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ABSTRACT

An infinite horizon, expected average cost, dynamic routing problem is formulated for a simple

failure prone queueing system, modelled as a continuous time, continuous state controlled stochastic

process. We prove that the optimal average cost is independent of the initial state and lthat the cost-

to--go functions of dynamic programming are convex. These results, together with a set of optimality

conditions lead to the conclusion that optimal policies are switching policies, characterized by a set

of switching curves (or regions), each curve corresponding to a particular state of the nodes (servers).
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1. INTRODUCTION

Overview

The main body of queueing theory has been concerned with the properties of qucueing systems

that are operated in a certain, fixed fashion (Ref. 1). Considerable attention has also been given to

optimal static (stationary) routing strategies in queueing networks (Refs. 2-4) which are often found

from the solution of a nonlinear programming problem (flow assignment problem).

Concerning dynamic control strategies, most of the literature (Refs. 5-6 are good surveys) deals

with the control of the queueing discipline (priority setting) or with the control of the arrival and/or

service rate in a M/M/1 (Ref. 7) or M/G/1 (Ref. 8) queue. Ref. 9 considers the problem of controlling

the service rate in a two-stage tandem queue.

Results for queueing systems where customers have the choice of selecting a server are fewer.

Ref. 10 considers multi-server queucing models with lane selection and derives mean waiting times

but does not consider the optimization problem. Some problems with a high degree of symmetry

have been solved (Refs. 11-13) leading to intuitively appealing strategies like, for example, "join the

shortest queue". Results for systems without any particular symmetry are rare. Ref. 14 contains

a qualitative analysis of a dual purpose system. In Ref. 15, a routing problem (very similar to

ours) where the servers are allowed to be failure prone is solved numerically. A simpler failure-

prone system is studied in Ref. 16 , and sonme analytical results are derived. Finially, £he dynamic

control problem for a class of flexible manufacturing systems, as defined in Ref. 17, has significant

qualitative similarities with our problem.

In this paper we intend, through the study of a particular queueing system, to display a

methodology which may be used to establish certain properties of dynamically controlled queueing

systems. We consider an unreliable (failure prone) system (Figure 1) with arrivals modelled as a

continuous flow. Consequently, our model concentrates more on the effects of failures rather than

the effects of random arrivals and service times, as is the case in mainstream queueing theory. We

prove convexity of the cost-to-go functions of dynamic programming (and hence the optimality of

switching policies). Our methodology readily extends to more complex configurations.

Problem Description.

We study a queueing control problem corresponding to the unreliable queueing system depicted



in Figure 1. We let Mo, Ml and M2 be failure prone nodes (servers, machines, processors) and Bl,

B2 be buffers (queues) with finite storage capacity. Machine Mo receives external input (assumed

to be always available) which it processes and sends to either of the buffers Bl and B2. Machines

Aill and M2 then process the material in the buffers that precede them. We assume that each of

the machines may fail and get repaired in a random manner. The failure and repair processes are

modelled as memoryless stochastic processes (continuous time Markov chains). We also assume that

the maximum processing rate of a machine which is in working condition is finite.

With this system, there are two kinds of decisions to be made: a) Decide on the actual processing

rate of each machine, at any time when it is in working condition and input to it is available; b)

Decide, at any time, on how to route the output of machine Mo.

We consider a rather general performance criterion corresponding to the production rate (throughput)

of the system, together with a storage cost. Moreover, we formulate the problem as an infinite

horizon, expected average cost minimization problem and we are looking for dynamic control policies

in which the decision at any time is allowed to depend on all information on the system available

at that time. In particular, the values of the control variables are allowed to be quite arbitrary

functions of the current states of the machines and the buffer levels.

The above introduced configuration arises in certain manufacturing systems (Refs. 15, 18) (from

which our terminology is borrowed) and also in communication networks where the nodes may be

thought as being computers and the material being processed as messages (packets) (Ref. 11). Note

that the Markovian assumption on the failure and repair process of the nodes implies that a node may

fail even at a time when it is not operating. This is a realistic assumption, in unreliable communication

networks and in those manufacturing systems where failures may be ascribed to external causes

(Refs. 18-19). On the other hand, in some manufacturing systems, failure probabilities increase with

the degree of utilization of the machines (Ref. 20). Such systems are not captured by our model and

require a substantially different mathematical approach.

We model the queue levels as continuous variables and the flow through the machines as a

continuous flow (the fluid approximation of Ref. 2). This is a good model when the workpieces in an

actual manufacturing system, or the messages in a communications network, are very small compared

with the storage capacity of the queues and when the processing time of any single workpiece (or

message) is very small compared with the natural time scales of the system. The latter are determined

by the failure and repair rates of the machines and the time needed to fill an empty queue or to

empty a full queue.

Let us now comment on the methodology and the mathematical issues involved. Our main
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objective is to establish that optimal policies are switching policies. Namely, that the state space

is divided into two main regions corresponding to the two buffers, separated by a simply connected

dividing region. Whenever the state of the system lies in one of the two main regions, it is optimal

to send all output of Mo to the buffer corresponding to that region. (Optimality conditions on the

dividing region are slightly more complicated and may depend on the actual shape of that region.)

To achieve our objective, we need to prove that an (appropriately defined) cost-to-go function is

convex.

One method (the most usual) to prove convexity of cost-to-go functions exploits the dynamic

programming recursions (value iteration algorithm) and involves an inductive argument. This method

has been used in inventory control problems (Ref. 21) and may be easily applied to queueing control

problems formulated in discrete time. However, in this paper we are dealing with a continuous state

space and a system running in continuous time; the dynamic programming recursions are no more

available. Another indirect method (using the duality theory of linear programming) was developed

in Ref. 9 but is also applicable only in discrete systems.

In our approach, we define the stochastic process s"(t) describing the evolution of the state of

the system on a single probability space (Q, .A, k), independent of the control law being used, or

the initial state. Any fixed w GC f gives rise to a different sample path s"(w, t) for every different

control law and every different initial state. Keeping w fixed, we may compare these different sample

paths for different control laws and for different initial states. Then, by taking expectations, we can

deduce properties of the cost--to--go functions.

We should point out that this approach contrasts with some recent trends in the theory of

controlled stochastic processes. In that theory, the mapping u:wo H s"(w, t) is the same for all u

but different control laws lead to different probability measures 9' t (Ref. 22). In our approach, the

probability measures are kept fixed, but the mapping u:w i- s'"(w, t) varies.

We study the average cost problem by introducing and solving an auxiliary total cost problem.

Therefore, total cost problems may be analyzed with the same tools presented in this paper and,

in fact, with less difficulty. In fact, our treatment transcends the scope of the particular routing

problem. Most results to be proved are valid for a broad class of dynamically controlled stochastic

processes driven by jump Markov disturbances, with linear dynamics, convex costs and convex

constraint sets.
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2. THE DYNAMIC ROUTING PROBLEM.

In this section we formulate mathematically the dynamic routing problem and define the set of

admissible control laws and the performance criterion to be minimized.

Consider the queueing system of Figure 1, as described in Section 1. Let xi be a continuous

variable indicating the amount of material in buffer Bi (i = 1, 2) and let Nvi be the maximum allowed

level in that buffer. We denote (xl, x2) by x. We define an indicator variable ai for each machine by

ai- {° if machine Mi is down (under repair) (2.1)

if machine Mi is up (operational)

We let a = (a,, al, a2) and we refer to it as the "state of the machines". We assume that the time

to failure and the time to repair of machine Mi are independent, exponentially distributed random

variables with rates Pi and ri, respectively. Then, the process q(t) (as well as each of the processes

ai(t)) is a continuous time Markov chain. Let Q2 be the set of three-component funtions of one

nonnegative real variable t, such that each component is right-continuous in t and takes the values

0 or 1. Any sample point w E 2 may be identified with a unique sample path a(w, t). Let 4 be

a o-algebra of subsets of t2 and for any a(O) let 9P(a(0)) be a measure defined on (Qf, 4) such that

(Sfi,A, ,(a(0))) is a probability space corresponding to the Markov process ca(t) with initial state R(0).

