus, the long tail may be a result of non-critical lots
sitting 1dle while so-called “hot-lots” are processed first.

Our contention is that lots that sit idle due to expediting decisions should be
excluded from the data set used for determining variability for supply chain planning
purposes. In other words, the relevant A/T TPT should not include outliers that result
from human intervention. In the words of Deming [1986], these are “special causes” and
should be investigated, but should not be included in the assessment of common cause
variability. However, the data to isolate such events is not readily available to supply
chain professionals and even if it was, if would be too detailed. Such difficulties make it

hard to differentiate the variability that safety stock is meant to buffer against from the
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“extra” variability that should be ignored from a supply chain perspective. In some cases,
distributions can be truncated to better describe the relevant level of variability and we
note where this is done.

The F/S factories are usually not in the same locations as the A/T facilities, so
shipping time must be considered in the measurement of TPT. Since transit time data was
not available during this period, an assumption of 1 week transit'® was made. In addition,
we assumed that this time was deterministic, with no Variability associated with it. The
throughput time of shipping was added to A/T lead time to get overall A/T lead time for
use in calculating finished goods warehouse (CW) safety stock. A/T mean lead time
added to Fab TPT gives the expected overall lead time from raw materials to finished

goods.
3.3 VARIABILITY IN DEMAND PARAMETERS

Given the lack of a fundamental understanding of the stochastic nature of demand
generation, variability in demand parameters is much more difficult to ascertain than
supply parameters. At Intel, several demand signals are used to provide information on
which products are required over different time horizons. Though significant work is
ongoing to rationalize these inputs into a single demand signal, such a “single-voice”
forecast is currently unavailable.

3.3.1 Demand Variability Data, Types and Metrics

The calculations of demand variability are more complex than supply variability

for several reasons. First, since we are dealing with forecast variability, rather than

'8 The transit time includes packing, shipping via air freight, customs, and unpacking. Customs is required
because the F/S factories are usually in different countries than the A/T factories.
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natural variability, we require two parameters (forecasts and actuals) rather than just one
(actuals). In this case, we use the forecasted, projected or expected value of the parameter
and compare it to the actual or observed value once the time has passed. This is unlike the
supply variability analysis where we simply focus on the distribution of actuals around
the mean. In addition, the non-stationary nature of demand requires that we add the “time
into future” dimension to the analysis. Forecasts usually get better as time passes and
ship-dates near, and there is a need to understand how the average variability changes
through this “forecast horizon”. Since different business decisions (i.e. material
purchases) are made at different times, the variability at each forecast horizon is
important to differentiate. Thus, the level of product aggregation, time aggregation and

forecast horizon can be thought of as a 3 dimensional matrix.
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Figure 3-4. Matrix of Aggregation and Forecast Horizon
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Each cube in the matrix contains the appropriately aggregated forecasts and actuals
necessary to determine bias, error and variability at a given level of granularity and
planning horizon.

The appropriate level of aggregation should be chosen to accomplish two
objectives. First, the aggregation must align with the data used to make forecast-based
decisions. For example, if sku-level demand data is used to plan A/T production, then
sku-level demand variability is the likely to be the aggregation of interest. Second, the

data must be relevant to the supply chain problems at hand. For example, if the supply
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chain is reset'’ weekly, then weekly time granularity in demand is required. In this
example, daily data may be available, but it will be too detailed and noisy for supply
chain analysis. Likewise, monthly data may also be available, but it will be at too high a
level to be directly linked to the weekly decisions upon which the business runs. That
being said, the data for the lowest level of aggregation is often unavailable.

A brief discussion of the demand identification and fulfillment process is required
to understand the nature of demand variability. Intel currently uses a commits process to
allocate product to customers. The process begins with customers describing their needs
to Intel on a quarterly basis for the upcoming quarter. Intel rationalizes this demand
against its projected supply for each product to determine what amount of each product
will be “committed” to each customer. Prior to the start of a quarter, these commits are
granted, and the customer can begin “booking” units into backlog. The deadline for
booking backlog is several weeks into the current quarter, so a full picture of weekly
demand is not available until part way through each quarter. In addition, the commercial
terms of the commits are such that booked backlog does not have to be consumed in the
week that it is booked. The units can be pushed further out into the quarter or cancelled
with very little notice. In addition, a customer can request additional units or request to
have futu;e committed product pulled forward in time. Such requests are evaluated
through a standardized weekly process.

This effective “zero-cancéllatiori window” causes some unique and undesirable
effects on the backlog of orders. Since push-outs are easier to accomplish than pull-ins or

requests for extra product, customers often request commits for a higher amount than is

' Supply chain reset is a term to describe the periodic alignment of supply with demand, and the
reallocation of supply and demand resources that results.
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truly required early in the quarter. The theory is that, if the customer needs the material
early, 1t will be there. Then, as time progresses, and perhaps certain pieces of projected
demand do not get realized, these extra units are pushed out week by week throughout the
quarter. Finally, at the end of the quarter, the customer either buys out their balance of
backlog or they cancel it. This phenomenon is the considered to be primary cause of

variability in the backlog demand signal.
3.3.2 Variability in Backlog

The following analyses show the bias and error of backlog over the planning
horizon. Note that we occasionally use the word “forecast” in the context of backlog. To
the extent that backlog is a predictor of actual demand; the backlog signal is a forecast.
However, this use of the term forecast should not be confused with the marketing forecast
demand signal discussed Jater in Section 3.3.3. This data represents backlog for the third
quarter 2002 through the second quarter of 2003.

In analyses of this type, the x-axis represents time into the future, measured in
weeks or months. Thus, a value of 2 represents the average of all forecast errors of 2-
week-out? backlog. Therefore, the data may include projected backlog for week 3 as of
week 1 and projected backlog for week 37 as of week 35. It should be noted that there are
distinct differences between the two examples provided. First, there are differences
across time that impact backlog error. For example, a week 1 projection for any forecast
horizon is usually worse than a backlog projection made mid-quarter, due to the timing
requirements for booking backlog. That is, the week 1 projection will have higher error

than the mid-quarter projection, on average. This is what we term a “week-of-quarter”

% The term “2-week-out” (or any x-week-out) is used to denote a 2 (or any x) week forecast horizon.
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effect. Also, there is a different level of uncertainty in forecasting for each quarter. The
yearly seasonality means that the forecast errors of the 3™ and 4™ quarters are generally
higher than the forecast errors of the 1% and 2" quarters. This “quarter-of-year” effect
results from the start of school and Christmas seasons. Second, there are differences in
variability between products with different attributes and characteristics. For example,
demand for mobile products are more variable than desktop or server products. Likewise,
boxed processors sold to retailers are more variable than processors sold in bulk to
OEMs. Lastly, products with different production characteristics, like volume (high-
volume/low-volume) or stage of product lifecycle (ramping/stable/end-of-life) have
different variability profiles. Though this analysis generalizes the bias of all products
over all periods, the data provides a reasonable basis for discussion and is indicative of
overall trends in backlog variability.

The following graph shows both bias and error of backlog over the planning
horizon where backlog is considered a forecast of projected demand. Bias is an indication
of whether - on average - the forecasts are higher or lower than actuals. The error shows
just how far off — on average - the forecasts are. The backlog and actuals are aggregated

by sku and by week, which is the lowest level of data available for this analysis.
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Figure 3-5. Absolute Bias and Error of Backlog
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As you can see from Figure 3-5 the projected backlog bias (x points) is biased
high within a 4 week horizon, except for 1-week-out. This is an indication of the late
push-out behavior that is common among customers and described earlier. The bias in out
weeks becomes negative due to incomplete bookings early in the quarter. It is interesting
to note that the median deviations are much closer to zero than the mean deviations. This
is an indication that the higher mean deviations (MD) are being driven by large outliers —
probably high-volume products with moderate errors or moderate volume products with
high errors. The median bias near zero indicates that most of the prodﬁcts in most weeks
have near zero bias — on a;/erage. The (+) points shows the mean absolute deviation

(MAD) increasing slowly and steadily over the forecast horizon. This shows that while
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the odd nature of the bias is driven by effects from cancellation policies, the error is a

relatively linear function of the time into the future of the forecast.

The average bias or MD of backlog should not be dramatically affected by the

level of aggregation of the forecasts. We can imagine product A and B, both with

projected backlog of 10 units. When actual sales of A are 5 and sales of B are 15, the bias

is zero, just like the family bias®'. There are some differences in how these values get

averaged through summary statistics; and these differences are reflected in Figure 3-6

below. To confirm our intuition, we plot average percent error of different levels of

aggregation across the forecast horizon.

Relative Bias (%)

Figure 3-6. Relative Bias of Backlog
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2! The average sku-level bias (fcst-act) is [5+-5] = 0, while the family-level bias is [10+10] — [5+15] = 0.
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The different levels of product aggregation (sku= blue dotted line, mini-family=green
dashed line and family=red solid line) and different levels of time aggregation
(week=square, month=triangle, quarter=circle) display very similar average bias
behavior. Any differences can be explained by the subtle differences arising from
averaging of different numbers of values and division by the average of backlog and
actuals.

