
MAY 1989 LIDS - R- 1868

EVALUATION OF FUNCTIONALITY

IN
DISTRIBUTED SYSTEMS

by

FRANCOIS RENE HENRI VALRAUD

Ingenieur de l'Ecole National Superieure de M6canique
(1986)

This report is based on the revised and edited thesis of Francois Valraud, submitted to the
Department of Electrical Engineering and Computer Science in partial fulfillment of the
requirements for the degree of Master of Science in Technology and Policy at the Massachusetts
Institute of Technology in March 1989. The research was conducted at the Laboratory for
Information and Decision Systems, with support provided by the Office of Naval Research under
Contract No. N00014-K-85-0782.

Laboratory or Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139

2

EVALUATION OF FUNCTIONALITY IN DISTRIBUTED SYSTEMS

by

FRANCOIS R. H. VALRAUD

ABSTRACT

A new quantitative methodology is presented for identifying and evaluating the shortfalls

and the overlaps between the desired functionality of a distributed decision making system, as

characterized by the design requirements, and the functionality of a proposed or implemented
distributed system. First, compatible Petri Net models of both the requirements and the system

are presented. Second, a correspondence is established between structural properties of the Petri

Net representation of the system and the functions it performs. On the performance side, a

functionality is defined as a set of coordinated functions that a system must be able to carry out in

order to accomplish a task. On the structural side, simple and complete information flow paths,
i.e., sub-nets of a Petri Net, are defined. Thus a particular functionality is identified as a sub-net

of the Petri Net representation of the system. Algorithms are presented to determine the various
simple and complete information flow paths in the nets representing both the system and the
requirements. This is accomplished through extensive use of the invariant theory of Petri Nets.
The next step is the comparison of the two sets of flow paths to determine shortfall and overlaps.
The formulation of the problem requires a set of definition that characterize the shortfalls and the

overlaps in a precise manner. The methodology is illustrated by applying it to a hypothetical
command center.

Thesis Supervisor : Dr. Alexander H. Levis
Title : Senior Research Scientist

3

4

ACKNOWLEDGEMENTS

I wish to express my gratitude to:

Alexander Levis for introducing me to the world of research. His high requirements, his

professional excellence, his willingness to make such an experience an integrated part of one's

education made this research, from its start to its completion a valuable experience. His guidance

and support have been very important to me throughout this endeavour.

Jacques Demadl for his moral support, and the endless discussions we had over some

technical issues of the Petri Net theory.

Didier Perdu, a veteran of this research group, for his moral support, and his help in the

software implementation of some algorithms.

Victoria Jin, for her kindness, and her ability to bear with me in the office.

Stamos Andreadakis, for his support and guidance, his technical excellence, and the

arguments we had about the best way to make coffee.

Jinane Abounadi for her extreme patience with me.

Sabina Skulsky for teaching me what a healthy life should consist of.

This research was conducted at the MIT Laboratory for Information and Decision Systems

with support provided by the Basic Research Group of the Joint Directors of Laboratories

through the Office of Naval Research under Contract no. N00014-85-K-0782.

.5

6

To Antoinette, Catherine, Marie-Jeanne, and Jean

7

8

TABLE OF CONTENTS

Page

ABSTRACT 3
ACKNOWLEDGMENTS ... 5

LIST OF FIGURES .. 13
LIST OF TABLES .. 15

CHAPTER I: INTRODUCTION .. 17

1.1 PROBLEM DEFINITION 17

1.2 BACKGROUND .. 18

1.3 GOAL AND CONTRIBUTION .. 20
1.4 OUTLINE OF THE REPORT .. 21

CHAPTER II: PETRI NET THEORY ... 22

2.1 PETRI NETS 22

2.1.1 Basic Definitions .. 22

2.1.2 Algebraic Representation of Petri Nets ... 25
2.2 INVARIANTS .. 27

2.2.21 Definitions .. 27

2.2.2 Properties of S-Invariants .. 28
2.3 PROPERTIES OF PETRI NETS .. 30

2.3.1 Liveness .. 30
2.3.2 Boundeness 30

2.4 SWITCHES 31
2.4.1 Definition 31

2.5 APPLICATIONS 33

9

CHAPTER III: MODELING FUNCTIONALITY IN DISTRIBUTED SYSTEMS 35

3.1 INTRODUCTION 35
3.2 MODELING THE REQUIREMENTS ... 37

3.2.1 The Concept of Scenario ... 37
3.2.2 The Concept of Strategy 38
3.2.3 Requirements Analysis .. 43

3.3 MODELING THE IMPLEMENTED OR PROPOSED DISTRIBUTED SYSTEM. 46
3.3.1 A Physical System 46

3.3.2 Modeling Functionality 46
3.3.3 Modeling the Implemented System ... 48
3.3.4 Representation of the Functionality in the Frame of a Scenario 50

3.4 REPRESENTATION OF FUNCTIONALITY 50................ 50
3.4.1 Introduction ... 50

3.4.2 Graph Theoretic Definitions 51

3.4.3 Information Flow Paths and Functionality 53
3.4.4 Construction of the Complete Information Flow Paths 55
3.4.5 Construction of the Simple Information Flow Paths 60

3.5 SUM M ARY o.. 63

CHAPTER IV: EVALUATION OF FUNCTIONALITY IN DISTRIBUTED SYSTEMS .. 64

4.1 INTRODUCTION .. 64

4.2 SHORTFALLS 66

4.2.1 Complete Shortfall 66

4.2.2 Partial Shortfall ... 67
4.2.3 Detection of Partial Shortfalls 68

4.3 OVERLAPS7... 72

4.3.1 Redundancy with Conflict 72
4.3.2 Redundancy with Concurrency ... 74
4.3.3 Redundancy with Synchronization ... 75
4;3.4 Determination of Redundancies 75

4.4 COORDINATION .. 76
4.4.1 Definition 76

10

4.4.2 Determination of Coordination Problems 79
4.5 EVALUATION OF FUNCTIONALITY 79
4.6 SUMMARY 71

CHAPTER V: AN AIR INTERDICTION MISSION SYSTEM 82

5.1 INTRODUCTION 82

5.2 PROBLEM DEFINITION .. 82

5.3 FUNCTION IDENTIFICATION 82
5.4 MESACC: THE REQUIREMENTS .. 84
5.5 MESACC: THE IMPLEMENTED SYSTEM 87

5.5.1 Physical Components .. 87
5.5.2 Boundaries of the System .. 89
5.5.3 Message Inputs ... 90
5.5.4 Interrelationship between Functions .. 92

5.5.5 The Implemented System 96

5.6 EVALUATION OF FUNCTIONALITY 97

5.6.1 Methodology .. 97
5.6.2 Complete Functionality in the Requirements Petri Net 98
5.6.3 Simple Functionality in the Requirements Petri Net 99
5.6.4 Complete Functionality in the Implemented System Petri Net 100
5.6.5 Simple Functionality in the Implemented System Petri Net 106
5.6.6 Evaluation of MESACC .. 110

CHAPTER VI: CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH ... 112

6.1 CONCLUSIONS 112
6.2 DIRECTIONS FOR FURTHER RESEARCH 114

REFERENCES 116

APPENDIX A: ALGORITHM TO OBTAIN ALL THE MINIMAL SUPPORT
S-INVARIANTS OF AN ORDINARY PETRI NET 118

APPENDIX B: PROPERTIES OF S-INVARIANTS IN A DECISION FREE

PETRI NET .. 123

APPENDIX C: MINIMAL SUPPORT S-INVARIANTS IN THE SYSTEM NET # 1 130

APPENDIX D: SIMPLE INFORMATION FLOW PATHS IN THE SYSTEM NET # 1 .. 153

12

LIST OF FIGURES

Page

Figure 2.1 Petri Net PN1 .. 23

Figure 2.2 Petri Net PN1 with a marking .. 24

Figure 2.3 Petri Net PN1 after firing t5 .. 25

Figure 2.4 A bounded Petri Net not covered by S-Invariants 31

Figure 2.5 Petri Net PN2 with conflict .. 32

Figure 2.6 Petri Net PN2 with a switch .. 33

Figure 3.1 Relationship between System, Environment, and Context 36

Figure 3.2 Petri Net PN3 with a Switch .. 39

Figure 3.3 Petri Net PN4 with two Switches ... 39

Figure 3.4 Petri Net PN2 in the case where u =1 ... 41

Figure 3.5 Petri Net PN5 with Switches .. 42

Figure 3.6 Petri Net PN5 with u=2, v=l, and w=0 .. 42

Figure 3.7 Petri Net PN5 with unnecessary nodes removed 43

Figure 3.8 Free Choice pattern 44

Figure 3.9 Equivalent representation of the Free Choice pattern 44

Figure 3.10 Petri Net PN6 .. 45

Figure 3.11 Deadlocked Petri Net PN6 when u=0 ... -45

Figure 3.12 Petri Net model of a Database .. 47

Figure 3.13 An example of a Resource Loop ... 48

Figure 3.14 Examples of Directed Paths .. 52

Figure 3.15 Examples of Directed Circuits .. 53
Figure 3.16 Petri Net PN7 58

Figure 3.17 First Complete Functionality in PN7 (shown in bold face) 59

Figure 3.18 Second Complete Functionality in PN7 (shown in bold face) 60

Figure 4.1 The Decomposition Process .. 65

Figure 4.2 Example of Complete Shortfall .. 68

Figure 4.3 Two equivalent Simple Information Flow Paths 70

Figure 4.4 Two functionally equivalent sub-nets ... 71

Figure 4.5 A Simple Functionality 73

13

Figure 4.6 Redundancy with Conflict ... 73

Figure 4.7 Redundancy with Resolved Conflict 74

Figure 4.8 Redundancy with Concurrency .. 74

Figure 4.9 Redundancy with Synchronization 75

Figure 4.10 Petri Net PN8 .. 77

Figure 4.11 Petri Net PN9 .. 77
Figure 4.12 Petri Net PN10 .. 78
Figure 4.13 Petri Net with Switches inferring the Petri Net in Figure 4.11 81

Figure 5.1 MESACC: Functional Requirements .. 86

Figure 5.2 MESACC: Strategy One, f6 is used 87

Figure 5.3 MESACC: Strategy Two, no use of f6 .. 88

Figure 5.4 MESACC: The whole System Net .. 99

Figure 5.5 MESACC: First step of the Complete Functionality construction

for System Net #1 .. 102

Figure 5.6 MESACC: Complete Functionality for System Net #1 103

Figure 5.7 An example of Double Redundancy ... 108

FigureA. 1 Petri Net PNa .. 119

Figure A.2 Petri Net Ro 120
Figure A.3 Petri Net R 1 .. 121

Figure A.4 Petri Net R 2 122

14

LIST OF TABLES

Page

Table 4.1 Strategy correspondence between Petri Nets 66

Table 5.1 Assignment of Functions in the Workstations of MESACC 89
Table 5.2 Criticality of Messages by Functions ... 93
Table 5.3 Relations between Functions 93
Table 5.4 Relations Between Functions and Functions in the BM Shelter 94

Table 5.5 Relations Between Functions and Functions in the V/WP Shelter 95

Table 5.6 Request to Database from the Functions in MESACC 96
Table 5.7 The twenty Different Strategies of MESACC 97

Table 5.8 Equivalence between Sources .. 104

Table 5.9 Equivalence between Functions ... 105
Table 5.10 Partial Shortfalls 106

Table 5.11 Equivalence of input usage .. 106

Table 5.12 Redundancies in the implemented Petri Net #1 107

Table 5.13 Functions contained in the required Functionality 108

Table 5.14 System Functions contained in the System's Simple Functionalities 109

15

16

CHAPTER I

INTRODUCTION

1.1 PROBLEM DEFINITION

There are two distinct approaches to the design of distributed systems. In the first one,
given some set of requirements and constraints, an algorithm is used to obtain all architectures

that meet these requirements and satisfy these constraints (Remy and Levis, 1988; Andreadakis
and Levis, 1987). Then the different designs are evaluated, and the best performing system is

selected. While this procedure is rigorous and guarantees that requirements will be met, it can
only handle restricted classes of systems.

The second, more common approach, is for a group of designers to construct a large

distributed system by interconnecting known subsystems or components. However, there is no
guarantee that the proposed design will satisfy all its requirements and constraints. A trial and

error procedure is used in which the system is tested and modifications are made when
requirements are not met. The validation of such large scale distributed system is generally made
through the use of testbeds and simulations. Testbeds cannot be built for testing all types of
possible scenarios, and they require the allocation of extensive resources. Simulations, although
they require more limited resources (and are often performed at an early stage of the design
process,) generally fall short when they run into combinatorial explosion. Thus, despite its
increasing importance, the assessment of the functionality of a distributed system is hard to
accomplish.

Thus, a methodology is needed for modeling distributed systems, for developing a

compatible representation of the requirements for a system and of its proposed or implemented

counterpart, and for comparing the two representations.
Part of the modeling of distributed systems in this work is based on the Modular Command

and Control Evaluation Structure (MCES) (Sweet 1986), a top-down procedure that guides the
analysis and evaluation of the effectiveness of command and control systems. It consists of

seven modules which, when followed, lead to a complete evaluation. The MCES can be
perceived, at one level, as a simple checklist that identifies the major steps of the evaluation; at
another level, it can be construed as a methodology. One of the strengths of the MCES is that it
can accommodate different models and quantitative techniques in any specific instantiation of the

17

modules. It can also accept a wide variety of data inputs: from simulations, testbeds, and war
games. In previous applications of the MCES, emphasis was placed in the first three modules;
very few studies carried out the analysis through the seven modules. In one recent study, the
problem of concern was the evaluation of the architecture of a survivable, enduring command
center (SECC). A modular and austere command center was being developed for the Strategic
Air Command and was being prepared for the test and evaluation phase. The question that arose,
given the complexity of the system called Proof of Concept/Experimental Testbed (POC/ET), is
whether MCES could be applied to determine potential shortfalls and overlaps in the functionality
of the system prior to the actual Test and Evaluation procedure. A study was carried out in which
the first three modules of MCES were applied to the problem, and then a procedure was outlined
for carrying out the following two. The purpose of this study is to develop the described
procedure and test it out by applying it to POC/ET.

The purpose of this work is to develop quantitative procedures for implementing the fourth
module of the methodology. This fourth module, Integration (of Elements and Functions), is the
one in which the dynamic model of the system is obtained. This model is the one that generates
the data necessary for the evaluation of the measures. The specification of the Measures is done
in the fifth module, while the Data needed are generated in the sixth one. Finally, the measures
are aggregated in the seventh module so that the answer to the evaluation problem be obtained.
The fifth, sixth, and seventh modules can be implemented with quantitative procedures using the
System Effectiveness Analysis (SEA) approach. The latter leads to the specification of a class of
Measures of Effectiveness (MOEs) that is based on a set of application-specific measures of
performance. The approach that is developed for the fourth MCES module is appropriate for the
evaluation of shortfalls and overlaps - with respect to the requirements - in the architecture of
command and control systems.

1.2 BACKGROUND

A distributed system consists of both humans and equipment such as computers, software,
and communication devices. These components are assembled in a number of units spread out
geographically for various reasons. Each unit performs a part of the processing necessary for the
achievement of the goals of the system. These goals may be numerous, and the way to achieve
them may be different depending on the circumstances in the direct environment of the system.
Communication is needed to transmit information about the environment, to send information
from one unit to another, and to transmit the response(s) of the system to the devices that act

18

upon the environment, also called actuators or effectors. Indeed, a system is an integrated

assembly of heterogeneous elements that are needed to perform a certain task or mission. A

system is self sufficient in the sense that it does not need other components to perform its task.
The need for a distributed system arises often in cases such as:
• Technological limitations or limitations due to physical laws require the geographical

dispersion of a system. This is the case for any Early Warning Control system,
monitoring either aircrafts or battleships. The speed and range of the planes, and the
range of radars (determined both by physics and technology) constrain the system to be
physically distributed so that the whole air space can be monitored and controlled

according to safety requirements.
* Timeliness requirements lead to the decomposition of the task into sub-tasks that can be

performed concurrently so that the overall processing time is reduced in a satisfactory
manner.

