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Master of Science in Mechanical Engineering and Master of Business Administration.

ABSTRACT

Although Magna (a fictional name for an automobile manufacturer) demonstrates year-on-year
improvement across new and refreshed vehicle programs, they continue to lag behind the
industry average within the category of "problems per 100 vehicles" as measured by J.D. Power
and Associates' Initial Quality Survey (IQS). This project is concerned with the development of
tools which can be used to improve the characteristics associated with complex system
performance - considered a major factor in providing customers with high quality vehicles. The
primary toolset leveraged for this effort was Datum Flow Chain (DFC) analysis which is useful
for mapping out complex mechanical systems and identifying sources of potential improvement.
This toolset also provides a practical means of generating standard design architectures which
can be used to inform future product designs. Several technical and cultural barriers had to be
addressed in order to clearly demonstrate the value of this new approach to improving customer
satisfaction.

Thesis Supervisor: Daniel E. Whitney, Senior Lecturer, Mechanical Engineering Department
Thesis Supervisor: Janice Klein, Senior Lecturer, MIT Sloan School of Management
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CHAPTER ONE: PROJECT MOTIVATION

Introduction and Thesis Structure

This thesis seeks to present the work completed in fulfillment of a Leaders for Manufacturing

(LFM) internship as performed on site at Magna Motor Company. The true name of the

company has been disguised, as has been the names of individuals mentioned throughout. The

first portion of this thesis will present the background and motivation for the internship project.

This thesis will explore the nature of the current door closures system design issues as defined by

Magna as well as actions taken within the company to remedy the situation. We will then

consider the specific issues that affect the Magna-duty truck line (currently in production). Then,

by examining the collection of tools currently in use, we will be able to identify technical and

cultural gaps that can be met by the introduction of new techniques and new modes of thinking.

Our attention will then turn to the use of Datum Flow Chain (DFC) techniques and their potential

use within Magna. Finally, we will provide recommendations for Magna on the implementation

and execution of these techniques.

Increasing Industry Competition

For more than 100 years, Magna Motor Company has worked to develop and produce vehicles

that consistently meet or exceed evolving customer expectations. Although traditional indicators

of quality such as engine performance and reliability of the major system functions remain

critical to each program's success, an increasingly prominent role has been played by what the

customer considers the "look and feel" of the vehicle. Each year, massive amounts of customer

quality feedback is collected and analyzed in order to assess areas of necessary improvement

involving this "softer" perception of quality. These collected data typically demonstrate that

Magna, although an exceptionally competent automaker, generally lags behind the industry

leaders.

One source of such data is J.D. Power and Associates, a group which generates reports such as

the Initial Quality Survey (IQS), the Automotive Performance, Execution, and Layout Study

(APEAL), and the Vehicle Dependability Survey (VDS). In particular, J.D. Power's IQS

presents owner-reported problems in the first 90 days of ownership, a period in which "soft"
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attributes such as wind noise, water leaks, poor interior fit/finish and squeaks/rattles are

particularly conspicuous. It is interesting to note that although Magna has continued to improve

their perceived initial quality (which is measured in problems per 100 vehicles), they- along with

other U.S. automakers - remain below the average industry quality levels. As shown in Figure

1-1, Magna's IQS 2004 performance came in at 127 problems per 100 vehicles for 2004.

Although this represents a 7% improvement over 2003 results (of 136 problems per 100 vehicles)

it must be contrasted with the 2004 industry average of 119 problems per 100 vehicles (which

has fallen from 133 problems per 100 vehicles in 2003).

Initial Quality Survey

150

140-1-

> 130 Magna

120 -V-, Average
11 1Toyota

1111 [ - Hyundai

100
0

901 Y r

Year

Magna Average I Toyota Hyundai
I20031 1361 1331 115J 1431

2004 127 119 101 102

Figure 1 -1: Quality as a Moving Target

These results demonstrate the difficulty that Magna has had in meeting a moving quality target.

In fact, Magna's ranking actually fell from 2003 to 2004, moving them from their position as the

#7 IQS-ranked automaker to #8. Meanwhile, the newly re-emerged Hyundai Motor America has

leapfrogged Magna by generating quality improvements of 30% over last year's results. The

automotive landscape against which Magna has been struggling is likely to become even more

competitive as auto manufacturers become increasingly adept at providing customer satisfaction.
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Magna's success as a company, in the model years ahead, will depend in large part on its ability

to anticipate and meet the increasingly refined demands of its customers.

As this thesis will explore, the delivery of a significant number of these customer attributes

depends on a sound, systems-level understanding of the final assembled vehicle. As quoted from

J.D. Power's Interior Quality Report, "the initial quality and appeal (design satisfaction) of new-

vehicle interiors, is an area that is becoming a competitive advantage for today's manufacturers."

In order to cultivate and maintain the integrative perspective necessary for success, Magna must

continue to support current initiatives that promote the active involvement of knowledgeable

personnel across functions and programs. In the time the author spent at Magna it became

generally evident that the appropriate people (management and engineering) recognized the need

for systems thinking and, were interested in improving. In addition, many of these individuals

are looking for the right tools to help them get there.

Vehicle Wind Noise as a Motivation for Developing a Systems
Approach

One example of just such a systems-level customer feature - which must be controlled within the

context of a complex system - is that of vehicle wind noise due to aspiration. This aspiration

had been a problematic source of customer complaints for Magna over the last several years and

across a large number of programs. In general, complaints of wind noise can refer to a wide

variety of occurrences, including component vibration and other motion induced at high vehicle

speeds. However, for the purposes of this thesis, 'wind noise' will be considered synonymous

with door aspiration - which can be described as the 'whooshing' sound due to the egress of air

around the door seal. This phenomenon is caused by insufficient door-to-body sealing in the

face of a pressure differential between the cabin and the environment. This noise typically

occurs at higher vehicle speeds (which lead to a greater pressure differential) and is often more

serious in older vehicles, whose door seals are more aged. Because of the nature of the seal's

reduced performance, this noise comes on all at once and is quite easy to distinguish from other

cabin noises. The occurrence of a given vehicle's wind noise can be characterized as a system

problem because of the complex relationship that exists between this customer attribute and a
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host of others including door margin, flushness, and closing effort. This collection of attributes

will be more fully introduced in chapter 2.

Seal Gap and Wind Noise Issues Associated with Magna-duty Trucks

As mentioned, wind noise has been a perennial complaint among drivers of Magna trucks,

and feedback collected from customers and dealerships can provide clues concerning the factors

involved. Anecdotal evidence suggests the enormous number and variety of factors contributing

to any given vehicle's reduced customer satisfaction, as illustrated by the following customer

feedback.

" Dependence on user input "If I close the door harder the wind noise gets much better."

The way in which each customer interacts with his vehicle is a source of variance which

may exacerbate vehicle performance - particularly performance associated with non-rigid

or flexible geometries.

" Dependence on ambient temperature "It only seems to happen in the cold (40F)". Seal

shape, size, and elasticity naturally vary with temperature.

" Dependence on vehicle speed/direction "I only noticed it at 40mph and above". "I

noticed it only when going around curves". Although customers are correct to observe

the effect that driving speed and direction had on wind noise, most are unaware of the

causality that exists between an interior/exterior pressure differential and windnoise.

This differential is itself caused by higher velocities. Additionally, driving through a turn

places side forces on the door which may contribute to a seal's reduced performance.

" Dependence on particular environmental events "I Suspect wind noise due to water

freezing in seal".

" Dependence on system parameters "It depends on cracks from other doors". As reflected

to some degree in all of these customer comments, the notion that wind noise is a product

of other inputs is critical. However, there is a demonstrated tendency for customers (or

designers or assemblers) to oversimplify the cause and effect relationships and so neglect

aspects of the system that are essential for success.

9



When comparing Magna's trucks against models offered by competitors, the same consistent

discrepancies are noted. In the case of Body and Interior Quality data collected by J.D. Power,

Magna's trucks show to be comparable to other U.S. automakers, but lower performing than the

best in class. Rather, both of Toyota's 4-door truck offerings receive the highest possible rating

for this category, which includes assessment of windnoise and other related factors (see Figure 1-

2).

X Ck Toyota Tundra 4 dr
Toyota Tacoma 4 dr

__ _k_ k Magna Magna-duty 4 dr

X k X U.S. Auto #2 Sierra 2500HD 4 dr
A *Kk# U.S.Auto#3 Ram 1500 4 dr

Figure 1-2: Rating of competitor's vehicles (trucks)

For its part Magna has recognized the significance of wind noise complaints and the importance

to customers. Substantial customer research has shown a high level of correlation between a

vehicle's interior quietness and the ensuing customer satisfaction. Because of this, Magna has

recently begun to take steps towards better understanding and improving their vehicles along this

dimension. Current initiatives include the development of metrics, the formation of teams, and

the application of issue specific tools. In order to understand the impetus behind the internship

project at Magna, it is first necessary to appreciate the effort which has been put into one

particular initiative: the designation of internal Closure System Integrators or CSI's.

Role of CSI's in Delivering Customer Satisfaction

Recently, Magna has taken new steps to plug the gaps they acknowledge exist between

engineering groups responsible for achieving related (but sometimes conflicting) product

attributes. This initiative includes the formation of a new role - Closure System Integrator -

which is responsible for success of vehicle closures across a variety of vehicle programs. At

Magna, 'closures' refers to the parts of the car body that open and close, such as doors, hatches,

lift gates, hoods and trunk lids. Engineers chosen to serve as Closure System Integrators become
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responsible for utilizing their cross-functional engineering expertise to establish key relationships

between closures design engineers from various functions and programs. Although these CSI's

are typically not given additional organizational authority beyond their engineering peers, they

are unofficially considered the 'first among equals' when difficult decisions are required. The

expectation is that many apparent design conflicts can be resolved by the determination of a

solution found to be a mutually acceptable - preferably a global optimum. By empowering these

agents to think beyond the confines of their various functional and programmatic stratifications,

they are free to search for these creative solutions through the exchange of information and the

exercise of quantitative tools.

Currently, CSI's fall into one of two categories. The first are those that report to the

manufacturing side of Magna's organization (also known as vehicle operations) and are

generally responsible for applying their engineering knowledge towards the anticipation and

resolution of issues threatening the future manufacturability of a given program. Due to these

engineers' experience with the details and difficulties of vehicle operations, it becomes possible

to generate solutions to problems before they arise - through the early improvement of vehicles'

design for manufacturability. Currently, the manufacturing CSI group is comprised of three

engineers, each considered an expert from his/her respective area: stamping, body construction,

and final assembly. This arrangement allows each to bring unique knowledge and experience to

the resolution of complex problems, as they are co-located together. Just as importantly, it

enables the team to leverage relationships which reach back into the depths of the automaker's

divisions as the need arises. This team is led by a closure system manager (CSM), who likewise

has considerable Magna experience and is responsible for setting team deliverables. He also

allocates team resources to current vehicle programs as they request the team's expertise. This is

often done by assigning a single team member to work for an extended duration with one or

more vehicle teams.

The second category of CSI's are those that sit on the program development side and who are

generally held responsible for achieving critical system metrics known as vehicle sections.

Functionally, this group (generally known as the program development closure system

integrators or PD CSI's), can be considered analogous to the manufacturing CSI's, except that
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they work further upstream within the process. These CSI's work with teams of program

engineers to ensure that component design proves capable to meet assembly level requirements.

Besides a difference in job function, several other important distinctions should be noted. For

one, the PD CSI's are not co-located and in some cases, work within different buildings, making

communication via phone, email, and weekly meetings essential. Also, the PD CSI's are

considered much more intimately tied to a single program, for which they bear great

responsibility. Finally, the team is considerably larger (approximately 9 engineers) and is not led

by a closures system manager. Due to their involvement with the early design of programs, the

focus of this thesis will be on this second set of CSI's.

Description of Internship Project

As developed by Magna, the project to be undertaken consisted of working within the

aforementioned CSI groups to develop and demonstrate tools that would allow these engineers to

more effectively diagnose and resolve systematic customer issues. This particular assignment

was supported by several executives within the automaker, demonstrating that the need was real

and acknowledged throughout the organization. A focus on analytical tools, and the way in

which they could aid the exchange of information and the reformulation of organizational

boundaries thus formed the crux of my work and will be the primary topic covered within this

thesis. More specifically, attention was drawn to Magna's need to better design and control the

parameters which influence customer attributes across all vehicle lines. However, rarely can one

customer requirement be solved independently of many others due to the interrelated complexity

of a vehicle system.

In order to understand the complex and interrelated nature of customer attributes, it was

necessary to consider a group which share common influencing factors. Within vehicle closures,

there was known to be a great amount of overlap among the following attributes: vehicle wind

noise, vehicle water leaks, door closing efforts, door opening efforts, and door margin and

flushness. However, it was not unusual for each of these attributes to be considered individually

and optimized without adequate regard for the others. In this way, interaction effects - and other

systematic complexities - have often remained undiscovered and unresolved. Because of this, a

vehicle's demonstrated wind noise is best considered as one of a large number of deliverables
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which must be simultaneously provided. In recent years, automakers have become increasingly

adept at system design. However, without the development and use of tools that better explore

these complex relationships, it remains difficult to dramatically improve system performance,

and hence customer satisfaction.

Thus, for the internship project, the use of two tools was considered in great detail; that of DVA

(or Dimensional Variation Analysis), a tool already anchored and used at Magna, as well as DFC

(Datum Flow Chain analysis) a new tool which has made inroads into the automaker but has not

yet reached a tipping point. Improvements in the use of both of these tools were discovered, in

light of their current use. Analysis from these tools was then used to make general design and

organizational recommendations for Magna as it moves forward in its quest to deliver superior

customer satisfaction.

Roadmap for Thesis
The general framework for this thesis consists of the introduction and exploration of Magna door

closures and the development of tools for improved analysis. Chapter 2 presents the Magna door

closure system and familiarizes the reader with key components and customer attributes that will

be referenced later in the thesis. In Chapter 3, development of some basic systems thinking will

take place before we move on to consider the current and proper use of Magna's current systems

tools, including DVA (Chapter 4). The next section is then built around a thorough discussion of

DFC tools and their proper construction, which is critical for understanding as the technique

begins to see greater use within Magna (Chapter 5). Our attention then turns to the specific

assembly techniques involved with the Magna-duty truck line and how they can be effectively

modeled and analyzed using Datum Flow Chains (Chapters 6, 7). In Chapter 8 we consider the

design recommendations stemming from the use of these tools, and what steps the automaker

might take to improve its attribute delivery. The next chapter (Chapter 9) turns its attention to

the ways in which DFC practices can be embedded with Magna for use on future programs.

Finally, Chapter 10 presents the development of a DFC construction and analysis software

intended to ease Magna's transition to the use of these techniques.
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CHAPTER TWO: MAGNA DOOR CLOSURE SYSTEMS

Before we can explore the current and future application of system tools at Magna, it is

important that we first understand the system which is the subject of our study. The term closure

refers to all the various vehicle subsystems that involve the movement of parts to produce 'open'

and 'closed' states, such as the car's hood, trunk, tailgate, and doors. Many factors are

responsible for making these subsystems difficult to manage, particularly from a customer

satisfaction perspective.