Then, a(t) is a strong Markov process and any w G f determines uniquely the jump times of each

coniponient of a(t).

Let Jt C 4A be the smallest a-algebra such that a(T) is an Al-measurable random variable,

Vr G [0, t]. A stopping time T is a random variable such that T > 0 and {w: T(w)<t} GE t, Vt. For

any stopping time T, we define a a-algebra AT as follows:

A C Al, if and only if A nf {w: T(w)<t} GE At, Vt > 0. (2.2)

Then, AT contains all events that depend only on the history of the process up to the stopping time

T.

We define the state space S of the system by

S [0, NI] X [0, N21] x {0, 1) (2.3)

The state s(t) G S of the system at time t is defined as

s(t) = ((zx, x 2), (ao, at, a 2))(t) = (X, a)(t) (2.4)
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Let ,*, t1i*, 112* be the maximum allowed flow rates through machines Mo, MI, M2, respectively;

let A(t), Al(t), 112(t) be the actual flow rates, at time t, through machines Mo, Ml, M2, respectively;

finally, let XI(t), k2(t) be the flow rates, at time t, from machine Mo to the buffers Bl and B2,

respectively. No flow may go through a machine which is down:

ai(t) = 0 {t=k(t) =_ 0 1,2 (2.5)

Conservation of flow implies

\x% - ~X(t)+ ± 2(t) (2.6)

Xi(t) = x-i(O) + f(i(Tr) -- ti(r)) dr. (2.7)

The integral in (2.7) is well-defined, for each sample path, as long as hi(t) and Iti(t) are right-

continuous functions of time, for all w C U2. This will be guaranteed by our definition of admissible

control laws.

We view an admissible control law u as a mapping which to any initial state s(O) = (x(O), (0))

assigns a stochastic process u(w, t) =-- ('(w, t), "r(w, t), t1'(, t), ti.'A(w, t)) defined oni the previously

introduced probability space (Q2, 4, iP(a(O))) with the following properties:

(SI) Each of the random variables At'(t), W'(t) is 4A-measurable.

(S2) For any w E Q, s(O) G S, the sample functions ' (w, t), t'Y(w, t) are right-continuous in time.

(S3) O<•?(w, t) i 1,2 (2.8a)

\'(w, t)+ X2"'(w, t) < aO(w, t)X* (2.8b)

O < i?'(w, t) < ai(w, t)* i- = 1, 2 (2.8c)

(S4) The solution of the (stochastic) differential equation

dxA(w, t) = (Xd(w, t) -- A.i(w, t)) dt (2.9)

with initial conditions x(O) (which exists and is unique for any w E S2 and initial state s(0) by

assumption (S2)) satisfies

0 x'(w, t) Ni i = 1,2, VwC f2 Vt>0 (2.10)
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and x?'(w, t) is a measurable function of the initial state s(O), Vw E Q2, Vt > 0.

It is a consequence of assumption (S1) that between any two jump times of the process a(t),

equation (2.9) is essentially a deterministic differential equation. More precisely, if t,l is the time

of the n-th jump of a(t), then x"l(t), for t E [t,, tn+tl] is uniquely determined by the history of the

system up to time tn.

We let U be the set of all admissible control laws and U,,M C U the set of those control laws

such that u(t) depends only on s(t) and s(t) is a strong Markov process with stationary transition

probabilities.

For any initial state (x, a), let x'L(t) be the value of x at time t if control law u is used and if no

jump of a occurs until time t. If u C UaM, the weak infinitesimal generator £" of the Markov process

s'(t) -_ (x?{(t), a(t)) is defined by the pointwise limit

(E[lf(s8"(t)) I s"(O) = .s] -( f(s)
tjo t

The domain of £'U is the set of the real, bounded and measurable functions on S such that the ratios

in the right hand side of (2.11) are uniformly bounded, for all t in some neighborhood of zero, and

converge pointwise. For the system being studied, £L' has a very simple form:

Proposition 2.1: Let f be a real valued, continuous function on the state space such that, for all

a E {O, 1}3 , the ratio (f(_,(t), a) - f(,T,(O), a))/t converges pointwise and boundedly to a bounded

function of ~x(O). Then, f is in the domain of the weak infinitesimal generator £'L of s 1"(t) and

(Luf)(X, a) = lim f(t )( -) f(), + EP f(x, a*) - f(, a)] (2.12)

where a* ranges over those elements of {0, 1} 3 that differ from a in a single component and where

Pa,* is the transition rate from a to a*.

Proof: This result may be derived in straightforward manner from equation (2.11). I

It will be notationally convenient to define an operator Lu even when u is not a Markovian

control law, by equation (2.11). In that case, Proposition 2.1 is still valid.
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Performance Criterion.

We are interested in minimizing the long-run (infinite horizon) average cost resulting from

the operation of the system. Let k(s, X, , X12, lxA2) be a function of the state and control variables

representing the instantaneous cost. For notational convenience, we define

ku(s tt(w, t)) _- k(stL(w, t), M t(w,t), X2 (w, t), t L(W, t), Htt(w, t)) (2.13)

We introduce the following assumptions:

kU(su(w, t)) = f(_xu(w, t), a(w, t)) - Cl t (W, t) - c2 Y2(w, t) (2.14)

where l, C2 > 0 and for any a E {0, 1}3, f(X, a) is (i) Nondecreasing in xl and x2, (ii) Convex and

(iii) Lipschitz continuous. Let f,(x) be an alternative notation for f(x, a).

The function to be minimized is

I T

g"(s) -- limn supE - X k"((s (,, t)) d t st(O) s(2.15)
T--oo T 

We define the optimal average cost by

g*(s)= inf g"(s) (2.16)
uCU

In section 3, we show that g* is independent of s.
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3. REDUCTION OF THE SET OF ADMISSIBLE CONTROL LAWS.

Suppose that at, some time the lead machine is down and both downstream machines are up. If

this configuration does not change for a large enough time interval, we expect that any reasonable

control law would eventually empty both buffers. Indeed, Theorem 3.1 shows that we may so restrict

the set of admissible control laws without worsening the optimal performance of the system (i.e.

without increasing the optimal value of the cost functional).

We then show that there exists a particular state which is recurrent under any control law

that satisfies the above introduced constraint (Theorem 3.2). The existence of such a recurrent state

permits a significant simplification of the mathematical issues typically associated with average cost

problems.

We end this section by introducing the class of regenerative control laws. This is the class of

control laws for which the stochastic process regenerates (i.e. forgets the past history and starts

afresh) each time the particular recurrent state is reached. In that case, gU admits a simple and useful

representation and is independent of s (Theorem 3.3). We show that we may restrict to regenerative

control laws without any loss of performance (Theorem 3.4).

Definition 3.1: Let UA be the set of control laws in U with the following property: If at some time

to, a(to) = (0, 1,) and a(t) does not change for a further time interval of max{Nj/lIl*, N2/I 2*'} time

units then

(" t = to -+ max {* 2 ) = (, 0), (0, 1,1))

Remark: A sufficient (but not necessary) condition for a control law u to belong in UA is that

downstream machines operate at full capacity whenever a = (0, 1, 1). However, we do not want to

impose the latter condition because in the course of the proofs in sections 5 and 6 we will use control

laws that violate it.