* Multi-user systems such as banking systems which provide, in different locations,

electronic services for the more usual banking operations to their customers.

A distributed intelligence system is seen as an entity performing a mission. The processing
of the mission is achieved through the execution of well defined procedures or algorithms that
human decisionmakers, intelligent nodes, or supporting information systems have.

The mathematical formulation of the structure of the system is based on the theory of
ordinary Petri Nets (Reisig, 1985). Petri Nets have been introduced to model organizational
forms as they show explicitly the interactive structure and the sequence of operations between the
components of the organization. Petri Nets have proven their efficiency as modeling and
analytical tools.

Therefore, the approach taken in this work is based on comparing the functionality of the

command center, as specified by the requirements, and of the proposed or implemented system

architecture. Petri Nets are used to develop a graph representation of the required functionality.
Analysis of this net using algorithmic and simulation tools establishes the required system

functionality in terms of structural properties such as net invariants (e.g., the S-invariants of the
Petri Net). Another Petri Net can be drawn, usually quite large, that represents the command
center, either on the basis of the specifications and the design documentation or the actual system
as modeled from its technical description and operational data. These two Petri Nets form the
basis for the quantitative comparison of the desired and actual functionality. The concepts of
shortfall and of overlap are analyzed in the context of the structural properties of these nets.

19

1.3 GOALS AND CONTRIBUTION

The goal of this work is to provide a methodology for assessing the functionality of
distributed systems on the basis of their structural properties. A functionality is defined as a set
of coordinated processes, or functions that a system must be capable of carrying in order to
accomplish a task or subtask.

This report proposes a quantitative approach for the evaluation of proposed designs. The
fourth module of MCES, the Integration of Elements and Functions, when applied to the

problem of evaluating the design of a command center, can be divided into three steps, namely,

1. Determination of functional interrelationship between elements and processes;
2. Modeling of information flows; and
3. Determination of shortfalls and overlaps.

The assumption underlying the procedure to be described is that a set of requirements has
been developed that any proposed design or architecture of the command center must satisfy.
These requirements may have been obtained using the Mission Oriented Approach (MOA)
(Signori and Starr, 1987), or any other less general methodology that is appropriate for the case
at hand. Then, one or more scenaria need to be chosen that would excite the various operating
modes of the system. The requirements, when interpreted in the context of a scenario, lead to the
construction of a Petri Net that depicts the interrelationship of the various functions. Different
Petri Nets can be obtained for different scenaria, because not all functions are active and in the
same sequence for each scenario. For the requirements net, only analysis of the interrelationship
between processes needs to be done. This is accomplished by determining the S-Invariants of the
net and from those constructing the simple and the complete information flow paths. Those, in
turn, are interpreted as representing all the simple and complete functionalities that are implicit in
the requirements. A functional evaluation should permit the designer to identify shortfalls and
overlaps between the requirements and the implemented or proposed design. A shortfall is
defined as a functionality which is required but not present in the actual implemented or proposed
design. An overlap is defined as an unnecessary redundance of functionality. The notion of
overlap is particularly difficult to evaluate; necessary redundancy for reliability or survivability
should be distinguished from unnecessary redundancy that may cause congestion and delays.
Lastly, the issue of coordination of functionalities is addressed.

20

1.4 OUTLINE OF THE REPORT

Chapter II provides an introduction to Petri Net theory. The mathematical framework of
Petri Nets is used in this work to model distributed systems and to provide tools for the analysis

of the proposed or implemented system and of the requirements.
Chapter III presents a procedure for modeling the requirements and the actual distributed

system. The resulting models do emphasize certain aspects of distributed systems that are
relevant for the analysis of functionality. The concept of functionality is defined, and some

sub-nets are identified that correspond to the system's functionality.
Chapter IV presents the procedure for the evaluation of the functionality of a distributed

system. With the establishment of relations between the functionality and some sub-nets, the

basis of the evaluation is the comparison of the sub-nets embedded in the two Petri net models:
that of the requirements and that of the proposed or implemented system. Several definitions are
provided that describe different types of shortfalls and overlaps.

Chapter V presents a generic mobile, endurable, survivable, and austere, command center,
whose mission is air interdiction, to illustrate the two types of nets that are necessary for the
quantitative analysis and the evaluation procedure of such a defense system. The example is
based on POC/ET (Proof of Concept/Experimental Testbed) which is an implementation of the
Survivable Enduring Command Center (SECC) concept that is being tested by the Strategic Air
Command.

In Chapter VI, the results obtained are summarized, and some directions for further

research are suggested.

21

CHAPTER II

PETRI NET THEORY

Petri Nets are a very convenient tool for modeling and analyzing concurrent and

asynchronous processes. Since information processing in -distributed systems exhibits such
properties, Petri Nets have been used for their modeling (Tabak and Levis, 1985). Petri Nets
show explicitly the structure of the interactions between different processing units within a
system, and allow their study at different levels of aggregation. This chapter reviews the basic
definitions of Petri Nets; more introductory material can be found in Peterson (1981), Brams

(1983), and Reisig (1985).
The Petri Net formalism is a tool for modeling or describing a discrete event system and then

analyze it. Analysis is used to obtain insights into the interrelationships between the processes
modeled and to understand fully what the representation implies. Analysis based on invariant
methods relates the structural properties of a Petri Net with behavioral properties of the system it
represents. Invariant methods, when feasible, are often more practical than reachability methods
or simulations which often lead to combinatorial explosion. This chapter provides an introduction
to some invariant methods of analysis.

2.1 PETRI NETS

2.1.1 Basic Definitions

Definition 2.1:

A Petri Net is a bipartite directed graph represented by PN = (P,T,I,O), where:
· P = {pl, p2,..., pn} is a finite set of places.
* T = {tl, t2,..., tm} is a finite set of transitions.
· I is a mapping from P x T to N, where N is the set of non-negative integers,

corresponding to the set of directed arcs from places to transitions. I (p,t) = 1 means that
the place p is connected to the transition t, in the sense that there exists a directed arc from
pto t.

· O0 is a mapping from P x T to N, corresponding to the set of directed arcs from

22

transitions to places. O (t,p) = 1 means that there exists a directed arc from t to p.

Definition 2.2:

Given a node, x, its postset, noted x., is the set of output nodes of that node. Similarly, .x

is the preset of x, and represents the set of input nodes of x.

Therefore, we have:

t- = { p e P such that O(t, p) = 1} andt= { p E P such that I(p, t) = 1)

p- = { t E T such that I(p, t) = 1) and p = { t e T such that O(t, p) = 1}

Definition 2.3:

A Petri Net is said to be ordinary if and only if the mappings I and O take their values in the

set {0, 1}.

In the sequel, all Petri Nets considered will be ordinary Petri Net.

Definition 2.4:

A Petri Net is said to be pure if and only if it has no self loop, i.e., no place can be both an

input and an output of the same transition.

An example of Petri Net is shown in Figure 2.1. A place is depicted by a circle, a transition

by a filled bar, and an arc by a directed line segment.

p4 It4 -p7

Figure 2.1 Petri Net PN1

23

A marking of a Petri Net is a mapping from P to N which assigns a non-negative number of

tokens to each place of the net. This mapping is represented by a vector of non-negative integers.

This vector has the dimension of the number of places, n. The number and positions of tokens

may change during the execution of a Petri Net. On a Petri Net graph, tokens are represented by

small dots, *, in the circles which represent the places of a Petri Net. Since the number of tokens

which may be assigned to a place of a Petri Net is unbounded, there is an infinity of markings of

a Petri Net. Figure 2.2. depicts Petri Net PN1 with the following marking:

M(pl) = 1 M(p2) = 0 M(p3) = 2 M(p4) = 1

M(p5) = 1 M(p6) = 0 M(p7) = 0 M(p8) = 0

p8

1p7

~p2 ~fT P~5 ~ t5 ,p p6

Figure 2.2 Petri Net PN1 with a marking

The execution of a Petri Net is controlled by the number and distribution of tokens in the

net. A Petri Net executes by firing transitions. In order to fire, a transition must be enabled. A

transition is said to be enabled for a marking M, if and only if, for each place of the net:

Vp E P, M(p) 2 I(p, t) (2o1)

The transition of an ordinary Petri Net fires by removing from each of its input places one

token, and by adding in each of its output places one token. When an enabled transition fires, the

resulting marking, M', is obtained from the previous one with the following formula:

24

Vp E P, M'(p) = M(p) + O(t, p) - I(p, t) (2.2)

Figure 2.3. shows the resulting marking of PN1 after transition t5 has fired (initially the

marking of the net is the one depicted in Figure 2.2).

P4\ It4) P7

_t2 p2t5

Figure 2.3 Petri Net PN1 after firing t5

2.1.2 Algebraic Representation of Petri Nets

The structure of a Petri Net can be represented by an integer matrix, C, called the incidence

matrix. The elements, Cij of the incidence matrix are defined as follow:

V (i, j) e [1, n] x [1, mn], C. = O(t, Pi) - I(pi, t (2.3)

The incidence matrix of the Petri Net PN1 is given below:

-1 0 0 0 0
0 -1 0 0 0
1 0 -1 0 -1
1 1 0 -1 0
0 1 0 0 -1
0 0 0 0 1
O O 0 1 0
O O 1 0 0

25

In the case of ordinary Petri Nets, Cij takes values in {-1, 0 1 } only. It should be noted that
self loops cannot be accounted in this representation. As a matter of fact, if t i and pj form a
self-loop, then we have I (pj, ti) = 1 and 0 (ti, pj) = 1, and therefore Cij = 0. Consequently,

the incidence matrix represents uniquely only ordinary, pure Petri Nets.
A firing sequence defines a sequence of ordered firing. It is represented by a = t i, tj, tk...

This means that ti fires first, then tj , then tk. To each firing sequence 'as is associated an integer

vector N s. N s has a dimension equal to the number of transitions, m. The ith element of N s

denotes the number of occurences of transition ti in the sequence as. If as is a firing sequence,
N s the vector associated with a s , and MO the initial marking, the new marking M 1, resulting
from the firing sequence as , is given by:

M1 = M0 + CANs (2.4)

Definition 2.5:

Given an initial marking MO of the net, a reachable marking is any possible marking of the
net which can be obtained from the initial marking. In other words, given a net and an initial
marking MO for this net, M is a reachable marking if and only if there exist a firing sequence a,
such that:

M 0- a > M (2.5)

or

3 N s such that M = Mo + C N s (2.6)

The linear algebraic approach is very interesting for analysis. However, this approach
should be used with caution in order to avoid its two main pitfalls:

* as noted previously, self-loops cannot be accounted in the matrix representation of the
net.

* There is no sequencing information in the firing vector representation of a firing
sequence. The firing vector and its use does not provide information as to the order of the
firing. It may be possible to obtain a new marking after applying (2.4) with an infeasible
firing vector.

26

2.2 INVARIANTS

2.2.1 Definitions

Definition 2.6:

For a Petri Net described by an incidence matrix C, an S-Invariant is an n-dimensional

vector, X, where n is the number of places in the net, such that

XT C = O.

The ith element of the vector X corresponds to the it place. The value of each element is a weight

attached to the token content of the related place; it is a non-negative integer. The invariance

property represented by an S-Invariant, which justifies its name, is that, for any firing sequence,

