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Abstract

We present two light-weight worm detection algorithms tféer significant advantages over fixed-threshold
methods. The first algorithm, RBS (rate-based sequentthgsis testing) aims at the large class of worms that
attempts to quickly propagate, thus exhibiting abnormegls of the rate at which hosts initiate connections to
new destinations. The foundation of RBS derives from tleryted sequential hypothesis testing, the use of which
for detecting randomly scanning hosts was first introducgaix previous work with TRW [7]. The sequential
hypothesis testing methodology enables engineering ttectdes to meet false positives and false negatives
targets, rather than triggering when fixed thresholds a@ssed. In this sense, the detectors that we introduce are
truly adaptive. We then introduce RBS + TRW, an algorithnt tleanbines fan-out rate (RBS) and probability of
failure (TRW) of connections to new destinations. RBS + TRMiges a unified framework that at one end acts
as a pure RBS and at the other end as pure TRW, and extendsfiRB&’sin detecting worms that scan randomly
selected IP addresses. Using three traces from two quizitigtdifferent sites, we evaluate RBS and RBS + TRW
in terms of false positives, false negatives and detecpend, finding that RBS + TRW provides good detection
of high-profile worms, internal Web crawlers, and a netwodnitoring tool that we use as proxies for targeting
worms. In doing so, RBS + TRW generates fewer than 1 falsengdar hour for wide range of parameter choices.

1 Introduction

If a network worm penetrates a site’s perimeter, it can duiskread to other vulnerable hosts inside the site. The
infection propagates by the compromised host repeatetynpting to contact and infect new potential victims.
The traffic pattern of fast worm propagation—a single hogtldy contacting many different hosts—is a prominent
feature across a number of types of worms, and detecting gattbrns constitutes the basis for several worm
detection approaches [4, 10, 14].

The problem of accurately detecting such worm scanningrbesarticularly acute for enterprise networks com-
prised of a variety of types of hosts running numerous, aifieapplications. This diversity makes it difficult to tune
existing worm detection methods [4, 14] that presume peesed thresholds for connection rates and window sizes
over which to compute whether a host’s activity is “too quidkrst, finding a single threshold rate that accommo-
dates all (or almost all) benign hosts requires excessivadlbecause of diverse application behaviors (e.g., a Web
browser generating multiple concurrent connections tchfeimbedded objects vs. an SSH client connecting to a
server). Second, the window size chosen to compute thegeveade affects the detection speed and accuracy; if
too small, the detection algorithm is less resilient to $ieglitimate connection bursts, but if too big, the deteattio
algorithm reacts slowly to fast propagating worms, for viahlicisk response is vital.

In this paper, we first develop an algorithm for detecting-faspagating worms that use high-qualtgrgeting
information. We base our approach on analyzing the rate athatosts initiate connections to new destinations.
One such class of worms are those that spreadtopalogical fashion [13, 17]: they gather information on the
locally infected host regarding other likely victims. Foaeple, the Morris worm examinethostsfiles to see what



other machines were known to the local machine [5, 12]. Atedlaechnique is the use afeta-serverssuch as
worms that query search engines for likely victims [6]. Tdésrgeting worms can spread extremely quicklyen
using relatively low-rate scannindpecause the vulnerability density of the addresses thayeps so much higher
than if they use random scanning. Furthermore, these woam&eade many existing worm defense systems that
rely on the artifacts of random scanning such as number lefidf@ionnections and the absence of preceding DNS
lookups [4, 10, 18, 19].

Our detection algorithnrate-based sequential hypothesis tes{iR@S), operates on a per-host and per-connection
basis and does not require access to packet contents. iltisriba probabilistic model that captures benign network
characteristics, which allows us to discriminate betweenidn traffic and worm traffic. RBS also provides an
analytic framework that enables a site to tailor its operatd its network traffic pattern and security policies.

We then present RBS + TRW, a unified framework for detectisgrffmopagating worms independent of their scan-
ning strategy. RBS + TRW is a blend of RBS and our previbbgeeshold Random Walld RW) algorithm, which
rapidly discriminates between random scanners and legfiéirtraffic based on their differing rates of connection
failures [7]. Wald’s sequential hypothesis testing [15]fis the basis for RBS + TRW's adaptive detection.

We begin with an overview of related work §2. §3 then presents an analysis of network traces we obtained fro
two internal routers of a medium-size enterprise. Such data allow ussesasRBS’s efficacy in detecting worms
that remain inside an enterprise, rather than just thogemhaifest in a site’s external Internet traffic (a limitatio
of previous studies). The traced traffic includes more tha iBternal hosts, about 10% of the total at the site.
We examine the distribution of the time between consectiigecontact connection requesdefined by [10] as

a packet addressed to a host with which the sender has nabysivcommunicated. Our analysis finds that for
benign network traffic, these interarrival times are byrsty within the bursts can be approximately modeled using
exponential distributions with a few hundred millisecongrage intervals.

In §4, we develop the RBS algorithm, based on the same sequbpftiathesis testing framework as TRW. RBS
quickly identifies hosts that initiate first-contact contieat requests at a rate times higher than that of a typical
benign host. RBS updates its decision process upon eachadatal, triggering an alarm after having observed
enough empirical data to make a distinction between theidatedmodels of (somewhat slower) benign and (some-
what faster) malicious host activity.

In §5, we evaluate RBS using trace-driven simulations. We filad Whenn is small, RBS requires more empir-
ical data to arrive at a detection decision; for examplegdiuires on average 10.4 first-contact connections when
n = 5. However, whem is larger, RBS provides accurate and fast detection. Onttier thand, we show that a
fixed-threshold rate-based scheme will inevitably requoiare difficult tradeoffs between false positives and false
negatives.