Theorem 3.1: For any u E U, s(0) E S, there exists some w G UA such that

fkw(s'(w, r))dr / k t<(s t(w, )) dr Vt > 0, Vw E Q. (3.1)

Proof: Fix some initial state s(0) and a control law u E U. Let w C U be a control law such that,

with the same initial state, we have

}2'(W,, ) = (w, t), i = 1, 2, Vw, t. (3.2)
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~i* ~if x'(w, t)70, a = (0, 1, 1)

= if xv(Wt) = 0, a - (0, 1, 1)
tw¢~ t) = - (3.3)

W, t) (w, t) if x?(, t) = xi (w, t), ga__(0, 1, 1)

O if x(w, t)Vx?(w, t), _q;(0, 1, 1)

where x~'(w, t) is determined by

xi (w. t) = xi(O) -+ /(NL(w, r) - iT(w, T)) d. (3.4)

Lemma 3.1: A control law w G UA with the above properties exists and satisfies

0 < x(w, t)t< xw, t, i = 1, 2. (3.5)

Proof: (Outline) The trajectories sU(w, t) determine uniquely (and in a nonanticipative way) the

trajectories of s"'(w, t) by means of (3.2)-(3.4). From (3.3) we can see that whenever x.'(w, t) = xY(w, t)

we have IT(w, t) > L'(W, t) which implies that xf'(w, t)<x (w, t) for all times. From (3.3) again, it

is easy to see that xT'(w t) never becomes negative. Right continuity of A w tt follows from (3.2),

(3.3) and right-continuity of N', tjz. 

From (3.5) and the monotonicity of fA, we have

~t j fa(w,,r)(xW(,r))d•dr j f,,(,,)(_"u(W, r))dr, Vw, t. (3.6)

Using (3.2), (3.4) and (3.5), we have

j j(wa Tr) dr =xi(O) - xi (w, t) + "(w, r ) d' >

(3.7)
xi(0)- x~(w. 'r) ±+ A (w, r) d = j l(w, r) d -, VW, t.

Adding inequalities (3.6) and (3.7), for i = 1, 2, we obtain the desired result. I

From Theorem 3.1 and the definition of gI'(s), it follows that

Corollary 3.1: infucuA g'(s) = infEu gu(s) - g*(s), Vs G S. (3.8)

We now proceed with the recurrence properties of control laws in UA. For the rest of this paper

we let s,o denote the special state (x, a) -- ((0, 0), (0, 1, 1)). Let u E UA. We define the stopping time
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T' as the n-th time that the state so is reached, given that control law u is used. More precisely, we

let TO = O and

Tu = inf{t > T": s"'(t) -= S0, Ir (T", t) s.t. stt(r)So} (39)
n+1 71 n (3.9)

oo if the above set is empty

7' is a stopping time, for all n, because su(t) is a right-continuous stochatic process and {so} is a

closed subset of S.

Let s"t(O) = (x_"(0), a), sW'(0) = (xw(0), a) be elements of S with the same value of a; let u, w C UA

and let s"l(t), s"'(t) be the corresponding stochastic processes, with initial states s"'(O), sw(O). We

define the stopping time T"'1 w by

TUW = inf{t > 0: s'(t) = s'(t) (3.10)

00oo if the above set is empty

If we are given a third element of S, st'(0) = (xv(0), a), (with the same value of a_) and a third control

law v C U we may define T "' L' w in a similar way, as the first time that s"(t) = sW"(t) = s"(t)-- = ,.

Theorem 3.2: Let u, v, w C UA and let s"'(0), s"'(0), s"'(O) be three initial states with the same value

of a. Assume that po,-O, rl,~O, r2 #-0. Then,

a) ET`+I +- T7 <•B (3.11)

b) E[T "v 't ] <B E[TlLW] <B (3.12)

where B is a constant independent of u, v, w and the initial states s?'(0), sv(O), sv(0).

Proof: Let Q,, be the n-th time that the continuous time Markov chain a(t) reaches the state a -

(0, 1, 1). Since p,, rl, r2 are nonzero, there exists a constant A such that E[Q,,] < nA, for all initial

states a(O), and E[Qn - Qr.] .< (n - m)A. If a(t) = (0, 1, 1) and if no jumps of a occur for a further

time interval of T _ max{Ni/,l*, NV2/1 2'*} time units (which is the case with probability equal or

larger to q _ exp(-(ro + pi + p2)T) ), the state becomes s'"(t + T) = so, for any u C UA and

regardless of the initial state. It follows that E[T<+ l-Ti] • Z-]l(kA + T)q(1 - q)k-l <B, for

some finite constant B. Similar inequalities hold for E[TU"], E[TUwv]. !

It will be assumed throughout this paper that pol70, ri/0, i = 1, 2. If we allowed po = O, all

subsequent results would be still valid, but the recurrent state so should be differently chosen.

Theorem 3.2 allows us to break down the infinite horizon into a sequence of almost surely finite

and disjoint time intervals [TT Tul_). If, in addition, the stochastic process s"'(t) regenerates at the
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times T', the infinite horizon average cost admits a simple and useful representation in terms of the

statistics of su(t), t G [Tu, Ty).

We now define what we mean by a regenerative control law. Intuitively said, regenerative

control laws forget the past each time that the state is equal to s,, and start afresh. We first define a

regeneration time to mean an almost surely finite stopping time T, such that s"(T) = so, with prob-

ability 1. Our first condition on regenerative control laws is that the past is forgotten at regeneration

times. Formally,

(S5) The stochastic process {(s"t (T + t), u(T + t)), t > 0} is independent of Alr, for any regeneration

time T.

The second requirement is that the stochastic process in (S5) is the same (in a probabilistic

sense) for all regeneration times T. Namely,

(S6) For any two regeneration times S, T, the stochastic processes {(s"(T + t), u(T + t)), t > 0}

and {(s"(S + t), u(S + t)), t > 0} are identically distributed.

Definition 3.2: We let U.? denote the set of regenerative control laws, that is the set of control laws

in bUQ satisfying (S5) and (S6).

Markovian control laws in U,1 certainly belong to U!?. However, the proofs of the results of

section 5 require us to consider non-Markovian control laws as well. It turns out that Ule is a suitable

framework.

Theorem 3.3: Let u E URl. Then,

t E 'ul k (s (r)) dr
gU= limE k(s(T))] E[TtT n 1,2,... (3.18)

(Note that the first equality implies that the limit exists and is independent of the initial state.)

