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ABSTRACT

Automotive industry is facing a tough period. Production overcapacity and high fixed costs

constrain companies' profits and challenge the very same existence of some corporations.
Strangulated by the reduced cash availability and petrified by the organizational and products'
complexity, companies find themselves more and more inadequate to stay in synch with the
pace and the rate of change of consumers' and regulations' demands.

To boost profits, nearly everyone pursue cost cutting. However, aggressive cost cutting as

the sole approach to fattening margins results invariably in a reduction of operational
capabilities which is likely to result in a decline in sales volume that leads to further cost
reductions in a continuous death spiral.

Long-term profitable growth requires, instead, a continuous flow of innovative products and

processes. The focus should be, therefore, shifted from cost reduction to increased throughput.

Automotive companies need to change their business model, morphing into new organizational

entities based on systems thinking and change, which are agile and can swiftly adapt to the new

business environment. The advancement of technology and the relentless increase in computing

power will provide the necessary means for this radical transformation.
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This transformation cannot happen if the Product Development Process (PDP) does not

break the iron gate of cycle time-product cost-development expenses-reduced product

performance that constrains it. A new approach to PD should be applied to the early phases,
where the leverage is higher, and should be targeted to dramatic reduction of the time taken to

perform design iterations, which, by taking 50-70% of the total development time, are a burden

of today's practice.
Multi-disciplinary Design Analysis and Optimization, enabled by an Integrated Concurrent

Engineering virtual product development framework has the required characteristics and the

potential to respond to today's and tomorrow's automotive challenges. In this new framework,
the product or system is not defined by a rigid CAD model which is then manipulated by

product team engineers, but by a parametric flexible architecture handled by optimization and

analysis software, with limited user interaction. In this environment, design engineers govern

computer programs, which automatically select appropriately combinations of geometry

parameters and drive seamlessly the analyses software programs (structural, fluid dynamic,
costing, etc) to compute the system's performance attributes. Optimization algorithms explore

the design space, identifying the Pareto optimal set of designs that satisfy the multiple

simultaneous objectives they are given and at the same time the problem's constraints.

Examples of application of the MDO approach to automotive systems are multiplying.

However, the number of disciplines and engineering aspects considered is still limited to few

(two or three) thus not exploiting the full potential the approach deriving from multi-

di sciplinarity.
In the present work, a prototype of an Enhanced Development Framework has been set up

for a particular automotive subsystem: a maniverter (a combination of exhaust manifold and

catalytic converter) for internal combustion engines. The platform, adequately simplified to

cope with the project constraints, features a bus architecture where the different analyses

modules can be excluded and included with minor effort. Commercially available software is

used, with some customization for the particular use. Particular emphasis is placed on the

breadth of the engineering disciplines considered - which include fluid dynamics, pressure

waves propagation, thermal management, vibrational behaviour and mass properties - and on

the inclusion of business elements, in the form of a parametric cost model.

The development process executed in the new framework, benchmarked with current

practice, resulted in a reduction of 75% in development time and cost and projections of 85%
reduction are made for a full-functional tool running on adequate hardware. In addition, thanks

to the possibility to evaluate many different maniverter configurations, an innovative design

solution with better performance and greatly lower cost was identified.
The efficient interface management coupled with the 24/7 working capability of computers

let us think that the application of "Product Development Computerization" could reasonably

lead to 50% reduction of the development cost and budget of many automotive systems, in
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addition of delivering products with enhanced performances. Benefits are expected to be higher
for complex systems where the diverse conflicting requirements narrow the trade space and for

products that feature high levels of similarities from one application to another.

The deployment of such an environment improves the change management capability of a

company, enabling new levels of business agility and triggering a virtuous spiral. Faster time to

market, lower development costs and more cost efficient products can result in an increase of

market share and profit margins. Engineering resources, released by the burden of time-

consuming modelling, routine CAE analyses and continuous rework in a schedule pressure

environment, can focus on the delicate decision-making phase and more proficiently devote

their time to research for next-generation products, to explore new business segments and to

innovation. These projected efficiencies more than offset any cost for the development of the

framework and any additional software or hardware that may be necessary.

Yet, its successful implementation requires winning some challenges. The most critical are::

1) overcoming the resistances of engineers that "like doing things by hand"; 2) creating in the

engineering community an open mindset that is ready to accept possible radically innovative

solutions found by optimization algorithms scavenging traditionally unexplored areas of the

design space; 3) breaking the traditional organizational divisions by functions to establish a

network of knowledge management teams.
No global automotive company, especially Tier 1 suppliers, can afford to wait. In fact, as an

organization approaches irrelevance, latitude for constructive action diminishes. Times call for

immediate action: we need to invest in research and development so we can continue to prosper

and grow. The winner will be the one who has a clear vision of the final agile state, starts

earlier on the journey to achieve this vision, and implements it piece by piece.
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1. INTRODUCTION

1.1. Motivation for the Work and Thesis' Value Proposition

1.1.1. Current Status of Automotive industry and Future Outlook

"The industry's massive volatility represents the shudders of a dying business model that has

created an era of high sales volume and negligible profits... Today we have high sales volume

and low profitability. We have to change.

My view is the change is under way".

David Cole - President of the Center

for Automotive Research (Automotive

News, 01/15/2003 - for the full

presentation, see [1]).

As scaring perspective as it may

appear, this is indeed the sharp depiction

of the profitless prosperity that the

automotive industry is facing these years,

with stock valuations and cash available for

re-investment that are at historic lows.

Industry analysts and observers (for

some reviews see [2] ) identify

overcapacity (20-25%) and high fixed costs

the main drivers of this downturn, Fig. 1

[3] . Furthermore, within the next ten years,
they predict consolidation to three or four

global OEMs and a 25% consolidation of

capacity and companies across the supply

base. Accenture, for example, estimates

that the number of Tier-One suppliers will

decline to around 4,000 by 2010 [4] , Fig.

2.
Automotive companies are strained by

multiple tensions.
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Data reveal that since
the 1960's the number of

basic vehicle segments has
grown from 4 to more than

15. The industry's top five
manufacturers alone are

expected to introduce
nearly 160 new models and
facelifts in the U.S market

from 2003 through 2007
(Fig. 3 [5]).

The number and

complexity of new-model
features also continues to
climb. The electronics cost

Cumulative US Vehicle Launches by OEM 2002-2007

159 total vehicle launeM from 2003-07!
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Fig. 3: Proliferation of models - heavy burden on development resouces

content of an average car in the 1970's was less than 10 percent. It's expected to top 40 percent

by the year 2010. Additionally, regulatory requirements also have a major impact on product

development. Rising fuel economy, safety and environmental standards put additional pressure

on OEMs product

development.
While costs and

complexity have risen
sharply in recent years, the
price of an average vehicle
has remained virtually
unchanged since 1993. In
parallel, since 1998, R & D
budgets as a percent of sales
at five of the industry's top
OEMs have remained
virtually unchanged at an
average of 4% of sales, Fig.
4.
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Fig. 4: R&D budgets remain flat

However, pressures to reduce costs and to increase systems' contents are not the only forces

that shake automotive companies. Other forces are challenging the status quo and pushing for

breakthroughs. The first is the reduction in the time to market (TTM).
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Over time, the product

development lead-time of car

manufacturers has been constantly

shrinking (Fig. 5), linked to shorter

and shorter TTM. From the 60

months of about ten years ago, to

the current range of 46-36 months,
to the stretch target of 18 months

touted in a recent announcement by

GM [6] . Drawing a TTM data a

'speed to market curve', Fig. 6, a

technology S-curve emerges that

would indicate that, in the next ten

years, the car industry will move at

a much faster pace than today.

In addition to increasing

operational margins, coping with

systems of increasing complexity

and reducing the development

time, there is an increasing

need for flexibility, the

possibility to quickly change .

from one design to the other 6W

IVwith different performance 0
C

metrics to adapt to market or E

company strategy changes.
O.

PD Lead times decreasing ...

Development period after design freeze [months
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1.1.2. Doing more with less: the risk of cost cutting

When a business's income and expenses are out of balance, it's a symptom. You can no more
cure your business by cutting expenses than you can cure a fever by dropping the patient in an
ice-water bath [7] .

Up to now, in order to sustain their business in this context of overcapacity, high fixed costs
and intense competition both OEMs and suppliers' have reacted (somewhat irrationally) asking
their suppliers for immediate cost reductions.

Cost reduction, however, has several negative implications. First of all, it further squeezes
companies' margins and increases the risk of supply. Secondly, as a report of AMR Research
points out [8] , targeting cost to improve margins throws manufacturers into what General
Electric's Jeff Immelt calls "commodity hell"- where companies find themselves competing on
price alone. But, what's worse, it might put the company in a state of permanent emergency
with quality reduction and long development leadtime at no actual appreciable reduction in
product development costs. This is due to the occurrence and to the subsequent spreading of a
pathological organizational dynamic phenomenon called fire fighting [9] [10] , which is
defined as the unplanned allocation of resources to fix problems discovered late in a product's
development cycle.

The understanding of fire fighting is intimately linked to the understanding of project
dynamics.

Cooper et al. [11] pinpoint three interrelated factors related to the dynamics of a single
project: the rework cycle, feedback effects on productivity and quality impacts, and knock-on
effects from upstream phases to downstream phases. Customarily, conventional project
management neglects rework. In reality, more or less rework emerges in any project. At least
part of rework lies undiscovered for a considerable time, and after its discovery, it is rushed to
completion, competing with other work assigned to the specialists in question. Feedback effects
on productivity and quality refer especially to the situation where there is managerial corrective
action after deviation from the plan. Bringing more resources, using overtime or exerting
schedule pressure will usually reduce productivity and quality. Reduced quality will, in turn,
lead to more rework. When a project consists of several phases, the availability and quality of
upstream work can impact the productivity and quality of downstream work. Thus, the rework
cycles and feedback effects in one phase extend their influence to the next phases. When
multiple projects are running, as in a normal company, the problems on one project knock then
onto the following project in a never-ending spiral.

Repenning et al. [10] demonstrate the existence of a tipping point above which the negative
effects of rework, productivity and quality loss and knock-on dynamics amplify and spread
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whereas they die out below this point. In analogy with models of infectious diseases where the

tipping point represents the threshold of infectivity and susceptibility beyond which a disease

becomes epidemic, in product development systems there exists a threshold for problem-

solving activity. When crossed, fire fighting will emerge, grow and spread rapidly from a few

isolated areas to the entire development system, due to a sort of domino effect from one project

to the other.
Fire fighting is a self-reinforcing phenomenon: once the system has entered the fire-fighting

zone, escape is difficult. As illustrated by Brooks' Law (1995) about the Mythical Man-month

[11] , in fire-fighting situation the progress is not proportional with the effort. This is because

resource utilization efficiency drops. As a result development cost rise and leadtime lengthen,
which induce management to further attempt to increase the pressure. The fire-fighting

syndrome persists because few actions can push the product development system back over the

tipping point into a virtuous cycle of improved process execution [10] .

Moreover, as Repenning and Henderson point out, when the company is in a fire-fighting

mode, all the resources are utilized to fix problems and to manage the growing rework, which,
being immediate needs, are perceived as Nolor

more urgent and compelling. Resources

spent in fire-fighting are drained from
Pressure to

medium-long term innovation and -Fix short term .ent -%j

problems 1ghting
research, with the result of emptying the

product pipeline (Fig. 7, [13] ) and %*

undermining effective management of the P.x -.10

development system [14] . Extreme time ipportun es

pressure not only stops medium and long- Grovit projects

term research but kill also vital

incremental innovation. The need to freeze

the design avoiding high rewards / high- Fig. 7: Overload may destroy long term peformance

risk paths pushes developers to follow

known development routes and ending in products of standard performances

Why fire-fighting occurs? And why, resources have such an important role? One

contributory cause for this situation, discussed by Dorner [15] , is the cognitive limitation of

humans as decision-makers and their inability to cope with complex and dynamic situations.

Dorner isolates four factors. First, the question is about complexity, the existence of many

interrelated variables. Second, we have to deal with dynamic systems. It is not enough to

manage the system a single moment, but over time. Third, the system is to some extent

intransparent; we cannot see all we want to see. Fourth, ignorance and mistaken hypotheses
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prevail. We usually do not know all relationships between the variables. D6rner goes on to
explain the generic causes of mistakes people make when dealing with complex systems:

" Slowness of thinking
* Small amount of information that can be processed at any one time
* Limited inflow capacity of the memory
* Tendency to protect the sense of competence
* Tendency to focus on the immediately pressing problems.

Resources limitation created by cost cutting, if not adequately compensated by more
powerful tools that allow the correct management of the dynamic complexity, exalts the
negative modes of project dynamics and lowers the tipping point, thus making easier for fire
fighting to burst.

In addition, the "better-before-worse" behavior created by fire fighting coupled with basic
human tendencies for immediate rewards and intuitions further leads decision makers down the
wrong path.

1.1.3. Beyond cost cutting: new paradigms for product development

"When you are face to face with a difficulty, you are up against a discovery."
- Lord Kelvin

To stay competitive in a changing market, automotive companies need to continuously
increase their operational efficiency. This means increasing the added value of resource
utilization in engineering, manufacturing, and distribution processes - both internally and along
the supply chain.

A major leverage factor, as Liz Lempres, director in McKinsey's Boston office, notes [16] ,
is the process, which in most companies has become an inflexible sequence of activities, like a
production line. Because it is inflexible, it is disconnected from marketplace changes that may
determine the fate of new products. The solution is to inject more customer-related information
into the process and to make it flow better. By transforming a rigid process into a more
dynamic and information-based one, companies can quicken the pace of development and
improve a product's odds of success.

However, to do so, they will have to implement basic changes in the way they make and
time product-development decisions. By improving the quality, timing, and synthesis of
information throughout the development cycle, companies can free themselves from
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prescheduled project time lines and formalized process steps and manage their resources and
work flows more flexibly. They can keep their product options open longer, act on market
information later, and reduce the delays, bottlenecks, rework, and wasted effort inherent in
today's assembly-line product-development process.

Both managers and scholars
increasingly realize the central role
that product development plays in

creating competitive advantage. Deve nentst

Product Development is governed by
the classic four forces of cycle time,
product cost, development expenses
and reduced product performance or

feature set, Fig. 8 [17] that trade off
with each other. Improving PD Product Deveopment

should aim to achieve, at the same fea 'e an*

time, lower time to market,
competitiveness through innovation
and to lower costs due to change,
either because of the need to fix Fig. 8: the iron gate of Product Development

failures or because of changing

customer requirements.
Product-development cycles have improved over the past two decades by following a more

disciplined and rigorous process. However in the recent years, the pace of improvement seems

to have levelled off, and companies are unable to meet the rising demand for better and more

frequently launched new products aimed at narrower customer segments.

The conflict of opposing forces, the compelling need of nowadays to do more with less, sets
the premises for growth, change, and progress. For example, new approaches to mass

customization via product platforms are pursued. We believe that the auto industry is preparing

for a huge technology revolution over the next few years, especially in PD.
Significant, permanent changes with holistic structural interventions and appropriate tools

are needed to create a fire resistant product development system. Novel approaches are

expected to have bigger benefits if:

* They are applied to the early phases where the leverage is higher,
* They dramatically reduce the time taken to perform design iterations.

In what follows each of features will be briefly discussed
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The crucial role of the early phases

of PD Detail design and devdopment

~75-
Experience of manufacturers in 8 "em alysis, evahiaflon of

z~ alternalves(traeofts system
8 deflitan etc.

many industries has shown that 80% so-
hbuket anaysis, feasbiliy study,of the total time and cost of product - le

25maintnn ce concept, etc

development are committed in the

early stages of product 0-f
development, when only 5% of .. 

project time and cost have been

expended (Fig. 9 [18] ). This is
Fig. 9: Lifecycle cost committed Vs. Project Phase

because in the early concept stages,
fundamental decisions are made

regarding basic geometry, materials, system configuration, and manufacturing processes [19]
Further along in the cycle, changes get harder to make. Essentially, the time and cost to correct

problems increase ten-fold with each step of the product development cycle [20] concept

definition, detailed design, prototype

manufacture, prototype testing, and

production, Fig. 10. So a relatively minor t'o

change that would have cost a few dollars

if made in the concept definition stage,
could end up costing hundreds of

thousands of dollars in the production

stage, or millions if flawed products are C. E.

shipped.
Despite the crucial importance of this

delicate phase, surprisingly in the Fig. 10: The cost of change
industry it is not given the attention it

deserves. This has, as a consequence, a

lot of failure-trial-fix loops and development costs dominated by failure recovery actions (Fig.

11 - [21] ).
Consequently any PD improvement will be more beneficial if allows better exploration and

resolution of the system's trade-offs in the early stages of design definition.
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Examples of Nonrecurring Development Costs
Rocket Engines

" SSME $ 2.8 B
- F-1 $ 2.4 B
- J-2 $ 1.7 B

Jet Engines
- F-100 $ 2.0 B

Automobiles
- 1996 Ford Taurus $ 2.8 B

Fig. 11: Product Development Costs: dominated by rework

Design iterations

Product Development is inherently iterative and this property makes it particularly difficult

to keep it under control. Delays in schedule and budget excedances are common. The

combination of the interdependency structure and dynamics delays cause development

problems (issues) believed to be solved (closed) to re-appear (reopen) at later stages of

development.

As an anonymous product

development manager at an

automobile manufacturer said, "We 1000%

just churn and chase our tail until t " ?"n* .* .

someone says that they won't be 2

able to make the launch date." [22] 7i

Iterations occur because of A 2

inherently conflicting trade-offs for . 1 2 . 1

which it's very difficult to find a.

balance and they usually represent Fig. 12: Iterations grows exponentially with product's and
a major portion of the product organizational complexity

development leadtime and cost.

Iterations duration increases exponentially with the number of interrelated activities and,

consequently, with product / organizational complexity (Fig. 12, [23] , [24] ).
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The modest effort that is usually deployed in the concept design phase leads to a limited
number of design iterations whereas they could be more rewarding. Consequently, the design
space is poorly explored and / or some design aspects are neglected. This poor job in the
concept design sets the seeds for the rework that will surface downstream in the project,
causing longer and more expensive design loops.

Hence, an improvement in PD should allow performing more design iterations, particularly
in the concept and preliminary design phase.

CAx tools are extensively used in these early stages to virtually simulate the performance of
the product. Impressive advances are being made in the application of M&S in design.
However, M&S is believed to still be in its infancy. M&S tools suffer several limitations,
among which we can enumerate the following:

" They are complex, and each tool requires a specifically designed data set to enable its
operation.

* Creation of the data sets and models that enable accurate simulation is costly and time-
consuming.

* Difficulty of calibrating the models against real experimental data
" Interoperability is a huge issue
* The models that now exist are in most cases incomplete, in that they do not always

support good decision processes with accurate bounding of risks and uncertainty.
* Current models are unable to allow the evaluation of design alternatives across different

disciplines and that prevents a great opportunity for cost effective, robust designs that
meet all product requirements.

The new PD process should also overcome these limitations, particularly interoperability.
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1.1.4. The Enhanced Product Development Framework

Given this scenario of strong forces that push for cost and leadtime reduction and to

increased flexibility, having identified the concept / preliminary design as the highest returns

phase where to intervene and having isolated an important source of waste, namely design

iterations, we can now proceed to formulate a roadmap for a solution.

We envision an approach to product development with superior performance the one which,
assuming a system's perspective, considers the product in its all performance dimensions,
minimizes the disruptions by establishing optimum communication channels along the

interdependence lines and allows fast execution of design iterations.

This Enhanced Development Framework is therefore a development process that has to,
simultaneously, take care of all targets and constraints and deal with several different analysis

disciplines in an integrated environment for concept evaluation, optimisation, verification, and

multiphysics integration. It should also enable the developers to reach overall best solutions and

very closely survey the different conceptual limitations.

We argue that Multi-disciplinary Design Optimization appears well positioned to become

the core of this environment. To exploit its full potential, MDO needs to be executed in an

Integrated Concurrent Engineering platform where seamless data transfer among simulation

packages occurs. The greater the number of product performance dimensions and the deeper is

the interrelation among them, the higher the advantages expected of this methodology will be.

The EDF with its high performance ICE platform is projected to enable a very fast execution

of design iterations in the early phases of PD. Consequently, many solutions can be

Eliminate
Failure Modes

73%

Demonstration Design & Engineering 70%
10% F Test & Demonstration 30%

0 =0
Certification Certification

Initial
Design TIME TIME

2% YEARS

Fig. 13: Computerized Engineering Vision
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investigated at a relatively low cost. In addition, the MDO approach leads to evaluate each
solution from all the relevant performance attributes standpoints. The combinations of the two
factors, i.e. comprehensive design exploration and holistic perspective, is expected to reduce
dramatically the cost of rework, thereby leading to product's value maximization, Fig. 13 [21]

Automakers search for ways to increase their speed, agility, situational awareness and ability
to innovate and, in consequence, improve their competitive position. Following our industry
and PDP analysis, MDO in an ICE framework is viewed and proposed as a mindset and a
methodology to cope with the challenging demands that the market is imposing on automotive
manufacturing firms, helping the transition in the product-development and engineering
processes from a "test, analyze, and fix" paradigm toward an industry-ideal "design-right-first-
time" for value maximization.

1.2. Objectives

Given the previously illustrated value proposition, the present work has the resulting set of
goals:

" Explore Product Development improvement research
* Investigate the application of the Multi-disciplinary Multi-objective development

paradigm in the automotive industry
" For a specific system, an exhaust system maniverter for passenger cars, evaluate

potential benefits and issues of the application of a MDO approach and of a system
perspective in engineering simulation in terms of:

o Cost reduction
o Product development lead time reduction
o Flexibility
o Innovation (non-traditional solutions)

" Perform a cost benefit analysis to verify that a project targeted to develop such a new
framework is characterized by a solid business case

" Outline an implementation roadmap in a business setting investigating the technical and
organizational challenges involved.
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1.3. Operative Approach

1.3.1. Introduction

To prove the feasibility and robustness of

the MDO approach in an ICE platform and

evaluate the challenges of the implementation

of the EDF as well as the potential rewards, a

prototype of the proposed environment is built

around a specific application. As a particular

system an exhaust system manifold or, more

precisely a maniverter (manifold+converter) for

passengers cars, is chosen (see Fig. 14 for an

example). The choice of this system is driven

by multiple reasons. First and foremost, an

exhaust maniverter is intrinsically a highly
multi-disciplinary system: in fact, its design is

governed by fluid dynamics requirements

(pressure losses, engine tuning), heat

management issues (gas temperature drop, Fig. 14: example of a maniverter system

radiated heat) as well as structural constraints

(resonance frequencies, thermal stresses, vibration induced stresses), not to mention,
packaging, manufacturability and cost. Second, the system is of a favourable medium-size

complexity and therefore amenable to be managed in a limited resources-limited budget

framework such as of a thesis project and yet it is not too simple to make the development

trivial. Last, but not least, this is the type of systems which the writer has first hand experience

and can have direct access to related information.

In building the prototype EDF, several guiding principles have been followed:

The ICE platform has been set-up with a modular structure with minimum interaction

among the different software packages. This architecture ensures, at least conceptually,
independence from the individual software and has several benefits:

o Possibility to replace easily one software package with another one, depending

on the company strategy or available skills

o Possibility to use the best software package for the specific task

o Possibility to add at any time additional modules to widen the scope of the

performance attributes evaluation.
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* Single platform / single node execution. To mitigate interoperability issues all the
software programs have been installed on a single computational platform. In addition a
laptop has been chosen to favour the data and information exchange among the different
people that contributed to the effort and that worked in different geographic locations.
Since the chosen platform is not capable of computationally intensive calculations,
analyses that require high computing power have been either discarded or low
computational cost alternatives pursued. As an example, CFD, which is usually utilized
in the development of maniverter to compute the pressure drop and flow distribution in
front of the catalyst, was soon excluded from the analyses suite because of its
computational requirements. As a competitive alternative, a 1-D fluid dynamic code
was used.

* Emphasis is placed more on the characteristics of the process as a whole than on the
accuracy of the results. The prototype environment created in the present work is
intended to be a demonstrator of the advantages of the MDO approach and of the ICE
platform and to verify the business / organizational implications of a potential
implementation. Therefore breadth was emphasized rather than depth. Absolute
accuracy of CAE results in the respective domains was not pursued, but care was only
put that the trend showed by the calculus was in the right direction. For the same reason,
the geometry was not modelled with all the details to keep the number of parameters
within a manageable range.

SMDO as a business tool. Taking a managerial perspective, the demonstrator was
verified as a tool to improve some crucial business processes such as trade-off
evaluation, decision-making and customer relationship

* Incremental approach. The framework was built incrementally to keep the complexity
always at a controllability level. Complexity was raised progressively along two
dimensions: application complexity and framework complexity. The complexity of the
application was raised from a simple pipe with fixed centreline and variable cross
sections, to a simplified maniverter with constant and circular cross section but variable
piperun and finally to a maniverter system with several design variables.
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1.3.2. Methodology

Given the project goals and the system to be analyzed, the following steps were taken:

" Scope definition

* Architecture / platform layout and essential pre-requisites list

" Hardware / software requirements

" Partnership building

* Hardware / software acquisition

* Literature search

* Project execution, i.e. building the EDF
o Simple pipe
o Full manifold

* Cost-Benefit Analysis
" Implementation layout:

o Skill set re-definition
- Project Managers
* Functional members

o Change management

The following paragraphs briefly describe each of those steps.

Scope Definition

Even though this phase was iterative, a preliminary list of analyses and performance aspects

to be evaluated has been laid out at the outset, using the experience in product development of

the writer. Among those that were identified from the beginning, there are:

* Mass characteristics

* Structural behavior
" Fluid Dynamic and thermal behaviour

" Emissions performance

" Engine Performance

" Cost

In subsequent phases, this list was then refined and tailored to the available options.

Structural behavior was then restricted to the eigenfrequencies, excluding, on the other side,
thermal induced stresses and forced vibration induced stresses. Fluid dynamic section was de-

scoped from a full 3D Computational Fluid Dynamic (CFD) analysis because of too much
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computational expense, while it was enhanced by the calculation of the temperature in front of
the catalyst, in addition to the calculation of the pressure drop. These restrictions are not
considered fundamental limitations of the platform. Given the modular architecture (see 3.10)
of the ICE platform, the dropped modules can be added at any time, should the model be ready
and the hardware able to withstand the workload.

While outlining the specific analysis domains, a series of dimensions along which a system
is assessed and the related performance metrics has been worked out. If, for some of them, the
choice came naturally (e.g. mass, first resonance frequency, etc), for others, more subjective
and articulated, a specific synthesis work was required (e.g. engine performance).

A detailed description of the specific analysis done, the related methodologies adopted and
the resulting models are given in Chapter 3.

ICE PlatformArchitecture /platform layout

Having identified the
individual design
domains, the next step
was selecting a robust
and yet flexible
architecture that was to
link them in a consistent
framework. The trade-off
was between integral and
modular.

Integral would have
meant a deep interaction
between the different
software packages. In this
sense, there are several
attempts by different

ICE Platform

-- - - - - - - - - - - ------------ 1

Parametric CAD Model

Optimizer

CAE Model 0 CAE Model 1 CAE Model 2 CAE Model 3 CAE Model 4

(Packaging) (Fluid (Structural (Engine (Cost)
Dynamics) behavior) Performance)

----------------------------------

Fig. 15: the Integrated Concurrent Engineering Architecture

software vendors. The usual situation that is encountered is that CAD or CAE vendors,
specialized in one domain with a flagship product, are trying to widen their area of action
around that product offering an extension of their basic capavbilities.

No single CAE platform, however, exists that is able to incorporate seamlessly different
codes of different vendors. This was one of the main motivations for the choice of the modular
architecture, with the optimizer to act as a data transfer bus. In this bus architecture a
standardized and minimum set of data is exchanged among applications and the transfer back
and forth is handled uniquely by the optimizer. This approach works well in the case of a
maniverter because the main interaction between disciplines is via system's geometry. In other
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applications (e.g. aero-structural design), with deep multiple interactions between coupled
disciplines, a different approach might offer superior performances.

As mentioned, a modular architecture has got other advantages: 1) one CAE module can be
replaced by another one, provided that the interfaces with the bus are the same; 2) if, at any
time, an additional CAE module becomes available, it can be easily integrated and only the
interfaces with the bus (and not with all other packages) need to be defined.

In addition to the software architecture, the hardware architecture was also defined. In
particular, two main trade-offs were singe Single

invstiate: sngl pltfom -Platform - Platform - Distributedinvestigated: single platform - Execution
distributed execution and workstation / Simplicity of Implementation 0
desktop - laptop. Each of them has its Robustness 0 Q Q

own pros and cons (Fig. 16): while Computing power 0

distributed computing offers superior

computing performance, the single ( Good

platform is amenable of a simpler Sufficient

0 Bad

implementation. A workstation and a Fig. 16: Hardware Architecture Options
desktop are, again, superior in terms of

computer power, but a powerful laptop

may be competitive and offer unique mobility characteristics.

The final choice has been to develop the application on a single computer and on a laptop.

Since, in fact, it was anticipated that the development of the application would have been

shared among different individuals and companies, portability was an essential feature that

would allow the interchange of information. The single computer, single operating system,
made easier the implementation.

Hardware / software requirements analysis and partnership building

Having identified the disciplines and the analyses involved, the following step was to

identify software candidates for the different computational jobs and the hardware/operating

system.

For each of the parts of the ICE platform at least three different options were considered and

two of the market leaders were contacted for collaboration, Tab. 1.

Architecture Component Vendor Software Name

Engineous iSIGHT
Optimizer MTDM

MIT DOME

CAD UGS PLM Solutions Unigraphics
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Architecture Component Vendor Software Name
Dassault Systemes CATIA

Analysis MSC Patran / Nastran
Ansys Inc. Workbench / Ansys
AVL Boost

Fluid dynamic analysis GTI GTPower

Ricardo Wave

Tab. 1: Software Packages Options for the ICE platform Analyses Modules

The request to each and every vendor was to provide a temporary license of the required
software and the support of a dedicated application engineer for its customization for the
specific application.

All of them declared their availability to provide a temporary software license and some of
them offered some sort of engineering support. At the end, the team was formed with the
partners that proved proactive and particularly supportive and whose software demonstrated
suited for the ICE platform development and for integration with the other packages. The
companies that eventually were admitted in the team are highlighted in Tab. 1.

In addition to those, the collaboration of two more companies was necessary to cover two
important areas:

" Parametric CAD model generation - Autostudi
" CAD geometry update - Centro Ricerche Fiat

The complete architecture and distribution of responsibilities and competence is represented
in Fig. 17:
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Fig. 17: ICE Platform Architecture and Team Members Coverage

As far as the hardware was concerned, given the budget limitations, a notebook was used

with reasonably high specification, a Pentium IV 1.8 GHz, with 1MB RAM and 15GB HD.

Microsoft Windows 2000 Professional SP4 proved to be a convenient, stable and reliable

operating system environment for all software packages.

Project Stages: Simple Pipe and Full Manifold

Given the complexity of the framework and the maniverter application due the number of

interfaces involved, an incremental approach was used. The project was sub-divided into two

main phases: Phase 0 and Phase I/II.
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To test the software SIJ
workng cndiions and Gas in Racetrack cross sectionworking conditions and acmseo

interoperability issues, in
Phase 0 the first prototype I
of the EDF was built around 17 J,

a simple geometrical
application: a pipe of fixed -

s2 rcbc
centreline but variable cross

sections and thickness (Fig.
18). This was used as a Attached to the ground

trainer. In this phase, the 4r

routines for the automatic
analyses were developed, Fig. 18: The Simple Pipe
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the end of the phase 0, the
Phase 1II consisted in
building the EDF around a Fig. 19: The Full Maniverter

complete maniverter
application, in a simplified form but representative enough of a real life application, Fig. 19.

]

Ja:
d as
nd
orts

The incremental approach proved successful because, as expected, the raised complexity

added a totally new set of issues and led even to rewriting important portions of already

developed software. If some problems hadn't been solved in the previous Phase 0, the overall
complexity would have been overwhelming.
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Literature search

Since the beginning and in parallel with the activity of building the EDF, a literature survey
was made that lasted throughout the period of the work. The survey had several aims:

* Understand the research activity in product development improvement

* Evaluate the application of MDO to product development: current challenges and
perspectives.

* Learn from specific existing examples on maniverters

" Learn optimization / design space exploration techniques

" Understand post-processing issues

Results are presented in Chapter 2.

Cost-Benefit Analysis

Given the results deliverable by the EDF, for the same maniverter development application

the economic benefits stemming from the lowered costs, lowered development time and
increased agility and innovation are estimated and balanced against the development costs

necessary to bring the tool from the current status of demonstrator to a level where it could be

used for normal business activity.

Implementation layout

Finally a roadmap for implementation is outlined. An approach of insertion of this new tool

in a manufacturing firm is given, together with the analysis of the major implications,
particularly from the organizational viewpoint.
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1.3.3. Structure of Thesis

After Chapter 1 where the outline of the
work are analyzed, in Chapter 2 a literature i

work is presented. For sake of clarity, it is
analysis and improvements, MDO (general
reduction), exhaust system related MDO
visualization techniques.

business scenario and the drivers for the present
eview of the major areas touched by the present
divided in the following Sections: PD process
status and benefits in terms of lead-time/cost
application, MDO enablers, 3+ dimensions

In Chapter 3 the demonstrative EDF is described in detail. Starting from the application
description and the outline of the architecture, the individual modules are explained in detail
with particular emphasis to their limitations and their interfaces with the other modules.

In Chapter 4 the EDF is put at work. Simulation set-ups, the details of the runs and main
results are presented for both the simple pipe and for the maniverter application and insights are
drawn. At the end all the insights are summarized.

Chapter 5 outlines a path for the further development of the tool from the current status of
demonstrator to a level where it can be used in a business setting. The cost benefit analysis is
presented to compare the current product development process and the proposed new product
development paradigm and to show that the business case of the development project is solid. It
then discusses the technical and organizational challenges of the EDF implementation in a real
environment.

Chapter 6 is the summary of the whole work: it collects all the insights gained during the
activity and couples them with a forward looking perspective of the automotive industry,
product development and computers evolution presenting a forecast of product development
computerization as a standard paradigm for the future. Recommendation for action ends the
work.
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2. LITERATURE REVIEW

2.1. Introduction

In this Section the knowledge gathered during the project-long literature search is
synthesized.

The material is grouped in four Sections:
* Product Development Process Improvement Research

" MDO methods

" MDO key enablers
" Examples of applications of the MDO approach

2.2. PD Process Improvement Research

"The goal for any product development improvement effort should be to conceive human-
centered design processes that result in efficient, effective, user acceptable system interfaces
that are simple to train, use, and maintain."

Given its crucial importance,
it is not surprising that the design * Evolutionary Product Development

- Various competing solutions
of effective product development - Continuous advancement

processes has received 0 Shortening of control cycles
considerable attention. - Relocation of efforts (and gain of insights) into early phases

- Short fast iteration loops
Initiatives and pilot project - Early assessment and feedback of results

targeted at developing world- * New processes of organisation and management
class product creation process - Self-organisation and coordination

that is more flexible, adaptable, - Short paths of decisions

dynamic and low cost are

multiplying both in Academia Fig. 20: Rapid Product Development as new Approach
and in the industry. A complete
survey is beyond the scope of this work, but we want anyway to describe some examples of the
research activity running in different contexts.

Two are the common components among the different works: the heavy reliance on
Computer Aided tools to shorten the virtual design loops and the careful shaping of the
underlying organizational structure and culture, Fig. 20.
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Three works on new approaches for product development process are presented: a proposal
from the Fraunhofer Insitute of Technology, and two pilot projects experimented by BMW and
Ford of Europe.

2.2.1. Fraunhofer Institute Perspective

A Fraunhofer Institute
research [25] identifies
rapid product development
the main paradigm of the

next ten years. Three main
key enablers to that are
also identified: many
competing solutions,
short/fast iteration loops
and a self-controlling
organization (Fig. 21).