Door System Components and Hang Strategy

The closure system of concern for this thesis is that of vehicle doors. A brief description of each

of the primary components is necessary, many of which are depicted in Figure 2-1, which shows

a door closure system for a Magna-duty truck.

Figure 2-1: Truck Door Closure System

This particular vehicle has two doors (front and rear) each supported by two hinges (upper and

lower). Since this design contains no pillar between the doors, the rear door's hinges are located
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towards the rear so that the door opens backward - opposite that of the front door. All four

hinges connect the doors with the DOP or door opening panel which surrounds and frames the

doors. The role played by the door header, which is the portion of the door above the window, is

often critical to achieving customer satisfaction. Additionally, the presence of several layers of

sealing (or 'weather stripping') can be noted along the door or DOP. Finally, the system's striker

and latch mechanism work to keep the door closed. The body's strikers (not shown) are metal

bars that engage with the door latches and catch to hold fast. In this system, the rear DOP

contains two strikers that match to latches within the rear door, while the rear section of the front

door contains a single latch placed to engage with a striker installed in the rear door. Because of

this, the rear door must always be closed first.

The selection of each system component as well as its relative position and orientation is

informed by the strategy that has been set for how the door is to be hung. This is known as a

hang strategy. During the development of a program's final design, this strategy may evolve in

an iterative manner as engineers work to satisfy design requirements. For this reason, a thorough

understanding of the interrelatedness of each component is essential. Certain hang strategies

such as the use of a NAB pin hinge with rocker tool can be expected to yield results that will be

favorable to one or more customer attribute, as will be explored in future chapters.

Door System Attributes

Generally, a set of attributes for this system can be considered to include those listed below.

Figure 2-2 depicts a cross-section of a closed Magna vehicle door looking in the area of the

header and the DOP with two levels of sealing. As many of the salient customer features involve

metrics associated with cross-sections such as these, the term 'vehicle section' is employed to

refer to them. The figure below shows how some of the critical customer attributes are defined:
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DOP

Door margin

Level 1 sealing

Door header

Window Level 2 sealing

Figure 2-2: Cross-section of Closed Door

* Door Closing Effort (not shown): This represents the amount of force, and the duration

over which that force must be applied, in order to completely close the door. This

attribute is best understood as being the customer's overall satisfaction with the action of

closing his/her door. If door closing effort is too high the customer experiences strain

and frustration with repeated closings of the door and may cause the door latch to only

partially engage the respective striker. Conversely, if door closing effort is too low, the

customer will find himself 'slamming' the door unnecessarily hard. In extreme

conditions, the door may 'close itself if the vehicle is parked at even a slight incline.

The feel of the door as it is closed has been found to convey product quality cues to the

vehicle owner.

* Door Margin: Door margin is understood to mean the gap which surrounds each door

and which is measured either from door edge to DOP edge or door edge to door edge.

Achieving acceptable door margin means ensuring that this gap is consistent and of
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minimal size. Although door margin should be controlled around the entire door, the area

of greatest concern is the space above the header since this is the margin that will be most

obvious to potential vehicle owners.

" Door Flushness: Door flushness refers to the outboard alignment of door to DOP (or

door to door) and can be qualitatively assessed by running your hand over the door

margin and feeling for a change in the in/out position. Generally, doors should be set

perfectly flush to the other framing components.

" Door Closing Sound (not shown): Many customers have shown a preference for

particular sounds associated with the close of a car door. Although some of these

preferences are obvious (e.g. lack of rattles or squeaks), others are more complex and

involve the door sounding 'solid' upon closing.

" Door Water Leaks (shown as seal gap): This customer requirement consists of the door

subsystem not allowing water to flow inside the vehicle once the windows have been

closed, and depends heavily on the ability of the door to create a robust seal with the

DOP and other door.

" Door Wind Noise (shown as seal gap): Door wind noise is an attribute which quantifies

the loudness (in sones) of air egress while driving. As discussed in the previous chapter,

this is considered a high priority customer attribute. The ability of the system to achieve

acceptably low levels of noise is directly related to its ability to provide adequate sealing.

The seal must fill the distance set by the seal gap, despite the various conditions the

system will be subjected to, including aging, changing temperatures, and extreme

pressure differentials between the inside and outside of the cabin. These conditions tend

to affect the door's outboard position with respect to the DOP, often leading to door

deflection which is sufficiently high to allow the egress of air. Figure 2-3 shows typical

pressures seen by the closure system.
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Figure 2-3: Surface Pressures Applied to Magna-duty Truck Closure System

Wind noise and its Relationship to Seal Gap

In practice, designing for a customer attribute such as wind noise is exceedingly difficult. One

reason for this is the large number of external and environmental factors that influence the

behavior of the sealing system. However, one method for increasing the robustness of the design

to these effects involves decreasing the size of the seal gap relative to the sealing system. In this

way, even as door undergoes outward deflection, it will prove less likely to allow the egress of

air through the gap. This simplifying design method of minimizing seal gap is currently applied

at Magna. Although this method does not suddenly give us an easy design parameter (the

minimization of seal gap is a difficult requirement), it does provide a method of limiting our

design work to geometric relationships and allows us to be less concerned with the external

factors. Studies have been performed assessing the relationship between a vehicle's seal gap and
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the door deflection (shown in Figure 2-4). This work has demonstrated the tendency of vehicles

with smaller gaps to experience decreased door deflection when subjected to real world

conditions. The figure below shows a Magna truck's door deflection at a simulated 100 mph

highway speed. Trucks with smaller initial gap sizes demonstrated less deflection and less wind

noise as a result. Because of the reasonableness and widespread practice of substituting seal gap

as a proxy for wind noise, this thesis will consider seal gap size as the customer attribute of

interest.

Deflection vs. Seal Gaps

C
0

0

4)

0
0
0

6.0

5.0

4.0

X -3.0

E2

2.0

1.0

0.0
12.0

y 0 1726x2 - 4.5636x+ 31.272
R 2 = 0.9829

13.0 14.0 15.0 16.0

Seal Gaps (mm)

17.0 18.0 19.0

Figure 2-4: Higher Door Deflection for Larger Initial Seal Gaps

In line with the results shown above, Magna CSI's have found that doors may rotate outwards

(as a semi-rigid body, within minimal flex) when these high speed pressure loads are applied.

Having provided background on Magna's door closure systems, it now remains for us to

consider the nature of the complexity found in these systems before we turn our attention to the

application of system tools.
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CHAPTER THREE: AN INTRODUCTION TO SYSTEMS LEVEL THINKING

Mapping of Complex Systems - Motivation for a Tool-Driven
Approach

It is obvious to those within the automotive industry that any given vehicle represents a complex

assemblage of designed components. Less obvious is the level of complexity required by the

engineering tools applied to understand and improve such a system. Such tools have

traditionally been seen as a means by which to improve the designer's insight into how he/she

might modify an existing design - leaving the ultimate decision making authority to the

discretion of the most knowledgeable engineer. Tools, then, play a critical but subordinate role

to intuition; informing but not mandating a given approach. As system complexity continues to

increase, intuition and experience must play an increasingly smaller role in the final design of

vehicles. Instead, data driven tools capable of solving simultaneous deliverables while satisfying

a vast number of constraints, must become more prevalent.

For our purposes, the definition of a complex system [from Magee and de Weck] will be taken

as: a system with numerous components and interconnections, interactions or interdependencies

that are difficult to describe, understand, predict, manage, design, and/or change There exists a

wide variety of such systems, which can be described by features of their behavior such as the

number and diversity of elements, or their interconnectivity. Figure 3-1 represents five of these

categories.

Figure 3-1: Features of Complex Systems

The system may be complicated by the level of intricacy associated with each of the

subcomponents which comprise it. Similarly, the number of components involved within a

defined system may serve to add a level of complexity, as might the range of design of each of
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the included pieces - and the differences they bear with respect to one another. Component

interconnectivity can also vary widely depending on the construction and purpose of the system

and may diminish the benefit of segregating and analyzing sections of this system independently.

Finally, every system is subject to structural constraints - and must be constructed in such a way

as to ensure each element is properly oriented with respect to the remaining elements. As a

system's complexity increases along these (and other) dimensions, it becomes increasingly

difficult for the human mind to develop intuition concerning the patterns of cause and effect

flowing from that system.

Three Categories of Complexity
As Magna is in the business of designing and assembling systems, it is useful to consider the

extent to which human intuition - even that of trained technical employees - is capable of

managing complexity. As a simplified first attempt, engineered systems can be thought of as

falling into one of three categories: first order, second order, or irreducible.

First order systems refer to those that can be regularly satisfied by modification of a single factor

at a time. These are the simplest of the three, often requiring a minimal level of insight into the

behavior of the components, and are the most common of the systems found in daily life. Such a

system can be seen in an assembly where designed components combine to control a single

overriding feature as seen in Figure 3-2. Examples of real first order systems include an office

chair whose height adjustment handle independently controls the position of the user along one

dimension, or a heavily secured front door which, in order to be opened, must undergo a series of

sequential modifications, including the sliding of a chain lock, the spinning of a deadbolt, and the

twisting of a door handle.
Figure 3-2: First Order Complexity
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Second order systems are defined as those which attempt to satisfy multiple (often conflicting)

attributes which fundamentally relying on the arrangement of the same set of components. For

these systems significantly greater knowledge must be obtained before any modifications or

improvements can be achieved. This is due to the potential of disrupting system attributes

unintentionally or (even worse) unknowingly. In the case where a component may be serving

'double-duty' for two or more deliverables, but is not faced with an intrinsic conflict, optimal

solutions may be found to satisfy the desired system state. However, when conflicts do exist, the

need for tradeoffs should be anticipated and the relative prioritization of system attributes must

be performed. Due to the multiple simultaneous objectives of these systems, and the difficulty

faced by the designer who is trying to 'keep his eye on the ball', it doesn't take a large number of

interrelated elements for traditional intuitive approaches to quickly bog down. Figure 3-3 shows

a representation of a second order system. Examples of these include the band of a watch, which

must be loose enough for comfort, but tight enough to hold fast, or some aspects of an

automobile's internal combustion engine which must provide sufficiently high power for driving,

while minimizing consumption of fuel and noise (among others).

Figure 3-3: Second Order Complexity
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The third category of system includes those with a high level of constraint across elements due to

imposed standardization of common component designs. This category, known as irreducible, is

a relational design with standardized constraints and occurs when the modification of a system's

critical components is restricted due to the impact such changes would have on other components

which share the same standard, but are otherwise indirectly related. An example helps to clarify

this system. Consider the electrical cord of any household appliance. As the homeowner goes to

plug this appliance in, he finds that the cord's electrical prongs don't quite mate with the wall
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outlet. This misalignment can be remedied immediately by deformation of the prongs to match

the slot spacing of the outlet - allowing the system to achieve its function. However, should the

fault lie with the outlet then the corrective action just taken will prevent the appliance from

matching with the remaining wall outlets in the house. Before component modification occurs, it

must first be determined which design standard has not been achieved. In general, however, it is

not possible to alter the design for a single product (so designated as irreducible) without

likewise altering the related design of an array of other products.

Ultimately, it could be argued that every component and subsystem that ever has or will come

into contact with one another are all constituents of the same encompassing system. However,

the creation of this third category allows systems to be considered independently while retaining

the interdependence they share based on a common, standardized design. For Magna, these

standards govern several of the design activities. For example, one requirement established by

standardization is that every truck door be produced identically in order to match with any one of

the identically produced truck bodies. Although in reality these doors will never be part of the

same system, they influence one another indirectly through the establishment of common

standards and management decisions such as whether or not to employ functional build strategies.

Similarly, as a standard door hinge emerges for use across multiple programs, the freedom of any

system or platform to modify its components is diminished. This category of system, which is

governed by cross-program constraints, is depicted in Figure 3-4.

Figure 3-4: System w/ Standardizing Constraints
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The Use of Systems Tools for Optimal Design

Recognizing and categorizing systems as being of first order, second order, or irreducible

complexity should not be seen as mere exercise but as a means to match the need with the tools

appropriate to solve it. Even in cases where a system, or collection of systems, cannot be cleanly

defined using this methodology, it remains critical that engineers responsible for design

strategies begin with these concepts in mind. In so doing, it then becomes possible to identify

the gaps between what the current state of engineering tools can achieve (these tools include

among them the human mind and its capacity to visualize and understand complexity) and what

they need to achieve in order to continue organizational improvement.

Practically speaking, once a system has been categorized, it is then necessary to determine how

tools may be developed or applied to take the burden of excessive complexity off of the

shoulders of the designers. Although Magna has made use of a variety of toolsets in order to

improve vehicle quality, it remains to be seen whether these tools will remain sufficient in an

increasingly competitive marketplace with an increasingly complex product. Unfortunately,

tools currently in place are insufficient to properly design systems requiring second order

complexity or to thoroughly inform the strategies governing designs which cross a variety of

programs - as is the case with Magna's current push for standardization.

Instead, tools at use at Magna generally show themselves to be excellent for optimizing simple

systems or for breaking complex systems down and delivering sequential analysis. Without the

use of sufficiently capable tools, design solutions that may improve the product line will remain

hidden. Figure 3-5 demonstrates these 'undiscovered solutions' which may provide optimal

achievement of design requirements, but which cannot be located by current tools. Acceptable

designs are those which occur at the intersection of established design concepts which are known

to exist, and those designs which fulfill all necessary requirements. As shown in Figure 3-5,

Magna designers often begin the process with solutions that do not fulfill the full range of system

requirements. The onus is then on them to iterate until the resulting design concept does satisfy

the requirements. Although current methods often prove adequate for determining a 'good'
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design, they may not be capable of discovering every solution, and therefore potentially leave the

optimal solution undiscovered.

Figure 3-5: Failure of Tools to Uncover Solutions
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This next chapter will consider the use of system tools in place at Magna. These tools are

currently employed to iterate the best reasonable design and have different uses within the

organization. By presenting a brief introduction to these tools, we will then be able to move to

recommendations for the improved use of system tools.
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CHAPTER FOUR: USE OF SYSTEM TOOLS AT MAGNA

A senior leader at Magna is known for having said: "If you give engineers good tools they will

use them." The truth of this statement can be debated, but it is at least evident that engineers

who have insufficient tools to aid them in system design will produce designs that are lacking.

As might be expected of a company as large and organizationally complex as Magna a large

number of tools go underused (or unused) due to lack of awareness or concern. As this project is

concerned with the development and recommendation of improved tools for system-level vehicle

design, it is reasonable to first assess which tools have been historically used and are of great

familiarity. The primary goal of this chapter will be to demonstrate the inadequacy of current

tools to delivery engineered systems of the highest customer quality. In the following chapters,

our thoughts will be turned to a tool that has more recently been developed but has not yet been

used to Magna's full advantage.

The Current Use of Limited System Tools

Engineers at Magna have made proficient use of a number of tools as means of diagnosing and

solving issues associated with systems. Included among these are computer aided tools such as

CAD (computer aided design), FEA (finite element analysis), CAM (computer aided

manufacturing) and CAE (computer aided engineering) as well as physical modeling tools such

as Rapid Prototyping and Royalite models. However, in the gaps that exist between these tools,

Magna engineers have demonstrated the tendency to patch their work using significantly less

sophisticated tools such as the worksheets used to keep track of iterations on vehicle section

requirements.