the weighted sum of the token content of the places is constant. Therefore, for an initial marking
Mo and some reachable marking M, we have:

~~~n n

M (p) . xi = constant= MO (p) xi (2.7)
i=1 i=l

or

X *· M = X MO = constant (2.8)

From relation (2.4), we also have for any firing vector assciated with a firing sequence:

XT M= XT M + XT C N (2.9)

By comparing (2.8) and (2.9), we obtain, for any firing vector:

XT *C-Ns = 0 (2.10)

Since (2.10) holds for any firing vector N s, it follows that:

27



X TC = O or C T X = O (2.11)

Similarly, a T-Invariant, which can be considered as the dual of an S-Invariant, is a vector
with dimension equal to the number of transitions, m. The elements of this vectors are also non-
negative integers. Each integer attached to a transition is such that, for any place of
the net, the sum of integers assigned to its input transition is equal to the sum
of integers assigned to its output transition.The condition characterizing a T-Invariant is
given by:

C Y = O (2.12)

Definition 2.7:

The support of an invariant is the set of nodes whose corresponding components in the
invariant is strictly positive. The notation for the support of the invariant X is <X>.

Definition 2.8:
The support of an invariant X, <X>, is said to be minimal relative to a set of invariants

A = {X 1, X 2 , X 3,.... X n , X) if and only if it does not contain the support of another
invariant but itself and the null vector.

2.2.2 Properties of S-Invariants

Theorem 2.1: (Memmi, 1979)

Let <X> be the support of an S-invariant, and < X 1 >, < X 2 >, < X 3>,,..,< X n > the
minimal supports of S-Invariants contained in <X>, then:

* <X> = u <X>
i= L..n 1

* for any S-Invariant Xj such that < Xj > = <X>, there exists n positive rational
coefficients A,, i e [l..n] such that:

n

Xj = i Xi
i=1

where X i is an S-Invariant whose support is < X i >.

28



Corollary 2.1:

Let < X 1 >, < X 2 >, < X 3>,...,< X n > be all the minimal supports of S-Invariants of a Petri
Net (they are necessarily finite as the number of places is finite). Let Xj be an S-Invariant whose

support is < Xj >. Then, there exist positive rational coefficients Xi, i e [l..n] such that:

Xj = E i Xi
i=l1

This corollary is the basis for an algorithm which finds all the minimal support S-Invariants,

(Alaiwan et al., 1985; Martinez et al, 1980).

Example:
X = (x 1, x2, x3, x4 , x 5, x6 )T is an S-Invariant of the net PN1 depicted in Figure 2.1. if and

only if it satisfies equation (2.11), which yields:

X1 = x3 + x4

x2 = x4 + x5

x3 = x8

x4 = x7
x3 + x5 = x 6

From these equations, the reader should be easily convinced that there are three distinct

minimal support S-Invariants:
X1 = (1, 1, 0, 1, 0, 0, 1, 0) with <X1>= {pl, p2, p4, p7}

X 2 = (0, 1, 0, 0, 1, 1, 0, 0) with <X2> = [p2 , p5, p 6 )
X 3 = (1, 0, 1, 0, 0,1, 0, 1) with <X3> = {pl, p3, p6, p8}

Definition 2.9:

Let X be a S-invariant and <X> its support. <X> is a set of places which is a subset of P. A

S-component associated with X, and denoted [X] is a subnet of the Petri Net whose set of places

is <X> and whose transitions are the input and the output transitions of the places of <X> in the

Petri Net. We have therefore the following:

[X] = (Px, Tx, Ix , Ox ) with:

29



px = <X>.
* T x = (p. such that p belongs to <X>1 and { .p such that p belongs to <X> }, where p-

denotes the output transitions of p and .p denotes the input transition of p.

* I x is the restriction of I to Px x Tx.

* Ox is the restriction of O to T x x Px

The same type of definition applies to a T-component.

2.3 PROPERTIES OF PETRI NETS

2.3.1 Liveness

Definition 2.10:

A marking MO is live if and only if, for any transition t, and for any reachable marking M
from MO, there exists a firing sequence from MO which fires t. In other words, this property
guarantees the firing process to be deadlock free.

2.3.2 Boundeness

Definition 2.11:

A marking is bounded if there exist a positive integer, N, such that for any marking M, the
number of tokens in each place is bounded by N.

Theorem 2.2: (Memmi, 1979)
If there exist an S-Invariant which covers the net (i.e. which support contains all the places

of the net), then the net is bounded for any finite initial marking.

Corollary 2.2:
If any place of a Petri Net belongs to at least one minimal support S-Invariant, then the net is

bounded.

By applying theorem 2.1, we know that a linear combination of all the minimal support
S-Invariants of the net will provide another S-Invariant. As any place of the net belongs to at
least one minimal support S-Invariant, then the newly created S-Invariant covers the net, and

30



therefore the net is bounded.
This powerfull result is unfortunately partial as the converse is false: if a net is not covered

by an S-Invariant, this does not necessarily means that it is not bounded. Figure 2.4 depicts a net

which is bounded, but not covered by S-Invariants. As a matter of fact, this net has one

S-Invariant with a distinct support:

X = (1, 1, 1, O0) with <X> = (pl, p2, p3).

The net depicted in Figure 2.4 also shows that S-Invariants may not be that trivial to find,

even with the powerful graphical representation of Petri Nets.

/1 PI tl ,1 p2 t _2 - p3

p 4

Figure 2.4 A bounded Petri Net not covered by S-Invariants

The general result, Memmi (1979), is that a Petri Net is bounded if and only if there exist a

vector I of strictly positive integers such that:

CT. I < O (2.13)

2.4 SWITCHES

2.4.1 Definition

Unlike all the notions introduced in the previous sections of this chapter, switches are not

part of the definition of ordinary Petri Nets as found in the general literature. However, Tabak

and Levis (1985) have used the concept to extend ordinary Petri Nets, when the full extension to

Colored Petri Nets (Jensen, 1987) or Predicate Transition Nets (Genrich and Lautenbach, 1981)

and (Genrich, 1987) is not warranted.

31



Switches are introduced to automate the resolution of conflicts. In the situation presented in
Figure 2.5., the token which appear in place pl can go either to place p2 after the firing of

transition tl, or to p3 after the firing of transition t2. The choice is completely arbitrary and there
is no mechanism in the Petri Net theory to automate this choice. This is a serious shortcoming.

Switches have been specifically introduced to address this problem in a simple manner.

tl ,1 p2

C p3

Figure 2.5 Petri Net PN2 with conflict

Definition 2.12:
A switch is a transition with multiple output places and some decision rule, which directs the

output flow of information toward one and only one of its output places.

Since a switch is a type of transition, the firing rules for a switch are identical to the firing

rules for a transition: a switch needs to be enabled. However, unlike transitions, all the output

places of a switch will not receive a token. Only one of them will. This place will be chosen by
the internal decision rule associated with the switch. This rule can be deterministic or not. The

rule may take the input information implicitly into account or not. Decision rules may be

represented by algorithms, but they can also involve echniques derived from artificial

intelligence. There is no limitation on the kind of decision rule associated with a switch.

Examples of powerful uses of decisions rules associated with switches can be found in Jin,

(1985), and Weingaertner (1986).
The resolution of the conflict in Figure 2.5. by a switch is shown by the net in Figure 2.6. A

switch is represented by an unfilled rounded bar. Note that the number of nodes and the number
of arcs has increased.

32



slpl ·t2 p2

p2 p2

Figure 2.6 Petri Net PN2 with a switch

2.5 APPLICATIONS

Petri Nets are useful for modeling the flow of information and control in decision making

systems. In particular, Petri Nets permit to show concurrency or parallelism in systems and to
represent the precedence relations between the processing of different components.

The operations executed by the various components may be asynchronous. There need not
be global mechanisms that coordinate the scheduling of the processes. Each component usually
starts its processing as soon as it has received all the information it needs. If several tasks are
requested from the same component, a queuing discipline exists to prioritize the various requests.
Such discipline may be of the FIFO (First In First Out) or LIFO (Last In First Out) type (Grevet,
1988).

To model the dynamic behavior of a system, the execution of a process (or task) is
represented by the firing of a corresponding transition. The flow of tokens represents the flow of

information in the process and the marking of the net at any time represents the state of the
system at that time. Liveness and boundedness characterize a well defined system as these two
properties guarantee the system to be deadlock free and that information cannot duplicate
infinitely at some steps of the process.

The graphical nature of Petri Nets helps to visualize the complexity of the system. Therefore

they are of use to the analyst as well as to the decisionmaker. The Petri Net formalism is a good
medium of interaction between these two groups of people with different perspectives and
interests in the design and evaluation process of distributed systems.

A distributed system represented by a Petri Net receives information from the environment

(sources), which is represented by places, and produces responses which appear at the output

33



nodes (sinks) which are also represented by places. Such a system, if it does not contains loops,

is represented by an acyclic Petri Net in which where there are places with no input transitions

(sources), and places with no output transition (sinks). A simple path is then defined as a

directed path which starts at a specified source and ends at a specified sink.

A marked graph is a Petri Net such that any place has one input and one output transition

only. It is possible to consider a degraded form of a marked graph where the sources would not

have an input transition, and where the sinks would not have an output transition. Provided
cautious actions are taken, most of the results available for marked graph can be extended to this
particular form of marked graph. An important result is that, in the case of a marked graph,
simple paths and S-components coincide. This is because when a token is in a place belonging to
a path, it cannot get away from this path, as a place has one input transition and one output
transition only.

34



CHAPTER ImI

MODELING FUNCTIONALITY IN DISTRIBUTED SYSTEMS

3.1 INTRODUCTION

A good model of a distributed system should describe precisely specific properties or

characteristics of the system under consideration. The model should specify as much as possible,
as what is not specified cannot be checked. This means that as much as possible of the features
relevant to the focus of the study should be incorporated into the model. Models of the same
system may differ according to the specific problem they address. Depending on the focus of the
analysis, there may be more emphasis put on certain aspects of the system than others.
Therefore, depending on the study to be conducted, the level of detail of the description of certain
aspects of the system changes.

Several methodologies have been developed to integrate all the relevant specifications or
properties of a distributed system in one approach. Among these, the MCES methodology,
described by Sweet (1986), is one of the most promising. This methodology resolves the
conflicts between the different constituencies involved in the process, and is made of seven
distinct steps. The MCES methodology is also a structured top-down way to evaluate a system's
performance.

However, the methodology remains descriptive and is qualitative to a large extent. A
quantitative method needs to be integrated. In the past several years, the System Effectiveness
Analysis (SEA) approach has been developed by Dersin and Levis (1981), and then extended by
Bouthonier and Levis (1984), Cothier and Levis (1986), Karam and Levis (1985), and Martin
and Levis (1986). This integration is possible because both approaches are based on the same
basic concepts.

There are six common concepts. These concepts are: system, environment, context,
parameters, measures of performance, and measures of effectiveness. The first three

elements permit to poie the problem adequately, while the last three define the quantities of the
problem.

A system consists of components, their interconnections and a set of operating procedures.
From the list of components and their interconnections, a boundary can be drawn that defines

35



what is, and what is not, included within the system.
The environment consists of assets that are related to but are not part of it, and other assets

on which the system's related assets can act upon. The system can sense the environment, and
eventually acts upon it. On the other hand, the environment can also act upon the system. A
typical example is one in which a distributed system is used to monitor the environment and to
direct the actions of assets (Early Warning System).

The context denotes the set of assumptions and conditions within which the system and the
environment exist. The context has an influence on the system, but the system cannot act upon
the context. Figure 2.3 depicts the relationship between these three entities.

Parameters are quantities that specify the system and its goal. In the case of Air Traffic

Control, the system's parameter are such quantities as detection radius of the radars, the
computational time delays of the computers, the screen update rates, the size of the different
control sectors, the failure probabilities attached to each component, and many more. The

system's parameter are defined within the system's boundaries. The parameters of the mission

are the interarrival rate of the airplanes to be monitored, their speed, and the size of the area to be
controlled.

Environment

context

Figure 3.1 Relationship between System, Environment, and Context

Measures of Performance (MOPs) are quantities that describe system properties or mission
requirements. MOPs in our example may include reliability, cost, or probability of accurate
detection. Both the system's requirements and the designed or implemented system should be
described by the same MOPs. Lastly, MOPs may include for their evaluation some of the aspects

36



of the environment.

Measures of Effectiveness (MOEs) are quantities that result from the comparison of the
system's requirements and the proposed or implemented system's MOPs. They reflect the extent
to which the proposed or implemented system meets its requirements. It is necessary to consider
the effect the system has on the environment to evaluate the MOEs.

3.2 MODELING THE REQUIREMENTS

In this section, a method is described for representing the functional requirements of a
system. The method uses the Petri Net formalism, and incorporates part of the MCES
methodology, more precisely, its first four steps.

3.2.1 The Concept of Scenario

At the beginning of its formulation, the requirements for a distributed system are expressed
as a goal, task, or mission to be performed. Given the environment, a set of inputs and outputs
are selected and the set of basic functions is defined. A function is a process that treats a set of
input and produces a set of outputs.

A scenario is a set of conditions on the environment and context. A given scenario, affects
the inter-relationships between functions. Generally, the set of functions needed by the system to
perform its task depends on the scenario. In some scenarios, a particular function may not be
needed while in another scenario it may become crucial. Therefore, as the scenario changes, the
set of basic elements needed by the system to handle the task changes. As a result, the links
between the different components of the system vary accordingly. This introduces the notion of
variability. For this type of variability, the system adapts its structure to the changes in the
environment. The system may adapt in two different ways:

* The state of the environment may impose the use of a different set of functions so that the
task can be handled in the most appropriate way. For example, in an Air Traffic Control

System, the function "provide emergency services" may have to be used for certain states
of the environment (a plane in emergency landing, for example) while this
function is not needed most of the time.

· the system may use equivalent functions, that is functions whose conribution to the
overall task is equivalent, but whose processing means are different. This may require the
use of different devices or different protocols. For example, in a defense system, an

37



identification mission can be handled either by a plane or by a radar, according to the state
of the environment.

This dependence of the processing structure and elements of the system on the scenario is
type 2 variability, as defined by Monguillet (1987). As a matter of fact, type 2 variability is
defined as change in the structure of a system according to changes in the environment, as
perceived by the system.

Since we can define the functional requirements of a system only in the context of a mission
or goal and for a given scenario, and since we can represent the functioning of an implemented
system only for a given scenario, the representation of both the requirements and the actual
implemented system in this work will be done for a particular scenario.

3.2.2 The Concept of Strategy

Once a scenario is given for which the requirements are to be modeled, the components and
the interrelationship between these are fixed. However, this does not mean that the course of
action is fixed. There is still another type of variability which can be encountered: this variability
is due to the course of action and is based on the notion of strategies employed by the system to.
accomplish its mission. Each strategy activates a set of functions and a set of specific
interrelationships. A typical case occurs when the input data to be processed by a function are
deemed insufficient so that a query for additional information may be made first. In the event that
the data are deemed sufficient, then there is no query for additional information.

The choice of strategy deals with the inputs of the system. To embed the different strategies
of a system in its representation, switches are used. Switches have been described in chapter II.
A switch will be used when a decision about which action to pursue that leads to the
accomplishment of the mission (or goal or task) is to be made. A switch may also be used to
represent a meta-decision, that is a decision about a decision or deciding how to decide.
Therefore, a variable structure is implicitly created in the representation of the system. This
variability is of type 1, as defined by Monguillet (1987). Type 1 variability is characterized by the
adaptation of the processing structure to the input being processed. Figure 3.2. shows an
example of a representation with a switch.

38



p54 t2

Figure 3.2 Petri Net PN3 with a Switch

In this net, two alternative strategies can be implemented. According to the information

embedded in the token in p2, either more information will be requested (p4, t2) or the data are

sufficient so that the processing can be continued by t3 directly. In this representation, the switch

sl represents the implementation of the two different strategies. To choose the most appropriate

strategy, a decision rule is embedded in the switch. The decision rule is given by the value of the

strategy u. In this case, u can take the value 0 or 1. If a token is present in place p2, then sl is

enabled and can fire. If u is set to 0, then a token is added to p4, while if u is set to 1 a token is
added directly to p3.

Other cases may arise where the courses of actions are changed by the implementation of a

strategy. It may well happen that when a strategy is chosen, the resulting processing may be

completely different than if another strategy had been chosen. Such a case is depicted in Figure
3.3. In this representation, a first switch, sl, permits to choose between two distinct courses of

p6 t3 p8

w=O

v=l

P ~~4 ct5 p10

Figure 3.3 Petri Net PN4 with two Switches

39



actions. In the event that v equals 0, then another set of alternative courses of action is offered.
According to the value of w, either 0 or 1, one out of the two possible alternative courses of
actions will be chosen.

In the Petri Net representation of the requirements, there may be more than one switch,

especially if the system is to be used in a scenario where the states of the environment are
numerous. Consider a Petri Net with N switches, each switch with Ni output places. The

maximum number of ordinary Petri Nets obtained is therefore:

N

fJ N i (3.3)
i=1

This maximum number of Petri Net may not be reached. Two different cases may be
distinguished which explain this phenomenon:

· the case of cascaded switches, that is when one output place of a switch, p1, is connected
by a directed path to the input of another switch. In such a case, if the output of the first
switch is not p1 there is no need to worry about the setting of the second switch as it will
be inactive. This is the case of the net depicted in Figure 3.3.

* the case of mutual constraints for the setting of two switches. For example, the setting of
switch A may be related to the setting of switch B. In this case, the number of
combinations of settings of the two switches is reduced.

In the Petri Net representation of the requirement, each source of the net will represent the
necessary input for a function rather than the output of a particular type of sensor (radar, sonar,
weather forecast report), or a particular means of transmission (radio HF, radio VHF, telephone,-
computer network, etc...).

The Petri Net representation obtained incorporates switches which represent all the possible
courses of actions. The ordinary Petri Net formalism does not include switches in its grammar.
Therefore, this representation must be transformed into an ordinary Petri Net representation, so
that all the analytical tools of the formalism can be applied.

To do that, switches should be removed. To remove the switches, each switch should be
first assigned a value of its decision rule. When this is done, the connectors from each switch to

the other output places of the switch which have not be chosen can be suppressed. Therefore,
each switch is transformed into a regular transition. An ordinary Petri Net is then obtained.

40



On the Petri Net PN3 of Figure 3.2, the procedure is applied in the case where u takes value

1. The resulting net obtained by removing the connector from S1 to p4 is depicted in Figure 3.4.

p54 t2

Figure 3.4 Petri Net PN2 in the case where u =1

However, the figure shows that the removal of the connector has made p4 take the form of a

source. In general, if there are no other inputs to the place p4, as is the case here, p4 should be

eliminated too. The same argument is applied to t2, which is also eliminated. The basic idea is to

remove all nodes of the paths starting from the unused output nodes of the switch until a node

which is included in another path of the net is encountered. This means that all nodes of the path

should be removed until a node with multiple inputs is encountered, with at least one of these

inputs being a node that does not belong to such-paths. The algorithm to remove the nodes in the
case the net has sources is presented below.

BEGINNING
choose a switch setting (for each switch)
FOR each switch DO

remove connectors from switch to each not selected output place. There is then only one
connector left from the switch to one of its output places.

END
FOR each source DO

find all simple paths from the source
FOR each path DO
I mark all nodes included in the path
END

END
remove all not marked nodes

END of algorithm.

Once a switch setting has been chosen, the nodes to be kept are marked, while the others are
removed. This algorithm takes advantage of the directed nature of the Petri Net. The application

of this algorithm is demonstrated on a more complex example depicted in Figure 3.5. This net,

41



which does not necessarily model the requirements for a distributed system, contains three
switches.

P If tl P 3 S v p6 to
v=l

u=0

p2 12p7 t3 p 9

ms l

Figure 3.5 Petri Net PN5 with Switches

If it is supposed that one strategy requires sl to be set to u=2, s2 to be set to v=l, and s3 to

be set to w=O, the net depicted in Figure 3.6 is obtained. In this figure, the simple paths

originating at the so rces, and the marked nodes described in the algorithm are shownet in Fig. 3heavy
lines 4

pi ,tl ~ p3 s p6

U=

p5 p8

·

Figure 3.6 Petri Net PN5 with u=2, v=l, and w=0

The last step is to remove the non marked nodes, (p4, t2, p6) which leads to the net in Fig. 3.7.

42



Figure 3.7 Petri Net PN5 with unnecessary nodes removed

The implementation of this algorithm can be made as a breadth-first or depth-first search
originating at each source of the net. Other applications of breadth-first or depth-first search can
be found in Grevet (1988). Since the connectors between each switch and its unused output
places are removed, the effect is the same.

For each strategy, the switches are removed, and we thus obtain an ordinary Petri Net.
Therefore, an ordinary Petri Net is obtained for each different strategy. Since each strategy is
distinct, the resulting Petri Nets constitute a set.

3.2.3 Requirements Analysis

Once the requirements for the system are expressed in the form of a Petri Net, it is possible
to analyze them. The modeler should verify that the Petri Net representation of the requirements
matches his/her view of the system. In particular, two problems can be addressed, at this stage.

The pattern depicted in Figure 3.8 should not be allowed in a Petri Net representing the
requirements for a distributed system. As a matter of fact, this pattern represents a free choice,
i.e., when a token is in place pl, there is no rule attached to the place that permits us to know
whether the token will go to transition tl or transition t2. It is better to replace this pattern by a
switch in which a rule is embodied. It may well be that in a particular case the choice between
branches is random, but a switch may contain a rule that selects branches randomly.

43



Figure 3.8 Free Choice pattern

The representation of free choice using a switch is depicted in Figure 3.9.

pp

si, . .,~ , ~. .... t2

Figure 3.9 Equivalent representation of the Free Choice pattern

A model for the requirements should at least be live and deadlock free. Liveness will ensure
that all information will be processed, while a deadlock free net will make sure that all
information will go through the required system and will be used to its full extent. When

switches are present, particular care should be taken to avoid deadlock. The simple example of
Figure 3.10 shows a net with a switch.

44



u-1

pu~l\e /.10pp6

Figure 3.10 Petri Net PN6

If one strategy sets sl to u=0, then a token is placed in p2 and tl is enabled. When tl fires, a

token is placed in p4. However, t3 is not enabled because there is no token in p5 and deadlock
results. This situation is shown in Figure 3.11, where the sub-net in bold face represents the

successive nodes the token passes through before stopping in p4. The only way to resolve this
deadlock is for another token to be generated at pl and then switch sl be set to u=l so that a
token is eventually generated in p5.

p2 tl p4

U--1

°pl. O t2 p6

u='

pp

Figure 3.11 Deadlocked Petri Net PN6 when u=0

It should be stressed that the set of Petri Nets representing the functional requirements does
not embody any specifications about system performance nor does it specify the degree to which

functions are distributed. Lastly, this requirement does not specify the degree of redundancy in

the system, if any.

45



Therefore, these requirements can be viewed as the minimal functional requirements,
in the sense that they specify the desirable interrelationship between functions and provide a
model of the system.

3.3 MODELING THE IMPLEMENTED OR PROPOSED DISTRIBUTED SYSTEM

3.3.1 A Physical System

Besides accounting for the interrelationship between its processes, the model of the
implemented or proposed system should account for the geographical dispersion of its physical
entities. Thus, the modeling will have to represent the multiple decision and processing agents in
their location.

For now, each physical location will be called a shelter or facility. A shelter contains one or
more agents together with their supporting systems. Each agent consists of a human and a
terminal with its associated software. It may also be an automated processing unit such as a
computer used as a server or used as a database.

For now, an agent will be generically identified with a workstation. Each workstation can
carry out one or more processes, or functions. Communication systems are used to transmit
processed information among workstations. For reliability, or survivability in the case of some
systems, there may be a duplication of functions. Therefore, there may exist a number of
replications of the same function embedded in the proposed or implemented system. Different
workstations may be able to perform the same process.

3.3.2 Modeling Functionality

Since distributed systems receive information from different sensors and sources, it follows
that the model of the real system should incorporate a large number of inputs. In this work, each
source in the net represents a type of message without discriminating on the nature of the sensor
or the means used to transmit the information. In other words, a source represents the place
where a specific type of message arrives. This arbitrary definition of source is sufficient for a
functional analysis of the system. However, in this frame it is not possible to represent accurately
different communication and data networks, each corresponding, for example, to a different level
of security or access privilege.

Among these input signals received by the system, some of them may trigger some part of

46



the processing that the system can do, while others may trigger other parts of the system. To
handle this, temporary storage is needed and a database model is needed.

In previous work, Bejjani (1985) has modeled databases with Petri Nets. It is outside the
scope of this work to study in great detail the database model. However, there is need to
understand the interrelationships between the processes. Output signals of some processes are
stored in databases. Each different output signal is stored in a different database.

Figure 3.12 shows a Petri Net model of a database. The information to be stored arrives in
place pl. This is modeled by a token created in p1. The token enables the output transition of pl,
which represents the operation of storing the information in the database. When this is done, p2
contains a new token which represents the new stored information. These data are now available
upon request from a process in the system. The request for data stored in this database is
materialized by a token in place p4. If any data is stored in the database, i.e., if there is at least a
token in place p2, then the transition t2 corresponding to the acquisition of the data can fire, and a
token is created in p5. When t2 fires, a token is created in p3, which enables tl, which by firing
creates a token in p2. This loop is created to model the availability of the data for another query.
However, as times passes, new data may be stored in the database, that is, updates may occur.

Request Fetch
for data Data

p5

pl p 2 tl p3

Entrance in Storage Stored Availability
the database of data data Loop

Figure 3.12 Petri Net model of a Database

This raises the need for protocols, since in this case there is more than one token in p2 and
thus a problem exists as to which token to be considered for the firing of t2. A LIFO protocol
(Last In First Out) solves the problem since in this case the last update is the best one to use.

In order to perform his functions adequately, an agent needs some resources. An agent may
need the use of decision aids, expert systems (Perdu 1987), graphical displays, etc. For

47



example, in the case of an operator performing the basic function "airplane identification" in an
Air Traffic Control system, this agent needs some resources, namely a radar screen, and the

access to a computer and its software.
Resources are modeled with loops in a Petri Net. Each physical resource is represented in a

Petri Net by a place that describes the availability of that resource. A resource loop from one
resource place to a particular agent performing a certain role indicates the need of that resource.
For reasons discussed in section 2.1.2., these loops contain more than just one place and one
transition. The marking in the resource loop indicates whether the resource is available or not.
Figure 3.13 provides an example of the modeling of a resource. The process represented in the

Petri Net by transition t2 needs a physical resource. This resource has its availability, from t2's

point of view, indicated in the output place of t4. The presence of a token in this place means that
this resource is now available for t2.

7WP4

Resource
Availability
Place

Figure 3.13 An example of a Resource Loop

However, in the model of the system presented in this work, although functions need
resources, there will not be any representation of the resources. It will be assumed that the access
to the needed resources has been checked, and the availability of these resources is implicitly
embodied in the transition representing the process using that particular resource. Therefore, the
problem of the availability of shared resources is not addressed in this work.

3.3.3 Modeling the Implemented System

The basis for representing the proposed or implemented system is the construction of a
series of diagrams that describe the system, as designed, and its operations. The first diagram
shows the localization of functions. The functions are identified and their allocation to the various
workstations that constitute the system is determined. Given that the system is distributed, and
that it consists of a number of different shelters or facilities, then the specification of which

48



facility houses each workstation.is included. The diagram can be described as follows:

Functions --- > Workstations --- > Shelters

The second diagram traces the input flows. The various sources of input messages are
identified and the various messages they generate are specified. Then the individual messages are
tracked to all the system components and workstations by which they are first processed. The
diagram shows the flow of individual message from sources to the first component.

The third diagram traces the output messages, whether commands or information, and the
internal displays that are available to selected nodes of the system. In this diagram, all the output
messages and their destinations are identified and the workstations or components that produce
them are specified.

The fourth diagram deals with the communication network needed:
* between the system and its environment
* between the shelters

* within the shelters, between the workstations

The fifth diagram depicts the interrelationship of functions. Here, there is not yet the notion
of scenario involved. Therefore, the relationships between functions are multiple as the specific
relationship between functions might change for different scenarios. Further, it should be noted
that these interrelationships impose constraints on the information flows through the network.

When these diagram are acquired, it is possible to model the information flows. Different
partial information flows can be obtained according to the point of view taken. From the message
point of view, a flow graph can be derived for each message that shows all its critical paths.
From the workstation point of view, a flow graph can be derived that shows all the messages
necessary to perform each function.

All these graphs can be aggregated to form a Petri Net with switches. The aggregation is
done by superposition of all the graphs of the same type. The result is a Petri Net with many
connectors and switches. Switches model different aspects of the system:

· As with the requirements, switches may be introduced to model the different possible
strategies within a scenario.This accounts for type 1 variability.

* Switches can also model the choice of a functional path to be followed according to the
state of the context, that is, the scenario at hand. This time, these switches account for
type 3 variability as defined by Monguillet (1987). Type 3 variability defines the cases

49



where the system adapts its structure to changes in the system's parameter. For example,
in case of failure of some components, it may still be possible to accomplish the mission
by reconfiguring the system and using other paths from the sources to the sinks.

3.3.4 Representation of the Functionality in the Frame of a Scenario

In the next step, the unnecessary functional paths for a chosen scenario are removed. To do
that, we need to consider all input messages that are not relevant for the chosen scenarios and to

eliminate them. This will alleviate part of the complexity of the representation. The elimination of
the irrelevant nodes can be cumbersome because some of the nodes that are part of an unused
simple path may still be crucial for the completeness of the representation of the net.

In the end, a Petri Net with switches is obtained along with a table of switch settings which
allow to convert this net into a set of ordinary Petri Nets. These Petri Nets are mutually
exclusive.

3.4 REPRESENTATION OF FUNCTIONALITY

3.4. 1 Introduction

In this section, the structure of a Petri Net model of a distributed system is related to the

functionality of such a system. This relation relies on the analysis of the net by minimal support
S-Invariants. After reviewing some graph theoretic definitions of interest the relation between the
structure of the net and the functionality of the modeled system is presented.

The Third Webster International Dictionary states that functionality is the quality, state or
relation of being functional. Among the numerous definitions, "functional" is defined as:

1. to contribute to the development or maintenance of a larger whole:
having a useful function.

This definition is further broken down into several different aspects:
· designed or developed from the point of view of use
* carrying out or consisting of a group of related activities: performing a specialized

service.

2. performing or able to perform its regular function: in a functioning condition.
3. relating or attempting to demonstrate the relatedness of any single aspect to the

maintenance of a whole.

50



Each definition addresses a different aspect: of functionality. A function can be defined as a
group of related actions contributing-to a larger action, i.e., it can be viewed as a process. In this
work, we will assume that each function is a well defined algorithm. Therefore, a functionality
can be described as a set of processes, or functions, executing a more global action when used
together in an ordered way. This definition does not state very precisely what is meant by
"ordered way". This is deliberate. There may be several sequences of the different processes that
lead to the execution of the same global action. Furthermore, the set of necessary processes may
not be unique. There may be different choices or combinations of functions leading to the same
functionality.

In the rest of this section, the structural properties of a system, as described by a Petri Net,

are related to the functions that a system performs. Some sub-nets of interest are identified. Then
algorithms are presented to determine these sub-nets. To do that, the theory of S-Invariants is
used. Therefore, after some necessary graph theoretic definitions, properties of S-Invariants are
presented.

3.4.2 Graph Theoretic Definitions

Definition 3.1:
A directed path in a Petri Net is a sequence of k nodes, where k is at least 2, and k-l

connectors such that the ith connector connects the ith node to the i+l s t node.

Definition 3.2:

A directed path is simple if and only if all its connectors are distinct.

Definition 3.3:

A directed path is elementary if and only if all its nodes are distinct.

It should be noted that any elementary path is a simple path, while the converse is false. The
Petri Nets shown in Figure 3.14 provide examples of the different types of directed paths.

51



Tp3 O p p6 p 8 t8 p9 t9 plO

Up5

(a) (b)

Figure 3.14 Examples of Directed Paths

In the Petri Net of Figure 3.14 (a), (p3, t3, p4, t6, p6) is a directed path. {p3, t3, p4, t4,
p5, t5, p4, t6, p6) is also a directed path, a simple path but not an elementary path. In the Petri
Net of Figure 3.14 (b), (p8, t8, p9, t9, pll, t8, p9, t9, p10} is a directed path, but not a simple
path because the connector between t8 and p9 is repeated twice in the sequence. Therefore, this
path is not an elementary path.

Definition 3.4:

A circuit is a directed path such that its first and last nodes coincide.

Definition 3.5:

A circuit is simple if and only if its path is simple.

Definition 3.6:

A circuit is elementary if and only if its path is elementary, except for the last node which is,
by definition, identical to the first one.

The Petri Nets shown in Figure 3.15 provide examples of the different types of directed paths.

52



t28
t19 p 33 jt23

p242 3

pa) 33 p31