We often care more about how far off target the backlog is, rather than whether it
is off high or off low. So in addition to calculating the average bias or Mean Deviation,
we evaluate the average error or Mean Absolute Deviation. Whereas, the MD is relatively
insensitive to aggregation, error is very dependant on the level of aggregation used. The
notion that error is reduced with greater levels of aggregation is intuitive but difficult to
quantify. The various levels of time and product aggregation describe different levels of
interchangeability. If there is a forecast for 10 units of sku A and 10 units of sku B and
the actual demand is 5 units of A and 15 units of B, then the average error on a sku level
is 5 units. However, if A and B are in the same product family, and we aggregate to this
family level, then the forecast is 20 and the actual is 20, so the error is zero. This is the
benefit of pooling. However, the benefits gained from pooling of products vs. pooling of
time are not straightforward. Shown below is a complete empirical analysis of the
variability differences among different levels of aggregation for a single, high-volume

microprocessor family in order to help quantify these differences.
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Figure 3-7. Relative Error of Backlog
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As you can see in Figure 3-7, the relative error of sku-level backlog by week is
highest, while the relative error of family level aggregation by quarter is lowest. This
makes sense, since family level, quarterly data allows for all errors in skus to cancel each
other out, and errors between weeks to cancel each other out. We also see that the sku-
weekly error is roughly twice the magnitude of sku-monthly error, which makes sense
from a pooling perspective. What is interesting in this figure is the interaction between
time and product aggregation. What we see is that, over the majority of the forecast
horizon, the sku, monthly error is roughly equivalent to the mini-family, weekly error. So
if one wanted to lower error to the level of monthly, one might consider continuing to
plan weekly, while changing the level of product aggregation to mini-family. A similar

relationship exists between mini-family, monthly and sku, quarterly.
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When we evaluate forecast vanability of a demand signal like backlog, we are
interested 1n not only the bias and error of that signal, but also the variability of the
signal. Whereas bias is a measure of how far off a forecast is, variability is a measure of
the spread of the distribution of those errors. Errors that are often close to zero and tightly
distributed around the mean indicate consistently good forecasting. On the contrary, if the
errors are sometime far off, and spread widely around the mean, this indicates high
variability in forecasting. There are several ways that this “spread of errors” can be
calculated. One way is to calculate the standard deviation of the distribution of forecast
bias or the standard deviation of Forecast Errors (what we call StdDevOfFE). This is
often the best way to characterize variability for use in stochastic models and it bears
close resemblance to the method of measuring natural variability by calculating the
standard deviation of actuals around their mean. The StdDevOfFE is identical to the
normal concept of standard deviation if, instead of calculating the spread around the
mean, you look at the spread around the forecasts. This association is clarified further
when we describe both mean values and forecasts as “‘expected values” in a mathematical
sense. Another way to characterize variability is to calculate the Mean Square Error, by
averaging the squared forecast errors. It can be shown that these two techniques yield the
same results, when the average bias is zero (see Appendix C — Equivalence of MSE and
StdDevOfFE) and either method can be used for input into models, optimizations and the
like.

As discussed befoi‘e, another use of variability data is to compare businesses,
products, projects and programs. To accomplish this, we need a relative measure of

variability which can account for differences in production volumes. Such a measure will
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also allow us to compare the variability of different levels of aggregation. The measure
we use is the pseudo-CV described in Section 3.1.2. This parameter is calculated by
taking the standard deviation of Forecast Errors (StdDevOfFE) and dividing it by the
mean actual demand. A comparison of the pseudo-CV for different levels of aggregation

is shown in Figure 3-8 below.

Figure 3-8. Relative Variability of Backlog
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Like the forecast error, the spread of the errors or “relative variability” is significantly
reduced with higher levels of aggregation as well. It is interesting to note that, in the out-
weeks, the pseudo-CV is quite constant over the forecast horizon, for all levels of
aggregation. This means that the variability of a 5-week-out forecast is about as variable

as a 3-week-out or 7-week-out forecast. Only within the 3-week-out window does the

variability improve significantly.
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3.3.3 Variability of Forecasts

The second signal of demand used by Intel is the marketing forecast. This forecast
is generated by industry and product experts in the marketing group who use a
combination of economic models, customer forecasts, production capacity data,
competitive information and intuition to generate quarterly forecasts for different
products. The forecast is generated for several quarters into the future and revised
monthly. In contrast to backlog, which is a snapshot of projected demand, the marketing
forecast is a true forecast, subject to all of the biases that exist in forecasting. You can see

these biases in Figure 3-9 below.

Figure 3-9. Absolute Bias of Forecasts

( Note: Scale of axes hidden to protect confidentiality )
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Whereas Backlog is a relatively unbiased predictor of actuals, the average bias or
mean deviation (MD) of the marketing forecast is always positive. Again, the median
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bias is close to zero, indicating that large errors in a few products are driving the mean
deviation up. This data represents marketing forecasts for the third quarter 2002 through
the second quarter of 2003. In the case of marketing demand, the x axis is in units of
months into the future, rather than weeks. In order to obtain monthly level forecasts, the
quarterly forecasts are rationalized with actual shipments within the quarter and divided
out among months using historical seasonality factors (see Appendix D — Disaggregation
of Quarterly Forecasts). Historically, Intel has used a 30-30-40 breakout, but we have
found that 25% of the quarterly demand is realized in the 1* month, 30% in the 2" month
and 45% of demand is in the 3™ month of the quarter, we use this 25-30-45 breakdown in
our analysis. The following charts do not show weekly error, since we don’t have any
additional information with which to disaggregate data into weekly buckets.

The relative bias among different levels of timing and product aggregation are

shown below.
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Figure 3-10. Relative Bias of Forecasts
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It is interesting to note that marketing forecasts for this period are positively
biased in all time horizons at all levels of product and time aggregation. There are several
possible explanations for this behavior, but we will focus on one. The period of time
within which this data was collected was notorious for being near the end of one of the
worst downturns in the history of the semiconductor industry. The prediction for the
market to regain momentum was probably a basis for some of the forecasts. Since the
downturn continued far longer than originally thought, forecasters may be forgiven for
their optimistic predictions. |

The relative error among different levels of timing and product aggregation are

shown below.
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Figure 3-11. Relative Error of Forecasts
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Of interest in Figure 3-11 is the fact that, while the sku-level forecast gets better
(less error) as one gets closer to ship date, the error of family-level forecasts do not
improve dramatically over the forecast horizon. We believe this is a result of two
phenomena. First, the commits process sets a fairly firm limitation on the demand of
processor-types (akin to a family) that can be met. Demand above supply capacity that is
not committed-to is not counted as forecast error, because it never materializes as
backlog. Second, because wafer starts are made 3 months into the future, this caps the
total product family demand to the level of wafers which were started. Thus, the family
level forecast made several months out is as good as it will get, while the mix of skus

changes constantly and results in lower forecast error closer to delivery.
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Though we may conclude that significant forecast error is a part of doing business
in the semiconductor industry, it does not follow that the variability of forecast errors
should also be high. That is, we may be able to deal with high average forecast error, but
high variability is more difficult, since is results in our having low confidence that a
particular forecast will be within a certain range. This is exactly the reason why we may
choose to hold more inventory. The relative variability of the marketing forecast demand

signal is shown below.

Figure 3-12. Relative Variability of Forecasts
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Again, we see the same phenomenon, where there is significant improvement in sku-level
variability as we get closer to ship data but the same improvements are not seen in mini-

family or family-level variability. In practice, if we could use mini-family data rather
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than sku-level data, we would see a dramatic reduction in inventory required to meet a
particular service level.
3.3.4 Comparison of Two Demand Signals

After analyzing both the backlog and forecasts in terms of bias error and
variability, we compared them in order to see which signal is a better predictor of actual
results. First, we compared the level of forecast error in each signal, and then we
evaluated the variability of each signal as a measure of “the ability to forecast well”. In
order to do the error comparison, we aggregated the backlog data into monthly buckets in

order to be in the same units as marketing forecasts. The result is shown in Figure 3-13

below.
Figure 3-13. Comparison of Backlog to Forecasts
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The fact that the backlog demand signal has less error than the forecast demand
signal is not surprising since it is more tactical in nature. Furthermore, backlog data is not
available more than three months out, so comparison in the strategic forecast horizon is

not possible. A comparison of backlog and forecasts variability is shown in Figure 3-14

below.
Figure 3-14. Variability of Backlog and Forecasts
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If variability is a measurement of the firm’s ability to forecast well, we see that
forecasts are a better demand signal for mini-Family and family level of product
aggregation. However, sku-level backlog is less variable in the immediate forecast
horizon. Around the 3-week-out point, the forecast demand signal has lower variability
until around the 7-week-out point, where backlog is again less variable. In the 2 to10-

week-out horizon, backlog is roughly equivalent to forecasts in terms of variability.
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As a point of note, many planners currently use backlog in the 0-4 week horizon,
a combination of backlog and forecasts in the 5-8 week horizon and pure forecasts in the
8+ week horizon. Based on the variability results, we would recommend using backlog in
the 0-2 week horizon, a combination of backlog and forecasts in the 2-10 week horizon

and pure forecasts in the 10+ week horizon.
3.3.5 Implications of Bias, Error and Variability for the Supply Chain