Each of these traditional tools has unique limitations, which we will not fully explore here.

However, it is worth noting that each of these tools is generally employed in such a way that

local incremental improvements are sought without regard to the impact of the assembly as a

whole. The use of CAD and CAE tools serve as an example of these tools' limited ability to deal

with second order complexity.
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An engineer such as CSI who is responsible for ensuring achievement of a program's vehicle

sections, is constantly in need of means by which to measure the current expected value, and to

make alterations. By relying on CAD models of a targeted vehicle, it is possible for a CSI to

quickly determine the numeric value of a particular assembled dimension. For instance, he can

use the file's 3D data to 'measure' the seal gap that the model shows exists between the virtual

door and the virtual truck body. In this way, tracking any single critical characteristic is

relatively easy. However, should this value not be appropriately centered within the expected

dimensional range some redesign of the underlying components or else a new assembly strategy

becomes necessary. The CAD model - which merely represents the parts as currently designed -

offers little assistance on how best to go about this design work without negatively affecting

related attributes. Thus the engineer may be left to a sort of frenzied trial-and-error approach in

order to meet his section requirements by the deadline.

The CAE tools used at Magna can generally be considered robust but less than perfectly exact

when used in the analysis of a system's response to manufacturing and environmental variation.

Often CAE is used to morph the existing surrogate design into the new, desired shape. However,

these tools are far from perfect and have been known to yield results discrepant from the "real

life" behavior of the system. One example of this discrepancy between CAE results and actual

behavior can be found in a recent CAE study contrasting hang strategies employed in Magna

doors and in Vega (another disguised automaker) doors for various vehicle models. The CAE

model predicted superior performance of the Magna doors for wind noise and other categories.

However, the Vega door was found to better achieve the targeted performance metrics, based on

a side by side comparison of assembled vehicles. This deficiency is not yet entirely understood,

but is due in part to the software's inability to correctly model the simultaneous inputs expected

from a real environment. Similarly the tool is not adept at capturing the impact of system

parameters on the various vehicle subsystems which may in turn influence any given attribute.

Thus we see related behavior between the CAE and CAD systems, both of which begin to break

down as system interdepencies go unregistered.

The widespread use of non-computational tools should also be briefly considered. These include

checklists, worksheets and paper-based matrices which may find use in lieu of more complicated
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software packages and suggests some level of engineering dissatisfaction with the available

collection of tools. One example of this is the PD CSI's target matrix which is used to manually

record the value of an attribute (e.g. seal gap) as it changes. These changes in seal gap come

about as design engineers are asked to modify their designs in order to meet the section

requirement. As progress towards this section requirement is continually made, the matrix is

updated. Similarly, the use of a 'parameter sheet' by CSI's helps to generate section targets, part

tolerances and anticipated stack-ups and is considered to be good for team collaboration. Within

manufacturing groups, a prioritization matrix may be employed to rank the 'relative importance'

of conflicting attributes. This is then used to make ultimate decisions about which attribute

should be 'favored' if the need for equipment adjustment arises. This use by Magna engineers

of primitive heuristics to make decisions affecting customer satisfaction represents a break down

in the availability of solid, effective tools. The need for better tools is obvious to many and the

automaker has begun to take steps to improve their situation.

Second Order Systems Tools in Use at Magna - DVA

In addition to the tools already discussed, there is at least one other which has taken root within

the organization and which offers significant advantage to the engineers and teams that are

proficient in its use. This tool is known as Dimensional Variation Analysis (DVA). It is worth

considering the current use of DVA in order to understand the gaps that remain today in the use

of system-level tools.

Introduction to Dimensional Variation Analysis (DVA)

Dimensional variation analysis has been in use for decades at Magna, but remains poorly

understand and underused. Using geometric CAD data for vehicle components, the DVA group

is able to perform Monte Carlo analysis by varying the position of each component within its

prescribed tolerance in order to view the resulting geometries of the final system. This is

considered the primary function of DVA analysis and is typically performed by request from

program manufacturing groups as problems are encountered related to product launch. Less

often, DVA verification may be requested midway through the design process to ensure that

vehicle section deliverables are achievable. The DVA group responsible for these analyses is
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small, independent, and found in Magna locations throughout the world (including England,

Germany, Brazil and Australia.

Current Use of DVA

Today, DVA is considered a post-mortem design tool. Design will alter its model and then apply

DVA to see if it works. Because of this, DVA influences design but does not inform it. Often

the insight drawn from this analysis comes too late to be of much help - by this point the

strategies are too far developed to be rethought. Rarely, the techniques of DVA might be

requested very early in the design phase, before CAD data has replaced the 'cocktail napkin'

sketches. Such up front collaboration allows those knowledgeable about the impact of

component geometry to have a voice in the choice of strategy. In fact this is exactly the way

members of the DVA group prefer the tool to be used - in order to save work and minimize

missteps from Design. As one DVA employee told me, "I predicted this problem a year ago but

no one listened". The reason for the limited use of this group and its set of tools stems in part

from a lack of familiarity with the capabilities available through their use. Additionally, a

general preference among some programs to decide their own strategies coupled with the

possible backlog of work; prevent the design group from seeking out additional (possibly time-

consuming) feedback until absolutely necessary.

DVA Outputs and Results

When properly used, DVA is capable of producing a variety of useful results. These include

calculation of expected means and deviations of geometric customer attributes (e.g. seal gap

dimensions) as well as calculation of necessary component and assembly tolerance based on the

desirable mean and range for the final customer attribute (in effect working backwards). In

addition DVA is capable of identifying major contributors of final assembly error (deviation

from mean) in order to help focus attention on the appropriate sources. This is done through a

high-low-median analysis in which transfer functions are generated and supplied to design teams.

The rigidity and stability of the system are also computed through the use of the software.

Finally, the output from a run can be used to generate transfer functions for Six Sigma black

belts. For an example of a DVA run on the Magna-duty truck closures, see Figure 4-1 below.
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"I Door Hem Edge to Rocker Tool
(installed to DOP), U/D
=0.70 door hem surface profile
±0.50 rocker tool setting capability

Seal Gap Target Est'd Variation, Est'd Variation, % Reduction
(per Carl Zaas, P221 3-sigma (teration 3-sigma (Iteration in Est'd

Measurement Location Closure Supervisor) #1) #2) Variation

I Front of Frt Door, A-pillar t2.50 ±2.69 ±2.60 3%
2 Front of Frt Door ±2.50 ±3.27 ±3.19 2%

3 Rear of Frt Door ±2.50 ±3.53 ±3.46 2%

4 Front of Rr Door 2.50 ±2.83 ±2.74 3%

5 Rear of Rr Door, Top ±2.50 ±2.33 ±2.22 5%

6 Rear of Rr Door, Above Glass ±2.50 ±2.18 ±2.07 5%
7 Rear of Rr Door, Below Glass ±2.50 ±1.95 ±1.81 7%

8 Frt Door to Rr Door, Above Glass ±2.50 ±3.77 ±3.64 3%
9 Frt Door to Rr Door, Below Glass ±2.50 ±2.27 ±2.04 10%
10 Frt Door to Rr Door, Beltline ±2.50 ±2.09 ±1.83 12%
11 Frt Door to Rr Door, Bottom ±2.50 ±2.21 ±1.96 11%

12 Frt Door at Top Hinge ±2.50 ±1.95 ±1.83 6%
13 Frt Door at Bottom Hinge ±2.50 ±2.03 ±1.90 6%
14 Rr Door at Top Hinge ±2.50 ±1.90 ±1.77 7%

15 Rr Door at Bottom Hinge ±2.50 ±1.94 ±1.82 6%

Figure 4-1: Magna-duty truck DVA analysis for seal gap

Figure 4-1 presents a CAD file for a typical Magna-duty truck and considers the critical points of

connection. In order to ensure that the seal gap at each of the measurement locations (for
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instance #1 Front of Front Door at A Pillar) falls within an allowed tolerance, the deviation

introduced by subcomponents and subassemblies is combined. This yields an estimated

variation within which 3 sigma of assembled trucks are expected to fall. However, some

simplifications are present in this analysis which may lead to larger errors than predicted by the

analysis. One example is the conventional treatment of a door as a rigid part, or as two rigid

parts (one above and below the beltline). In reality, flex associated with the manufacture and

assembly of this door may introduce additional variation.

Technical Objections to DVA

Although DVA is a powerful tool for systems-level analysis, there exist some barriers to its

optimal use. One of the current issues involves the occasional use of incomplete CAD models to

perform DVA analysis. Although the development of CAD data does not fall under the DVA's

group sphere of control, they ultimately own the output of their analysis and are held responsible

for inconsistencies. Similarly, for DVA runs performed for manufacturing groups, data collected

from the shop floor is routinely found to be sufficient but not entirely complete. Minor details

concerning the manufacture may be lacking including the order of assembly or the presence of

minor deviations due to manufacturing. Because of these and other limitations, even those DVA

runs that are taken to completion may not lead to beneficial program changes.

DVA does not readily give engineers a method to directly influence design, but instead allows

them to check the current design for predicted discrepancies. One reason that its use cannot

ensure a properly designed vehicle is that it is not yet capable of analyzing the effect of fixturing

and tooling on the manufacture of the final parts, nor is it able to consider the assembly sequence

or the necessary manufacturing details (such as the slight taper on a thermoformed pin necessary

to remove it from a mold). These limitations are technical in nature but could be improved upon

by clearer lines of communication between manufacturing groups and DVA. In many cases the

DVA groups are expected to work only from the design drawings (or models) for components

instead of also gathering data concerning the manufacturing processes. As a result the analyses

performed by the DVA group will blindly use the 'print' tolerances range as they are received

from the design group - although rarely do these ranges mirror reality.
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Although the full Monte Carlo simulation dynamically varies every contributing sub-component

in order to obtain a true distribution of a system's final state - the HLM (high-low-median)

Monte Carlo does not. Instead, this simulation - which is responsible for generating the

"contribution effect" of components for engineers - applies a linear approximation and varies

only a single component at a time. This means that some interaction effects may not be captured

and so may result in some overlooked system relationships. Apparently no problems have yet

been reported due to this simulation limitation. Presumably any interaction effect not captured in

the HLM run will have been noted in an earlier full Monte Carlo. Although none of these

technical limitations constitute a reason to abandon the use of DVA, they do help to explain the

lack of support among engineers.

Figure 4-2 gives an example of the contribution spreadsheet as provided to engineering. This

sheet is one of the more useful outputs of the DVA process and allows design engineers to

understand the quantitative sensitivity of a given attribute to the design of the underlying system.

By making alterations to the design strategy, the sensitivities associated with each component

change. The use of this contribution spreadsheet enables the design engineer to work backwards,

by asking how changes to the sensitivities might improve the desired outcome - and then how

design strategies can be modified to accommodate this. Similarly the tolerance for each feature

of each critical component can be varied to reflect potential manufacturing or design

improvements. Ultimately, the goal of the engineer is to ensure that the appropriate customer

characteristic is met within a three sigma range of assembly. Estimated Variation (shown in the

figure) is found by applying the RSS method to the computed Effective Tolerances above, and

allows iteration of values until the target tolerance is achieved.
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Orig Tol Rev Tol Eff. Tol Eff. Tol (HLM)

FRT RH - 02 - RH FRT 2.428 0.70 0.70 1.699 1.699 28.48
FRT RH - 01 - RH FRT 2.376 0.70 0.70 1.663 1.663 27.28

5420124.02 MS, x 2.428 0.42 0.42 1.020 1.020 10.25
5420124.01 MS, x 2.376 0.42 0.42 0.998 0.998 9.82

FRT RH - 10b - MP, 1.000 0.70 0.70 0.700 0.700 4.83

RH - 04a - MS, 0.783 0.70 0.70 0.548 0.548 2.96
FRT RH - 03a - MS, 0.783 0.70 0.70 0.548 0.767 2.96
outer - 18b - MP 1.000 0.50 0.50 0.500 0.500 2.47

5420124.01 MS, y 1.037 0.42 0.42 0.436 0.436 1.87
5420124.01 MS, z 0.721 0.60 0.60 0.433 0.433 1.85
5420124.02 MS, y 0.946 0.42 0.42 0.397 0.397 1.56
Tol - Hng NAB Pin, Y 0.770 0.42 0.42 0.323 0.323 1.03

Estimated Variation 3.109 3.155

TARGET TOLERANCE 2.00

Figure 4-2: Contribution Effects

Conflicting Perceptions on the use of DVA

Those Magna design and manufacturing personnel familiar with DVA appear to be of two minds

concerning its use - there are those with high expectations for its capability, and there are those

who have been disappointed by its use. These diatomically opposing responses can be attributed

to the perceived role of dimensional variation analysis - which is to provide accurate and final

quantitative results. Due to the limitations cited above, the results of any DVA analysis must be

received tentatively and with regard to the process used to arrive at them. For this reason, it is

the method of approach offered by the DVA, and not its numeric outputs, that should be

considered its primary advantage. This third perspective of the tool must still require analyses to

be performed correctly - but should be even more interested in the insights that can be captured

by its application.

Recommendations for use of DVA

Although a study of the current use of DVA uncovers a number of key technical

recommendations for its improved use, the most critical advice applies to the culture surrounding

(+1-) (+/-) ±3 Sigma (+1-)
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and communicating with the DVA analysts. The method of approach practiced by the DVA

analysts and engineers, and their understanding of the intricacies of system design, were

fundamentally sharper than those of their counterparts within the Magna organization. This is a

credit to the years of practice they have had gathering data from each and every involved

functional group within Magna and the time spent determining the systemic effect of changes to

components. This resulted in the ability of the DVA analyst to 'hold his own' in several

meetings I was privy to, where he debated design intent with program engineers. Despite their

lack of in-depth knowledge concerning the various nuances of each program's design, the DVA

analyst's ability to relate final system attributes to the condition of components or features was

uncanny. By contrast, the design engineers often found it difficult to understand the many inputs

to a system design since they did not have the necessary information from other groups. The

first and overarching recommendation then is that Magna work to develop similar thinking

within its own engineers while making greater use of those within the DVA group. This means

not simply issuing more requests for analyses, but rather making members of this group active

partners earlier in the design process. Moreover, it is recommended that design engineers and

CSI's spend time performing DVA analyses on their own sections - and working to gather

information and compare notes with other functions whose components prove critical to the

delivery of customer attributes. The thinking that has been cultivated by the use of DVA within

Magna will prove useful as the organization practices the use of DFC (Datum Flow Chain)

techniques which are particularly well equipped to provide the necessary language and

methodology for complex systems analyses.

From a technical perspective, several recommendations should be mentioned.

1. First, a typical analysis may only trace the relationships between a final customer

attribute and a set of sub-assemblies. Instead, additional insight could be gained by

following these relationships the entire way back to the constituent sub-components.

This would also allow more extensive communication to design engineers involved in the

earliest stages for the most fundamental components.

