Concept Testing

Teaching materials to accompany:

Product Design and Development

Chapter 8

Karl T. Ulrich and Steven D. Eppinger

Chapter Table of Contents

1. Introduction
2. Development Processes and Organizations
3. Product Planning
4. Identifying Customer Needs
5. Product Specifications
6. Concept Generation
7. Concept Selection
8. Concept Testing
9. Product Architecture
10. Industrial Design
11. Design for Manufacturing
12. Prototyping
13. Product Development Economics
14. Managing Projects
Product Development Process

- Planning
- Concept Development
- System-Level Design
- Detail Design
- Testing and Refinement
- Production Ramp-Up

Qualitative Concept Testing

Quantitative Concept Testing
Concept Development Process

Mission Statement

- Identify Customer Needs
- Establish Target Specifications
- Generate Product Concepts
- Select Product Concept(s)
- Test Product Concept(s)
- Set Final Specifications
- Plan Downstream Development

Development Plan

Perform Economic Analysis

Benchmark Competitive Products

Build and Test Models and Prototypes
Concept Testing is Used for Several Purposes

• Go/no-go decisions
• What market to be in?
• Selecting among alternative concepts
• Confirming concept selection decision
• Benchmarking
• Soliciting improvement ideas
• Forecasting demand
• Ready to launch?
Concept Testing Process

- Define the purpose of the test
- Choose a survey population
- Choose a survey format
- Communicate the concept
- Measure customer response
- Interpret the results
- Reflect on the results and the process
Concept Testing Example: emPower Electric Scooter
Scooter Example

• Purpose of concept test:
 – What market to be in?

• Sample population:
 – College students who live 1-3 miles from campus
 – Factory transportation

• Survey format:
 – Face-to-face interviews
Communicating the Concept

- Verbal description
- Sketch
- Photograph or rendering
- Storyboard
- Video
- Simulation
- Interactive multimedia
- Physical appearance model
- Working prototype
Verbal Description

• The product is a lightweight electric scooter that can be easily folded and taken with you inside a building or on public transportation.

• The scooter weighs about 25 pounds. It travels at speeds of up to 15 miles per hour and can go about 12 miles on a single charge.

• The scooter can be recharged in about two hours from a standard electric outlet.

• The scooter is easy to ride and has simple controls — just an accelerator button and a brake.
Sketch
Rendering
Storyboard
3D Solid CAD Model
Appearance Model
Working Prototype
Beta Prototype
Video
Animation
Interactive Multimedia
Live Demonstration
Survey Format

• **PART 1, Qualification**
 – How far do you live from campus?
 • *If not 1-3 miles, thank the customer and end interview.*
 – How do you currently get to campus from home?
 – How do you currently get around campus?

• **PART 2, Product Description**
 – *Present the concept description.*
PART 3, Purchase Intent

If the product were priced according to your expectations, how likely would you be to purchase the scooter within the next year?

- I would definitely not purchase the scooter.
- I would probably not purchase the scooter.
- I might or might not purchase the scooter.
- I would probably purchase the scooter.
- I would definitely purchase the scooter.

“second box”

“top box”
Survey Format

• PART 4, Comments
 – What would you expect the price of the scooter to be?
 – What concerns do you have about the product concept?
 – Can you make any suggestions for improving the product concept?

• Thank you.
Interpreting the Results: Forecasting Sales

\[Q = N \times A \times P \]

- \(Q \) = sales (annual)
- \(N \) = number of (annual) purchases
- \(A \) = awareness \times availability (fractions)
- \(P \) = probability of purchase (surveyed)

\[= C_{\text{def}} \times F_{\text{def}} + C_{\text{prob}} \times F_{\text{prob}} \]

“top box”

“second box”
Forecasting Example: College Student Market

- N = off-campus grad students (200,000)
- A = 0.2 (realistic) to 0.8 (every bike shop)
- P = 0.4 x *top-box* + 0.2 x *second-box*
- Q =
- Price point $795
Forecasting Example: Factory Transport Market

- $N = \text{current bicycle and scooter sales to factories (150,000)}$
- $A = 0.25 \text{ (single distributor’s share)}$
- $P = 0.4 \times \text{top-box} + 0.2 \times \text{second-box}$
- $Q = 150,000 \times 0.25 \times [0.4 \times 0.3 + 0.2 \times 0.2]$
 \[= 6000 \text{ units/yr}\]
- Price point 1500
emPower’s Market Decision: Factory Transportation

Still walking?
Production Product
Sources of Forecast Error

- Word-of-Mouth Effects
- Quality of Concept Description
- Pricing
- Level of Promotion
- Competition
Discussion

• Why do respondents typically overestimate purchase intent?
 – Might they ever underestimate intent?
• How to use price in surveys?
• How much does the way the concept is communicated matter?
 – When shouldn’t a prototype model be shown?
• How do you increase sales, Q?
• How does early (qualitative) concept testing differ from later (quantitative) testing?