After considering the bias, error and variability of demand, it is quite common to
conclude that the Intel’s forecasting is “bad” and should be improved. However, we do
not necessarily draw this conclusion. First, good forecast error benchmarking data is
exceedingly difficult to find. Second, the unique nature of Intel’s supply chain makes
comparisons with any such data specious. And third, for numerous reasons, forecasting
the future is hard. The first reason that forecasting is hard is that there is high demand
variability at business planning level (family, quarter) and it is dramatically higher at
factory planning level (sku, week). Second, there is gaming and judgment in the demand
signal. That is, each customer believes that they will capture additional market share in
sequential quarters. The sum of these values is much bigger than the size of the overall
market. As a result, judgments must be made regarding quantity allocation. This gaming
problem gets worse in a constrained environment. If customers believe that they may not
get their requested quantity, then they will increase their order further. Third,
macroeconomic factors cause massive shifts in supply/demand. This shifting is
characterized by the bullwhip effect, where variability gets amplified as the demand
signal propagates up the supply chain. Fourth, short microprocessor product lifecycles

have little or no demand history. As a result, forecasters have to make judgments about
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the uptake in the market rather than using historical data. Fifth, Intel produces thousands
of differentiated products. This may seem like it would reduce variability, but the fact
that a customer could receive several different products makes it difficult to forecast each
product independently. Sixth, there are complex, interrelated product mappings in the
production process, which make supply forecasting required to meet demand quite
difficult. Seventh, manufacturing cannot easily react to forecast changes due to long
wafer start times. With production lead time on the order of one quarter and product
lifecycles not much longer than that, we see the classic newsboy problem where most of
the supply must be produced before demand is known.

In light of these difficulties, one question worth asking is — ‘if Intel can sell all
that it makes, is forecast variability a problem?’ While some people argue that it is not a
problem, we strongly believe that such variability causes important secondary issues
which can manifest themselves in two ways. First, fire-sale cannibalization of up-market
products can occur if forecasted mix is wrong. If the firm makes too many low-speed
products because its forecasts were poor, it will need to discount these processors to sell
them. This will shift demand away from more expensive products and destroy margins
and profits. Second, making the wrong products can cause production limitations in a
capacity constrained market. If Intel is over-producing certain products, they are likely to
be under producing others. The result, in a limited-capacity manufacturing environment,
is high inventories of the over-produced product and missed sales of the under-produced
products. So the next question is - ‘if their demand signals were better, would Intel save

money?’ Again, we believe the answer is an emphatic yes, since the company would

62




surely require fewer inventories to meet the same level of service. Also, Significant
productivity improvements relating to less churn would result from less reaction to noise.

However, it 1s not the conclusion of this variability analysis that improvements in
the forecasts are necessarily required. First, it is not obvious that the magnitude of the
errors is dramatically worse than comparable companies in the industry. Second, it may
not be possible to reduce the errors because of the difficulties in forecasting mentioned
above. In other words, Intel should not say, ‘when our forecasts get better, THEN our
planning systems will work’. Instead, Intel should work to improve the robustness of the
planning system to the variability inherent in the process.

As aresult of the variability characterization, we conclude that higher levels of
aggregation lead to lower error. Though higher level data has limited usefulness, this
pooling benefit is clear. We also conclude that errors don’t get much better as ship date
approaches. Likewise, we find ;(hat the data is sparse, non-normal, dispersed and
inadequate for supply chain analysis. Our recommendation is to modify the planning
systems to account for the inherent variability in existing planning processes, rather than
working from point forecasts and responding to all changes whether signal or noise. For
example, Intel may not need to plan wafer starts for 9 months into the future, using sku
level, weekly detail. In this case, we are just optimizing noise and we may get better
results with less work by planning to the mini-family level of product aggregation.
‘Specific recommendations which build from the conclusions of the variability

characterization are presented in Section 5.
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4 STOCHASTIC MODEL OF INTEL SUPPLY NETWORK

In this section, we discuss a model which helps to describe Intel’s supply chain.
The model is composed of two production nodes and two inventory nodes, which
resembles the high-level structure of Intel’s supply network. A graphical representation

of the model is shown in Figure 4-1 below.

Figure 4-1. Two-Node Stochastic Model of Semiconductor Supply Network

As with all models, this one oversimplifies the supply chain and makes

assumptions about the system which may not be perfectly accurate. However, this model
is more useful than many other models because it is implemented using actual data.
Instead of making gross assumptions about the average lead time or vanability of
demand, this model was created after the extensive variability characterization described
in Section 3. As a result, we can make strong conclusions based on results provided by
the model.

The primary recommendation resulting from this work is that a paradigm shift —
from judgment to data — is required. Specifically, Intel must change its inventory
management strategy from “don’t stock out” to “set a service level, and calculate an
inventory target”. This will require better measurement of service levels and automated
supply and demand data feeds. These service level and variability data should be
analyzed and inventory targets should be set based on the attributes of the products.
Finally, the company must quickly move toward global inventory optimization through

data sharing, common tools and collaboration.
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4.1 THEORETICAL BASIS FOR MODEL

4.1.1 The Base-stock Model

The supply chain model presented here i1s based on a version of the base-stock
model described in Zimmerman et. al. [1974] among numerous others. The primary
assumptions of the model are periodic review, no set-up costs, no lot sizing, normal
variable distributions and infinite production capacity. While not all of our data cleanly
meets the assumptions of the model, we find the base-stock model to be better than others
in its usability and instructiveness in making tradeoffs. In the event that inventory
decisions were to be based on such a model, advanced techniques and future work would
be required to refine the model to deal with the edge cases (i.e. near full production
capacity) and non-normality of cértain variables. The basis for making these upgrades is
the variability characterization provided in Section 3 and recommendations for future
work discussed in Section 5.

Under this system, the safety stock, as well as total inventory, can be calculated to
meet a particular service level, while taking into account certain sources of variability. If

only considering demand variability, the equation is shown below.

Equation 4. Base-stock Equation with Demand Variability

Base Stock = 11, (r + 11, )+zJo 2 (r + p,;)

Where: p4 = average demand rate over lead time
1 = review period
Hor = average lead time or throughput time
z = safety factor calculated from service level
04 = variability in demand

The pipeline stock, otherwise know as work-in-process or WIP, is represented by

the average demand times lead time. The average demand times review period in the first
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term represents the cycle stock. Mainly relevant for warehousing systems and batch
production processes, the cycle stock is the quantity of goods required to meet demand
until the next time that an order is placed. In the case of continuous production, like
Intel’s, we assume that the average demand over review period is equal to production
over review period. Therefore, cycle stock (u4*r) is not a relevant concept under our set of
assumptions and we remove it from the subsequent analysis. Furthermore, since safety
stock buffers the system from variability, we will primarily focus on safety stock.

Safety stock is required to buffer from variability over replenishment period. The
replenishment period is the throughput time required to produce a product plus the review
period. In the equation described above, the only relevant variability is variability in
demand. This can be calculated by determining the variance (or standard deviation
squared) of forecast errors. Alternatively, assuming zero average bias in forecasts, we can
calculate the Mean Squared Error as variability in demand. The z in the safety stock term
represents the safety factor (z = 1.64 for 95% service level) implied by the specified
service level. It is calculated as the inverse of the normal distribution. Combined with
values for average demand, average lead time and review period, the overall inventory
and safety stock can be calculafed. )

The safety stock portion of the base-stock model can be extended to account for

variability in lead time as described by Equation 5.

Equation 5. Base-stock Equation with Demand and Lead Time Variability

Safety Stock =z\/0'f) (r+p,)+Hio;;

Where: py = average demand over lead time
o7 = variability in lead time
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The additional term in the equation represents the demand variability resulting
from given variability in lead time. In a similar fashion, the model can be extended to
account for variability in production yield. Black [1998] developed and used Equation 6

to optimize WIP in a CONWIP** process.

Equation 6. Base-stock Equation with Demand, Lead Time and Yield Variability

2
o
Safety Stock = z\/of)(r+y”) +plol + sHaHir

s

Where: p, = average yield
o, = variability in yield

The third safety stock term represents the variability in yield-adjusted demand caused by
yield variance.

4.1.2 Modeling Multiple Nodes

The base-stock equation provides a mechanism to compute the safety stock of a
single node, given variability information on demand, lead time and yield. There are
many ways to connect these nodes to compute overall multi-echelon safety stocks.
Graves and Willems [1988] assume fixed and guaranteed service times, bounded demand
and no capacity constraints to formulate an optimization problem. Graban [1999]
develops a serial model, where inventory is held to buffer variability in the closest
upstream node. We develop our model using Graban’s as a basis, though we compute
inventory levels required to buffer from known variability in supply and demand, rather

than to set WIP targets. We accept the fact that the neither the placement nor the quantity

22 A CONWIP process is simply one which uses a policy of constant work-in-process as a way to manage
In-process inventories.
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of our calculated safety stock will be optimal. Rather, we use the values as a basis for
evaluation of our current performance as well as a platform for performing tradeoffs.