34



2. In a similar fashion, the tool might be used to establish intermediate assembly attributes.

These attributes would be separate from those expected of the final assembly to meet

customer expectation. Rather, these intermediate attributes would provide a nearer term

target for design engineers, who may have difficulty designing a sub-assembly without a

clearly understood and identifiable metric in mind.

This could include the establishing of a quantifiable intermediate target for an engineer

responsible for the design of a hinge as it relates to a door opening panel. For example,

instead of working to meet the vehicle's ultimate door-closing effort design requirements,

the engineer might work to meet a requirement governing the position of one or both

door hinges. With a minimal amount of effort it may be discovered that certain interim

values are simpler and more intuitive to manage.

3. It is recommended that the DVA group develop closer relationships with engineers

involved in fixtures, tooling and general manufacturing decisions. Although ultimately,

the flow of critical information should be seen between design and manufacturing groups,

DVA analysts could greatly improve the accuracy and usefulness of their models by

collecting the necessary data and strategies themselves, and then working to flow that

information to design.

4. The further refinement and enhancement of DVA tools is also suggested. The core tool

(VisVSA) is solid and capable of expansion. Several ideas for added functionality spring

to mind, and include the ability to have the analysis directly compare two competing

strategies, the ability to perform sensitivity analysis, and the ability to update critical

input data dynamically from a central source. Fortunately, these types of improvement

seem to be underway already, as demonstrated by the latest software release - a release

which allows the user to model non-rigid bodies.

5. Finally, it is recommended that Magna develop expertise in the use of tools associated

with DVA - particularly that of Monte Carlo - within their own design engineering group.

This can be accomplished in many ways. One option is to train on the use of VisVSA,
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which can be accessed by most engineers and used on most computers. Another

possibility is to train engineers in the use of simpler software which can be run before the

CAD data for a single part has been generated - and can be used to test a given design

strategy. The development of a simple Monte Carlo simulation through an off-the-shelf

commercial software package such as Decisioneering's Crystal Ball would provide

Magna engineers the opportunity to generate instantaneous results on these important

design decisions.

Figure 4-3 below shows the development of a simple Monte Carlo simulation using only

Microsoft's Excel. This model allows the user to vary geometric inputs in order to verify

a final dimension of importance. As shown, the propagation of position and error can be

thought to flow from a given starting point such as the AB line, to the door opening panel

(DOP) to the hinge, to the door inner master to the final door surface. At each point the

translation and rotation are considered along with other component descriptions such as

surface tolerance.
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Figure 4-3: Simplified Monte Carlo for Verifying Dimensions
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Importantly, this analysis does not require complex part geometry - merely the location

and relationship of critical locators and linkages. The first table represents the location

and tolerances associated with features and which can be pulled off of a 'back of the

envelope' sketch. The matrices at the bottom represent the transformation of coordinates

from datum to datum and allow the construction of a single continuous chain linking

components to characteristics, using theory from Whitney's Mechanical Assemblies:

Their Design, Manufacture, and Role in Product Development. [Whitney] This level of

simulation could easily be adopted by key design engineers or CSI's in order to provide

quick and reliable feedback to proposed designs (or design changes).

As an increasingly larger percentage of design engineers are made aware of the proper use of

systems tools, it will become less difficult to develop products that satisfy a number of
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interrelated requirements. The continued growth and improvement of these tools will require the

attention of senior management and the recognition that certain groups (such as DVA) already

have a solid approach to complex design.

Datum Flow Chain (DFC) Mapping

One tool recently made available to Magna is that of Datum Flow Chain (DFC) mapping. This

tool has been earlier introduced by Michael Gray and subsequently by Craig Moccio in their

study of complex systems at Magna where it has begun to find application to product

development [Gray], [Moccio]. The techniques of DFC can be used to graphically represent the

linkages which exist within a product assembly and to perform analysis useful for distinguishing

between designs that are more and less robust. DFC provides advantages over the techniques

demonstrated by DVA due to its simpler and more intuitive approach for informing design - one

that is accessible to a wide range of users and does not require the use of complex CAD tools.

Additionally, the analysis that is available through DFC serves as a powerful complement to

DVA. The concept of Datum Flow Chain analysis comes from Daniel Whitney and his book

Mechanical Assemblies is considered the authoritative work on the subject [Whitney].

The visual representation of components and assemblies is accomplished using a collection of

nodes and connectors to map the relationships. As shown in Figure 4-4, each DFC sketch will

have a complete set of these elements, with each connector labeled according to the types of

constraint provided. Each attribute or characteristic is represented by a double line and is labeled

to relate it to a known customer attribute. Building on relatively simple concepts, the DFC yet

possess great analytical power and is useful for identifying states of component constraint,

potential conflicts of key characteristics, and other essential information. Due to this project's

focus on the potential use of DFC tools at Magna, the next chapter is devoted to the subject.
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Figure 4-4: Simplified Datum Flow Chain
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CHAPTER FIVE: USE OF DATUM FLOW CHAIN (DFC) TOOLS AT MAGNA

Introduction to DFC Terminology and Techniques

In its simplest form a DFC represents individual parts as zero-dimensional shapes (nodes) which

are connected by a series of one-dimensional linkages (liaisons). These liaisons express the

extent of location and constraint passed to each node from previous nodes. Location and

constraint may occur along or about 6 independent degrees of freedom (DOF): X, Y, Z, Tx, Ty,

Tz, (as shown in Figure ?). Location of a part involves 'setting' its position in three-dimensional

space while constraining that part involves holding it fixed along the dimension of interest. A

component which is located and constrained along X has a determined position along this axis

and is not free to slide in a positive or negative direction along it. A simplified rule set

governing the construction of DFC's involves the following steps:

1. Construct nodes to represent every component of interest within a given system

2. Dedicate one of these nodes to serve as a base node. This node is considered to be fixed

in space and is responsible for originating constraints involving other nodes.

3. Beginning with the base node construct liaisons between nodes to show the flow of

constraints from part to part. These liaisons should be shown as arrows to indicate the

direction of flow

4. Critical attributes involving the relationship between two components should be

represented by a KC (key characteristic) which may be shown as a double line. These

KC's are typically defined as geometric relationships between parts which are essential to

meeting customer or internal measures of quality. In that capacity they can be regarded

as measures of customer satisfaction.

5. Perform various design analyses on completed construction, depending on user needs.

A simple example of a DFC may help demonstrate their construction and general form. Later

some time will be spent considering the methods of analysis available.

Hinge on Panel Example

An application of DFC can be seen in the following figures. Here the relationship between a

hinge and a mounting surface is explored by deciding on the system boundaries and
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decomposing the assembly into its constituent parts. Figure 5-1 shows the CAD data taken from

the Magna-duty program and orients the two-piece hinge to show its relationships to the NAB

pin as well as the body panel to which it will be attached.

Figure 5-1: CAD Model of Magna-duty Front Door Hinge and Body

The hinge in this system is composed of two halves (labeled C and D in Figure 5-2) which

interface to a sheet metal panel using a NAB-pin/hole strategy. The NAB pin (or No Adjust

Build) strategy is commonly used across many of Magna's programs as means to locate the door

hinge (and ultimately the door) to the vehicle body. The NAB pin which is labeled as part B is

fixed to the hinge prior to assembly and interfaces with the hole within panel B.

Figure 5-2: Simplified Model Diagram

If Figure 5-2 can be considered a simplified diagram of Figure 5-1, then Figure 5-3 shows the

decomposition and representation of the system using only DFC elements. In order to
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understand the assignment of labels to each of the DFC linkages, it is first necessary to develop a

system of assigning appropriate constraints.

Figure 5-3: DFC Representation of System

Assembly

Assignment of Constraints

For the construction of this DFC, the vehicle body is assumed fixed in space due to its prior

assembly on to the supporting and underlying components. The DFC shown in Figure 5-3

demonstrates the way in which constraint is passed from the panel to the other components. For

the assignment of constraints to liaisons between two parts, the relative motions between the two

must first be determined. A liaison only reflects those DOF that have been relatively constrained

and does not reflect information involving other parts or constraints.

A to B: From A to B, the two constraints passed are along X and Z (we presume the pin to

be a tight fit within the corresponding hole). In other words, after assembly of

these two components, B will no longer be free to move in either of these two

directions.

A to C: As the NAB pin slides into the hole, the surface of C rests against the surface of A,

resulting in the constraint of three of C's DOF's: Y, Tx, Tz.

B to C: Since we are treating B as fixed to C (assembled beforehand), then B can be

described as constraining all 6 DOF of C relative to itself. However, as mentioned

above, B itself is only constrained in 2 DOF.
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C to D: C constrains D in 5 DOF leaving free only motion about Z. This is due to the

hinge joint linking the two which permits rotation about its axis.

Assignment of Customer Attributes (KCs)

For the purposes of this example, the relationship between the car body panel and the second

hinge half is considered critical to quality. A number of reasons for this can be imagined

including the effect this geometric relationship may have on the effort required to close or open

the door. This attribute is shown by the double line in Figure 5-3 Once the attribute has been

identified and described it is possible to perform a number of analysis.

Analysis of Constraint State

One measure of design performance can be taken from the constraint state of critical components

or attributes. Generally, one would expect a fully assembled product to ensure that each

subcomponent is fully constrained (and neither over or under-constrained) throughout the

product's operation. Exceptions to this should be intentional and designed in, and are evident by

a correct read of the fully constructed DFC. The basic process for checking a part's constraint

involves ensuring that every one of the degrees of freedom has been fully constrained relative to

the base part (or any other ground). Since each liaison establishes only the degrees of constraint

between the two parts connected, the full constraint state for any individual component may only

be assessed by 'tracing' the constraint state back through each supporting component to the

originating part. For any one of a component's degrees of freedom that degree must be

constrained consistently from supporting component to supporting component such that if any

liaison along the pathway does not constrain a DOF, that pathway cannot be considered to lead

to the constraint of the target component (for the DOF in question).

For a complex DFC the process of determining a component's constraint state can be difficult

and time-consuming (and so will require an automated algorithm). However, analysis of the

current example is given via the use of Figure 5-4. For this DFC, the constraint state of greatest

interest is that of part D, since this will also be the constraint state of the critical attribute

between A and D (since A is taken as fixed). In order to correctly determine D's constraint, both
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pathways must be considered; A-B-C-D as well as A-C-D. Figure 5-4 is used to assess the

constraint state associated with each liaison, an 'x' signifying that the constraint has been

captured. The summary listed at the end of the table shows that pathway A-B-C-D results in the

constraint of X and Z while A-C-D results in the constraint of Y and Tx. This final row (labeled

'Cumulative') is determined by placing a constraint only if it has been assigned to every

relationship preceding it. This is intuitive since should one of those relationships not provide the

constraint, that freedom of motion will be passed on to other elements in the chain.

Figure 5-4: Table used for verifying DFC Constraint State

A-B-C-D X Y Z Tx Ty Tz A-C-D X Y Z Tx Ty Tz

A: fixed x x x x x x A: fixed x x x x x x

B: from A x x

C: from B x x x x x x

D: from C x x x x x

Cumulative: x x

C: fromA x x x

D: from C x x x x x

Cumulative: x x

From this it is easy to see that our part D (the second hinge half) is under-constrained in both Ty

and Tz which can be confirmed by examination. The second hinge half will remain free to rotate

about its axis (i.e. rotation about Z) and the entire hinge will continue to freely rotate about the

NAB hole axis (i.e. rotation about Y). This first under-constraint is sensible, if the customer is

expected to be able to freely open and close the vehicle door. However, the second under-

constraint is not acceptable and must be established by the use of a tool used to set the doors'

proper Ty position. Figure 5-5 summarizes a number of values that may be important to a

designer, including the state of over and under constraint for critical sub-components, the

number of 'critical paths' which are best defined as chains of constraint which establish the final

necessary constraint for a critical part. The fact that there are 2 in this case, informs the designer

that both must be controlled and achieved for successful management of the final KC.
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Figure 5-5: Analysis Results of DFC

Analysis Value

Over Constrained None

Under Constrained Z, Tz

Number of Critical Paths 2

Analysis of Critical Path

A useful analysis involves the determination of 'critical pathways' which are responsible for

establishing constraints necessary to ensure a critical attribute is met. For this simple example,

the number and arrangement of critical pathways is related directly to those KC constraints that

we consider critical. Looking again at the relationship between A and D, we may say that this

relationship must be constrained along X, Y, and Z, and about Theta X and Theta Y. This leaves

Theta Z free for the door to swing unconstrained. In this case, we are interested in assuring that

all 5 constraints are provided for by tracing the pathways that provide these constraints. As seen

in the table above, 1 of these (Theta Y) will remain unconstrained and each of the pathways will

constrain 2 of the remaining degrees. For this case, both path ways (A-B-C-D as well as A-C-D)

will be considered critical paths. However, we can imagine another case for which the only

essential relationship is between car and hinge along the Z axis. This might grow out of a

designer's concern about controlling the height of the car door with relation to the body and

would lead to a single critical path: A-B-C-D, which is highlighted in green in Figure 5-6.

Figure 5-6: DFC Critical Path When the Critical Parameter is Along Z Only.
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Once the critical path for a component or attribute has been identified, this information can be

used to assess the ability of the design to meet requirements. The datum flow chain along a

critical path shows the combination of assembled parts that are necessary to ensure quality, with

each part playing a essential role as concerns its constraint state, geometry, location and

tolerancing. As a design strategy for a given vehicle takes shape it must take into account these

parameters - and by modifying one or more of these it becomes possible to improve the delivery

of the KC. Once the critical paths have been identified, a variety of other mathematical tools

(including design variation analysis and/or Monte Carlo analysis) can be employed to generate

numeric validation of assembly-level attributes.

Analysis of KC Conflict

The identification of critical paths allows the designer to uncover potential attribute conflict in

which two separate KCs share segments that pass between the same components. This situation

makes it difficult to modify components to improve one KC without adversely affecting the other

KCs. As a result, it is necessary to find a shared optimal point which allows all affected

attributes to meet requirements. Such a point is not always easy or even possible to achieve, as

the interactions between components and attributes may be non-linear and in other ways

complex.

By way of example, consider again our simple system consisting of 4 components, the first hinge

half (A), the second (B), the NAB pin (C), and the body surface (D). Imagine that we are intent

on providing constraint between A and D in order to satisfy 2 KC's; one of which is satisfied by

constraint along X and the other by constraint along Y. That is to say we want to be able to fix

the door so that it cannot move left/right or in/out of the hinge. Analysis of critical paths shows

us that both A-B-C-D (for the first KC) and A-C-D (for the second KC) are considered critical.

Say then that improvement is needed concerning the ability to meet the second KC. Although it

is reasonable to consider the redesign of component C (the NAB pin) in order to achieve this

improvement, care must be taken that the redesign does not affect the part's ability to provide for

the first KC by its X constraint achieved along the critical path A-B-C-D. In this way, part C can

be thought of as having to satisfy two, potentially conflicting constraint requirements, both of
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which must be considered simultaneously. This part is said to be under the conditions of KC

conflict.