Proof: Define

Wm Tu - T"V m = 1, 2,... (3.19)

Urn = t ku(sL"(r))dT m = 1, 2,... (3.20)

The random vectors (W,, U,,), m = 1, 2,... are independent (by S5), identically distributed (by

S6). Then, an ergodic theorem (Ref. 23, Vol. 2) implies that

im L; Uk E[Uj]lim-I U W E[WU ] almost surely. (3.21)
YEk=", Wk E[W]1



Now,

urnZml- Uk f~J$ k 't (s' (,r)) dr T u

lim klim - lim k[(su(r)) dr +
M-0 W0 rn Too T Lt [iU Jo k(r li T

n[(- -1 1 k.-s t t ( - - 1Tt [ 0Lk Tu -7 , T- jJo j m-> T - Tl o J(
(3.22)

We claim that the second and third summands are almost surely equal to zero. Let M be a bound

on Ik;u. Then,

T, un-- ?Tu,i.][ U (s"( -) < T - (3.23)

Now, T < o00o (almost surely) and limmoo T-, = oo (almost surely). Therefore, the right hand side

of (3.23) converges to zero, almost surely. Also,

I fT? MTt (3V V - o kT'(S"(r)) dr < MT --- 0O a.s. (3.24)
Tit -1-J k's) Tu - T,-

for the same reasons. We now take expectations in (3.22) and invoke (3.21) to obtain

[nm fu kvt(su"(r)) d = - (3.25)

Let T'L(t) = inf{r > t: 3n such that r = Tl} and observe that tatthe scquence (1/TL,,) J' ku(s'"(r)) dr

and the function (1/TZ'(t)) fr,,(l) k t "l(st (rT)) d take the same values in the same order; therefore, they

have the same limit and may be interchanged in (3.25). We then use the dominated convergence

theorem to interchange the limit and the expectation at the left hand side to obtain

lim E[ V"(t) u k'(s'(r)) dr] E-[U] (3.26)
k--c E[Wt ]

Finally,

lim E li) I kI(su()r)) d] + lim T(t)) td 0

(3.27)
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The two summands in the right hand side of (3.27) converge to zero because they are bounded above

by E[TU(t) - t]M/t which is bounded by BM/t (Theorem 3.2). Equations (3.26), (3.27) complete

the proof of (3.18). i

Remark: If s(0) = so, then (3.18) is obviously true for n = -0 as well.

The last result of this section shows that we may restrict to control laws in UJ? without increasing

the optimal value of the cost functional. To avoid certain technicalities, we only present an indirect

and informal argument.

Theorem 3.4 inftEut gu9 = infCEuA gU = g* (3.28)

Proof: (Outline) View our control problem as follows: Each time T,? the state s, is reached, a policy

un E UA to be followed in [T71, T,,+i) is chosen. We then have a single state semi-Markov renewal

programming problem with an infinite action space and bounded costs per stage; regenerative con-

trol laws correspond to stationary policies of the semi-Markov problem. Moreover, T ,, - T,,_l is

uniformly bounded, in expected value, for all policies of the semi-Markov problem. It follows that

stationary policies exist that come arbitrarily close to being optimal. By translating this statement

to the original problem, we obtain (3.28). I
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4. TEIE VALUE FUNCTION OF DYNAMIC PROGRAMMING

Using the recurrence properties of control laws in Ui?, we may now define value (cost-to-go)

functions of dynamic programming. This is done by using the recurrent state so as a reference state.

Moreover, we exploit theorem 3.3 to convert the average cost probleni to a total cost problem.

Similarly with Ref. 24, we define the value function V"':S H R, corresponding to a control law

u1 UnQ by

V11(s) = E[f (k"(s"(r)) - gL) drl s"(O) =- s (4.1)

In view of Theorem 3.3, we have VU(so) = 0, for all u G UR. We also define an auxiliary value

function VfU(s) by

V(s)-= E (k(s'(r)) - g*) dr I s(O) = s (4.2)

and the optimal value function V*(s) by

V*(s) = inf fU(s) (4.3)

The above defined functions are all bounded by 2BM, where M is a constant bounding Iki"(s)l and

B is the constant of theorem 3.2.

Lemma 4.1: a) 0(<" (s) - V'(s)<(gu - g*)B, Vs E S.

b) V (so) = (gu - g*)E[Tu I su(0) = So].

c) g"' = g* iff I"U(so) 0.

d) V'u(so) > 0, V*(so) = O.

Proof: Follows directly from the definitions and the inequality E[T t]<B. I

Lemma 4.1c shows that an average cost optimal control law is one that minimizes 'V (s). This will

certainly be the case if a control law minimizes VJ'(s) for all s G S, which is a stronger requirement. It

is possible to show that if u CE Utjn UM is optimal, u should minimize V"'(s) for all s, except, possibly,

for a subset of S of zero steady-state probability measure. This shows that minimization of Vu(s), for

all s, is not a much stronger requirement than minimization of g". Moreover, minimization of V u(s)

is now a problem of total expected cost minimization which may be handled through traditional

techniques.
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We will say that a control law u E UR? is everywhere optimal if V (s) = V*(s), Vs E S; optimal

if gU = g*.

We conclude this section with a few properties of V"' and Vt' that will be needed in the next

section.

Lemma 4.2: a) For any positive integers m and n such that n > m and any u E UR

E[f, (ku(s"(r)) - gu)dT] = 0 (4.4)

b) For any positive integer n and any u E U1R

VU(s) =- E (k["(s"(r)) -_ ) d) I ~s"(0) - (4.5)

Proof: Both parts follow immediately from Theorem 3.3. 1

The following result is essentially a version of equality (4.5) with random sampling of the upper

limit of integration.

Lemma 4.3: Let u, v, w G Uj?; let s''(0), s5 '(O), su(0) be three states with the same value of a. Let

Tw "ut be as defined in section 3. Then,

V 1(s) = Ej[ (k"(s(T)) -- g) dr I su(O) =- s (4.6)

Proof: Let T = min{T": Tu > TL"""'} and let X,, be the characteristic (indicator) function of the

set of those w C Q such that T > Tn. We then have (using the dominated convergence theorem to

interchange summation and expectation)

E[f(ki(s"(r))-g)dr] =E[f0 (k 1(st ) -gE)ds] + -E[Xn ) d]

(4.7)

The random variable Xn is .4rT-measurable. Therefore,

E[Xn] (k'(sl"(T))- gU) d = E[ X,nE (k"(su(r)) - g") d 4T,7 =0 (4.8)
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The second equality in (4.8) follows from Lemma 4.2a and the assumption that u regenerates at

time TL, assumption (S6) in particular. For the same reasons we obtain:

E[j (k (s u())- g)d]= E[ (k(s(r)) - g')dr = 0. (4.9)

Combining (4.7), (4.8), (4.9) and using the definition of Vt", we obtain

E Jf (k(s"(-)) -- gi )dr =B j[ (k"(s(,r )) -- g)d] = VT sL((0o)). (4.10)

The last Lemma is an elementary consequence of our definitions:

Lemma 4.4: Given some s G S and e > 0, 3 u C U,? such that iV/(s)<V*(s) -- e and g"_g* -{ e.

Proof: (Outline) Assume s3-s,. Then V/ depends on the choice of' the control variables up to time T"L

and gq depends on the choice after that time. The control variables before and after 7'TL may be inde-

pendently chosen so as to satisfy both inequalities. If s -- s,, choose u such that g"l<g* +-min{e, e/B}.

Then, V (s,)<V*(s) + . ,
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5. CONVEXITY AND OTHER PROPERTIES OF V*.

In this section, we exploit the structure of our system to obtain certain basic properties of V*.

These properties, together with the optiinality conditions, to be derived in section 7, lead directly

to the characterization of optimal control laws.

Theorem 5.1: V*(x, a) is convex, Va C {0, 1}3.

Proof: Let s'(O) = (x', a) and s"(O) = (x', a) be two states in S with the same value of a. Let

c C [0, 1] and s'(O) = (cxu - (1 - c)xv, a). Then sL(0) C S, because [0, N 1] X [0, N 2] is a convex set,

and we need to show that

V*(s'"(O))< cV*(s"(0)) -+ (1 - c)V*(su(0)) (5.1)

Fix somle 6 > 0 and let u, v be control laws in Ujt such that

gU<g* + e gV<g* + e (5.2)

f/"(s-(0)) < V*(85(0)) + e /'/(sv(0)) • V*(s"(o)) + f (5.3)

(Such control laws exist by Lemma 4.4.) Let s"(w, t) and sv(w, t) be the corresponding sample paths.