In our two-node model, we assume that the purpose of die held in Assembled Die
Inventory (ADI) is to buffer variability in the Fab/Sort (F/S) part of the production
process. Likewise, we assume that the finished goods in Components Warehouse (CW)
are held to buffer variability in Assembly/Test (A/T). In this way, we create a loosely
coupled system in which extreme variability in Fab is assumed not to affect final service
level. In fact, this is exactly what the purpose of strategic safety stock is: to decouple
different parts of the system from each other.

Despite the decoupling of the two production areas, there are several links
between the two nodes. First, the average demand observed by CW as final customer
demand is transmitted up the supply chain, adjusted for yield. In other words, the F/S part
of the process has to produce more than the amount demanded by customers, so that yield
losses in A/T will be compensated for. Likewise, the demand variability witnessed by
CW is transmitted up the supply chain, albeit in a more complex mathematical form (see
Appendix E — Derivation of F/S Demand Variability). The upstream demand variability
is affected not only by downstream demand variability, but also downstream yield
variability. That is, if yield fluctuates wildly, the demand variability of the upstream node
yvill be negatively impacted as well.

The service levels of the two stages are intimately linked to each other and the
formulation of this model requires that a slightly modified definition of service level be
adopted. The base-stock model assumes that service level is the amount of periods in

which 100% of customer demand is met. We use this definition, except we replace the
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words customer demand with downstream node. That is, the customer of ADI is A/T and
therefore, the customer service level (CSL) represents the percentage of periods in which
100% of A/T demand is met.

A further discussion of service levels is required at this point. Despite the fact that
the only customer service level that really matters is the CSL at the customer facing node,
some notion of CSL at each node is required in order to determine how much stock to
hold at in-process inventory points to meet certain levels of volatility in downstream
nodes. However, the combined service level of two nodes whose service levels are less
than 100% is less than either service level on its own. This can be seen by imagining that
the downstream node has a service level of 95%, by itself. In order to provide that level
of service (95%) to the customer, the downstream node would need to be provided 100%
service from the upstream node. The notion of 100% service level is not germane to
inventory analysis because, as a result of the properties of the normal distribution, such
service would require infinite amounts of safety stock. When each node specifies a sub-
100% service level, the final service level as seen by the customer is - at least — the
product of the two upstream service levels. Thus, the minimum value of the CSL is the
product of the two-node service levels and the maximum would be the value of the CSL
of the higher node.

To see how these rﬁaxima and minima apply, we evaluate an example. If a die is
requested by A/T from ADI but not received, it may not eventually be required at the
time requested. Whether it is required to meet an order as requested is a function of
demand variability, throughput time variability and yield variability. For example, if ADI

misses a shipment to A/T, but provides the requested die in the following week AND the
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TPT of that die is faster than average; then A/T still has a chance to provide the finished
good to CW in time to meet that customer demand. Thus we can see that the product of
the two service levels is the minimum CSL and we use this to find the worst case safety
stock levels. The difference between this minimum value and the actual value can be

dramatic. For example, if we imagine a situation where, in 50% of cases, the delinquent
die is delivered to A/T in the week following the request, the overall service level jumps

from 86% fo nearly 90%.

4.1.3 Base Case Model Formulation

The base case model was formulated using data collected and analyzed through
the variability characterization described in Section 3. In the case of supply variability,
we calculated the mean and standard deviation for throughput time and yield for one
product family*® within both F/S and A/T. For demand, we used the relative (i.e. CV),
family-level, variability in forecast errors as a proxy for the demand variability at CW.**
We then combined the demand variability at CW with the yield variability in A/T to get
an estimate of ADI demand variability as if the final customer demand variability were
merely propagated upstream to A/T. Furthermore, we used the actual review periods for
each node based on current business processes. The final customer service level was kept

at a constant 86% for this entire analysis, because this was the best estimate of the actual

2 The selected product represented a majority of Intel microprocessor volume over the time period studied.

24 The mechanics of the calculation were completed as follows. First, calculate the forecast errors for each
family over every time horizon. Second, determine the standard deviation of forecast errors for each
family, for each time horizon. Third, calculate the average demand for each family over the time period
studied. Fourth, divide the standard deviation of forecast errors by the mean demand to get the CV for
each family over each time horizon. Fifth, average all of the family CVs in each time horizon. Lastly,
multiply projected demand for a family by the horizon-specific CV (or weighted average CVs) of interest.
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average service level under real conditions. The actual service levels at each node were
assumed to be equal, for simplicity.”

As noted in Section 3, demand variability tends to be far more complex,
interesting and impactful than supply variability. As a result, we spend much more time
looking at sources and implications of demand variability. The way we calculate demand
variability is a modified version of the technique used to get the data shown in Figure 3-8
and Figure 3-12. That is, for each individual sku, we calculate the standard deviation of
forecast errors and the mean demand for each forecast horizon. By dividing the
StdDevOfFE by Mean Demand, we get a pseudo-CV measurement for every sku in each
time into the future horizon. We then average these pseudo-CVs to get the sku-level,
horizon specific variability multiplier. If we take the projected demand (backlog or
forecast) and multiply it by this calculated value, we get an estimate of variability
(standard deviation of forecast bias) that we can use in the base-stock model. We
complete the same analysis for mini-family and family levels of product aggregation and
both backlog and forecasts for use in our inventory analysis scenarios.

An alternative method of developing variability estimates for given levels of
demand is to do a variability regression, where error (MSE) is regressed against demand
for all skus in each time hoﬁzon. Once the equation is determined, variability can be
calculated by plugging the projected demand into the equation with the appropriate time
horizon. This approaéh could be extended to include different equations for skus of

different attributes to further refine the variability estimates. The problem with this

*° With the final customer service level defined, but the two upstream service levels undefined, there are
three variables and two unknowns. Requiring them to be equal removes one.degree of freedom and
results in upstream service levels of 92.74%. Again, the 86% represents a minimum CSL.
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approach is that the relationship is quite weak, with R? values well below 0.5 for all
regressions. The result is an equation which tends to underestimate variability when
compared with the standard deviation of Forecast Errors. This is particularly troublesome
because the MSE should actually overestimate the variability compared with
StdDevOfFE, when there is a chronic bias in the data (see Appendix C — Equivalence of
MSE and StdDevOfFE). As a result of these problems, this technique is not utilized in
this analysis, but a more detailed description of the technique and its results is shown in
Appendix F — Description of Demand Variability Regression.

The driver behind this analysis was to use real data, together with a realistic
model, in order to quantify the inventory requirements and analyze tradeoffs. The actual
data is proprietary and therefore is disguised as presented in this thesis. However, we
discuss the relative results of the model runs as they relate to the actual data so that we
can understand how changes in variability affect inventory requirements in the supply
network. A representation of the model’s user interface, with disguised data, is shown in

Figure 4-2 below.
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Figure 4-2. User Interface for Two-Node Stochastic Supply Network Model
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4.2 USING MODEL TO IDENTIFY IMPACT OF VARIABILITY

4.2.1 Impact of Changes in Parameters on Safety Stock

The relevant supply and demand variability data were entered into the two-node
model and inventory requirements were calculated based on the base-stock equations
described in Section 4.1.1. The results of the base case model indicate a requirement of
2.3 weeks of inventory in CW and 1.6 weeks in ADI for a total of 3.9 WOI. See
Appendix G — Table of Inventory Analysis Results for complete model results.

In order to quantify the impact of each parameter’s variability on the calculated
inventory, a sensitivity analysis was completed. In this analysis, new inventory targets
were calculated via the base-stock model, where the variability value of one parameter is
increased, while all other parameter values are held constant. Further, this was done with

both mean values and standard deviation values. Though inventory is explicitly held to
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buffer from variability in lead time (for example) rather than average lead time, the
average lead time is a part of the equation and its multiplicative effects cannot be ignored.
Thus, to evaluate the effect of changes in mean value, inventory targets were calculated at
the original mean value as well as mean value +/- 1 StdDev and the mean value +/-2
StdDev. Each new inventory target was subtracted from the original value and the
difference was divided by the number of standard deviations. The result is an increase (or
decrease) in safety stock per standard deviation increase (or decrease) in mean parameter
value. As expected, the results show that changes in mean values have a large impact on
pipeline stock (WIP) but virtually no impact on safety stock. The results of this analysis
for one parameter are shown in Figure 4-3 below. Similar analyses were done for the

remaining F/S and A/T parameters.

Figure 4-3. Impact of Change in Means on Safety Stock and Pipeline Stock
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The impacts of changes in variability were measured by taking the original
standard deviation and multiplying it by 0, 0.5, 1, 2 and 3. The new variability values
were plugged into the base-stock equation and new inventory requirements were
calculated. Again, the difference in safety stock requirements per standard deviation in
variability was calculated for changes in each parameter. As expected, changes in
variability had a significant impact on safety stock but not pipeline stock. The results of
this analysis for one parameter are shown in Figure 4-4 below. Similar analyses were

done for the remaining F/S and A/T parameters.