Potentially more difficult situations of KC conflict occur when a part is expected to provide for

the exact same dimensional constraint (e.g. along X) simultaneously for 2 separate KC's. For

instance, a hinge may be expected to provide for the relationship in X of a door header to a car

body while also being expected to control the relationship in X between a door handle and a car

body. In each of these cases, it is first advisable to attempt to find components that do not suffer

KC conflict and can be adjusted without affecting other unrelated KC conflict. As this is

possible, solutions appropriate to a first order of complexity system apply. That is, those

components can be freely adjusted to meet the related KC. However, in cases where adjustment

of conflicted components is unavoidable, it is important that the entire affected system first be

mapped out and understood using DFC techniques. This allows early identification of problems

that may arise from such redesigns or other adjustments.

The Definition of Additional Design Metrics

A number of other measures of design robustness deserve a brief mention. The longest critical

path length records the highest number of parts through which a critical path exists and may

serve to indicate the tenuousness of the delivery of a given part or attribute. The longer the path,

the greater the likelihood that a supporting part or linkage will not meet expectations. In general,

a design with shorter critical paths is preferable to one with longer paths.

The liaison ratio refers to the number of liaisons to the number of parts within a given assembly.

This fraction may be useful to Magna engineers over time as a means of comparing competing

designs. Generally, it will serve to strive for lower values of this ratio (as assembly complexity

will drop with fewer inter-part relationships), however as DFC's become available for several

designs, it may help to establish more specific liaison target ranges for particular program

subassemblies.
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The tooling ratio refers to the number of different tools or fixtures used per number of assembled

parts. This ratio may be of interest when assessing the additional work necessary for

manufacturing engineers and operators, who must use such tooling to ensure a correct finished

assembly. The larger the tooling ratio, the more effort will generally be required downstream by

assembly and should therefore (in the absence of other factors) be minimized. Instead, designs

that accomplish the necessary constraint through their particular geometry and modes of

attachment are preferred.

The number of interfacing organizations summarizes which groups are responsible for the

components or processes necessary for assembly. The greater this value is, the more cross-

functional effort will be required to ensure the assembly comes together correctly. However, as

this number increases, the potential for customer success is likely to increase due to the number

of organizational stakeholders represented. As vehicle systems increase in complexity, the

design engineer or CSI should work to develop designs that accommodate an increasing number

of interfacing organizations, as input from each department becomes less trivial. However, from

an organization perspective (possibly outside the purvue of our CSI), the divisional structure

within Magna should be set to minimize the value of this metric. This is understood best by

considering the benefits enjoyed by a division that has all necessary expertise within its own

'walls'. Practically, however, such an optimal organizational design is not achievable.

The number of independently adjustable DOFs is useful for determining which attribute

constraints can be managed without affecting the entire system. For instance it may be useful to

modify the relationship between two components along X, without changing how they relate to

each other along Y or Z. In cases where vehicle assembly is expected to suffer from

unacceptable variation (and to require periodic adjustment) this value should be maximized.

Generally, as the independence of an assembly's degrees of freedom, the complexity of the

system decreases. This is desireable provided that all customer requirements can still be

satisfactorily designed for.

These metrics provide DFC users with advanced methods of design improvement that can be

performed on virtually any system first mapped out using DFC techniques. In later chapters we
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will explore how these analyses give insight to good design at Magna and how they can be

accomplished using the DFC Constructor Toolset. First though it is useful to apply DFC to the

study of a door closure system for the Magna-duty truck line. However, in order to familiarize

the reader with the manufacturing process used to assemble the truck's door system this next

chapter will be devoted to a brief description of the current steps involved.
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CHAPTER SIX: MANUFACTURING PROCESS FOR ASSEMBLY OF MAGNA-
DUTY TRUCK DOOR HANG

A properly developed Datum Flow Chain should be careful to capture all the elements necessary

for the correct assembly of a given system. Although much of the critical information can be

gleaned from the existing CAD data and from documents supporting engineering design, the role

of fixtures and tooling may be overlooked. Thus one approach for capturing the intended

constraints and relationships is to begin at the end - by observing the final assembly of the

vehicle. This chapter will seek to describe the build process in order to lay the groundwork for

the construction of DFC's in the following chapters.

The assembly line is automated to advance by steps of predetermined length (equal to the length

of the truck body) once each operator 'tags in' that he has completed his operation. Although

most assembly steps are performed symmetrically on both the left and right hand of the vehicle,

the following discussion will consider only the right side (i.e. from the perspective of the driver)

as the truck advances. Ultimately, the assembly will result in a completed door closure system as

shown in Figure 6-1.

Figure 6-1: Completed Door Closure System
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First Assembly Process: Hinge Set

The first process step which must be considered is the hanging of the rear door to the body of the

truck. This is first accomplished by the use of a station which includes several fixtures such as

the hinge set fixture (HSF) and the door hang fixture (DHF). First the operator manually loads a

door onto a belt which brings it to the HSF. This door is held in place by the use of a 2-way and

a 4-way locating hole along the inside of the inner door panel and then held in place by a series

of clamps. Along with the door, the operator sets into place an upper and lower hinge which will

be bolted to the door. Each hinge is located by the fixture using a 2-way / 4-way location

scheme into two of the hinge holes, are then attached with 2 bolts (so 4 bolts total). This requires

4 guns to torque the bolts which align with the inner weld nuts which are situated on the door. A

5th and 6th gun are used to tighten down 2 NAB (no adjust build) pins, one for each hinge. The

location of this NAB pin is also set by the HSF which serves as a proxy for the truck body.

Also one bolt for each hinge is paired with an epoxy washer before being loaded into its gun.

This epoxy washer serves a critical role in alignment as the truck doors will later be removed

from the body (without hinges) and installed a second time (this is known as 'doors-off

processing). The use of the washer, which is a tight fit with the bolt and which sticks firmly into

place on the hinge, is to provide a feature for alignment for the hinge to door relationship. A

washer is used for both hinges and is attached using the upper bolt for the upper hinge and the

lower bolt for the lower hinge (see Figure 6-2 which shows this for the front door). Upon the

door's rehang, the new bolt will align (on the hinge) with this washer and will also align (on the

door) with the weld nut.

A similar process is employed for the truck's front door. However, in this scheme, only 1 NAB

pin is used, and is bolted to the upper hinge. Figure 6-2 shows the attachment of both hinges

(which are enlarged). The upper hinge is shown in its before-HSF state and the lower hinge is

shown afterwards. In both cases, the hinge set fixture is responsible for setting the hinge's proper

relation to the door, as well as for setting the correct position for the NAB pin which will serve to

locate the door assembly to the body. The HSF mounts for hinges and door can be adjusted, as

can their 2-way and 4-way locators, but only by relatively crude methods (i.e. wrenches and
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'eye-balling' it). Adjustment is performed on an ad hoc basis, depending on how well the

previous fits have come out.

Figure 6-2: Front Door Hinges w/ NAB Pin and Washers

Second Assembly Process: Door Hang

Once the hinges have been properly secured to the rear door and front door, the doors are

attached to the truck body at the door opening panel (DOP). They are lifted and placed into the

frame by the use of a door hang fixture which provides a lift assist to the operator but does not

serve to provide alignment for the door to body. This process is straightforward for the rear door

as its two NAB pins align with two holes in the DOP (a 2-way and a 4-way) to ensure proper

alignment. However, for the front door a special tool (the rocker tool) must be placed

beforehand onto the lower flange of the body frame. This rocker tool is an S shaped piece that

sits over the lower hem of the DOP and provides a surface for the front door to locate to during

assembly. This is necessary for proper location since the door would otherwise rotate freely

about its single NAB pin. Additionally, the rocker tool causes the door to be assembled with an
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up preset of-2 mm (i.e. the door is jacked upwards by -2mm) in preparation for the weight that

will later be added by the addition of trim (an additional weight of more than 50 pounds). This

offset is applied regardless of the specific vehicle styling - which determines the amount and

weight of the trim to be added. At this point both hinges (or the upper hinge for the front door)

have their NAB pins tightened which locates the door. The operator then tightens the remaining

hinge bolts, locking the hinge (and thus the door) to the body.

Figure 6-3: Door Hang to Door Opening Panel
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Third Assembly Process: Door Fit

The next series of operations to be performed takes place at door fit. Here, 2 fitters check the

margin of each door and ensure that it meets a visual standard. The use of as-needed verification

with calipers is encouraged but not required. Door systems found not to be within acceptable

limits are adjusted. Adjustment is accomplished in a variety of ways including hammering the

body at offending sections and hanging on an open door (to pull it downwards).

Fourth Assembly Process: Doors Removed and Reinstalled

Additional downstream processes should also be noted, including the removal of both doors from

the vehicle after painting in order to facilitate final assembly. This is accomplished by removing

the nuts which hold the hinges to the door. Later as the doors are reattached, the location of the

epoxy washers ensures that the same alignment is captured and re-secured. This process requires

the use of new nuts and bolts to provide this contact.

Other System Features Critical for the Success of the Door System

Not shown are the latches and strikers which engage to hold the door in place to the body. For

the Magna-duty truck line this system relies on two strikers (metal bars) which are fastened to

the DOP and which engage with latch mechanisms on the rear door. The rear door also contains

a single striker which in turn engages with a single latch on the front door. This means that the

rear door must be closed first (at which time its in/out position is set by these strikers), and then

the front door must be closed into position.
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CHAPTER SEVEN: DFC TECHNIQUES APPLIED TO MA GNA-DUTY TRUCK
DOORS

Having laid the groundwork for the construction and use of Datum Flow Chains, we now turn

our attention to their application to the previously described Magna-duty truck door hanging

strategy. One of the advantages of the DFC approach is that it allows the user to start small, by

analyzing subsystems, before combining the work to model the full system. For the purposes of

this project, the use of the DFC toolset was sought as a means to improve wind noise associated

with Magna-duty truck line. For that reason, the following steps describe its application to the

front door seal gap which has previously been shown to correlate with wind noise. Ultimately,

the DFC shown in Figure 7-1 was constructed and analyzed.

Figure 7-1: Complete Magna-duty DFC
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Building up the DFC Subassemblies

In order to build up and analyze the total system DFC for the Magna-duty, it was necessary to

begin with an understanding of the manufacturing processes by which the assembly was

accomplished. Again, the primary four steps involved were:

1. Hinges are attached to the doors with automated Hinge Setting Fixture (HSF)

2. Doors are attached to truck body with semi-automated Door Hang Fixture
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3. Doors and Body are 'fit' to ensure compliance

4. Doors are removed and later reinstalled

By observation of these steps it was possible to assign various constraints to part features and

map their relationships, as will be seen below. Figures 7-2 and 7-3 recall the simplified version

introduced earlier and involve a truck door fastened to a hinge which is in turn bolted to the

truck's door opening panel. Here, the linkages are drawn over the operations sheet sketch, as is

the critical characteristic for seal gap.

9U-ic ic

F I 1

Figure 7-2: Door to Hinge to Body Relationship (image reversed)

Figure 7-3 serves as a staging point from which we can hope to identify the other contributing

members of the assembly, and work through the constraints assigned to each.

56



Datum Flow
Chain x, z

y,0x,0z 6

Assembly
Attribute (SC)

x, y, z,
Ox, Oy

Figure 7-3: Simplified DFC

In order to build the entire door system DFC, we must continue to identify key subassemblies

and then answer the question of how their relationship to each other is provided. A full DFC is

capable of capturing each step of subassembly, all the way up from the most basic of

components. However, in order to practically examine a process at a given point in time, it is

useful to simplify the DFC by taking some level of prior assembly as given. As shown in Figure

7-4, the truck Body (which here we will treat as synonymous with the DOP) is assumed to be

preassembled to contain the elements shown. A detailed discussion of every feature is not

necessary as the relationship between essential features should make their purpose obvious. For

the following DFC's, solid lines should be taken to indicate that all 6 constraints are being

passed from node to node. Otherwise, particular constraints will be noted. Subcomponents and

features are represented by the smaller nodes.
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Sill Body 6 NAB hole

DOP DOP Surface

Surface NABhole

DOP Striker
Surface
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hole Seal DOP

Edge

Figure 7-4: Truck Body DFC
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In the same way, the figure below depicts the state of both front door hinges prior to the hinge set

fixture. Notice that there exists only 1 NAB pin which is not yet constrained to the rest of the

hinge. This is due tY the loose state of the pin prior to fastening within the HSF. However,

constraint has already been established internal to the hinge (through its pin) by its prior

assembly.
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Hinge Half #2 Surface
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Figure 7-5: Truck Hinge DFC

Figure 7-6 shows the simplified DFC for the truck's front door, which at this point is known to

consist of an inner door panel, and outer door panel and as well as bolts threaded through weld

nuts, and a latch which is allowed to float.

Hinge Surface'
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dge
deLatch
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Figure 7-6: Truck Front Door DFC

Using these simple building blocks, it is possible to build up the DFC shown in Figure 7-7,

which is called the Front Door-to-Body DFC. This DFC involves only four principal nodes (the

door, the body, and two hinges). Features found on the truck body (such as the DOP surface and

the NAB hole) are considered rigid and fixed to the body and are left with no degrees of freedom.

By contrast, the central node within each hinge shows that Theta Z (rotation about the vertical) is
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not constrained and so that degree of freedom remains open. Similarly, Theta Y is not provided

to the door from the body.
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Figure 7-7: Front Door-to-Body DFC

The key characteristics (shown as double lines) represent the critical margin and flushness

between the upper portion of the door header and the corresponding portion of the truck body.

Although this diagram represents a semi-complete front door system it was constructed without

consideration of the process or the tooling required to locate and constrain each component. For

instance, this DFC shows the upper hinge's NAB pin now locked (along all 6 degrees of freedom)

to the hinge, whereas previously it was left to float.

Before turning our attention the use of fixtures, we will first complete this DFC model for the

entire door closure system. Figure 7-8 shows the addition of the Magna-duty rear door, which is

similar in kind to the front door, but with the use of 2 NAB pins.
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Figure 7-8: Front and Rear Door-to-Body DFC

With the addition of the rear door, rotation about Z is constrained. This is done by the

engagement of the front door latch mechanism with the striker of the rear door. The rear door

receives its constraint about Z also through a striker and latch mechanism via the truck body.

Identification of Constraint

Although this DFC can be considered complete from a component perspective, it still lacks the

identification of fixtures and tooling which provide additional constraints. It also gives only a

partial explanation of those relationships shown. For instance, how did our NAB pin become

locked to the front door's upper hinge (in Figure 7-8), when previously it was left to float (Figure

7-6). The intervening steps involved the use of fixtures which have yet to be represented. One

necessary fixture - still to be introduced - is that of the rocker tool, without which any DFC

analysis of Figure 7-8 would be incomplete, and would generate an under-constrained condition.

Full consideration of constraints must always be performed after addition of components,

subassemblies, and fixtures. Figure 7-9 shows the use of the HSF and rocker tool to provide the

necessary constraints for the system. For our purposes fixtures or tools and the constraints they

provide are shown in red. As discussed previously, a rocker tool is only necessary for the
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assembly of the front door to body, as the rear door makes use of a 2 NAB pin design to achieve

constraint in Theta Y. The HSF is needed for both doors to provide various inter-part constraints

which - once set - are fixed in place for future states. In fact, it is this advantage of Datum Flow

Chain analysis: its ability to consider systems before, during or after the use of fixtures and

tooling that make it such a flexible tool for informing design.
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CHAPTER EIGHT: ANALYSIS AND RECOMMENDATIONS STEMMING FROM
MA GNA -LINE DFC

Having constructed the full Datum Flow Chain representing the relationships between door

system components, we now begin a fundamental analysis to determine the critical paths and

potential conflicts resulting from the current design. We will then consider the use of other

methods for achieving the same key characteristics.