~~~~~~~t20 -~t24

(a) (b)

Figure 3.15 Examples of Directed Circuits

In the Petri Net of Figure 3.15 (a), (p24, t18, p25, t19, p26, t20, p27, t21, p28, t20, p24}

is a simple circuit, and not an elementary circuit. On the other hand, {p24, t18, p25, t19, p26,

t20, p24) is an elementary circuit and, therefore, also a simple circuit. In the Petri Net of Figure

3.15 (b), {p30, t23, p31, t24, p32, t23, p31, t24, p33, t22, p30) is a directed circuit, it is not a

simple circuit and, therefore, not an elementary circuit.

3.4.3 Information Flow Paths and Functionality

In this section the structural properties of a system, as described by a Petri Net, are related to

the functions that a system performs. Some sub-nets of interest are identified.

Definition 3.9:

In a Petri Net model of a distributed system, a simple information flow path is any directed

path from a source to a sink.

A simple information flow path represents a token movement from a source to a sink.

Starting from the source, an ordered chain of transitions allows, by a succession of firings, to

remove that token from the source and create a token in the sink. In the process, a sequence of

places are activated through the creation of tokens, as a result of the firing of transitions. The

mathematical definition of a simple information flow path needs the definition of the following

partial ordering:

53

Let L denote-the partial order as follows:

a Z b X there exists a directed path from a to b.

The mathematical definition of an simple information flow path is as follows:
A simple information flow path, x, is a set of nodes such that:

1)V(a,b)ex 2, aZb or bZa

2)Vc x, -,(VdE x, cZd or dLc)

It should be noted that the definition of a simple information flow path corresponds to that of
a line in Petri Net theory.

Definition 3.10:
In an distributed system, a simple functionality is an ordered sequence of processes, that

operates on an input message to produce an output.

Note that other operations on other inputs may be necessary to produce the output. A simple
functionality tracks the processing of a single output. A simple functionality does not provide all
the necessary processes that are needed to produce an output. Nor does a simple functionality
trace the only possible sequence of processes starting from a given input.

Definition 3.11:

A complete information flow path consists of all the simple information flow paths that end
at the same sink. The mathematical definition is as follows:

A = {the set of elementary information flow paths}

V (a, b) e A 2, a 9 b , a and b contain the same sink.

The relation 9t is reflexive, symmetric, and transitive. Therefore, 91 defines an order relation

and there are equivalence classes.
B is a complete information flow path if and only if the three following conditions are

verified:

1) B is a subset of A
2) V(c, d) e B 2, c 9 d
3)Vee B,Vfe B, _(e9 f)

54

A complete information flow path represents all the simple information flow paths that are

involved in producing a specific output at some sink. A complete information flow path is a

sub-net with a single sink. Therefore, in a Petri Net, there are as many complete information

flow paths as the number of sinks. It should be noted that this definition does not exclude circuits

from belonging to complete information flow paths. As a matter of fact, the definition of a

complete information flow path does not forbid a simple information flow path to contain a loop.

Property 3.1:

In a Petri Net, a simple information flow path belongs to one and only one complete

information flow path.
Proof:

Since a complete information flow path is defined by a sink, any simple information flow

path included in it ends at the same sink. Therefore, it cannot belong to any other complete

information flow path.

Definition 3.12:

In a distributed system, a complete functionality consists of the complete set of coordinated

processes that operate on all the necessary inputs to produce an output.

This definition states that a complete functionality consists of the set of coordinated

functions that a distributed system must activate in order to perform a task.

From the set of definitions, one can see that there is a direct correspondence between the

structural properties of a system, as described by a Petri Net, and the functions that the system

performs. A simple information flow path, a structural element of a Petri Net, corresponds to a

simple functionality, while a complete information flow path corresponds to a complete

functionality. The term functionality, in this context, is used to describe a set of coordinated

functions that a system must be capable of carrying out in order to accomplish a task or sub-task.

Therefore, the next step is to develop a procedure for the determination of the simple information

flow paths, and for the construction of a complete information flow path.