86 presents RBS + TRW, which automatically adapts betweeratieeat which a host initiates first-contact connec-
tion requests and observations of the success of thesepstecombining two different types of worm detection.
Using datasets that contain active worms caught in actiemshvow that RBS + TRW provides fast detection of two
hosts infected by Code Red Il worms, while generating less fhfalse alarm per hour.

2 Reated Work

Williamson first proposed limiting the rate of outgoing patkto new destinations [20] and implemented a virus
throttle that confines a host to sending packets to no moredha new host a second [14]. While this virus throttling

slows traffic that could result from worm propagation beloweatain rate, it remains open how to set the rate
such that it permits benign traffic without impairing deieatcapability. For example, Web servers that employ
content distribution services cause legitimate Web bnogvéd generate many concurrent connections to different



destinations, which a limit of one new destination per sdoawould significantly hinder. If the characteristics of
benign traffic cannot be consistently recognized, a rasedaefense system will be either ignored or disabled by
its users.

Numerous efforts have since aimed to improve the simpleswinwottle by taking into account other metrics such
as increasing numbers of ICMP host-unreachable packet€BrRST packets [4], number of failed first-contact
connections [10, 18], and the absence of preceding DNS fm0KLB]. However, these supplementary metrics will
be not much of use if worms target only hosts that are reaetaid have valid names (e.qg., topological worms).

This work is inspired by our previous paper [7], which firsedsequential hypothesis testing for scan detection. Our
previous paper develops the Threshold Random Walk(TRWs@an detection algorithm based on the observation
that a remote port scanner has a higher probability of atiegpo contact a local host that does not exist or does
not have the requested service running.

Weaveret al.[18] present an approximation to TRW suitable for impleraéint in high-performance network hard-
ware for worm containment. For the same problem of detectoanning worms, Schechtet al. [10] combine
credit-based rate-limiting and reverse sequential hyggithtesting optimized to detect infection instances. m-co
parison, our RBS + TRW provides a unified framework built ogustial hypothesis testing with two metrics, a
rate and a probability of success of a first-contact conoecthat cover a broad range of worms, mostly independent
of their scanning strategy or propagation speed.

There have been recent developments of worm detection osimtgnt siftingfinding common substrings in packets
that are being sent in a many-to-many pattern) and autora@iature generation [8, 11, 16]. These approaches
are orthogonal to our approach based on traffic behavioranttte former require payload inspection, for which
computationally intensive operations are often neededebir, although our approach requires a few parameter
settings, it requires no training nor signature updatesvéver, content-based approaches are capable of detecting
slow-propagating (stealthy) worms that are indistingaigh from benign hosts by their traffic behaviors.

3 DataAnalysis

We hypothesize that we can bound a benign user's networkitgcly a reasonably low fan-out per unit time,
where we define fan-out as the number of first-contact commmeotquests a given host initiates. This fan-out per
unit time, orfan-out rate is an important traffic measure that we hope will allow usepasate benign hosts from
relatively slowly scanning worms. In this section, we amalyraces of a site’s internal network traffic, finding that
a benign host’s fan-out rate rarely exceeds a few first-obrtiannections per second, and time intervals between
those connections can be approximately modeled as expaihedtstributed.

We analyze a set of 22 anonymized network traces, each ceeadpoi 10 minutes’ of traffic recordedlasb on Oct.

4, 2004. These were traced usingpdunp at twointernal routers withinLab, enabling them to collect bidirectional
traffic originated by internal hosts to botixternalhosts outsidé.ab and to othelinternal hosts insidd_ab. While
ideally we would have such traces from a number of differéatsn order to assess the range of behavior normally
seen, such traces have to date been unavailable. Indeealiexelthe internal traces to which we have access are
unique or nearly so for the research community at presenis, e view them as highly valuable, if fundamentally
limited, though we need to continually keep in mind the aauthat we should not readily generalize from them. (A
much larger datasetab | 1, later became available from this same site. We use§if ito assess RBS + TRW.)

Table 1 summarizes thieab dataset after some initial filtering to remove periodic NT&fic and “triggered”
connections in which a connection incoming to a host caldsesdst to initiate a secondary connection outbound.
Such triggered connections should not be considered firgact connections when assessing whether a host is
probing.



The table shows that the traffic between interhab hosts consists of about 70% of the total outbound traffic
recorded in the datasets. Had we traced the traffic at the bibeder, we would have seen much less of the total
network activity, and lower first-contact connections adaugly.

Outgoing connections
to internal hostg 32,967
to external hosts 16,082

total | 49,049

Local hosts| > 652

Table 1:Lab dataset summary: This analysis does not incN@PE traffic or triggered outgoing connections such as
| dent , Fi nger , andFTP data-transfer

For each 10-minute trace, we observe that the number ofeaictiernal hosts that initiated any outbound traffic
during the observation period varies. The last row in Tabéidws that the largest number of active internal hosts
in a 10-minute trace is 652. (Because each trace was anoagre@parately, we are unable to tell how many distinct
internal hosts appear across all of the traces.)

We plot the cumulative distribution of per-host fan-out iglre 1. We see that over 99.5% of hosts contacted fewer
than 60 different hosts in 10 minutes, which results in lésst0.1/sec fan-out rate on average. However, the top
0.5% most active hosts greatly stretch out the tail of th&itigion. In what follows, we examine those hosts with
a high fan-out rate to understand what distinguishes tregiabior from that of worm propagation. Then, we find a
set of “purely” benign hosts, which we use to develop a mdu taptures their fan-out rate statistics.
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Figure 1: Fan-out distribution of an internal host’s outhdunetwork traffic for a 10 minute observation period

3.1 Separating Benign Hosts

Our starting point is the assumption that a host is benigtsifan-out rate is less than 0.1/sec averaged over a
10-minute monitoring period. (Note that Twycross and \itlison [14] use a 1/sec fan-out rate as a maximum
allowed speed for throttling virus spreads.) Only 9 hostsex this threshold in this trace. Of these, 4 were aliases
(introduced by the traces having separate anonymizatioregspaces) for an internal scanner used by the site for its
own vulnerability assessment. Of the remainder, 3 hostsaig mail servers that forward large volumes of email,

and the other 2 hosts are internal web crawlers that builcsesngine databases of the content served by internal



Web servers. By manual inspection, we also later found an@thpearance of the internal scanner that we missed
using our 0.1/sec fan-out rate threshold, as in that instdhe scanner contacted only 51 different IP addresses
during the 10-minute period. Table 2 shows the average famper each type of scanners detected fromLthb
dataset. Note that we do not include the mail servers hetbegsre not scanners per se, but rather applications that
happen in this environment to exhibit high fan-out.