We now define a control law w to be used starting from the initial state s"w(O). Let, for i = 1, 2,

M,"(w, t) = cM,(w, t) +- (1 - c)N(w, t) (5.4)

IL"(w, t) = CAti (w, t) + (1 - c)j4V(w, t) (5.5)

With w defined by (5.4), (5.5) assumptions (S1)-(S4) are satisfied because these assumptions are

satisfied by u and v. Moreover, by linearity of the dynamics,

X'(w, t) = cx?(w, t) + (I - c)X~(w, t) (5.6)

Since x = (0, 0) is an extreme point of [0, Nil X [0, N 2], equation (5.6) implies that whenever sw(t) =

so, we also have sU'(t) = s"(t) =-- so. Therefore, TZ' = Tu"vw and consequently, w C UA. Moreover, u
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and v regenerate whenever st'(t) = so and, therefore, w G UjR. Using (5.6) and the convexity of the

cost function we obtain

(kjl(swv (w, T)) - g*) drT c (k(s"(w, r)) -- g*) d r + (1--c) (k'(sV(w, r)) -- g*) dr (5.7)

We take expectations of both sides of inequality (5.7) and rearrange it to obtain

V*(sw(O))<V (s'(O))<cE[f (k"(s"(w, T)) - g")ldTrl s(O)] +

(1- c)E[j (k"(sv(w, r)) - gt ) dr sv(O)] + (cgt ± (1- c)gv - g*)E[TwI]]

(5.8)

Since Tu`V = Tv', Lemma 4.3 applies. Using also inequalities (5.2), (5.3) and Lemma 4.1c, we obtain

V*(L'(O ))CVi(si (O)) + (1 - c)VV(s'(O)) -- eB<ccV'l(sli(O)) + (1 - c)V(s"'(O)) +- ed3<

cV*(s"(o)) + (1 - c)V*(s"'()) + E(1 + B)

Since e was arbitrary, we may let ej 0 in (5.9) to obtain inequality (5.1). I

It is not hard to show that if ft, (defined by equation (2.14)) is srictly convex, then the inequality

(5.1) is strict. In fact, it is also true that (5.1) is a strict inequality even if f, is linear. A detailed

proof would be fairly involved and we only give here an outline.

With control law w, defined by (5.4), (5.5), there is positive probability that a(t) - (0, 1, 1),

x:"'(t) 7 0, xl'(t) = 0, in which case lt'(t) < it*, for all t belonging to a time interval of positive

length. We can also show (in a way similar to the proof of Theorem 3.1) that any control law with

the above property does not minimize Vi(st"(0)) and that V*(s"'(0)) < WV(swL'(0)) - 6, for some 6

independent of e. Using this inequality in (5.8) and (5.9), (5.1) becomes a strict inequality.

Let f, be the function defined by (2.15) and let M be such that

Ifh(xZ, x2) -- f(xz + A1, x2 + AZ2)1<M(IAII + IA21) (5.10)

Such a M exists, since f, is Lipschitz continuous. We let V,* denote V*(x, a) and we have the

following result:

Theorem 5.2: Let Al > 0, A 2 > 0, AiA2 #0. Then,

-ClAI - C2A 2 < 1V4*(XI + A1 , X2 + A2 )- V.*(Xl, X2) < MB(A 1 + A 2) (5.11)
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Va E {O, 1}3. In particular, V,* is Lipschitz continuous and if f,a 0, then V,* is strictly decreasing

in each variable.

Proof: The two inequalities in (5.11) will be proved separately. Without loss of generality, we assume

that A 2 = 0 and we start by proving the second inequality.

a) Fix two initial states sU(O) = (xl, x2, a) and s'(0) -= (xl + A, x2, a), A> 0 with the same value

of a. Let u C UR be such that (Lemma 4.4)

f/U(s'l(0))<v*(sU(0)) + 6, fg_<g* + e. (5.12)

We now define a new control law w C Usl to be used starting from s"'(O) as follows:

JO if xz'(w, " t)3L4xy(, t)
k1 (w, t) = (w, t) if x]°(w, t) = x(w, t) (5.13a)

.tl-(w, t)i* if x"L(w, t) = (w, t)

1I I Ip"~'(w, t) _ i|js'(w, t)b if x''(co, t) - x"(w t) (5.13b)

'(w, t) = N(w, t) V(w, t) =-- Lt4(w, t) (5.13c)

(Intuitively said, with control !aw w, no material is routed to buffer BL and machine .Mr operates at

full capacity until the buffer level x"'(w, t) decreases enough to become the same as x]'(w, t). From

that time on, the two sample paths coincide.) Then, w E UJ? and has the following properties:

xl(w, t)<xl'(w, t)<x'(w, t) + A (5.14)

/[IN(w, t) > t~(w, t) (5.15)

Then, T uW = T]° and

I T1J kw(s(w, T)) d=r (=J (xw(w(, ))- cp4'(W, r)- c2 ,tb4(w, r)) dr <
(f.a(x"(W, r)) +- MA - cltu(w, r) - c2 ,))d (5.1.6)

ok'(s"(w, 'r)) dr + MATw'
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We claim that there exists a set A C Q of positive probability measure such that inequality (5.16)

is strict for all w C A. Namely consider all those w for which a(w, t) becomes (0, 1, 1) before time

A/2(X* + -,l*) and stays equal to (0, 1, 1) until time T1'. Let 6 > 0 be such that Pr(w C A) > 6.

For all w E A, we have

ciOLi(w, r) d > Clp`(w, r) dr + cl - (5.17)

and consequently,

kW(s"L(w, 7)) d7 < Ik(sL((w, r)) dr + MAT',' -cl - w GA. (5.18)
2O

Then, (5.16) may be strengthened as follows: Taking expectations in (5.16) and using (5.18) we

obtain

E[Jl (k (su(w, r))-g*) dr] <E[f (k(s`'(w, 'r))-g*) dr1 + MAE[T ]-- 2 (5.19)

Using Lemma 4.3 and following the same steps as in the proof of Theorem 5.1 we obtain

V*(s"'(O))<Vtw(su'(O))<V*(s"(O)) + e(l +1 ) + MAl - cclA/2 (5.20)

Since e was arbitrary, we may let e decrease to zero to obtain the second inequality in (5.11).

b) For the proof of the left-hand-side of (5.11), let s"(O) and sw"(0) be as before and let w G UR be

such that
tV (U,(0))<v*(s,(0)) + f, gW<g9 + e, (5.21)

and define u C Uni (to be used starting from 8s(0)) as follows:

*(w t) = - '(w, t) if xzl(w, t)7 .zl (w, t) (
uh y O 2 1 1 (5.22a)

XlM(w, t) if xl'(w, t) = xlj(, t)

i (x(,, t) I I)(5.22b)
L ) '(w, t) if xj(w, t) i= xj(w, t) (5.22b)
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.U.. x ,t) = x\'f(w t) /'(W, t) = ,'(w, t): (5.22c)

(So, control law u sends as much as possible material to B1 and machine Ml is not being operated

until the level xz(w, t) rises to xzl(w, t).) Similarly with part (a) we obtain TUt - - T= ' = T1 and

JT. W I7tlW

k(s"(w, r-)) dr < kL(sL(w, r)) dr + c1A (5.23)

Consider the set A C f1 of those w such that a becomes (1,0,0) within A/2(?X* + L1*) time units and

stays equal to (1,0,0) for at least (N1 + N 2)/X* additional time units. For any w G A we will have

k(S'(w, r)) dr < kw(s'((w, T)) dr + ClA/2 (5.24)

Taking expectations and following the same procedure as in part (a), we establish the desired result.