Identification of Critical Path

Figure 8-1 provides the identification of the critical path necessary to assure that the front door to

body margin is properly constrained. The path in green shows the route taken to provide for both

of the critical constraints (Z and Theta Y) in order to achieve the defined margin. As a result,

each of the components along the chain must all be considered critical to delivery of this

characteristic.
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Once the critical path has been identified across the entire system, it is a simple matter to trim

away the less critical components to focus on the particulars of those necessary for establishing

constraint. Figure 8-2 shows this clarified DFC. The primary role played by tooling should be

evident. Although the upper hinge is considered a part of the critical chain - and is partially

responsible for providing for the location of the door along Z - it is dependent on the HSF to set

the location of the washer by the use of the fixture's bolt. Note also the use of the rocker tool to

establish constraint for the door's rotation about Y.

Margin between front door

1A and body. Constrained
dimensions include z and Etv

OPEdge

3in at Header

Figure 8-2: Simplified DFC Showing Critical Path

By following the critical chain from part to part it is possible to focus on the specific components

that require further analysis. Our vehicle margin has been defined to require constraint along Z

and about Y as provided by this chain, and so only the establishment of these constraints is

considered here. In this case the vehicle body is considered fixed to the sill which provides all 6

constraints to the rocker tool. This rocker tool then provides the necessary Theta Y to the rocker

of the door, and thus ultimately to the header, establishing 1 of the 2 necessary constraints. The

Z constraint is passed by the use of the HSF which aligns the upper hinge to the front door and

fixes this relationship fast through the installation of a bolt and washer. This washer will prove
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critical for later realignment of this door (not discussed here) and will provide constraint through

its exact fit with bolts - which in turn mate with the front door.

This part-by-part analysis can be particularly useful when paired with the techniques available

through DVA. By first determining the critical chain and then exploring the response to

introduced variation, qualitative design improvements can be discovered. The chain of

components thus becomes a tolerance chain which can be subjected to DVA techniques.

However, even in the absence of Monte Carlo simulation, basic comparisons of assembly

strategies can prove useful.

Comparison of Design Strategies

One advantage of having considered a program's design using the DFC methodology is the ease

at which design strategies can be developed and evaluated. As will be shown in Figure 8-3, there

are multiple ways to accomplish a critical chain between components such as a door and a truck

body - and multiple hinge designs which can accomplish this. For instance, the current design

involves the front door being hung with the use of a single NAB pin and a rocker tool, whereas

the rear door is hung with two NAB pins and no rocker tool. The choice of each of these was

founded on the constraints which the designer needed to provide to the door from the body, and

by the effectiveness of these particular designs to achieve KC's such as margin, flushness and

seal gap. Other choices were certainly available. For instance the designer could have elected to

use two hinges, each with a NAB pin for the front door, or else to have hung either door using

hinges with no NAB pins. The consequences of each of the decisions are considered in Figure 8-

3 and contrasted with one another.

The final design consequences in the table below proves particularly important to the design

considerations due to the difference in mass associated with each of the two truck doors. Once

fully outfitted with all the package trim, the Magna-truck front door is typically 3 to 4 times

heavier than the rear door. The massiveness of this door makes it difficult to control KC's if the

locators passing constraint are far removed from area of interest. Because of this, the strategy
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preferred for the front door was the second one - a single NAB pin and a rocker tool in order to

provide constraint in a way that is closer to the door header where a number of Key

Characteristics have a tendency to demonstrate reduced performance.
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Figure 8-3: Comparison of Hang Strategies

2 NAB Pin Hang Strategy 1 NAB Pin Hang Strategy No NAB Pin Hang Strategy

margin: z.

V.0 X.Oz V.01',z y,exoz
Lz y,86z Oz , .Oxz ez yzOz

ver/Under Constrained ver: y, T x Under: None Over: y, T x Under: None Over: y, T x Under: None

marts contributing to above door margin NAB hole - NA B p in - Hinge - Door NAB hole-NAB p in-Hinge-Door DOP sill-rocker tool-Door

___________________________ ___________________________DOP sill-rocker tool-Door ________________

fooling/ Fixtures Fixture 1: Secure NA B p in to hinge (x,z, Ty' Fixture 1: Secure NA B pin to hinge (x,z) Fixture 1: Secure hinge to door (y)

Fixture2: Secure hinge to door (y) Fixture2: Secure hinge to door (y) Tooll,2: Rocker Tools (z, Ty)
_________________________________________________Tooll: Rocker tool (Ty) Tool 3: Flange Tool (x)

Sumber of Processes punch hole, assemble DOP, Hinge to Punch hole, assemble DOP, Hinge to Punch hole, assemble DOP, Hinge to
Door, NAB pin to Hinge, Door to DOP Door, NAB pin to Hinge, Rocker Tool, Door, NAB pin to Hinge, Rocker Tools,

_______________________Door to DOP Door to DOP
OF Independence for Door/Body z Ty, Tz x,z,Ty,Tz

Jifficulty to Adjust X: medium (2 fixture adjusts) X: medium (2 fixture adjusts) X: easy (1 tool adjust)
Y:hard (net fixture adjust) Y: hard (net fixture adjust) Y: hard (net fixture adjust)
Z:easy (1 fixture adjust) Z: easy (1 fixture adjust) Z: easy (1 tool adjust)

n x- very hard (from DOP) Tx very hard (from DOP) T very hard (from DOP)

Ty: easy (1 fixture adjust) Ty: easy (1 tool adjust) Ty: easy (1 tool adjust)

Tz: easy/med (1 part adjust) Tz: easy/med (1 part adjust) Tz: easy/med (1 part adjust)

Distance from locator to KC high low low
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Identification of Organizational Responsibility

Having developed the basic DFC for a system, it is also possible to apply qualitative analyses as

a means of discovering potential improvements. One qualitative method for doing this is to

identify the functions responsible for ensuring that the dimensions of critical parts are achieved.

The DFC is useful for this functional assignment of responsibility because once the critical

components have been identified; it is possible to match the design of them back to particular

groups or even individuals. Similarly, it is possible to match the responsibility of subsystem

manufacturing to certain groups, as shown in Figure 8-4. Here the groups responsible for

component fabrication are shown in green outline. Magna currently outsources the production of

its hinges to a vendor who produces castings. Similarly, Body and Stamping can be thought of

as internal suppliers who fabricate and assemble subcomponents which are delivered to Final

Assembly. It is important to reiterate the interdependence of all system attributes, and the need

to not use functional assignments as a means of assessing blame. The responsibility of each

department must not be used merely as an excuse for not meeting certain requirements. Instead,

the development of diagrams such as that shown below should be used to encourage greater

communication between mutually responsible groups and individuals, and aid in the resolving of

complex systems issues.
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Figure 8-4: Organizational Mapping of the DFC

Combining DFC and DVA Techniques

Datum Flow Chains provide a powerful method of allocating constraints and component

responsibility across an engineered system. However, it is not necessary to rely solely on DFC

techniques when attempting to understand and improve a given system. Instead, the techniques

provided by Dimensional Variation Analysis offer a established set of analytical methods by

which the relationships discovered using DFC can be studied. When used in concert, these two

collections of tools can build off of one another and allow the development of solutions that avail

themselves of the visual elements and process mapping associated with DFC, as well as the

Monte Carlo analysis and real CAD data of DVA. Ultimately it is desirable to have the two

methods take greater root across the organization and find a home with the design engineers and

CSI's responsible for improving customer satisfaction. The next chapter will consider how the

DFC techniques presented above can be more fully integrated into the DVA techniques already

used within the organization.
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CHAPTER NINE: Incorporating the use of DFC Techniques at Magna

The Implementation of DFC within the Organization

As Magna works to develop a greater understanding of its own systems, and to apply standards

which decrease complexity while enabling the flow of critical customer information back up the

design chain faster, it is useful to consider the role that DFC might play. The timing of its

recommended use within the organization should be early in the design period, before final

closure strategies (or others) have been set. Although it is unlikely that the DFC toolset would

be used before or during the work of the design studio (who develop body styling and the 'look

and feel' of the vehicle), it should find a natural home within the group of Product Development

Closure System Integrators. These engineers typically represent the group most responsible for

meeting or improving on customer requirements and their lack of systematic tools has already

been highlighted. Not only would DFC aid the PD CSI's in their consideration of the entire

system for design purposes, it would serve to represent the relationships between shared

components that are critical to satisfying the various CSIs' KC's and encourage dialogue about

how these components can be modified in ways that are mutually beneficial.

Specifically, the use envisioned for the DFC toolset is as follows. As PD CSI's are presented

with initial vehicle designs and begin their collaboration with Core Engineering on which

strategies are most viable, they would construct simple DFC's contrasting the salient features of

each design. Some design flaws and subsequent improvements may present themselves

immediately and so lead to iterations and superior designs. However, even in cases where the

exercise of constructing and discussing a DFC does not lead to ostensible product improvement,

it will serve as a means to document the agreed upon design strategy and should ease the

communication of these decisions to groups that are related or affected. Moreover, these

documented DFCs will serve as guides in the event that the design needs to be rethought or

refined. Over time, it is desirable that a library of these DFC's be built up and serve as an

archive of design decisions made across a wide array of programs. As these DFC's are

completed, approved and archived, they will be considered to be the DFC standards for future

design work. The establishment of these standards should not prevent the development of new
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system designs through the creation of new DFC's, but will rather provide benchmarks against

which future strategies can be measured.

Although a constructed DFC may appear to be a static creation, in reality it is not. It is

continuously adjustable and can morph and evolve with the design it models. These DFC's are

not merely useful to encourage cross-functional communication among groups, but can be

leveraged as a means of recording the reasoning behind design decisions, and as a vehicle for

passing this information on to future generations of programs. DFC then can serve in the

capacity of relaying lessons learned and allowing each set of CSI's a unique means of

communicating with one another.

Coordinating the use of DFC and DVA

As mentioned, the combination of DFC and DVA techniques would give Magna a solid method

of system design and analysis. It is recommended that as DFC becomes increasingly established

within the organization, that it serve as a first analysis of any given design - as it provides the

impetus for collecting the necessary inputs from related groups and generating necessary

discussion and brainstorming. Once the DFC model has been considered, basic constraints

established, and some elementary analysis performed, it will be necessary to decide on the

geometry to be associated with the critically constraining features of each subcomponent. This

information can then be passed to VisVSA (or other DVA or simple Monte Carlo software) to

analyze the ability of the agreed geometry to meet the expected KC values. Specifically, as DFC

identifies critical paths that must be achieved and then suggests improved designs capable of

meeting requirements, DVA should then be capable of performing the analysis necessary to

confirm that the given flow of constraints will be accomplishable. This analysis involves the

association of tolerances (either stemming from the component's design or fabrication), to each

part and solving for the total error that may be introduced into the system. Some iteration of

these two steps is expected, but with the majority of time and effort being dedicated up-front to

the construction of the DFC.
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It is further recommended that the responsibility for the incorporation of both DFC and DVA fall

jointly to the team of PD CSI's who are expected to meet the KCs of a particular system.

Although it these PD CSI's may bear ultimate responsibility for the design work necessary to

optimize a given closure system, they must rely heavily on the input coming from engineers

intimately familiar with the each particular component's design and fabrication. Although their

working relationship with the designers has already been well-established, their need for regular,

in-depth meetings with representatives from manufacturing has recently been acknowledged and

improved through the use of the manufacturing CSI's. These CSI's are critical to informing the

PD CSI's' designs by relaying the manufacturing capabilities and variation associated with the

plant operations. This should not be seen as an 'over-the-wall' knowledge transfer from mfg

CSI's to PD CSI's. Rather, the mfg CSI's should be considered partners that are able to help

generate increasingly robust designs early with the design process. As the upstream information

flow is improved through the partnership of each group of CSI's, Magna hopes to witness a

corresponding improvement in the management of complexity as it affects their programs'

closure systems.

Potential DFC Organizational Issues

In order for the implementation and use of DFC to become a reality, a number of organizational

barriers may need to be overcome. These include many of the difficulties already considered for

the use of DVA. Additionally, the following may be true:

" The PD CSI's already find themselves too busy to invest in a new tool. This dynamic can

prove particularly pernicious to escape from, since the use of DFC with DVA ultimately

assures the improvement of program designs and less need for rework of inadequate

designs.

" The PD CSI's may have limited interest in the use of a toolset they consider to difficult or

too lengthy to implement. For those not already familiar with DFC approach and

thinking, the adoption of the system can at first appear overwhelming.

* There is a potential lack of standardization in DFC construction methods used by

different PD CSI's. This concern stems from the lack of common standards governing

the creation and analysis of Datum Flow Chains. Although the toolset does provide a
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common language and a general approach that can be followed by all, the particulars of

its use may vary slightly by user. This has the potential to greatly increase the difficulty a

PD CSI faces as he attempts to read and understand DFC's that have been archived in the

library.

Management Recommendations for Overcoming Resistance

In order for the DFC use to become commonplace within the organization (or at least among PD

CSI's), it is critical that Magna management appreciate the effort necessary to roll this initiative

out. The involvement of management entails the development of appropriate incentives for the

use of DFC or DVA tools by PD CSI's. It also should include helping these engineers to de-

prioritize current tasks (given their heavy workload) in order to leave time for becoming expert

in the use of these tools. Finally, management must lead by example and demonstrate their

commitment to supporting Magna's push to develop improved system's thinking.

The Use of DFC Constructor Toolset Software

The three sources of resistance: lack of time to use DFC, complexity of DFC, and lack of

standardization of DFC can also be addressed through a technical solution. The development of

DFC software - using an intuitive visual interface - should allow the PD CSI's to perform DFC

analysis in less time, with less effort, and according to the protocols established by the software.

For this reason, the final result of the internship project was the completion of the DFC

Constructor Toolset which will be described in the next chapter.
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CHAPTER TEN: CREA TION AND USE OF DFC CONSTRUCTION TOOLSET

Introduction and Explanation of Platform

In order to create a more user-friendly method for introducing Magna engineers to DFC

techniques, the DFC Construction Toolset (DFCCT) was created. This toolset runs as a

collection of stencils and macros atop the standard Microsoft Visio software product and can be

made available to virtually every PC user at Magna. Visio permits a standardized work

environment by providing a common set of stencils which are used in the construction of visual

objects. A collection of stencils were developed to cover the graphical elements essential for a

DFC. The DFC stencil contains the following elements, which will be explained in an example

below: Base Node (BsNode), Small Node (SmNode), Large Node (LgNode), Fixture Node

(FxNode), Linkage, Fixture Linkage, Key Characteristic (KC).