More specifically a

scenario is conceived
where many solutions
coexist until late in the

project and they are
continuously evaluated in
light of the project
evolution. This operational
mode carries the great
advantage of the
flexibility: having many
options in the solutions
portfolio, depending on
the particular needs over

time, one
be chosen

superior

solutions

because it
benefits

might

offers
than

another one. However, to carry

development cycle is mandatory

Fast Development Cycles
as active Process Elemen

Evati Comp

Ear y Result F J

Emphasis on the Pre-Development

" Increased Efforts ("Frontloading")
" Decoupled Development of Solutions and Alterr

C'Sets) as Basis for specific Projects
* Innovation-Teams

Elaboration of alternative Conceptsr for Product and Production Procesi

Holistic Product Innovation

Late Decisions and Specifications of
Product and Process

Fig. 21: Evolutionary-Iterative Development

Fig. 22: New Forms Of Coordination

on the development of multiple solutions simultaneously, fast
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The other essential element of the Fraunhofer research is the holistic or system perspective:
the product is evaluated against all its performance attribute measures so that iterations deriving
from downstream processes are avoided.

From the organizational standpoint, an unprecedented change is proposed: from a
hierarchical, rigidly controlled structure to a networked, self-adjusting, self-governing
structure, Fig. 22. If we want to make an analogy with an aircraft system, it's like moving from
an intrinsically stable aircraft to an intrinsically unstable aircraft. The first offers increased
safety and controllability at the penalty of a slow change in direction, the second guarantees a
superior manoeuvrability but at a price of a "real-time brain" that controls and adjust the
configuration at every instant.

2.2.2. BMW Pilot Project

In 2002 BMW has initiated a pilot

(a) Traditional Stylina Process

Hand-drawn styling proposal

V
Prepare work plan for 1:2.5 or 1:1

V
Model builders prepare base model

V
Model builders and stylists refine surfaces

with manual tools

V
Finished clay model evaluated

V

project, called The Digital Auto Project, with the aim of

ib) 100% CAS-Driven Process

Iterate
(4-5 times)

Time per
iteration:
about 12

weeks

Get digital package (prepared by 4.
other group)

V
Using CAS, stylist overlays package with new

styling proposal

V
Virtual animation of digital styling

proposal Is prepared
V

Using animation, digital styling proposal is -
evaluated

CAS data Is converted directly do CAD data
for design engineering

Iterate
(> 10 times)

Time per
iteration:
7-10 days

Clay model is "digitized" Into computer- aided
design (CAD) format via laser scanner

Fig. 23: The BMW Digital Auto Project

slashing by 50% the development time [25] . This project is based on three basic working
principles: 1) increased parallelisation of design tasks, 2) elimination of some design tasks such
as physical prototyping and 3) quicker completion of the remaining design. In Fig. 23 the
traditional development process is compared with the new approach.

The intensive use of the Computer Aided Simulation (CAS) tools and the fast
communication channel allow the time per iteration to be amazingly squeezed to 15% of the
original. This allows the number of iterations to be increased (from 4, .5 to 10+), thereby
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improving product's quality and value, and still achieving a significant reduction in the overall
development lead-time (50%).

2.2.3. Ford C3P

The Ford Motor Company, in 2003, celebrated its 100 anniversary but it's not content to rest
on its history as an innovator in vehicle design and production. In fact the company is
constantly striving to narrow the gap between concept and production. The Ford Europe team
decided that the only way to get to design quicker was to fundamentally change its design,
engineering and manufacturing processes [26] . As John Sullivan, Chief Engineer for Body
product Development Ford Europe, said "We can't focus on taking one or two days out of the
process; we need to take out months".

The response was the creation of an integrated package of computer-aided design, computer-
aided engineering, computer-aided manufacturing and a comprehensive product information
database. The computer-aided toolset, which is the latest version of the C3P product
development environment (see Fig. 24 [27] ), allows designers and engineers to create a new
vehicle largely in a digital environment. The broad capabilities of C3P allow Ford engineers to
reduce the number of hard prototypes created during the engineering process. The sophisticated
array of computer tools allows engineers to build virtual prototypes of their digital designs and
to "test" their function entirely in the digital environment.

Fig. 24: The Ford C3P Framework
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With this environment, the three months that used to take to go though an analysis cycle,
from the time a design is clear, have been slashed to V2 day.

The parallel design / analysis approach has led to 25% reduction in staff, delivering
significant cost savings.

2.3. Multi-disciplinary Design Optimization

2.3.1. Multidisciplinary Technology Overview

Practically all engineered and manufactured systems, such as automotive vehicles and
aircrafts as well as many consumer products, experience interactions among various physical
phenomena and between various components of the full system. These interactions make the
system a synergistic whole that is greater than the sum of its parts. Taking advantage of that
synergy is the mark of a good design, but the web of interactions is difficult to untangle.

The complexity of these interactions combined with the need to partition the design work
into subtasks that can be executed simultaneously in order to compress the project time gave
rise to the conventional practice of dividing the detailed design work into specialty areas. This

decomposition is usually centered on a physical phenomenon, such as structural deformations
or fluid flow, or on a hardware subsystem, such as a vehicle's suspension system.

This reductionist approach, however, decouples only temporarily the subsystems that were

originally linked. As expected, when reassembling them, the influences of the coupling links
will manifest themselves again and, if they are negative for the system, a design iteration will

stem: it's common experience that designs are passed between product teams and or

departments several times until the differences are minimized and a mutually acceptable

solution is found.

We argue that Multidisciplinary Design Optimization (MDO) is an appropriate approach to

tackle the complexity of modem and future product development. A detailed illustration of
techniques, methods and algorithms is beyond the scope of this work and can be found, among

papers and books dedicated to the subject, in [28] - [32] . In addition, the interested reader can

access the numerous online resources, a list of which is presented in the Appendix 7.5. In what
follows the fundamentals are given as a background.

Introduction to Multidisciplinary Design Optimization

Multidisciplinary Design Optimisation can be defined as a formal methodology for the
design of complex coupled systems in which the synergistic effects of coupling between
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various interacting disciplines/phenomena are explored and exploited at every stage of the

design process. Some other popular definitions for MDO are:

" A methodology for the design of complex engineering systems and subsystems that
coherently exploits the synergism of mutually interacting phenomena.

" Optimal design of complex engineering systems which requires analysis that accounts
for interactions amongst the disciplines (or parts of the system) and which seeks to
synergistically exploit these interactions.

" "How to decide what to change, and to what extent to change it, when everything

influences everything else."

In a MDO general framework (see Fig. 25, [33] ), a system is defined by a series of design
variables (design vector x) and characterized by a set of performance attributes (objective

vector J).

Design Vector

CX2

L-X1

Simulation Model Objective Vector

Discipline A - Discipline B

Discipline C

Coupling Multiobjective

Optimization

.. 0.irn mtion A1gorithms

Numerical Techniques
Tradespace (direct and penalty methods)
Exploration ~~ ~

(DOE)
Heuristic Techniques

(SAGA)
Coupling

Approximation
Methods

Sensitivity
Analysis

Isoperformance

Output Evaluation

Fig. 25: General MDO Framework

Performance attributes are computed through a series of models. Appropriate algorithms
allow the analysis of the relationship between design variables and performance attributes.
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Types of Analysis

Typical analyses involve design space exploration, single objective optimization and multi-

objective optimization.

Design Space Exploration
is a collection of statistical
techniques providing a
systematic way to sample the
design space. It is useful
when tackling a new problem
for which very little about
the design space is known
and it is often used before
setting up a formal
optimization problem to
identify key drivers among N

potential design variables, to
select appropriate design Fig. 26: DoE Techniques Overview

variable ranges and to set up
achievable objective function values. A list of the main techniques is summarized in Fig. 26
[33] . For a comprehensive review and comparison, see [34]

In single-objective optimization, the system is "optimized" in order to find the design

solution, which is characterized by the maximum or the minimum of a particular performance

attribute.
The multi-objective optimization, on the other hand, usually results in a set of optimal

solutions, which lie on the trade-off hyper-surface between the different conflicting criteria.

These non-dominated solution points are called Pareto optimal solutions. They constitute a set

where every element is a problem solution for which further improvement in one of the

performance attributes requires sacrifice in at least one of the other attributes. As such, any one

of them is an acceptable solution and can be considered "optimum" in some respect. Once the

set of optimal solutions is identified, the designer has the freedom of choosing one solution out

of many possible alternatives based on experience, prior knowledge and other criteria or

constraints particular to the current design problem. One way to simplify the multi-objective

optimization problem is to create a linear combination of the objectives choosing a priori a

weighting factor for each objective function; then the process becomes a single-objective

optimization. The outcome of this simplified process will largely depend on the vector of

weights used in the linear combination. More advanced approaches use Adaptive Weighted

Sum Optimization.
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Optimization Algorithms

As far as algorithms for optimization are concerned we can distinguish two different broad

categories: gradient based algorithms and heuristic techniques.

Gradient-based algorithms

are designed to search the
minimum or the maximum of *
an objective function J(x)
using some information about Simplex - linear CONSTRAINED

.SLP - linear
its gradient. Various

SQP - nonlinear, expensive, common in engineering applications
techniques and Exterior Penalty - nonlinear, discontinuous design spaces
implementations are possible, interior Penalty - nonlinear
with different level of Generalized Reduced Gradient - nonlinear

complexity and varying Method of Feasible Directions - nonlinear

computational effort. A list is Mixed integer Programming

presented in Fig. 27, [33] . I *ti We of -wVo - wzf MO<l oXI

In the last decade, a
different category of algorithms

has evolved which is Fig. 27: Optimization Algorithms

commonly known with the

name of heuristic algorithms. They facilitate solving optimization problems that were

previously difficult or impossible to solve. These tools include Evolutionary Computation

(mainly Genetic Algorithms), Simulated Annealing, Tabu search, Particle Swarm, etc. Genetic

Algorithms are, by far, the most popular ones. They are stochastic search methods that mimic

the metaphor of natural biological evolution. Genetic Algorithms operate on a population of

potential solutions applying the principle of survival of the fittest to produce better and better

approximations to a solution. At each generation, a new "population" is created by the process

of selecting individuals according to their level of fitness in the problem domain and breeding

them together using operators borrowed from natural genetics. This process leads to the

evolution of populations of individuals that are better suited to their environment than the

individuals that they were created from, just as in natural adaptation. Genetic Algorithms model

natural processes, such as selection, recombination, mutation, migration, locality and

neighborhood. They work on populations of individuals instead of single solutions. In this way

the search is performed in a parallel manner.

Genetic Algorithms differ substantially from more traditional gradient-based search and

optimization methods. The most significant differences are: 1) Genetic Algorithms search a

population of points in parallel, not a single point; 2) they do not require derivative information

or other auxiliary knowledge; only the objective function and corresponding fitness levels
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influence the directions of search; 3) they use probabilistic transition rules, not deterministic

ones; 4) they can provide a number of potential solutions to a given problem and the final
choice is left to the user.

Approximations

In MDO, computer simulation codes are discipline-specific, composed in different

languages (e.g., Fortran, C, Java), distributed, both geographically and on different computer

platforms and computationally expensive due to fidelity of modelling and need for accurate

results. Sometimes, computationally expensive computer simulations and/or analyses are

replaced by surrogate models, which are fast, simple approximations. As for the Design Space

Exploration and for the Optimization Algorithms, also for approximation functions a vast series

of techniques exist that go from a simple polynomial interpolation to more accurate methods of

representing localized behaviour, such as radial base functions or kriging models [35] .

The evolution of MDO:from optimization ofproduct performance to business

MDO research has blossomed in the 20 years since the first Multidisciplinary Analysis and

Optimization symposium, held in April 1984 at NASA Langley Research Center, and has

evolved since then as a new discipline that provides a body of methods and techniques to assist

engineers in moving engineering system design closer to an optimum. Parallel to the

development of the above methodology, a number of software packages have been created to

facilitate integration of codes, data, and user interface leading it its emergence as a tool for

mainstream application in product and process development.
Design of engineered products, in fact, can only be done in the context of the producing

enterprise and the market in which the product must exist. Traditional design optimization has

been limited to design decisions about engineering performance. Product success for both

producer and user clearly depends on other requirements, including production requirements,
marketing, and investment strategies, collectively referred to as enterprise-wide design. In an

effort to bring design optimization into a more central position within the enterprise, and thus

increase its value and impact, there is increased effort in augmenting the engineering physics

models of performance with models from production, economics, investment science and

marketing.
The aerospace industry has been applying optimization in some form to multidisciplinary

design problems since its inception. Other industries, such as automotive, electronics and

computers, transportation and energy/power generation and distribution, followed.

2.3.2. Available MDO software tools

With increasing acceptance and utilization of MDO in industry, a number of independent

software vendors developed the software frameworks that facilitate integration of application

software, data, and user interface, along with various MDO- related problem- solving
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functionalities. A non-exhaustive list is provided of key ISVs that specialize in engineering
process integration and MDO (Tab. 2), as well as the traditional CAE and CAD vendors that
support some functionality toward design optimization (Tab. 3).

Product Comments

Enqineous Software JISIGHT pOriginated from GE, CR&D, MIT

Phoenix Integratior n'ModelCenter Originated from VPI

Technosoft AMLinated from USAF

Altair Computinq HyperOPT, OptiStruct Focused on structural design-]

EASi Enqineerin ST-ORM ]Originated from CASA Spain

ILMS International LMS OPTIMUS Automotive industry

Samtech BOSS/Quattro

Esteco modeFRONTIER Originated from EU project 1
Tab. 2: ISVs Specializing in MDO and Process Integration Applications

Product

MSC.Software .MSC.Nastran SOL 200

Anisys Inc ANSYS

HKS Inc ABAQUS/Design

LSTC jLS-OPT
ESI j PAM-OPT

Mecalog RADIOSS

Vanderplaats R&D

PTC

SDRC

Comments

By VMA Engineering

JDesign sensitivity analysis

Design sensitivity analysis

,'Response surfaces based optimization

'Numerical Optimization

Design sensitivity analysis

GENESIS

Pro/ENGINEER,
Pro/MECHANICA

1-DEAS

Tab. 3: Traditional CAD and CAR ISVs with Design Optimization Functionality

2.3.3. MDO as a tool to harness engineering complexity

In order to understand anything, you must not try to understand everything.

Aristotle
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The span of immediate memory imposes severe limitations on the amount of information

that we, as humans, are able to receive, process, and remember. It's now over forty years that

Miller published his study [36] where he reported, among his findings, that a magical number

7 (+/-2) is the maximum number of sensory inputs a person can handle without error. During

this time, it has been studied extensively by both psychologists and other sensory scientists and,
despite the extensive challenges, it still remains valid in its generic terms.

On the other hand, looking at the evolution of engineering systems, we can distinctively see

that, over time, our creative ability has resulted in their essential improvement. At the same

time, however, also complexity that arises from the systems' entangled interconnections has

increased, to such an extent that it now far outstrips our intuitive mental capacity for dealing

with it. As if product's complexity was not enough, modern communication systems provide

each of us overwhelming mountains of information, much of which is unorganized, not

relevant, redundant, or inaccurate; and thus, may well provide more confusion than clarity.

The engineering design process is recognized as a two-sided activity as illustrated in Fig. 28

[29] .

Qualitative effort stream

Question Question Question Question New vehicle
design

Answer Answer Answer Answer

Quantitative effort strearm

Fig. 28: Parallel, qualitative, and quantitative efforts in design

It has a qualitative side. dominated by human inventiveness, creativity, intuition and

synthesis capabilities. The other side is quantitative, concerned with generating numerical

answers to the questions that arise on the qualitative side. The process goes forward by a

continual question-answer iteration between the two sides.
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If at first it may appear that design optimization is a means to replace the engineer and his or
her expertise in the design loop, this is certainly not the case. In fact, any design optimization
application cannot infer what should be optimized, and what are the design variables - the
quantities or parameters that can be changed in order to achieve an optimum design. The MDO
methodology discards the "push button design" idea in favor of a realistic approach that
recognizes the role of human mind as the leading force in the design process and the role of
mathematics and computers as indispensable tools. This approach is consistent with the
creative characteristics of the human brain and the efficiency, discipline, and infallible memory
of the computer.

Depending on the complexity of the system, the MDO-based environment of the future can
be thought centered on one or a core team of senior Design Engineers that may rise at the role
of Product Managers. It hides the complexity of the product inside its coherent and quickly
adaptable structure presenting to the
users a simplified and yet comprehensive
picture of the product and of its
performances. To facilitate its use the v ac 'ou m tbeonsimr

a.film/di,, 3 cameaa
MDO process it's thought as interactive

and permitting the engineers to formulate OpTimizaton assists
its design problem in real time as the in rapid advance phase

opmmation - Human creativity 'shifts gears"
design issues become clear. Specifically, to next step
the MDO process should be flexible
enough so that the problem formulation, Fig. 29: Technology Progress Sigmoidal Staircase
applied constraints, and the fidelity level
of simulation can all be specified by the product team. An environment that offers visibility to
the process, permitting the team to monitor progress or track changes in the problems
dependent or independent variables will be beneficial. The environment could be distributed to
reflect the nature of today's design projects.

Whatever the hardware and software infrastructure may be, best results will come if
complemented by an effective team organization [37] . In fact, MDO will assist in the design
process while, all along, the control would remain squarely in the hands of the design team.
Any savings in terms of human resources could then be best used to create new solutions Fig.
29.

2.4. MDO enablers: the ICE Platform in a HPC environment

For the MDO approach to be successful, its processes will need to be executed in an
environment that supports:
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" The ability to easily access remote analysis tools as well as easily bringing together

multiple analysis tools into an integrated system analysis while hiding the details of data

management from the user. This includes linking data between different analysis

components on different platforms.

* Meta-computing consisting of a collection of high performance machines that can
provide the aggregate computing powers necessary for solving large-scale,
multidisciplinary optimization problems.

In the following Sections, we will analyze the fundamental reasons why these are key

enablers and current issues and future perspectives.

2.4.1. ICE: the solution to software interoperability

"There is little question that the interoperability problem is a significant one. It consumes

tremendous resources that could be more productively deployed elsewhere. It inhibits the

achievement of broad corporate and national goals. It jeopardizes quality and safety of

manufactured products by allowing error to persist in the design and production process." [38]

Many product development processes rely on a frequent exchange of information among

different stakeholders. Organizations pass information back and forth between internal
engineering and manufacturing groups, as well as with supply chain partners. However,
translating geometric models of complex products is an imperfect, error-prone process that

reduces the content and value of the information to the lowest common denominator. Repairing

or recreating product data can impose uncertainties, errors and delays in progress from concept

through manufacturing - delays that, in today's highly competitive marketplace, can mean the

difference between winning and losing business.
A 1999 study commissioned by NIST reported that the U.S. automotive sector alone

"wastes" one billion dollars per year due to design data incompatibility and the need to re-enter

the same data multiple times in different systems. For all sectors, estimates of $20 to $40

billion have been put forth [39] Studies have, for example, shown that in the most advanced

"all-digital" aircraft design efforts, engineers manually execute about one million data transfers

at a cost of many millions of dollars.
If data exchange is a cumbersome, time and cost consuming part of a relatively low

clockspeed development process, in a much faster clockspeed environment such as an MDO
one, the drawbacks are so exacerbated that they make design optimization impossible. The

information flow between the computational tools is an essential enabling factor when making
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use of an automatic optimization procedure. Any MDO approach must therefore be executed in

an Integrated Concurrent Engineering (ICE) hardware/software environment.

Generalizing, an environment may be called integrated if the tools that belong to this

environment are able to share and exchange information. In other words, several tools
compound an integrated environment if the results produced using one of them are suitable to

be used for some of the others.
To make such an integrated environment, a holistic analysis of the CAx/IT architecture must

be performed at the outset in order to enable the various tools to interoperate seamlessly. All
the steps of the analysis loop must be examined, all the inputs required by each step must be

listed and proper processes much be put in place to retrieve the required data from the previous

analysis steps and adequately transform and assemble them in a suitable format.

While this requirement may pose additional challenges to the MDO approach, it is a

mandatory requirement for it.

2.4.2. High Performance Computing

A simulation based design process almost invariably relies heavily on complex computer

analysis codes and simulations (e.g., FEA and CFD). These time-consuming and expensive

analyses are repeatedly invoked during optimization making the design exploration and

multidisciplinary design optimization time very long, if not prohibitive.

One solution to make the problem tractable is to use Approximation Models (also referred to

as Surrogate Models). These are, in essence, approximations of the output with simpler

functions. Since these approximate models are inexpensive to evaluate for a new set of data or

values assigned to design variables, we can afford to evaluate approximate responses many

more times without having to worry about the computational resources. Surrogate models,
however, have several shortcomings. They usually require, to be created, the execution of the

high fidelity models a considerably large number of times. In addition, the necessary

simplification that is implied in the surrogate models may cause misleading information to be

introduced in the optimization process. This is particularly true in case of highly non-linear

complex problems, such as shock waves in supersonic flow, resonances in lightly damped

structures, etc. As a result the entire MDO can be seriously compromised.

Whenever possible, the use of the high fidelity models is recommended. In this case, the

investigation of high dimensionality for optimization and the complexity and expense of the

underlying analyses require, for practical turnaround of MDO solutions, the use of High

Performance Computing, with servers with a large number of processors and multiple levels of

parallelism (coarse and fine grained parallelism) to deliver high throughput computing.

If this can represent a roadblock now, it will be mitigated and eventually removed as time

goes by. Over the past decades, in fact, we've observed a continuous and amazing progress in

the computing performance and the years to come are believed to see a similar progression.
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Hereafter, we present just some glimpses of computers evolution to hopefully show that MDO

has an open avenue ahead.

Gordon Moore, in 1965, just four years after the first planar integrated circuit was

discovered, observed an exponential growth in the number of transistors per integrated circuit

and predicted that this trend would continue. Moore's Law, the doubling of transistors every

couple of years, has been maintained since then, and still holds true today, Fig. 30 [40] .

Expectations are that it will continue at least through the end of this decade. This translates

roughly into a 1% performance increase every week.

On 11 July 1977 the
CRAY-IA, serial

number 3, was MOORE'S LAW bWIR ItarS*nR 2 Pr.WO. 1100040O,00

delivered. It could

execute over 80
megaflops. The system ... 10100000

cost was $8.86 million 4aO

($7.9 million plus $1
million for the disks). 100,000

The supercomputer
weighted 5.5 tons, e00o **00

arrived in two ,
refrigerated electronic 1970 175 1980 985 1990 199 2000 2005

vans, and needed
more than 30 Fig. 30: Moore's Law

construction
workers, engineers, and helpers to move it into the computer room.

It typically had 8MB of RAM and 2.5GM HD.

Only slightly more than 20 years later these performances were surpassed by a Pentium IV

laptop, for a cost of $1000 and a weight of 1. 5 kg.

The progress over the years has been really impressive. A view of performance escalation is

given in Fig. 31 [41] .
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(Entries for this table began in 1991.)
Year Computer Number of Measured Size of Size of Theoretical

Processors Gflop/s Problem 1/2 Perf Peak Gflop/s

2000 ASCI White-Pacific, iBM 7424 4938 430000 11136
SP Power 3

1999 ASCI Red Intel Pentium11 9632 2379 362880 75400 3207
Xeon core

1998 ASCI Bue-Pacific SST. 5808 2144 431344 3868
IBM SP 604E

1997 Intel ASCI Option Red 9152 1338 235000 63000 1830
(200 MHz Pentium Pro)

1996 Hitachi CP-PACS 2048 368.2 103680 30720 614
1995 Intel Paragon XPS M 6768 281.1 128600 25700 338
1994 Intel Paragon XPIS MP 6768 281.1 128600 25700 338
1993 Fujitsu NWT 140 124.5 31920 11950 236
1992 NEC SX-3/44 4 20.0 6144 832 22
1991 Fujitsu VP2600/10 1 4.0 1000 200 5

Fig. 31: Top Computers Over Time for the Highly-Parallel Linpack Benchmark

The DOE/IBM BlueGene/L beta-System is
today the fastest computer in the world, with its
record Linpack benchmark performance of 70.72
Tflop/s ("teraflops" or trillions of calculations per
second), Fig. 32. It is closely followed by the
Columbia system built by SGI and installed at the
NASA Ames Research Center clocked in at 51.87
Tflop/s. The Earth Simulator, with its Linpack

benchmark performance of 35.86 Tflop/s, had held
the No. 1 position for five consecutive editions of
the listing and is now shown as No. 3. [42] Fig. 32: Blue Gene/L

The largest planned Blue Gene/L machine,
which is scheduled for delivery to Lawrence
Livermore National Laboratory (LLNL) in California in early 2005, will occupy 64 full racks,
with a peak performance of 360 teraflops. The next generation of Blue Gene/L will scale to
over 1 petaflops and the third generation will span up to multiple petaflops (see Fig. 33, [43] ).
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Fig. 33: IBM Supercomputing Roadmap

Similar plans come from Cray Inc., one of the historical leaders in supercomputing [44]

The U.S. Government's Accelerated Strategic Computing Initiative ASCI program (a driving

force behind supercomputing advances for more than five years, has set the goal of achieving

petaflop-level supercomputer performance by the year 2010.

As a highly reliable, easily scalable and cost effective alternatives and relatively new to the

supercomputing realm of traditional supercomputers, cluster-based computers are also

emerging. Clustered computers are comprised of multiple computers that are linked together

via high-speed networks to form a single system. The collective system leverages its many

computer processors to achieve supercomputer speeds. Clusters work by the "divide and

conquer" philosophy. Complex computer calculations are divided into many parts. Individual

nodes of the cluster are each sent a different part of the problem to solve. Once a node crunches

its numbers, the results are combined with the answers provided by the other nodes to produce

an aggregate solution to a request.

Cluster computers just work with normal desktops equipped with Pentium processors.

Studies forecasts [45] that a Pentium 4, (which is now, in 2004, capable of few gigaflops), or its

equivalent should deliver:

2005: 40 gigaflops
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2010: 200 gigaflops
2013: 600 gigaflops

Several conventional processors might be harnessed even by a private individual to bring

computations into the teraflops realm by 2013.

A TeraFlop was once the Holy Grail of supercomputing. This milestone was first achieved

only in 1997 by Cray Computer at a cost of more than $80 Million. In 2001 there were only 12

computers in the whole world that ranked over 1 Teraflop and these systems cost on average
greater than $20M per teraflop. In 2003, after only 2 years, the cost per teraflop has plummeted

to less than $1M and will drop dramatically in the next years (Fig. 34, [43] ), so teraflop

computing is going to be soon low-cost.

Fig. 34: Evolution of FLOPs

This will enable new opportunities in MDO, because it will mitigate the trade-off between

model fidelity and breadth of design spaces searching which has been an important limiting

factor in the past.
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2.5. Examples of application of MDO as a design tool

The combination of simulation and optimization, essentially unheard of in practice a decade

ago, is much more accessible today, thanks in large part to the development of commercial

optimization software designed for use with existing simulation packages. The increasing levels

of high capability and cost effective HPC is contributing towards the widespread usage of high

fidelity simulation models and tools as well as newer methods and technologies within the

manufacturing industry.

In this Section, some recent examples of MDO practices in the automotive industry are

given, with reference to generic automotive applications first and then, specifically for exhaust

systems.
As a general comment, we note that the application of MDO techniques is not widespread

yet and it's generally not part of the mainstream development process. In addition, only few

disciplines are usually considered, two or three at most, and economics is not among them.

2.5.1. Automotive Industry

A Ford Experience: MDO of a

vehicle system for safety, NVH

(noise, vibration and harshness) and

weight [46J

The focus of this work is on an

automotive vehicle system design

optimization for safety and NVH. Asoptiizaton or sfetyandN-VH AsFig. 35: CAE model for Frontal Crash
far as safety is concerned, the following

conditions are evaluated:

* Frontal Crash.
The vehicle crashes into a rigid 90
degree fixed barrier with the speed

of 35 MPH (Fig. 35).
The key safety performance

measures in the full frontal crash

include occupant Head Injury

Criteria (HIC) and Chest G. Full

frontal crash is commonly used to

Fig. 36: CAE Model for 50% Offset Frontal Crash
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design and validate the vehicle front structures. Federal Motor Vehicle Safety Standards

208 (FMVSS) clearly specifies the safety regulations and test configuration. The regulation

states that the HIC and Chest G injury numbers have to be within 1000 and 60g. The

design targets for the full frontal impact in this study are not only to satisfy FMVSS 208

regulation but also to comply with corporate guideline. In this work, the occupant HIC and

Chest G numbers are targeted to be less than 450 and 45 respectively.

* 50% Frontal Offset Crash. The vehicle is set to crash into a 90-degree fixed rigid wall with

50% offset (Fig. 36). The impact velocity is 40 mph. The design target for toe board

intrusion is set to be less than 10 inches.

* Roof Crush. Vehicle roof crush is a

federal mandatory requirement

intended to enhance passenger

protection during a rollover event.

The test procedure is defined in

FMVSS 216. In roof crush

simulation, the ram normal speed is

set to be 7.5 MPH. As described in

the FMVSS 216, the force

generated by vehicle resistance

must be greater than 5,000 lbs. (22,240

N) or 1.5 times the vehicle weight, Fig. 37: CAE Model for Roof Crash

which ever is less, through 5 inches of

ram displacement (Fig. 37). In this study, the roof crush resistant force is set to be 6,000 lbs.

* Side Impact. For side

impact protection, the

vehicle design should

meet the requirements

for the National
Highway Traffic

Safety Administration

(NHTSA) side impact

procedure (Federal

Motor Vehicle Safety

Standards 214) or Fig. 38: CAE Model for Side Impact

European Enhanced

Vehicle-Safety Committee (EEVC) side impact procedure. The dummy performance is the

main concern in side impact, which includes head injury criterion (HIC), chest V*C's
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(viscous criterion) and rib deflections (upper, middle and lower). These dummy responses

must at least meet EEVC requirements (Fig. 38). Other concerns in side impact design are
the velocity of the B-Pillar at the middle point and the velocity of front door at B-Pillar. For

side impact, the increase of gage design variables tends to a get better dummy performance.
However, it also increases vehicle weight, which is undesirable. Therefore, a balance must
be sought between weight reduction and safety concerns. The objective is to reduce the
weight while satisfying safety constraints on the dummy. The dummy safety performance is
usually measured by EEVC side impact safety rating score. In the EEVC side impact safety
rating system, the safety rating score depends on four measurements of the dummy: HIC,
abdomen load, rib deflection or V*C, and pubic symphysis force.

0 NVH: The torsion frequency for the Body In Prime free-free normal mode is set to increase

by 5% from the baseline 26.5 to 27.8 Hz. The upper bounds for static torsion and static
bending displacements are chosen as 3.4 mm and 0.9 mm, respectively, i.e., 10%
improvement from the initial design.

Different models are used for different purposes so that the quality of the simulation results
is high and the cost is at minimum. The optimization problem is involving the "disciplines" of
NVH and Safety and it's set as follows:

Given the set of vehicle system design variables X, find X in order to minimize

of the Vehicle System Structure, while satisfying:

* NVH: Static torsion & bending displacements Frequency (Mode3) 26.65 <
Hz

* Crash

0

0
0
0

the Weight

(03 < 29.32

Characteristics:
Frontal Crash: Dummy HIC (Head Injury Criterion), Dummy Chest G,
Probability of severe injury
50% Frontal Offset Crash: Intrusion at several key locations
Roof Crush: Maximum resistance force
Side Impact: Displacements at several key locations, Viscous Criterion, Bounds
on the design variables, X and Z

In this MDO task, the NVH discipline has 19 local design variables while the safety
disciplines combined have 25 local design variables. In addition, 10-system design variables
are common to both the NVH and crash disciplines, that gives a total of 54 design variables,
which are primarily sizing (thickness) variables and spring stiffness.
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The above MDO problem is solved using a variation of the OMDAA (Optimization by a

Mix of Dissimilar Analysis and Approximations) method and a Sequential Quadratic

Programming optimizer is used to solve the numerical optimization.

A commercial Optimization package is used (ModelCenter) for integrating the different

tools/component (including spreadsheets).

System Attribute Baseline Target CYCLE I CYCLE 2
Solution Solution

NVH Frequency 26.5 27.8 < 3 < 29.3 27.8 27.9
- Mode3 (Hz)
Torsion disp 1 3.8 < 3.4 3.39 3.38
(mm)
Torsion disp2 -3.8 > -3.4 -3.41 -3.40
(mm)
Bending disp -0.97 > -0.9 -0.90 -0.90
(MM)

FRONTAL HIC 500 <450 378 426
CRASH Chest G 42 < 45 35.9 36.9

Ptotal (%) 10 < 10 6.8 7.5
OFFSET Intrusion I (in.) 11.2 < 10 8.9 9.0
CRASH Intrusion 2 (in.) 10.8 K 10 9.9 10.0

Intrusion 3 (in.) 10.9 < 10 9.6 9.5
Intrusion 4 (in.) 10.1 < 10 8.7 8.7
Intrusion 5 (in.) 10.5 <10 9.1 8,8

ROOF Resistance 34.7 > 27 35.2 32.8
CRUSH Force (kN)

SIDE VC 1 0.48 < 0.54 0.48 0.47
IMPACT VC 2 0.51 < 0.54 0.53 0.52

VC 2 0,54 < 0.54 0.55 0.54
Disp2 (mm) 26.3 < 27.2 25.9 25.8
Disp3 (mm) 27.2 < 27.2 26.7 26.6

SYSTEM Weight (kg) 1740.5 Minimize 1740.8 1739.1

Tab. 4: Safety & NVH MDO Results

The MDO problem results are

provided in Tab. 4 for 2 cycles of

the optimization process. The initial
design is an infeasible design with
NVH and Safety constraint
violations of over 10% from the
target. The final design is feasible
without any adverse impact on the

system objective, weight of the car

body. Fig. 39: Weight Vs. Offest Intrusion

Weight.vs. Offset Intr-2

c 20

17.5

.15

12.5

5

1720 1730 1740 1750 1760 1770 1780 1790 1800

Weight (kg)
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Since many different criteria are involved disciplinary trade-off information was drawn for

deciding how best to balance the various criteria to arrive at the most desirable design. Certain

trade-off analyses are performed for the system objective with respect to the active design

constraints and the results are used in constructing Pareto optimal curves and surfaces.

Fig. 39 shows the trade-off between

the vehicle weight and offset crash NVH Torsion Disp .vs. Offset Crash Intrusion-2

response - intrusion - that is an active

constraint in the MDO problem. The !2 3.8

dots represent the sample set of design 36

points using the Latin Hypercube 0
3,2

sampling method. Fig. 40 provides the

trade-off between the same offset crash 9 9.5 10 10.5 11 11.5 12

response - intrusion and an active Offset Crash Intrusion (in)

NVH response (torsion displacement).
Fig. 40: Torsion Displacement Vs. Offset Crash Intrusion

The MIDO problem with NVH and
multiple safety systems (frontal, offset, roof and

side impact) would require close to 3 years of

elapsed computing time on a single processor of

the type of an Origin 2000 server. On the Origin

3800 server, with 256 processors, these 3 years

of elapsed computing time is compressed to less

than 2 days using a combination of fine and

coarse grain modes of parallelism.

Aerodynamic optimization procedure at

Ferrari [47J

On a Ferrari 360 Modena (Fig. 41), Ferrari

tried for the first time the vehicle external

aerodynamics optimization which had, as

objective, to minimize the aerodynamic drag

while maximizing the downward force, taking a

series of constraints into account, mainly style

(max 3 cm displacement from the baseline

Fig. 41: The Ferrari 360 Modena

Oplimization
Loop

..~~~ ~ ~ ~ ............

Fig. 42: Scheme of the aerodinamic optimization
procedure
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styling shape) and technological (i.e. manufacturing feasibility).

Since the evaluation of the aerodynamic loads must be repeated many times, the

aerodynamic solver must be "inexpensive" as regards computational time, but yet sufficiently

accurate. The conventional code for the solution of the Navier-Stokes equations was then

discarded and a simplified modified "potential" method was worked out. The results from the

potential method were verified against experimental data and parameters were tuned for the

application.

One day of computational time was enough to achieve an improved design. A prototype has

been built and tested in the wind tunnel. The results are presented in Tab. 5 and show a

consistent improvement in the design performance.