Corollary 5.1: If f, = 0 (and therefore M = 0 in (5.11)) then

Vc*( - iA, V2) - V,,*(Xi, x2 )<-C1 lirn <0*( -A)o < (5.25)

The first inequality is strict for all xli#0; the second, for all xl7 Nl. Similar inequalities hold for the

second argument of Va*(xi, x2) or if ATO.

Proof: The existence of the limit follows from the convexity of 1V*. Then, (5.25) follows from theorem

5.2. The strict inequalities follow from the strictness of the inequalities in (5.11) and the convexity

of Vi*. I

6. DEPENDENCE OF g* ON THE SYSTEM PARAMETERS

We have shown (Theorem 3.3) that the optimal cost g* is independent of the initial state.

In this section, we view g* as a function of the parameters of the system and examine the form

of the functional dependence. In particular, we consider the dependence of g* on the buffer sizes

N 1 and N 2 as well as the machine capacities N*, Al*,, I2*. To illustrate this dependence, we write

g*(NI, N 2, A*, [1l*, [L2*). Our result states that g* is a convex function of its parameters.
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The proof is similar to the proofs given in section 5, but simpler. Despite the simplicity of the

proof, we are not aware of any similar result on controlled queueing systems.

Theorem 6.1: g*(Nl, N 2, A*, /l*, 2'*) is a convex function of its arguments.

Proof: Let c C [0, 1] and let (Nlj, N2 j, Xj*, Alj*, g2j*), j = 1, 2, 3 be three sets of (positive) parameters

such that

Ni 2 = cNil + (I -c)Ni 3 i = 1,2 (6.la)

k2* = cXf* + (1 - C)N3* (6.lb)

Ai2 = C- ils + (1 - C)/Zi3* i = 1, 2 (6.lc)

Let, for simplicity, the initial state be so. Let u1, u3 be two control laws satisfying (S1)-(S4) with the

parameters of the system being (Ni 1, N2 1, hi*, ll *, a21*) and (N13, N23 , N3 *, t 1 3 *, .2 3 *), respectively.

We define a new control law u2 by:

XI2(W, t) = cMt 'l(, t) + (1 - c)U3(w, t) i = 1, 2 (6.2a)

AL (W, t) -= CL(W, t) + (1 - C)3(W, t) i = 1, 2 (6.2b)

This definition of u2, for each w, in terms of ul, u3 is legitimate because the underlying probabil-

ity space (Qf, A4, 9P) is fixed and independent of the control law being used or the parameters con-

sidered in this section. It follows that u2 satisfies (S1)-(S4), the parameters of the system being

(N1 2, N22 , >2*,, [12S*, 422*). Moreover,

x2(w, t) = cCX".(w, t) + (1 - C)3(W, t) (6.3)

The convexity of the cost function implies that

ft rt ft

kUt2(sU2(w, T)) dr < kl(s"'l(w, r)) dr + (1--c) kt13(s-3(w T))d'r (6.4)
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We now take expectations in (6.4), divide by t and then take the limit, as t--oo, to obtain

g*(N1 2, N2 2 , ,2 , /12*, 2,22*) < gU2 < Cgl + (1 - C)gU3 (6.5)

Since ul and u3 were arbitrarily chosen, we may take the infimum in (6.5) to obtain

g*(Nl2, N22, '2*,/zl2*, t22*) < cg*(Nnl, N21l, Xl*,/hlt*,/L1*)2+(1--c)9*(Nl3, N23, k3*,/z13*,/.A23*) (6.6)

We now consider the consequences of this theorem on the problem of optimally chosing the

parameters of the system (capacity assignment problem). It is trivial to prove that g* decreases as

each of the system parameters increases. On the other hand, higher values of the parameters usually

mean higher capital costs. If these capital costs K(NI, N2 , X*,/l*,bt2*) are assumed to be convex,

the problem consists of minimizing (g* + K)(Ni, N2 , X*, l *,l 2 *), a convex function. Convexity is

a nice property to have in this situation, because any local minimum will also be a global one and

iterative procedures are applicabe!. Of course, this presupposes that we are able to evaluate g* for

any given parameter set, as well as the direction of change of g* as the parameter values are varied.

While this is in principle possible, the computational requirements may become very demanding and

further research is needed on this issue.
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7. NECESSARY CONDITIONS FOR OPTIMALITY

In this section we prove the necessary conditions for optimality that will be used in the next

section. We start by demonstrating that V* is in the domain of £" (defined in section 2), for any

admissible control law u.

Lemma 7.1: Let x(t) be a trajectory in [0, Nil X [0, N 2] and suppose that d = limrntl o((t)-- x(O))/t

exists. Then,
Vca*(x(t))- Va*(Z(0)) Va*(x(O) + td) - V.*(z(0))

lim = lim (7.1)
t0o t tlo t

(The existence of the limits is part of the result.)

Proof: We first note that the limit in the right-hand-side of (7.1) exists, by convexity of V,* and is

finite, by the Lipschitz continuity of V,*. By Lipschitz continuity again, there exists a constant C

such that

|V*(x(t)) - V*(x(O)) V.*(I(0) + td) - V*(I(O)) x(t) ) 

t -< -| ~t t l<~G t- -d (7.2)

The right-hand-side of (7.2) converges to zero, as l 0, from the definition of d, thus proving the

lemma. I

Let u E UwJ. For any fixed a, let, as in section 2, x2(t) be the value of x at time t if no jump

occurs until time t. By right-continuity and boundedness of the control variables, the trajectory

,xn(t) possesses right-hand-side derivatives which are uniformly bounded. Then, Lemma 7.1 and

Proposition 2.1 imply:

Theorem 7.1: V* belongs to the domain of JL, for any u E UR.

Lemma 7.2 For any e > 0, there exists some w E UR such that

VW(s)<V*(s)+ e, Vs E S. (7.3)

Proof: (Outline) Partition the state space S into a finite collection of disjoint and small enough rec-

tangles R 1,..., Rk. Choose a state sj E Rj and a control law wj E UR? such that fwj (sj)<V*(sj) + e1,

where el is small enough. Define wj for all initial states on the rest of the rectangle rj so that all

sample paths swD(w, t), wj(w, t) starting from Rj stay close enough. In particular, choose wy in such
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a way that sWJ(w, t) and /°J(w, t) are continuous functions of the initial state, for any w, t. In that

case, I/Wj( s j ) - if/w(s)l<e2, Vs E Rj, for some small enough e2. Then, define a control law w by

lumping together control laws wj, j = 1, .. ., k. Given that V* is Lipschitz continous and since el, e2

may be chosen as small as desired, w satisfies (7.3). 1

Lemma 7.3: limtl o(1/t)E[V*(stl(t))X] = 0, where X is the indicator function of the event Tj' < t.

