10.450 Process Dynamics, Operations, and Control Problem Sets - 1

Solve these equations. Viewing them as dynamic systems, plot the disturbances and responses over appropriate time intervals.

1. $0.3 y-0.8 x=-\frac{d y}{d t}$
$y(0)=-1$
$x(t)=\left\{\begin{array}{rr}0 & t<2 \\ -2 & t \geq 2\end{array}\right.$

Write in standard form. This first order system is disturbed by a delayed step function. Ultimately it will come to the value of the step (-2) multiplied by the gain $(8 / 3)$.
$\frac{1}{0.3} \frac{d y}{d t}+y=\frac{8}{3} x(t)$
The solution of this equation ($1^{\text {st }}$ order, linear, constant coefficient) is
$y(t)=\frac{e^{-t / \tau}}{\tau} \int_{0}^{t} e^{t / \tau} K x(t) d t+y(0) e^{-t / \tau}$
For the case of a delayed step disturbance x ,
$y(t)=K x\left(1-e^{-\left(t-t_{d}\right) / \tau}\right)+y(0) e^{-t / \tau}$
The initial condition determines the response until the disturbance occurs at t_{d}. Substituting the given numbers leads to the plot:

2. $\frac{d^{2} y}{d t^{2}}=-0.6 \frac{d y}{d t}-1.2 y \quad y(0)=1,\left.\frac{d y}{d t}\right|_{0}=-0.2$

Write in standard form. This second-order system has no disturbances; it will only react to its initial conditions. If it is stable, it will ultimately tend to zero.
$\frac{1}{1.2} \frac{d^{2} y}{d t^{2}}+0.5 \frac{d y}{d t}+y=0$
The roots of the characteristic equation are complex.
$r_{1,2}=\frac{-0.5 \pm \sqrt{0.5^{2}-4 / 1.2}}{2 / 1.2}=a \pm j b$
The solution is
$y(t)=e^{a t}\left(C_{1} \cos b t+C_{2} \sin b t\right)$
Coefficients C_{1} and C_{2} are found by applying the initial conditions. The result is
$y(t)=e^{-0.3 t}(\cos 1.054 t+0.0949 \sin 1.054 t)$

$$
\text { 3. } \begin{array}{ll}
\frac{d y_{1}}{d t}+y_{1}=1 & y_{1}(0)=0 \\
\frac{d y_{2}}{d t}+y_{2}=y_{1}(t-2) & y_{2}(0)=0
\end{array}
$$

These first-order systems are arranged in series, so that y_{2} is disturbed by y_{1}, although the disturbance is delayed by two time units before affecting y_{2}. System y_{1} is disturbed by a unit step at time zero. Because of the series arrangement, the equations can be solved sequentially.

Both equations have a solution of the form
$y(t)=\frac{K}{\tau} e^{-t / \tau} \int_{0}^{t} e^{t / \tau} x(t) d t+y(0) e^{-t / \tau}$
where for both systems, gain K and time constant t are unity, and the initial condition is zero. Substituting the step change for y_{1},
$y_{1}(t)=1-e^{-t}$
This function disturbs system 2. However, during the first 2 time units, there is no disturbance, due to the delay of y_{1}. Hence we may rewrite the second equation as
$\frac{d y_{2}}{d t}+y_{2}= \begin{cases}0 & t<2 \\ 1-e^{-(t-2)} & t \geq 2\end{cases}$
Substituting into the general solution, we find

$$
\begin{aligned}
y_{2}(t) & =e^{-t} \int_{2}^{t} e^{t}\left(1-e^{-(t-2)}\right) d t \\
& =1-e^{-(t-2)}(1+(t-2)) \quad t \geq 2
\end{aligned}
$$

Because of the series arrangement of these two systems, we may view y_{1} as an intermediate response to the step disturbance and y_{2} as the output of the coupled system. The intermediate and output responses show different initial behaviors, but have the same ultimate fate.