Baseline Optimized Geometry

geometry

Cz 0.176 0.141

Cx 0.185 0.181

Fz (load variation @ 280 0 -28 kg (equivalent to a 0.16 x 1.5 m

km/h) wing)

Fx (load variation @ 280 0 -3.5 kg (equivalent to 3 hp more)

km/h)

Tab. 5: Validation Results: Wind Tunnel Experimental Data

What's worth noting is that, after the successful application of the MDO process on the 360

Modena, the aerodynamic optimization procedure has been introduced in the standard design

process of any new Ferrari car.

Performance-Cost Tradeoffs for Engine Manifold Surface

Finishing [481

In this work, the link between manufacturing process and

product performance is studied in order to construct analytical,
quantifiable criteria for the introduction of new engine

technologies and processes. Knowing, in fact, the trade-off

between the cost of the new process and the realizable profit

stemming from improved performance enables a proper business

decision.
The Abrasive Fluid Machining (AFM) technology for

finishing the inner surfaces of intake manifolds is studied. AFM

Type of manufacturing Process

Engine Simulation

Power, Torque and Fuel Efficiency

Ecoonmi ModeLing

Enterpntse Objective
Profit

Fig. 43: AFM Evaluation
Flowchart
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process employs a viscoelastic medium impregnated with grit to smooth inner surfaces of metal

parts. This process is very effective in reducing the roughness of cast-iron or cast-aluminum

components, such as inner surfaces of engine manifolds. Improved finish leads to better

performance through reduced flow losses and improved engine volumetric efficiency, i.e. better

filling of engine cylinders with fresh charge. An additional benefit is reduced variability

between cylinders and thus more accurate engine calibration.

The basic assumption is that choosing such a manufacturing process and increasing product

performance in turn impacts product's demand. The firm's profitability is then used as a

criterion for decision-making. Fig. 43 shows a flowchart depicting different analyses.

The engine used in this study is a V6 2.5L
Spark-Ignition (SI) engine with four valves per

cylinder. The air intake manifold directs the

flow of air from the throttle body to the intake

valves. The intake manifold selected for this

study is made of aluminum alloy. As shown in

Fig. 44, air flows into the manifold through a

single large orifice, and is then divided into

twelve "runners" that lead to the intake valves.

Measurements and statistical analyses were

done to characterize the surface finish and the

related roughness. Gt-Power, a 1-D fluid

dynamic code, was used to compute the engine

performances.
An initial sensitivity study is performed on

the effect of the AFM process to engine

performance. Design of experiments is used to

assess variation of power, torque and fuel

economy caused by variation of surface

roughness in the runners, plenums and orifice

of the manifold with and without AFM. To avoid

"0~ 31"l PUMrwv

Rut -

Ftrmsr

RO*"~0
RwivN!2~

"-""ow

ORfnPleum

r"#

Fig. 44: Sketch of the Air Intake used for AFM
Evaluation

or '
Runners Surface Roughness (pm) 82.6% 69.4%
Plenurns Surface Roughness (pm) 86.7% 76%
Orifice Surface Roughness (pm) 85.3% 85.8%

Power (hp) 2.03% 0.014%
Torque (ft-lb) 2.03% 0%
BSFC (Ib/hph) 0.29% 0%

Tab. 6: Effect of Surface Finish on Engine
Performances

computational burden, the sensitivity study is

performed with three input variables: roughness of all runners, roughness of plenums and

roughness of the orifice. Latin Hypercube sampling was used to generate a 20-point sample.

Tab. 6 shows performance enhancements gained by applying AFM technology. Both power

and torque have been improved by about two percent while BSFC improvements were

negligible; hence the focus of the analysis is on power.

A model, which translates the engineering trade-off(s) to a microeconomics or/and financial

optimization problem, has then been developed.
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Following Hazelrigg [49] , engineering decisions affect product performance attributes,
which in turn affect the demand of the product. In the specific case, the surface roughness
decision for the intake manifold of the engine influences horsepower, a product characteristic
observed by the consumer, and hence it would affect product demand. More precisely, it can be
shown that horsepower (HP) / vehicle weight (w) ratio is the relevant system attribute. The
demand is also affected by price. However, to focus on performance influence, we assume the
firm will keep the price constant.

Elasticity of demand q with respect of the increase in performance over vehicle weight

EHP = is then computed, relying on the work of Berry [50] . A change in quantity
W %AHPI

translates then to a change in revenue.
The average total cost of the AFM process is known and estimated at $5 per horsepower

gained per car.

Having modelled revenue and cost, profit can then be calculated, which will be used as the
criterion for decision-making.

The optimization problem is then set up as follows:

Maximize: Profit
with respect to: surface roughness

Under the assumption that no part dominates the engine performance, the surface roughness
at each manifold location is equally weighted. Therefore, the decision variable is the average
sand surface roughness for all runners, orifice and plenums. Upper and lower bound values for
power, torque, BSFC, and surface roughness are set.

The DIvided RECTangles (DIRECT) optimization algorithm is used. DIRECT can solve
mixed-integer nonlinear programming problems and locate global minima efficiently without
derivative information, when the number of variables is small, as in this case. DIRECT starts at
the center of the user supplied design space, divides it in rectangles and evaluates the objective
function at the centre points of these rectangles. Comat Car SUV
Based on the objective function value and the Profit ($) -204,647 313,551
characteristic dimension associated with each Roughness (pm) 125.21 6.96
rectangle, DIRECT selects which rectangles to Power (hp) 163.98 167.04

Torque (ft-lb) 137.8 140.3
further divide until it reaches the specified BSFC (lb/hp-h) 0.4897 0.4882
number of function evaluations. This ensures
that the .entire space is searched in sufficient Fig. 45: AFM MDO Analysis Results
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granularity in order to explore more promising areas in more detail.

The optimization problem is solved for the two extremes in an automotive manufacturer's
fleet: compact car and sport utility vehicle. Profit margins per unit (PMU), namely selling price
per unit minus average total cost per unit, are given in Fig. 45.

The decision model suggests application of the AFM process only in the SUV segment as
opposed to both. This is the interpretation of the results recommending 90% surface roughness

reduction for the SUV engine manifold and a negligible reduction for the compact car

manifold. This result is no surprise. Although demand for acceleration is higher for compact

cars the current profit margin level does not motivate the firm to innovate. In case of the SUV
segment, the firm will offset the increased average total cost with higher profits.

In this case, MDO has been used as a decision support tool.

2.5.2. Exhaust System Related Applications

Examples of MDO can be also found with relation to exhaust system design. Three of the

most recent and interesting ones are presented below.

Multidisciplinary optimization of the aero-acoustics and of the structural dynamic

characteristics of an exhaust system [51]

In this work, a method and an
5

integrated virtual design system enabling 4

multidisciplinary optimization of the 2

aero-acoustic characteristics, the

backpressure characteristics and the

structural dynamic response of exhaust
systems for a five cylinders, four-stroke Fig. 46: The Exhaust System Model

engine, Fig. 46, is performed.

The two numerical disciplines used are the FEM for structural dynamic analysis and

Computational Fluid Dynamics for the aero-acoustic analysis and pressure analysis. The FEM

code MSC.Nastran and the CFD code Wave by Ricardo are used for the analyses, I-DEAS is

used for the modelling and iSIGHT for the optimization tasks.

The engine torque fluctuation under driving conditions excite some of the exhaust system

eigenmodes to resonances and the generated forces excite the car body where the exhaust
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system is suspended. This

could influence the ride

comfort of the vehicle through

imposing undesirable

vibrations. The focus here is in

improving the ride comfort by
minimizing the vibrations at

certain positions in the car

body. The FEA strategy is to

perform a normal modes

extraction and afterwards a

modal frequency response

analysis.

The acoustic characteristics
of the exhaust system are also

of great importance as the

sound pressure level generated

from a car is regulated through
laws and low noise is a
competitive factor in the

automotive industry today.

Another important factor in
exhaust system design is the
backpressure, which is the
static pressure exerted by the

exhaust system on the engine

and should generally be kept

as low as possible. Wave uses

a 1-D flow assumption and
simulates the dynamics of

pressure waves, mass flow and
energy losses in ducts,
offering CPU cost savings
compared to 3-D codes.
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used as the base for work in all disciplines. The solid geometry is described by geometric
design variables. When those are changed, the simulation models are updated automatically.
Special developments have been made to automate the steps and the data transfer in the
optimization loop. The width, height and length of the first and second muffler and the position
of the four suspension points are chosen as design variables.

In this work the Modified Method of Feasible Directions (MMFD) is used as the
optimization algorithm. The algorithm uses gradients and handles non-linear problems.

The objective is to minimize the dynamical forces at the suspension points, given a certain
sound pressure level at the exhaust system tailpipe. As the exhaust system has to be fitted to the
car body, there exist several constraints on the geometrical design variables.

A selected set of results of the optimization (acceleration levels at two suspension points) is
presented in Fig. 47. The solid lines represent the baseline, while the dashed ones represent the

optimized levels.
The optimized geometry has smaller muffler volumes and the second suspension point is

moved away from the centre line of the exhaust system. The result is that the dynamical forces
decreased in all suspension points except in one.

Acoustic Optimization of Exhaust Systems - the experience of ArvinMeritor [52]

As a first tier supplier to the automotive industry, ArvinMeritor is exposed to the continued

drive to shorten development times for new vehicles. Representative engines and vehicles may

not become available until late in the project leaving less time for the traditional build and test

development cycle. To support the shorter development times there has been a move to make

extensive use of CAE predictive tools.
Tools are developed to simultaneously design for tail pipe noise, system backpressure,

system weight and sound quality. Two cases are presented.

Muffler Design.
When optimizing a muffler design

there are many design features that
may be modified, such as pipe
diameters, internal baffle locations,
the perforation characteristics, the
presence or absence of absorption
material and so on, Fig. 48.

For the case study project, the

II ~ I

K (i2~
Fig. 48: Sketch of Muffler Internals
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objective was to optimize a baseline muffler design attenuating an intrusive idle noise
resonance (16th to 21st order for an 14 petrol engine). A target noise reduction was set based on
an objective of achieving an improvement at 200 Hz of around +15 dB. This target level was
arrived at following a subjective noise assessment of an artificially filtered idle noise recording
where it was found that a 10 dB improvement in the idle noise resonance would be acceptable.

The acoustic modelling software that was used to predict the acoustic performance for each
muffler was LAMPS. A software, named QED (Quick Exhaust Design) was developed by
ArvinMeritor to perform optimum search computations. This software is able to automatically
write and solve the acoustic models by interfacing with LAMPS. Controls were put in place to
maintain backpressure and muffler volumes at the baseline level.

Optimization is achieved via genetic algorithms. Designs are solved in batches (generations)
then compared against some fitness function. Each population contains a fixed population size,
which can vary from as few as twelve up to hundreds. The fitter designs may proceed to the
next generation but weaker designs do not. Consequently, the average population fitness tends
to increase from one generation to the next.

The design generated by the QED software was calculated overnight running on four PCs in
parallel solving some 120,000 LAMPS simulations in total.

Q.

813
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.nFeonance litt: 21-st Orders

-- ED Opfim1ion
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Fig. 49: Tailpipe Noise Results: baseline and optimized muffler
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The muffler coming out of the optimization process was then built and tested on the vehicle
to measure idle noise and wide-open throttle accelerations. The results from the idle noise test
are shown in Fig. 49. The problem resonance (16th to 21st orders) is clearly visible in the
baseline system. The optimized design is around 15 dB lower in the resonant order range, and a
subjective assessment of the idle noise concluded that it was now acceptable.

Manifold Optimization Tuning
The subject of this optimization case is tuning a 4-into-i exhaust manifold on an 14 petrol

engine to obtain a sporty sound. For a smooth, even, power delivery from all cylinders, the
primary pipes of an exhaust system are usually designed to have the same length. This produces
an exhaust note dominated by 2 nd 4th and 6th orders often called the even orders. For a sporty
sound it has been shown to be necessary to increase the proportion of 3.5 and 4.5 orders. The
goal set for this optimization was therefore to minimize the difference between second order
versus 3.5 order and second order versus 4.5 order. For this analysis, the four primary pipe
diameters and lengths were allowed to vary independently across the limits of bore = 28 mm to
60 mm and length = 230 mm to 470 mm.

These eight parameters were built into a test array and the different manifold configurations
analyzed in WAVE using a Design of Experiments (DoE) technique. The 8 dimensional DoE
matrix was created using the Latin Hyper Cube across 300 test points. This resulted in 300
manifold designs with a random distribution across the design space. Each manifold was solved
in WAVE at three engine speeds
the test array took 45 hours of
processing time. The data
obtained were used to generate
a Response Surface Model
(RSM) to be used in the
subsequent optimization phase

Following the building of
the RSM, a search for an
optimum arrangement within
the design space, which best
suits some target function is
made. The project objective
was to increase the 3.5 engine
order (3.5E) relative to 2nd

engine order (2E). The
optimization function was

of 1600, 3600 and 5600 rpm (wide-open throttle). To solve
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Fig. 50: 2nd-3.5 Engine Order Sound Pressure Level difference:
baseline and optimized manifold

weighted heavily towards the 1600 and 3600 rpm since flow noise can mask the contribution
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from engine orders at high engine speeds (wide-

open throttle). The commercial code OPTIMUS
was used to perform the optimization using a hill

descent search strategy.
The comparison of the tg_35E function

predicted by WAVE for the baseline and

optimized designs is presented in Fig. 50. The

baseline model shows a 60-65 dB difference

between 2E and 3.5E since the equal primary

length are extremely effective at suppressing half

order noise. However, the optimized manifold

order balance shown in Fig. 50 demonstrates some Fig. 51: Optimized Manifold Layout for

30-40 dB improvement when compared against Sporty Sound

the baseline.
The manifold geometry for the optimized design is illustrated in Fig. 51. No restraint was

placed on the engine power or the balance of power between cylinders since the objective of

this analysis was to maximize sporty sound only.

The output from WAVE is a time domain pressure pulsation, which has then been converted

into a sound file for subjective appraisal. The difference between the baseline and optimized

designs is immediately obvious when listening to the sound files, with the sporty manifold

having a definite rumble or uneven nature, which conveys a powerful or sporty character to the

exhaust note.

Exhaust Manifold optimization for engine power and catalyst inlet temperature [531

Car engines today are required not only

to have more engine power, but also to be

more environmentally friendly. Exhaust Juncn

gas should be kept at high temperature in
#1 #21 #3 #4

the exhaust pipe especially at low rpm hncn

conditions because the catalyst located at

the end of the exhaust pipe will absorb

more pollutant in high temperature

conditions. Exhaust gas should also be led

from the piston chambers to the exhaust

manifold smoothly to maximize the

engine power* especially at high rpm Fig. 52: The initial manifold shape and design variables
conditions.

as junction positions on pipe centerlines
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In this work, the high power engine of a

sports car is considered for multi-objective
optimization to increase the engine power
as well as to reduce the environmental

impact. The objective functions considered

here are to maximize the gas temperature at

the end of the exhaust pipe at 1,500 rpm

and to maximize the charging efficiency at

6,000 rpm, where the charging efficiency

indicates the engine power.
The initial manifold shape is taken from

an existing engine with four pistons as

shown in Fig. 52. Topology of the merging

configuration is kept unchanged.

The pipe shape travelling from the port #2 to tl

outlet is also fixed. Three merging points on tl

pipe centerlines, junctions #1-3, are considered ;

design variables. Pipe centerlines of #1, 3 and 4

shapes to meet the designed merging points.

This method allows the automated grid
generation for arbitrary merging -
configuration defined by the pipe >-.

centerlines.
A Genetic Algorithm was used as the I

optimization algorithm.
This study considered two design cases.

The first case assumes a constant pipe

radius for all pipes; therefore only three
merging points are to be designed. In this

case, the population size was set to 32 and ?0
the evolution was advanced for 25
generations. In the second case, the pipe radii of
the entire exhaust manifold are considered a
design variable because the pipe radius is known
important for the performance of the exhaust
manifold from experiences in industry. The pipe

90-
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Fig. 53: Solutions plotted in the objective
function space; Case 1, merging points

optimization

then deformed similarly from the initial
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g. 54: Solutions plotted in the objective function
space; Case 2, merging points and pipe radius

optimization

radius will change from 83% to 122% of the
original radius. In the second case, three merging points and the pipe radius are to be designed
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simultaneously. In this case, the population size was set to 64. The evolution was advanced for
29 generations.

In Case 1, Pareto solutions were found as shown in Fig. 53. Many solutions achieve much
higher charging efficiency than the initial geometry. These results suggest that the merging
points are effective design variables to improve in the charging efficiency that indicates the
engine power. However, the improvement in the temperature remained marginal.

In Case 2, Pareto solutions were found as shown in Fig. 54. Improvements in both objective
functions were achieved. The Pareto front also confirms the trade-off between the two
objectives. This result suggests that the pipe radius is effective to maximize the temperature at
the end of the exhaust manifold.
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3. BUILDING THE ENHANCED DEVELOPMENT FRAMEWORK

3.1. Introduction

To prove the effectiveness of the product development computerization featuring multi-
disciplinary analysis, we built a prototype of an EDF. After a testing phase of the tool, we
simulated to be in an OEM setting and be charged to develop a maniverter for a specific
application, recording the performances of the tool in terms of development lead-time and
product attributes levels.

We chose, for this demonstrator, a real application that ArvinMeritor was asked to develop
in 2001 by Fiat and that, for several reasons, technical and commercial, ArvinMeritor did not

have the opportunity to bring to market: a maniverter for the Fiat Fire 1.4 16V engine. After
three years of development, the project was actually stopped in 2004.

The three years development, the many solutions tried and the different issues emerged

during the project are assumed as a representative sample of what could happen in the course of

a development project. If we the EDF available for development at that time, would the project

have evolved differently?

This chapter starts with the illustration of the maniverter as a system and of its design

requirements. Then, after a brief description of the Fiat Fire 1.4 16V engine, overview of the

Enhancement Development Framework is made. The architecture is presented first and each of

the modules is examined in detail afterwards. The Chapter continues with the implementation

of the architecture, where how the different modules are assembled in a coordinated whole is

shown. At last the capabilities of the framework and the post-processing techniques of its

output for decision-making purposes are described.

The tests of the tool and the actual results are, on the other hand, a subject of Chapter 4.

3.2. Application: the IC engine exhaust system maniverter

3.2.1. Background

Any Internal Combustion (IC) engine is equipped with an exhaust system. A typical

example is shown in Fig. 55.
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Fig. 55: An Example of a Full Exhaust System

The exhaust system carries exhaust gases from the engine's combustion chamber to the

atmosphere. Exhaust gases leave the engine in a pipework, travelling through an after-treatment
sub-system, which often consists of a catalytic converter, and then through a silencing sub-
system before exiting through the tailpipe. Chemical reactions inside the catalytic converter

change most of the hazardous hydrocarbons and carbon monoxide produced by the engine into
water vapour and carbon dioxide, while the muffler attenuates the noise produced by the

engine.
The conventional muffler is an enclosed metal tube packed with sound-deadening material.

Most conventional mufflers are round or oval-shaped with an inlet and outlet pipe at either end.
Some contain partitions to help reduce engine noise futher.

The exhaust manifold, in particular, is the first stage of the exhaust system. It conducts the

exhaust gases from the combustion chambers to the exhaust pipe. Some exhaust manifolds are
made from cast iron or nodular iron, while others are made from stainless steel or heavy-gauge
steel. In this work, we will assume that the manifold is made from stainless steel, which is the
technology that ArvinMeritor masters.

The exhaust manifold contains an piperun for each exhaust port in the cylinder head, and a
flat machined surface on this manifold fits against a mating surface on the exhaust port area in

the cylinder head.
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Some exhaust manifolds have a gasket between the manifold and the cylinder head.

The exhaust passages from each port in the manifold join into a common single passage

before they reach the manifold flange. An exhaust pipe is connected to the exhaust manifold

flange. [54]
Sometimes, a catalytic converter is moved upstream from

the traditional underfloor position and is placed just after the

point where pipes coming out of the engine ports join. This

particular position is selected in order to achieve a reduction

in the converter warm up time after the engine is cranked-up

and consequently to speed-up the start of pollutant conversion.

In this case, quite often the term "maniverter"

(manifold+converter) is used (for an example, see Fig. 56.

The design of an exhaust system maniverter is the result of

a complex trade-off among different and equally important

requirements:

Fig. 56: An Example of a
" Exhaust gases should be kept at a high temperature in MAniveler

the exhaust pipework especially at low rpm conditions

when engine starts because, in higher temperature conditions, the catalyst will "light-

off", i.e. start converting pollutants, earlier

" For a non-sporty application, such as the one in study, the engine torque curve should

be as even as possible, reaching the maximum value at the lowest rpm and maintaining

it as long as possible throughout the working rpm range.

* The engine should have the highest possible torque level and, consequently, power for a

given rpm. This translates in two requirements for the maniverter: the pressure drop of

the gas through the ductwork should be minimized and the manifold should be "tuned".

Tuning is achieved when the manifold pipework is such that the pressure waves that

originate at the exhaust valves, after propagating through it, are reflected back and come

at the exhaust valves as a depression, aiding the scavenging of the engine and therefore

increasing the power. Tuning is particularly effective for a naturally aspirated engine

and it's often possible only at a certain rpm.

* The manifold should be designed in order for the sound emitted at the tailpipe to have a

characteristic "color". This is particularly important for sporty vehicles, which are

required to exhibit a characteristic rumble.

* Manifold system natural frequencies should not lie in the excitation frequency range of

engine vibrations. If that happened, in fact, the manifold could resonate and generate
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unpleasant noise. With time, vibrations would transform in fatigue failure. For a 4-

cylinder 4-stroke engine, it can be shown that the forcing vibration frequency in Hz is

given by rpm/30 (the so-called second-order frequency).

" In any case, the manifold structure should maintain a sufficient stiffness to avoid

localized resonances and, consequently, unacceptable radiated noise

* Thermal stresses arising from the thermal expansion that occurs when the manifold

heats-up should be kept lower than the yield stress of the material, otherwise the plastic

strain that occurs when the manifold expands will soon degenerate in a crack.

* Similarly, stresses generated from the vibrations induced by the engine should be below

the fatigue limit of the material at the temperature working conditions, otherwise a

fatigue failure is expected.

" The exhaust system manifold should be fitted in the available space in the engine

compartment and sufficient clearance for assembly tooling access in the production

plant should be ensured.

* The manifold surface temperature and distance from the surrounding components

should be such that the latter, particularly those components made by plastics or rubber,
are not exposed to a temperature that exceeds the maximum working limit allowed by
material properties

* The manifold mass should be as low as possible to enhance the fuel consumption

characteristics of the vehicle, its driveability and CO 2 emission

* Manifold pipework should be designed to allow the gas stream to impinge on the

surface of the converter with a flow velocity distribution as even as possible to improve

emissions reduction and moreover, to ensure a longer converter life
* Similarly, flow velocity of the impinging gas should not exceed a certain threshold level

above which the converter damages
" The manifold geometry (pipework, catalyst inlet and outlet cones, etc) has to satisfy the

requirements of manufacturability and assemblability with the available equipment of

both the OEM and of the supply chain firms.
" Last but not least, manifold cost should allow the exhaust system manufacturer having a

competitive price in the marketplace, while preserving or enhancing its product

margins.

Each of those requirements put particular strain on the design and may drive different design

solutions. The interaction between the effects on the performance attributes of the different

design choices is not, generally speaking, evident and experience is usually the only valid guide

for a cost-effective successful design.
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The following table lists the several different disciplines' that are involved in the design of a

maniverter and the engineering issues they manage:

Tab. 7: Maniverter Engineering Issues and related Disciplines

In the common practice the Program Manager handles the different issues separately with

each department and tries to find the right compromise between the different needs.

3.2.2. Fiat Fire 1.4 16V engine

In the present work we will assume that the maniverter is tailored to a specific application

and engine: the Fiat Fire 1.4 16V. However, results are generalizable to any 4-cylinder engine.

In this Section, few descriptive information about the engine are presented.

The Fire engine, which started to equip Fiat vehicles (Punto, Stilo and others) in 2003, offers

a cylinder capacity of 1368 cc and a 4 cylinder in line configuration with a bore of 72

millimetres and stroke of 84 mm. The four valves per cylinder are driven directly by two

overhead camshafts, Fig. 57.
The power unit was developed with particular attention to performance and fuel

consumption. Volumetric efficiency has been optimised throughout the service range due to

painstaking fluid dynamic development studies on the entire intake and timing system. The

1 An engineering discipline is a branch of the engineering knowledge. To be qualified as a discipline, though, it

must possess the following six basic characteristics: a focus of study, a world view or paradigm, a set of reference

disciplines used to establish the discipline, principles and practices associated with the discipline, an active

research or theory development agenda, the deployment of education and promotion of professionalism. [55]
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result is a power output of 70 kW (95 bhp) at 5800 rpm and a maximum torque of 13.0 kgm at

4500 rpm.

Manufacturer: Fiat
Type: S-4
Wet sum ped
DOHC
16 valves total
4 valves per cylinder
Bore x stroke: 72.00mm x 84.00mm
Bore / stroke ratio: 0.86
Displacement: 1368 cc 83.48 cu in
Compression: 11.00:1
Fuel system: MPFi
Aspiration: Normal
Catalytic Converter: Y
Max. output 94.3 PS (93.0 bhp) (69.4 kW)@5800
rpm
Max. torque: 128.0 Nm (94 lbft) (13.1 kgm)@4500
rpm
Coolant: Water
Specific output: 68 bhp/litre

Fig. 57: The Fiat Fire 1.4 Engine

This performance is obtained also thanks to an electronic throttle valve control system

known as a drive by wire system. The 95 bhp 1.4 unit uses new engine control unit

management software. This torque-based system represents the cutting edge in its field. Its

strength lies in being able to manage all actions through a single co-ordinator block that

operates according to one basic parameter, i.e. the driver's torque requirements expressed

through the accelerator. When translated into a physical torque value, these demands (including

the demands of external systems such as the ABS) may be coordinated even before the main

engine control parameters have been converted (advance, throttle position, injection time etc.)

with the huge benefit of meeting needs with extraordinary accuracy and within a very short

time period. Not to mention the fact that this system exploits a single standard of

communication between the various systems and functions that all speak the lingua franca of

drive torque. This allows a higher level of handling than with current systems while also

reducing polluting emissions levels. The system also guarantees maximum integration with all

the other devices such as ESP and Cruise Control.

Another specific feature of the new 95 bhp 1.4 16v Fire is the increase in compression ratio

and the high torque values at low speeds, qualities that have allowed fuel consumption to be

kept low. This aim is also achieved through the tuning of the cutting edge engine control

system that succeeds in cutting fuel consumption as far as possible while still maintaining

handling, performance and low emissions. As far as emissions are concerned, the 95 bhp 1.4
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16v already meets Euro 4 legislative requirements. This is due to a catalytic converter located
in the engine compartment (and welded to the exhaust emission manifold flange) that reaches
high temperatures within a shorter time period and thus reduces emissions even while the
engine is warming up. To minimise the environmental effect, the new engine is also equipped
with a returnless fuel system that eliminates fuel recirculation within the tank and thus reduces
vapour formation.

High-performing, thrifty and clean: the 95 bhp 1.4 16v Fire unit backs these qualities with
outstanding acoustic comfort. Firstly, a barycentric power unit mounting system has been
adopted to achieve reaction forces with zero offset and thus minimise the transfer of engine
vibrations to the body. The acoustic comfort offered by the new engine is also enhanced by:

" An aluminium crankcase base with cast iron main bearing caps cast together;

* The development of an aluminium oil sump that is connected directly to the crankcase
base and gearbox to increase the flexural and torsional rigidity of the entire power unit
and thus reduce vibrations;

* The use of a damper with setting specially adjusted to damp vibrations with torsional
resonance in the crankcase and flywheel system;

" Lastly, the adoption of an optimised piston skirt profile on which is deposited (screen-
printed) a molybdenum bisulphate coating that allows piston/liner mating clearances to
be pared to the minimum possible during production. This reduces noise produced by
secondary movement of the piston in the cylinder (piston slap).

3.3. Hardware / Software Platform for ICE environment

Decision has been made to built the ICE platform on a laptop with Pentium 4 Processor,
1GB RAM and 15GB HD with Microsoft Windows 2000 Professional SP4. Several are the
reasons for this choice. Among the most important are:

" Today a Pentium processor supplies enough computing power for many applications,
even for CAD or CAE packages, traditionally run on powerful Unix workstations

" A laptop enhances mobility and communication

3.4. Scope Definition

Compared with other MDO approaches, our work brings some novelty because it has the

aim to create a tool intended to be used not by specialist, but by design engineers in mainstream
development.
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A tool for manifolds development, ideally, should include all the design aspects illustrated in

3.2.1. That's why we strived to include as many aspects we could. Indeed, we carefully scoped

the activity in order to create a framework which is adequately representative of the real

environment but whose complexity is not so high to impede any progress. For that purpose, we

excluded aspects that were either of minor importance, or for which explicit knowledge did not

exist within ArvinMeritor or that would require the use of too computationally intensive

calculations incompatible with the selected hardware platform. In addition, a deliberate

decision was made to use commercially available software.

Details of the design aspect included and excluded in the prototype EDF are presented in

Tab. 8.

Torque evenness 1-D Fluid Dynamic code (AVL BOOST)

Max torque

orIncluded Motivation for exclusion (if excluded)
software used (if included)

Design aspect

Catalyst Inlet temperature..-D Fluid Dynamic code (AVL BOOST)

-Th
1-D Fluid Dynamic code (AVL BOOST)

1-D Fluid Dynamic code (AVL BOOST)Min Backpressure

Tuning 1-D Fluid Dynamic code (AVL BOOST)

irst natural frequency Fiite Element Code (MSC.Nastran) -

Fit in the available space CAD package (Unigraphics NX2)

Thermal induced-stresses 1 x }Computationally too expensive

Computationally too expensiveVibration induced-stresses

Temperature of surrounding components x Secondary aspect

Mass CAD package (Unigraphics NX2)

Computationally too expensive

x [Computationally too expensive

X Usually based on experience. No software [
model available.

x i Secondary aspect

I x Secondary aspect

Flow distribution on the converter

surface

Max flow velocity in the converter

Manufcturability and assemblability

Sound quality

Radiated noise

Cost Spreadsheet (Microsoft Excel)

Tab. 8: Design Aspects Included and Excluded in the Prototype EDF
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3.5. Architecture Definition

A model is a symbolic device built to simulate and predict aspects of behavior of a system.

Having identified the

design aspects that we wanted

to include and the individual

disciplines softwares that are

able to handle them, the next

step was defining:

* How to insert them in a
platform designed for

automatic execution
* How they would interface

with each other

* How the user would

interact with the platform.

This set
choices was
the selection

of architectural
partly driven by
of the code that

Optimizer

Geometry 11 Structural
Module module

Geometry 
Mnte

Handlernrfe

Fig. 58: Overview of the ICE platform Architecture:

4) data flow, / client-server relationship

forms the glue of the different disciplines packages, tying them together in a coordinated

whole: the optimizer, Fig. 58. As mentioned in 1.3.2, iSIGHT from Engineous Software Inc.

was selected for this role.

A detailed description of the EDF architecture will be given in 3.10, however we would like

to outline here the essential features of the underlying ICE platform.

Through iSIGHT, a process flow of the different tasks (that correspond, in Fig. 58, with

individual modules) is made, somewhat replicating the process in a normal product

development environment: for example a CAD model is generated first and the structural

modes analysis is performed afterwards.

Each task, generally speaking, requires an input and provides an output. Input and output are

exchanged between the optimizer and the individual packages in the form of ASCII text files.

Very little coupling exists between one module and the other.

From the data exchange standpoint, the platform architecture is therefore of a bus type,
where the data bus is provided by the optimizer, Fig. 58.

The user interacts only with the optimizer.
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From the execution standpoint, tasks are
illustrated in Fig. 59. The user specifies the
application (i.e. engine type and overall
constraints) and the targets for the system
performance attributes.

The product development definition starts
with a selection of a baseline geometrical
configuration and through the series of
analysis the desired performance attributes are

calculated. At the end of the analyses, the
calculated attributes are compared with the

target. If on target, the process ends, otherwise
a new product definition is generated which

has the potential of having performances
closer to the specified target.

The loop features no iterations between the
different modules because all Performance
Modules depend on the Geometry Module, as
evident from the dependency matrix shown in
Fig. 60. This characteristic would enable also,
in principle, parallel execution of the different
Performance Modules.

executed in a pre-determined sequence, as

User Spec Applicat'on and targets

Geometry Parameters

Geometry Module

Structural Module

cost Module

Fluid Dynamic Module

Performance Attributes

No
According tuser specified targets?

( EndYe

Fig. 59: Flowchart of the design loop execution

Task Name Level 1 2 4

Geometry Module 1 1
Structural Module 2 2 1 2

Cost Module 2 3 1 3
Fluid Dynamic Module 2 141 - 4

Fig. 60: Dependency matrix of different ICE modules

Two are the key elements that make this process possible:

* Optimization and simulation algorithms which build the correlation between design
variables and performance attributes

* A product which is defined by a set of design variables
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These are the essential features of the framework. The rest of the chapter is devoted to the
description of the individual modules first and then to a detailed illustration of their integration.

As an introductory comment, we note that individual software packages, in general, are
purposely designed for user interaction. Since we had to automate all the processes running all
the calculations in batch mode, some customized development proved necessary. Each model,
except for the cost model, an Excel spreadsheet for which iSIGHT has a direct interface, is
composed of two parts: the model itself and the interface that handles the model and enables
the batch execution, Fig. 58. It's the latter which interacts with directly with iSIGHT.

3.6. The Geometry Module

The Geometry Module is indeed the foundation of the ICE platform. All the analyses are

based, in fact, on a unique product definition.
After a product conceptualization phase where appropriate simplifying assumptions are

made to downsize design complexity to a manageable level, a parametric model is built which

is able to represent a variety of maniverter configurations with a handful of parameters, the
design variables.

A decision was made to utilize a commercial CAD package among the market leaders and,
specifically, Unigraphics NX2 from UGS PLM Solutions. Special software was developed to

handle the geometry regeneration in batch given a set of parameters and to extract some

required data from the model.
This Section, after an introductory part on the status of the CAD technology and a digression

on parametric modelling and on some of the relevant features of Unigraphics instrumental for

the activity, describes in detail the product conceptualization, the parametric model and the

geometry handler code for batch execution.

3.6.1. The Computer Aided Design

The inception of the CAD (Computer Aided Design) methods dates back to 1960 [56]
however, after a decade of ferment, it's only in the 70s that they started to grow in popularity.

Companies started to adopt CAD systems during the 80s and in the 90s the industry definitively

took ofe.
After some decades, the use of CAD systems for geometrical modelling representation is

mature and well established [57] . No dominant CAD standard exists and few players share the

marketplace while many others have perished along the way.

2 For a synthetic and yet well written history of CAD, consult

http://accad.osuedu/-vavnec/historv/lesson10. html
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Fig. 61: CAD Functionalities

CAD capabilities have been increasing over time and span all the design activities, Fig. 61.

In the Concept Design and Preliminary Design, the flexibility of CAD tools allow

inexpensively hying down different solutions that could be subsequently analyzed to quickly

get an estimation of the performances of the object. In the Detail Design phase, CAD models

are refined to include manufacturability requirements and to allow more accurate analyses.

CAD includes the possibility to link the 3D models of the parts to a Bill Of Material (BOM),
thus favoring the interchange of information with the costing and manufacturing engineers.

CAD models can then be transformed into CAM (Computer Aided Manufacturing) models for

the final realization of physical prototypes and to verify the assembly in the production plant.

The use of CAD tools allows to reduce the number of physical parts that are built and

consequently to reduce the leadtime and cost.

All CAD packages offer an intuitive Graphical User Interface (GUI) which improves the

learning curve. However, despite continuous efforts to make them easier to use, CAD programs

remain complex (and, some argue they are getting even more complex thanks to the also never-

ending effort to add new features and ship new releases). In addition, quite often the ease of

obtaining sensible geometries progressively disables the critical judgement of the designer on

the goodness of the result.
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3.6.2. Essential CAD capabilities: parametric / associative modelling and API

If CAD is nowadays an assessed tool of the modem industrial and research environment, the

ways of using it can be profoundly different. One fundamental difference is between parametric

and non-parametric - sometimes called explicit - modelling.
In parametric modelling, the dimensions of geometric entities are defined by parameters, i.e.

numerical values or expressions. A particular instance of the geometry is obtained by
specifying the values of the parameters. The user can change interactively parameter values and

the CAD system will perform the geometry update following the geometry relationships

defined during the model creation phase.