Figure 4-4. Impact on Change in Standard Deviation on Safety Stock and Pipeline
Stock
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It is interesting to evaluate the base level of safety stock®® which represents a
situation where there is zero variability in the parameter. This is the baseline inventory
required in the case where the evaluated parameter was deterministic, with all other

parameters at their historic level of variability.
4.2.2 Relative Contributions of Variability to Safety Stock

For each parameter, the differences in safety stock (calculated from baseline
variances) are divided by the number of standard deviations to get a “relative impact of
variability” estimate measured as inventory per variability. Its interpretation is that, if
variability increased or decreased by one standard deviation, then the calculated
inventory increase would result. A more likely scenario is that the increase would be on
the order of 0.1 StdDev, rather than an increase or decrease of a whole StdDev, but the
results can easily be scaled as such. The result of these analyses for our five sources of

variability is shown in Figure 4-5 below.

2% The safety stock result associated with 0 variability multiplication factor is the leftmost bar in the graph.
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Figure 4-5. Sensitivity Analysis on Standard Deviation of Sources of Variability
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As you can see, changes to the variability in throughput time have the greatest
impact on inventory requirements. This is because the calculated relative standard
deviations of these values are far greater than that of either yield or demand. Furthermore,
A/T TPT variability is higher than F/S TPT Qariability, even when scaled for the much
longer F/S throughput time. For comparison purposes, the impact of review period is
added to this graph even though this is in units of WOI/week of review period. A s.imilar

analysis was done for changes in mean values and is shown in Figure 4-6 below.
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Figure 4-6. Sensitivity Analysis on Mean Values for Sources of Variability
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This “relative impact of means” chart clearly shows what is evident from looking
at the base-stock equations - that the average demand has the greatest impact on the
amount of inventory that must be held to meet a particular service level. Here, however
we see the impact that review period can have, as the review period, measured in weeks
has a larger impact on inventory than mean TPT values.

The sensitivity analysis described above is effective in describing the changes in
inventory that result from differences in mean and variability of supply chain parameters.-
However, the results are highly dependant on the original calculated means and
variances, since these are the numbers that are used to calculate differences. Such an
analysis can help to focus improvement efforts on the sources of variability that are

highest and thus causing more inventories to be held. While this is a valid analysis, it
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does not help supply chain practitioners understand what level of inventory is being held
to account for each different source of variability. To make this determination a slightly
different approach is required. We take the safety stock portions of the base-stock
Equation 4, Equation 5, Equation 6 above, representing inventory requirements adjusted
for 1) demand, 2) demand and TPT and 3) demand, TPT and yield respectively. First we
calculate the safety stock requirements under Equation 4, which accounts for demand
variability. Then we calculate the safety stock with Equation 5. Subtracting the result in
Equation 4 from the result in Equation 5 gives the amount of safety stock that is held to
buffer from TPT variability. Similarly, subtracting Equation 5 from Equation 6 gives us
the amount of stock needed to buffer from yield variability.27 The result of this analysis
for both A/T and F/S in the base case two-node model can be displayed as a Pareto chart
with the highest contributors to total safety stock on the left side of the diagram and the

smallest contributors on the right.

%’ Note that this methodology is required, since the square root function is not distributive. That is,
sqrt(a+b) # sqrt(a) + sqrt(b).
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Figure 4-7. Pareto Chart of Base Case Results
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As you can see in Figure 4-7 above, in the base case scenario, A/T TPT variability is the
largest contributor to safety stock, with demand variability and F/S TPT as the next
largest. Yield variability hardly plays a role in safety stock requirements. This is because

the product analyzed is a mature product with high yields and small yield variance.
4.2.3 Effect of Data Sources on Safety Stock Requirements

We utilize the methodology described above to expand the base case model — and
associated data inputs - to provide a more realistic representation of the actual supply
chain. By using other sources of data to model the demand variability?®, we can eliminate
certain deficiencies in the base case model. For example, the base case model uses

family-level pseudo-CV data, along with volume forecasts to estimate demand

%8 Note that the supply variability data feeds are held constant in this analysis.
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variability. The usage of family level product aggregation data implies that each sku
within a given family is interchangeable with any other sku.”’ To the extent that skus are
not interchangeable, the variability will be higher and the inventory requirements will be
higher as well. Using sku level data may provide more realistic inventory requirements,
particularly for A/T; where skus are not necessarily interchangeable. If one substitutes
sku-level demand variability in the place of family-level variability in the base case
model, the total safety stock required more than doubles from 3.9 to 8.2 weeks of
inventory. See Appendix G — Table of Inventory Analysis Results for complete model
results.

Furthermore, there are some cases where neither skus nor families are the
appropriate level of aggregation from the customer’s perspective. Consider a situation
where the customer wants a desktop, Pentium® IV processor, but they may not care
whether the unit is 2.2 GHz or 2.4 GHz. In this case, there is a level of aggregation
somewhere between sku and family that represents the customers indifference toward a
particular subset within a given product grouping. We call this level of aggregation a
“mini-family”. It is described as a unique combination of family3°, cache, vertical® ',
market*?, brand®, media®* and package®. When the base case model is run using this

level of aggregation, the calculated safety stock requirements are roughly 5.6 WOI,

** In later sections, different levels of product aggregation are used in the model, including certain cases
where the two nodes use different levels of aggregation.

%% Family refers to the internal product generation, and often corresponds with the brand name.

*! Vertical refers to the type of computer a processor will be used in, such as desktop, mobile or server.

*2 Market refers to the market segmentation of he product, such as performance or value

* Brand is a description of the brand name of the product, like Pentium® or Xeon.

** Media describes how the unit is sold — either in trays to OEMs or in boxes to consumers.

** The package type represents how the microprocessor is mounted for installation into computers.
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which lies between the results obtained using sku and family level data. See Appendix G
— Table of Inventory Analysis Results for complete model results.

Another shortcoming of the base case model is the fact that the demand variability
is assumed to be transmitted up the supply chain. As described in Section 4.1.2, the base ,
case model simply adjusts the demand (backlog) variability for the yield variability in
AJT to develop an estimate of F/S demand variability. Since the lead time in A/T is
approximately 3 weeks, we use the 3-week-out backlog variability. So, in effect, the error
of the 3-week-out backlog variability is transmitted up the supply chain — adjusted only
for A/T yield - even though other demand signals are used to make F/S decisions in the
real business processes. To address this issue, we can use a variety of different backlog
signals to provide more representative variability input to the Fab/Sort part of the process.
If we assume that the average lead time from the start of F/S though the end of the
process is roughly 11 weeks, we can use the 11-week-out backlog variability data in the
model. Because the variability of backlog 11-week-out is greater than the 3-week-out
variability, the required safety stock is calculated to be 4.3 WOI rather than 3.9 WOI for
the base case model. See Appendix G — Table of Inventory Analysis Results for complete
model results.

Though the 11-week-out backlog data may be a more realistic representation of
variability in the semiconductor supply chain, there are still some sub-optimal features of
this approach. First, as discussed in Section 3.3.2, customers often don’t book their
backlog until a few weeks into the quarter, so the 11-week-out backlog signal may
overestimate variability somewhat. Second, there is more flexibility in the manufacturing

process than the 11-week-out forecast implies. It is not as if product is started 11 weeks
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in the future - to meet projected backlog - and then the planners helplessly watch as
orders change until there are nothing but unfilled orders and incorrect inventory at the
end of the quarter. In fact, the product mix can be changed somewhat within the process,
in order to adapt to changing product demands. So the 11-week-out forecast is not the
only one which has any relevance for planning purpose. It is also true that the 1-week-out
forecast is not appropriate, since many of the decisions made earlier will have caused
products to be frozen into one configuration or another by then. Instead, some
combination of the pseudo-CVs through the forecast horizon should be used. The
simplest combination would be a simple arithmetic average of CV values across the
forecast horizon. However, this does not account for the fact that the further-out horizons
are relied-on more heavily than the near-term horizons. For example, the backlog
variability of the 8-week-out horizon has more impact on inventory requirements than the
3-week-out horizon for the simple reason that by the time the product is 3 weeks away
from delivery, many sources of flexibility that one has at 11-weeks-out have been
depleted. Thus, if the lead time is 11 weeks, the 11-week-out value should be weighted
more than the 3-week-out. We make the assertion that, in this case, the ratio should be
weighted by time into the future. An example of this calculation is shown in Equation 7

below.
Equation 7. Weighted Average CV Calculation

(CV 1weekou ¥ 1) + (CV 2weekou * 2)H CV sweekour * 3)
1+2+3

Average CViweeksout =

When we calculate the “average” variability and use the 3-week-out weighted

average for A/T and 11-week-out weighted average for F/S, we get results that are
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slightly lower thaﬁ previously calculated. The sku-level safety stock requirements are
calculated to be 8.3 WOI rather than 8.6 WOI. See Appendix G — Table of Inventory
Analysis Results for complete model results.

The business process for planning semiconductor wafer starts is a little more
complex than the one implied by the model, even with the above upgrades. In particular,
multiple demand signals are used for a variety of different planning purposes. Since the
11-week-out backlog often underestimates demand .';nd overestimates variability,
forecasts are typically used to plan lc;ng lead time events like wafer starts. As discussed in
Section 3.3.3, forecasts have an entirely different set of characteristics than backlog,
including chronic positive bias and significant variability. Nevertheless, since these
forecasts are the demand signal used in the current business planning context, they should
be incorporated into the inventory models. This is particularly true in sizing the ADI
buffer since it shields the customer from variability resulting from long lead time
processes like wafer starts. When one uses the average 13-week-out*® forecast variability
to buffer F/S from demand fluctuations rather than backlog variability, the safety stock
requirements (based on family level aggregation) are calculated to be 3.8, which is
slightly less than the base case requirement of 3.9 weeks. See Appendix G — Table of
Inventory Analysis Results for complete model results.