Type | Count | Average fan-out
Internal scanneT 5 ‘ 196.4

Internal crawler 2 65.5

Table 2: Scanners detected from theeb dataset

We exclude the scanners from our subsequent analysis, deedacluding them would greatly skew the fan-out
statistics of benign hosts. Given their low number, it issm®ble to presume that sites could maintain white-lists of
such hosts to filter out detections of their activities by algorithm.

3.2 Timelnterval to Visit New Destinations

A host engaged in scanning or worm propagation will gengaibbe a significant number of hosts in a short time

period, yielding an elevated first-contact connection.rltehis section, we analyze our dataset to determine the
distribution of first-contact interarrivals as initiategt benign hosts. We then explore the discriminating power of
this metric for a worm whose first-contact connections arevfactor of. more quickly.
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Figure 3: First-contact interarrivals initiated by be-
nign hosts roughly follow an exponential distribu-
tion with meanu = 261 msec.

Figure 2: Distribution of first-contact interarrival
time, per host

Figure 2 shows the distribution of the amount of time betwégest-contact connections for individual hosts.
Here we have separated out the scanners (identified as skstadove), listing two groups,canners and
non- scanner s. We see that scanners have a much shorter average intgrdime (1.1 sec) compared to the
non-scanners (39.2 sec). Yet, the average is deceptiveisgmofthe uneven distribution of time intervals. Although
the average non-scanner interarrival time is 39.2 sec, ven afee benign, non-scanner hosts initiating multiple
first-contact connections separated by very litdel( sec) time. In fact, these short time intervals account haua
40% of the total intervals generated by benign hosts, whigkes it impractical to use 1/sec fan-out rate to identify
possible worm propagation activity.



However, when focusing on sub-second interarrivals, wetfiatla benign host's short-time-scale activity fits fairly
well to an exponential distribution, as illustrated in Figu. Here the fit tavon- scanner s usesy = 261 msec.

In comparisonscanner s on average wait no more than 69 msec between first-contanectians. We note that

a scanner could craft its probing scheduling such that ies-dirmined scanning behavior matches that of benign
users, or at least runs slower than what we model as benigtityadtowever, this will significantly slow down the
scanning speed, so compelling attackers to make this maitiificconstitutes an advance in the ongoing “arms race”
between attackers and defenders.

We also note that we could extract significantly more preicissrarrival models—including differing mean interar-
rival rates—if we partitioned the traffic based on its apgtiien protocol. While investigating this refinement rensain
a topic for future work, in our present effort we want to explthe efficacy of asimplea model as possible. If our
algorithm can prove effective without having to characerdifferent protocols separately, we will benefit a great
deal from having fewer parameters that need to be tuned topesty.

In the next section, based on these characteristics of extvity, we develop our detection algorithm, RBS, for
quickly identifying scanners or worm infectees with a higicwaacy.

4 RBS:. Rate-Based Sequential Hypothesis Testing

In the previous section we examined network traces and fthaidbenign hosts often initiate more than one first-
contact connection request per second, but in such casesnapproximate the interval between these connections
with an exponential distribution. In this section, we deyeh rate-based sequential hypothesis testing algorithm,
RBS, which aims to quickly identify hosts issuing first-cactt connections at rates higher than what we model as
benign activity.

Let H; be the hypothesis that a given host is engaged in worm prépagand letH, be the null hypothesis that
the host exhibits benign network activity. A host generatesventwhen it initiates a connection to a destination
with which the host has not previously communicated, i.daemvthe host initiates a first-contact connection. We
assume that the interarrival times of such events followxg@oeential distribution with meah/\q (benign host) or
1/)1 (scanner). When a host generatesitheevent at time/;, we can compute an interarrival tim&; = ¢; — t;_;

for i > 1 andt, the initial starting point, and update the likelihood ratiothe host being engaged in scanning (or
benign).

DefineXy, Xo, ..., X,, as asequence of such interarrival times. Since we model’€aah |ID negative exponential
random variables, their surif,,, is then-Erlang distribution:

AM(MT,) T,

Fa(Tal ) = S e ®

Based on Equation (1), we can develop a sequential hypettestiin which we define the likelihood ratio as:

fn(Tn’Hl) <)\1)n — (A =\
AnT,)=—<=|— ] e (A1=A0)Tn 2
and the detection rules as:
Hl If A(naTn) 2 m
Output= Hy if A(TL,Tn) <no

Pending ifng < A(n,T),) <m



where we can sef; andry in terms of a target false positive rate,and a target detection rate [15]:

N e b (3
(0%

n 1_ﬁ 4)
-«

Wald shows that setting thresholds as above guaranteebhéhagsulting false positive rate is bounded%mnd the

false negative rate is b%/}g [15]. Given that3 is usually set to a value higher than 0.99 antb a value lower than
0.001, the margin of error becomes negligible (ifes 1 and 25 ~ 1).

There are four parameters to set in order to run RBS. Firahdj give the false positive rate and the detection rate
we want to achieve with the detection algorithm. In additive needpriors, A; and A\, as the reference fan-out
rates. We base their selection on our simple models of tiveanktehavior of scanners versus non-scanning hosts.