In an explicit model, vice versa, the dimensions of geometric entities are set when the entity

is created and cannot be changed afterwards. The only alternative to change the entity is to

actually delete it and to regenerate it with the new dimensions.

Parametric modelling offers superior flexibility; however, it is by and large more time-

consuming than explicit modelling. The structure of the parametric model and the degrees of

freedom of the geometry as well relationships among the parameters must be thought of at the

outset. The complexity of their interrelation can soon become overwhelming. If product

changes are expected to be only minor or infrequent, it may be more convenient to redo part of

the model instead of building a delicate and complicated parametric model. Explicit modelling

is, in fact, usually quicker and easier, and the skill set required by the CAD operator is usually

of a lower profile.
Parametric and explicit modelling are not two separate worlds. Hybrid models can also be

possible, with one part modelled parametrically and the other explicitly. Moreover, a

parametric model could be easily transformed automatically in its explicit version. The

backward way, i.e. from an explicit to a parametric model, is, on the contrary, not viable, if not

for oversimplified shapes.
Parametric modelling is intimately linked to the concept of associativity. One element is

associated to another if changes in the first element are automatically reflected on the other. For

example, if a spline is defined by its poles, it's an associative spline if, given a change in the

position of the poles, the spline modifies accordingly. CAD packages usually have the same

geometric entity in an associative or non-associative form. For more information, refer to [58]

A parametric associative model is a key requirement for the ICE platform. What is needed,
in fact, is a product fully defined by a set of values, the parameters, which can reproduce

different product configurations in dependence of parameters' values.

Unfortunately parametric CAD tools are still not robust enough for representing complex

geometries in a multidisciplinary environment. However, they are usually reasonably good to

handle geometries of medium complexity.
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When building a parametric model, of paramount importance is the early phase, when the
relationships among the features are defined. Since all the elements are intimately intertwined,
in fact, when the model is built, it becomes very difficult to make any changes without partly
destroying the whole model. In addition, great care must be put in checking that the geometry
can be regenerated with all combinations of the parameters within the validity ranges.

In these phases, the experience of the modeller is crucial. Modem CAD packages offer
several ways to create the same geometric entity. Depending on the chosen, the resulting
geometry may be more or less robust to parameter changes.

In addition to the capability of parametric / associative modelling, essential for the ICE
platform is the presence in the CAD package of an Application Programming Interface (API)
layer. The API is a set of routines, protocols, and tools for building software applications. API
makes it possible to develop a program by providing all the building blocks. In the ICE, the
geometry update according to parameters values as well as any data extraction (e.g. the mass)
must be done in batch by a separate program. The API functions allow access by a program to
the same functionalities that are available interactively. Currently the UG API provides access
to over 4000 NX2 internal functions.

3.6.3. A particular CAD tool: Unigraphics by UG PLM Solutions

For this work the CAD tool Unigraphics NX2, by UGS PLM Solutions Inc., has been
chosen (in short UG). Unigraphics is one of the leaders in the CAD industry. It shares the
market with CATIA by Dassault Systems, Pro/Engineer by Parametric Technology and
AutoCAD by Autodesk.

The greatest supporter and user of UG is undoubtedly General Motors.
As all the major CAD tools, Unigraphics is a complex and articulated package that allows

managing the entire lifecycle of the product. It is composed of several modules, each of which
provides a particular functionality: from the 2D drawing to solid modelling to the modelling of
surfaces to assemblies' management.

Complex CAD tools require a vast amount of experience for a good result. And indeed the
available experience has been the key driver for the choice of this product among the others, both
the experience in parametric solid modelling and in the programming interface.

Hereafter is a non-exhaustive list of UG features that were particularly appreciated during the
realization of the geometry module:

- "light" package, suitable for medium performance hardware such as a laptop
- fast execution of even complex operations
- efficient solid modelling
- intuitive navigation in the design tree
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- possibility to manage parameters in a spreadsheet

- good associativity

Unigraphics NX2 is also one of the very few (another one is CATIA) which incorporates
Knowledge Based Engineering (KBE) tools. KBE is currently in its infancy but it has the
potential to change the way products are designed. As Evan Yares noted in Engineering
Automation Report (July 2002), products and parts "are always designed based on functional
requirements, but CAD products have historically been oriented toward designing based upon
geometric requirements. Knowledge-driven automation tools provide a way for engineers to
translate functional requirements into a geometric model capturing and manipulating
engineering knowledge".

The Unigraphics KBE application, called Knowledge Fusion (KF), contains tools for
capturing and manipulating engineering rules and design intent, so that they can be added into
the design process. The rules extend beyond a purely geometric nature, and may involve
engineering calculations, such as non-geometric physical properties, analysis results,
sensitivity, processes, and much more. Some of its functionalities were used in the geometry
handler module. Not only can engineers specify the requirements and rules that will drive the
creation of the product, but designers also are free to make geometric model changes from
within the CAD system - just as they normally would - and still have a model that is
completely consistent with and associatively linked to the engineering rules. Central to
Knowledge Fusion is the ability to capture NX entities, and represent these in the Knowledge
Fusion language. A user can then easily extend the feature, adding knowledge about material,
behavioral, or other characteristics. The resulting Knowledge Fusion feature works exactly the
same as a native NX feature, but incorporates all of the additional information.

Because of its properties, KBE tools may the basis of a smarter CAD model to be used in
next generations ICE platforms.

For more info on Knowledge Fusion, see [59]

3.6.4. Product Conceptualization

A maniverter is a complex product, which is tailored to a specific engine and vehicle. As
such, many are the variants that could be found in the market. As an example, in Fig. 62, a
gallery of manifold recently developed by ArvinMeritor is presented.
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Fig. 62: A gallery of manifolds / maniverters designs

The architectural level differences among the various products can be grouped in the

following categories:

" Number of cylinders of the engine
" Manufacturing technology: tubular, clamshell or hydroformed

* Single skin or airgapped
* Topology (number and type of junctions)

* Presence or absence of catalyst
* Material Type
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In building a parametric
model, ideally, the goal should
be to have such a flexible
architecture that is able to
represent all these differences.
However, the complication
induced by tackling
comprehensively the product
diversity would make the project
unviable or, at least, very
complex to be properly
debugged. Therefore, at the
outset, a conscious simplifying
decision has been made on what
subset of products the MDO
approach would have been
applied. The aim has been to

Fine blanked
Type of inlet flange Forged

Stamped

Pipes cross section

Constant]

Variable

Round
Oval
Irregular

Round
Oval
Irregular

Metallic
Converter Type

Converter shape

CeramicI

4 Round
-+gOval
Irregular

conceive a model that is simple
enough to be managed within the Fig. 63: Product Conceptualization Decision Tre

given hardware / software / skill
set constraints and yet that has as many features of real life manifolds as possible.

Inlet
The choice was made to focus on Flange

a manifold product for a four
cylinder engine, out of a single Pipwor

skin tubular technology with a Plenum

4>1 topology (i.e. four pipes
joining into a single junction) and Inlet cone

embedding a catalyst. catalyst

After these basic assumntions Otecn

Bracket

several other decisions had to be
made at the outset with the purpose
to narrow down the complexity to a
manageable level.

The decision tree is reported in

Outlet pp

Fig. 64: Simplified Maniverter Concept
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Fig. 63. The final choices are boxed.

In a nutshell, we've decided to represent a maniverter with constant section round pipes and
with a fine blanked inlet flange. The resulting conceptual model is shown in Fig. 64. The four
pipes are connected to the inlet flange (which is imagined bolted on the cylinder head) and join
in a plenum where all the gas streams mix. Then an inlet cone leads the exhaust gases to the
catalytic converter and, when they exit from it, they are guided to the outlet pipe through an
outlet cone. A bracket connected to the engine block supports the maniverter. It is implicitly
assumed that the maniverter is followed downstream by an exhaust system where the silencers
are placed.

All components are modelled
with solid elements. In the
following Sections more details
about the modelling of each of the
maniverter elements is given.

3.6.5. Parametric Model Details

Inlet Flange, Pipework and

Plenum

The inlet flange is modelled a
parallelepiped with four holes to
allow the four round pipes to be
inserted. Height, width and depth
of the flange as well as the flange
hole diameters are set as parameters
the pipes.

ntl

Point

Point 4

----0 1
/

/

/

/

/

p~flf.
d1

Fig. 65: Inlet Flange, Pipework and Plenum conceptual model

associated to the coordinates of the ports and diameters of

As mentioned, only the 4>1 topology is assumed. This implies that the four pipes join
together at the same location.

The piperuns are characterized by three elements: the centreline, the diameter and the
thickness.

The centreline is defined as a cubic spline with four control points. The 3 spatial coordinates
(x,y,z) of each control point are set as parameters. The last points are imposed to be coincident.

Diameter and thickness are set as parameters separately for each of the pipes for maximum
flexibility.

Collision between pipes is governed in the optimization phase by imposing the clearances
between pipes have to be a value greater than a positive value (3 mm is used a value). This also
ensures the manufacturing feasibility of the dome, which is thought as a stamped component.
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Pipes are modelled using the "cable"

feature of Unigraphics, using the "single

segment" option. The cables are set to be

perpendicular to the inlet flange.

The resulting pipework is illustrated

in Fig. 65
The pipes join together in a collector.

This is modelled as a spherical dome for

simplicity reasons. Diameter of and

thickness of the hemi-sphere are set as

parameters. Its center is set coincident
with the 4 " point of the pipes centreline.

Pipes are trimmed onto the sphere

I Ilet cone

Brick+

Mat+:brickt 12mm 

Can+:mat+ +can2*thk

Mat

--- ' Can

Brick

surface.
Fig. 66: Catalytic Converter Body Conceptual Model

Inlet Cone / Catalytic Converter

The catalytic converter used for this application features a ceramic monolith (also called

brick or substrate), a cylinder with a honeycomb structure made by cordierite. The substrate is

coated with precious metals (the catalyst itself), wrapped in a support mat and enclosed in a

metallic can. A longitudinal cross section of the embodiment is shown in Fig. 66.

Sphere Brick start P ointvariable in
par ame ters are: space: x.z as parameters.
center,dametrr, Cross section: circular

thickne ss (diameter as parameter) and
lying on a plane perperdicular

to the line 2-3

Solid from a ruled
surface: thickne ss Brick end P oint var iable ic

as param eter space: xy ,z as parameters
Cros s s ction: c icular (= t art)

andlyisg on a plane

Cylinder: brick perperdcular to the line 2-3

dameter and start and
end points as

pa ramet er s (more
d~tails on the next

d idet)

3

Solidfrom a ruled p ont of
surfac e: thickne ss established

as p:arameter position- section:
circular of
e s tabis hed

diameter

Fig. 67: Catalytic Converter & Inlet / Outlet cones conceptual model
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From previous knowledge of the application, substrate dimensions suitable to convert the

pollutants coming out of the selected engine are known. From the geometry standpoint, the

converter can be assimilated as made by three coaxial cylinders: the substrate, surrounded by
an annulus, which is the mat, and by a second annulus which is the converter can. General

design rules, then, provide guidelines for the type of mat and the volume of the mat. The height
and the different diameters are set as parameters but they are fixed during the optimization

process.

The converter is connected to the plenum through an inlet cone (Fig. 67), which is built as a

ruled surface. The point that defines the centre of the inlet circular cross section of the

converter (point 2) as well as the angles of the converter axis with respect to reference planes
are set as parameters so that the converter position and the orientation can be varied.

Outlet cone, outlet pipe and bracket

The maniverter ends with an outlet pipe, which is supposed to be connected to the exhaust
system placed downstream. As in the majority of the front port engine applications, the pipe is
assumed to run in a slot in the oil sump. Consequently its diameter and position are usually
fixed. It is modelled as a cylinder with diameter, length, position and thickness set as
parameters, but fixed with the application.

The outlet cone connects the converter to the outlet pipe and it is modelled as a ruled surface
which runs through the circular cross section of the outlet pipe inlet section and the outlet
circular cross section of the converter and it's tangent both to the converter and to the outlet
pipe cylinders.

The outlet pipe is assumed to be connected to the oil
sump via a bracket. In most applications a bracket is

needed to take part of the maniverter load that otherwise
would be imparted entirely on the connections between

the pipes and the inlet flange causing stresses so high to
generate a fatigue failure.

Following some of the previous ArvinMeritor designs

(see Fig. 68 for an example), the bracket is modelled as a
clamp. The position of the clamp, width and connecting Fig.68: Example of a Downpipe

point are set as parameters; its diameter is associated to
the diameter of the outlet pipe.
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3.6.6. Modeling Outcome

The result of the parametric modelling effort is shown in Fig. 69.

Fig. 69: The Maniverter Parametric CAD Model

Here are some overall figures.

The total number of parameters is 196, of which

* 118 are dependent

* 78 are independent. Of these:

o 32 are fixed with the application

o 46 can be varied with the application, i.e. during the optimization process

The complete list of the 78 independent parameters is given in Appendix 7.1.

Great attention has been given to the robustness of the model. Robustness is affected by the

following issues:
0 Parameters correlation. Even though the 78 parameters are considered as all

independent, in reality they are loosely correlated. In fact not all the parameters value

sets give rise to a feasible geometry. To exemplify, if the converter is placed at a higher

vertical position than the sphere, there is a solid penetration of the converter cylinder

and the sphere and the inlet cone vanishes. Similar errors are obtained when the

curvature radii of the pipes are lower than the diameter of the pipe. Unigraphics
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translates these geometry inconsistencies into a geometry regeneration failure, returning
an error or, sometimes, crashing.

* Software related issues. Even if when there is no evident geometric inconsistency, not
infrequently during the geometry regeneration process, UG stops or crashes. The
reasons are not completely evident; our best guess is that this might be due to internal
bugs or to conflicts with the operating systems.

* Model quality for subsequent structural analysis. Tiny solid entities, small local radii of
curvature, invisible gaps in the geometry are usually generated and handled within the
CAD modeller. However, if and when exported in a different format and imported in a
structural analysis software, they can generate major issues: the translation might fail or
the finite element analysis might fail. These elements need to be non generated or, at
least, eliminated from the model prior to export.

Most of the modelling time has been spent to mitigate these issues since, as we will see, the
robustnessless of the geometry is a substantial limitation factor in the subsequent optimization
phase. For the verification of the degree of robustness, in addition to the other methods, we
used the possibility offered by UG to manipulate the parameters in an Excel spreadsheet and to
update the geometry accordingly. Using the Excel random generator functions, the independent
parameters have been varied within a specified range and a record of the geometry regeneration
failures were made.

As far as parameters correlation is concerned, resolving completely the issue at the CAD
model level would mean introducing several other non-trivial relationships and controls on the
parametric solid elements, increasing model complexity a lot. Therefore we chose to accept this
weakness in the CAD model, handling the consequences in the optimization process (see
4.3.1).

For the UG software related issues, a lot of trial and error loops have been performed. The
same solid feature (i.e. a solid pipe) could be generated in several ways, i.e. using different
commands. In our experience, the resulting feature is more or less prone to geometry
regeneration issues depending on which route has been followed. Different modelling strategies
were tried and then selected the "best".

The same trial and error process was followed to eliminate surfaces and solid glitches that
would impair the structural analysis.

Despite the described limitations due to the assumptions and to the geometrical and software
constraints, the result we arrived at is characterized by a great flexibility.

The simplified model allows mimicking very closely real applications: in Fig. 70 an actual
manifold developed by ArvinMeritor is compared with a version obtained with the parametric
model. As can be noted, the similarity is striking.
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Fig. 70: Side and Front Views of a prototype actually developed for the Fiat Firel.4 16V engine (left) and

the corresponding version obtained with the parametric maniverter (right)

3.6.7. CAD Preparation for the Geometry Handler

The parametric / associative CAD model needs to be further enriched before it's suitable to

be manipulated by the routine that allows the operations on the geometry to be executed in

batch.
As we will see in the next ~

Section, part of the operations is

data extraction, which is realized Features
- Parmeter Parameters

using the advanced meta- Parameters

language Knowledge Fusion Objects

(KF). KF operates on conceptual Objects Properties
eneration

objects, which are not

automatically generated when

the model is created. Therefore Fig. 71: CAD Model is enriched by KF Objects

an additional step is required,
which translates the geometry features into logical objects that can be subsequently

manipulated, Fig. 71. This step is performed interactively once.
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During the translation process, objects are given some pre-defined properties, i.e. related

information, such as the mass of a solid element or the length and the curvature of a curve. If a
non standard piece of information is required (e.g. the radius of curvature of a curve), objects
need to be manually edited and the relevant "attribute" added, calculated from existing

properties.

3.6.8. Geometry Handler module

Once the model was created and prepared, the next step has been to create a code that

handles the model in batch, i.e. without any user interaction.

The routine, named KEFAOptimizer, consists of more than 2000 lines of code and has been
developed by Centro Ricerche Fiat (CRF) in C language. It relies upon the experience that CRF

matured in a recent one-year long project where the automatic generation of vehicle subsystems

models were studied (KEFA, in fact, stands for Knowledge Engineering for Fiat Auto). The

architecture and algorithms are proprietary to CRF and therefore cannot be disclosed. In what
follows, however, an overview of the functionality and inputs / outputs will be illustrated. In

addition, in Appendix 7.2, the syntax of the routine command line and the system requirements
are given.

The capabilities of KEFAOptimizer are the following:

" It allows the geometry model to be changed, given a set of parameter values

* It extracts from the model some relevant physical and geometrical properties, such as

dimensions and masses

* It exports the native UG model (.prt) in a format (Parasolid) that can be read by FEA
codes

Geometry Modified
To be Geometry

modified (PRT)

(.txt) (EXE) (.txt)

Parasolid
model

Output .x)
Settings

(.txt)

Fig. 72: KEFAOptimizer: Inputs and Outputs
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The inputs to KEFAOptimizer are (Fig. 72):
1. The UG model to be changed

2. The list of parameters / expressions that KEFAOPtimizer will use to modify the

geometry
3. The list of data to be extracted from the updated model

The outputs that KEFAOptimizer provides are:

1. The modified UG model

2. The data extracted from the updated CAD model

3. The Parasolid model

The process is executed in 50 seconds on the selected hardware platform.

Hereafter some details about the software architecture as well as inputs and outputs are

given.

Software Architecture

KEFAOptimizer exploits both the native parametrical functionalities of UG managed by the

open API and the ones available through its rule-based meta-language Knowledge Fusion (KF).

Geometry
Params Faue
ile Manipulation

SPaetearameters

Data hA modest fbjacds
request Dt euet

and Retrieval - Properties
Output -Atiue
data K )-Atiue

Fig. 73: KEFAOptimizer Architecture and its Interaction with the CAD Model

The KEFAOptimizer is made by two main blocks, which are executed in sequence:

0 Geometry Manipulation block. This section reads the values of the parameters and,

using the open API of UG, modifies the features accordingly
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* Data Retrieval block. This section, which exploits the capabilities of KF, receives as
input the information that are requested from the input file, identifies the objects'
attributes and properties (such as the length of a pipe or its mass) and retrieves the
values, storing them in the output data file.

UG Model to be modified

The CAD model to be modified must be a .prt model in UG NX2 format. As illustrated in
3.6.7, the CAD model, enriched with KF objects, must be edited and the KF "attributes"
added.

Parameters / expressions used to modify the geometry

The parameters define the UG model geometry. Some of them are actually numerical values
(absolute numbers of geometric features dimensions or coordinates), some others are defined
by an algebraic expressions. The parameters list can be extracted from the model through the
command Tools > Expressions > List executed within UG.

When created, parameters are given a standard name in the form of _pxxx where xxx is a 3
digit number; then they can be renamed by the user to allow unambiguous identification.

Here are some examples:

C4az=110 //z coordinate of the 4th control point of tube A

C4bx= C4a z //x coordinate of the 4th control point of tube B

Dexta=Dinta+spa*2 //outer diameter tube A

(the / identifies the starting point of a comment).
Some of the parameters cannot be changed because the expression or the numerical values

they are given are internal to UG and essential for the geometry consistency. If one attempts to
modify them, UG replies with the following error message: "This expression cannot be modified
because it is used by other feature". So, great care has been put in operating only on those
parameters that are completely in control.

Data to be extracted

From the CAD model several data are extracted for subsequent use by the other CAE
modules or by the optimizer. The obtained data fall into two main categories:

* Masses: of the different components (e.g. tubes, flange, converter, inlet/outlet cone,
etc) and of the complete maniverter

* Geometrical dimensions: lengths, diameters, curvature radii and clearances (e.g.: tube
and cone lengths and curvature radii, distance between tube A and tube B, etc).
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Some examples of how they appear in the output settings file are given below with a short
description.

massTubeA.Mass=?-> mass of tube A
lengthPipeA=?-> length of tube A

curvPipeASeg2=?-> first radius of curvature of the tube A

distA_C[1] Distance between tube A and tube C

UG Modified model

UG .prt model modified with the values defined in the parameters list.

Output data

In the output data file, named forOptimizator.txt, all the values of the required data are

written, in the same order in which they are specified in the output settings file.

As mentioned in the previous Sections, given a parameters values set, the geometry

regeneration might fail for geometric or software reasons. To capture that, an execution

completion code is written in the last line: if the error code is 0, no error has occurred and the

generated geometry is valid; if the error code is 1, KEFA or UG, during its execution, has

encountered an error and the resulting geometry is not valid.

A sample section of the forOptimizator.txt file is shown below:

massTubeA.Mass = 241.459734

lengthPipeA = 217.109355

lengthPipeASeg2 = 42.297333

lengthPipeASeg3 = 53.281194

lengthPipeASeg4 = 121.746355

lengthPipeATot = 217.324881

distAC[l] = 87.657109

<<ERRORS>> = 0

Parasolid Model

The geometry handler routine exports the CAD geometry in a Parasolid format, useful for

subsequent structural analysis. The Parasolid format is selected among those available because

it can be generated quickly by UG and read easily by Patran (for more details, see 3.7.3).

Since for the structural analysis not all the features are required, only those. needed are

exported.
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Main issues

The following issued challenged the development of the KEFAOptimizer:

* As for the CAD modelling, more than one API function exists which accomplishes a

certain task. Trial and error helped in identifying the more "robust" functions.

" The API set for features manipulation is rather complete. The KF application, which

should provide, at least, the same functionalities, being a more recent application does

not map 100% to the API. Appropriate workaround were found where necessary.

" Both the API and the KF functions often stop the execution with a fatal or irreversible

error when they fail to perform their task. To allow the automated design loops,
KEFAOptimizer is particularly sophisticated in error handling so that the application

terminates regularly in any case, just signalling that an error occurred.

3.7. Structural Analysis Module

3.7.1. Introduction

As anticipated in Section 3.4, to keep the complexity of the platform at an adequate level

and given the computing power limitations of the selected hardware platform, the only

structural analysis that was decided to be performed is the calculation of the first resonance

frequency.
If excited at the resonance frequency, the system will exhibit very large displacements (for

low damping levels), which are almost likely to degenerate in a fatigue failure. Therefore the

resonance frequency is an important performance attribute of a maniverter.

For frequency calculation, the system is considered in hot conditions, fixed at the inlet

flange (which is connected to the cylinder head) and at the bracket (which is connected to the

oil sump). The physical understanding of the problem was instrumental to create an efficient

and yet sufficiently refined model.

For the analysis, a Finite Element model is built using the software programs MSC.Patran

and MSC.Nastran by MSC.Software I,

Corporation.

3.7.2. The Finite Element Method and

Patran / Nastran

The basic concept behind the finite

element method (FEM) numerical 3D

technique is that a body or structure may

be divided into smaller elements of finite

dimensions called as "Finite Elements" Fig. 74: Finite Element Types
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(Fig. 74). The original body or structure is then considered as an assemblage of these elements
connected at a finite number of joints called as "Nodes" or "Nodal Points". The properties of
the elements are formulated and combined to obtain the properties of the entire body.

The equations of equilibrium for the entire structure or body are then obtained by combining
the equilibrium equation of each element such that the continuity is ensured at each node. The
necessary boundary conditions are then imposed and the equations of equilibrium are solved to
obtain the required variables such as Stress, Strain, Temperature Distribution or Velocity Flow,
depending on the application.

FEA was first developed in the late forties for use in structural analysis and it is used to
analyze objects and systems that are of such a complexity that the problem cannot be solved in
closed-form. 3 By the early 70's, FEA was limited to expensive mainframe computers generally
owned by the aeronautics, automotive, defense, and nuclear industries. Given the phenomenal
increase in computing power and the development of incredibly efficient algorithms, FEA
packages nowadays run happily on PCs.

MSC.Nastran is a general FEA program capable of solving engineering analysis problems in
the following areas:

* Linear and Nonlinear Static Stress Analysis

" Buckling Analysis

" Dynamic Transient Stress Analysis
* Steady and Unsteady Heat Transfer

" Optimisation Analysis

MSC.Patran is a pre-processor and post-processor for FEA.

Any Finite Element Analysis involves a pre-processing phase, a solution or processing
phase, and a post processing phase, Fig. 75.

3 From Wilkipedia, http://en.wikipedia.org/wiki/Finiteelementanalysis
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Pre-processing

" Geometry import

. Mesh generation

F Mate7ial PropertiesF
" boundary Conditions
(loads and constraints)

Fig. 75: The Different Phases of a FEA

In the pre-processing phase, a Finite Element model is built starting, if existing, from a CAD
model (as in our case). Then a mesh is generated, material properties assigned to the solids and
the constraints applied to the system. In the processing phase, the problem is solved and the
results generated. In the post-processing phase, the results are gathered and analyzed. Pre and
post-processing are performed with MSC.Patran; the problem solution is done with
MSC.Nastran.

Each of the steps will be described in some detail in the Sections that follow. The
description is made assuming that operations are performed interactively. In 3.7.3, we will see
that the process can be automated with a minor effort.

3.7.3. Pre-processing: the FE model

CAD geometry import

As mentioned in previous Sections, even several decades after CAD and CAE tools were
first introduced, software interoperability is still an issue to be considered with great attention
when planning a multi-tool environment. Intellectual property protection pushed CAD software
vendors to conceive model databases exclusively accessible; consequently CAE tools could not
have directly access to CAD created model geometric databases. For years, the data transfer
from one application to another has been occurring and still frequently occurs through open

formats such as IGES (Initial Graphics Exchange Specifications), which, since its birth in 1979
is probably still the most popular format, or, STEP (STandard for Exchange of Product model
data), officially known as ISO 10303. Data translation, however, always implies data loss or
misinterpretation.

In these years we have seen a convergence between CAD and CAE tools. For example, most
recently Ansys Inc. has introduced its Ansys Workbench environment where a Unigraphics .prt
file can be read directly by the Ansys pre-processor and MSC.Patran 2004 has made several
enhancements to improve its ability to work with leading CAD packages including CATIA,
Unigraphics NX2.0.
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This interoperability mode is still in its infancy and, in our experience, the import process of

the CAD geometry by CAE tools is still a delicate phase full of pitfalls. It usually requires a lot

of processing time, more often than not software crashes in the import phase and privileged

affinity exists between CAD and CAE tools.

For our work, we chose a data translation format that both UG and MSC.Patran have

demonstrated to have minor issues in working with: the Parasolid format. Recognized as one of

the world's leading, production-proven core

solid modeler, Parasolid is actually a geometric

modeler supporting solid modeling, generalized

cellular modeling and integrated freeform

surface/sheet modeling. Developed by

Unigraphics Solutions in Cambridge, England,
Parasolid is used within Unigraphics Solutions'

products and is licensed to many of the world's

other leading CAD/CAM/CAE vendors.

Designed for high-end CAD applications,
Parasolid is now used in a wide diversity of

leading mid-range systems. The global reach of

Parasolid-powered applications spans multiple Fig. 76: Parasolid Geometric Model imported in
industries and has grown well beyond one MSC.Patran
million end users - all of whom benefit from the

ability to seamlessly share geometric models through Parasolid's native xt file format.

Parasolid users also benefit from intrinsic, tolerant geometry processing that combines with

Parasolid's translation and healing technologies to facilitate the interoperability.

As described in sub-section 3.6.8, at the end of the CAD geometry update, KEFAOptimizer

exports in Parasolid format the eight solids that will have to be meshed: 4 pipes, the inlet cone,
the converter can, the outlet cone and the outlet pipe. The inlet flange, the bracket, the support

mat and the catalyst brick are not exported by UG because they are not used in the structural

calculation process.
MSC.Patran, then, is set to import the Parasolid geometry. The work performed previously

on model quality makes this process rather seamless. The average importing time is about 20 s

on the selected hardware platform, Fig. 76. However, the choice to translate the data is not

without drawbacks. The major issue we had to find a workaround for is related to the

identification of geometric features.

Identification numbers (IDs) are unique integer numbers assigned by UG to geometric

entities (e.g. to solid features) and are used by the kernel for its operations. Since these numbers

are at the core of the CAD data structure and functioning, they cannot be changed by the user.
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When the model is then exported, the Parasolid format retains the IDs and MSC.Patran, after
importing the geometry, uses the same numbers to identify the different geometric entities. The
IDs are generated each time the geometry is created; in general, therefore, they are changed
from one instance of the geometry to another. This creates problems when applying material
properties or boundary conditions. In the interactive operation mode it's the user who visually
selects the solids or the surfaces of interest while the pre-processor picks up the associated ID.
Any change of IDs is transparent to the user because he/she is able to visually locate the
geometric entity of interest. If the same process, executed by program, uses the ID to identify
the object of the action, it encounters a roadblock. For example, if fixed displacement are
assigned to solid 3, where solid 3 is, in one case, the bracket, at the next geometry regeneration
loop, if the ID 3 is assigned to one of the pipes, the boundary conditions are applied to a wrong
element and consequently all the results are compromised.

Alternative ways of feature identification were therefore conceived. Detail is provided for
each phase in the following Sections.

Mesh generation

The geometry in question in a Finite-Element analysis is represented by the collection of
finite elements, known as a mesh. In the past, the meshing process was in great part a tedious
manual time-consuming activity. In the last decade, Finite Element modellers have improved
significantly their automatic meshing capabilities. Currently, meshing is essentially an
automatic process.

In building the mesh, two main decisions have to be taken:
" The type of elements
" The size of elements (or elements density)

The choice of the type of element depends on the particular problem at hand and on the type
of geometry. Since we decided to work with solid elements, two are the types of elements that
could be chosen: Hexaedra, brick-like elements, or tetrahedra, or pyramid type elements. We
chose to work with tetraedra
because they can fit irregular
boundaries and allow a change in
elements size without excessive 6 9
distortion. In addition, fully-
automatic methods for generating
triangular/tetrahedral meshes are
well assessed. Tetrahedra are Fig. 77: 4-node (left) and 10-node (right) Tetrahedra

available with 4 or 10 nodes. 4-

Page. 106/218



-~ .,~---.v - - -- -~

node elements, called in Patran Tet4, are coarser elements, with a lower accuracy relative to 10-

node elements, the so called TetlO, Fig. 77.

Mesh size or element size refers to the dimensions of the tetrahedra with which the solids

are discretized. Usually, regions of steep gradients in solution variables require a finer mesh.

Current modelers feature adaptive meshing which automatically evaluates mesh discretization

error in each element and determines if a particular mesh is fine enough. If it is not, the element

is refined with finer meshes automatically. Adaptive meshing, however, is not used because, in

case of resonance frequency calculation, the greater accuracy brought by adaptive meshing is

not particularly significative on the first frequency. In addition, while adaptive meshing is

easily accessible from the MSC.Patran GUI, it requires extensive programming if it has to be

included in a batch routine.

Benchmarking is
conducted to assess the

accuracy loss in using Tet4

instead of TetlO elements

and in using a finer (4 .

mm) or a coarser (8 mm)

mesh. Selected results are
presented in Fig. 78 for the

first ten resonances. As U Tet-104mm 283 424 593 641 772 915..

expected and confirmed by 0 Tet-44mm 339 510 677 809 S0 -

prior experience, Tet1O Tet-8mm 37

with 4 mm element size ..."

yield the most accurate Fig. 78: Benchmarking of Tet-4 Vs. Tet-10 elements and 4 mm Vs. 8 mm
result while Tet4 with 8 element dimension

mm element size are the

worst.
However, accuracy needs to be traded-off against execution time, Fig. 79. Even if Tet-4 8

mm elements give the worst Tet-10 4 mm Tet-4 4mm Tet-10 8 mm Tet-4 8 mm
results (frequencies are 30% S u ion

higher), they were chosen ti 253 42 74 3

because the solution time is

incredibly shorter than with the Fig. 79: Solution time of problems with different mesh size and

others options. Absolute values type of elements

are recognized to be affected by a significant error, but as far as trend is concerned (that allows

to identify geometry configurations with higher and lower stiffness), the mesh is considered

reliable enough.
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The need to shorten the solution time drove also the decision not to mesh some parts of the

maniverter but take them into account for frequency analysis purpose in different ways. These

are: the inlet flange, the bracket, the support mat and the brick.

The inlet flange was not meshed at all because, being connected to the cylinder head, it

doesn't influence the resonance frequency.

The bracket was not meshed too. The connection to the oil sump was modelled with rigid

elements that connect the nodes in the bracket clamp area to the connection point.

The support mat and the brick are also not meshed explicitly. Resonance frequencies, in fact,
are determined by the stiffness and by the mass of the system. While brick and mat contribute

to the mass of the system (for 15-20%), they do not

contribute significantly to its stiffness. To take this

properly into account, on the inner surface of the

converter can, a surface mesh is built of triangular

elements (to match the tetrahedral elements of the

solids). This particular mesh layer is assigned infinite

flexibility but the equivalent mass of the brick and

mat elements. A similar practice is in use at

ArvinMeritor for this type of calculations.

The resulting mesh has approximately 25,000
elements (Fig. 80) and is built in approx 40 seconds

on the selected hardware platform.

Fig. 80: Resulting Finite Element Mesh

Boundary Conditions

Boundary conditions are used to specify the loading or, as in our analysis, the constraints

applied to a solid.

As mentioned, when mounted onto the

engine, the maniverter is bolted though the

inlet flange onto the cylinder head and it is

connected through the bracket to the oil sump.

These constraints were simulated in the

following way.

Fixed displacements are applied to the inlet

faces of the pipes, Fig. 81. As mentioned in
Fig. 81: Boundary Conditions applied to the

previous Sections, the IDs of the faces could Fiion e

not be used to identify those geometric entities
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because they change with geometry generation. As an alternative method, faces were identified

as lying on a plane of a fixed coordinate.

The bracket was, on the other hand, replaced

by rigid connection to a fixed point. Connected

nodes are identified, by having fixed

coordinates, where the clamp holds the outlet

pipe, Fig. 82.

Material Properties

The maniverter is made by stainless sti

Several materials, both ferritic and austeni

are used in common design practice, depend

on the temperature working conditic

manufacturability and cost. In our applicatio

the components of the maniverter are

made of the same material, which is u-

known with the ANSI code AISI 304.

In the working temperature range

(at about 800'C) we will also assume

that the materials is isotropic, i.e.

which has the same mechanical

properties in all directions, and that

it's linearly elastic, i.e. that it has a

stress-strain response (valid only for

small strains) as shown in Fig. 83.
Such a material is then defined by the

following quantities:

I E/

Young's modulus

822

8-33El

Poisson's ratio

Fig. 83: Linear Elastic Isotropic Material Properties

* The Young's modulus E, which is set a 170,000 MPa

* The Poisson coefficient, v, which is set to 0.3

* Its density, which is set to 7.8 kg/dm 3

3.7.4. Processing

For the structural analysis within the MDO framework, a modal analysis has been chosen.

Modal analysis is used to find the natural frequencies of a structure. The frequencies are

calculated in increasing order of frequency magnitude. Users can define number of frequencies

desired for a range of frequency magnitudes. Two things are important: mode shape and
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frequency. The actual values of displacement are not physically meaningful, only the shape of

the deformation is important.

The first natural frequency is usually the most important because it's the lowest, so only the

first natural frequency is calculated. Design criteria state that this frequency should be as high

as possible and definitely not below 250 Hz.

The MSC.Nastran solver is used for the calculation and the model is solved in about 2.5 min

on the selected hardware platform.