So far we have evaluated safety stock requirements with different sources of data
(backlog or forecasts), different analytical approaches to the time horizon (point-values or
weighted-averages) and different levels of product aggregation (sku, mini-family or

family). Though we have looked at the differences between sku-level data and family-

3¢ The weighted-average 13-week-out forecast variability is used because only quarterly forecast data is
available and it must be disaggregated before use in the inventory model.
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level data, we have always used the same level of product aggregation for each node.
However, the same level of aggregation may not be appropriate for each of the nodes in
the supply network. The level of product aggregation is a way of describing
interchangeability and substitutability. If demand for one sku can not be met by another
sku, then sku-level aggregation is appropriate. On the other hand, if a customer is
indifferent to one sku within a mini-family and another sku within the same mini-family,
then mini-family-level of aggregation is probably appropriate. The fact that the two nodes
of our network have different requirements, demand patterns and levels of flexibility
indicates differences in the required level of aggregation.

The Fab/Sort process is driven by wafer starts which are roughly equivalent to a
product family level of aggregation. After a wafer is started, it can be routed any number
of different ways through the factory, such that demand for different skus can be fulfilled.
Furthermore, many of the final customizations which remove this flexibility occur in
Assembly/Test. So for the purposes of inventory analysis, the ADI inventory buffer,
which protects A/T from variability in F/S, the appropriate level of aggregation is likely
to be family. Since package-type and other attributes are finally determined in A/T, the
appropriate level of aggregation may either sku or mini-family, depending on the end-
customer. Some customers can accept a variety of skus within a given mini-family, while
others have qualified their equipment on a particular sku and do not have such flexibility.
Using the sku level of aggregation for A/T and family level for F/S, the required safety
stock is 4.7 weeks. Using the mini-family level of aggregation for A/T and family for F/S

the required safety stock is 4.1. These are compared with the base case safety stock
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requirement of 3.9 WOI. See Appendix G — Table of Inventory Analysis Results for
complete model results.

By refining the base case model to include more realistic assumptions, actual
demand signals and current business practices, we have a better understanding of how
safety stock changes with different data sources and techniques. It is interesting to note
that the sources of the largest components of variability actually changed between the
base case and the final analysis. In the base case model, A/T TPT was the variability
component which caused the most amount of safety stock to be held, while in the final

scenario, demand variability was almost three times larger a contributor to safety stock

than A/T TPT.

Figure 4-8. Pareto Chart of Final Model Results

Weeks of Inventory (WOI)
Cumulative WOI

Demand AT TPT FISTPT A/T Yield F/S Yield
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As you can see in Figure 4-8, Demand variability (through both F/S and A/T) contributes
nearly 3 of the 4.7 weeks of total inventory. A/T and F/S variability contribute nearly
equivalent amounts — 1 week each. Again, this result meshes rather well with our
intuitive understanding of the supply chain in that the majority or inventory:is held to
buffer from variability in demand. In an industry with such volatile>and cyclical demand

patterns, this is hardly a surprising result.
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5 CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK

The analysis of variability in the semiconductor supply chain, completed from
June through December 2003, accomplishes two objectives not often seen together in the
supply chain literature. First, it presents a variability framework within which to
understand the impact of aggregation and forecast horizon on supply chain variability of
short lifecycle products.‘This enhanced insight can help to identify particular sources of
variability to target for reduction or evaluate where inventory should be held to buffer
from particular sources of variability. Second, it utilizes real supply and demand data to
establish relationships between variability and inventory requirements. The use of real
data helps validate the model against experience and allows for its use in running what-if
scenarios tc'; determine the inventory impact — and thus the financial implications — of
undertaking projects to lower variability in the supply network. Based on the evaluation
of the data and scenarios, we present a series of recommendations, broken into two major

categories.

5.1 MEASURE, REDUCE AND MANAGE SUPPLY NETWORK

VARIABILITY

The analysis of variability discussed in Chapter 3 forms the foundation for the
inventory analysis and makes clear the need for a supply network variability strategy.
Thus, we recommend that the supply chain group embark on an a.mbitious program to
measure variability, reduce it where possible and manage the amount that remains. The
reason for the recommendation is that such action is required to provide the data

requirements needed to implement the kind of quantitative inventory program described
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in the second recommendation. Again, the key pillars of this variability strategy are
Measure, Reduce and Manage.

5.1.1 Measure

The first part of the proposed variability program is to monitor the variability in
the supply chain as you would in a manufacturing process. This is a prerequisite for all
quantitative inventory efforts. First, the company must collect data - forecasts and actuals
- for yield, throughput time, demand and any other parameters of interest. The data
should include specific information on which type of forecast — targets, goals or true
forecasts - are being stored. Next, this data should be analyzed using the framework
contained in this thesis and then evaluated via the metrics described above. Such analysis
will provide the data needed for models and it will allow for comparison among projects,
products and programs. Tracking the metrics described in this thesis, flagging exceptions,
investigating excursions and developing recommendations to prevent recurrence will spur
a continuous improvement loop which will help reduce the variability of the supply and

demand processes.
5.1.2 Reduce

The second step of the variability strategy is to reduce the supply and demand
variability in the network. This does not necessarily imply changes to the production
process or sales and marketing efforts. Rather, with an understanding of the variability
inherent in the system, one can begin to simplify analyses by using less detailed data
where possible. Whether this is a reduction in the time horizon of planning or a change in
the time or product granularity, lower variability and less non-value added work will be

the result. Intel has already seen dramatic improvements by reducing the time horizon on
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planning wafer starts from 9 months to 3 months without adverse effect. There are many
other opportunities for such a reduction. For example, in most cases, the customer is
indifferent to a variety of skus within a given mini-family. Thus if supply and demand
were managed at the mini-family level through A/T, a significant (~25%"’) reduction in

inventory could be immediately realized over targeting inventory at the sku level.
5.1.3 Manage

Once variability in the supply network has been measured and reduced where
possible, some amount will remain. In order to manage the remaining levels of
variability, the company must begin to account for the variability inherent in the supply
chain explicitly. Rather than one group padding demand forecasts and another group
underestimating yield predictions, groups should do their best to accurately predict the
future state of the business and rely on the variability data devscribed in Section 5.1.1 to
appropriately buffer the organization from the variability in the process. As part of this
exercise, the planning groups should develop control limits or range forecasts so that they

do not react to noise.

5.2 PARADIGM SHIFT FROM JUDGMENT TO DATA FOR

INVENTORY MANAGEMENT

The inventory analysis part of this work - made possible by the variability
characterization - showed that the Intel’s heuristic and judgment-based inventory policies

are reasonably close to those calculated through use of the two-node base-stock model

%7 The average reduction in inventory is 25% and ranges from 20% to 30%.
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with actual data. However, it is the implementation of these targets - rather than the

amounts themselves - that must be re-evaluated.
5.2.1 Calculate and Utilize Inventory Targets

Intel’s historical inventory management strategy of “‘don’t stock out” has
historically worked, but only with large amounts of management, oversight and
manipulation. In the new environment of lower profit margins and more complex
products, such management is not only undesirable, but in some cases it is impossible. A
more quantitative approach is required and the variability characterization together with
the inventory analysis will allow the company to “set a service level, and calculate an
inventory target”. Again, this will allow the supply network to explicitly account for
variability rather than padding it into the management of the business processes. In order
to implement this recommendation, better measurement of service levels are requi'red3 i

and automated supply and demand data feeds are needed.
5.2.2 Attribute-based Inventory Targets

As part of the paradigm shift from heuristics to statistics, inventory targets should
be calculated based on service level and variability data specific to a given products
attributes rather than specific to the item itself. In contrast to keeping a given number of
weeks of inventory for each sku in the product family, the variability of individual
products should be analyzed and inventory t'argets set based on the salient attributes
which are known to affect variability and service level. For example, variability analysis

could be set based on stage of product lifecycle (ramp-up vs. end-of-life), relative

*® See Jim Chows 2004 LFM Masters Thesis for detail and recommendation for improving the
measurement and implementation of service levels in Intel’s supply network.
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volumes (high-volume vs. low-volume) and market attributes (desktop-value vs. mobile-
performance). By doing this, the company can explicitly link variability to the major

variability differentiators.
5.2.3 Work toward Global Inventory Optimization

The goal of this work and the supply network as a whole should be to work
toward global inventory optimization through data sharing, common tools and
collaboration. This thesis is one small step in the journey. Next steps include the
development and utilization of a consistent and detailed set of data sources. The company
must also develop effective and flexible reports and tools to allow management of this
additional complexity. Finally, the team must develop and implement a robust multi-
echelon stochastic optimization which can take all of the different types of variability into
account and develop customized inventory targets based on attributes of the products.
Only then will Intel realize the vision of the supply chain planning team sitting around

the table with the data, tools and processes to make globally optimal decisions.
5.3 FUTURE WORK

