Random Energy Model (REM)

1. Designed REM: Consider a protein model in which for a given sequence and structure, the energy is randomly taken from the Gaussian probability density

\[p(E) = \frac{1}{\sqrt{2\pi\Sigma^2}} \exp\left(-\frac{E^2}{2\Sigma^2}\right). \]

The total number of structures is \(\Omega_{\text{str}} \), while the number of sequences is \(\Omega_{\text{seq}} \gg \Omega_{\text{str}} \).

(a) A particular sequence has a (unique) native structure of energy \(E_N \). Calculate and plot the energy \(E(T) \) of this sequence as a function of temperature \(T \).

(b) For a particular structure, we attempt to design a good sequence by Monte Carlo sampling of representative sequences at a ‘temperature’ \(\tau \). Calculate and plot the designed native energies \(E_N(\tau) \) as a function of the design temperature \(\tau \).

2. Folding time: [Adapted from Gutin et al., J. Chem. Phys. 108, 6466 (1998).] Assume that to change from one compact structure to any other, the protein has to unfold to an intermediate flexible state of (higher) energy \(E^* \). If the starting configuration is at an energy \(E \), the typical (activation) time to overcome this energy barrier behaves as

\[t_0(E) = \tau \exp\left(\frac{E^* - E}{k_B T}\right), \]

where \(T \) is the temperature, and \(\tau \) is an elementary time step. The folding time is then related to the number of accessible states (hence entropy) to be explored, by

\[t_F(E) = t_0(E)n(E) = t_0(E)\exp\left(\frac{S(E)}{k_B}\right). \]

(a) Use a random energy model to calculate \(E \) and \(S \) as a function of temperature \(T \).

(b) Calculate the folding time \(t_F(T) \), and plot \(\ln t_F(T) \) as a function of \(1/T \).

3. Amino-acid interactions: What can we learn by combining the REM with commonly used interaction potentials between amino acids?

(a) Find a \(20 \times 20 \) matrix of interactions \(U(a,a') \) amongst amino acids, and calculate the mean \(\langle U \rangle \) and variance \(\langle U^2 \rangle_c \) of its elements. The commonly used Miyazawa–Jernigan
(MJ) interaction matrix can be found in S. Miyazawa and R.L. Jernigen, J. Mol. Biol. 256, 623 (1996). (Table 3 of this publication is available on the web-page for assignments.)

(b) Model the possible configurations of a protein by the ensemble of compact self-avoiding walks on a cubic lattice. (All lattice sites are visited by compact walks.) Calculate the number n of non-polymeric nearest neighbor interactions for such configurations on an $N = L \times L \times L$ lattice, and deduce the ratio n/N for large N.

(c) The number of compact walks on a cubic lattice asymptotically grows as g^N, with $g \approx 1.85$. Use this in conjunction with the results from parts (a) and (b) to estimate the folding temperature T_c of a random sequence of amino-acids, and the corresponding energy E_c.

(Optional) (d) Select a protein, find its amino-acid sequence and construct a contact matrix corresponding to its structure. Use the interaction matrix from part (a) to estimate the energy of the native structure, and calculate the ratio E_N/E_c.