3.7.5. Post-processing: gathering the results

Results are written by MSC.Nastran on a file with a default extension .f06. A sample portion

is shown below.
EI GENVALUE ANALYSIS S U M M A R Y (READ MODULE)

BLOCK SIZE USED ...................... 2

NUMBER OF DECOMPOSITIONS ................ 2

NUMBER OF ROOTS FOUND ................... 1

NUMBER OF SOLVES REQUIRED ............... 6

1 MSC.NASTRAN JOB CREATED ON 14-SEP-04 AT 11:48:39 DECEMBER 10, 2004 MSC.NASTRAN

R E A L E I

MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED GENERALIZED

NO. ORDER MASS STIFFNESS

1 1 4.582813E+06 2.140750E+03 3.407110E+02 1.D0DO00E+00 4.582813E+06

The value of the frequency r F 1. n .Trund- nl F .

(boxed) is then read by the

optimizer (see 3.10.2): 340.7

Hz in this case.

If needed the modal shape

can be interactively displayed

superimposed on the

undeformed geometry to

provide a visual

representation on how the

structure will vibrate in

resonance conditions.
MSC.Patran also provides

the animation of the modal

shape. Fig. 84: Modal Shape Visualization (global lateral mode)

Page. 110/218



3.7.6. Running the Analysis in Batch

What was illustrated so far is essentially the process as it would be followed by a user in a

series of manual operations. Patran records in a file, called "session file", all the instructions

and user strokes. They could then be re-played automatically with a proper command.

Therefore, the entire process is executed interactively once and a session file "modal.ses"

recorded. The batch program is then a .bat file with the command:

patran -sfp -b modal.ses -ans yes

where :
" -sfp (Session File Play) instructs Patran to play the session file

" -b: sets the execution in batch

* modal.ses: is the session file to be re-played

" -ans yes : causes Patran not to stop to get confirmation

The only issue that we had to cope with is, once again, geometry identification, in particular

of the inner surface of the converter in order to apply the triangular mesh that carries the brick

and mat mass. While interactively the user clicks on the right feature and Patran records in the

session file its ID, in a fully automatic routine, this route is not viable because the ID will

change. Therefore this part of the session file was replaced by a piece of code that was written

in PCL (Patran Command Language). The routine identifies the surface as the one having a

specified surface, quantity that does not change during the optimization process: the brick

diameter, to which the converter can diameter is linked, in fact, depends only on the

application, i.e. engine size.

3.8. Fluid Dynamics Module

The fluid dynamics characteristics of an exhaust system maniverter are of a paramount

importance in determining the engine and the catalytic converter performances. For this reason

a fluid dynamic module has been included in the ICE platform. As mentioned in previous

Sections, a full 3D transient CFD (Computational Fluid Dynamic) calculation has been

excluded due to hardware limitations but also because it is considered an overshoot. A l-D
transient simulation has been preferred instead. This has been used to predict the effects of the

different maniverter geometries on the engine power and torque curve as well as the catalyst
conversion capabilities. The commercial code used is AVL BOOST 4.0.4.
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Similar to the geometry module, the fluid dynamic module is actually made by two parts:
the model itself and the routine that manages the execution of the calculations in batch.

This Section, after some background on the fluid dynamic phenomena that occur in the
manifold and the converter which were predicted with AVL BOOST, illustrates the main
features of the simulation code, describes the model that has been set up and the results that
were obtained.

3.8.1. Background

Backpressure

During the exhaust stroke, an engine may lose power through backpressure. The exhaust
valve opens at the beginning of the exhaust stroke, and then the piston pushes the exhaust gases
out of the cylinder. The higher the amount of resistance that the piston has to push against to
force the exhaust gases out the more power is wasted. Power reduction comes also from an
inefficient burn in the combustion chamber, where exhaust gasses are backed up and
contaminate the next bum cycle. Backpressure is a result of the pressure losses in the manifold.
Pressure losses are higher the smaller the cross sectional area, the more restrictions to exhaust
flow are present and the more abrupt changes in the direction or in the cross sectional area
exist.

Manifold Tuning

Any time there is a pressure change in an elastic medium (like air for instance) a series of
resonances or vibrations will occur. Each time a power stroke occurs and an exhaust valve
opens, a positive pressure occurs in the exhaust manifold. A negative pressure occurs in the
exhaust manifold between the positive pressure pulses, especially at lower engine speeds. A
positive, or high-pressure wave will propel gases in the same direction that it is travelling. A
negative, or low-pressure wave will propel gases in the opposite direction that it is travelling.
Pressure waves, or pulses caused by the exhaust port opening and closing will travel towards
the open end of the tube the port is connected to.

These pressure waves respond in an interesting manner when they reach a sudden area
change in the pipe. When a pressure wave reaches a larger cross sectional area, it will reverse
its sign (positive becomes negative, and negative becomes positive) and its direction. For
instance, when the exhaust port first opens, a strong positive wave will travel to the end of the
pipe, change to a negative wave, and travel back to the exhaust port. This is called a reflection.
Both the positive wave travelling towards the end of the pipe, and the negative wave travelling
towards the exhaust port will propel exhaust gases towards the end of the exhaust system which
is exactly where we want them to go. The amount of time that this cycle takes is dependant on
the total distance that the wave has to travel, i.e. on the tube length. By changing the length of
the manifold pipes, therefore, the cycle can be timed so that the negative return wave arrives at
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the exhaust port at the end of the exhaust cycle where it is most beneficial. Assuming that the

negative return wave is timed correctly for a given engine at 3000 rpm, lengthening the runners

will further delay the return wave so that it is timed appropriately for a lower rpm (e.g. 1000
rpm), and shortening them will time the return wave so that it is timed appropriately for a

higher rpm (i.e. 6000 rpm).

The key to manifold length choice is simply timing the low-pressure return wave to give the
greatest benefit for a given rpm. This process is called manifold tuning. Proper exhaust

manifold/ tuning actually creates a vacuum, which helps to draw exhaust out of the cylinders
and improve volumetric efficiency, resulting in an increase in horsepower.

Catalyst warm-up

When the Internal Combustion engine of a car is running, it burns fuel to produce power to

drive the car. The burning of fuel also produces exhaust gases with pollutant substances. Three

way Catalysts are usually installed in the exhaust system of gasoline cars to convert carbon

monoxide, nitrous oxides and unburnt hydrocarbons into other gases that do not harm the

environment.
However, catalysts are only effective when their temperature is above 250 to 300 degrees

Celsius. This is known as the light-off temperature. When an engine is turned on, the catalyst

gets heated up to its light-off temperature by the hot exhaust gases passing through it.
Unfortunately, it takes some time for a catalyst to reach its light-off temperature. This time

delay allows some undesirable exhaust gases to be released into the atmosphere.
Light-off time is longer if the thermal inertia of the exhaust system upstream the converter is

higher.

3.8.2. The AVL BOOST Code

Overview

The thermodynamic cycle calculations in this work have been conducted using the AVL

BOOST engine simulation code. BOOST calculates, in addition to the in-cylinder conditions,
the unsteady 1-Dimensional gas flows in the intake and the exhaust systems. The above is

achieved by solving the appropriate set of coupled non-linear differential equations using the

Essentially Non Oscillatory (ENO) finite volume scheme [60] . The pipes are divided into cells

and the flows of mass, momentum and energy from one cell to the other are calculated. The

effects of wall friction, heat transfer and varying cross sections of the pipes are considered as

source terms in the differential equations used. The gas properties at any location are

determined by solving the conservation laws for unburned fuel, combustion products and air.
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The flow losses at the pipe attachments are treated as quasi-steady. Catalogue values of
pressure losses determined experimentally for the most common boundary elements, where
appropriate, are used.

The unsteady calculations are initiated with user specified initial conditions in the system
and they are continued until the solutions of subsequent cycles converge.

The calculation model is constructed by using a set of elements available in the BOOST pre-
processor. The elements available comprise of:

" Pipes

" System boundaries

* Internal boundaries

" Cylinders, two or four stroke, with intake and exhaust ports controlled either by valves
or piston

* Plenums, variable volume plenums (crankcases)

* Flow restrictions of various types e.g. check valve, rotary valve

* Junctions

* Air cleaners

* Fuel injectors

* Catalysts

* Air coolers

* Engine Control Unit (ECU)

In addition an arbitrary number of measuring points can be defined within any of the pipes
where the flow data is monitored without influencing the flow.

The cylinder element models the working cylinder of an internal combustion engine. A
conventional cranktrain motion as well as user-defined piston motion is also available in the
program. For combustion modelling different models for the rate of heat release are available.
In addition predictive combustion models are available for homogeneous SI, as well as DI
Diesels. Heat transfers to the cylinder walls and to the port walls are taken into account.

Required Input Data

The input data that are required to build a BOOST mode data can be divided into: 1) the
geometrical data (of the engine and of the intake/exhaust), 2) the flow data, 3) the data
determined by the operating point and the charging device characteristics. Some detail is
presented here below:

Geometrical data:

- bore, stroke and compression ratio of the cylinder
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- valve sizes and valve lift curves

- length, diameter and bends of intake / exhaust pipes

- volume of the plenums

- firing order

Flow data:

- wall friction coefficient for turbulent pipe flow

- flow coefficients for the pipe attachments to the elements

Data related to the operating point:

- engine speed

- fuelling or air/fuel ratio

- combustion characteristics

- wall surface temperatures

- initial values for the manifold conditions

- pressure losses in the air cleaner, the catalyst and exhaust silencers

Output Data

The three types of calculations carried out by BOOST are single point, series e.g. full load
performance, and animation calculations.

The program calculates pressure, temperature and velocity histories (i.e. function of the
crankangle) of the flow in the pipes as well as pressure and temperature histories in all elements

featuring a volume. In the cylinder element pressure traces, wall heat losses, ignition delay,
combustion noise, gas exchange work, amount of residual gas, trapping efficiency in particular

for two stroke engine are also calculated. The results of the last cycle calculated are then

presented with respect to crank angle.

For the analysis of engine transients mean values for each element are available for each

cycle calculated. The data obtained also include engine performance data e.g. volumetric
efficiency, air/fuel ratio, residual gas content in the cylinder, mean effective pressure, power,
fuel consumption, heat losses and the air flow.

For more detailed information on the AVL BOOST, the user is suggested to consult the

related documentation [61] [62] [63] .
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3.8.3. The BOOST model

A BOOST model is

built of the entire

intake, Fire 1.4 16V
engine and exhaust
system (featuring the

maniverter), since the

performance 665

characteristics of the

engine are known to
be influenced by all

elements that are
enclosed in the

boundary that goes
from the intake inlet to
the tailpipe. The intake

and engine
geometrical data as
well as the fluid
dynamic and
combustion
characteristics of the

engine have been

kindly supplied by
Fiat-GM Powertrain in
the form of a GT-
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Power model. The manifold
section has been replaced Fig. 85: The BOOST Model

with the maniverter designed

and optimized in study.
The boost maniverter model, which is represented in Fig. 85, has been built parametrically.

All dimensions and relevant heat transfer and fluid dynamic properties are set as parameters,
for maximum flexibility. A sample of the parameters included in the model is shown in Fig. 86.
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Fig. 86: BOOST Model Parameters sample

The model has been validated against the current production system power and torque data,

see Fig. 87 (blue line). For validation purposes, a current production maniverter has been

modelled (black line). The comparison shows a non-perfect correlation. Almost likely this

discrepancy is due to incorrect modelling of the junctions of different ducts, for which available

data are not too precise.
However, the difference, which is less than 5%, in torque values is deemed not to impair the

overall performance assessment.

The performance of the baseline maniverter used in the optimization process is shown in the

same Fig. 87 (red line) and is very close the current production manifold's one.
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Fig. 87: Torque, Power and Volumetric Efficiency Data. Blue line: current production system GT-Power
results, Black Line: current production system, BOOST results, Red Line: Baseline maniverter, BOOST

results

The complete calculation time for six rpm numbers (1000 to 6000 rpm) takes about 15 min

on the selected hardware platform.
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3.8.4. Performance Attributes Definition

Many are the data that can be extracted from a BOOST simulation: power, torque, fuel
consumption, massflow, etc. However, for optimization purposes, we synthesized a single
value that could give an overall score on manifold performances.

In several discussions with Fiat-GM Powertrain engine experts, we captured that, for a
conventional low to mid-size car (i.e. not a sporty one), which is the vehicle a Fire 1.4 16V
engine is likely to equip, two are the important features that a maniverter has to contribute to:

" The highest torque, for best acceleration characteristics

" The most regular torque behaviour for good driveability. Particularly appreciated is the
reaching of the maximum torque at the lowest possible rpm

We therefore selected the mean value of the torque across the rpm range as a metric of the
first factor and the standard deviation (around the mean) as a metric for the second.

Then, we combined the two in a global performance index, which is defined as the ratio of

the mean and the standard deviation of the torque:

2

Performance Index torque

07torque

The ratio is raised to the second power to create an indicator, which is more sensitive to
variations.

Performances are not the only driver for maniverter design. As discussed in previous
Sections, another goal is to shorten the light-off time and thereby to reduce the pollutants that
are emitted from the tailpipe before the catalyst starts converting. As a metric for this

performance attribute a weighted average temperature at the catalyst inlet is selected, Fig. 88.
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Engine Speed Torque Cat Inlet Temperature Temperature weights
[rpm] [Nm] [K]
1000 1_04E+02 1.__12E+03 0.35
2000 1.27E1+02 1.19E+03 0.25
3000 1.27E+02 125E+03 0.2
4000 1.25E+02 1. 27E+ 03 0.1
5000 4 1^C E a a. 0.05
6000 1 E+132E 0.05

Mean p
Standard Deviation a
Performance Index

119.3369083
10.14857403
138.2736786 1196.5341

Fig. 88: Performance Index and Average Catalyst Inlet Temperature

Higher weights are assigned to lower rpm, since those are the regime where the engine is
more likely to revolve in the first 30 seconds after the engine start.

3.8.5. Automation of BOOST Calculations

So far the model has been described. The model has been built interactively. Then, it has
been wrapped up in software layer to allow external applications to run BOOST calculations
automatically. A new automation interface of BOOST has been developed, where the calling
application can set input data of a BOOST model and also get results back. In what follows the
outline of the interface will be given; the details cannot be disclosed since the know-how and
the intellectual property reside within AVL.

Architecture

The interface is defined in a generic way. This means the external application can chose
which data should be modified and also defines the required result. The automation interface is
built on top of the existing python layer of BOOST4 .

All functions necessary for the automatic update of input data and results extraction are part
of the new layer. This layer is also running the BOOST calculation itself, Fig. 89.

The automation interface performs three tasks:

" Supports the interface definition file
" Runs a BOOST iteration
* Gets back the result

The running of a BOOST iteration process, in its turn, is articulated in the following steps:

4 Python is a portable, interpreted, object-oriented programming language. For a basic introduction, see
http://www.pvthon.org/doc/Introduction.htmi

Page. 120/218



-- - - - - -

Loading of the BOOST model

Reading the interface definition

Changing the defined input parameter directly in the BOOST Model

Running the BOOST calculation

Generate the requested output data from BOOST results

Fig. 89: Arcitecture of the BOOST Automation routine

Interface Definition File

The interface definition consists of 2 parts: the first defines the data that should be updated

inside the BOOST-model, the second describes the requested results:

Example:
<boost automatization interface>

<boostipt

</boost output request>

</boost automatization interface>
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Details of the two sections are given in Appendix 7.3.

Output File

The automation routine writes the results in an ASCII file in three columns: the first contains
the rpm values, the second the torque values and the last the catalyst inlet temperatures:

RPM TORQUE CATINTEMP

6.OOOOOOE+003 0.10868210E+003 0.12143396E+004
5.OOOOOOE+003 0.12686863E+003 0.11891622E+004

4.OOOOOOE+003 0.12496561E+003 0.11755363E+004

3.OOOOOOE+003 0.11572602E+003 0.10806941E+004
2.OOOOOOE+003 0.10889656E+003 0.10277020E+004

1.OOOOOOE+003 0.88027377E+002 0.92269092E+003

This file is read by the iSIGHT parser to retrieve the data (see 3.10.2).

3.9. Cost module

3.9.1. Introduction

It is rare in industry today that the cost of producing and maintaining a product is considered
early in the design process. It is even more rare that the consumer's cost-of-ownership is
considered. While much of the emphasis in Modelling & Simulation for design is on
technology issues, integration of business issues is imperative to make a design which not only
performs adequately, but also is cost-effective and guarantees adequate levels of profitability.
For this reason, a cost model is included in the ICE platform.

It's common practice that the costing activity is done after the technical definition is worked
out: detailed drawings are usually required and manufacturing engineers as well as key
suppliers involved. Since the process can be time-consuming, quite often preliminary
incomplete technical information is released. As the data are incomplete, some assumptions are
made by costing engineers, which are hidden in the cost estimation. Then, prices are set by
applying company's profit margins and the business case formulated. Later on in the project,
when the design is technically complete and the cost updated, some of the assumptions prove
wrong. What invariably happens is that a cost increase occurs, which erodes significantly the
profits or, vice versa, drives a new design loop aimed at cost reduction.

We challenge that a detailed cost processing activity is needed every time and we believe
that a much more efficient and yet sufficiently accurate approach can be adopted in the Concept
and Preliminary Design so that it could be proficiently used to provide directions for most cost
effective designs, Fig. 90 [64] .
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The approach that

we embrace and we Planning and Preliminay Detail Design and Production orSystem
applied in our MDO Design

framework is what is
called "Parametric ca e "Parametric cost estimating

Cost Estimating" 
11

(PCE). In the Systems i
Engineering Glossary, .AW

we can find the
Direct engineering and

following definition for U nufacturing estimates/bis
(standard factors)

PCE: "A cost

estimating

methodology using
Start Program Program Program

statistical relationships Review Review Review

between historical costs

and other program Fig. 90: Different Costing Approaches for Different Project Phases

variables such as

system physical or performance characteristics, contractor output measures, or manpower

loading" [65] .

The origins of parametric cost estimating date back to World War II. The war caused a

demand for military aircraft in numbers and models that far exceeded anything the aircraft

industry had manufactured before. While there had been some rudimentary work from time to

time to develop parametric techniques for predicting cost, there was no widespread use of any

cost estimating technique beyond a laborious buildup of labor-hours and materials. A type of

statistical estimating had been suggested in 1936 by T. P. Wright in the Journal of Aeronautical

Science. Wright provided equations which could be used to predict the cost of airplanes over

long production runs.

In PCE costs are modelled based on past costs and "Cost Driver Parameters" are

statistically/empirically fit. The assumption underlying PCE is that a clear linkage exists

between cost and a product's cost drivers. PCE, therefore, search for product's / system's cost

drivers and, based on past costs, tries to establish relationships between them. The accuracy on

the overall cost is higher for systems made by several components. In fact, even if the

individual component costs may be affected by a considerable error, when summed up, the

errors partially cancel out. It can be mathematically proven that, given n components whose

cost is affected by a variability c, the variability of the total cost UT is considerably smaller:
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7T

In case of our
maniverter, parametric

cost estimation is further

eased by the fact that
historically, 50-60% of

the cost is actually

material cost, which can

be more accurately

estimated.

In what follows, we
will describe the cost
model that we
introduced in the ICE
platform. Since costs are

based on ArvinMeritor
production and supply

chain systems, actual

numerical values are

disguised and some

sensitive details are not
disclosed.

3.9.2. Maniverter Cost

Structure

In a series of

interviews with

ArvinMeritor costing

managers and engineers,
the cost structure of a

maniverter was
uncovered and a
simplified spreadsheet
built (Fig. 91).

Material Cost
Raw material

Inlet flange
Pipe A (AISI 304)
Pipe B (AISI 304)
Pipe C (AISI 304)
Pipe D (AISI 304)
Inlet cone
Converter can (AISI 304)
Mat
Outlet cone
Outlet pipe
Bracket

Freight
Dependent on Part Size
Dependent on Part Weight

Material Overhead

Production Cost
Labor cost

Labor cost per unit time
Machine Cost

Actual machine cost
Bending Cost

Cost per bending machine hours
No. Of hours of bending operations

Average time per bend
Welding Cost

Welding Robot Cost
Total Welding Robot Time

No. Of Welds
Operations Time per weld
Welding length
Welding time

Sawing, Deburring, Calibrating, Leak Testing
Costs

Machine Overhead

Manufacturing Cost
Material Cost
Production Cost

Total Cost
Manufacturing Cost
Scrap
Overhead
Alloy cost

Value
12.86
11.69
2.57
0.38
0.42
0.35
0.41
1.32
1.01
1.69
1.57
1.38
0.60
0.24

0.24
0.941

Value
11.18

6.20
28.39
498
4.52
2.37

35.00
0.07

1.66
11.00
0.15

14.00
4.00

974.16
487.08

0.50
0.45

24.04
12.86
11.18

28.49
24.04

0.24
2.241
1.97

Fig. 91: Maniverter Cost Structure
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The cost is made up by two components: material cost and production cost. Each of them

and is then affected by an overhead which is usually a fixed factor of the cost component it is

applied to.

Material Cost

Maniverter components, for costing purposes, are classified in the following categories:

* Tubes

* Metal sheets

* Stamped components

* Support mat

The brick is usually not considered in a cost submitted by exhaust system manufacturers,

since this component is selected by the OEM and the price agreed between the OEM and the

brick supplier.

For each of those categories, the main cost drivers were identified and, based on the

extensive ArvinMeritor

database, a statistical 9.0

relationship worked out. Y 1.779000x + 0.224180
8.00 1 R =0.996171For illustration purposes, _.00 2

A .4 1 U 1 700
we esV eb~ U r n; et11 a S,.

the tube cost only. e.oo

For tubes of a certain W E

material type, the main CL
. 4.00

material cost driver was i

identified as weight. 3.00

Secondary effects were 2.00

expected to come from: 1.00
tube length, diameter,

0.00 ___ ______

thickness, 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

thickness/diameter ratio, Pipe weight [kg]

and purchase quantity.
a boputchase 300 nti . oFig. 92: Pipe Price as function of Pipe Weight (AISI 304)
About 300 orders of

tubes (of the same material

type) with different quantities, diameters, thickness and length were considered and the tube

cost plotted against weight. The resulting graph is reported in Fig. 92. The linear correlation

between material cost and weight is striking, with a correlation factor of over 0.99. The

anticipated secondary effects are, therefore, minor and they are neglected.
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Mass information of the different pipes in the maniverter (the four piperuns and the outlet
pipe) is extracted from the CAD model and inputted in the cost model that yields back the cost.

Similar material-cost drivers relationships are worked out for the other material categories.
Also for those, weight proved to be a prominent cost driver.

Production Cost

Production Cost consists of two components: the cost of machine operations and labour cost.
The main machine operations considered are: pipe bending and welding. Machine costs are

essentially calculated as the product of the machine operations time by the time-unit cost of the
machine.

Bending time is estimated to be mainly dependent on the diameter of the pipe to be bended,
its thickness, the radius of curvature of the bend, the angle of the bend and the number of
bends.

Welding time is considered fundamentally dependent on the welding length and welding
speed. Additional time is then considered for welding robot positioning and disengaging.

Empirical or statistical relationships are elaborated that link these drivers to the machine
time. Past quotations were used as database.

Times are considered at the end of an initial learning curve.
Machine unit operational costs (consumables, depreciation, etc) are known for any machine.

Labour cost per unit time is also known depending on the number of shifts and the number
of operators needed to overview the machine operations. The number of shifts is determined by
assuming an approximate production of 100,000 parts per year.

The same historical reference time period (2003) is considered for labour, machine and
material cost to avoid the spurious effect of inflation.

Total Cost

On the sum of production and the material cost, a fixed percentage overhead is applied.
Then, to come to the total cost, a fixed percentage of scrap is added together with the cost of
the alloy. With "alloy cost", the part of stainless steel material cost which refers to the alloy
elements present in the steel (Ni, Mn, etc) is designated. The reason why this component is
separately taken into account is as follows. Alloy cost fluctuates. In the past three years, its
incredible rise has considerably increased the cost of the stainless steel and has forced exhaust
system manufacturers to increase the costs of their products. Car manufacturers then required
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having explicit visibility on this component to track any unjustified cost increase claimed by

their Tier 1 suppliers. Alloy

costs, in fact, are published

monthly and are a function

of material weight and of the -e

type of material. Cmmer I

In our cost model, the

average of alloy cost per kilo

over the year 2003 was

considered.

Fig. 93: Cost Model Overview

The resulting cost model is an Excel spreadsheet. As input it receives, from the CAD,
maniverter components masses and dimensions data, and using the relationships between those

data and the different cost components, gives back the maniverter cost, Fig. 93. The total

processing time is less than 1 sec.

3.10. The Enhanced Development Framework

Up to now we've described the individual modules that compose the ICE platform. In this

Section we are going to describe in detail how we assembled them together in the final platform

and the MDO algorithms that can be executed. We will start the description from the "glue"

that connects all the pieces together: the optimizer, which is iSIGHT, from Engineous.

3.10.1. The Optimizer

iSIGHT, from Engineous Software Inc., was developed to replace the manual trial and error

processes with an automated, iterative procedure (i.e., a software robot). The software

integrates all relevant design tools, such as CAD/CAM, in-house codes, and Microsoft Excel,
and then automatically changes the input data, runs the analysis codes, accesses the output, and

changes the input again based on pre-defined mathematical exploration schemes.

The software architecture (Fig. 94) includes a graphical user interface (GUI) to provide an

easy-to-use methodology for defining, executing, and analyzing design studies. All entries

made through the GUI are written to a text-based format in the Engineous proprietary Multi-

Disciplinary Optimization Language (MDOL). MDOL is a user-friendly language that converts

GUI definitions into iSIGHT's communication protocol. It is customizable and programmable

to further streamline the execution of a frequently used design procedure. The inter-process

communication layer provides the fundamental glue to seamlessly integrate a collection of
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simulation programs, numerical techniques, databases, monitoring and analysis tools, and both

command-driven and GUI tools
into a cooperative design iSIGHT Architecture
automation system. Due to the
nature of multidiscipline design c
studies, iSIGHT has incorporated

both distributed and parallel mLa
execution facilities to leverage G

existing hardware capability in a

network or server environment.
iSIGHT also works with

commercial queueing and load

balancing software. ALF

Bulding the ICE platform and
running an analysis within
iSIGHT is a 4-step process, Fig.
95 [66] :

* Process Integration: all the different

analysis codes are inserted in a
process flow, with their input and
outputs.

* Problem definition: once the
process is integrated in the iSIGHT
framework, the user defines input
and output bounds, initial values,
and objectives for the design study.
Additionally, the user defines a
design study strategy. The design
study strategy is dependent on the

scope and type of problem being
solved. It can range from a simple
trade-off study, to a complex multi-
disciplinary optimization
formulation

Fig. 94: iSIGHT Architecture

CA D/CAE

MS Excel

Constraints

? Choose
Strategy

nitialValues

Goal

Initial

Fig. 95: The iSIGHT Four Steps

* Design Automation: iSIGHT drives
the different analysis codes to implement the chosen design strategy

Page. 128/218



* In and post-processing data visualization: during the execution of the design studies, the

user can monitor the design process as it progresses in real-time. By utilizing the graphs
and tables created in iSIGHT at runtime, the user can identify trends and even make

changes in the design definition or exploration plan. There is no need to wait until the

end of the entire process and restart from scratch. Additionally, when the design process

completes, the user has access to set of visualization, data and statistical analysis tools.

3.10.2. Process Integration: putting the pieces together

Process Integration uses a building block approach for defining model execution within

iSIGHT. Users simply lay out their process on the interface with each block representing a step

in the process. The fundamental building blocks of iSIGHT are the Task Block, the Calculation

Block, the Simcode Block, and Custom blocks for commercial code support such as Microsoft

Excel spreadsheets and MSC.Nastran models.
The building blocks are used to compose the individual modules of the ICE platform. In Fig.

96 the different modules inserted in the overall framework are shown. Given the dependency

structure shown in Fig. 60, the different performance modules could be executed in any

sequential order after the Geometry Module or even in a parallel order. Here the Structural-

Cost-Fluid Dynamics sequence is chosen only because it reflects the order in which the

different modules were built.
Fig. 97 presents a more detailed pictorial representation of the data flow and interaction of

the different modules.
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Fig. 96: The iSIGHT Implementation of the ICE Platform
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Fig. 97: ICE Platform Data Flow
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The design iterations enabled by the ICE platform are articulated in the following steps.

1. The design loop starts with a baseline geometrical configuration defined by its

parameters values (stored in the file tube.exp)

2. The Geometry handler module calculates the geometrical and physical dimensions that

will be used in the following steps and writes the values in an ASCII File

(foroptimizator.txt). In addition, it creates the Parasolid file needed by the subsequent

structural analysis

3. The Frequency calculator module, reads the Parasolid file and feeds back the first

natural frequency (written in the out.f06 file)

4. The Cost Calculator module receives by iSIGHT the necessary geometrical and

physical data and feeds back the maniverter cost and its breakdown of material and

production cost
5. The Fluid Dynamic Module receives geometrical data of the maniverter (input.xml) and

feeds back the torque values and the catalyst inlet temperature over the 1000-6000 rpm

range (results boost.dat)
6. The Perfomance Calculator receives the torque values and the catalyst inlet temperature

over the 1000-6000 rpm range and feeds back the Performance Index and the weighted

average catalyst inlet temperature
7. The Optimizer receives from the different modules the maniverter performance

attributes, i.e. mass, 1st natural frequency, cost, performance index and catalyst inlet

weighted average temperature and, depending on the development strategy, feeds back

a new set of parameters values (stored again in the tube.exp file).

8. If the target of the performance attribute(s) is achieved or the maximum number of

iteration, the design process stops, otherwise a new loop starts (from point 2.)

We note that a loose coupling exists between the different applications. Interchanges occur

only in the format of ASCII files (with the exception of the Parasolid file) through a data bus

provided by the iSIGHT architecture.

While this approach has some limitations, it gives two fundamental advantages: 1)

interoperability is guaranteed because the communication media are ASCII files, 2) a module

can be eliminated or upgraded or a new module can be added with a minor effort because the

interfaces are limited and simple. The latter feature, in its turn, has the powerful consequence of

fostering scalability, both horizontally and vertically:

* Horizontal scalability: new performance attributes can be evaluated when the related

prediction models become available;
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* Vertical scalability: a module can be generated to be rather simple in the beginning but
it could be refined both in its capabilities and in its accuracy.

Each module is represented in iSIGHT with an input / simulation code / output structure. As

an example, the Geometry Handler module is shown in Fig. 98.

Fig. 98: The Input / Simulation Code / Output Module Structure

iSIGHT's File Parser is employed to write data in input and read data from output files
required in a simulation process. The interface provides a set of buttons that allows users to
graphically navigate through text-based files. Here, the users identify any values that will be
changed during the design process, or any parameters that need to be monitored for acceptance
criteria. Since the interface provides graphical actions and feedback, users are not required to
write code to create the commands necessary to parse the data files.

The interface and an example of the parsed input data and output data files are reported in

Fig. 99 and Fig. 100 respectively.
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Fig. 99: Input File Parsing Sample

Fig. 100: Output File Parsing Sample
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3.10.3. Problem definition

All quantities needed for the operations of the different modules are stored in iSIGHT. In the

current application there are 144 parameters, shown in Fig. 101. They fall in two categories:

input data, which represent the independent variables of the problem and output data, the

dependent variables. iSIGHT distinguishes the ones from the others by color: blue for the input,
black for the output. Any independent variable could be variable during the execution of the

development strategy (the box in Var. column is ticked) or constant (the Var. box in unticked).

The output variables, on the other hand, can be either objective or not and the goal of the

design strategy can be then to minimize or to maximize them. This is shown pictorially by the

up and down arrows in the Obj. box. Fig. 102 shows an example of performances maximization

and, at the same time, maniverter cost minimization.

Fig. 101: ICE Platform Parameters List
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Fig. 102: Example of Goals Setting

Fig. 103: Example of Parameters Upper / Lower Bounds setting
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Both design variables and objectives can be subjected to constraints. The constraints are
expressions of boundaries or sets of values that parameters must reside within. Boundaries
values are chosen with two main criteria: the maniverter fits in the engine compartment and
collisions between pipework and converter are mitigated. A sample is shown in Fig. 103.

3.10.4. Available Design Strategies

iSIGHT offers a suite of design study tools that can be thought of as the design intelligence
engine that drives the design exploration process. The Task Plan, shown in Fig. 104, allows the

user to define a sequence of steps that

can utilize any number of these design + P

study tools, in any combination. The -, 'a "'

classes of design study tools provided

in iSIGHT are:

" Sampling C

o Design of Experiments
(DoE)

o Monte Carlo Simulations

" Performance MMFD
NCGA

o Optimization Techniques
o Trade-off Analyses N< FeI pi t

* Quality Engineering Methods F r1or Task Plan $n ETtur

o Reliability Analysis

o Reliability Optimization

o Taguchi Robust Design
o SixuSim Robust Design Fig. 104: Design Study Options available in iSIGHT
" Six Sigma Robust Design

Individual plans for DoE, optimization, Multi-criteria Trade-off analysis and the Quality
Engineering Methods can be created and added to the Task Plan, which defines the sequence of

design tool application for design exploration. Approximation models can be applied at any

stage in the Task Plan, and solutions from one stage are automatically fed to the next for

complete automation.

In what follows we will focus only on design optimization methods since, in the present

work, only those were exploited.
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It's a well-established conclusion that no single optimization technique works best for all

design problems. Instead, a combination of techniques can provide the best opportunity for

finding an optimal solution.

Seventeen different
algorithms are available to be
used in any planned design
strategy. As outlined in Fig.
105, they are divided in
numerical or gradient based
methods and heuristic
techniques. They can be used
singularly or combined. For
the problem at hand we will
see that we identified an

optimum strategy composed
of several gradient search
steps followed by a multi-
objective genetic algorithm
Pareto set extraction. Multi-
Objective Genetic Algorithms
(MOGA) are actually the only

TYPE TECHNIQUE

1 Method offeasible Directions - CONMIN

2 Modified Methodof Feasible Directions (MMFD) -ADS

3 SequentialLinearProgramning(SLP) -ADS

4 Eterior Penalty - ADS

5 SequentialQuadratic Programing (SQP)- DONLP

Numerical 6 Sequential Quadratic Pro gramming (SQP)- NLPQL

7 Mixed IntegerOptirniation -MOST, Tseng(1996)

8 Hooke-Jeeves Direct SearchMethod

9 Successive ApproimationMethod (LPSOLVE)

10 Generalized Reduced Gradient(LSGRG2)

I I DownhillSimplex

12 Multi-Island Genetic Algorithm

13 Multi-o bjective Genetic A lgorithm(NCGA)

it 14 Mu ltiective Genetic A lgorithm(NSGA I)
15 A daptive Sinrlated Annealing

16 Directed Heuristic Search (DH S - U.S. Patent No. 6,086,617)

Hybrid 17 Pointer Autonntic Optimizer

Fig. 105: Optimization Algorithms available in iSIGHT

available algorithms to search for Pareto optimal solutions.

3.11. Post Processing: visualizing results data

Design exploration and Multi-disciplinary Design Optimization processes generate a huge

amount of data, which, depending on the multi-dimensionality, can easily surpass the human

cognitive capabilities. Hundreds or thousands design alternatives can be analyzed in a MDO

process and each design can be characterized along several dimensions.

To enable effective engineering decisions, an appropriate method to transform data to

information and to knowledge is required. Failing to recognize this will impair any previous

analysis effort. That's why design data visualisation is an integral and fundamental part of the

Enhanced Development Framework.

3.11.1. Introduction

Visualization exploits the powerful human visual system to effectively transport information

from the outside world to the human apparatus of perception, recognition, cognition, and

reasoning [67]
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Visually displaying data with two or

three dimensions is very common. Humans
can easily recognize structures in the data
(such as correlations in a scatter plot, trends
in a line chart, etc.) and get a better
impression of the data from images than
from reading numbers. The most
straightforward way to generate an image of
unstructured data points is with a simple

scatter plot. Traditional scatter plots capture
the data in a 2-D or 3-D space. Because each
variable requires its own dimension, these
plots can only display 2 or 3 variables.