While we believe that this work forms a strong foundation for future multi-
echelon optimization work, we recognize the shortcomings of the model and assumptions
under which we were required to develop our conclusions. First and foremost, Intel’s
supply chain is neither uncapacitated nor are the supply/demand data normal and
stationary. Furthermore, there are many more than two nodes in the semiconductor
supply chain. However, to the extent that we develop an easily understandable, multi-
node model, using actual supply chain data, the model presented allows us to make

assessments of the effects of variability and tradeoffs between sources of variability in
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the supply network. Follow-on research should include the development of a multi-node
network optimization using a commercial supply chain optimization algorithm.
However, even commercial applications have shortcomings in the area of non-normal,
non stationary parameters and this should be a subject of intense academic research in the

future.
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APPENDIX A — GRAPHICAL REPRESENTATION OF
AGGREGATION AND VARIABILITY TYPE

Aggregation

Forecast | Wk1 Wk2 Wk3 Wkd Wk5 Wk6 Wk7 Wk8 Wk9 Wk10 | Wk11 Wk12 | Wk13
Week [ inMih1 | inMth1 | inMiht | inMih1 | inMth2 | in Mth2 | inMth2 | inMth2 | in Mh3 | in Mih3 | inMth3 | in Mth3 | in Min3
inart |inawt |inart |inart finawt [inawrt |inar [inaet | P inan [inart [ inQrt | inatn

Product

Sku A
(miniF=X)

SkuB
(miniF=X)

..............................................................................

SkuC
(miniF=X)

SkuD

(miniF=Y) Fam|| -

SkuE L WK i
(miniF=Y)

e e e S T T e I

Sku F
(miniF=2)

(miniF=2) - Qtr

Sku H
(miniF=2)

r

i

1 O T
Sku G I miniFamily

1

1

P R e B o o o = —

Legend:

Forecast Week — The week that is being forecasted

Mth1l, Mth2, Mth3 — The month-of-quarter

Qtrl — The quarter-of-year

Product — The specific product that is being forecasted for

Sku (A, B, C, D, E, F, G, H) — The lowest level of product

miniF, miniFamily (X, Y, Z) — Several skus with the similar attributes make up a mini-
Family

Fam, Family — Several miniFamilies built from the same wafer type make up a Family

Procedure:
Imagine that each small square in the above matrix is filled with two numbers, a forecast
and an actual. If you are using the level of aggregation of sku-weekly, then you calculate

the forecast error of each individual square and average them to get the average error.

On the other hand, if you use the miniF amily-monthly level of aggregation, then you
‘would first sum up all of the values of forecasts and actuals for a particular miniFamily
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and month. Then you take the average of that smaller set of numbers. The average error
will be lower than sku-weekly, because certain errors among weeks or between skus tend
to cancel each other out when they are aggregated together. This is called the pooling
effect.

This is the impact of pooling on variability. The different dash and dotted lines indicate,
pictorially, which values are summed to achieve different levels of aggregation.

Variability Type

The diagram below helps draw the distinction between natural variability and forecast
variability. The boxes contain the supply and demand parameters that are often measured,
while the circles show which measurements of variability are primarily used for each
type. True demand remains as a cloud hovering over the demand variables, because it is
often difficult to identify true demand.

Demand Variables

................ g
TS5 <

Backlog Forecasts Others... e2 3 %3

-3 —

£g FA

S=
B o
= Bias Error Variability
D 0
o0 Relative (%) and Relative (%) and Relative (CV) and
< = Absolute (Units) Absolute (Units) Absolute (Units)
Bzl 24
Mean StDev D
(Median) (1QR) Tt
55
<
TPT Yield - Others...

Supply Variables
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As seen in the picture below, variability can be broken into two parts; period-to-period
variability and noise.

4 Average or “Expected Value”
Average
5| —— \
b Actual / \ /\ \
g ~— N !/\\ / \ /\\\
3 S ARVARV4
2 AV
This case has no “period-to-period” variability, but has noise around mean
Time
A
Forecast “Expected Value” = Forecast
'g ———  Actual /
3]
£ orecast Error
[+3}
o
Here, we have “period-to-period” variability AS WELL AS noise around the curve

Time

For stable demand, mean and standard deviation are key inputs

Actual Demand

Demand

Average or “Expected Value”

m*\:cwalmw/& AN /\ /\ /\\

This case has no “period-to-period” variability, but has noise around mean

5
rd

Time

A e

In this case you would enter into a model:
M = Mean Demand over Time Horizon

o = StDev of Demand over Time Horizon
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For non-stationary demand, more complex inputs are required. Please note that the input

data is fictional.

A
“Expected Value” = Forecast
°
c
£
D
Q
e Time
Wk +0 Wk +4 Wk+8 Wk+12 Wk+16
Expected Demand 300 500 1500 1500 800 i.e. Backlo
(Similar to p) e 9
Average Forecast Error 150 200 600 700 350 i.e. Avg FE or MD
(Similar to G) .
StDev of Forecast Error 200 200 400 900 600 i.e. StDev of FE
(New P_a(ameter)

In this case enter just mean and stdev, because the mean (dotted line) is not an accurate
representation of expected demand.

Instead, enter expected demand for each week in the forecast horizon and average forecast error for
each time horizon. But the forecast error is not deterministic...there is a range of errors, so you
need to use the StDev of Forecast Errors.
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APPENDIX B — BOUNDED NATURE OF MPE AND APE

Assuming only positive (no returns allowed) forecasts and actuals, take the two extremes:
MPE Case A Forecast = 1 unit, Actual = 1,000,000 units

Abs Error = -999,999 units

MPE = [-999,999 / 1,000,000] *100

MPE == -99.99% = -100%
MPE Case B Forecast = 1,000,000 units, Actual = 1 unit

Abs Error = 999,999 units

MPE =[999,999 / 1] *100

MPE = 99,999,999%
The reason why you can have unbounded positive errors and negative errors are bounded
by -100% (except in the case of negative forecasts and actuals) is simply that you are
dividing by actuals. If you divided by forecasts, you would have the opposite scenario.
When plotted in a distribution, such data is usually skewed. For a parameter such as
MPE, there are many values in the -100 to 100 range, but the existence of large positive
outliers (1,000,000% or more) and the absence of large negative outliers to balance them,
leaders to excessively high average errors. This is draﬁatically different from the
symmetrical nature of the Average Percent Error measurement shown below. Again,
assuming only positive (no returns allowed) forecasts and actuals, take the two extremes:
APE Case A Forecast = 1 unit, Actual = 1,000,000 units

Abs Error = -999,999 units

APE =[-999,999 / 500,000] *100

APE =-199.99% = -200%
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APE Case B Forecast = 1,000,000 units, Actual = 1 unit
Abs Error = 999,999 units
MPE =[999,999 / 500,000] *100

MPE =200 %
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APPENDIX C — EQUIVALENCE OF MSE AND STDDEVOFFE

Standard Deviation of Forecast Errors

Equation 8: Forecast Error
Forecast Error (FE) = (Forecast — Actual)
Equation 9: Standard Deviation

n

Std Dev = n—‘_;Z(yl_ - ;)2

i=1
Where y is any variable:
Equation 10: Standard Deviation of Forecast Errors

We apply y=Average(FE):

i=1

Std Dev of FE = \/;‘_—]i(FE - ﬁ)z

If average forecast bias is 0:

Equation 11: Standard Deviation of FE with Zero Average Bias

Std Dev of FE = \/—,,L__]%(—Fg,_);
i=1

Equation 12: Final Equation for Standard Deviation of Forecast Errors with Zero
Average Bias

Set FE = F-A = Forecast-Actual:

Std Dev of FE = \/ﬁi(F,. -4)
i=1
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Mean Square Error

Equation 13: Mean Squared Error
MSE =1 3(F,~ 4
i=1

Equation 14: Root Mean Squared Error

RMSE = /%i(ﬁ‘, -4
i=1

Note that Equation 12 is identical to Equation 14 for large n.
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APPENDIX D — DISAGGREGATION OF QUARTERLY FORECASTS

MF‘::: July August September October November | December
oon [ (M1inQ3) | (M2in Q3) (M3 in Q3) (M1inQ4) | (M2inQ4) | (M3inQa)
Month

MIF=0 MIF=1 MIF=2 MIF=3 MIF=4 MIF=5
Feac=0.3"Fy  |Fop=0.3"F, Fenc=0.4 * F Foacm03"Fy  |Feacm03°Fy  |Fea=0.4*F,
Jul q
(M1
in 299,400 299,400 399,200 450,000 450,000 600,000
Q3) Fq13 = 998,000 (QIF = 2/3) Fq14 = 1,500,000 (QIF = 5/3)
MIF=-1 MIF=0 MIF=1 MIF=3 MIF=4 MIF=5
Aug Fosc=(Fo- A7 |Feam(For AT [Fiem03* Fy  [Foue=03°Fy  |Fea=0.4*F,
(M2 -
o |A1=265824 354 933 433,243 486,000 486,000 648,000
Q3) Fais = 1,024,000 (QIF = 1/3) qu = 1,620,000 (QIF = 4/3)
MIF=-2 MIF=-1 MIF=0 MIF=3 MIF=4 MIF=5
Sep Focm(For Ay = AD [Feam0.3 " Fy  [Foum0.3"F,  |Fege=04*F,
( M3 = =
o |AT1=265,824 |A2= 269,954 1369 220 438,900  |438,900  |585,200
Q3) Fq13 = 905,000 (QIF = 0/3) Fq14 =1,463,000 (QIF = 3/3)
Legend:

Fcst Month — The month that is being forecasted

Plan Month — The month in which the plan was made
M1, M2, M3 — The month-of-quarter
Q3 — The quarter-of-year

MIF — Months into Future
QIF — Quarters into Future
F.aic — Calculated forecast for a given month

Fq, Fq13 — The quarterly forecast which is being disaggregated

Al, A2, A3 — The backward-looking actual demand for the given month

Procedure:

First Month-of-Quarter

For every month in the forecast horizon, the quarterly forecast is disaggregated by
multiplying the quarterly forecast by the seasonality factors for each month-of-quarter. In
this example, 30% for 1'month, 30% for 2™ month and 40% for 3™ month. Any forecast
more than 1-quarter-out remains disaggregated by the 30/30/40 seasonality factors.
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Second Month-of-Quarter

In the second month of the quarter, there are actual demand results available for the first
month. We realign the forecasts by subtracting the first month result from the quarterly
forecast and then multiplying the results by the adjusted seasonality factors. In this
example, 0.3 /[1.0 - 0.3] (=0.43) for the second month and 0.4/ [1.0 — 0.3] (=0.57) for
the third month. Any forecast more than 1-quarter-out remains disaggregated by the
30/30/40 seasonality factors.

Third Month-of-Quarter

In the third, and last, month of the quarter, the actual results for the first and second
months are available, so the quarterly forecast is realigned to these actual results. The
actuals are subtracted from the quarterly forecast (which may be revised from the prior
two months) and the remainder is the new forecast for the third month. Any forecast more
than 1-quarter-out remains disaggregated by the 30/30/40 seasonality factors.
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APPENDIX E — DERIVATION OF F/S DEMAND VARIABILITY

LetY=X/Z
Where: Y =F/S Demand
X = A/T Demand
Z=A/T Yield
E(Y) =E, [E(X|Z)]
=E, [u/Z]
=px E.[1/Z]
Equation 15: Yield-Adjusted F/S Demand
EY)=mE;[1/Z]
Var(Y) =E,[VarY | Z] + Var,[E(Y | Z)]

= Ez[ze/ z] + Var,[p/ 7]
=0,° *E[1/Z] + p’ Var,[1/Z]

Equation 16: Variability of Yield-Adjusted F/S Demand

Var(Y) = o, * E[1/ Z] + p,* Var,[1/ Z]

107



APPENDIX F — DESCRIPTION OF DEMAND VARIABILITY

REGRESSION

Though we primarily use the pseudo-CV method of demand variability estimation
in our work, we explored many other techniques. One of the techniques which we spent
much time and thought on is the regression methodology. The concept is that the level of
demand variability should be related to the level of actual demand. Thus one can regress
variability, measured as Mean Square Error (MSE), against demand on a log scale and
obtain an equation which could be used to estimate variability given a new level of
demand. In this case, sku level, weekly demand was used to develop such an equation.

However, as we have seen in this work, the variability of demand is highly
dependant on other factors as well. In particular, the level of time and product
aggregation has a dramatic impact, as well as the forecast horizon. For the case of time
aggregation, we judged the usefulness of monthly or quarterly demand variability to be
low, so we neglected to account for this effect. However, the level of product
aggregation and forecast horizon were judged to have significant theoretical and practical
impact and were included in subsequent analyses. We included the log of the number of
weeks into the future as a dependant variable in the regression, ;md a separate regression
was done for each level of product aggregation. The regression details are detailed at the

end of this Appendix and the resulting equation for sku level variability follows.
Equation 17: Regression Equation for Sku Level Demand Variability

Estimated MSE = 10°x WeeksIntoFuture"*® x WklyDemand'**
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Where: ¢ = a constant®
The results given by this equation consistently under-represent the variability we see in
the empirical data and the results generated by the pseudo-CV method. We believe that
this is due to the large scatter and poor R? of the sku-level regression and the family and
mini-family regressions are worse. This is why we did not use the regression results to
complete the inventory analysis, even though we believe that the technique holds much

promise in helping estimate variability for such analyses.

*® The constant is not given in this treatment in order to protect confidentiality of the data.
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Level_Of Prod_Aggr=Family, Level_Of Time_Aggr=Week
Response log(MSE)
Actual by Predicted Plot

log(MSE) Actual

13—
M —— ==

—_— e ]

T T T T T 1 T
0123456 78910111213

log(MSE) Predicted P<.0001 RSq=0.30
RMSE=1.0205

Summary of Fit

RSquare 0.295907

RSquare Adj 0.293869

Root Mean Square Error 1.020528

Mean of Response 11.19823

Observations (or Sum Wgts) 694

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 2 302.4496 151.225 145.2022
Error 691 719.6608 1.041 Prob >F
C. Total 693 1022.1103 <.0001
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Level_Of Prod_Aggr=Sku, Level_Of Time_Aggr=Week
Response log(MSE)
Actual by Predicted Plot

103 o
. ® = g
-3 8= |
3] E v |
< T T 1
o 6%
2 3
5 43
o =

2=

j’, ] -

O \l‘!lli;v {I[Y}TY)N\IYWIT][!\I[l(l]'lr]‘[‘f

.0 1.02.03.04.05.06.07.08.09.0 11.0
( log(MSE) Predicted P0.0000 RSg=0.52
RMSE=1.4637

Summary of Fit

RSquare 0.520025

RSquare Adj 0.519982

Root Mean Square Error 1.463696

Mean of Response 7.092724

Observations (or Sum Wgts) 22284

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 2 51718.036 25859.0 12070.08
Error 22281 47734.948 2.1 Prob > F
C. Total 22283 99452.984 0.0000
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Level_Of_Prod_Aggr=miniFamily, Level_Of Time_Aggr=Week

Response log(MSE)
Actual by Predicted Plot =

12-=
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log(MSE) Predicted P0.0000 RSq=0.55
( RMSE=1.5309

N
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Summary of Fit

RSquare 0.554485
RSquare Adj 0.554305
Root Mean Square Error . 1.530926
Mean of Response 8.088953
Observations (or Sum Wgts) 4960

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 2 14459.519 7229.76 3084.719
Error 4957 11617.887 2.34 Prob > F
C. Total 4959 26077.406 0.0000
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APPENDIX G — TABLE OF INVENTORY ANALYSIS RESULTS

Total Safety Stock Requirements

F/S Data A/T Data
Backlog Backlog
Sku Sku
mini-Family mini-Family
Family Family
FI/S Data A/T Data
Forecasts Backlog
Sku Sku
mini-Family mini-Family
Family Family
F/S Data A/T Data
Forecasts Backlog
mini-Family Sku
Family Sku
Family mini-Family

Base Case Model

3 Wk Out for F/S
3 Wk Out for AT

11 Wk Out for F/S
3 Wk Out for A/T

0-11 Wk Out (Avg) for F/S
0-3 Wk Out (Avg) for AT

8.2 8.6 8.3
5.6 5.3 5.6
3.9 4.3 4.1

9 Wk OQut for F/S
0-3 Wk Out (Avg) for A/T

13 Wk Out (Avg) for F/S
0-3 Wk Out (Avg) for A/T

9.1 8.4
5.0 5.0
3.8 3.8

13 Wk Out (Avg) for F/S
0-3 Wk Out (Avg) for A/T

5.5

4.7

4.1

Safety Stock Requirements for F/S and A/T

F/S Data AT Data
Backlog Backlog
Sku Sku
mini-Family mini-Family
Family Family
F/S Data AT Data
Forecasts Backlog
Sku Sku
mini-Family mini-Family
Family Family
F/S Data A/T Data
Forecasts Backlog
mini-Family Sku
Family Sku
Family mini-Family

Base Case Model

3 Wk Out for F/S
3 Wk Out for A/T

11 Wk Qut for F/S
3 Wk Out for A/T

0-11 Wk Out (Avg) for F/S
0-3 Wk Out (Avg) for AT

AT=4.8 | F/S=3.4

AIT=5.2 | F/S=3.4

AIT=5.1]| F/S$=3.2

AT=2.9 | FIS=2.7

AIT=2.6 | FIS=2.7

AIT=3 | FIS=2.6

AIT=1.6 | FIS=2.3

AIT=1.9]| F/S=2.3

AIT=1.7 | FIS=2.3

9 Wk Out for F/S
0-3 Wk Out (Avg) for A/T

13 Wk Out (Avg) for F/S
0-3 Wk Out (Avg) for AT

AIT=5.9 | F/S=3.2

AIT=5.2 | F/S=3.2

AlT=2.4 | F/S=2.6

AT=2.3 | FIS=2.6

AIT=1.5| FIS=2.3

AIT=1.5| FI/S=2.3

13 Wk Out (Avg) for F/S
0-3 Wk Out (Avg) for A/T

AIT=2.3 | FIS=3.2

AT=1.5]| F/S=3.2

AIT=1.5 | FIS=2.6
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