Since a host’s instantaneous first-contact rate can vargat geal over time, RBS needs to estimate whether the
current behavior provides evidence strong enough to chonsehypothesis against the other. For instance, if a
host has initiated: first-contact connections and the elapsed time forrifteconnection isT},, RBS chooses7;
(scanner) only if the likelihood ratid (n, T,,) exceeds); . Using Equations (2) and (3), we can obtain a threshold on
the elapsed timély, , below which we arrive at af/; (detection) decision:

B
E<An,T,
o <A T
é < (%) eXp ()\1 )\O)Tn
« 0
A
1n§ < nln)\—l — (A1 = \) T
0
In 2L In 2
T, < n—20 Sa_ _ 1y, (5)

Likewise, we can obtain a threshold elapsed tifiag, above which we conclud# (benign host):

A
In 2L In =8
— >\() _ 11—«
THO - n)\l—)\o A1—Xo (6)

Figure 4 shows how those threshold elapsed tirigs, and Ty, , partition the area into three decision regions—
Hy, Hy, andPendi ng. Figure 4(a) illustrated’, of a host issuing first-contact connections at 100/secomdhe\
8t event, T falls belowT},, which drives the likelihood ratio to reach ti#¢, decision. In general, Equation (5)
provides important insights into the priors and the perfamoe of RBSTy, is a function ofrn, taking a form of
g(n) = a(n — c), wherea = (In i—;)/()\l — Xo) andc = (In g)/(ln :\\—é)

1. o and g affect onlyc, the minimum number of events required for detection. Fadixalues of\; and )¢,
lower values ofx or higher values ofs (i.e., greater accuracy in our decisions) let more init@hreections
escape before RBS declarHs. One can shorten this initial holding period by increasingr decreasings.

But we can only do so to a limited degree, @eeeds to be greater than the size of bursty arrivals that we
often observe from Web or P2P applications, in order to aegizbssive false alarms. Another different way
to prevent damage from those initially allowed connectittierapts is to hold them at a switch until proven
innocent [10].

2. \o and)\; determinea, the slope ofl;, overn. The inverse of the slope gives the minimum connection rate
that RBS can detect. Any host generating first-contact acifores at a higher rate than interceptsy(z) with

7
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(@) Fast spreading worm with 100 first-contact connec- (b) Benign host with 4 first-contact connections/second by
tions/second will be detected by RBS at %{& connection at- pass RBS at th¢™ connection attempt

tempt

Figure 4Ty, andTy, when)\y = 3/sec,\; = 20/sec,a = 10~°, andg = 0.99. The X axis represents the'"
event and’” axis represents the elapsed time for #ie event

probability 1. There is a built-in robustness in this, bessatihe slope is strictly larger thaﬁ? (what we model
as a scanner), which follows from the inequalityz) < = — 1.

3. Although we use\; to model a scanner’s first-contact connection rate, RBS etattlany scanner with a rate

M\ provided that:
1 A1 — Ao

e Inh —Ini

because a host with a rate higher thénvill eventually cross the line dfy, and thus trigger an alarm.

N> (7

Finally, Equations (5) (6) show that RBS’s decision is madsddl on two parameters — the number of attempts,
and the elapsed timé&;(n) and not the actual realization of the arrival process.

5 Evaluation

We evaluate the performance of RBS in terms of false positiadse negatives, and the detection speed using a trace-
driven simulation of the_ab dataset. The dataset contains 650 active hosts, includingpéts that are legitimate
but exhibit network behavior resembling that of fast targetvorms. We then discuss the robustness of RBS to the
bursty nature of benign traffic that a naive fixed threshalsilol algorithm is unable to capture.

Each line in thd_ab dataset represents a connection seen by the Bro NIDS [#dsby the timestamp of the first
packet belonging to the connection. Connection inforrmaticludes a source address,a destination address,

and a connection start time. For each connection, our tldeen simulator checks i has previously accessed

If not, it updates the likelihood of being a scanner as described4h Figure 5 illustrates the sequence of processes
that the simulator takes every time the likelihood ratiopsiated.

In addition to the hosts identified in Table 2, by operatingRBe found 9 more hosts whose network activity
involved some sort of scanning: 2 more instances of thenatescanner (not found using the previous simple
fan-out threshold of 60 destinations over 10 minutes, beedloeir scanning was limited to 7 and 34 destinations,
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Figure 5: Flow diagram of the real-time detection algorithm

A = 2o 3o 4\ 5o 10 150 20 25\

scanners (7) 4 5 6 6 7 7 7 7

Web crawl ers (2) 2 2 2 2 2 2 2 2
What sUp (1) 0 1 1 1 1 1 1 1

i print (6) 0 0 1 2 3 3 6 6

Total detection (16 6 8 10 11 13 13 16 16
False positives 0 0 0 0 0 0 0 0

N|H, | 30.2| 18.1| 13.8| 104 6.6 5.7 5.2 5.0

Theoretical bound (Hz) > 55| >7.0 | >83 | >95| > 150 | >19.8 | >24.3 | > 285

Table 3: Trace-driven simulation results of RBS varygwhen )\ = 3.83 Hz,a = 107°, and3 = 0.99 : W|H1
represents the average number of first-contact connedtidreged by the flagged hosts until detection. The final
line gives the theoretical bound on the slowest worm thersmacan detect (Equation (7)).

respectively); a network monitoring system, “WhatsUp”, @hich contacted 14 hosts in 0.4 sec; and 6 instances of
ani pri nt printer management client [2] that occasionally acceskdseaprinters to check availability. These all
exhibit greater than 5/sec fan-out rates averaged overomddiecause of their bursty first-contact connections.