3.4.4 Construction of the Complete Information Flow Paths

In this section, a procedure is presented to obtain analytically all the complete information

flow paths in a Petri Net. In order to identify the complete information flow paths, and therefore,

55

the elementary information flow paths that constitute each complete information flow path, the
minimal support S-Invariants are used.

The methodology to obtain the complete information flow paths consists of three steps:
1) compute the minimal support S-Invariants. This step can be realized by applying the

algorithm developed by Alaiwan and Toudic (1985).
2) for each minimal support S-Invariant, construct its corresponding S-component. To

each minimal support S-Invariant now corresponds a sub-net.
3) By applying some rule, coalesce some of these sub-nets to obtain a complete

information flow paths.

The method to create a complete information flow path from the set of S-Components of
minimal support S-Invariants requires two steps. In the first step, one of the sinks of the Petri
Net is chosen. The complete information flow path relative to that sink can now be constructed.
First the S-Components that contain the sink are coalesced together. A complete information
flow path would be obtained at that stage if all the elementary information flow paths that contain
its sink were present. It is sufficient to say that the sub-net obtained is a complete information
flow path if, for any node of the constructed sub-net, its number of input nodes in the sub-net
equals the number of its input nodes in the original net. As the sub-net constructed previously is
an S-Component, this condition is satisfied with the places already contained in the sub-net.
Therefore, this condition has to be checked for the transitions of the sub-net only. This is the
objective of the second step.

In the second step, the number of input places of any transition in the created sub-net is
compared with the number of input places that the same transition has in the original Petri Net. If
the numbers differ, that means that there is at least one simple information flow path, containing
the transition, which is missing. Therefore, the missing input places are added to the sub-net. In
the process, any S-Component that contains the added places is coalesced to the constructed net.
In turn, these sub-nets contain other places and transitions. Therefore, the same process is done
again with the transition of the newly coalesced S-Component. This recursive process, designed
to add all the missing simple information flow paths, terminates when all the transitions of the
sub-net have the same number of input transitions in the sub-net as in the Petri Net. Some key
properties of S-Invariants are presented in Appendix B, with a-classification of the S-Invariants
into three categories.

Note that in the case where a place does not belong to any S-Component, that is, the net is
not covered by the S-Invariants, then from this place all the directed paths from sources to that

56

place have to be found and coalesced to the created sub-net.
This procedure is repeated for each sink of the Petri Net. The pseudocode of the algorithm to

find the complete information flow paths is presented below. From the incidence matrix of the
Petri Net, all the complete information flow paths are determined.

BEGINNING
compute the minimal support S-Invariants /* use of the Alaiwan and Toudic algorithm */
For each minimal support S-Invariant Do
I construct its corresponding S-Component
End
identify each sink of the net /* these are the places with no -1 in their

incidence matrix row */
initialize the complete information flow path list /* this list will contain S-Components */
F each sink Do

put all S-Component that contain the sink to the complete information flow path list
Repeat

initialize the newly added transitions list /* NAT list */
append the transitions of the S-Components to the NAT list
For each transition of the NAT list Do

initialize the places list /* this list contains the missing input places */
/* of transitions already in the created sub-net */

If the transition does not have all its input places Then
F Append the missing places to the place list
End

End
For each place of the place list do

append all S-Components containing the place to the complete information flow
path list

there is no S-Component that contains the place Then
append all the paths from the sources that lead to the place to the complete
information flow path list

End
End

Until there is no more node added to the complete information flow path list.
/* the complete information flow path relative to the sink is constructed */

End
END.

To illustrate the procedure, the complete information flow paths of the Petri Net shown in
Figure 3.16 are constructed. This net contains four sources, two sinks, two information loops,
and a resource loop. First the computation of the minimal support S-Invariants is done using an
implementation of the Alaiwan and Toudic algorithm. There are nine minimal support
S-Invariants. To each minimal support S-Invariant corresponds one S-Component. The list of
minimal support S-Invariants with their S-Components is presented below:

57

Invariant 1: <Xl> = (pl, p3, p4, p5}, and [X1] = (pl, tl, p3, t2, p4, t3, p5, t4}
Invariant 2: <X2> = (p2, p3, p4, p5 }, and [X2] = {p2, tl, p3, t2, p4, t3, p5, t4}

Invariant 3: <X3> = [p6, p7, p8, plO}, and [X3] = (p6, p7, p8, plO, t5, t7, t6}
Invariant 4: <X4> = {p6, p7, p8, pll, p12), and [X4] = (p6, p7, p8, pll, p12, t5, t7, t6, t3)
Invariant 5: <X5> = (pl, p3, p18, pl9}, and [X5] = (pl, p3, p18, p19, tl, t2, tll, t12}

Invariant 6: <X6> = (p2, p3, p18, pl9}, and [X6] = { p2, p3, p18, pl9, tl, t2, tll, t12}

Invariant 7: <X7> = (p21, p23 }, and [X7] = {p21, p23, t13, t14}
Invariant 8: <X8> = (p6, p13, p15, p14, p16, p21, p22), and

[X8] = (p6, p13, p15, pl4, p16, p21, p22, tS, tlO, t8, t9, tl3, t14}

Invariant 9: <X9> = (p6, p13, p15, p16, p17, p20, p21, p221, and
[X9] = (p6, p13, p15, p16, p17, p20, p21, p22, t5, tlO, t8, t9, tl3, tl4, tll.

pp

tl p3 Q p4 p5

p6 t5 p7 p)F p8

pl6 t1 p13 t8 p14 t9 p15 t13 p21 t14 p22

p17 23

-18) p19

Figure 3.16 Petri Net PN7

Since the net contains two sinks, there are two complete information flow paths. The
complete information flow path related to the sink p8 is constructed first. There are two

58

S-Components containing p8, [X3], and [X4]. Therefore the two S-Components are coalesced

together. Among the transitions of [X3] and [X4], only t3 does not have all its input places in the

constructed sub-net. p4 is the input place of t3 that is missing. Among the remaining

S-Components, [X1] and [X2] contain p4, and are, therefore, coalesced to the previously chosen

S-Components. At this stage, all the transitions of the newly coalesced S-Components have the

same number of input places as in the original Petri Net. Therefore, the coalescing procedure

stops, and the first complete information flow path is constructed, as shown in Figure 3.17.

The same algorithm is applied to construct the complete information flow path relative to the.

sink p22 . There are 2 S-Components containing p22, [X8], and [X9]. Therefore, the two

S-Components are coalesced together. Among the transitions of [X8] and [X9], tll and t13 do

not have all their input places in the constructed sub-net. p18 is the input place of tl 1 that is

missing, while p23 is the input place missing for t13. Among the remaining S-Components,

[X5] and [X6] contain p18, and are therefore coalesced to the previously chosen S-Components.

Similarly, [X7] which contains p23 is also coalesced to the other chosen S-Components. At this

stage, all the transitions of the newly coalesced S-Components, i.e. [X5], [X6], and [X7] have

the same number of input places as in the original Petri Net. Therefore, the coalescing procedure

stops, and the first complete information flow path is constructed, which is shown in Fig. 3.18.

Sp1 9
1p

Figure 3.17 First Complete Functionality in PN7 (shown in bold face)

59

t2 t pll5 p2

p ~ ~p 5

Once the complete information flow paths have been determined, the next problem is to
compute the simple information flow paths within each complete information flow path. To do

that, an enhanced version of the algorithm developed by Jin (1985) is used. The algorithm can be
separated into two steps. In the first step, the incidence matrix representing the Petri Net is
transformed into an interconnection matrix. The goal of this transformation is to get a simpler
matrix representation of the net for the computation of simple information flow paths. An
interconnection matrix indicates the connections between the transitions of the net. A link is the
association of a place with one of its input connector, and one of its output connector. Therefore,
if a place, pi, has a input connectors, i.e., a input transitions, and b output connectors, i.e., b

output transitions, there are a * b links containing pi. In the case of sources which do not have

any input connector, a link is made of the source and its output connector. Conversely, in the

case of a sink, a link is made of the sink and one of its input connectors. The interconnection

60

matrix is an m*n matrix, where m is the number of links and n the number of transitions. The

elements Aij, of this interconnection matrix are defined as follow:

-1 if link i leaves transition j
O if link i is not connected to transition j

aij 1 if link i arrives at transition j

The matrix is constructed row by row by considering each link that leaves a transition (-1)

and indicating the transition to which it is directed (+1). Since each row represents a single link,

it must have exactly one +1 and one -1 and, consequently, the sum of its elements must be zero.

This is not the case, of course, for the links that connect sources to transitions and the links that

connect transitions to sinks. The former are recognized by a row with a single +1, while the latter

by a row with a single -1.

In the second step, the interconnection matrix is used to compute the simple information

flow paths. The problem is to find, for each source of the complete information flow path, all

possible simple information flow paths from that source to the sink. The transition that follows

immediately the source place becomes the main root of the tree that represent the simple
information flow paths; every simple information flow path forms a branch of the tree.

The elements of the interconnection matrix, aij, can be interpreted as follows:
* if aij = -1 and aik = 1, then transition tj precedes and is connected to transition tk.

* if there are more than one (-1) in a column j, then transition tj is a root or a sub-root of the

tree.
* if there are q (+1) in a column j, then q simple information flow paths coalesce after they

reach transition tj.

With these properties in mind, the matrix is scanned to determine the simple information

flow paths. The scanning starts by identifying rows that have a single non-zero entry, a -1. This

corresponds to a link that terminates at a sink. Say that the -1 occurs in column i. The first (+1)

in column i of A is the first input to ti and it is processed first. The scanning stops when a

multi-input transition tj is encountered, i.e., a transition tj on which several paths converge. The

transition tj is marked as a sub-root, i.e., the end of some sub-path. After all inputs to the

original transition ti are processed, the scanning restarts to determine if there is another row with
a single non-zero element equal to -1 as the ith column. The same procedure is applied to all the

stored sub-roots. When the sub-paths of the last sub-root end at tl, which is the first transition
linked to the source, scanning is complete. In this scanning process, loops are identified as being

61

sub-paths where the first transition in the sequence is the same as the last transition.

Let W(k, m) be the mth sub-path ending at transition tk. After all sub-paths are found, paths

are constructed by concatenating sub-paths. This is accomplished by matching the last transition

ti in sub-path W(k, m) to the first transition ti in sub-path W(i, m'). When the last transition is tl,

a simple information flow path has been completed for the set of input sources related to tl.

To illustrate the mechanics of the algorithm, the simple information flow paths of the

complete information flow path related to sink p22 in Figure 3.16 are computed. The algorithm

starts by constructing the interconnection matrix from the incidence matrix representing the

complete information flow path. This incidence matrix is obtained from the incidence matrix of

the net by deleting the rows corresponding to the places of the net that do not belong to the

complete information flow path, and the columns corresponding to the transitions of the net that

do not belong to the complete information flow path. From the interconnection matrix, ten

sub-paths are found. These are:

sub-path 1: t13->t14

sub-path 2: t13-t14--t13
sub-path 3: t9--t13
sub-path 4: tl 1-tl2---tl 1

sub-path 5: tl--t2--tl 1

sub-path 6: t8-tl 1
sub-path 7: tl 1--t9
sub-path 8: t8->t9
sub-path 9: tlO-t8
sub-path 10: t5--t8

From the sub-paths, the simple information flow paths are constructed. Starting from the

output transition of the sources to the input transition of the sinks, there are sixteen simple

information flow paths. These are:

tl--t2--tl 1-->tl2--tl l1-t9-t13-->tl4 3t1414

tl--t2--tl 1--t12- ->tl 1---tt9--t13-->t1l4
tl \t2-tnl l-n9-t13 -t14 ·tI3-t14

tlO--->t8-4tl 1-t9-t t 13-->t14-- tt13-t414

62

t50---t8 --->tl 1 -- t9--->t13-->t14 4

tio- t8-4tle9-tl3-4tl)tl-4etltl4

t5-->t8-t t9-- >t13--->tl4

tS--t8--t9otl 3-tlt3-t 1 4t5-4t8 -- t9-4tl3--tl4--->tl3--ttl
t5 ---t8---t9-->t 13--t 14

These paths are complete for the three sets of sources related to tl, t5, and t10, respectively.

tl has two input sources, pl and p2, t5 has one input source, p6, and tlO has one input source,

p16. Therefore, there are four simple information paths originating in p1, four in p2, six simple

information flow paths originating in p6, and six simple information flow paths originating in

p16. Finally, there are twenty simple information flow paths within the complete information

flow path.

3.5 SUMMARY

In this chapter, after describing the Petri Net models of both the requirements and the design

of a distributed system, the relation between structural properties of the Petri Net model of a

distributed system and its functionality have been established. The sub-nets of interest have been

identified, and the procedures to construct these sub-nets have been explained. From now on, the

goal is to proceed to the evaluation of the functionality of a proposed or implemented system

versus its requirements.

63

CHAPTER IV

EVALUATION OF FUNCTIONALITY IN DISTRIBUTED SYSTEMS

4.1 INTRODUCTION

In this chapter, the functional evaluation of a proposed or implemented system against its
requirements is presented. At this point, there are two Petri Nets, one describing the required
functionality, and one describing the operation of the proposed or implemented system.
Throughout this chapter, the first Petri Net will be called the Requirements Net, while the latter

will be called the System Net. These two Petri Nets are specific to a particular scenario. As
discussed in the previous chapter, when a particular scenario is selected, both Petri Nets are
modified by eliminating functions and unnecessary sources and sinks. Therefore, both Petri Nets
are reviewed and reduced to reflect the chosen scenario. Each Petri Net may contain switches that
reflect different possible strategies. Also, the existence of redundant functions may be translated
into the existence of several occurrences of the same strategy.

The next task in the evaluation process is to remove the switches. By removing the
switches, a set of ordinary Petri Nets is obtained, for each of the two Petri Nets. As of now, an
ordinary Petri Net inferred from the Requirements Net will be called a Required Strategy Net,
while an ordinary Petri Net inferred from the System Net will be called a System Strategy Net.
Each ordinary Petri Net corresponds to the implementation of a strategy. On the other hand, a

particular strategy may be represented by one or more different ordinary Petri Nets.
Therefore, the next task is to sort the Petri Nets to recognize which Required Strategy Net

corresponds to which System Strategy Net, all implementing the same strategy. This means that

the evaluation of functionality mustbe done, in the case of a specific scenario, on a strategy by

strategy basis.
For a given scenario, there may be p Required Strategy Nets, p > 1, and q System Strategy

Nets, q > 1 corresponding to the same strategy. In this case, the functional evaluation will be
done between each Required Strategy Net and each System Strategy Net, i.e., there will be
p x q evaluations performed in the case of that particular strategy.

This whole decomposition process is depicted in Figure 4.1. From the two Petri Nets
representing the model of the proposed or implemented system, and of the requirements, the

64

selection of a scenario yield the System Net and the Required Net. The removal of the switches
in the system net produces the set of System Strategy Net, while the same process applied to the
Required Net produces the set of required Strategy Nets.

Petri Net model
of the proposed SystRemove Set of Ordinary Petri Nets:
or implemented Switches The System Strategy Nets
system

a Scenat model Requirements by sametri Nets:
Strategies

Petri Net model Requirements Remove Set of Ordinary Petri Nets:
of the requirements Net Switches The Required Strategy Nets

Figure 4.1 The Decomposition Process

Table 4.1 shows an example of the arrangement of Petri Nets in the representation of the
requirements and the system. Suppose, for a given scenario, that there are five different
Required Strategy Nets, each one corresponding to a different strategy, A to E, and that there are
a System Strategy Nets corresponding to the strategy A, b System Strategy Nets corresponding
to the strategy B, and so forth. Therefore, for each strategy, the evaluation is performed between
the Required Strategy Net and each System Strategy Net. There are 1 x a evaluations to be
performed in the case of strategy A.

The problem is to identify strategy nets among the set of ordinary nets inferred from the
System Net that correspond to a particular strategy in the Required System Net. This is done by
identifying the particularity of a strategy in a Required Strategy Net that is also present in a
System Strategy Net, such as the existence of a particular function, or a particular ordering of
functions. This can also be a set of inputs/outputs.