The visualisation of 3+D data poses new
challenges and research is active in this field.

Some of the contributions could be found in
[68] [69] [70] . The most common approach is

in the direction of transforming raw data into
glyphs that are plotted in a 3-D space. A glyph
is a visual object onto which many data
parameters may be mapped, each with a
different visual attribute. Generally, additional
dimensions (variables) beyond the standard 3
orientation axes can be mapped onto glyphs
through: (1) scalar mapping, and/or (2)
color/texture mapping. An example of glyph is
shown in Fig. 106 [68] ; on it Pareto data are
also shown as brighter points.

Even if glyphs are powerful to visualize
complex data, for our work, we looked at tools
that were extremely easy to use and intuitively

friendly. First, we analyzed the visualization

tools available in iSIGHT and then developed a
simple and yet powerful and intuitive technique
for Pareto data visualization and decision-

making.

Fig. 106: An example of Glyph

Fig. 107: The Scatter Plots Capability in iSIGHT
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3.11.2. iSIGHT Visualization tools: Engineering Data Mining and Scatter plots

In iSIGHT the Engineering Data Mining application allows to produce scatter plots and to

visualize Pareto points. In Fig. 107, the results for the simple pipe application are shown (for

more details on the results, see Section 4.2). The four performance attributes of the more than

800 design alternatives are plotted in a light blue color. The darker points are the 50 Pareto

designs (Fig. 107).
The tool is such that, passing with the mouse over a design point, the corresponding

quantitative data of both the design variables and the performance attributes are highlighted,
Fig. 108.

Fig. 108: The Engineering Data Mining Tool in iSIGHT

While these are powerful tools, it's our opinion that they are not able, alone, to reduce the

complexity to such a level that is "humanly solvable" by the "average engineer". Since the

ambition of the automatic development approach is to be used in mainstream application by

project engineers with no special skill, we searched for alternatives.
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3.11.3. An intuitive tools for engineers: the Rainbow Plot

Solutions to an engineering problem can be divided into two sets: dominated solutions and

not dominated, or Pareto, solutions. We are particularly interested in the set of non-dominated

solutions; in fact a non-dominated solution is at least as good as all other solutions on all

criteria and better on at least one criterion. Non-dominated solutions define the efficient frontier

of the solution space. All solutions lying on the efficient frontier are potentially preferred by the

decision makers and in order to ascertain which is actually preferred it is necessary to take into

account the decision makers preferences. Since engineering decisions involve the resolution of

design trade-offs, our process is to identify the Pareto data first and to present them to the user

to apply final preference weights and select the "best" solution.

More specifically, raw data coming out of any MDO analysis can essentially be though o as

filling a matrix where each of the m lines refers to a particular design and each of the n columns

is a specific response. Data are displayed to the user after the following complexity-reducing

steps:

" Non-dominated (or Pareto) solutions are extracted from the complete data pool. In our

application, this allows to reduce the size of the data by approximately one order of

magnitude, from m to m/1JO.

* For each of the performance attributes, the best and the worst are identified; then each

value is ranked from 0 to 1 according to the proximity to the "best" point: 0 means

worst and 1 means best

" Processed in this way, the solutions matrix contains, now in each row, n values

comprised between 0 and 1

* These values are displayed in a rainbow plot: each value is given a colour in a rainbow

scale from dark blue (zero) to dark red (one).

A typical resulting plot is

shown in Fig. 109: each row is a

design and each column is a Best

design attribute. Design

The psychological process Sets
that the engineer is supposed to 091:

follow when analyzing the data t
is the following. Knowing that

red corresponds to "good" and

blue to "bad", using the

powerful pattern recognition of Pipemass Massflow Frequency Outlet Temp

the human eye and brain, the
Fig. 109: Qualitative Rainbow Plot of Simple Pipe Pareto Designs
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engineer can scan the rows looking for the darkest red combination (this also can be

automated).
In this phase, further narrowing down of solutions could be obtained by applying

preferences. For example, the first two pools of
. PipeMass Massflow fi TempOutlet

solutions (from the top) are to be preferred if

pipemass and massflow are the dominant criteria for

solution selection, the second pool of solutions is
probably preferable if frequency or outlet

temperature are the main drivers. 253% 32ae2.15% 6982%

In the specific case presented, the original more

than 800 solutions have been now reduced to less

than 10 which can then further analyzed by using

quantitative approaches.
800$5 $ 3.40% 38 89%
600% 43 54% 58 5% 84 2%

A different variant of the presented rainbow plot

consists in retaining numerical values in combination

with colors, Fig. 110. The highest values gets the
644% 58,81% 39.47% 5 4

strongest colour. Zero values receive no colour. The % 25'5%

color allows quick selection of the few design

alternatives, while data analysis provides the fine-

tuning.

39.56% 61 22 89% 41-23%

Rainbow plots can be easily generated with 35,9% 4676% 44 478X
34,61% 36,99% 723%11.03%/1

Poptools, a popular Excel add-in for statistical 3276% 4B70% /q, 4a41%

analysis and data visualization available as a 2*58% 11 00 0

freeware. However, we deem more research is 20.41% 697%

needed to explore visualization methods that, like 1533 766%

rainbow plots, exploit two powerful human cognitive 7.02% 5.54% 16.55%
-3.19% 2.13% 60% 26.02%mechanisms: pattern recognition and color mapping 0.00% 4.72 15

(i.e. association of color to information). Fig. 110 Quantitative Rainbow Plot of
Simple Pipe Pareto Designs
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4. USING THE TOOL: DEVELOPING PRODUCTS EFFICIENTLY

Real business entails adding value to things by adding knowledge to them...
Akio Morita, co-founder of Sony

4.1. Introduction

In this Section, making use of the developed Integrated Concurrent Engineering platform we
will use a Multi-disciplinary Design Optimization approach to identify maniverter design
solutions. The identified solutions are compared, in terms of performance and piece cost with a
baseline, which was tuned to reproduce an actual design that ArvinMeritor developed in 2002
for the same application (see Fig. 70), with the purpose to get a sense for the design
improvement that the novel approach is capable of delivering.

At the same time, development time is recorded and compared with a standard ArvinMeritor
leadtime for this type of application to estimate the reduction in development costs and in time
to market and the increase design flexibility enabled by the use of this Enhanced Development
Framework.

The design goal was to identify the Pareto optimal solutions. Given the high number of
variables (48 in total), the search for the most efficient frontier (which, in this case, is actually
an hyper-surface) is done in two phases:

" In Phase I, only the centerline of the maniverter piperuns are allowed to change during
the development process, while their diameters, thickness and the rest of the converter
are fixed

* In Phase II: all available design variables are considered variable

Before jumping to the maniverter application, however, we would like report some selected
results from a much simpler application that was used in a Phase 0 of this project as a trainer
both for the ICE platform building and in the MDO approach: a simple pipe. This application
was instrumental in developing much of the knowledge that was used subsequently in building
the definitive ICE platform and in the testing Phase I and Phase II. Despite its simplicity, we
believe that it brings some interesting general insights.

4.2. The trainer: a simple pipe
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4.2.1. System's Description

The targeted system for Phase 0 is a simple pipe, see Fig. 111 (which is just a copy of Fig.

18, but it's reported here, enlarged, for ease of reading).

The pipe has a centerline defined by a cubic spline with four control points and four control

cross sections: the first is a racetrack and the other three are circular.

For this simplified problem, the design variables are:

" The two dimensions of the racetrack section and the diameters of the other three

* The pipe thickness

* The 4 control points, each of which has 3 coordinates

The pipe is imagined connected rigidly to a wall in correspondence to the racetrack section;

hot gases enter the pipe at a fixed temperature from it and flow to the outlet round section,
under the action of a constant pressure differential.

A simplified ICE platform is built around this application, enabling the calculation of the

following four performance attributes:

" Pipe mass: the lower the better

* First natural frequency: the higher the better

" Massflow rate: the lower the better

* Outlet gas temperature: the higher the better

Simple Pipe Description
si-ri

Gas in Racetrack cross section

A-I-NCircular cross sections

L-74.2

R-196Cetrne
s2r cubic

s3 r 
Gas out

>und

s4_r

Fig. 111: The trainer a Simple Pipe
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In the analysis, the pipe centreline coordinates are considered fixed; consequently the design

variables are reduced to six.
While this is a simplified application, the software programs that were used are the same of

the mainstream application, i.e. UG for

the CAD model, MSC.Patran and ' ',a--

MSC.Nastran for the structural analysis R"our"

(the pipe is a cantilever beam) and AVL i -"----' Fw 'f

BOOST for the fluid dynamic analysis.
45.0 11.55 Uniform 0.256667

4.2.2. Results
45.0 11.55 Uniorm 0.256667

Several types of analysis were 4520 1155

performed to test the capability of the tool ....... .. ...

to manage the trade-off intrinsic in the mean(a+ b)/2

system. Here we report only some

samples useful to illustrate some insights standard deviation

that were gained. In the two equaions aboe, a is the loer limit of the uniform

distribution, and b is the upper limit.

Mass-Frequency Trade-off Fig. 112: Monte Carlo Analysis setup: variables mean
values and boundaries

A Monte Carlo analysis was

performed, Fig. 112. Design variables were varied in a given range and the mass-frequency

performance attributes space mapped, see Fig. 113.
Even if strictly valid for this simple system and within the specific analysis, we can draw

some conclusions that we believe are

general: Utopia Point F

0 Designs can be made that, for a

given level of a performance

attribute, exhibit a great variability

in other dimensions. In the specific

example, for a given frequency 1500 u
Hz resonance frequency, pipes with

a mass of 220g or 1000g are

possible, or, vice versa, for a given *

pipe mass of 500 g, pipes with a
Fig. 113: Monte Carlo analysis: Frequency-Mass

resonance frequency of 500 Hz or Trade-Space
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2500 Hz are possible

* Experience drives the design towards specific areas of the design space.

* Experience is not sufficient to make designs with exceptional performances but proper tools

are required. In the considered example, we can use the designs density as a proxy for the

likelihood of the outcome of the design effort with very little experience. We see that the

points' cloud rarefies as we move towards the Pareto front, suggesting that, even with a

good level of expertise, as we push the design targets to the limit, it becomes harder and

harder to identify a design solution.

" The shape of the Pareto front suggests where to stop the development: further increasing a

performance attribute cannot be worth the effort. With reference to Fig. 113, it could be

reasonable increasing the mass of a the pipe from a minimum of 200 g to 300 g because, by

doing that, a Pareto solution exists which has a frequency of 2200 Hz, much higher than the

500 Hz of the 200 g pipe. If we wanted to augment further the natural frequency, for a

minor increase from 2200 Hz to 2500 Hz, we should be prepared to accept a huge mass

penalty, from 300 g to 600 g.

Massflow - Gas outlet temperature

Depending on the morphology of

the performance attributes space a Max Massflowrate

"sweet spot" might exist.
Fig. 114 depicts the massflow rate

vs. gas outlet temperature trade-space.

The maximum outlet gas

temperature is achieved with a

particular value of the massflow rate;

higher or lower massflow rate values

reduce the gas outlet temperature.

In this particular case, the Fig. 114: Monte Carlo Analysis: Massflow-Outlet Temperature
observed behaviour is explained as Trade-Space
an alternation of dominance of two

physical phenomena. If we imagine decreasing the pipe diameter, up to a certain point the gas

outlet temperature increases due to reduced heat loss caused by the reduced pipe surface.

Reducing further the diameter constrains so much the massflow that the amount of heat injected

in the gas stream is not sufficient to maintain a high temperature.
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4.3. Phase I: Testing the EDF on the maniverter

The Enhanced Development Framework has been subjected to a set of tests to verify

possible issues and to identify the best combination of optimization algorithms for computing

the Pareto hyper-surface. To avoid the complexity of the problem to hinder the understanding

of the behaviour of the system and of the tool, in this preliminary testing phase we allowed only

the control points of the centerline pipes splines to vary, while pipe diameters and the rest of

the system was considered fixed. This means a total of 24 design variables (2 control points per

each pipe, with 3 coordinates for each point; the other 2 control points of each spline, the first

and the last, were fixed).

Intermediate control point design

variables are given upper and lower

boundaries allowing them to vary

inside a block, see Fig. 115.

The execution time of a complete

simulation loop is about 20 min,
split in:

* 0.8 min for geometry

regeneration
* 3.5 min for structural

analysis
* 15 min for fluid dynamic

analysis
0 0.7 min for Excel execution

and optimization algorithms Fig. 115: Pictorial representation of boundaries range for
pipework control points

4.3.1. Design Space Exploration

Whenever a new problem is tackled, for which very little is known about the design space

and the behaviour of the system, good practice suggests exploring it in a systematic manner.

Typical techniques used for this design exploration activity are DoE or Monte Carlo analysis.

In DoE, sample points are selected in the design space (several methods exist for point

selection) and performance attributes computed. In Monte Carlo analysis, design variables are

varied around baseline points according to a probability distribution.
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Design Space exploration can be an effective technique to locate the zones where optima
are; in addition the sensitivity of performance attributes to the different design variables can
often be easily established.

When we tried to execute both DoE and Monte Carlo analysis in our EDF, however, we
suddenly hit against a major roadblock: geometry regeneration failures. As mentioned in 3.6.2,
the geometry is governed by parameters which are not completely independent but related by a
loose correlation. Let's illustrate the issue with a
simple 2-D example.

If we have a pipe whose centerline is defined by
4 control points which are allowed complete
freedom in the design space, we can select a

combination which gives the path shown in Fig. D
116. If the pipe has the diameter D shown, we

intuitively understand that the pipe cannot be
geometrically generated: the curve between point 3
and point 4 is, in fact, too tight. We, therefore,
intuitively grasp that a loose coupling exists between the selected variables, even though the
relationship cannot be straightforwardly determined.

Generalizing, we can image the design space as defined by "feasibility channels" where

certain combinations of design variables give feasible solutions, delimited by ridges beyond

which no solutions exist.

To partly uncover the nature of this channel-like design space without being stopped in the
unfeasibility traps, a pseudo-Monte Carlo analysis is run.

The strategy is the following. Starting from a baseline feasible design configuration, a

"local" Monte Carlo analysis is performed where design variables are allowed to change by +/-
20% with respect to the baseline. This guarantees that a sufficient percentage of the runs are
feasible. Then, the farthest point in the design space is selected, i.e. the one which has got the

highest design variables distance (x, - x0)2 , from the baseline and a new Monte Carlo

analysis is run. A fixed number of advancement steps (100) and "local Monte Carlo analysis"

(10) are set, for a total of 1000 runs.
Fig. 117 collects a sample of 9 of the 276 pairwise scatter plots of the 24 design variables.

The points where the geometry generation failed are indicated by circles, the feasible points
by full dots. The direction of the stochastic path is given by the arrows.
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Feasibility channels clearly emerge. May different patterns appear: some of the variables are

poorly or non-correlated at all, some of them are loosely correlated and some others are highly

correlated.
This finding somewhat confirms the intuition we had. The

by the fact that channels shape and dimensions change with the

fixed in this testing phase, i.e. the pipe diameters and thickness.

situation is further complicated

other design variables that were
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Fig. 117: Feasibility Channels

When running a DoE or a Monte Carlo analysis, values of the design variables are selected

randomly in the whole design space. The morphology of the design space made by

unpredictable narrow feasibility channels causes the majority of random combinations to
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generate unfeasible geometries. Out of a Monte Carlo trial we did with uniform probability

distribution, we estimate that the feasible runs are about 1-3% of the total number of runs. Even

though geometry regeneration time is remarkably low (<1 min), to have any given number of

feasible geometry sets, a two order of magnitude runs would have to be performed.

Consequently, for this application, traditional design space exploration techniques are not
affordable. Given the peculiar shape of the design space, on the other hand, gradient-based
techniques proved to be effective.

A preliminary set of single objective optimization runs using gradient-based methods was
performed for different performance attributes. The results of this activity were several:

* The design space was partially explored

" Some improved design were found

* The most appropriate gradient-based algorithm for the application was identified.

The following Section describes the details of the various runs.

4.3.2. Single Objective Optimizations

A particular effective method in "riding" the channels proved to be Hooke-Jeeves one. The
Hooke-Jeeves search, in fact, is made especially for ridge-following. Its strength is that it is

able to find the ridges itself and can recover if a ridge comes to an end. Some details of the

algorithm are given in the Section that follows.

The Hooke-Jeeves algorithm

The search method developed by Hooke and Jeeves [71] , known also as pattern search,
takes advantage of the fact that most response surfaces have one or more ridges which lead to

the optimum. Thus the purpose is to find a ridge and follow it to the optimum. In pattern search

the search begins by exploring the response surface in the vicinity of a selected base point.
With repeated success the explorations become longer taking advantage of an established

pattern. Failure to improve the criterion, however, indicates that one must abandon the old

pattern and try to find a new one, which will be followed until the pattern is broken again and

the process has to be repeated. The so determined pattern will coincide with the ridge. In the
neighbourhood of the optimum, the steps become very small to avoid overlooking any

promising directions. The optimum is reached and the search terminates when the

predetermined final step size fails to improve the criterion.
The objective function is not required to be continuous. Because the algorithm does not use

derivatives of the objective function, the function does not even need to be differentiable.

This technique has a convergence parameter, p, which lets you determine the number of

function evaluations needed for the greatest probability of convergence. This parameter sets the

step size reduction factor and has a value between 0.0 and 1.0. Larger values of p give greater
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probability of convergence on highly nonlinear functions, at a cost of more function

evaluations. Smaller values reduce the number of evaluations (and the program running time),
but increase the risk of non-convergence. The default value in iSIGHT is 0.5.

Being a direct numerical search algorithm, H-J is prone to be trapped in a local minimum.

However, repeated searches from different starting points or searches for different values of p

reduce the likelihood of the optimum being a local extreme point.

Min mass
5000

In this run, starting from

the baseline configuration, 590 -

the H-J algorithm is given

the task to find the minimum 500-

mass configuration. p is set 5700 -

to the value of 0.3 to

increase speed. 5600 -

Structural and fluid

dynamic analyses are

switched off to save time, as 5

they are unused in this run.

With H-J feasible runs are

about 70% of the total. The

optimization history is shown in

Fig. 118. Total run time is 7h on the

selected hardware platform.

Total mass was reduced by 8%
from 5946g to 5467g. However, if

we take into account that all

maniverter's design variables are

fixed, but the piperuns, whose mass

is 1224g, we get a more sensible

figure of 39% mass reduction.

The resulting minimum mass

geometry coincides with what the

-IN--
M

0

50 100 150 200 250 300 350 400 450

Run Counter

Fig. 118: Testing Phase - Maniverter Mass Minimization -
Optimization History

Lowest piperun
lengths

Fig. 119: Testing Phase - Maniverter Mass Minimization -
Resulting Geometry
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intuition suggests: piperuns are made as short as possible.

Max performance

In this run, starting from the baseline configuration, the H-J algorithm is given the task to

find the configuration that ensure the engine the best performances, i.e. a design solution that

has the max value of the performance index, the max ratio of the mean torque and of its

standard deviation (see 3.8.4). p is set to the value of 0.3.
The optimization was stopped after 80h of runtime.

In Fig. 120, the performance index is plotted against the run counter. To understand how the

optimization morphed the maniverter geometry, pipe lengths are also plotted (best fit

polynomial approximations are superimposed to the analyses results for easier reading of the

trend).

345. c LengthPipeB 142
. LengthPipeC

335 o LengthPipeD

325 4 TorquePerformancelndex
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195112
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Fig. 120: Testing Phase - Performance Maximization - Optimization History

We observe that the optimization process led to an evening of pipe lengths. A closer look at

the components of the performance index, i.e. the mean value of the torque and its standard

deviation, reveals that the improvement arises from the reduction in the standard deviation,
more than from the increase in the mean value. This result coincides with manifold design best

practice, which recognizes the benefit of having even pipe lengths on the regularity of the

torque.
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In addition, the optimization kept pipe lens
the design best practice, which gives exactly
200-220 mm as a threshold level: above this

value power and torque level off, below it,
they fall dramatically.

Last but not least, the analysis seems to

head towards a differentiation of the piperuns,
with two (namely, pipe A and C) about 30 mm

longer than the others (pipe B and D). This

may be the result of some kind of tuning.

The geometric configuration result of the

optimization process is represented in Fig.

121. We note the interesting feature that the

optimization shaped the piperuns to be,
within the existing constraints, as straight as

possible, with the minimum number of bends

losses. In addition, as we will see in the nex

costs.

above 200 mm. Again, this is confirmed by

Fig. 121: Testing Phase - Performance Maximization

;. This is, in fact, beneficial to reduce pressure

t Section, this strategy also reduces production

Min cost

Starting from the
baseline configuration, the

H-J algorithm is given the

task to find the design

solution that has the

lowest overall cost. p is set

to the value of 0.3.
The optimization was

stopped after 136
iterations and 50h of

runtime.
The optimization

history is shown in Fig.

122 while the resulting

geometry is shown in

Fig. 123.

40

35

30

0

S25

20

15

-40

-35

-30

-25

-20

-15 *

- 10

-5

-0

0 20 40 60 80 100) 120 140

Run Courter

Fig. 122: Testing Phase - Cost Minimization - Optimization History
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We note that maniverter cost was reduced essentially by leveraging production cost, while

material cost remained essentially the same.
Production costs are reduced by reducing the number of bends and the bend angle.

In our opinion, the algorithm tackled the production cost because it found this was the

easiest to reduce. However, if we let the run proceed further, we believe that the algorithm
would have reduced material cost by shortening the pipes.

Even if with disguised cost figures, we note that

the cost reduction has been remarkably high, from

C36.8 to 24.6, i.e. nearly 35%. Given the thin

profitability margins that currently exist in the
automotive component industry, a difference of

this order of magnitude, for this type of system,
might mean a shift from a painful loss to an over

the top profitability and great strategic positioning.
Since this result depends heavily on the cost

model assumptions, a scrupulous analysis of the

cost model is mandatory. However, it signals that
significant business improvements can be gained

through the optimization.

Fig. 123: Testing Phase - Cost Minimization
- Resulting Geometry

4.3.3. Multi-Objective Analysis and Trade-

space exploration

Single-objective runs allowed to get first feedbacks from the framework, to understand that

the results it provides are sensible since they match common design experience and also offer

intriguing insights from a business perspective.
Now, we can head straight to the original goal, which is Pareto front calculation through

multi-objective optimization and trade-space exploration. Design variables are, by now, still

only the 24 described in 4.3
In multi-objective optimization problems, several objectives are considered at the same time.

When more than one objective is considered, the concept of optimum solution is replaced by
the notion of the Pareto optimum set.

In this testing phase, we limited ourselves to pairwise analysis: out of the five different

performance objectives, two pairs are selected for Pareto front calculation.
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For multiobjective optimization, Genetic Algorithms (GAs) are very effective. These
algorithms of multi-objective GA can be divided into two categories: the algorithms that treat
Pareto-optimum solution implicitly or explicitly.

The majority of the latest methods treat Pareto-optimum solution explicitly. One of the most
recent (2002), the Neighborhood Cultivation Genetic Algorithm (NCGA), was used for the
maniverter multi-objective analysis.

The NCGA algorithm [72]

In the past few years, several new algorithms that can find good Pareto-optimum solutions
with small calculation cost are have been developed. Typical algorithms are NSGA-II, SPEA2,
NPGA-II and MOGA. These new algorithms have the same search mechanisms, preservation
scheme of excellent solutions that are found in the search, allocation scheme of appropriate
fitness values and sharing scheme without parameters.

In NCGA, each objective parameter is treated separately. Standard genetic operation of
mutation and crossover are performed on the designs. The crossover process, in particular, is
based on the "neighborhood cultivation" mechanism, where the crossover is performed mostly
between individuals with values close to one of the objectives.

In the crossover operation of NCGA, a pair of individuals for crossover is not chosen
randomly, but individuals who are close to each other are chosen. Because of this operation,
child individuals which are generated after the crossover may be close to the parent individuals.

NCGA is a robust algorithm to find Pareto-optimum solutions. By the end of the
optimization run, a Pareto set is constructed where each design has the "best" combination of
objective values, and improving one objective is impossible without sacrificing on one or more
of the other objectives.

NCGA is selected for maniverter development because, in addition of being a powerful GA
for Pareto set extraction, its iSIGHT's implementation gives the possibility to give a start
population that the algorithm evolves. This is the mechanism that we exploited to overcome the
feasibility issue that was discussed in Subsection 4.3.1. If we tried to run any GA without a
special initialization, since the starting population is generated through a random selection of
design variables combination, we would fall into the same feasibility trap with many generated
solutions characterized by unfeasibility.

What we interestingly found in our particular application is that "feasibility" seems to be a
characteristic of the "DNA" of the any feasible solution. This has, as a consequence, that if the
GA starts with a population of feasible solutions, it proceeds without encountering any major
obstacle because, crossing over two "feasible" members results, in general, in feasible
offspring.
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From here the idea to generate feasible solutions with a pattern search algorithm such as H-J

and then compose the population to be given as initial set to the NCGA. For a more

comprehensive design space exploration, the initial population set should then made by design

solutions at the edges of the performance attributes space.

Mass-Frequency Trade-off

Ten members of the entire population of the solutions generated during the mass

minimization run are manually selected and given to the NCGA algorithm with the dual

objective of minimizing the mass and maximizing the first frequency. The process is carried

forward for ten generations for a total of 100 runs. Feasible solutions were more than 97% of

the total number of generated designs.

The resulting Pareto plot is shown in Fig. 124. As we can see solutions immediately cloud

around the utopia point.

The trade-off between frequency and mass does not appear to be as strong. In fact the

shorter piperuns that the low mass design features also make the solution stiffer (the first mode

is in fact a global lateral left-right swing).

Utopia
Point

370.0

360.0

350.0

S340.0

LL 330.0

320.0

310.0

300.0
5450 5500 5550 5600 5650

Maniverter Mass [D

5700 5750 5800 5850 5900

Fig. 124: Testing Phase - Frequency-Mass Trade-Space
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Performance-Cost Trade-off

Here the two populations generated in the previous cost minimization and performance

maximization runs are considered. Ten members are selected from both populations to form the

starting set, which is then carried forward for 10 generations, for a total of 100 runs. About

90% of the runs were feasible.

In Fig. 125 results are reported in the Performance-Cost trade-space. Green squares identify

the results of the previous max performance runs, purple squares are the results of the previous

min cost run, orange squares are the solutions generated by the NCGA process.
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IM Solutions Generated in the Min Cost Run

U Solutions Generated in the NCGA Pareto Set Extraction

Fig. 125: Testing Phase - Performance-Cost Trade-Space

We note that a good coverage of the performance attributes space is achieved thanks to the

diversity of the initial set and that some very interesting solutions were found which have

higher performance than the baseline at a much lower cost.
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4.4. Phase II: Running the EDF with full capabilities

With the experience gained in the testing phase, as a final step in our investigation, we

simulated the development of a maniverter for the Fire 1.4L 16V with the novel Enhanced

Development Framework.
For this purpose we released all the variables that are allowed by the parametric model,

setting adequate
upper and lower

boundaries for each.
This allows the

optimization

algorithm to i
consider flexible the
following elements: % X , . -

131

* Piperun 129

centerlines 127

* Pipe

diameters

" Position and
inclination of the
converter

" Thicknesses of
pipes and inlet /

outlet cones

Following the
methodology identified
in the testing phase, the
development run, has
been articulated in two
consecutive phases:

" "Anchor points"

identification
" Pareto hyper-

surface extraction.

10 20 30 40 50

Run Counter

60 70 90 90 100

Fig. 126: Final Run - Performance Maximization - Optimization History
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Fig. 127: Final Run - Cost Minimization - Optimization History
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4.4.1. Preparation Runs

Preliminarly, feasible solutions sufficiently far apart among them and each one reasonably
close to the "anchor point" 5 for the different performance attributes have been identified.

Approximately 100 runs of a single objective optimization for each of the five selected

performance
attributes have been

420-

done. The
algorithm used has
been Hooke-Jeves

with a p=0.2 to

achieve good

speed.
The five single 3 '

objective runs

totalled 7 days of 3" 4,toald 7 d y f 0 20 40 00 00 100 120 140 100 10

computing time. Counter

Fig. 126 to Fig. 130
report the optimization Fig. 128: Final Run - Frequency Maximization - Optimization History

histories. Plotted
solutions are all feasible. 1240

Compared with the

runs done in the
previous Section, we

note that "better" C
E1210

solutions have been 2
E

achieved in a lower 12

number of iterations. 1
This is due to reduction

of parameter p in the H-J

algorithm and to the

higher number of
degrees of freedom of
the model.

U 1-

""" N
ME

20 40 so so 100 120

Rim Counter

Fig. 129: Final Run - Catalyst Inlet Temperature Maximization -
Optimization History

5 In Multi-disciplinary Design Optimization, an anchor point is defined as a design solution characterized to

have the best absolute performance attribute in one dimension.
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4.4.2. Pareto Set Extraction

Four design configurations per each of the five performance attributes among the best of

those identified in the 6500......

exploratory runs have 630

been selected for a total

of twenty designs.

These were used to
6 5700

compose the initial

population used in the "

Pareto set extraction
5100

run. The NCGA
4000

algorithm was used for
4700

this purpose. The
4500

population was 0 20 40 R60 0 120
Run Counter

advanced for 25 generations

fa a led fof 50 gerns.os Fig. 130: Final Run - Mass Minimization - Optimization History
for a total of 500 runs. As

for the 500 preliminary runs,
7 days of computing time were required.

The initial population of feasible designs was instrumental to keep feasibility as high as

80%.

The Pareto set was generated automatically by iSIGHT's NCGA's algorithm and includes

12 designs solutions.

Fig. 131 and Fig. 132 report the different pairwise scatter plots. The red star symbolizes the

utopia points in the represented dimensions.

We get the confirmation that huge variation of performance attributes in one dimension may

correspond to similar performances in other dimensions. For example, for the same cost of F35,

a maniverter of 4900g mass or 6200g can be designed or the same performance index of 140

can be achieved with designs which are characterized by an average catalyst inlet temperature

of 1188 'C or 1234'C, i.e. nearly 50 C difference, which translates in enormous pollutant

emissions levels.

However, when data have more than three dimensions, scatter plots lose their effectiveness

and they must be replaced by different and more efficient forms of visualisation that aid the

decision-making process.
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4.4.3. The Engineering Decision

It is important to draw a critical distinction between the phase of generating Pareto solutions,

which is objective, and the phase of choosing a solution from the Pareto set, which is

subjective. The latter depends entirely on designer and decision-maker preference, while the

former objectively seeks to generate Pareto points in the design space - regardless of their

relative desirability. In the previous phase, using optimization algorithms we've extracted the

Pareto optimal solution. Exploiting advanced visualization techniques, we simulated the

ultimate engineering decision on the best configuration to choose.

Pareto data were processed as described in Subsection 3.11.3 and the rainbow plot

generated, Fig. 133. We recall here that red color is associated with "good" performance and

the blue with "bad" and that each column is a performance attribute, while each row is a

particular design in the Pareto set. Solutions are ranked in maniverter cost order, since cost is

deemed the most important factor in decision-making.

lE

2
Best
Design
Sets

3 ]

Legend
*0.000
*0.063
* 0.125o 0.188o 0.250

o 0.313o 0.375o 0438
S0.500

0.563
*0.625
*0.68
*0.750
*0.813
*0.875
*0.938
*1.000

[ ' TorqueWeighted Perform
Avg Cat Maniverte ance Maniverter

fM InletTemp rMass Index Cost

Fig. 133: Final Run - Pareto Data Qualitative Rainbow Plot

The rainbow plot conveys pictorially and intuitively several qualitative important

information:

0 Maniverter mass and Catalyst Inlet temperature are negatively correlated, i.e. good

values (i.e. low) of the former correspond to bad (i.e. low) values of the latter. This is
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evident by observing that red colors in mass column are always associated to blue

colors in temperature column

* Mass is positively correlated with Cost, i.e. lower mass corresponds to lower cost. This

is testified by the fact that designs are associated similar colors in the cost column and

in the mass column

* The inverse happens with Mass and Performance: high levels of performance attributes

are generally associated with poor (i.e. high) values of mass

* Torque performance does not exhibit huge variability and it is particularly insensitive to

the variation of the other performance attributes. This is the highlighted by the fact that

its related column features a red-side color for most of the designs

* High levels of all performance attributes at the same time are difficult to achieve. This

is witnessed by the fact that no rows with red color marked in all columns exists

We visually divided the attributes levels in "good", associated to a dark red, red, orange and

yellow colors, and "bad", associated to green, light blue, blue and dark blue. In the role of

decision makers, we scanned the rainbow plot to look for balanced solutions with all good

performance attributes. Since no single solution exists which has all "good performances", we

sub-select those which have at least four distinctively good attributes, see boxed solutions in

Fig. 133. We then fine-tuned our choices by looking at the quantitative version of the rainbow

plot, Fig. 134 (for a full description on how it is generated, see Section 3.11). Here the left-hand

side contain the numeric values and the right-hand side the performance percentage ranking. In

bold are the designs that correspond to the previously boxed solutions.

Weighted Mnvrte Torque Mnvete WeightedA Maiere Torque Maivet
fi Avg Cat Mas Performanc Cos fi vg Cat Mas Performance Manoete

Inlet~m e Index CotInletTemp Index

Fig. 134: Final Run - Pareto Data Quantitative Rainbow Plot
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Our preferences set estimates as too high the mass of the second and third solution groups
(>6200g). Consequently, we chose the solution from the set #1.

In Tab. 9, the identified solution is compared with the baseline design that was the starting
point in our optimization work and which, as mentioned, constitutes a solution that took
ArvinMeritor about 9 weeks to develop and to optimize for the particular application back in
2002.

The new solution is far better in all dimensions: it has better torque performances (+20%),
better vibration characteristics (+75 Hz), better emission characteristics by ensuring faster
warm-up of the catalytic converter (+25 *C) and lower mass (-389g). Last but not least, it has a

remarkable 50% less cost.

Performance Attribute Optimization Selected
PerformanceAttribut I Target Baseline Solution Difference

Torque Performance Index -a 129.70 152.96 17.94%

Cost [E] 4 36.83 E 18.56 -E 18.27

1st Natural Frequency [Hz] 4 340.71 415.26 74.55

Catalyst Inlet Temperature [*C] 1 1178.68 1204.38 25.70

Mass [g] 4 5945.63 5556.17 -389.46

Tab. 9: Performance Attributes Comparison: Optimized vs. Baseline Solution

The two different geometric configurations can be visually compared in Fig. 135. In

addition, in Tab. 10, we provide a comparison of the different thicknesses:

Pipe A Pipe B Pipe C Pipe D Inlet cone Outlet cone
[mm] [mm] [mm] [mm] [mm] [mm]

IBest Solution I 2.48 1.20 2.40 1.20 2.40 1.20
Baseline 12.00 2.00 2.00 2.00 2.00 2.00 _

Tab. 10: Thickness of different maniverter components - Baseline vs. Optimized Solution

The new design looks odd to the eye of an "experienced" designer because of the different

pipe diameters and different thicknesses and in no way this would be the result of a manual

development effort.

While the results of Tab. 9 would require an attentive check, particularly the cost figures

which are the most striking, we note, however, a similar scenario is likely when performing

automatic optimization: a high performance solution that does not correspond to well-

established design pattern.
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Best Solution Baseline Solution

z

Fig. 135: Baseline (right) and Optimized (left) Maniverter Geometry

Optimization algorithms are not forced to ride the old paths of experience but are only

governed solely by the goals they are given. Fast execution of design iterations enables many

designs to be checked and the "sweet spots" identified. The results are as good as the

underlying models.

The designer must be therefore willing to replace the natural scepticism with an authentic

open mindset and be ready to accept the solution proposed by the optimization process. Sanity

checks are anyway required to avoid making a mistake due to modelling errors, but when they

will give confirmation on the performances of the solution, the design engineer should take the

time to reflect on the reasons why the performances of the identified solution are so good. That

phase is a fruitful moment of knowledge creation.

As an example of the physical explanation of some of the good performances we mention:
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* The two external pipes, with their higher diameters, contribute to raise the first natural

frequency, which corresponds to a lateral movement.