For high accuracy, we s¢t = 0.99 (99% target detection rate) and= 0.00001 (0.001% target false alarm rate).
Note thata is set very low because the detection algorithm executegeay &irst-contact connection initiated by a
local host, which adds up to a very large number of tests. Wes#mn, such thatl /A, equals261 (msec), the mean
time interval to visit new destinations of benign hosts amashin §3.2. However, there is no obvious pick fag
since a worm can choose an arbitrary rate to propagale /X is close to 1, RBS takes longer to make a decision.

It can also miss short bursts; but on the other hand, it cagctistower scanners than for higher/\, ratios, per
Equation (7).

Table 3 shows the simulation results of RBS for s dataset as we vary; as a multiple of\y = 3.83 Hz. With
increasing\, we see that RBS’s detection rate increases without immyfalse positives. Hosts that RBS often fails

to detect include an internal scanner that probed only &host 10 minute trace, and @r i nt hosts that accessed

only 10 or fewer other printers, sometimes in two separateriection bursts, which thins out the source’s average
fan-out rate, making them difficult to detect.
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Figure 6: CDF of fan-out rates of non-scanner hosts usinghdaw size of 15, 10, 7 and 5 (from left to right).

Thus, while this assessment is against a fairly modest atrodutata, we find the results promising. We conduct a
more extensive evaluation §®.

5.1 Limitationsof Simple Rate-Base Thresholds

An issue to consider is whether we really need RBS’s moreistipdited approach, or if a simpler scheme using a
fixed-rate threshold suffices. We model such a simpler sclanome that, upon each connection arrival, compares
the fan-out ratep /T, with a thresholdy, alerting if the rate exceeds the threshold. Herés the number of first-
contact connections from a host afidhe elapsed time over which they occurred.

In this section we evaluate such schemes and find that théar $tdfm either significant false alarms, due to legiti-
mate bursty connections, or significant false negativess RBnore robust to such bursts as it demands consistency
over a larger number of observations before reaching aidacis

We compute a host’s instantaneous fan-out rate as folloarsaifr outgoing connection initiated by the host at time
te, we look back in time for the — 1 most recent first-contact connections. If the time of the @ifshese is,, then
we calculate the fan-out rate as the ratiogfl’ = n/(t. — tp).

After removing the scanners listed in Table 3, Figure 6 shiheupper tail of the distribution of the fan-out rate of
the remaining hosts, as a function of the aggregation winsiaemn. Recall that any detection of these connections
constitutes a false positive. So, for example, for windowsine n = 7, the 99th percentile occurs right around
10 Hz. Thus, using a window of size 7, to detect scanners tiaat as slowly as 10 Hz, we must accept a false
positive rate of 1%per window With a window size of 7, this would mean over our dataset tetector would
generate 118 false positives. While higher values eéduce the false positive rate, they also will increaseefals
negatives, such as the bursty scanners discussed in theyseection.

Comparing these curves with the slowest scanners detedigl®BS, per Table 3, we see that RBS gains significant
power in both detecting slower or briefer scanners and iidawp false positives. The essential advantage of RBS
over the simpler schemes is that RBS effectively adaptits windown and threshold;, rather than having to use
single, fixed values for these.

6 Combined Approach: RBS+ TRW

RBS usedan-out rateto differentiate benign traffic from scanners, which we maike Poisson processes with
rates)\y (benign) and\; (scanner), with\q < A;. Another discriminatory metric proved to work well in detieg
scanners is thiailure ratio of first-contact connections [7, 18, 10]. TRW [7] works by retidg Bernoulli processes
with success probabilities,fy (benign) and); (scanner), with — 8y < 1—#6,. In this section, we develop a combined
worm detection algorithm that exploib®th a fan-out rate model and a failure ratio model. We evaluagéhitbrid

10



using trace-driven simulation, finding that this combinégbegthm, RBS + TRW, improves both overall accuracy
and speed of detection.

Suppose that a given host has initiated connections ddferent destinations, and that the elapsed time until the
n™ connection isT},. Among thosen destinations,S,, accepted the connection request (success)fane- n —

Sy, rejected or did not respond (failure). Applying the modetsnf RBS and TRW [7], we obtain a conditional
probability distribution function for scanners:

fl(Sn, Th)|H1] = P[Su|T,,, Hi] x f[Tn|Hi]

MNT)" N
Xi(n —)! exp !

where P[S,,|T,,, H1] is the probability of gettingS,, success events when each event will succeed with an equal
probability ofé;, andf[7T,,| H1] is ann-Erlang distribution in which each interarrival time is exgntially distributed
with meanl/\;.

Analogous tof [(Sy, T,)| H1], for benign hosts we can derive:

n
sl = (3 )5 - o
XoNoTp)" "t
ogno 1))! exp 0T |
We then define the likelihood ratid,(.S,,, T},), as
f1(Sn, T) | H
A Sann = o TN
( ) f[(SnaTn)|H0]

— \ b 1 -6
X (ﬁ)n exp_()‘l_AO)Tn .
Ao

It is interesting to note that(.S,,, T;,) is just the product oA gy andAgps. Moreover,A(S,,, T,,) reduces to\r gy
when there is no difference in fan-out rates between benighsaanning hosts\( = \y). Likewise, A(S,,T},)
reduces to\ gps when there is no difference in failure ratigg = 6,).