65

Table 4.1 Strategy correspondence between Petri Nets

Strategy Required System
Strategy Net Strategy Net

A 1 a
B 1 b
C 1 c
D .1 d
E 1 e

Ultimately, several pairs of two ordinary Petri Nets are identified for comparison, one from
the Requirements Net, and one for the System Net. For each of the two nets in a pair, the
complete information flow paths and the simple information flow paths are constructed.

Shortfalls and overlaps can now be determined by comparing the structure of the two Petri Nets.
Underlying the whole issue of comparison is the notion of net equivalence and, specifically,
functional equivalence. It is not expected that the two sub-nets will be identical; what is of
interest is whether the information receives functionally equivalent processing and that the same
information, processed in a comparable manner, is used to produce the outputs. This issue
becomes even more important in the consideration of overlaps, although here, in some cases, the
theory of Petri Nets can be used to distinguish between redundancy that improves the
survivability of the system and redundancy that causes conflict or confusion.

4.2 SHORTFALLS

The identification of shortfalls and overlaps is based on the comparison of two sets of
complete information flow paths and their embedded simple information flow paths. However,
in both situations, whether shortfalls or overlaps, several cases can be identified.

4.2.1 Complete Shortfall

The most extreme case is of the absence of a complete functionality from the System

Strategy Net which is present in the Required Strategy Net. That corresponds to the absence of a
sink in the System Strategy Net. Formally, given the correspondence between complete
functionality and complete information flow path, this type of shortfall is defined as follows:

66

Definition 4.1:

A complete shortfall is observed if a complete functionality in the Required Strategy Net has
no counterpart in the System Strategy Net, i.e., if a complete information flow path in the
Required Strategy Net has no corresponding subnet in the System Strategy Net.

The most obvious test is to compare the sink nodes of the two nets. Since a complete
functionality has been associated with each sink of a net, the first step is to list the sinks of the
two nets and to establish their correspondence. Note that the correspondence need not be one to
one. It is possible that two or more sinks in the Required Strategy Net correspond to a single
sink, and vice-versa. Therefore, when this is done, the test is to establish correspondences
between the sinks in the Required Strategy Net and in the System Strategy Net. If a sink in the
Required Strategy Net does not have any counterpart in the System Strategy Net, then there is a
complete shortfall.

For example, suppose that the Required Strategy Net has five sinks, Sil, Si2, Si3, Si4, and
Si5, and that the System Strategy Net has four sinks, sil, si2, si3, and si4. If the output
produced by Sil is equivalent to the combination of the outputs produced by sil and si2, if the
combination of the outputs produced by Si2 and Si3 are equivalent to the output produced by si3,
and if the output produced by Si4 is equivalent to the output produced by si4, then clearly, there
is no counterpart to the output produced by Si5. These equivalence relations between sinks are
summarized in Figure 4.2, where correspondences, represented by lines, are made between the
set of sinks in the Required Strategy Net and in the System Strategy Net. The vertical bars
joining lines represent the logical operator AND. Therefore, there is a complete shortfall in that
System Strategy; it is not capable of producing an output corresponding to Si5.

4.2.2 Partial Shortfall

If there exists a one to one correspondence between the set of sinks in the Required Strategy
Net and the set of sinks in the System Strategy Net then the next step is to compare each set of
complete information flow paths attached to a set of sinks in the Required Strategy Net with the
set of complete information flow paths attached to the set of corresponding sinks in the System
Strategy Net. This comparison is to determine if the sub-net that corresponds to a required
complete functionality is contained in the sub-net of the corresponding complete functionality in
the System Strategy Net.

67

Si4 V

Sinks in the Sinks in the Proposed
requirements or implemented system
Petri Net Petri Net

Figure 4.2 Example of Complete Shortfall

Definition 4.2:

A partial shortfall is observed when the complete information flow path in the System
Strategy Net that corresponds to a required complete functionality does not contain all the simple
information flow paths corresponding to all the embedded simple functionality in the required
complete functionality.

Partial shortfall addresses the issue of diminished functionality existing in the system, e.g.,

an output is produced either with reduced processing (some processing steps are missing), or
with reduced inputs (some data are either not available or not used). The latter case is easier to
check because it relates directly to the sources and the simple information flow paths.

4.2.3 Detection of Partial Shortfalls

To detect partial shortfalls, the simple information flow paths of corresponding complete
functionalities in the Required Strategy Net and in the System Strategy Net have to be compared.
For example, in the case depicted in Figure 4.2, the simple functionalities of the complete
functionality associated with sil and si2 should be compared with the simple functionalities of

68

the complete functionality associated with Sil, and so forth. Such a comparison requires some
knowledge about the sources and functions in both nets, and more specifically, the establishment
of correspondence between sources, and functions embedded in both Petri Nets. Therefore, for
each subnet, some explicit labeling is needed in order to:

· distinguish between transitions representing functions or processes, and other
transitions representing either transmission of information, request for information,
acknowledgment messages, protocols, and artifacts of the model (such as nodes
artificially added to prevent self-loops).

* distinguish between the multiple occurrences of a function e.g., F1 in workstation W1
and F1 in workstation W2.

* eventually take into account the decomposition of a function into a sequence of
subfunctions.

The proposed labeling is as follows:

* any transition representing a function starts its name with an f, the others do not.
* The general format of a transition representing a function is fx-y-z, where x, y, and z

are integers: x represents the type of function, y accounts for a specific subfunction of
fx, i.e., if fx is decomposed into a sequence of two subfunctions, then fx-1 and
fx-2 result. Lastly, z accounts for the occurrence of the function, i.e., if there are two
equivalent fx in the system, then there is fx-l-l for the first one, and fx-1-2 for the
second one.

With such a labeling, it is possible to establish correspondences between equivalent
functions within each net. An example is shown in Figure 4.3. There are two simple information
flow paths. One of these contains function fl-1 which is decomposed into the sequence fl-1-l
-- fl-2-1. The other contains fl-2 which is equivalent to fl-1 (both have the same first number
in the labeling). fl-2 is decomposed into the sequence fl-1-2 ---> fl-2-2 -- fl-3-2.

Once the equivalence between functions is achieved, the procedure to identify partial
shortfalls is as follows:

Step 1:
For each set of complete information flow paths, eliminate in the sequence of transitions

describing each simple information flow path the transitions not representing processes (this is
done easily by scanning the labels). As a matter of fact, only sequences of processes are of

69

interest for a functional analysis (this may not be the case when an evaluation of performance is
undertaken).

p2 fl-i-1 p3 fl-2-1 p4

o p8p5 fl-1-2 p6 fl-2-2 p7 fl-3-2 p8

Figure 4.3 Two equivalent Simple Information Flow Paths

Step 2:
For each set of complete information flow paths, it may happen that, as a result of Step 1,

some paths become identical, i.e. start from the same source, and contain the same-sequence of

the samefunctions. Therefore, the number of paths is somewhat reduced. A simple information

flow path is then characterized by an input source and a sequence of functions.

Given a simple information flow path in the Required Strategy Net, then a search is

undertaken for finding equivalent simple information flow paths among the set of the System

Strategy' simple information flow paths.

Step 3:

Scan the sequence of functions embedded in the Required Strategy' simple information flow

path. Because of the correspondence already established between the functions in the Required
Strategy Net and in the System Strategy Net, simple information flow paths with sequences of

functions which match with those of the requirements' simple information flow paths are

identified.

Rule l:If a simple functionality, represented by a simple information flow path in the

Required Strategy Net, has no equivalent in the System Strategy Net, then there is a

partial shortfall.

If there are such paths, then the next step is to match the paths from the Required Strategy

70

Net with the paths of the System Strategy Net, in accordance with the correspondence between
sources.

An example is shown in Figure 4.4. Suppose that the upper Petri Net, PNU, is a simple

information flow path for the Required Strategy Net. It is made of the functional sequence fl-1
-e f2-1. In the System Strategy Net, the lower Petri Net, PNL, there are three simple

information flow paths, tl -- Fl-1 -+ F2-1, t2 -* Fl-1 -e F2-1, and t3 -* Fl-1 -* F2-1. If F1

is equivalent to fl, and F2 to f2, then there are three simple information flow paths that

correspond to PNU because transitions tl, t2, and t3 do not represent a process. However, the

source p1 encompasses three classes of input signal, namely c , c2, c3, which are the sources of

each simple functionality in PNL. Therefore, in this case, the simple information flow path in the

requirements is functionally equivalent to the combination of the three simple functionalities. In

fact, the structure of the proposed or implemented system Petri Net is such that p7 can be

considered as a source that is equivalent to p1.

(cl, c2, c3 p2 f2-1

PNU

0c2 0 f2 ~ p7 Fl-i p8 F2- p9

PNL

Figure 4.4 Two functionally equivalent sub-nets

Rule 2: If the sources of a simple functionality specified in the Required Strategy Net are not

contained in the sources of the simple information flow paths of the System Strategy Net

that have an equivalent sequence of processes, then there is no functional equivalence.

Whether or not a required source for a simple functionality that is not present in the system

net constitutes a shortfall is a difficult question to answer by inspecting the mere structure of the

net. As a matter of fact, that discrepancy may result from a difference in the level of description

71

of the two nets. It may also be possible that the requirements impose unnecessary processing of
some input by some simple functionality that has been corrected by the designer.

4.3 OVERLAPS

The Third Webster International dictionary defines an overlap as:
To have something in common with, to comprehend elements of, to coincide in part with.

In the context of distributed systems, an overlap means that a certain sequence of operations
on a given input can occur in more than one way in the net. For example, signals from a source
can go to different workstations and be processed in parallel to reproduce the same output signal.
If this capability is used in the sense of alternative means of processing the same information,
i.e., only one of the paths is used for each individual message that is processed, then this type of
redundancy is beneficial because it increases the survivability of the functions in a distributed

system. However, explicit protocols must be in place that determines without any ambiguity the
selection of the particular single path to process the signal. If the protocols are not well designed,
a conflict may occur which results in confusion. Consider now the case where a given input
signal is processed in parallel by several paths. If only one of the outputs is used and the results
of the other paths are ignored, then this parallel processing represents a waste of processing
resources. The question is then to evaluate if this waste is prejudicial to the good functioning of
the system. If the workstations carrying the parallel processes could have been carrying instead
other functions, thus reducing the time of the whole task, then clearly the answer is yes. If, on
the other hand, the workstation could not have processed any other function that is, at the stage

of the processing, critical to continue the whole processing, then the answer is no.

On the other hand, if the output of all the paths are fused together prior to the final output
being processed, then the quality of the output may improve at the cost of increased delay and
increased coordination. A trade-off is identified between increased accuracy and shorter
processing time. Here again, it may be more effective to dedicate one of the workstations
performing one of the parallel equivalent processes to the processing of another concurrent
function so as to reduce the processing time of the whole system.

4.3.1 Redundancy with Conflict

Consider, for example the functionality represented by the simple information flow path

72

shown in Figure 4.5. The signal undergoes two processes, represented by transitions tl and t2,
from the source pl to the sink p3. Assume that this represents a desired functionality embedded
in the requirements net.

/1 p l Otl P p2 ,t2 p3

Figure 4.5 A Simple Functionality

Now consider the net shown in Figure 4.6. The source is pl, the sink is p3, but there are

two alternative simple information flow paths leading from p to p3. The top path is identical to

that of Figure 4.5. Let us assume that the bottom path is equivalent to the top path, i.e., the two

processes represented by t3 and t4 produce the same result as the processes tl and t2, even

though the intermediate signal in p2 and p4 may be different. This Petri Net represents an overlap

as the two simple functionalities are equivalent. However, this is not a desirable redundancy

because it creates conflict; there is no rule associated with pl to determine which of the two

transitions, tl or t3, will fire or execute when a token appears in pl. This kind of redundancy is

detrimental to the efficient operation of the system, and reflects weakness in the concept of

operations.

t l < . 2 , t 2

Figure 4.6 Redundancy with Conflict

The solution to that problem, as already described in the previous chapter, is to implement a

switch, sl. This is shown in Figure 4.7. The meaning of the switch is that only one of the places

p5 and p6 will receive the signal, i.e., the token that appears in pi. The choice will be made

according to the rule that is embedded in the switch. Confusion is avoided by forcing the

clarification of the concept of operation. This type of structural change in the description of the

73

proposed or implemented system net is to be made prior to the identification of pairs of Petri Nets
to be compared, as the introduction of a switch creates new strategies.

p5 tl p2 t2

Figure 4.7 Redundancy with Resolved Conflict

4.3.2 Redundancy with Concurrency

Since it has been assumed that the Petri Nets obtained in this manner are decision free, there
are two types of redundancies left. The first type is depicted in Figure 4.8. In this case, the
incoming signal goes to both simple information flow paths and the two outputs arrive at the sink
independently. While more resources are used, both speed of response and higher survivability
may be achieved because the sink can receive either one of the processed signals and the rest of
the system can proceed as soon as the first one arrives.

p5 tl f p 2

pl a~t5 P3

Figure 4.8 Redundancy with Concurrency

74

4.3.3 Redundancy with Synchronization

The opposite is true in the redundancy illustrated in Figure 4.9. As in the case of redundancy
with concurrency, both simple information flow paths process the incoming signal, but the sink

can accept only a fused result. This need for fusion is modeled by transition t6. Both simple
information flow paths must complete their execution in order for t6 to be enabled, so that it can
fire and produce the output. Clearly, in this case, the response time will be the maximum of the

response time of the two processing paths, while in the case of redundancy with concurrency,

the response time is the shorter of the two processing times. On the other hand, the quality of the

output may be enhanced, provided the fusion algorithm is adequate.

p5 tl p2 t2 p7

pl tl 3

~-~p6 qt3 ~)p4 qt4 j9

Figure 4.9 Redundancy with Synchronization

Thanks to the construction of the complete information flow paths and of the simple

information flow paths, the Petri Nets representing the Required Strategy and the System

Strategy can be decomposed into structural blocks. The analysis of these blocks leads to the
identification of overlaps and their classification according to the presence of conflicts and to the
presence of concurrency or synchronization.

4.3.4 Determination of Redundancies

Definition 4.3:

Two simple information flow paths belonging to the same complete information flow path

are redundant if and only if the following two conditions are fulfilled:

* i) the two simple information flow paths have the same source (and sink)

· ii) the two simple information flow paths have the same sequence of functions, i.e, the

same sequence of equivalent occurrences of functions.

75

In short, two simple functionalities are redundant, if they represent the same sequence of

operations on a given input.
By inspecting the sequence of transitions of two equivalent simple information flow paths,

the last common transition before both simple information flow paths diverge is determined.
From that transition, a new common transition is searched. If there is no such transition, then
this means that the two simple information flow paths coalesce at the sink of the complete
information flow path. Therefore, the two paths exhibit a redundancy with concurrency. On the

other hand, if such transition exists, then the two simple information flow paths exhibit
redundancy with synchronization.

4.4 COORDINATION

4.4.1 Definition

Lastly, the issue of coordination of simple functionalities has to be addressed. It is recalled
that a functionality has been defined as a set of coordinated functions. Therefore, in the case
where no shortfall has been evidenced, the question arises as to whether or not the coordination
between the simple functionalities in the proposed or implemented system is similar to that of the
requirements.

Definition 4.4:

Two simple functionalities are coordinated if their corresponding simple information flow

paths coalesce at some transition.

This test is designed to evaluate if, for two required coordinated simple functionalities there

exist two equivalent simple functionalities in the System Strategy Net coordinated'the same way.
Figure 4.10 and 4.11 shows an example. Suppose that in the Required Strategy Net, there are
two simple information flow paths, Pal and Pa2 which are respectively:

· Pal: cl IF1 F3
· Pa2: c2IF2- F3

Suppose that in the System Strategy Net, there are two simple information flow paths, pal
and pa2 which are respectively:

76

* pal: c'l I fl f3-1
· pa2: c'21f2 -f3-2.