The visual interface presents the user with four key areas of interest are labeled below and

include:

" The Stencil: Where the user can select from nodes, linkages, and KCs for use as building

blocks of the DFC

* The DFC User Toolbar: Where the user can select methods of DFC analysis

" The Properties Box: Which displays constraints and labels for each DFC element

" The Workspace: Where the user constructs and controls the DFC
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Figure 10-1: DFCCT Introductory Screen

Value of Automation / Software

For the construction of simple DFC's, a manually constructed 'pen-and-paper' model is

reasonable. However, as was noted in previous chapters, the visual complexity and analytical

intricacy increase dramatically as the system grows above a very few components. The use of a

software interface allows the construction and analysis of a more involved system and prevents

basic mathematical errors on the part of the user. Furthermore, by utilizing a standard interface,

a DFC can be developed and used by more than one individual. Such an interface ensures a
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common method of construction and analysis and provides a common language to be used across

organizations.

Initial Use and Familiarization

The initial use of and user familiarization is aided by a stencil which can be selected for the

placement of visually familiar vehicle components. Although models built using this stencil are

not available for analysis, they allow the user the opportunity to test the user environment

separately from learning and adopting the proper DFC techniques. Figure 30 shows this

introductory use of the DFC Construction Toolset.
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Figure 10-2: Use of Vehicle Stencil
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DFCCT: Simple Example

The example shown in Figure 10-3 demonstrates a fully constructed DFC. Names and

constraints for each node, linkage, and KC are displayed in the Properties box as the element is

clicked. In this way it is possible to fully identify every aspect of the DFC. For ease of visibility,

and advanced analysis, multiple versions of nodes can be selected and used for construction.

These include base nodes (to set as the origin of the DFC), large and small nodes (for

identification) and fixture nodes (to represent the constraints supplied by tooling or fixtures).

Similarly, linkages are selectable both for constraints passed by components as well as

constraints passed by fixtures.
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Figure 10-3: Simple Example
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Constructing DFC

As each element is dragged into the workspace, the user will be prompted for parameters

necessary for completing the DFC. This may include the name of an element and the number

and type of DOFs being constrained. These parameters are intended to be entered as each

element is created, but can be postponed according to the user's wishes. In order to view an

element's parameters, the user must select the element and note the information displayed in the

Properties box. As each linkage is placed, the user is responsible for connecting either end to the

parts that are related - taking care that the flow is correctly depicted by the direction of the

arrowhead. For the placement of a KC, a double-headed arrow shows that the element is

directionless. In this way, a user can construct a DFC of great complexity that will still remain

manageable. Once all elements have been placed and connected, they can be dragged to new

locations without fear of losing the linking relationships.

DFCCT: Complex Example

The example shown in Figure 10-4 demonstrates the fully constructed DFC depicted in an earlier

chapter. Note that the actual physical placement of nodes and linkages is immaterial - only the

relationships established by the connections are important. However, for reader simplicity this

DFC has been laid out to mirror the manual DFC already discussed. As can be seen, one of the

linkages has been selected (number 42) and its constraint properties are displayed. Any

constraint reading true is assumed to be passed through this linkage.
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Figure 10-4: Complex Example

Performing DFCCT Analysis

In order to run analysis, the user must select the node of interest or KC of interest (depending on

analysis type) and then choose one of the options on the DFC pull down menu. Analysis types

include Constraint Analysis, Critical Path Analysis, KC Conflict Analysis, and Design Ratio

Analysis. Various error messages will be displayed if the user has neglected some key aspect of

the DFC construction. For a complete list of the code which runs these analyses, please consult

Appendix I.
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Suggestions for Future Work

The development of this software package is considered complete but with room for much

additional improvement. Given the short time frame, there may yet be issues with the code that

will require fixing and improving. More importantly, though, this package does not yet provide

a means of flowing information quickly and easily into DVA for further analysis. Writing an

additional module which could bridge the gap between the two would be of great value and may

allow the beginnings of the DFC-DVA collaboration that Magna needs.

Beyond software development, there exists the need of systems leaders within Magna to continue

the development and analysis of program specific DFC's in order to build comfort and

confidence in their use. As these DFC's are built and catalogued, organizational momentum

should begin to build, and the use of these techniques should spread.

Conclusion

Magna represents an organization which is becoming increasingly adept at the design of complex

systems, but which is not progressing quickly enough to surpass their competitors. In order to

speed their rate of learning and system improvement, it is recommended that the current CSI and

PD CSI initiative be augmented with the use of enhanced toolsets. This thesis has set out to

demonstrate how current engineers should foster a greater appreciation for the interrelated

complexities found in second-order complex systems, and should pursue the development and

use of tools that provide the firepower needed to apply this thinking to the design of Magna

vehicles. In particular, the use of DVA and DFC was explored and the results from both were

considered in light of the current design of Magna-duty trucks. Finally, the barriers to the use of

DFC were explored and the development of software intended to ease the organization's

transition was introduced. Ultimately, as with many such initiatives, Magna must work to reach

an organizational tipping point such that enough in-house experts are using the proper tools and

engaging in the proper thinking, that the company begins to transform itself from the inside out.
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APPENDIX I: DFC VISIO SOFTWARE CODE

Code: Add DFC Toolbar to Visio

Sub toolbaraddO
Dim uiObj As Visio.UlObject
Dim visMenuSets As Visio.MenuSets
Dim visMenuSet As Visio.MenuSet
Dim visMenus As Visio.Menus
Dim visMenu As Visio.Menu
Dim visMenultems As Visio.Menultems
Dim visMenultem As Visio.Menultem
Set uiObj = Visio.Application.BuiltInMenus
Set visMenuSets = uiObj.MenuSets
'Get the Visio object context menu set.
Set visMenuSet = visMenuSets.ItemAtID(visUlObjSetDrawing)
Set visMenus = visMenuSet.Menus
'Set menu as #9 (new position after Help) and add menu called "DFC"
Set visMenu = visMenus.AddAt(9)
visMenu.Caption = "DFC"
visMenu.State = Visio.visButtonCaption
'Get the items collection from the DFC menu (empty at first)
Set visMenultems = visMenu.Menultems

'Add option to clear links at first position in DFC menu
Set visMenultem = visMenultems.AddAt(O)
visMenultem.Caption = "Reset Links"
visMenultem. State = Visio.visButtonUp
'Associate KCCA with macro
visMenultem.AddOnName = "Drawing I.Module2.clearlinks"
'Add Constraint State Anlysis at second position in DFC menu
Set visMenultem = visMenultems.AddAt(1)
visMenultem.Caption = "Constraint State Analysis"
visMenultem.State = Visio.visButtonUp
'Associate CSA with macro
visMenultem.AddOnName = "Drawing 1.Module3.constraintstate"
'Add Critical path anlysis at third position in DFC menu
Set visMenultem = visMenultems.AddAt(2)
visMenultem.Caption = "Critical Path Analysis"
visMenultem. State = Visio.visButtonUp
'Associate CPA with macro
visMenultem.AddOnName = "Drawing 1.Module2.analysistype "
'Add KC Conflict Anlysis at fourth position in DFC menu
Set visMenultem = visMenultems.AddAt(3)
visMenultem.Caption = "KC Conflict Analysis"
visMenultem. State = Visio.visButtonUp
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'Associate KCCA with macro
visMenultem.AddOnName = "Drawing 1 .Module2.analysistype2"
'Add Design Ratio Anlysis at fourth position in DFC menu
Set visMenultem = visMenultems.AddAt(4)
visMenultem.Caption = "Calculate Design Ratio"
visMenultem. State = Visio.visButtonUp
'Associate KCCA with macro
visMenultem.AddOnName = "Drawing I.Module4.design ratio"
'Set the new menus.
Visio.Application. SetCustomMenus uiObj
'Tell Visio to use the new UI when the document is active.
ThisDocument.SetCustomMenus uiObj
End Sub

Code: Clear Last Run

Sub clearlinksO
Dim shpno As Integer
Dim shpObj As Visio.Shape
Dim shpName As String
'before we begin, must reset each link's path
For shpno = 1 To Visio.ActivePage.Shapes.Count
Set shpObj = Visio.ActivePage.Shapes(shpno)
shpName = shpObj.Name
If shpObj.OneD Then 'Only list the I -D shapes
'If shpObj.Cells("User.visKeywords")= 83 Then 'ignore the KC arrow
'Else
' resets each link's path
Set shpObj = Visio.ActivePage. Shapes.Item(shpName)
shpObj.Cells("user.visVersion") = 0
' resets each link's color
shpObj.Cells("linecolor") = 0
'End If
End If
Next shpno
End Sub

Code: For Critical Path Analysis and KC Conflict Analysis (combined
as analysis 1 and 2)

Sub analysistypel ()
Dim analysistype As Integer
analysistype = 1
Call kcnodes(analysistype)
End Sub
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Sub analysistype2()
Dim analysistype As Integer
analysistype = 2
Call kcnodes(analysistype)
End Sub

Sub kcnodes(analysistype As Integer)
Dim objShps As Visio.Selection, objshp As Visio.Shape
Dim i As Integer, i2 As Integer
Dim numnode As Integer
Dim kcnodes(2) As Integer
Dim kcdofx(100) As Boolean, kcdofy( 100) As Boolean, kcdofz(100) As Boolean
Dim kcdofTx(100) As Boolean, kcdoffy(100) As Boolean, kcdoffz(100) As Boolean
Dim bkcnodes(100) As Integer
Dim ekcnodes(100) As Integer
Dim totalkc As Integer
Dim myvalue As String
Set objShps = Visio.ActiveWindow. Selection
totalkc = objShps.Count
If analysistype = 1 Then
If objShps.Count > 1 Then
myvalue = MsgBox("Please Select Only a Single KC and restart analysis")
End
End If
End If
' count the total number of selected objects (should all be KCs)
For i = 1 To totalkc
Set objshp = objShps(i)
objshp.Text = objshp.ID
If objshp.Cells("User.visKeywords") = 83 Then
Else
myvalue = MsgBox("Please Select Only KCs and restart analysis")
End
End If
' set variable equal to each dofs boolean value
kcdofx(i) = obj shp.Cells("Prop.Row 2")
kcdofy(i) = objshp.Cells("Prop.Row_3")
kcdofz(i) = objshp.Cells("Prop.Row 4")
kcdofTx(i) = objshp.Cells("Prop.Row_5")
kcdofTy(i) = objshp.Cells("Prop.Row_6")
kcdoffz(i) = objshp.Cells("Prop.Row 7")
' set numnode equal to the total number of items connected to each KC (must be 2)
'numnode = obj Shp.Connects.Count
'objShp.Text = numnode

For i2 = 1 To 2
If i2 = 1 Then
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bkcnodes(i) = obj shp.Connects(i2).ToSheet.ID
objshp.Text = bkcnodes(i)
Else
ekcnodes(i) = obj shp.Connects(i2).ToSheet.ID
objshp.Text = ekcnodes(i)
End If
Next i2

Next i
Call simplevisio(analysistype, totalke, bkcnodes, ekcnodes, kedofx, kcdofy, kcdofz, kedoffx,
kcdofTy, kcdoffz)
End Sub

Sub simplevisio(analysistype As Integer, totalke As Integer, bkcnodesO As Integer, ekcnodes()
As Integer, kcdofxO As Boolean, kcdofyo As Boolean, kcdofzo As Boolean, kcdofTx() As
Boolean, kcdoffy() As Boolean, kcdoffz() As Boolean)
Dim shShape As Visio.Shape, PaletteEntry As Integer, vcolors As Colors
Dim shshape2 As Visio.Shape
Dim begcon As String
Dim concolor As Integer
Dim avalue As String
Dim begnode As Integer
Dim endcon As String
Dim endnode As Integer
Dim fholderl As String
Dim fholder2 As String
Dim fholder3 As String
Dim lwidth As Integer
Dim shpsObj As Visio.Shapes
Dim ShapesCnt As Integer
Dim shpObj As Visio.Shape
Dim begx(100) As String
Dim endx(100) As String
Dim shpName As String
Dim shpno As Integer
Dim numbegx(100) As Double
Dim fcount As Integer
Dim fbreakbegx As String
Dim fbreakendx As String
Dim begvaluecell As Integer
Dim endvaluecell As Integer
Dim path As Long
Dim pcount As Integer
Dim tierrowholder( 10) As Integer ' this stores the row that we last considered for each tier
Dim tiervalueholder(10) As Integer 'this stores the value last considered for each tier
Dim valuecell As String
Dim tier As Integer
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Dim strpath As String
Dim critpath(100) As String
Dim critpathcounter As Integer
Dim cpleg As String
Dim chop As Integer
Dim myvalue As String
Dim pathlength As Integer
Dim dofx(100, 100) As Boolean, dofy(l00, 100) As Boolean, dofz(100, 100) As Boolean
Dim dofFx(100, 100) As Boolean, dofTy(l00, 100) As Boolean, dofTz(100, 100) As Boolean
Dim dofmatch As Integer
Dim i As Integer
Dim nodeend As Integer
Dim kc As Integer
Dim connectsfrom As Integer
Dim connectsto As Integer
'before we begin, must reset each link's path
For shpno = 1 To Visio.ActivePage.Shapes.Count
Set shpObj = Visio.ActivePage. Shapes(shpno)
shpName = shpObj.Name
If shpObj.OneD Then ' Only list the 1 -D shapes
If shpObj.Cells("User.visKeywords") 83 Then 'ignore the KC arrow
Else
' resets each link's path
Set shpObj = Visio.ActivePage.Shapes.Item(shpName)
shpObj.Cells("user.visVersion") 0
' resets each link's color
shpObj.Cells("linecolor") = 1
End If
End If
Next shpno
For kc = 1 To totalkc
dofx(kc, 1) = kedofx(kc)
dofy(kc, 1) = kcdofy(kc)
dofz(kc, 1) = kcdofz(kc)
dofTx(kc, 1)= kcdofTx(kc)
doffy(kc, 1)= kcdofTy(kc)
dofTz(kc, 1) = kcdofTz(kc)
'receive node start and end values'
'begvaluecell = InputBox("What node are we starting at?", "BegValueCell", 5)' for now, we're
looking for a path to extend back from 5
'endvaluecell = InputBox("What node are we ending at?", "EndValueCell", 2) ' for now, we're
looking for a path to extend to 2
'Set shpObj = Visio.ActivePage. Shapes.Item("fxnode.19")
' shpObj.Text = "hello"
For nodeend = 1 To 2
If nodeend = 1 Then
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begvaluecell = bkcnodes(kc)
endvaluecell = ekcnodes(kc)
Else
begvaluecell = ekcnodes(kc)
endvaluecell = bkcnodes(kc)
End If
' set begvaluecell as value cell to check
'tier=]
'check at shpno=1 (if ID)
'if not found then check for shpno=2
'if found then store previous valuecell as tier 1 valuecell and previous shpno as tier 1 shpno
' also mark a custom cell in this shape with a path (according to path rules)
'then set cor number as new value cell, reset shpno and start search again
valuecell = begvaluecell 'the first value we'll look for will be to start the path from 5
tier = 1
critpathcounter = 0
For i = 1 To 100
critpath(i) =