We evaluate this combined approach, RBS + TRW, using two msvaf traces, each of which contains different
types of scanners that happen to wind up contrasting thegilre of RBS and TRW. We first categorize hosts into
four classes based on their fan-out rates and failure rdtiaghat follows, we discuss types of scanners falling into
each region and detection algorithms capable of detectioly Bosts.

e ClassLH (low fan-out rate, high failure ratio): Slow-scanning waror scanners that probe blindly (randomly
or sequentially) will likely generate many failures, traging TRW with a high probability.

e ClassHH (high fan-out rate, high failure ratio): Fast-scanning msr(e.g., Code Red, Slammer) that exhibit
both a high fan-out rate and a high failure ratio will veryelik to drive both TRW and RBS to quickly reach
their detection thresholds.
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e Class HL (high fan-out rate, low failure ratio): Flash, metasenal topological worms [17] belong to this
class. These worms build or acquire a list of target hostdtzem propagate over only those potential victims,
so their connection attempts tend to succeed. While thegetitag worms can bypass TRW, their high fan-out
rate should trigger RBS.

e ClassLL (low fan-out rate, low failure ratio): Most benign hostsl falto this class, in which their network
behavior is characterized by a low fan-out rate and a lowfailatio. Typically, a legitimate host’s fan-out
rate rarely exceeds a few first-contact connections penseto addition, benign users do not initiate traffic to
hosts unless there is reason to believe the host will acheptdnnection request, and thus will exhibit a high
success probability. Neither TRW nor RBS will trigger hostghis class, which in turn, allows particularly
stealthy worms, or passive “contagion” worms that rely orsaris behavior for propagation [17], to evade
detection. Worms of this type represent a formidable chghethat remains for future work to attempt to
address.
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Figure 7: Classification of hosts present in the evaluataaskts: Each point represents a local host that generated
more than 5 first-contact connections
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We use an average 3.83 Hz fan-out ratg) @nd 0.3 failure ratio (¥,) as baselines in order to categorize hosts in
our trace, where the setting fag comes front3 and that fo, from [10]. We compute a fan-out rate with a sliding
window of size 5 in order to capture bursty arrivals that mftesult from concurrent Web connections addressed to

different Web sites for embedded objects. Figure 7 clasdiftssts in the datasets based on the 3.83 Hz fan-out rate
and 0.3 failure ratio thresholds.

Lab |11 | SP

Outgoing Connections 796,049| 1,402,178
Duration 137 hours| 10.5 hours

HH H; 3 3

H H, 4 3
LH H, 1 2

O H, 147 6
HL H, 5 0

S Hy 32 1
LL Hy 0 0

T Hy 1195 255
< 5 first-contact connection§ 2,621 119

S | Total H; 9 5
Hy 3,999 384

Total 4,008 389

Table 4: Evaluation datasets

Table 4 shows the details of the datasets we use for evatudfiveLab |1 dataset was collected at the same
enterprise network aksab. It is composed of 135 one-hour long traces from Dec. 2004 Jamd 2005, recorded
at internal routers connecting a variety of subnets to tke a&the enterprise and the Internet. TheP dataset
was recorded usingcpdunp at the border of a small ISP in April 2003. It contains traffiorh 389 active hosts

during the 10-hour monitoring period (The high number ofregtions is due to worm infections during the time of
measurement.).

The table shows the division of the internal hosts into the tategories discussed above. Manual inspection of the
hosts inHH, HL, andL H? reveals that there are 84b 11) and 5 ( SP) hosts whose behavior qualifies them as
proxies for the topological worms that we aim to detddi ) because of their high-fan-out behaviors: Eab |1,

the 3HH hosts are one internal vulnerability scanner, one hostlilda fastnrmap [1] scan of 7 other hosts, and one
internal Web crawlers that occasionally contacted tensitefmal Web servers to update search engine databases;
1 LH host is another internal vulnerability scanner, whose ayeifan-out rate was 3.68 (slightly lower than the
threshold); SHL hosts are one internal Web crawler, one “WhatsUp” monitad, & printer management hosts. For

| SP, the HH hosts are two Code Red Il infectees plus an HTTP scanner,heridH hosts are 2 slower HTTP
scanners.

The 4HH hostsinthd.ab | | dataset that we classify as benidi turn out to all be benign NetBIOS clients that
often made connection requests to absent hosts. The 3 bdhigmosts in thd SP dataset are all clients running
P2P applications that attempt to contact a large numbean$ient peers that often do not respond. Most behign
hosts are either low-profile NetBIOS clientsap 1 1) or P2P clientsl(SP), and most benighiL hosts from both
datasets are caused by Web clients accessing Web sites arithimages stored elsewhere (e.g., a popular news site
using Akamai’s content distribution service, and a weatiiterhaving sponsor sites’ images embedded).

\We looked into each host in those three classes for 8fedataset, and the 66 of such hosts forltlad || dataset that generated more
than 20 first-contact connections in a one-hour monitoriegogl.
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Detection False positives
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(a) Detection (out of 9 targets) (b) False alarms (out of 4,008 hosts)

Figure 8: Simulation results of RBS + TRW for theb || dataset, varying; andé,

Detection False positives

OFRNWAUIO~00

(a) Detection (out of 5 targets) (b) False alarms (out of 389 hosts)

Figure 9: Simulation results of RBS + TRW for th&P dataset, varying; andf,

Table 4 also shows that while those two thresholds are u$efutailing down a set of suspicious hosts (all in
eitherHH, LH, orHL), a simple detection method based on fixed thresholds weuwiskc187 false positives because
of benign hosts scattered in thél andHL regions, as shown in Figure 7. However, using dynamic tioldstbased
on the previously observed behavior, RBS + TRW accurateiytities those 14 target hosts while significantly
reducing false positives.

We evaluate RBS + TRW by varying;, from A\q to 159, andf; from %90 to 0y. We fix \g = 3.83 Hz, 0y = 0.7,

B =0.99, anda = 107°. Figures 8 and 9 show the number of detection and false pesitor each pair ok; and
0. In particular, for\; = Ao, the combined algorithm reduces to TRW (dashed verticaklmong th&; axis), and
whenf; = 6y, to RBS (dashed vertical lines along thgaxis).