Suppose fl is equivalent to Fl, f2 to F2, f3-1 and f3-2 to F3, and that source cl is

equivalent to c'l, and source c2 is equivalent to c'2. Then Pal is equivalent to pal, and Pa2 is

equivalent to pa2.

c2 3, F2
Pp

Figure 4.10 Petri Net PN8

However, Pal and Pa2 are coordinated at F3. On the other hand, neither of the two

transitions corresponding to F3 in the implemented or proposed system net, i.e. f3-1 and f3-2,

require coordination. Therefore, the coordination between the two sets of equivalent simple

functionalities is not the same.

c'l tfl Pif3-1 < p3

c'2 _ ,f2 p2
f3-2

Figure 4.11 Petri Net PN9

Now, suppose that instead the system net looks like the net shown in Figure 4.12.

77

p4

f3-2

p2

Figure 4.12 Petri Net PN10

In this case there are three simple information flow paths, pal, pa2, and pa3 which are

respectively:

· pal: c'l Ifl -f3-1
* pa2: c'2 I f2 - f3-1

* pa3: c'2 f2--f3-2.

Suppose, as in the previous example, that fl is equivalent to Fl, f2 to F2, f3-1 and f3-2 to
F3, and that source cl is equivalent to c'l, and source c2 is equivalent to c'2. It is then clear that

pal is equivalent to Pal, and that pa2 and pa3 are equivalent to Pa2. Pal and Pa2 are coordinated
at F3. Similarly, pal and pa2 are coordinated at f3-1, which is equivalent to F3. Therefore, pal
and pa2 are equivalently coordinated with Pal and Pa2. On the other hand, f3-2, which is

equivalent to F3, is contained only in Pa3. Therefore, the coordination is not the same as in the
requirement net for f3-2.

Such problems of coordination between the system net and the requirements net are due to

one of the three following reasons:

* the existence of a partial shortfall. In this case, the lack of a simple functionality shows in

the list of simple functionalities using a particular process.
* A design flaw in the system, such that effectively a simple functionality is missing for a

given process. This case is different from the previous one in the sense that

they may not be a partial shortfall, but the number of equivalent simple functionalities is
less than the number of occurrences of the same function. This is the case in Figure 4.12,
where there is no partial shortfall, but there are two functions f3, and only one simple
functionality of type f2 -> f3.

· A deadlock resulting from the mere implementation of a particular strategy, a particular

78

switch setting in the Petri Net. This is translated at the function level by the lack of the
arrival of a token, resulting in the incapacity of the function to produce its output. This
case is illustrated in Figure 3.10 which shows a net with a switch, sl. Note that, in this
case, whatever the setting, there is always a deadlock, as transition t3 has only one input
place with a token, either p4 or p5, instead of tokens in both input places.

4.4.2 Determination of Coordination Problems

To determine coordination differences between simple functionalities in the two Petri Nets,
the approach is to relate the equivalent transitions, i.e. the processes, that belong to more than
one simple information flow path. Therefore, for each transition representing a function of the
Required Strategy Net, the list of simple information flow paths containing that transition is
constructed. The same is done for the transitions of the System Strategy Net.

Given a function in the Required Strategy Net, this function is contained in the sequence of
functions of one or more simple information flow paths. The equivalent functions in the System
Strategy Net are then checked to verify that they, too, are contained in the sequence of functions
of equivalent simple functionalities. If this is so, then there is no coordination problem. If this is
not so, then there is a coordination problem.

If there is a coordination problem, the next step is to determine the nature of the coordination
problem, whether it leads to deadlock or not. To do that, it is necessary to compare the number
of input places of the transition representing the function in the strategy net with the number of
input places that the same transition has in the original net with switches. If these two numbers
differ, then there is deadlock, while if they match, there is no deadlock.

4.5 EVALUATION OF FUNCTIONALITY

When the evaluation of pairs of ordinary nets is completed, it is then possible to evaluate the
set of alternative structures in order to assess how well the proposed or implemented system
meets its requirements. The goal of this evaluation is to identify functional problems in the design
of the system.

It is clear that a particular ordinary Petri Net in the proposed or implemented system net
which exhibits either a complete or a partial shortfall does not operate according to the
requirements. The switch setting corresponding to that Petri Net does not allow the
implementation of the functional requirements. The implementation of that structure of the system

79

net is not valid and the corresponding switch setting is to be discarded. One case of interest is
when all the ordinary Petri Nets corresponding to a particular strategy contain the same partial
shortfall. In this case, it is possible that this strategy cannot be implemented satisfactorily. A way
has to be found to implement the missing simple functionality within the existing structure of the
net. This is sometimes possible, if all the functions contained in the missing simple functionality
have corresponding functions in the System Strategy Net.

The lack of some sources in the processing of a simple functionality may not be critical. The
operation of that simple functionality and its contribution to the mission or goal of the system has
to be evaluated in greater detail so as to decide whether or not there is an operational problem. It
may happen that some data considered critical for a simple functionality in the requirements are in
fact not essential for the fulfillment of the mission.

The issue of redundancy is more sensitive. Clearly, a redundancy with conflict is detrimental
to the functional effectiveness of the system. Further, the uncertainty that results is also a factor
increasing the chance of deadlock. A redundancy with concurrency is a good thing as it increases
survivability and reliability. A redundancy with synchronization is somewhat dangerous in the
sense that reliability decreases compared to an equivalent processing structure with no
redundancy. However, the fusion algorithm associated with such a redundancy may lead to
improvement in the quality of the output. Therefore, there is a trade-off to be evaluated on a case
by case basis. The most important thing is to be able to detect such a redundancy, so that an
evaluation of the trade-off can be performed.

There can be three reasons for lack of coordination at a given function; (a) a bad switch
setting that removes some simple information flow paths, thus resulting in deadlock, (b) the
existence of a partial shortfall, or (c) a missing simple functionality containing that function
although there is no partial shortfall, i.e., the number of redundant function is greater than the
number of redundant simple functionalities. A lack of coordination at some function has to be
evaluated at a global level. Given the distribution of the processing and some possible
redundancy, problems of lack of coordination between simple functionalities may not be critical.
It depends on the nature of the coordination problem which may be inferred from the structural
arrangements of the different possible Strategy Petri Nets.

For example, in the case of the net shown in Figure 4.12, if the lack of coordination of
function f3-2 results in deadlock, then the system will still accomplish its mission, through
function f3-1. This is the case if that particular structure is inferred from the Petri Net with
switches shown in Figure 4.13.

80

··;\-·-; ·---- ----- ·------ - -- --- - ·-- · - __._... ~ ~ _~

6 p4p ~p 3

-2

p2

Figure 4.13 Petri Net with Switches inferring the Petri Net in Figure 4.12

On the other hand, if the lack of coordination in f3-2 does not result in deadlock, then two

output signals are produced by the system, one through f3-1, resulting in the full use of the two

coordinated simple functionalities, and one through f3-2, where the output is produced with

reduced processing. In this case, the system does not really accomplish its task, its multiple

output signals are probably not consistent.
If lack of coordination results in deadlock, then it is interesting to check that all the simple

functionalities do not contain a transition at which deadlock occurs. If it is so, then the system as

a whole is deadlocked, and then it cannot accomplish its mission.

4.6 SUMMARY

In this chapter, the different types of shortfalls and overlaps have been defined, and the

method to identify them has been presented. Clearly, in the case of a partial or complete shortfall,

the system cannot carry its mission in accordance with the requirements. On the other hand, the

presence of redundancy with concurrency is beneficial to the operations of the system as it

enhances reliability. The case of redundancy with synchronization or of lack of coordination at

some function poses some problems; it is difficult to provide a definite answer as to what

influence, good or bad, it has on the system's operations. Therefore, the answer to that question

lies in the study of the structure of the net on a case by case basis.

81

CHAPTER V

AN AIR INTERDICTION MISSION SYSTEM

5.1 INTRODUCTION

In this chapter, a system used to plan and execute air interdiction missions is employed to
illustrate the methodology evaluating the functionality of systems, against their requirements. The
system is called MESACC, which stands for Modular, Endurable, Survivable, Austere,
Command Center.

5.2 PROBLEM DEFINITION

The objective of an air interdiction mission system is to plan operations against the enemy's
military potential before it can be effectively used against friendly forces. These operations
restrict the combat capability of the enemy by:

* delaying, disrupting, or destroying their lines of communications
* destroying enemy supplies
* attacking fixed, moving and movable point and area targets
* destroying unengaged or uncommitted enemy attack formations before they can be

brought into the battle.
The result of these operations is to disrupt enemy plans and time schedules. The integration

of air interdiction operations with the fire and maneuver plans of surface forces is not required.
However, these offensive air operations are planned and conducted as part of the unified effort of

all friendly forces. Therefore, air interdiction demands precise coordination in timing.
The assumptions and abstractions used in this chapter to model the requirements and the

actual implementation pertinent to an air interdiction mission system may not correspond to actual
air interdiction operations and do not necessarily reflect real tactical planning and operations.

5.3 FUNCTION IDENTIFICATION

The context consists of the geographical characteristics of the battle area. It is assumed that

82

the system is operating in Europe, and more specifically in the center of the European battlefield
(CENTAG).

The environment consists of the friendly forces, their assets, strength, current plans and
orders, the enemy forces, their assets, strength, current plans and orders. Also, the current
weather is part of the environment as it is a particularly important factor in air interdiction mission
planning.

In order to plan an air interdiction mission. the system needs several functions. These
functions are presented bellow:

* weather projection:

This function forecasts the weather from the current weather reports sent.
* format messages:

This function transform the format of the various data inputs into a common format. This
is necessary as, for security reasons, different coding may exist for various sensors. The
function performs also decoding.

* construct database:

This function is needed under certain circumstances, when the system is initialized
(beginning of the hostilities)

* update database:

This function updates the current information as new messages comes in the system. For
example, if the database contains the position of a particular enemy battalion, and later an
intelligence report confirms that the battalion has moved to another position, then the
function is used to update the position of that battalion, its strength, and current plans.

* status of alliedforces:
This function is used to assess the current state of the allied forces, number of surface
troops, equipment, and of available aircraft for missions.

* strike assessment:

This function updates the situation on the battlefield, as a result of previous air
interdiction missions.

* threat assessment.

This function evaluates the threat of the enemy forces in the different subareas of the
battlefield'

* intelligence report:

under certain circumstances, reports from intelligence may be requested when the
uncertainty about some parameters of the problem is deemed important.

83

· targetprioritization/target development.
This function is needed to prioritize the most important objective to be destroyed, given
the situation. As a matter of fact, the resources that can be used for the next mission may
be scarce so that it may not be possible to allocate assets for the destruction of all the

objectives.
* aimpoint construction/weaponeering:

This function provides the coordinate of the target, and allocates certain classes of
friendly assets according to the objective and its intrinsic characteristics. There are
different types of aircraft, each being able to carry different types of weapons

* penetrationlattrition analysis:
This function forecasts the degree of redundancy that is adequate for each objective.
Different planes may be assigned the same objective, in response to enemy capabilities
to destroy the friendly assets in the course of their mission. Therefore, redundancy
insures a greater degree of certainty over the outcome of the mission.

* mission planning:

this function delivers the final output of the system to the environment. It consists of a set

of missions with the objectives, the type of airplane to be used, its armament, the number
of planes to be used for each objective, the route to be followed, and the time to perform
the mission.

* weapon system availability:

This function describes what weapons are available for the mission at the time it is
planned. This function tells what is available according to the weather forecasts (some
aircraft cannot fly under certain circumstances), and the status of the allied forces (losses,
use of reserves).

5.4 MESACC: THE REQUIREMENTS

The sensors include satellites, (for the weather reports), the local Command Center which

assigns tasks to the system, the regional Tactical Command Center, the Commander IN Chief
EURope (CINCEUR), surveillance aircraft planes, and intelligence systems. The various data
inputs these sensors deliver are weather reports, reports on friendly and enemy forces (strength,
position, status), combat reports, request from the local Command Center for assistance, mission
reports, and current and future operation plans.

The single output consists of air interdiction mission plans that are sent to CINCEUR.

84

The system is considered for a scenario where the hostilities started two days ago. Although
the enemy has gained ground on the battlefield, the friendly forces resist the pressure, and major
assets in reserve have not been committed on either side. The conflict is a conventional one. The
friendly forces and the enemy forces have both fairly accurate information about the situation on
the other side. Each side knows what the resources are on the opposing side, as well as the
location of these assets, although some uncertainty remains. In certain areas, the battle line is
difficult to assess. Therefore, there is a need to use MESACC to plan long distance bombing
from high altitude. In this scenario, some functions are not necessary, such as the "construct
database" function. Since the conflict started two days ago, the database already exists. All the
other functions described above are in use. Their labeling is as follows:

fl: Weather Projections
f2: Format Messages/Fusion of Information/Update Database
f3: Status of Allied Forces

f4: Strike Assessment

f5: Threat Assessment

f6: Current Intelligence
f 7: Target Prioritization/Target Development
f8: Aimpoint Construction/Weaponeering
f9: Penetration/Attrition Analysis
f10: Mission Planning
fl 1: Weapon System Availability

The interrelationship between the various functions is: the mission planning function can be
performed after the Aimpoint Construction/Weaponeering function, the Penetration/Attrition
Analysis function, the Weapon System Availability function, and the Weather Projection
function. the Aimpoint Construction/Weaponeering function is derived from the Target
Prioritization/Target Development function, which is itself derived from the Strike Assessment
function. The Penetration/Attrition Analysis function is also derived from the Strike Assessment
function. The Strike Assessment function is derived from the Threat Assessment function, and
eventually the Current Intelligence function. Lastly, the Weapon System Availability function is
derived from the Weather Projection function, and the Status of Allied Forces function. It should
be understood that this description of the interrelationship between functions is purely functional.
If a function is derived from another, it does not mean that the input of that function is sufficient.
Indeed, data from the context may be necessary (terrain information for example).

85

The description of the functional requirements of MESACC is depicted by the Petri Net of

Figure 5.1.

pi 1 p2 ,f2
p op2 p8 f6 p9 f5-2

p4 p5 p6 f5-1 p7 plo

p14

l l p16 p17

2 q pl9 By flO p20

Figure 5.1 MESACC: Functional Requirements

This Requirements Net contain one switch only. This switch has two output branches. The

switch represents the use or the non use of the "Current Intelligence" function. Therefore, from

that Petri Net, two ordinary' Petri Nets are derived by removing the switch, according to the

algorithm described in Chapter III, each one corresponding to a different strategy.

86

pi 1 p2 pf2

l4 L l p6 J f5 - 7 plo

p15 f8 pl

f.. p16 p17

! ' p19 Bf10lO p20

Figure 5.2 MESACC: Strategy One, f6 is used

5.5 MESACC: THE IMPLEMENTED SYSTEM

The implemented system is composed of a number of physical components. In the following
description, the scenario is already taken into account. The scenario is of importance in the
description of some of the part of the systems, such as the number and nature of the functions
embedded in the workstations, and their interrelationship.

5.5.1 Physical Components

* It has been assumed that the physical system is geographically distributed. There are four
shelters:

87

l15 f8 lp pp6 f5 p7 sl l

pll p16 p17

zp19 f l O~f D p20

Figure 5.3 MESACC: Strategy Two, no use of f6

the Battle Management shelter (BM shelter). This shelter contains the functions that are
directly connected to the battle itself, such as "Target Prioritization/Target
Development".

the Intelligence / War Planning shelter (I/WP) shelter. This shelter contains functions
that are more concerned with the status of the war in general, such as "Status of Allied
Forces" as well as functions using information from intelligence sources.

the Intelligence / War Planning / Automated Data Processing shelter (ADP shelter).
This shelter contains all the equipment necessary for the automated treatment of data.

In particular, this shelter contains the database.

88

- the INput Communication shelter (INC shelter). This shelter receives all the inputs
from the different sensors of the system, using different communication means. It is
possible for a sensor to send the same item of information by different communication
means. These means are:

* radio HF/VHF
* telephone line
· satellite (as a communication relay)

The functions are also distributed into eleven workstations:

These workstations are embedded in the BM shelter and the I/WP shelter. There are
five workstations in the I/WP shelter and six workstations in the BM shelter. Table 5.1
describes which workstation carries which functions. The labeling of the functions is
the one adopted in section 5.2. Workstations Al to A6 are located in the BM shelter,
while workstations A7 to All are located in the VWP shelter.