Proof:
E[V*(sL(t))X] Pr(T-L < t)

lim = lm- limE[V*(s"(t)) ITu < t] (7.4)
t0 t ti0 t t1o

The first limit in the r.h.s. of (7.4) is bounded by the transition rates Pi, ri; the second one is equal

to V*(s,) = 0, unless a jump occurs in [T", t], which is an event whose probability goes to zero, as

t goes to zero. 1

Lemma 7.4: L"V* + kU > g* Vs C S, Vu E UR

Proof: Let u E UR, t > 0, s E S be fixed and let w be the control law of Lemma 7.2. Consider a

new control law v with the following properties: v coincides with u up to time t; at that time the

past is "forgotten" and the process is restarted using control law w. Then,

V*(s)<V(s) -- E JO(k`"(s(r))-- g*)dr +E[V(sU(t))(1 -X)]<

V*(s)• (min{s)t,T- } dl.] -(7.5)

E tf (k t (su(r)) - g*) d + E[V*(su(t))(1 - X)] + e

Since e was arbitrary, we may let e1 0, then divide by t, take the limit, as tj 0, and invoke Lemma

7.3 to obtain

E[V*(su(t))] - V*(s) mint T 
LUV*(s) = lim > --lim 1E (kU(u))-g*) dr=-ku(s) -+ g*t.o t g* 0t

(7.6)

(the last equality follows from the right-continuity of ku and the dominated convergence theorem).

Theorem 7.2: If u C UR n UM is everywhere optimal, then

(LuV* + ku)(s) < (LWV* + kW)(s) Vw E UR, Vs E S (7.7)
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Proof: We start with the equation LUVU + ku = g*. (This equation is derived the same way as

Lemma 7.4, except that inequalities become equalities.) Since u is everywhere optimal, U = V*

and (using Lemma 7.4) uLV* + ku = g*<LwV * + kIc, for all w E UR.

It is also possible to prove that if u C UA and (7.6) holds for all s G S then u is everywhere

optimal. However, this result will not be needed and the proof is omitted.
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8. CHARACTERIZATION OF OPTIMAL CONTROL LAWS

In this section we use the optimality conditions (theorem 7.2) together with the properties of

V* (theorems 5.1 and 5.2) to characterize everywhere optimal control laws. We mainly consider

Markovian control laws for which the control variables Xi, /i can be viewed as functions of the

state. The first two theorems (8.1 and 8.2) state that the machines should be always operated at

the maximum rate allowed, as it should be expected. Theorem 8.4 is much more substantial, as it

characterizes the way that the flow through machine Mo should be split.

Theorem 8.1: If u C UMal n Un is everywhere optimal, then

a) /LS(x, a) -aiii* if xizO, i = 1, 2. (8.1)

b) i(x, a) = ai min{,Ii*, M(x aa)} if xi = 0, i = 1, 2. (8.2)

Proof: Let u G UN! n Un, be everywhere optimal . Then, u must minimize (L'`V* + ku)(s), Vs E S.

Using Proposition 2.1 and dropping those terms that do not depend on u we conclude that /tz, /2

must be chosen so as to minimize

V,,*(x1 + (M] - L4)A, XX2 + (X2 - tt) a) - Va*(XI, X2 ) U (8.3)
lim --CL C2-- 2 (8.3)AYo A

Let xi1$O and assume that aiO40. By Corollary 5.1, the slopes of V,,* are strictly larger than -cl, -c2

and, as a result, pi' must be set to its highest admissible values which is tiji*. If xi -- 0, (8.2) follows

because otherwise the right-continuity assumption (S2) would be violated. I

Theorem 8.2: If Va* is strictly decreasing in each variable (or in particular, by Theorem 5.2, if

ku = -ctlJti -- c2 u) and if u C UM n UR is everywhere optimal, then

a) Xu(x, a) = aoh* if cx3(Ni, N 2) (8.4)

b) X t (x_, a) = aomin{,*,alplJ* + a2L2 *} if x = (N1 , N2 ) (8.5)

Proof: Let u E UM n UR be everywhere optimal. Then, u must minimize (L£V* + ku)(s), Vs E S.

Theorem 8.1 determines 4? uniquely and ku is no more dependent on u. By dropping those terms

that do not depend on u we conclude that N', Nu must be chosen so as to minimize

1 2 / 'L2)Va*(Xl + (Xl - l)A\, X2 + (X- 4)A) - V*(Xi, 2) (8.6)lim (8.6)
A1O a

Let (x1, x2)-(N 1, N2). Since V,* is strictly decreasing, hu = h 1 + Nhu must be set equal to its highest

admissible value which is a,h*. If (xi, x2) = (N1, N2), equation (8.5) follows because otherwise the

right-continuity requirement (S2) would be violated. I
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If f,(x) is nonzero and large enough, compared to cl, c2, then V,,* need not be decreasing.

Equivalently, the penalty for having large buffer levels will be larger than the future payoff in terms

of increased production. In that case, for any optimal control law, Xu should be set to zero whenever

the buffer levels exceed some threshold.

From now on, we assume that V,* is strictly decreasing, for all a. Theorems 8.1 and 8.2 define

ut", bt", h 'u uniquely. It only remains to decide on how is At going to be split. It is here that convexity

of Via* plays a major role. Note that there is no such decision to be made whenever aC, = O. We will

therefore assume that ao0 0.

Let

h,(p) = inf{V,*(xi, x2): x1 + x2 = p), p E [0, Nl + N21. (8.7)

Because of the continuity of V,*, the infimum is attained, for each p, and the set

II(p) = {(xl, x2 ): xl + x2 = p, Va*(Il, x2) = ha,(p)} (8.8)

is nonempty. Finally, let

HI U -I(P) (8.9)
pE[O,Ni+N2]

For an illustration ofFIa, U, and L, (the latter are defined by (8.15), (8.16)), see Fig. 2. (We should

point out that the points on the xl axis to the left of point C - point B in particular - belong to

Ha.)

Lemma 8.1: a) a,,(p) is connected for any p, a.

b) If V,,* is strictly convex, then 4l(p) is a singleton.

Proof: Straightforward consequences of convexity. I

Theorem 8.3: a) h,, is Lipschitz continuous.

b) H, is closed.

c) It, is connected.

Proof: a) Given some p, let (x1, x2) E HI,(p). Then, for some F > 0 and for any real A,

h,(p - A) < V,*(xi - A/2, x 2 - A/2)< V*(xl, X2) -+FI A = h,(p) + FlA (8.10)

(The first inequality follows from the definition of h,; the second, from the Lipschitz continuity of

Va*). Similarly,

h,~(p) •<h(p - A) + Flal (8.11)
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Inequalities (8.10) and (8.11) prove part (a).

b) Let {(xl(n), x2(n))} be a sequence of elements of I,, and let (xl, x2) be a limit point of the sequence.

Let p(n) - xl(n) + x 2(n), p = xl + x2. Then, by continuity of h, and Va*,

h,((p) = lirn h,(p(n)) = lim V,,*(xi(n), x 2(n)) = V,,*(xl, x2) (8.12)
n-- oo n--OO

This shows that (xi, x2) CE Ht,(p) and consequently, (xi, x) C IH,. Therefore, H1 is a closed set.

c) Suppose that H/, is not connected. Then (Ref. 25), there exists a pair of disjoint, nonempty sets

A, B whose union is H,, neither of which contains a limit point of the other. From Lemma 8.1, I4(p)

is connected, for any p. Therefore, for any p, we either have II,(p) C A or fI(p) C B. Let

C = (p C [Nl + N2]: HI,,(p) C A} (8.12)

D = {p C [N1 + N2]: t,1(p) C B} (8.13)

Since A-7+0, B70, we have (7C40, D74-0. Since [0, N +- N2] is connected, one of C, D contains a limit

point of the other. Assume, without loss of generality, that {p,J) is a sequence of elements of C that

converges to some p E D. Let (xi(n), x 2(n)) E H,(p,,). In particular, (xi(n), X2(n)) C A. Then, the

sequence {xl(n), x2(n)} has a subsequence that converges to a limit point (xl, x2) and xi -+- x2 = p.