Table 5 compares the performance of the combined algoritjmmnst that of RBS and TRW alone. First, we find
the priors that make RBS (TRW) the most effective (0 falseatiegs) in identifying scanners in theab 11 (I SP)
dataset. The nature of our test datasets keeps eitherthlgdrom working better across both datasets. In fact, when
A1 = 119 andé; = 6y, RBS has 0 false negatives floab |1, but misses 2 H scanners in SP. In comparison,
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Lab Il I SP

M 6, || False -| False +| N|H; || False -| False +| N|H;

RBS| 11\ | =6, 0 25| 56 2 8| 64

TRW | =)o | 260 7 5| 185 0 3| 10.0

RBS + TRW| 10)o | 6o 1 9| 6.9 1 6| 50

Table 5: Evaluation of RBS + TRW vs. RBS and TRWAb |1 has 9 scanners arldSP has 5 scannersV|H;
represents the average number of first-contact conneatitginated from the detected hosts upon detection.

when); = \g andf; = %00, TRW has 0 false negatives fbSP, but misses 7 scannersliab |1, including the
HL hosts, 1 Web crawler and theH nmap scanner.

We could address the problem of false negatives for eitlgarighm by running TRW and RBS in parallel, raising an
alarm if either algorithm decides so. However, this appnoammes at a cost of an increased number of false alarms,
which usually result froni.H hosts (e.g., Windows NetBIOS connections, often made terdli®sts) oHL hosts
(e.g., a busy mail server or a Web proxy).

In general, improving the accuracy of a detection algorittequires iterative adjustments of decision rules: first
improving the detection rate by loosening the decision, rahel then decreasing the false positive rate by tightening
the decision rule without losing too many correct detedidtor this iteration, our combined algorithm, RBS + TRW
provides two knobs); andé, that we can adjust to tune the detector to a site’s trafficattaristics.

The trace-driven simulation shows that RBS + TRW with= 10\ and§; = %90 misses only two low-profile
target hosts (one iprint host frolbmab |1 and a slow HTTP scanner fromSP) while generating no more than
15 false positives, per Table 5. Had we run RBS and TRW in [ghrale could have eliminated all the false negatives,
but at the cost of 41 false alarms altogether.

Overall, RBS + TRW provides the good detection of high-peofilorms and scanners (no more than 2 misses across
both datasets) while generating less than 1 false alarmqerfor a wide range of parameters; (€ [10Ag, 15)]
andf, € [%90, %90]), and reaching its detection decisions quickly (less théirsZcontact connections on average).

7 Discussion

This section discusses several technical issues that nisgywahen employing RBS + TRW in practice. While ad-
dressing these issues is beyond the scope of this paper, timeddeas and directions based on which we will
pursue them in future work.

Operational issues: A worm detection device running RBS + TRW needs to maintainlgeal host information.
For each host, a detector must track first-contact conmectidginated by the host, their failure/success status, an
the elapsed time. The state thus increases proportiorta taumber of local hosts in the netwotk Y and the sum of
all their currently pending first-contact connections. €ithat RBS + TRW requires 10 first-contact connections
on average to reach a decisig), we can estimate amount of state as scaling on the ordé&\of Note that every
time RBS + TRW crosses either threshold, it resets its sfatdbe corresponding host.

When constrained by computation and storage resourcescamemploy cache data structures suggested by
Weaver et al. [18] that track first-contact connections with a high prieeis However, we note that running
RBS + TRW on aggregate traffic across hosts (as opposed taetHeopt operation for which it is designed) can
significantly affect the detection performance due to theven traffic distribution generated by each end-host [21].

Post-detection response: The results in Table 5 correspond to RBS + TRW generating fal6& alarms per hour at
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theLab 11 site and 0.57 per hour at theSP site. This low rate, coupled with RBS + TRW's fast detectipeex,
make it potentially suitable for automated containmenicial to defending against fast-spreading worms. Alterna-
tively, a network operator could employ connection rateiting for hosts detected by RBS + TRW, automatically
restricting such hosts to a low fan-out rate.

Extensions: One can complement RBS + TRW with a classification engine andtle algorithm with specific
parameters per application. For instance, many peerdo-gaplications probe other neighboring hosts in order to
find the best peer from which to download a file. For a peergerglient having a large number of transient peers,
this probing activity can generate many failed connectiteeding to an alarm. In such a case, grouping peer-to-peer
traffic and running a separate instance of RBS + TRW with tmarpaters particularly tuned for this application can
improve the algorithm’s performance.

Limitations: As indicated in Figure 7, RBS + TRW is unable to detect targetworms using high-quality hit lists
comprised of at least 70% active hosts and spreading na fdwste several first-contact connections per second.
Detecting such worms might be possible by working on largee tscales. For example, a scanner that generates
first-contact connections at a rate of 1 Hz will end up acogs8i600 different hosts in an hour, far outnumbering
the sustained activity of a typical benign host. Thus, ana&tvenue for future work is assessing the operation of
RBS on longer timescales.

Finally, attackers can game our detection algorithm bxinig end users into generating first-contact connections
either at a high rate (RBS), or that will likely end up failif@RW). For instance, similar to an attack in [10], an
attacker could put content on a web site with numerous endakliltks to non-existent destinations.

8 Conclusion

We have presented a worm detection algorithm, RBS (RateeBasquential Hypothesis Testing), that rapidly iden-
tifies high-fan-out behavior by hosts based on the rate attwtiie hosts initiate connections to new destinations.
RBS uses the sequential hypothesis testing [15] framewdtile built using a model that the time between con-
nection attempts to new destinations is exponentiallyiigied (which we show is a reasonable approximation for
bursts of activity), RBS decisions reflect the aggregatesmeanent of the total elapsed time over a number of at-
tempts, not the characteristics of individual arrivals. &ééine RBS in terms of a single discriminating metric—the
rate of connection attempts—which differs substantialiyween benign hosts and an important class of worms.
While the choice of such a metric evokes the measurement afenage rate over a window of certain size (and the
comparison of the measured rate to a fixed threshold), RB®iis glaborate. The algorithm draws from sequential
hypothesis testing the ability to adapt its decision-mghkimresponse to the available measurements in order to meet
specified error requirements. We can view this as an adaptafiboth the window size (i.e., how many attempts
to make a decision) and the threshold (i.e., what is the mimnmeasured rate over that window that leads to a
trigger). This adaptation gives RBS a robustness unseexed Window/threshold schemes.