Next i
rowloop: 'beginning of row operations
fbreakbegx = "0"
fbreakendx = "0"
For shpno = 1 To Visio.ActivePage.Shapes.Count
Set shpObj = Visio.ActivePage.Shapes(shpno)
shpName = shpObj.Name
' shpObj.Text = ""
If shpObj.OneD Then' Only list the 1-D shapes
If shpObj.Cells("User.visKeywords") = 83 Then 'ignore the KC arrow
Else

connectsfrom = shpObj.Connects(1 ).ToSheet.ID
shpObj.Text = ""
'shpObj.Text "22222222222"
'shpObj.Text = connectsfrom
If valuecell = connectsfrom Then
GoTo dofgauntlet
Else
GoTo lowertier
End If

End If
End If
lowertier:
Next shpno
tierreduce:
tier = tier - 1
If tier >= 1 Then
' reduce the path as we drop back a tier
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strpath = path
pcount = Len(strpath)
strpath = Left(strpath, (pcount - 1))
path = strpath
shpno = tierrowholder(tier)
valuecell = tiervalueholder(tier)
GoTo lowertier
Else
GoTo endlabel
End If
dofgauntlet:
dofmatch = 0
'shpObj.Text = tier
'shpObj.Text = dofx(tier)
If dofx(kc, tier) = True Then

If shpObj.Cells("Prop.Row_ ") = 1 Then
dofx(kc, tier + 1) = True
dofnatch = True
Else
dofx(kc, tier + 1) = False
End If

End If
'shpObj.Text = shpObj.Cells("Prop.Row_2")
'shpObj.Text = shpObj.Cells("Prop.Row_3")
If dofy(kc, tier) = True Then

If shpObj.Cells(" Prop.Row_2") 1 Then
dofy(kc, tier + 1) = True
dofmatch = True
Else
dofy(kc, tier + 1) = False
End If

End If
If dofz(kc, tier) = True Then

If shpObj.Cells(" Prop.Row_3") = 1 Then
'shpObj.Text = shpObj.Cells("prop.row_3")
dofz(kc, tier + 1) = True
dofrnatch = True
Else
dofz(kc, tier + 1) = False
End If

End If
If dofFx(kc, tier) = True Then

If shpObj.Cells("Prop.Row 4") = 1 Then
dofTx(kc, tier + 1) = True
dofmatch = True
Else
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dofTx(kc, tier + 1) = False
End If

End If
If dofTy(kc, tier) = True Then

If shpObj.Cells("Prop.Row_ 5") 1 Then
dofTy(kc, tier + 1) = True
dofmatch = True
Else
dofTy(kc, tier + 1) = False
End If

End If
If dofTz(kc, tier) = True Then

If shpObj.Cells("Prop.Row_6") 1 Then
dofTz(kc, tier + 1) = True
dofmatch = True
Else
dofTz(kc, tier + 1) = False
End If
'shpObj.Text = shpObj.Cells("Prop.Row_6")

End If
If dofmatch = True Then
GoTo valuefound
Else
GoTo lowertier
End If
valuefound:

'let's forget about 'checking z' for right now
'we know this now counts as a path, let's give it a designation

path = path + 1
'but first must set shpObj as current shapeno

Set shpObj = Visio.ActivePage.Shapes. Item(shpName)
shpObj.Cells("User.visVersion") = path
' now let's store the number of this shape so we can continue our search later
tierrowholder(tier) = shpno ' this needs to hold all tier's rows (can i index by tier #?)
' now let's store the value last considered for our return to this tier
tiervalueholder(tier) = valuecell
' now let's check the corresponding number to set the search for our next path
'break beginy formula down to capture the last node number

connectsto = shpObj.Connects(2).ToSheet.ID
valuecell = connectsto

'if this number is the first node value we've been searching for, then this is a critical path.
mark it as such and abort current search

'shpObj.Text = valuecell
'shpObj.Text = endvaluecell
If valuecell = endvaluecell Then
critpathcounter = critpathcounter + 1
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critpath(critpathcounter) = path
' switch search value back to previous number, row is still set right
valuecell = tiervalueholder(tier)
GoTo lower
Else
' now prepare the path for the next tier
path = path & 0
' now we'll move to the next tier...
tier = tier + 1
GoTo rowloop
End If

lower:
GoTo lowertier
endlabel:
'myvalue = InputBox("enter!")
use Circle to display test values

'Set shpObj = Visio.ActivePage. Shapes.Item("Circle")
'shpObj.Cells("LineColor") = 0
'shpObj.Cells("User.visVersion") = 11
everypath:
critpathcounter = 0
critpathloop:
critpathcounter = critpathcounter + 1
chop = 0
foreachcritpath:
For shpno = 1 To Visio.ActivePage.Shapes.Count

Set shpObj = Visio.ActivePage. Shapes(shpno)
shpName = shpObj.Name
pathlength = Len(critpath(critpathcounter))

If pathlength = 0 Then
GoTo endlabel2
End If
If pathlength = chop Then
GoTo critpathloop
End If

cpleg = Left(critpath(critpathcounter), (pathlength - chop))
secondrowloop:

If shpObj.OneD Then ' Only list the I -D shapes
Set shpObj = Visio.ActivePage. Shapes.Item(shpNane)

If shpObj.Cells("User.visVersion") cpleg Then
If analysistype = 1 Then
shpObj.Cells("linecolor") = 2
Else
If analysistype = 2 Then
shpObj.Cells("linecolor") = (shpObj.Cells("linecolor") + 1)
End If
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End If
GoTo lowershow
End If
End If

lowershow:
Next shpno
chop = chop + 1
GoTo foreachcritpath

endlabel2:
Next nodeend
Next kc
End Sub

Code: Used for Analysis of Constraint State

Sub constraintstateo
Dim objShps As Visio.Selection, objshp As Visio.Shape
Dim shShape As Visio.Shape, PaletteEntry As Integer, vcolors As Colors
Dim shshape2 As Visio.Shape
Dim begcon As String
Dim concolor As Integer
Dim avalue As String
Dim begnode As Integer
Dim endcon As String
Dim endnode As Integer
Dim fholderl As String
Dim fholder2 As String
Dim fholder3 As String
Dim lwidth As Integer
Dim shpsObj As Visio.Shapes
Dim ShapesCnt As Integer
Dim shpObj As Visio.Shape
Dim begx(100) As String
Dim endx( 100) As String
Dim shpName As String
Dim shpno As Integer
Dim numbegx(100) As Double
Dim fcount As Integer
Dim begvaluecell As Integer
Dim endvaluecell As Integer
Dim path As Long
Dim pcount As Integer
Dim tierrowholder(1 0) As Integer ' this stores the row that we last considered for each tier
Dim tiervalueholder(l0) As Integer'this stores the value last considered for each tier
Dim valuecell As String
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Dim tier As Integer
Dim strpath As String
Dim critpath(100) As String
Dim critpathcounter As Integer
Dim cpleg As String
Dim chop As Integer
Dim myvalue As String
Dim pathlength As Integer
Dim dofx(100) As Boolean, dofy(100) As Boolean, dofz(100) As Boolean
Dim dofTx(100) As Boolean, dofFy(100) As Boolean, doffz(100) As Boolean
Dim dofnatch As Integer
Dim i As Integer
Dim i2 As Integer
Dim nodeend As Integer
Dim kc As Integer
Dim connectsfrom As Integer
Dim connectsto As Integer
Dim cpdof(1 00, 6) As Boolean
Dim cpadd(6) As Integer
'before we begin, must reset each link's path
For shpno = 1 To Visio.ActivePage.Shapes.Count
Set shpObj = Visio.ActivePage. Shapes(shpno)
shpName = shpObj.Name
If shpObj.OneD Then ' Only list the 1-D shapes
If shpObj.Cells("User.visKeywords") 83 Then 'ignore the KC arrow
Else
' resets each link's path
Set shpObj = Visio.ActivePage. Shapes.Item(shpName)
shpObj.Cells("user.visVersion") 0
' resets each link's color
shpObj.Cells("linecolor") = 0
End If
End If
Next shpno
'set all part dofs to yes (should be fully constrained)
dofx(l)= I
dofy(l)= I
dofz(1) = 1
doffx(l) = 1
doffy(l)=I
dofTz(l) = 1
'set part id as starting point
Set objShps = Visio.ActiveWindow. Selection
Set objshp = objShps(l)
valuecell = objshp.ID
If objShps.Count > 1 Then
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myvalue = MsgBox("Please Select Only a SINGLE node and restart analysis")
End
End If
If objshp.Cells("user.viskeywords")= 81 Then
myvalue = MsgBox("Please Select Only a single NODE and restart analysis")
End
End If
If objshp.Cells("User.visKeywords") = 83 Then
myvalue = MsgBox("Please Select Only a single NODE and restart analysis")
End
Else
If objshp.Cells("user.viskeywords") = 89 Then
myvalue = MsgBox("Please Select a NON-BASE node and restart analysis")
End
End If
End If
'set base part id as ending point
For shpno = 1 To Visio.ActivePage.Shapes.Count
Set shpObj = Visio.ActivePage.Shapes(shpno)
If shpObj.Cells("User.visKeywords") = 89 Then
endvaluecell - shpObj.ID
End If
Next shpno
tier = 1
critpathcounter = 0
For i = 1 To 100
critpath(i) =

Next i
rowloop: 'beginning of row operations
For shpno = 1 To Visio.ActivePage.Shapes.Count
Set shpObj = Visio.ActivePage.Shapes(shpno)
shpName = shpObj.Name
' shpObj.Text = ""
If shpObj.OneD Then' Only list the 1-D shapes
If shpObj.Cells("User.visKeywords") 83 Then 'ignore the KC arrow
Else

connectsto = shpObj.Connects(2).ToSheet.ID
connectsfrom = shpObj.Connects(I ).ToSheet. ID
shpObj.Text = "22222222222"
shpObj.Text = connectsto
shpObj.Text = connectsfrom
If valuecell = connectsto Then
GoTo dofgauntlet
Else
GoTo lowertier
End If
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End If
End If
lowertier:
Next shpno
tierreduce:
tier = tier - I
If tier >= 1 Then
' reduce the path as we drop back a tier
strpath = path
pcount = Len(strpath)
strpath = Left(strpath, (pcount - 1))
path = strpath
shpno = tierrowholder(tier)
valuecell = tiervalueholder(tier)
GoTo lowertier
Else
GoTo endlabel
End If
dofgauntlet:
dofmatch = 0
'shpObj.Text = tier
'shpObj.Text = dofx(tier)
If dofx(tier) = True Then

If shpObj.Cells("Prop.Row_ 1") 1 Then
dofx(tier + 1) = True
dofnatch = True
Else
dofx(tier + 1) = False
End If

End If
shpObj.Text = shpObj. Cells("Prop.Row 2")
shpObj.Text = shpObj.Cells("Prop.Row_3")
If dofy(tier) = True Then

If shpObj.Cells("Prop.Row_2") = I Then
dofy(tier + 1)= True
dofmatch = True
Else
dofy(tier + 1) = False
End If

End If
If dofz(tier) = True Then

If shpObj.Cells("Prop.Row 3") = I Then
shpObj.Text = shpObj.Cells("prop.row_3")
dofz(tier + 1) = True
dofrnatch = True
Else
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dofz(tier + 1) = False
End If

End If
If dofTx(tier) = True Then

If shpObj.Cells("Prop.Row_4") 1 Then
dofTx(tier + 1)= True
dofinatch = True
Else
doffx(tier + 1) = False
End If

End If
If dofTy(tier)= True Then

If shpObj.Cells("Prop.Row_5") = 1 Then
dofTy(tier + 1)= True
dofmatch = True
Else
dofTy(tier + 1) = False
End If

End If
If dofTz(tier) = True Then

If shpObj.Cells("Prop.Row_6") 1 Then
dofTz(tier + 1)= True
dofmatch = True
Else
dofTz(tier + 1) = False
End If
shpObj.Text = shpObj.Cells("Prop.Row_6")

End If
If dofmatch = True Then
GoTo valuefound
Else
GoTo lowertier
End If
valuefound:

'we know this now counts as a path, let's give it a designation
path = path + I

'but first must set shpObj as current shapeno
Set shpObj = Visio.ActivePage.Shapes. Item(shpName)
shpObj.Cells("User.visVersion") = path
' now let's store the number of this shape so we can continue our search later
tierrowholder(tier) = shpno 'this needs to hold all tier's rows (can i index by tier #?)
' now let's store the value last considered for our return to this tier
tiervalueholder(tier) = valuecell
' now let's check the corresponding number to set the search for our next path
'break beginy formula down to capture the last node number

connectsfrom = shpObj.Connects(1).ToSheet. ID
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valuecell = connectsfrom
'if this number is the first node value we've been searching for, then this is a critical path.

mark it as such and abort current search
shpObj.Text = valuecell
shpObj.Text = endvaluecell
If valuecell = endvaluecell Then
'increment counter
critpathcounter = critpathcounter + 1
critpath(critpathcounter) = path
'store collection of dof for this critical path
cpdof(critpathcounter, 1)= dofx(tier + 1)
cpdof(critpathcounter, 2) = dofy(tier + 1)
cpdof(critpathcounter, 3)= dofz(tier + 1)
cpdof(critpathcounter, 4) = dofTx(tier + 1)
cpdof(critpathcounter, 5) = dofTy(tier + 1)
cpdof(critpathcounter, 6)= dofTz(tier + 1)
' switch search value back to previous number, row is still set right
valuecell = tiervalueholder(tier)
GoTo lower
Else
' now prepare the path for the next tier
path = path & 0
' now we'll move to the next tier...
tier = tier + 1
GoTo rowloop
End If

lower:
GoTo lowertier
endlabel:
everypath:
For i = 1 To 6
cpadd(i) = 0
For i2 = 1 To critpathcounter
'myvalue = InputBox(cpdof(i2, i))
cpadd(i)= cpdof(i2, i) + cpadd(i)
objshp.Text = cpadd(i)
Next i2
Next i
myvalue = MsgBox(-cpadd(1), , "Constraint State for X")
myvalue = MsgBox(-cpadd(2), , "Constraint State for Y")
myvalue = MsgBox(-cpadd(3),, "Constraint State for Z")
myvalue = MsgBox(-cpadd(4), , "Constraint State for TX")
myvalue = MsgBox(-cpadd(5), , "Constraint State for TY")
myvalue = MsgBox(-cpadd(6), , "Constraint State for TZ")
End Sub
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Code: Design Ratio used for outputting design metrics

Sub designratio()
Dim objshp As Visio.Shape
Dim shpno As Integer
Dim linkagecounter As Integer
Dim nodecounter As Integer
Dim myvalue As Integer
Dim designratio As Double
Dim drstring, totalMsg, textMsg As String
linkagecounter = 0
nodecounter = 0
For shpno = 1 To Visio.ActivePage.Shapes.Count
Set objshp = Visio.ActivePage.Shapes(shpno)
If objshp.OneD Then
linkagecounter = linkagecounter + I
Else
nodecounter = nodecounter + I
End If
Next shpno
designratio = linkagecounter / nodecounter
designratio = FonrnatNumber(designratio, 3)
drstring = designratio
textMsg = "This assembly's design ratio is:"
totalMsg = textMsg & drstring
myvalue = MsgBox(totalMsg)
End Sub
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