* The higher overall pipes cross sectional area, in addition, contribute to lower the

backpressure
* The maniverter mass is lower, thus raising the frequency and lowering the cost

* The number of bends is lower and bends are with smaller values of diameter/bending

radius ratios, thus lowering bending cost

* The pipework mass is lower, thus raising the average catalyst inlet temperature

" Pipe diameters are different to compensate for different lengths and bends: 1)
smoothness of piperun is a factor for backpressure reduction and can be balanced

against a smaller radius; 2) the same tuning frequency can be achieved with a longer

pipe with small radius or with a shorter pipe of a big radius [73] .

We recognize therefore the automatic multi-disciplinary design optimization, compared with

the traditional design process, has several benefits:

* Lower development time (14 days against 60+)

" Lower development cost (related to development time and resource allocation)

* Better product performances
* Innovation

" Knowledge widening
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4.5. The value of the tool: summary of insights

Throughout the present project, in the build-up, testing and utilization phases, we came
across several findings that, even if strictly limited to the specific application, are believed to
have the potential to constitute general insights. Even though we have dispersed them where
data provided evidential proof for each of them, we deemed useful to group all the insights
together in a sort of body of knowledge gained throughout the project. Hereafter they are
therefore listed from general design related items to more specific MDO implementation
related issues.

Design:

" Design solutions exist with similar performance along one dimensions but much
different along at least one other.

" Design solutions with extremely good performance attribute levels in many dimensions
represent a tiny subset of the design space.

" The majority of the generated designs are characterized by mediocre performance if
compared with what those systems have the potential to deliver. Average design
practice, limited by time and budget constraints, results in poor design space
exploration. Even if product experience may guide to explore good design areas, in
general only 50-60% of the value that could be obtained by a system is extracted.
Therefore a huge opportunity exists for both product cost reduction or product
performance enhancement.

* Relationships between performance attributes are not intuitively obvious for complex
systems and not evenfor simple ones. Intuition, engineering knowledge and experience
usually drive the design: we use them to correlate performance attributes to design
characteristics. However, for complex systems, the interrelations between physical
phenomena is so intertwined that our limited cognitive capabilities may fail to find the
right relationships, even in the case of relatively simple systems. A false intuition
pushes the designer in wrong directions, not differently from what a mirage in a desert
does to the voyager.

* Effective designs can be found by exploiting the characteristics of the Pareto fronts.

Inter-dependence of performance attributes is, in general, not linear. Regions of the
design space can exist where, by worsening slightly the performance attribute A, a huge
benefit can be obtained in attributes B and/or C, etc. Moving from one area of the
design space to the other, the relationship may invert, i.e. attributes B and/or C, etc. may
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be insensitive even to a huge variation of the attribute A. The inflexion point can
represent a zone where to search for the "best design".

* Automatic Optimization widens design knowledge paths but requires an open mindset.

We've seen that optimization algorithms in some cases confirmed current maniverter

design practices (e.g. even runners for constant torque, shortest runners for lowest

mass). However, they are not constrained by "common sense" and "past experience",
but they chase only numerical minima or maxima. In doing that, they are not restrained

from riding new design avenues and, by doing that, they become a means for

innovation. Design engineers must be open-minded, take the solution proposed by the

MDO tool and find the necessary confirmation. If performances are confirmed, the

innovation is real and the examination of the root causes leads to extend current product

knowledge

* Multi-disciplinary analysis shifts the engineering focus from design to performance

evaluation and decision-making. Quite often, in a design review, the question is asked,
by management or customers, "what if I wanted more of this attribute?" or "what if I
needed less of that attribute, can I get something in exchange?" The request invariably

starts a design iteration, which consequently results in lengthening the development

time. With MDA, all the design solutions are evaluated in advance and trade-offs

explored at the outset. Data are presented to the design engineer / manager for him/her

to take the ultimate decision.

MDO implementation:

. Geometry generation importance cannot be overemphasized. If a CAD tool is used, its

flexibility in representing with completeness the design family and its robustness with

respect to parameters variation are key to the successful execution of the design search

process and to the significance of the obtained outcomes.
. Knowledge-based design can be used proficiently to generate an adequate geometry for

optimization. Embedding design rules in the geometry generation is an efficient way of

establishing the dependence relationships between the parameters. This greatly helps in

making the design space more continuous and consequently in having a simpler and

faster design exploration.
. If the design space is discontinuous and characterized by channel-like feasibility zones,

the Hooke-Jeeves algorithm shows good performances in single-objective optimization:

it locates ridges of a channel and follows them efficiently up to the optimum. However,
it shows its weaknesses when a channel is forking: the algorithm, in fact, follows the

branch of the channel which looks more promising, completely neglecting the other(s).

Future research might resolve this issue.
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. Design of Experiment, Monte Carlo Design Space Exploration, and Genetic Algorithms

have troubles design spaces made by feasibility channels. Only few percent of the

randomly or pre-determined generated solutions fall into the feasibility channels, the

rest sink into the unfeasibility ocean and cause those algorithms to be so highly
inefficient to be useless. However, Genetic algorithms with explicit Pareto optimality

management, suitable for Pareto hyper-surface extraction, if properly fed with an initial

population of feasible solutions, generate feasible offspring and are able to locate the

Pareto front efficiently
. Software interoperability and interfaces management is key in the success of any MDO

approach. Clear and comprehensive analysis of requirements of each analysis module

must be done at the outset to ensure efficient execution.
. In designing any engineering tool for analysis of complex systems, information

processing capabilities of human users must be taken into account. Failure to recognize
the essential role of the tool/human interface may lead to develop tools that, despite

their power, are perceived as too complicated and ultimately rejected by the engineering

users community. That's why it's particularly important to develop adequate methods of

presenting the huge amount of data coming out of the design space exploration in a way

that captures the attention of decision-makers and allows using the powerful capabilities

of intuition and synthesis of the human brain.

* The automated MDO process has the potential to identify solutions with performance

attributes levels much higher than with traditional manual processes at vastly lower

cost and time. Key in time saving are: 1) the resolution of the interfaces issues once for

all the design iterations; 2) efficient jobs scheduling allowed by computerized queuing;
3) 24/7 activity possible only with machine operations (downtime excluded). In the

maniverter example, one design iteration was accomplished in 20 min against the

several days that would have required if performed manually.

* Modular architecture for the ICE platform is to be preferred. MDO requires different

analyses to be performed. For an effective implementation, it's important that

incremental building is possible: whenever a new analysis module becomes available, it

must be inserted seamlessly in the platform; similarly, whenever an existing module

needs to be removed or upgraded, the operation needs to be transparent for the platform.

Only a modular architecture and particularly a bus architecture gives the required

flexibility.
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5. COST BENEFIT ANALYSIS AND IMPLEMENTATION

"When you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in numbers,
your know ledge is of a meager and unsatisfactory kind"

Lord Kelvin

5.1. Introduction

In Chapters 3 and 4, we have described a prototype of an enhanced development tool and
tried to apply it to maniverter development. Hopefully we've succeeded in showing some of the
benefits that the application of this tool can offer to product development.

The framework developed so far, however, is rather simple and limited in the product
variants that it can handle and in the accuracy of performance attributes prediction. To
transform the tool from the current status to a sufficiently sophisticated level so that it could be
used to transform the current paradigm of maniverter design, a lot of further development is
needed.

The current Section is attempting to outline a "research" project that could fulfil such a goal,
i.e. a process through which, building upon the knowledge gained in this Thesis project, a tool
for maniverter development that could be used in a real setting of a for-profit-company like
ArvinMeritor is created. The intent is also to show that such a project is characterized by a
strong business case.

The planning is presented first that sets the roadmap and its timeframe; in addition, the
resource requirement (including the additional hardware and software resources) is elaborated
to quantify the related expenditure.

A vision of the new product development process enabled by the EDF is then projected and
the benefits highlighted qualitatively and quantitatively.

The total costs are finally balanced against the expected benefits showing that the reward is
undoubtedly worth the effort6. Needless to say that the result is strongly dependent on the many
assumptions that were made. Proper business analysis would require an attentive assessment of
each of them.

Lastly, the strategy for the deployment of such an advanced development tool is envisioned
together with the consequent organizational changes that are expected to be required for the
company to reap its full benefits.

6 In all economic calculations a standard conversion rate of 1.35 USD for IC is assumed.
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5.2. Development Plan

As mentioned in Section 3.4, in order to build a manageable platform within the available

hardware and time constraints, several simplifying assumptions were made. While they helped

to reduce significantly the complexity, they also limited the power of the resulting tool.

In looking ahead to a framework to be used in a real business setting, all the main limitations

need to be removed. The following enhancements are deemed essential:

* CAD module.
o As mentioned in Section 3.6, this part of the platform is of paramount

importance; consequently a significant portion of the project effort should be

spent on this module. The possibility to cope with engines with different number

of cylinders and to handle different manifold technologies (clamshell and
airgapped in addition to the tubular one) as well as different manifold topologies

needs to be introduced together with adequate clearances management and
variable geometries piperun. In addition, the new EDF should allow the re-use

of legacy components and include already some manufacturing constraints.
Knowledge-Based Engineering (KBE) is expected to be instrumental in creating

a geometry module which is able to include the design and manufacturing rules
in the CAD model. Arguably, KBE will overcome the geometry regeneration

issues and therefore enable the effective use of Genetic Algorithms. However,
skill and expertise availability are expected to be a major hurdle. In addition, the

complexity of the CAD model is projected to increase and, with that, the number

and type (continuous, logical, discrete) of design variables.

* Structural module:
o Natural frequency analysis. A more refined model is required to improve

accuracy in prediction, for example a TetlO element mesh (or equivalent) or

finer. Critical analysis of which type of elements is best suited is essential. In

addition, methods that allow straightforward automatic meshing in the presence

of a great degree of geometry variability need to be developed. The selection of

the proper CAD/CAE data translation method is key.

o Thermal-induced stresses analysis. This section needs to be completely

developed. Strategic synergy with the natural frequency meshing needs to be

investigated. Adaptive meshing is to be included in order to have an accurate

stress prediction while keeping the model relatively small in size and

complexity. Methods of creating and applying correct temperature pattern

boundary conditions are essential. Performance attributes goals needs to be

Page. 171/218



worked out, linked to durability / reliability targets required by car
manufacturers.

o Vibration-induced stresses. Issues similar to the thermal-induced stresses hold.

Proper specification of engine vibration characteristics and adequate methods of

applying them as boundary conditions are key. Acceptance criteria need also to

be set.

* Fluid Dynamic module:

o CFD analysis for flow distribution prediction on the catalyst. This section needs

to be completely developed. As for the structural module, proper geometry

transfer methods need to be worked out as well as adequate meshing algorithms.

o Engine performance prediction. Differently from the other models, since the

model for engine performance calculation is 1-D, the challenge is to find a

convenient translation mechanism (from the 3D CAD to 1-D data) that is able to

cope with the extreme variability of the geometry. At the same time, the

accuracy of the model with different geometry configurations needs to be

assessed.

* Cost Module. The cost model needs to be improved, the tooling costs added and its

error margins assessed. As for the engine performance model, a reliable geometrical

data extraction method from the 3D CAD model needs to be developed. Getting the

support of the Company costing and manufacturing engineers is expected to be

challenging. Since the activity of building a cost model has the purpose to give a

reasonable prediction of the part cost, it is expected to interfere with current cost

calculations efforts. Cost engineers are also expected to be reluctant to share their tacit

knowledge.

* Optimization strategy. Careful analysis of the design space and of the optimum

combination of optimization algorithms needs to be investigated.

* User Interface. An interface that allows a direct and friendly exchange of inputs and

outputs with the user needs to be further developed.

These tasks are collected in a provisional timing plan that is presented in Fig. 136. The

development effort is planned to start with an initial setup phase where the definition of the

partner companies and the necessary agreements are made, a skill set requirement analysis is

done and the composition of the working team is established (including future users). After this

Setup, the project is executed articulated in four main phases:

* Phase I: Geometry. In this Phase, the foundations of the platform are laid.
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o The fundamental architecture is set up. Similarly to what was done in the thesis

project, a comprehensive analysis of product variants that the architecture
should be able to reproduce and the product conceptualization are done.

o Interfaces of the geometry with the main modules and with the optimizer are

carefully analyzed and communication protocols outlined.

o Maintenance strategy needs also to be worked out in this early stage: clear

distinction needs to be made between the parts that will be updated periodically

and frequently and what is expected to need major redevelopment. Plug and

play capabilities should be embedded in the architecture to cope with new

visions that will emerge and a constantly changing CAD/CAE/CAM
environment.

o The cost model, which is probably the simplest and at the same time, the most

delicate module can be already reviewed and improved even if no CAD model
exists yet. The challenge is expected to be creating a cost module able to cope

with different technologies and having a reasonably low error margin.

* Phase II: Analyses modules building. This is the most intense and expensive phase. The

CAD model and the cost model created in the previous phase are evaluated, all the

building blocks are built and the platform prepared for the integration. More

specifically:
o Simple tests, which can be carried on with the CAD model only, are performed:

design space exploration for feasibility, mass minimization, clearances
management, etc.

o The costing module is integrated in the platform and two objective analyses can

be done (i.e. cost and mass). Production costs and material costs trade-offs can

be evaluated.
o Structural, CFD and engine performance modules are built.

* Phase III: integration
o Following an incremental approach, modules are integrated one by one and the

coupling tested during this phase.
o While doing the testing, different optimization and design space exploration

algorithms are also screened.
o .Approximation methods are surveyed and their capabilities assessed.

o Automatic Pareto data extraction and. post-processing are also enhanced for the

most efficient analysis of the results.

* Phase IV: deoloyment
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o The tool is now complete and it can be applied to existing projects in a difficult

situation from the technical, timing or cost standpoint to verify its effectiveness.

It can also be applied to coming RFQs.

o Design engineers, members of the development team, will start using the tool.

They will also train a selected core team of the design engineers who are

candidate to become Product Managers (see also Subsection 5.7.1)
o The results of "field-testing" are used to fine-tune the tool and to list its major

weaknesses for the next release.

Project Charter
Detailed planning (incremental approach)
Skill set gathering

Phase 1 Gemetiy

Product Variety

Topology I Technology
Feasibility
Interfaces spectication
CAD model specifications
Cost model refinement
CAD model building
Deliverable: flexible CAD model

Phase II: analyses modules building
Testing Pse I prototype
CAD-Cost integration
CAD+Cost Testing

Structural model building and testing
CFD Model building and testing
Engine performance model building and testing

Phase 1t Iegration
CAD+Costing+Structure integration
CAD+Costing+Structure testing
CAD+Costing+Fluid Dynamics integration
CAD+Costing+Fluid dynamics testing
CAD+Costing+Engine Performance integration
CAD+Costing+Engine Performance testing
CAD+Costing+Structure+FIuid Dynamics integration
CAD+Costing+Structure+Fluid Dynamics testing
Project end

Phase MV: Deployment
Deployment
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Fig. 136: Timing Plan for the Maniverter EDF development

The effort is planned to have a 4 years development + 1 year deployment. Estimation of the

amount of resources needed is outlined in Fig. 136.

The development team is planned to be conceptually composed by two groups:

* System Integrators: they will lead the project, set the directions, take critical decisions

and have always in control the whole activity. ArvinMeritor main role is within this

team. If adequate methods to preserve confidentiality could be put in place, it would
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also beneficial to include members of advanced engineering departments of the major
car manufacturers.

* Platform Contributors: they are mainly those subjects responsible of the individual
modules (CAD, CAE, Optimizer). This team is made both by members of partner

companies and by members of the ArvinMeritor CAD/CAE/Costing/Manufacturing
teams. The former will bring the expertise on the particular software packages, the latter

will bring the specific product knowledge. The two components will be fused and

complemented by System Integrators.

5.3. Hardware Requirements

Increasing the complexity of the software models has the risk of transforming the platform
in such a "heavy" environment that no computer is powerful enough to be able to handle it. In

what follows, a projection is made about the final computational requirement with the purpose

of assessing whether this will be compatible with an affordable hardware currently or shortly

available.
To make this projection, an estimation of the required computing power by the different

analyses is made (see Tab. 11). The order of magnitude of the Floating Point Operations per

second of the different analyses is estimated based on the experience gained during this project

and some guidelines provided by the literature [74] . The calculation is done first for the current
prototype to calibrate the estimation and then scaled to the projected final definition level.

As we can see, with the current demo tool, performing the 1000 iterations necessary for a

complete Pareto front extraction takes about 14 days of runtime on the selected Pentium 4

laptop (whose results are shown in 4.4).
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I -Projected model on a 10

Current model on Petu 4-1.Gz3Gfos IPrecdmolonenum -18Gz3 Glp)
Proeced model on a 10

Teraflops machine

Estimated Time per Total Estimated Time per Time per
Type of calculation FLOPS per Note ieration No. Of time FLOPS per iteration No. Of Total time teration No. Of Totaltime

I iteration [min] Iterations [days] iteration [mi] Iterations (days) [min] Iterations [days]
8000 grid
points per 6
degrees of

1000

3.OOE+12

6 rpms per 10
cycles to
convergence
per 50 Tflop

per rpm per
cycle (based
on recorded
execution
time) 16.67

CAD 1CADOperations 1.50E+11 1_ 0.83

1.36E+14

1.36E+14

1.36E+14

9.80E+13

11.571 6.OOE+13

60,000 gna
points per 6
degrees of
freedom

1,000,000
grid points
per 49000
floating pont
operations
per 500
terations to
convergence

757.50

757.50

757.60

544.44

333.33
0.5l 1.50E+121 1 8.33

14.311 5.69E+14

10000

5260.42

5260.42

5260.42

2.27E-01

2.27E-01

2.27E-01

3780.8 1 1.63E-01

231.41 00E-011
5.7 2.0-3
179319.48E-01

10000

1.58

1.58

1.58

1.13

0.69
0.02
6.58

Tab. 11: Estimated FLOPs required by the current prototype and future EDF

The increase in complexity required for a real business development translates in a

significantly augmented computational effort:

* Structural assessment requires more accurate meshes and more complex analyses

" CFD is added to the analyses suite

" Engine performance is executed in a refined mode: from 6 rpms (from 1000 to 6000

rpm at 1000 rpm intervals), to 12 rpms (reducing the intervals to 500 rpms)

" Optimization process: with an increase in the number of design variables, a

considerable increase in the number of iterations required to extract a Pareto hyper-

surface is expected if reasonable completeness is to be kept (from 1,000 to 10,000).

All this multiplies by a factor of 1,000 the number of total FLOPs required for a single

maniverter development run.

If the calculations were to be performed on the current laptop (which is estimated to be

capable of sustained 3 GFLOPS), each development run would require 19,800 days, i.e. more

than 54 years! The use of approximation methods could greatly improve this performance, but

it's self-evident that a convenient powerful hardware platform needs to be planned. A 10

TFLOPS machine (more than 3000 more powerful than the current laptop) is estimated to be
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suitable for the purpose since it's projected to perform the required calculation in 7 days, i.e.

one working week (considering that the computer will run also Saturdays and Sundays).

If today, in 2004, the

cost of a 10 TFLOPs 1.E+14 1.E+13

machine is high (about 1.E+13 1.E+12
1.E+12 -1 E+11

$iM), conservative E+11 - 1.E+10
1.E+10___

estimates forecast it to fall * FLOPS per $1000 1.E+09

to $200,000 in 2007, to 1per.tera0op \ /___ 1.E

in~~~ 1.E+07 ___ ___ 1E0$100,000 in 2008, to C- 1.E+06
(n 1.E+06 __

$70,000 in 2009 and 0 1.E+05 - 1.E+053 1.EE4+AR

30,000 in 2010 (see Fig. 1.E+04 - ____ 1.E+031.E+03 1

137, drawn from Fig. 34). 1.E+02 - 1.E+02

So, by the time the 1.E+01 -. E+01
1.E+00 1.E+00

enhanced development 1950 1960 1970 1980 1990 2000 2010 2020

tool is expected to be
ready the xphar d o s beFig. 137: Projected Cost per TFLOPS
ready, the hardware cost

should not be a hurdle.

5.4. The envisioned change in the product development process

The Enhanced Development Framework is expected to change radically the way a company

like ArvinMeritor designs products and does business. In Fig. 138, a typical virtual product

development process is outlined and compared with what is expected to be the new process

enabled by the EDF.
Currently, an average of three development loops are required before Design Freeze. The

development starts with a CAD model made by an experienced designer that fits in the

available space in the engine compartment. The model is usually handed over to the CAE Dept.

that performs the basic structural analyses, namely the natural frequency and thermal stress.

Usually these analyses highlight either that stiffening is required or that some areas of high

stress exist. Therefore, a CAD rework is usually necessary. After that, the fluid dynamic

analysis is done to evaluate the design from the flow distribution and the engine performance

standpoints. In all these analyses, 70% of the time is actually manual operations (data

translation and meshing) and only 30% is computing time. More often than not, in this first

phase which lasts approximately three to four months, despite the experience of the designer,
the flow uniformity and the engine performances are not on target and a significant rework

needs to be done. Usually the OEM also provides some inputs for the next iteration loop.

Page. 177/218



The second iteration loop proceeds similarly to the first. A new CAD model is made which

includes the fluid dynamics inputs from previous analyses. Since the design is usually

significantly different from the previous one, structural analyses are also repeated. At the end of

the loop, even if performance attributes are not completely aligned to the targets received in the

OEM's product specification sheet, the design is considered at a sufficiently high definition

level that 2D drawings are made and costing follows to get a preliminary feeling for product

cost. The design is also presented to the Customer for them to check the results of the design

effort and to evaluate the performance level reached up to that point. By now, seven-eight

months have passed since the beginning of the development. At this time, the Customer has a

clearer picture of vehicle / engine requirements and quite often they are able to express

preferences for performance attributes, setting priorities for the next development phase.

Usually prototypes are built - sometimes called alpha prototypes - for ArvinMeritor and the car

manufacturer to test the design and, therefore, to get an experimental confirmation of the

performances predicted with the analysis models (proto building and testing phases are not

represented in the timing plan).
The third loop is intended to fine tune the design and reach the definitive performance

attribute levels according to the preferences expressed by the Customer; cost and durability are

usually the major drivers in this phase. After a final assessment with the Customer, a second

round of prototypes - sometimes called beta prototypes - is built. In addition to the

confirmation of the final functional performance exhibited by the design, durability is also

experimentally verified. Some years ago this phase was considerably painful and costly

because durability failures were often encountered and major re-designs needed with a

repetition of a full design loop. Nowadays, with the improvement of prediction codes, while not

flawless, this phase is considerably smoother.
The total development lasts about 10 months. However two factors invariably enter and

considerably lengthen the total development time (and money spent): resource allocation and

customer driven changes.
ArvinMeritor, as most of the automotive companies, has resources allocated for more than

100% of their available time. In this resource-constrained environment, only careful

organizational management allows ensuring that the scheduling of the analyses and design

activities required by the different projects is respected. However, "emergency" situations and

unexpected rework on one or more projects drain resources and create bottlenecks which

induce delays on other projects. This has, consequently, the effect of inducing gaps in the

activities: an average of 20% leadtime increase is expected. The development time, therefore,
realistically totals approximately 1 year.

While ArvinMeritor is developing the maniverter system, the OEM develops the vehicle and

or the engine. They experience the same issues of design iterations and scheduling delays of

any product development. In addition, OEM marketing inputs can change over time because
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user tastes shift or because management sets a different market penetration strategy. As a result,
invariably at least once in the maniverter development timeframe, the customer asks for a

major modification of the design to address the new set of issues. This implies for ArvinMeritor

to scrap part of the work done and to re-execute a certain portion of the development. A coarse

estimation indicates that 50% rework is a sensible figure in this case. Fortunately, in most

cases, the OEM is willing to pay for the extra effort, but the net result is that a typical

maniverter development leadtime settles at approximately 18 months with 15 months of

effective virtual development work.

7] Old Process 226.67g: 4 253 227'
Wstiteration loop 05 g; 406560i1

CAD Modelling 15 g: 4960
Naturaltfrequency 109 g; E7680:
Thermalistress 15g: E411520:
CAD refinement 15 g E9600
Stress-induced vibrations 159 g 1El 520
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Engine Performance15g:11340
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Fig. 138: Current Maniverter Development Process and the New EDF enabled

The new paradigm of product development radically changes this scenario.

Supposing that the EDF is fully deployed and the users have already gone through the initial

learning phase, one week is forecasted to be taken by design engineers (later on called Product

Managers) to introduce all customer and company requirements (engine performance, cost,
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flow distribution, tooling access, etc), constraints and input data (e.g. Engine compartment
CAD file, GT-Power models, etc) in the framework. Then 7 days of execution time are taken to
find out the Pareto optimal solutions. One working week is scheduled to post-process the
results and format them for the final decision making together with the customer.

Once the design is selected, about three weeks of CAD activity are still considered to bring
the CAD model delivered by the framework to the final detailed definition level and for making
the necessary (still!) 2-D drawings for costing purposes. Then detailed costing is performed and
from that moment on the prototype building phase can start. CAD detailing is supposed not to
alter product performance and the cost model in the EDF is supposed to be sufficiently
accurate. These two assumptions are important to have a design solution that does not
necessitate of additional design iterations.

The total development leadime is now reduced to 2 months, compared to the previous 10,
with development costs reduced accordingly to about 1/5. If the customer changes the design
requirements, no re-development is needed, since all the solutions are extracted in one shot.
Only the model refinement and the drawings are necessary.

We anticipate, however, that if a Tier 1 supplier is capable of such a fast and inexpensive
development process, the OEM is induced to make changes more often; in addition changes in
the layout or in the input data are still possible7. To take this into account, a doubling of the
development time compared with what a single development would take is planned, i.e. 4
months, still way shorter if compared with the 15 months of the current status.

Development costs reduce in a similar proportion. A summary and comparison of
development project financials is presented in Tab. 12.

Current Process New Process ] Difference

Activity Activity Activity
Duration Cost Duration Cost Duration Cost
[months] [kE] FTE [months] [k] FTE [months] [kE] FTE

1st develo ment 10 250 2.74 2 33 1.81 8 217 0.93

impact of customer change 5 125 2.74 2 33 1.81 3 92 0.93
Total 15 375 2.74 4 66 1.81 11 309 0.93

Tab. 12: Development Project Costs (current and EDF enabled)

7 We can also envision that customer data within ArvinMeritor are synchronized in real time with those at the
OEM's site using engineering collaboration tools.
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In the same table the number of people continuously engaged in the project is also reported

expressed in Full Time Equivalent (FTE) units.8

The bottom line is that the use of the proposed Enhanced Development Framework process

has the potential to reduce the maniverter development costs by more than C300,000
($400,000+) per project and to free nearly one resource on a project basis and more than 2 on a

yearly basis (project duration, in fact, is 4 months compared with the 15 months of the standard

proj ect).

5.5. Cost Benefit Analysis

Building upon the arguments discussed in previous Sections, hereafter follows a preliminary

Cost Benefit analysis of the EDF.
Cost-Benefit Analysis (CBA) estimates and totals up the equivalent money value of the

benefits and costs of a project to establish whether it is worthwhile. The purpose is to assess

whether the development of such a tool is economically sound or not.

In case of our EDF development project, costs are expected to be related to:

" Hardware
" Additional software

" Tool development, implementation and maintenance

Direct Benefits are expected to be:
* Reduced development costs

" Higher margins due to a more cost effective development of products

" Increased market share and turnover due to the higher flexibility, shorter development

time and lower development costs

In what follows a brief discussion of each element is done. At the end of the discussion the

analysis is presented.

Costs

* Hardware Costs:
o During the entire development project leverage of existing hardware is planned.

If extra CPU power is required, it's planned to be purchased for the number of

computing minutes required for a run; this is already taken into account in the

project budget. It's only in 2009, when the platform is deployed that the

8 FTE is a measure of staff hours equal to those of a full-time employee working 80 hours per pay period over

the course of a fiscal year. Source: ohr.gsfc.nsacov/wfstatislics/dcfinitions.htm
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forecasted 10 TFlops machine is really required. By that time the cost of such a
computer is estimated to be $70,000 or less. The utilization of the machine for
maniverter development, at the beginning, is expected to be only 5% and, even
at full regime, not to exceed 50%. For this reason, several other conventional
analyses are forecasted to be executed on the same machine. Resulting savings
on otherwise purchased desktop workstations may offset the cost of the new
supercomputer. On the other side, a detailed study of current workstations
utilization may also highlight that setting up a computing grid using existing
hardware can make the purchase of a new supercomputer unnecessary. Since, in
any case, savings are expected to balance costs, hardware costs are not charged
to the project in the present CBA.

* Software Costs:
o No additional CAE license fee is required as current available licenses are

deemed to be sufficient to cope with existing and even increasing workload. The
fast clockspeed of the EDF will maximize the efficiency in licenses usage.

o CAD licenses: KBE additional licenses are expected to be required. One
additional development toolkit plus 5 additional client licenses are estimated to
amount 37,000 $ plus $1,600 for yearly maintenance.

o Optimizer software: this is a new component of the software suite and needs to
be taken into account. Annual fee is estimated to be $13,000.

* Development Cost and implementation:
o The resource requirement associated with the development plan presented in

Fig. 136 entails a total of about E3M or $4M. Assuming that the partners of the
development be the same of the present work, the following breakdown can be
outlined (Tab. 13):

2005 2006 2007 2008 2009 Total I [f] Total [$1
CRF E 230 656 E 361 664 E 353 792 E 313 600 E 1 259 712 $1 700611
ArvinMeritor E 256 512 E 137 472 E 201 408 E 156 160 E 245 760 E 997 312 $1 346371
MSC.Software E 31 232 E 58 816 E 109 376 E 16 000 E 215 424 $290822
AVL E 31 232 E 69 760 E 132 992 E 16 000 E 249 984 $337478
Engineous E 31 232 E 22 336 E 37 696 E 32 000 E 123 264 $166 406
CID E 25 472 E 58 816 E 109 376 E 16 000 E 209 664 $283046
Total E 606 336 E 708 864 E 944 640 E 549 760 E 245 760 f 3 055 360 $4 124736
Total spent (with 50%
European funding) [E] E 303 168 E 354 432 E 472 320 E 274 880 E 122 880 C 1527 680

roaspen (witg [42$
European funding) [$1 $409 277 $478 4831 $637 6321 $371 088 $165 8881 $2 062 3681

Tab. 13: EDF Development Costs
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o The scenario of getting 50% of development costs funding from the European
Community is included. Funding is planned to be obtained by participating to
the The European Union 6th Framework research Programme 2002-2006
(http://europa.eu.int/comm/research/fp6/index en.html). The project is planned

to be inserted in the research theme for Sustainable Surface Transport, which
calls for projects on "Advanced design & production techniques" aimed at
"Integration and standardisation of enhanced product development tools for

design, simulation, prototyping, testing and risk management that would reduce

product development time and all associated costs and resources".

o Maintenance: hardware and software yearly maintenance costs are taking into
account by considering a lump sum of $100,000 per year. The value decreasing
time effect is considered to be balanced by the actual maintenance cost for a
given service level that it is expected to occur.

Benefits

* Higher margins due to more cost effective development of products. Automotive profit
margins are very low. A 2% increase is conservatively forecasted.

" Increased market share and turnover due to the higher flexibility, shorter development
time and lower development costs. If an organization has an efficient design process,
the chances of developing a winning proposal for the customer are increased. A 20%
increase in turnover is projected.

* Reduced development costs. While currently 2.7 persons are required to work 15
months to develop a maniverter, with the new process 1.8 persons are estimated to be

able to develop a product in 4 months. This represents a huge saving for the company.

* Spillovers of the same technology to different products within the same company and

research on new products, enabled by the availability of freed resources. Since these are
not easily predictable, they are neglected.

A quantitative estimation of the expected increase in net income is presented in Tab. 14.

Starting from publicly available financial data of ArvinMeritor turnover and net income for
the entire corporation and for the Light Vehicle Systems (LVS) division (ArvinMeritor 2003
Annual Report), figures are drawn related to the manifold/maniverter business segment only,
assuming that this constitutes 10% of the total LVS business. These data are used as a basis to
estimate the increase in net income due to 20% additional turnover and due to 2% margin

increase.
Ten different projects are supposed to run concurrently. Consequently, based on the resource

requirements, project duration and money expenditure for one single project (Tab. 12), the total
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number of FTE required yearly for the overall manifold business is estimated. The calculation
is done for the current PDP and the new EDF enabled one. The difference is then calculated
both in terms of freed resources and of cost savings. Additional FTE resources required by the
increased turnover is also considered.

iuantiy
(money

figures are in
k$)

Notes

Total ArvinMeritor Turnover $7 788 000 From ArvinMeritor 2003 Annual Report

Total A&ET Turnover (30%) $2 336 400 30% of the total, as per Annual report
Total Manifolds Turnover (10%) $233 640 Assumed to be 10% of the A&ET
Average Number of concurrent projects 10
R&D as percentage of Turnover 1.73% Virtual Development only
Total ArvinMeritor Net Income $136 000 From ArvinMeritor 2003 Annual Report
A&ET New Income (30%) $40 800 From ArvinMeritor 2003 Annual Report
Manifolds Net Income (10%) $4 080
Profit margins (after tax) 1.75%,

IAssumed 2%75 increased due to more
Increased margins $81.60 cost effective produc development

20% (due to greater flexibility and
reduced R&D costs), i.e. 2 additional

Percentage increase in turnover 20.00% projects
Increased Turnover $46 728
Increased net income due to turnover
increase $816
FTE current process 27.4
FTE new process 4.8
No. Of freed FTE 22.6
Increased FTE due to additional turnover 1.0
Annual FTE savings $3 195
Higher Net Income $4 094

Tab. 14: Financial Benefits of the application of the EDF

The EDF related costs and expected savings are combined to compute several project
financial indicators: Net Present Value (NPV), (Tab. 15), Discounted Payback Period (DPP)
and Internal Rate of Return (Tab. 16). A temporal horizon of 6 years of utilization of the tool
(up to 2015) is considered.
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Interest/discount rate
Yearly
NPV=

increased income:
7.000%

$4 092 240
$11845233

Year Year Cash flow Present Value
Development costs Increased income Development costs Increased income NPV at year

2004 0 $2662368 $24553440 $2062150 $13907383 _____

2005 1 $409277 $382502 -$382502
2006 2 $478483 $417926 -$800427
2007 3 $637 632 $520 498 -$1 320 925
2008 4 $371 088 $283101 -$1604026
2009 5 $165888 $118276 -$1722302
2010 6 $100000 $4092240 $66634 $2726832 $937896
2011 7 $100000 $4092240 $62275 $2548441 $3 424062

2012 8 $100000 $4092240 $58201 $2381721 $5747582
2013 9 $100000 $4092240 $54393 $2225907 $7919096
2014 10 $100000 $4092240 $50835 $2080287 $9948549
2015 11 $100000 $4092240 $47509 $1944194 $11845233

Tab. 15: EDF Development Project: NPV and DPP

IRR 56.443%
Yearly increased income: $4 092 240

Year Year Cash flow Present Value
Development costs Increased income Development costs Increased income

2004 0 $2062368 $24553440 $720922 $720922
2005 1 $409277 $261614
2006 2 $478483 $195504
2007 3 $637632 $166534
2008 4 $371 088 $61 952

2009 5 $165888 $17703
2010 6 $100000 $4092240 $6821 $279142
2011 7 $100000 $4092240 $4360 $178431
2012 8 $100000 $4092240 $2787 $114055
2013 9 $100000 $4092240 $1782 $72905
2014 10 $100000 $4092240 $1139 $46602
2015 11 $100000 $4092240 $728 $29788

Tab. 16: EDF Development project: IRR

The NPV is solid positive, the DPP is less than one year and the IRR features an impressive

56%. All indicators strongly mark that developing the EDF is an incredibly profitable project,
even if worsening factors that may have been neglected in the current analysis, intervene.

The major saving comes from headcount reduction. The power of the tool, in fact, allows

reducing the number of development engineers from slightly more than 27 people to 4 to which

Page. 185/218



one is added to cope with the additional workload due to increased turnover. Incidentally, we
note that 27 people is the approximate current size of the Center Of Competence Manifolds -
the functional group currently in charge of manifold development at ArvinMeritor - plus few
other analysts outsourced for calculation.