We evaluated RBS using trace-driven simulations. We fintlvleen the factor of speed difference, between a
scanner and a benign host is small, RBS requires more ealgata to arrive at a detection decision; for example,
it requires on average 10.4 first-contact connections when5, but the theoretical bound shows that it can detect
any scanners that sustain more than 9.5 first-contact chang@er second. In addition, asgrows larger RBS
provides accurate and quick detection.

We then presented RBS + TRW, a hybrid of RBS and TRW [7] whicmlgioesfan-out rateand probability of
succes®f each first-contact connection. RBS + TRW provides a unifiachework for detecting fast-propagating
worms independent of their scanning strategy (i.e., tagold worm or scanning worm). Using two traces from two
qualitatively different sites, containing 389 active lsahd 4,008 active hosts, we show that RBS + TRW provides
fast detection of hosts infected by Code Red Il, as well asiieenal Web crawlers and a network monitoring tool
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that we use as proxies for topological worms. In doing soeltagates less than 1 false alarm per hour.

References

[1] Nmap — free security scanner for network exploration &wsdty audits.ht t p: / / www. i nsecur e. or g/ nmap/ .
[2] Novelliprint overview.ht t p: / / www. novel | . conl pr oduct s/ net war e/ pri nti ng/ qui ckl ook. ht m .

[3] Whatsup gold — the standard for network monitoring syste ht t p: / / www. ar eawi det ech. com what sup._
gol d. htm

[4] CHEN, S.,AND TANG, Y. Slowing Down Internet Worms. liProceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS’'@#kyo, Japan, Mar. 2004).

[5] EICHIN, M. W., AND ROCHLIS, J. A. With Microscope and Tweezers: An Analysis of the In&Virus of November
1988. InProceedings of the IEEE Symposium on Research in SecudtiPavacy(1989).

[6] F-SECURE F-Secure Virus Descriptions : Santyt t p: / / ww. f - secur e. conif v- descs/ santy.a. shtm .

[7] Jung, J., RXSON, V., BERGER A. W., AND BALAKRISHNAN, H. Fast Portscan Detection Using Sequential Hypoth-

esis Testing. IfProceedings of the IEEE Symposium on Security and Prifidey 9-12, 2004).

[8] KiM, H.-A., AND KARP, B. Autograph: Toward Automated Distributed Worm Signatetection. InProceedings of
the 13th USENIX Security Symposi(#twug. 9-13, 2004).

[9] PaxsoN, V. Bro: a system for detecting network intruders in realgi Computer Networks (Amsterdam, Netherlands:
1999) 31 23-24 (1999), 2435-2463.

[10] SCHECHTER S. E., UNG, J.,AND BERGER A. W. Fast Detection of Scanning Worm Infections Aroceedings of the
Seventh International Symposium on Recent Advances usioir Detection (RAID 2004Bept. 15-17, 2004).

[11] SINGH, S., BSTAN, C., VARGHESE, G.,AND SAVAGE, S. Automated Worm Fingerprinting. Proceedings of the 13th
Operating Systems Design and Implementation OEek. 2004).

[12] SPAFFORD, E. H. A Failure to Learn from the Past. Rroceedings of the 19th Annual Computer Security Appbeesti
ConferencéDec. 8-12, 2003), pp. 217-233.

[13] STANIFORD, S., RXSON, V., AND WEAVER, N. How to own the internet in your spare time.Rroceedings of the 11th
USENIX Security SymposiuiBerkeley, CA, USA, Aug. 5-9 2002), USENIX Association, jg9-170.

[14] TwycCROSS J.,AND WILLIAMSON, M. M. Implementing and Testing a Virus Throttle. Rroceedings of the 12th
USENIX Security Symposiuwwug. 4-8, 2003).

[15] WALD, A. Sequential Analysis]. Wiley & Sons, New York, 1947.

[16] WANG, K., CRETU, G., AND STOLFO, S. J. Anomalous payload-based worm detection and signgtmeration. In
Proceedings of the Eighth International Symposium on Re®dvances in Intrusion Detection (RAID 20FSept. 2005).

[17] WEAVER, N., PAXSON, V., STANIFORD, S.,AND CUNNINGHAM, R. A Taxonomy of Computer Worms. Proceedings
of the 2003 ACM Workshop on Rapid Malcq@t. 27, 2003), ACM Press, pp. 11-18.

[18] WEAVER, N., STANIFORD, S.,AND PAXSON, V. Very Fast Containment of Scanning Worms. Rroceedings of the
13th USENIX Security SymposiAug. 9-13, 2004).

[19] WHYTE, D., KRANAKIS, E., AND VAN OORSCHOT P. DNS-based Detection of Scanning Worms in an Enterprise

Network. InProceedings of the Network and Distributed System Secsyityposium (NDSS’08freb. 2005).

[20] WiLLiamMsON, M. M. Throttling Viruses: Restricting propagation to dafenalicious mobile code. IRroceedings of
The 18th Annual Computer Security Applications Conferé AGSAC 2002fDec. 9-13, 2002).

[21] WONG, C., BIELSKI, S., STUDER, A., AND WANG, C. Empirical analysis of rate limiting mechanisms PAroceedings
of the Eighth International Symposium on Recent Advancksrimsion Detection (RAID 20055ept. 2005).

17