By the continuity of V,* and ha,

VQ*(x, x2) = lim V,*(xl(n), x2(n)) = lim h,~(p,,) = h(p) (8.14)
n-oo00 n---oo

which shows that (xl, x 2) E H0 (p). Since p E D, definition (8.13) implies that (x,x 2 ) E B. So, B

contains a limit point of A and the contradiction shows that H0 is connected. I

Now let

Ua(p) = {(X(1, X2 ): X1 + X2 = P, Xl - X2 < Y1 - Y2, V(yI, Y2) C Ha(P)} (8.15)

L.(p) = {(x(, x2): x1 + x2 = p, xl - x 2 > YL - Y2, V(y:, Y2) E Ha(P)} (8.16)
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and (see Figure 2)

U,- U LU(p), La = U La(p). (8.17)
pE[0,Ni-4-jN2 pE[O,°Ni+N2]

Since fl,(p) is connected, it follows that

UI,(p) U L,(p)U I-,,(p) = {(xl, x2): x1 + x2 = p} (8.18)

and consequently

U ULi U , = [0, Nl] x [0, N2] (8.19)

Finally, note that (keeping (xl, x2) E U, fixed) the function V,,*(xl + , x2 -- A) is a strictly decreasing

function of A (for small enough A), because of the convexity of V,* and the definition of Ua. With

this remark, we have the following characterization of the optimal values of Xl,, A, in the interior

of the state space:

Theorem 8.4: If ~V* is decreasing, u C UM fi U1Z is everywhere optimal and x is in the interior of

[0, NH] X [0, 1,], then

a) If x C U,, then X(1, a_) -- ,*ao.

b) If CG L, then X'(x, a) = h*a,.

Proof: Let x belong to the interior of Ua. We must again minimize the expression (8.6). Because of

the monotonicity property mentioned in the last remark, it follows that Xi' has to be set equal to

its maximum value a,\*. Part (b) follows from a symmetrical argument. I

We now discuss the optimality conditions on the separating set Ho. We assume that Va* is

strictly convex and (by Lemma 8.1) H,,(p) is a singleton, for any fixed p. Equivalently, Ha is a

continuous curve. According to the remarks following theorem 5.1, V,* is always strictly convex,

but since we haven't given a proof of this fact, we introduce it as an assumption.

Fix (xl, x2) C Ha, and suppose that 0 < xi < Ni, i = 1, 2, (interior point). Given a control law

u, let

A(u) = {r > 0: x, (r) E Ua} (8.20)

B(u) = {r > 0: x(r) C L,) (8.21)
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where -('r) is the path followed starting from ((xl, x2), a) if no jump of a occurs. We distinguish

four cases:

a)Suppose that for all u E UM n UJ?, time t = 0 is a limit point of A(u). For all r C A(u), we have

(,r)- = A* (by Theorem 8.4). Then, by right continuity of Al' (assumption S2, section 2), we must

have X(0)- = *.

b) Similarly, if for all u C UM n U/?, t -- 0 is a limit point of B(u), we must have X(0) -- *.

c) If t = 0 is a limit point of both A(u) and B(u), for all ut UEM N Ui?, then no everywhere optimal

control law exists. Fortunately, this will never be the case if Ha is a sufficiently smooth curve.

d) Finally suppose that there exists some u such that t -- 0 is not a limit point of either A(u) or

B(u). In that case x'rt) C Ik,,, Vt C [0, A] for some small enough A > 0. An argument similar to that

in theorem 8.4 will show that this control law satisfies the optirnality conditions at (xl, x2). Such a

control law travels on Ia, i.e. stays on the deepest part of the valley-like convex function Va*.

The optimality conditions on the boundaries are slightly more complicated because the con-

straints on Xi and Sli are interrelated through the requirement that xi stays in [0, Ni]. The exact

form of these conditions depends , in general, on the relative magnitudes of the parameters ,*, ,/1*

and I2*. However, for any particular problem, Theorem 7.2 leads to an unambiguous selection of

the values of the control variables.
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9. CONCLUSIONS - GENERALIZATIONS.

Let us start by pointing out the main properties of our queueing system on which our develop-

ment has been based: 1) We first have the existence of a special state which is recurrent when we

restrict to a class of control laws that have equally good performance as the original set of admissible

control laws. 2) We have the convexity of the optimal cost-to-go function which only depends on the

following facts: a) The state space is convex, b) the set of admissible values of the control variables

is convex and c) the cost function is convex. Our methodology is therefore applicable, with minor

adjustments, to the large class of linear dynamical systems in which the above enumerated properties

are present.

We now indicate a few alternative configurations for which all steps of our development would

remain valid. We may let the buffer capacities be infinite. Then, provided that storage costs increase

fast enough with xi, it is still possible to obtain a recurrence result. The convexity theorem would be

still valid. A few derivations would need some more care, because V* and f will no more be bounded

functions of the state space but the main results of section 8 would remain unchanged.

We may also have three (instead of two) downstream buffers and machines, in which case the

state space is three-dimensional. Convexity of V* and the optimality conditions then imply that,

for any fixed a, the three dimensional state space is divided into three regions, separated by three

two-dimensional surfaces that intersect on a one-dimensional curve. In each of the three regions, all

material is to be routed to a unique buffer. The switching surfaces have interpretations similar to

the switching curves Ht, of section 8.

As pointed out earlier, our recurrence results (Theorem 3.2) have been based on the assumption

that the lead machine is unreliable (poyO). While this is a convenient assumption, it is not a necessary

one, except that, if po = 0, the reference state so should be differently chosen. This choice should be

problem specific and would not present any difficulties for most interesting queueing systems. The

only difference that arises when po = 0 is that V* need not be strictly convex and the separating

set Ha could even be the entire state space (Ref. 26, Ch.6).

As another variation of our problem, we could include a nonlinear, convex and increasing cost on

the utilization rates of the machines, to penalize utilization at or near capacity limits. The rationale

behind this cost criterion is that high utilization rates are generally undesirable (in the long run).

In that case V* would still be convex but Theorems 8.1, 8.2, would no longer hold. For example,

the optimal utilization rates 2t of the downstream machines wouldn't be equal to /i* but rather an

increasing function of the buffer levels.
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The next issue of concern is the computation of V* and the generation of an optimal control

law. One conceivable procedure (resembling the Howard algorithm) is to evaluate V U, for a fixed

Markovian u, by solving the equation £uV"- + ku = g" for V"L and gU. This equation has a unique

solution within an additive constant for VIL. It really consists of eight coupled first order linear partial

differential equations with non-constant coefficients and can only be solved numerically. Based on Vu

we may generate a control law w which improves performance by minimizing LWVU" - k' and so on.

In practice, any such algorithm would involve a discretization procedure, so it might be preferable to

formulate the problem on a discrete state space. In that case, the successive approximation algorithm

(or accelerated versions of it) would yield a solution relatively efficiently.

An alternative iterative optimizing algorithm, based on an equivalent deterministic optimal

control problem has been also suggested in Ref. 27 (see also Refs. 17, 26 for related ideas).

The drawback of any numerical procedure is that the computational requirements become im-

mense, even for moderate sizes of the state space (e.g. N -N 2 = 20, see Ref. 15). Fortunately, the

existing numerical evidence shows that the performance functional is not very sensitive to variations

of the dividing curve, so that rough approximations may be particularly useful. Estimates of the

asymptotic slope of Hi, as Nl and N2 increase, as well as of the intercepts of 1I, with the axes i =- 0

would be very helpful for obtaining an acceptable suboptimal control law.
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LIST OF CAPTIONS

Fig. 1: A simple queueing system.

Fig. 2: The regions related to the optimality conditions.
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