The net organizational result is that 22 people are freed up. We argue, however, that the
company should not view this as a mere headcount reduction, but as a big opportunity to utilize
the resources for innovation and long-term growth. The organizational issues related to the
development and introduction of the new tool are discussed in detail in Section 5.7.

5.6. Benefits amplify in a virtous spiral

The application of the EDF is expected to have a direct and significant impact on the
financial statement. In addition to the obvious increase in the revenue stream (due to more
business captured) and in earnings (due to a more efficient execution), the following effects are
anticipated [75] :

" Valuation Impact. Valuation is the price that investors place on the company stock
based on financial performance and anticipated performance. Typically, valuation will
follow market and industry segment trends. A company will be rewarded over the long
term with a higher valuation if it demonstrates that it can outpace growth in the market
and utilize assets efficiently to create earnings. Short-term fluctuations in valuation are
impacted by market conditions while longer-term trends are more indicative of the
company's financial health. To this end, process improvements such as those enabled
by the EDF will have the greatest chance to impact valuation over a long period of time.

* Balance Sheet Impact. The effect of debt is important in understanding the dynamics of
process improvements. Companies with poor processes or engineering teams that do not
respond well to the changes of the program run the risk of compounding their problems
with a surge in debt. Short and long-term liabilities accumulate quickly when an
organization is attempting to complete work on a given schedule, or within a given
market price point. When market demands drive the cost of the product down, less
engineering R&D costs can be absorbed, offsetting profits. If the engineering and R&D
costs are high to begin with, then the organization must cover more expenses with either
overhead charged to the customer, or extra liabilities. An organization that becomes
burdened in debt is a punished by investors. Hence, process improvements make the
likelihood of debt run-up lower, and reduce the risk of an organization's stock
becoming penalized due to over-leveraging.
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* The Effect of Interest. Finally, the "cost of money" can be an indirect effect for an

organization planning the rollout of a product to market. Delaying operations by weeks

or months will compound short-term debt problems and give warning to analysts.

Another undesirable side effect is the cost in terms of interest payments. Not only

delays are eroding the balance sheet, but also the costly fees associated with high

borrowing are lost forever. Streamlining the process so that delays are avoided will save

organizations costly interest fees.

But the application of an EDF will yield other strategic advantages:

* Speed. In addition of the obvious advantage of low cost, the shortened development

time is, in itself, a source of competitive advantage

* Innovation: resource freed up can be used for medium-long term research projects and

to tackle new product segments

5.7. Implementation and organizational changes

"The goal is to use human-centered design processes that will result in efficient, effective,
user acceptable system interfaces that will be simple to train, use, and maintain".

We hope that by now it is evident to the reader how big are the potential advantages that the

MDO approach within an ICE platform could bring to a company that embraces it. However, as

in car races a great car without a great driver is going to fail delivering the expected results, to

fully reap these benefits, a company needs to shape the organization and its processes in order

to adequately exploit the capabilities that the EDF offers. This Section is intended to briefly

discuss the organizational implications of the adoption of the EDF and to outline a transition

plan from a traditional matrix structure to a novel Application / Product Knowledge / Function

Expertise structure. What described applies strictly to the part of the organization that currently

performs the activities of product design and development (i.e. excluding HR, Finance,
Administration, etc). However, we know, people are resistant to change. The more radical the

change the greater the inertia we can expect. It's demonstrated that any improvement program,
no matter how good it is, can fail because it's introduced in the wrong way. Many are the

examples that we can cite: TQM, Six Sigma, etc. The difference between an outstanding

success and a fiasco lies invariably in the early phases of their implementation. Therefore, we

want to conclude this Chapter highlighting some of the common pitfalls of the implementation

of any improvement program - including the EDF - to raise the awareness of an organization
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that would embark in the task of changing its development paradigm so that they can avoid
stumbling and falling during the deployment.

5.7.1. Reshaping the Organization

Many automotive manufacturing and Tier 1 supplier firms are characterized nowadays by a
traditional matrix structure. In what follows, we will therefore assume that a matrix structure is
the baseline organizational form of a Company (such as ArvinMeritor) which decides to
develop the EDF and plans its deployment. After a short description of the principal
characteristics of the matrix structure, we outline the organizational evolution that should take
place prior or, at least, in parallel with the adoption of the new development paradigm.

Matrix structures exist in various forms across a wide range of organizations. One of the
most common characteristics associated with the matrix is the "mixed" or "overlay"
organizational texture in which traditional, vertical hierarchy is overlaid by some form of
lateral authority or influence [76] . As depicted in
traditionally functional and the horizontal "overlay"
typically consists of projects, products, or business
areas. In a matrix organization, usually, the Project or
Programme or Product Manager (PM) leads the
development effort, he/she is the primary customer
interface and the focal point of the project, responsible
for product performance, project timing and budget.
The PM relies upon the expertise and the support of a
cross-functional team whose members are part of
individual functional groups, each one managed by a
Functional Manager (FM). Customarily, PMs are

Fig. 139, the vertical hierarchy is

g Ma G

Fig. 139: Matrix Organizational Structure

dedicated to one or few projects, while functional members work on several different projects
as far as their domain of expertise is concerned. For example, the CAE department is in charge
to perform structural analyses on all types of components and subsystems. Usually, the
Functional Manager sets working priorities for the members of his/her departments.

The matrix structure exhibits a characteristic dual line of authority, responsibility, and
accountability. As such, even it it's seen as a coordinative structural device which
constructively blends the program orientation of project staffs with the specialty orientation of
functional personnel in a synergistic relationship, it violates the traditional "one-boss" principle
of management, according to which, for an effective management, no person should report to
more than one boss.

The EDF crosses the boundaries of traditional matrix structure tapping into different areas of
the organization. In some sense, it can be seen as a harmonized cross-functional Integrated
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Product Team (IPT) that works with an incredible efficiency twenty four hours a day, seven
days a week. And, as an IPT, its task is to manage the design complexity along its two main

dimensions: 1) individual design analyses (traditionally the domain of the functional groups),
2) trade-offs between conflicting requirements on the different performance attributes

(traditionally resolved through multiple design loops and cross-functional team meetings).

The "virtual IPT" is expected to impact significantly both PMs and Functional Groups. The

following consequences are anticipated:

" Functional Groups: Dramatic reduction of standard work, mainly CAD and CAE. Since

CAD models are generated automatically and handled by the geometry handler,
traditional CAD modelling is no longer needed. CAD activity is indeed required only

for models refinements and 2-D drawings. The same is true for CAE analyses: standard
CFD, GT-Power, Finite Element analyses are, in fact, performed automatically without
human intervention.

" Program Managers: A different decision making environment and different skills

required. Results are no longer provided in a small set by the different functions, which
also support the PM in interpreting the data. Instead, they are presented by the tool as a
large set of numerical values (one or two order of magnitude higher than what currently
happens) in a form of Pareto hyper-surface. On one side, this eases the role of a PM
because the intrinsic trade-offs of the system have already been resolved and what
needs to be done is "just" to select the most appropriate solution for the specific
application. On the other side, however, the PM is required to be able to navigate

comfortably through the results and to have a solid and deep knowledge of system's

behavior to interpret the numeric data and to drive a sound engineering decision.

On the other hand, the new product development framework poses a new set of needs:

" Maintenance of the development platform
* Improvement of the platform

* Improvement of the individual modules

These issues can be managed only by a different organization or, better, by an organization

with different foci. The main transformations that are anticipated are the following:

* Program Managers. The new development tool relieves them from the team

coordination workload, which is now one of their major tasks, but simultaneously raises
the importance of their role and their responsibility as decision makers. This requires
that PMs' professional profile include a deep knowledge of all the different engineering
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domains involved as well as sound business skills. They appear to be more and more
Product Managers rather than Project Managers.

* Functional Groups. They are probably the most impacted by the EDF. Greatly reduced
in size compared with the current practice, their main task is envisioned to be advancing
in the knowledge of their respective fields. They are responsible of the evolution of the
different analysis modules to better and better reproduce with simulation the physical
phenomena that are observed experimentally. Under the guidance of members of the
Product Knowledge Teams (see later) they will responsible to identify better prediction
models and to enable their execution within the development platform. As such they are
supposed to be highly specialized and skilled on the individual engineering domains and
analysis packages. A strong connection with the testing areas is highly desirable.

* Product Knowledge Team. This is a new group. It has a system focus, differently from
the PMs who have a specific application and customer focus. One team is needed for
each system the EDF applies to. This group is in charge of two main tasks: 1) to
develop the knowledge on the particular system, 2) to maintain the development
platform and to drive enhancements of its capabilities. Enhancements can come from
either better analyses modules, from additional analyses modules (i.e. feasibility of
stamped components) or additional system analysis capabilities (i.e. robust design).
These professionals combine the expertise on the product with the competence in the
design process. They develop the knowledge at the system level on the product/process
(including the knowledge generated by the functional groups), they standardize and they
embed it in the development framework that product managers will use as an off the
shelf tool. Their role is crucial for the success of the company: leveraging the individual
domain expertise, they will create the system's knowledge and pre-package it to enable
the most efficient execution of individual projects.

In Section 5.5, we've seen that the application of the EDF reduces dramatically the number
of people that are needed to develop the products: in the specific maniverter example, for the
same workload, 5 FTE are estimated to be sufficient, compared with the current 27, i.e. more
than 80% reduction. The great majority of this headcount cut is expected to occur in the
functional groups together with a significant portion in the PMs group.

We advise, however, that the application of the EDF is not interpreted as a cost reduction
operation, but as a transformation that has the potential to free up to 80% of the engineering
development resources, which can be then "re-invested" to boost innovation for the medium-
long term prosperity of the company.

In Chapter 1, we have seen as tomorrow's development will have to cope with engineering
challenges of increasing difficulty with no correspondent increase in R&D budgets. Innovation
appears as the main key to survive and prosper in today's and tomorrow's tough automotive
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industry environment. The engineering resources that are no longer entrenched with the day-

by-day work can be adequately trained and re-directed to higher added-value activities such as:

" Developing next
generation products

* Tackling systems of %

bigger scope
* Entering new Cost reduction Platform Freed

business segments opportunities on IVbintenance & 81%
existing products Improvement

and/or creating new 14% 18%

businesses l b From

SPursuing further b"us"ineFrs
segments components to

cost reduction 23% systems

opportunities on 18%

existing products to New Generation
products

boost income and as 27%

a marketing strategy Fig. 140: Re-allocation of resources freed-up by the use of the maniverter EDF

Fig. 140 illustrates a
scenario of re-allocation of the 22 resources that could be freed by the EDF.

ArvinMeritor has recently announced the decision to "separate the technology engineering

from the application engineering", creating two new organizational entities that have been

given the names: Centers of Competence (COCs) and Centers of Applications (COAs).9

This shift is welcome and goes in the direction of the proposed change. If we wanted to

draw a correspondence between ArvinMeritor's implementation and the proposed

organizational scheme, we can acknowledge that the PMs can be inserted in the COAs while

Product Knowledge experts can be part of COCs. As far as traditional functional groups, they

may splitted among the COCs if the analyses are very specific or, better, grouped in a service

group.

9 ArvinMeritor's Exhaust Strategy, http://www.autofieldguide.com/columns/0904euro.htm
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5.7.2. Be aware: it's going to get worse before getting better

The projected benefits and

advantages of the application of
the EDF must not induce in the Average
management the false belief Performance Chan
that as soon as the tool is ready,
the company will be able to
reap them, even if the adequate Historical
organizational structure is put performance

in place, Fig. 141.
Although successful

deployment of improved tools

Anticipated

ge performance

Time

and processes would
unequivocally help the Fig. 141: Change: common expectations

organization, they require the

development of knowledge and

experience. Consequently,
introducing the tools actually Average Anticipated
lowers productivity in the short Performance performance

run while people learn and

incorporate them into the Change

normal practice, Fig. 142. Historical

Problems arise when performance

managers ignore this worse-

before-better trade-off [13] .
The increase in workload Time

arising from the additional

training, learning, and practice Fig. 142: The Reality of Change

time required to use the tools

proficiently further raises resource utilization. Thus, if new tools are not accompanied by a

reduced workload, their introduction is likely to lead to more fire fighting and to a further

decline in process capability.

Therefore any organization that decides to embrace the new EDF has to allow extra time in
the first couple of projects that use the new technology to learn it and work the kinks out of it.
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5.8. The Following Generation: Modeling Uncertainty to Manage Risk

In Section 5.2 we have discussed a possible 4Y development plan of the first generation of

the Enhanced Development Framework for a maniverter application and in the subsequent

Sections we have projected ourselves in 2009 discussing the new operating environment and

the related set of hardware/software/organizational issues.
In this Section we want to take a step even further and project a glimpse on what could be

the second generation of the EDF, besides the incremental normal enhancement. We deem that

the following leap will be made by transforming the analyses model to include the variability of

the man-made products.
Materials are not homogenous, boundary conditions are not ideal, geometry is not perfect,

and loads are subjected to unexpected fluctuations. Uncertainty originates from the very heart

of physics and is deeply rooted in the nature of matter. Not surprisingly, therefore, it accounts
for a huge chunk of the phenomena we observe.

Uncertainty is customarily accommodated in engineering via safety factors. This simple

stratagem transforms a stochastic problem into a deterministic one. However, as we know,
there is always something that is left unmodeled, some simplifying assumption that proves

wrong, some unfortunate and unanticipated combination of factors that finally lead to an

expensive law suit or recall or perhaps to catastrophic collapse or even loss of life.

With spectacular advances in computing technology we can expect to be able to take

uncertainty into account in the very way it manifests itself in nature. The tremendous advantage

of doing this is that models incorporating uncertainty become extremely realistic so that they

allow us to understand and manage uncertainty.
For the first time, models will be realistic. The inclusion of elements of uncertainty in

computer models will boosts the realism of these models to unexpected and unthought-of

levels. Model precision will loose the meaning it has today

The scenario we envision is that, after EDF has provided the Pareto optimal set of solutions

and the PM and the OEM have jointly chosen the configuration which gives the "right"

performance attributes levels, a fine tuning sensitivity and optimization analysis is performed

with the goal of maintaining those performance attributes at Six Sigma level. We can even

stretch our vision and think that the algorithms for Pareto front extraction can be made so

efficient and the computing power be so high that uncertainty can be included in the

mainstream development process. In this case, the result of the design work will not be a Pareto

hyper-surface but rather a collection of iso-probability surfaces. In that case, data presentation

issues are amplified, but once the correct visualization approach is put in place, the decision

making capabilities will be significantly augmented.

Examples of robust design/optimization and uncertainty analysis are already available now:

optimization including uncertainty is at the heart of the Stochastic Design Improvement
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pioneered by MSC [21] and research projects multiply (for some automotive examples, see [77]
,[78] ).

Depending on the advancement of the knowledge on the specific field, the inclusion of the

uncertainty management could be already inserted in the proposed EDF development, instead

of starting five years from now. Critical uncertainties to be included are anticipated to be, in

addition to material properties, dimensions of the components, assembly tolerances and

vibrational loads.

Page. 194/218



6. CONCLUSIONS AND RECOMMENDATIONS

"Systems engineering is an interdisciplinary approach to evolve and verify an integrated

and optimally balanced set of product and process designs that satisfy user needs and provide

information for management decision making".

The analysis of Chapter 1 was hopefully successful in demonstrating that the automotive
industry, after an extensive cost cutting phase, has by now reached a turning point where only a

major evolutionary step is going to ensure sustained profitability. Significant contribution to

this transformation will come from the application of systems engineering principles to product

development and organizational design. New tools and approaches enabled by the advancement
in computing technology and simulation capabilities will break the development speed-cost-
quality iron triangle, bringing throughput to unprecedented levels. Multi-disciplinary Design

Optimization is believed to be one of the most important elements of this (r)evolution and in
the present work we tried to highlight its tangible huge potential.

In this last Section, we attempt to cast some light on what is expected to happen in the next

decades. Our vision of the future of global automotive enterprises is the one of agile entities,
capable of designing and delivering products quickly to a more demanding social community.
In this scenario MDO is expected to be a standard product development practice.

We recommend, therefore, that automotive companies - including ArvinMeritor - shift their
focus from cost cutting, which, if pursued further, could actually endanger the long-term
sustainability of the company, to the development of new processes and tools. In particular, we

suggest to start the exciting MDO journey as soon as possible to be the market leader in the 21st

century.

6.1. A vision for the 2 1" century automotive industry: network of adaptive, agile,

lean, self-controlling organizations

"The successful company of the future must understand how people really work and how
technology can help them work more effectively. It must know how to create an environment for

continual innovation on the part of all employees. It must tap the latent needs of customers. It

must use research to reinvent the corporation."

'0 Definition of systems engineering contained in the May 15, 1991 Pre-coordination Draft of Mil-STD-499B

Systems Engineering.
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Predictable markets, product lines, and business models - key assumptions in long-range

business planning - are a fading memory today. Efficient channels of communication and

distribution, accelerated product development, define a new business environment.

6.1.1. Change as a Mode of Operation

Whether deliberately introducing change into markets, or reacting to external change before

competitors could, businesses will rely on speed to secure competitive advantage. The

organization's ability to swiftly and easily accommodate and even anticipate change is

therefore going to be a core requirement for business success in the 2 1st century.
Business agility" is believed to have three main dimensions [80] :

" Time needed to implement or react to a change in the business environment

" Range of implementation across geographies, business processes, or operating units

" Ease of change deployment, measured as labor or expense

This new level of business agility requires a flexible, adaptive enterprise that allows

business to manage, control, and optimize the impact of change to the advantage of the

corporation. The more flexible organizations will lower the change impact's gradient (number

of changes and impact are, generally, linked by a non-linear function) (Fig. 143 [78] ) and will

perform better regarding
Normal

time, quality and cost. /Ibhavkr
The economic

consequences are
expected to be
significant. Automotive
and Supply Chain . . ior caused by

experts at CapGemini ....-- "ljt"

Ernst&Young estimate - .-----.-
# of chanaes

that the achievement of

an "adaptive" state has Fig. 143: Correlation of the number of changes to their impact
the potential to reduce
the cost to build a
vehicle by up to $1,050 per vehicle and compress the time from order-to-delivery from months
to weeks or less.

" Agility can be loosely defined as "the ability of an organization to thrive in a continuously changing,
unpredictable business environment."
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Agility targets reducing unnecessary costs effectively by shifting emphasis away from cost

reduction to increased throughput, market segmentation and rapid creation of new services and

products.
Following Dove [81] to be agile, organizations must be able to both manage and apply

knowledge' 2 effectively. In the agile organization, in fact, knowledge management must be

accompanied by change proficiency. Value from either capability is impeded if they are not in

balance: Knowledge management

without change proficiency leads to a Catatonic spastic

catatonic organization, unable to move

and follow the market, whereas change

proficiency without enough knowledge

management produces a spastic

organization, Fig. 144, prey of fire

fighting.

Companies nowadays are finding it

more difficult to stay in synch with the

pace of change in their operational and Knowledge Change
competitive environments, because the Management Management

increase of the knowledge content that

they have experienced in these years

- due to products and organizational Fig. 144: The EDF as a tool to achieve business agility

complexity - hasn't been balanced

by adequately change management processes.

6.1.2. Organizational Implications

Executives cannot simply take the organization and its current operations for granted

including all existing functions, business processes, and information systems but they must

rethink the very essence of each process, in order to better adapt to the ever-more volatile

changing economic circumstances. The new digital and agile enterprise, however, has to be

paired with new organizational designs.

Over the past decades, it has become common for companies to describe their organization

in the form of an organization scheme where the structure of the company is drawn up in the

form of divisions, staff organization, and other functional or geographical sub-divisions within

the company. Companies have followed the model introduced by A. P. Sloan at General

12 Knowledge: the body of truth, information, and principles acquired and interpreted information that can be

used. Source: www.iteawww.org/TAA/Glossary.htm
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Motors in the early 1920's. Within the company, work for the employees have been described
in service and working instructions.

However, the structural constraints of the formal organization, with its reliance on standards,
norms and rules for its operation, provide a poor foundation for change and adaptation to new
conditions. In addition, we also have to recognize that strong resistances to change are inborn.
Organizational behaviour is resistant to change due to cognitive processes and defensive
routines: people make sense of past behaviour by forming beliefs that rationalize them and by
escalating commitment to them; they also avoid embarrassment and threat to self and others.
The heavy demands of today and tomorrow on the ability of a company to be flexible and
constantly improve its performance, accent therefore the importance of new forms of
coordination.

Networked self-organized entities are believed to provide the required human fabric of the
agile enterprise, where the formal and the informal structures and the mental models of the
employee and the corporation fuse together. Temporarily formed groups or teams, in common
with other forms of flexible organization that adapt to operational changes, will become more
prevalent.

This is a field of research on its own and further discussion at this point will bring us too far
off track. The interested reader is suggested to consult the resources cited in Appendix 7.7.

6.1.3. The Role of Technology

In this business process re-engineering, technology will play a key role. In the 2 1st century,
computers and information
product design by
automating routine tasks

and providing easy

access to appropriate
information, tools, and

knowledge. The tools

and design environment
will stimulate the
innovative process so

that ideas are converted
to wants and needs,,
needs become product

requirements, and
requirements drive
design - all of this in a

tradeoffs environment

technology will be "power tools" to augment creative humans in
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allowing the best decisions to be made. Computers will not replace human creativity, but
instead will enable creation of far better designs orders of magnitude faster than with today's
systems. Computers will also expand the range of collaboration that is practical, as remote
telecommunications and interactive application sharing will become commonplace.

The prodromes of this transformation are already evident, witnessed by the high ferment
around digital simulation tools. As a Daratech study shows, investment in CAE technologies
topped $2.1 billion in 2004, an increase of 12% over last year. When one considers spending on
product lifecycle management reached $8.6 billion in 2004 and grows 8% each year through

2008, a clear market picture of CAE's importance emerges. Approximately 25% of PLM
investments came from digital simulation in 2004 and, over the next five years, digital
simulation will be the growth engine of PLM, rising 12% annually over that time (see Fig.
145). Driving growth will be a combination of advances in high-performance computing along
with the increasing recognition of digital simulation's ability to generate higher quality and
more innovative products faster and at lower costs than is possible with traditional methods.

Today, in fact, advanced CAx is promising much more than increased productivity. It
promises faster times-to-money, lower warranty costs and above all, products that outperform,
work better, are safer and fail less often.

The themes of evolution of digital simulation are expected to be'3:

" Integrating CAE with Product Lifecycle Management (PLM)

* Simulation-based design
" Multi-domain integration

" Automating complex work processes
* Enterprise-level drivers for wider CAE deployment

* Long-term role and outlook for physical test

" Simulation data & process management: collaborating, archiving, re-use
" Advances in analytical-to-physical correlation

* Multi-disciplinary and multi-objective optimization
* Design for Six Sigma strategies

* Organizational & cultural challenges: management best practices
* Strategies for simulation of multi-domain systems: electronics, mechanics, hydraulics,

controls

* Supercomputing, HPC, grid computing, clustering, 64-bit: maximizing performance
" Management strategies for regulatory compliance

13 Top 15 priorities declared at the 2004 Daratech Digital Product Simulation and PLM conference
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* Strategies for managing and integrating in-house product development with outsourced
product development

6.2. MDO: a fundamental knowledge management tool for high performance
product development process of the new agile enterprise

"Research on new work practices is as important as research on new products"
John Seely BrownFormer Chief Scientist of Xerox CorporationFormer director, Xerox PARC

We believe that the "computerization" of product development embedding an MDO
approach has the capability to improve knowledge management but, at the same time, to greatly
increase change proficiency, thus bringing the company to unprecedented levels of agility.

Our vision for the future of engineering design, and for automotive systems design in
particular, is that of a Multidisciplinary Design Optimization (MDO) environment where it is
possible to perform the design optimization of complex engineering systems using
computational tools. The MIDO approach, powered by the ICE platform, will automate much of
the design configuration process and put product engineering at the heart of the design process.
This automation, however, will not be "black-box" engineering, but rather the execution of
known engineering steps to evaluate design alternatives, providing engineers with information
to make better decisions and to rapidly respond to defined and projected needs at manageable
cost.

These are some of the perspectives in this futuristic environment:

* Scenario-based conceptual models will allow the customer to evaluate and understand
their preferences and the results and implications of those preferences

* Intuitive systems will provide physically and mathematically accurate visualizations
that support trade-offs for optimization based on performance parameters and
preferences

* All systems will be seamlessly interoperable

* All information needed for design and other applications will be contained in an
accessible repository and readily useable by any system. The maintenance and usability
of the data is independent of any specific system or format

* Real life modelling will include uncertainty and provide the foundations for more robust
designs

" "Automatic" calibration of integrated models with experimental data will be
implemented (self-learning)
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The ability to re-engineer products rapidly and the emphasis on design assessment,
comparison and improvement will almost inevitably lead to better engineering solutions to
product design problems and to solutions configured instantaneously to meet fast changing
customer needs.

The optimization algorithms, not constrained within the well-known ridges of common

sense and practice could adventure safely in new areas of the design space leading to

innovative, high performance designs.
The freeing of experts from team supervision, teaching and routine engineering work will

further enhance their ability to discover engineering improvements and allow them to devote to

research and innovation.

This new product development environment enabled by pervasive computing has at its heart
knowledge but it is also man-centric. Its creation stems from the deliberate analysis of the

strengths and weaknesses of the sensorial and cognitive capabilities of man and it is developed

by man to exploit the first and to complement the latter.

6.3. The big risk is delayed action: take a bold-face decision

"Even the longest journey starts with a single step"
Old Chinese saying

Once upon a time, 35 years ago, Computer-Aided Design or CAD was touted by the

National Science Foundation as having the greatest potential to improve productivity since the

advent of electricity. The visionary executives of the day pushed through the adoption of this

emerging technology against enormous odds because they recognized and believed in CAD's

potential. People with no familiarity of computers were asked to change their ways and set

aside a lifetime of training. A highly unionized work force was persuaded to adopt technologies

that promised to eliminate jobs. And a re-education was necessary that did not get people up to

full speed for approximately a year. Nonetheless, top management was sold on the big picture

and this made it easy for people in the middle to take on challenges inherent in any

revolutionary changes. This is not yet happening with frameworks like the one described in the

present work, but it will.
Yet many companies will fail to make the shift, because the technology is believed to be

immature and it's not trusted. Many companies will fail due to the inadequacies of their

leadership.
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Taking a boldface act, we recommend that EDFs' development projects be started selecting
areas (products, divisions, etc) which could benefit most from the application of such an
approach. We've provided elements to prove that, even if neglecting any strategic implication,
these project are self-justified by a sound positive business case. By taking a system's

perspective, we also suggest that these projects be not narrowedly limited to the investigation

of optimization algorithms or simulation models, but consider the MDO approach in its full
articulation that includes design problem formulation and solution, the information flow and

management, and the organization and culture aspects, Fig. 146 [82]

Anlsin Design Problem information O
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"Those who fail, or refuse to adjust to it [change], are condemning themselves to

professional obsolescence. How can you adapt to change? First, try to understand it... With

understanding comes confidence. That's why the first step toward coping with change is

understanding it, the whys, hows and whats of it.... And, face the change with confidence."

[Electric Light and Power editor Ted Pollock, July 2004.]

The combination of demanding customers, pressured profitability, troublesome

environmental regulations, worldwide competition and intractable labor agreements is breaking

the mold of the 2 0th century model of global automotive organizations.

Cost cutting as the sole approach to fattening margins results invariably in a reduction of

operational capabilities which is likely to result in a decline in sales volume that leads to further

cost reductions in a continuous death spiral [83] . Cost cutting has a short-term focus. It can

only be done for the current situation and is not future-oriented.

Long-term profitable growth requires, instead, a continuous flow of innovative products and

processes that align with customer needs. In the long run, it is much cheaper to design

organizational processes that allow mastering fast, low cost change and creating a growth

cycle. The key to success derives, indeed, from our ability to take advantage of change.

Evolving from the assembly line and scientific management, which taught people to think and

function in machine-like ways, our task is to create organizational structures based on systems

thinking and change which are agile and can adapt to the new fast-paced morphing

environment.
'Multidisciplinary optimization' (MDO) - an emerging discipline that stems from Systems

Engineering and that relies on mathematics, statistics, operations research and computer

science - integrated in a High Performance Computing Integrated Concurrent Engineering

Platform is going to be the cornerstone of the new flexible product development paradigm.

Nobody will be able to immediately start a fully operational new agile and adaptive product

development environment. However, the winner will be the one who has a clear vision of the

final agile state, start earlier on the journey to achieve this vision, and implement it piece by
piece.
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"It's not the strongest of species that survive, nor the most intelligent, but the one most
responsive to change".

Charles Darwin



7. APPENDIX

7.1. Geometrical Model Indipendent Parameters List

The table that follows report the geometrical model independent parameters. The first block

(identified with the green color) refers to independent parameters that can be varied during the

optimization, the second (identified with yellow) to those that are fixed with the application.

Units are [mm] for dimensions and coordinates, [0] for angles.

Value
(Baseline)I Parameter Description
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No. Parameter

31 Dintd

32 diametrojmax
33 diametro-sf
34 rot dir-cil-x

35 rot-dirtcil_y
36 spconouscita
37 spextcilindro

38 sp-sf cono-ingresso

Value
(Baseline) Description

41

44 x_2 100 Point 2, x coordinate
45 y_2 90 Point 2, y coordinate

46 z-2 144 Point 2, z coordinate

47 Cla x 0 Pipe A, Control Point 1, x coordinate
48 Cla_y 0 Pipe A, Control Point 1, y coordinate
49 C1a-z 0 Pipe A, Control Point 1, z coordinate
50 Clb x 0 Pipe B, Control Point 1, x coordinate
51 C1b-y 77 Pipe B, Control Point 1, y coordinate
52 C1b-z 0 Pipe B, Control Point 1, z coordinate
53 C1c-x 0 Pipe C, Control Point 1, x coordinate

54 C1c_y 154 Pipe C, Control Point 1, y coordinate

55 Clc z 0 Pipe C, Control Point 1, z coordinate

56 C1d-x 0 Pipe D, Control Point 1, x coordinate

57 Cld_y 231 Pipe D, Control Point 1, y coordinate

58 Cld-z 0 Pipe D, Control Point 1, z coordinate
59 diametrocil 106 Brick Diameter
60 diametrocilfisso 45 Outlet Pipe Inner Diameter
61 diametroforostaffetta 10 Bracket Hole Diameter
62 estensionelabbroinf 40 Bracket Lower Wing Length
63 estensionelabbrosup 40 Bracket Upper Wing Length
64 lunghezza.cil 127 Brick Length
65 lunghezza-cil fisso 280 Outlet Pipe Length
66 semi_aperturainfstaffetta 3
67 semiapertura-supstaffetta 3
68 spcil-fisso 2 Outlet Pipe Thickness
69 spmat 6 Mat Thickness
70 spessflangia 10 Inlet Flange Thickness
71 staffettafine 187.5 Bracket Leading Edge, x coordinate
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Value
No. Parameter (Baseline) Description

72 staffetta inizio 153.5 Bracket Trailing Edge, x coordinate
73 x_5 -23.5 Point 5, x coordinate
74 x_6 -263 Point 6, x coordinate
75 y_5 30 Point 5, y coordinate
76 y_6 13.5 Point 6, y coordinate
77 z_5 367 Point 5, z coordinate
78 z_6 374 Point 6, z coordinate

7.2. KEFAOptimizer

7.2.1. Command syntax

KEFAOptimizer is launched with the following command:

KEFAOptimizer2.exe -p <PARTFILE> -e <EXPFILE> -o <OPTFILE> -s <ParasolidFile> [-clean]

-p <PART FILE>

-e <EXPFILE>

-o <OPTFILE>

-s <ParasolidFile>

-clean

part to be modified, eg: "-p part.prt"

file with expressions, eg:"-k tube.exp"

required params, eg: "-o opt.txt"

parasolid file name, eg: "-s outParasolid.x t"

delete comments from expression file

7.2.2. Operating System Requirements

KEFAOptimizer works on Microsoft Windows 2000 and later.

It requires the UG NX2 software with licenses for Open API and Knowledge Fusion

Other OS requirements are the same of UG NX2.

7.3. BOOST Application Automation Input File

The interface definition consists of 2 parts: the first defines the data that should be updated

inside the BOOST-model, the second describes the requested results:

Example:
<boost automatization interface>

<boostinput>

</boost input>

<boost outputrequest>
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</boostoutputrequest>

</boostautomatization interface>

The input section can contain any arbitrary number of input data definitions. The definition

consists of two types of information: the name of the parameter, which should be updated, and

the value of it (absolute value, not incremental). The condition, which has to be fullfilled for

the update to be successful, is that parameters have to be so-called "Workspace"-Parameters.

"Workspace"-Parameters are input data inside BOOST which are declared as a parameter. The

declaration of the parameter is done interactively from the creator of the BOOST model.

A sample of the input section is given below:

<boost-input>

<parameter>

<name>Amb_T</name>

<value>303.000000</value>

</parameter>

<parameter>

<name>Brickdia</name>

<vaiue>106.000000</value>

</parameter>

<boostinput>

The iSIGHT parser is instructed to write the values of the parameters in the appropriate

fields (see 3.10.2).

The results definition is also totally flexible. Here, in addition to specifying the requested

results the following declarations have to be done:

" Name of the result export file

" If a post processing step of BOOST should be run.

Torque curves are obtained by combining the results from different single rpm operations.

BOOST itself, adequately instructed by the user, is able to run multiple calculations. The user

then makes the combination in the post-processing phase. The automation interface is

developed with the same capabilities and therefore it needs the information regardless if the

creation process of the combined results are necessary or not.
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Example:
<boostoutputrequest>

<filename>resultsboost.dat</filename>

<createseries results>YES</create series results>

</boost output request>

After the definition of the output file and the post processing step, the results are defined.
Also here, there is no limitation about the number of results.

The information which allows the automation layer to extract the requested results are:
" Name of the output value (which is written into the result file)
" Result file containing the data of interest (BOOST .gid file)

* Result column(s) inside the previous defined result file
* Extraction method: "LAST" or "ALL"

In the case of "LAST" the last value of the result column is taken and written
In the case of "ALL" the complete data column is written

Example
<boostoutput request>

<filename>resultsboost.dat</filename>

<create series results>YES</create series results>

<parameter-table>

<parameter>

<name>RPM</name>

<result file>exl.csl/simulation.dir/sEGl l.gid</result file>

<resultcolumn>En speed</resultcolumn>

<resultmethode>ALL</result methode>

</parameter>

<parameter>

<name>TORQUE</name>

<result file> exl.csl/simulation.dir/sEGl l.gid</result file>

<resultcolumn>TORQUE</resultcolumn>

<resultmethode>ALL</result methode>

</parameter>

</parameter table>

</boost output request>

7.4. Resources for Advances in Product Development

* New Product Development Project Innovation International Conferences, on
www.managementrounddtable.com

" Methods and Tools for Co-operative and Integrated Design, on http://cirp-
dn2003.hm iz.inp).fr/scope.html
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" International Symposium on TOOLS AND METHODS OF COMPETITIVE
ENGINEERING, on http://dutoce.io.tudelft.nl/-jouke/tmce2004/

* Product Development and Management Association, on http://www.pdma.org/
* NEW PRODUCT DEVELOPMENT SOLUTIONS on http://www.npd-

solutions.com/index.html

7.5. Resources for Multidisciplinary Design Optimization

* MDO TECHNICAL REPORTS ONLINE
http://www.soton.ac.uk/~pbn/MDO/mdo pubs.html (and also
http://www.soton.ac.uk/~pbn/MDO/mdo links.html)

* NASA Langley Research Center Multidiscipline Optimization Branch
http://mdob.larc.nasa.gov/

* MULTIDISCIPLINARY DESIGN OPTIMIZATION TECHNICAL COMMITTEE
http://www.aiaa.org/portal/index.cfm?GetComm=80

* List of MDO and Optimization-Related Web Sites:
http://www.ae.msstate. edu/-masoud/Research/optsites.html

" http://www.sgi.com/industries/manufacturing/mdo/#overview

" Association for Structural and Multidisciplinary Optimization in the UK

7.6. Resources for Knowledge Management:

* http://www.parshift.com/library.htm.

" http://wxvw.viktoria.se/results/result files/171.pdf

7.7. Resources for Complex Systems and Chaos Theory:

* http://www.brint.com/Systems2.htm
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