Table 5.1 Assignment of Functions to the Workstations of MESACC

iT Al A2 A3 A4 A5 A6 A7 A8 A9 A10!A11
f2 1 1 1
f3 1
f4 1 1
f5 1
f6 1
f7 1 1
f8 1 1 1
f9 1 1 1
f10 1 I 1
fll 1

Each workstation includes, typically, a CPU with its associated software, and the capability
to perform the functions assigned to it. Most of the workstations may perform different
functions, while one worksation is able to perform one function only (Al can perform fl only).

5.5.2 Boundaries of the System

To determine the boundaries of the system, it is sufficient to describe the context and the

89

environment.

The context is made of:

· the enemy forces
· the weather
* the terrain, i.e., the geography of the battle area.

The environment is made of:
* The allied forces
· the intelligence sources, and more precisely, the JTIDS (Joint Tactical Information

Distribution System).

* CINCEUR

* the satellites (as message relays and sensor devices).

5.5.3 Message Inputs

Among the wide varieties of messages that such a system can receive, fourteen critical
messages have been identified. These fourteen messages are described in detail as follows:

* cl: Weather reports
· c2: Enemy reserve forces report:

- date of report

- location

- strength

- functional capabilities

- movement status and capabilities

* c3: Enemy engaged forces report:

- date of report

- location

- strength

- functional capabilities

* c4: Enemy forces, not engaged but close to the FEBA (Forward Edge of the Battle
Area) report:

- date of report

90

- location

- strength
- functional capabilities
- estimated intention

* c5: Enemy support status report:
- date of report
- location

- nature of support (ammunitions, fuel, water, food, spare parts, hardware)
* c6: Allied reserved forces:

- date of report
- location

- strength
- functional capabilities
- movement status and capabilities

* c7: Allied engaged forces report:
- date of report
- location

- strength
- functional capabilities

* c8: Allied forces, not engaged but close to the FEBA report:
- date of report
- location

- strength
- functional capabilities
- mission orders and plan

· c9: Allied support status report:
- date of report
- location

- nature of support (ammunitions, fuel, water, food, spare parts, hardware)
- mission

* c10: Combat report:
- date of report
- unit involved
- location

91

- losses

- enemy losses (estimates)
- local situation update (geographic repositioning, state of the unit)

* cll: Immediate combat report:
- date of report
- status

- request for support (ammunition, food, water)
* c12: Mission report:

- date of report
- mission I.D.
- result, and confidence factor on the result
- Allied losses

* c13: Current regional operations orders and plans:
- date of report
- objectives
- priority of objectives
- units involved

* c14: Future regional operations orders and plans:
- date of report
- objectives
- priority of objectives
- units involved

5.5.4 Interrelationship between Functions

Table 5.2 shows which messages are needed by which function. The messages are in the
row of the matrix, while the functions are in the column of the matrix. A "1" in a cell of the
matrix located at the ith row and at thee jth column of the matrix indicates that the message c i is
critical for fj to act in a proper fashion.

Table 5.3 shows the relation between the different functions. The rows and the columns of
the matrix represent the functions. A "1" in a cell of the matrix at the it h row and jth column
indicates that when function fi is completed, then function fj can start its process, because fj can
obtain the result of fi.

The same function may be processed at different workstations. This is done to increase the

92

reliability of the system. Also, that same function may be implemented on different workstations,
which in turn are located in different shelters. This is done to enhance the survivability of the
system, so that if one of the shelters becomes inoperable, the system can still carry out its
mission. As a result of this process redundancy, other tables are needed to show in greater detail
the interrelationship between the different processes.

Table 5.2 Criticality of Messages by Functions

fl f2 f3 f4 f5 f6 f7 f8 f9 f10 fl
cl 1
c2 I 1 1 1 1 1 1
c3 I 1 1 1 1 1 1
c4 1 1 1 1 1 1 1
c5 1 1 1 1 1 1 1
c6 1 1 1 1 1

c7 1 _ 1c8 i i T1 1
=-Y1 _1 1i

c10 1 1 1 1 1 1
cll 1 1 1 i 1
c12 1 1 I _1
cl 1 = == -
c14 i i 1- i 1

Table 5.3 Relations between Functions

fl f2 f3 f4 f5 f6 f7 f8 f9 flOfll

f2 1 1 1 1 1 1
f3 1
f4 1 1 1
f5 1 1 1 1
f6 1 1 1 1
f7 I 1 1

f10 1
fll 1

93

Table 5.4 shows the interrelationship between the functions in the system, and the functions

embedded in the BM shelter. All the functions are represented in rows, with their workstation
location. Each column corresponds to a function in the BM shelter with its workstation location.

A "1" in the ith row and jth column of the matrix indicates that when function fi is completed, the
result of its processing is available for the function fj. Table 5.5 shows the same information for
the functions located in the I/WP shelter.

Table 5.4 Relations Between Functions and Functions in the BM Shelter

BM Shelter
Al A2 A3 A4 A5 A6
fl f7 f8 f9 f10 f8 f10 fl fll f7 f8 f9

Al fl 1 1 1
A2 f7 1 1 1 1 1
A2f8 1 1
A3 f9 1 1
A4ff8 1 1
A4 f10 1
A5 fl 1 1
A5 fl 1 1
A6 f7 _1 1 1 1
A6 f8 1
A6f9 I 1
A7 f2 1 1 1
A7 3 1 1 1
A8 f2 1 1 1
A8 f4 1 1 1 1
A9 f4 1 1 1 1
A9 f5

A10 f9 1 1
AlOf - - - - 1 - 1
All f2 1 1 1
All f6

This relation between functions can be effected directly, through the transmission of a
message from a function to the other. It can also be done through the use of a database: the
function sends the result of its processing to a database which stores the information. The other
function accesses that information through a request to the same database. There are 7 databases
in the implementation of MESACC, labeled DB 1 to DB7. The description of the content of each

one is presented below:

94

* DB1: contains weather forecasts that come from the weather reports and which are
produced by fl.

* DB2: contains data about the enemy i.e., the contents of c2 to c5.
* DB3: contains data about the allied forces i.e., the contents of c6 to c9.
* DB4: contains data about the situation on the battle field, i.e., the contents of c1O to c13.
* DB5: contains data about threat assessment, i.e., the results of f5.
* DB6: contains data about weapons availability, given the status of the allied equipment,

and the weather forecasts.
* DB7: contains data about strike assessment, i.e., the result of f4.

Table 5.5 Relations Between Functions and Functions in the I/WP Shelter

I/WP Shelter
A7 A8 A9 A10 All

f2 f3 f2 f4 f4 f5 f9 f10 f2 f6
Al fl 1
A2 f7
A2 f8
A3 f9
A4 f8
A4 f10
A5 f 1
A5 fll _
A6 f7
A6 f8
A6 f9
A7 f2 1 1 1 1 1 1
A7 f3
A8 f2 1 1 1 1 1 1
A8 f9 1
A9 f2 1 1 1 1 1 1
A9 f4 1

A10 f4 1
A10 f5 1 1 1 1
All f9 1
All f _10

A12 f2 1 1 1 1 11
A12 f6 1 1 1 1

These databases are accessed by different functions. Table 5.6 shows which function
requests data from which database. Each database is represented by a row, while each function is

95

represented by a column, with its number of occurrence in the system. A "1" in the ith row and
jth column of the matrix indicates that fj requests data from DB i.

5.5.5 The Implemented System

The whole system is represented in Figure 5.4. The shelters are represented by the polygons
in light shaded gray, while the workstations are represented in dark shaded gray. The labeling of
the places and transitions of the net is as follows:

· The places labeled cl to c14 correspond to the input messages cl to c14.
* The transition labeled fi-j-k corresponds to the kt h occurrence of an fi function. This

function may be decomposed in various subfunctions, and j denotes the jth subfunction
of that particular fi function.

* The place labeled ji corresponds to the output of an fi function that is sent to another
function.

* The transition labeled E-DBi corresponds to the entrance to the ith database.
* The transition labeled up-i-j corresponds to the update of the jth occurrence of the ith

database.
* The transition labeled gd-i-j corresponds to the reception of the query and the passing of

data of the jth occurrence of the ith database. This happens when a certain function
requests the data from that database.

* The transition labeled ir-i-j corresponds to the availability of the data of the jth
occurrence of the i th database. This occurs when a query for data has just been made.

Table 5.6 Request to Database from the Functions in MESACC

Function fl f2 f3 f4 f5 f6 f7 f8 f9 flOfl 1 total
in system 2 3 1 2 1 1 2 3 3 3 1 22
DBASE #1 1 1 4
DBASE#2 1 1 1 1 17
DBASE #3 1 1 5
DBASE #4 1 2
DBASE #5 _1 2
DBASE#6 __ 1 3
DBASE #7 1 = 3

This System Net contains five switches. Each of the five switches has two output
transitions. However, switches s7 and s8 are cascaded with switch s6. Therefore, the number of

96

different switch settings is 20. There are twenty different System Strategy Nets, each
corresponding to a different switch setting. Table 5.7 provides a labeling of the different Petri
Nets, in correspondence with its switch setting. The five switches are represented in the first five
columns. An ordinary Petri Net representing a strategy is given by the unique output place of
each switch considered in a given strategy. In some occurrences, a dash indicates that this switch
setting is irrelevant because it is cascaded with another switch; this is because that switch is
included in an output branch of another switch which setting does not consider that branch.

Table 5.7 The twenty Different Strategies of MESACC

Switches Strategy #
s2 f5-3-1 s6 s7 s8
p7 p191 p124 - - 1

p7 p191 p125 p195 p194 2
p7 p191 p125 p 195 p123 3
p7 p191 p125 p127 p 194 4
p7 p191 p125 p127 23 5
p8 p191 p 124 6
p8 p191 p125 p195 p194 7
p8 p191 p 125 p195 p 123 8
p8 p191 p 125 p127 p194 9
p8 p191 p125 p127 p 123 10
p7 p192 p124. 11
p7 p192 p125 p195 p194 12
p7 p192 p 125 p195 p123 13
p7 p192 p125 p127 p194 14
p7 p192 p125 p 127 p123 15
p8 p192 p124 - - 16
p8 p192 p125 p195 p194 17
p8 p192 p125 p195 p123 18
p8 p192 p125 p127 p194 19
p8 p192 p125 p127 p123 20

5.6 EVALUATION OF FUNCTIONALITY

5.6.1 Methodology

Given that there are two Required Strategy Nets in the requirements and twenty System
Strategy Nets in the implementation of MESACC, the first thing to do is to relate each of the
twenty to one of the two Required Strategy Nets. The difference between the two Required

97

Strategy Nets lies in the use of the function "Current Intelligence", labeled f6. The Strategy Nets
of the implemented system labeled 1 to 10 do not use f6, as shown by the f5-3-1 switch setting
which branches with p191. Therefore each of these nets is to be compared with Strategy 2
Required Petri Net. On the other hand, the System Strategy Nets labeled 11 to 20 use f6, as
shown by the f5-3-1 switch setting which branches with p192. Therefore each of these Petri
Nets is to be compared with Strategy 1 Required Petri Net.

A functional evaluation will be performed now in detail between Strategy 2 Required Petri
Net and Strategy 1 System Petri Net. Then the results of the evaluation of the system against its
requirements will be presented.

5.6.2 Complete Functionality in the Required Strategy Net

The computation of minimal support S-Invariants in the Required Strategy Net reveals the
existence of eight minimal support S-Invariants. The support of these invariants is presented
below:

* Invariant 1: pl p19 p20

* Invariant2:p2 p5 p 13 p15 p18 p2 0

* Invariant 3: p2 p4 p17 p20

* Invariant4:p2 p5 p14 p17 p20
* Invariant 5: p pll p 16 p20

* Invariant 6:p2 p3 p12 p16 p20

* Invariant7:p2 p6 p 7 p8 p9 p10 p13 p1 5 p18 p20
* Invariant 8:p2 p6 p 7 p8 p9 p10 p14 p 17 p20

As there is only one sink in the net, there is only one complete functionality. Each of the
minimal support S-Invariants contains the sink, p20, in its support. Therefore, the complete
functionality of the required system is made of the coalescence of the S-Components of all the
minimal support S-Invariants. Since the net is covered by the S-Invariants, i.e., any place of the
net belongs to at least one minimal support S-Invariant, the complete functionality is represented
by the whole net, as depicted in Figure 5.3.

98

........................ ----

:~:~:..-...·.s~ i ~~_
.~~::~~:~s:~~:~~:~:~~:~:~~:~~:~:: ·~~·;2:

i*K* i i·~;·i·;~;·:·~.r~. ~·..-

~I :~:~:~·fff):~:·O't·:~:·: 5~~ii·I

~~~~~~~~~~~. . . . . . . . . . . . . . . . .. . .. . . . . .. . . . . . . .... . . . . . . .. . . . . . . . . .. . . . .. . ..

~~~....~ ~ ~ ~ ~ ~ ~ ~ ~~~~: ..........

Fiur 54 ESCC Te hoe ysemNe

5.63 imleFuctonliy n te eqirmetsPeriNe
Afe tecopet untonltyhs en dnife, h nx se i o ostut h sml

99~~~~~~~·~

functionalities within the complete functionality. Since the complete functionality is a marked
graph, each simple functionality corresponds to a minimal support S-Invariant. Therefore, there
are eight simple functionalities that are listed below:

* Pal:p1 f1-lf1O
* Pa2:pl Ifl -+fl 1 - flO
* Pa3:p21f2 - f3--fl - flO
* Pa4:p2 If2 -f9 -flO
* PaS:p2 f2- f4- f9--+flO1
* Pa6:p2 If2 f4 - f7 -- f8 -- f1O
* Pa7:p2 If2--fS-1 -f4--f9-flO
* Pa8:p2 If2-fS-l -*f4-+f7- f8 -+flO

5.6.4 Complete Functionality in the Strategy System Net

The computation of minimal support S-Invariants in the System Strategy Net reveals the
existence of 275 minimal support S-Invariants. The supports of these invariants are presented in
Appendix C. Since there is only one sink in the net, there is only one complete functionality. The
construction of the complete functionality is done in the two steps described in chapter mI.

In the first step, the S-Components of the minimal support S-Invariants that contain the
sink, p190, are coalesced together to form a subnet. There are 265 out of the 275 minimal
support S-Invariants which contain the sink in their support. Therefore the S-Components of
these 265 minimal support S-Invariants are to be taken into account in the construction of the
complete functionality. The subnet obtained is depicted in Figure 5.5.

In the second step of the construction, the transitions of these S-Components are scanned to
check that they have the same number of input places in that subnet as in the System Strategy
Net. If this is not the case, that is, there is an input place of one of these transitions which is not
present in the constructed subnet, then any minimal support S-Invariant that contains that input
place in its support is coalesced in the subnet. Again, the same rule of addition of minimal
support S-Invariant is applied to the transitions of the previously added S-Components, and so
forth until it is no longer possible to add any S-Component of a minimal support S-Invariant. For
the net obtained from the first step, the transitions fulfilling the condition are:

gd-l-1, gd-2-5, gd-2-7, gd-3-2, gd-5-1, gd-6-1.

Note that every one of these transitions belongs to an information loop, although it is not a

100

requirement for applying the construction method. In the following, all the S-Components of
minimal support S-Invariants which contain these transitions are added to the subnet. They
correspond to the following minimal support S-Invariants:

for gd- 1-1: the minimal support S-Invariant labeled 129

for gd-2-5: the minimal support S-Invariant labeled 1

for gd-2-7: the minimal support S-Invariant labeled 2
for gd-3-2: the minimal support S-Invariant labeled 170

for gd-5-1: the minimal support S-Invariants labeled 3, and 197

for gd-6-1: the minimal support S-Invaniants labeled 4, 5, 6, and 7
Therefore, the S-Components corresponding to these minimal support S-Invariants are

added. For these sub-nets, all the transitions have the same number of input places than in the

net. Further this sub-net is covered by the S-Invariants, i.e. any place of the net belongs to at
least one minimal support S-Invariant; there is no need to check for other nodes that would
belong to the complete functionality. The adding method of minimal support S-Invariant is
sufficient. The complete functionality is now obtained and is depicted in Figure 5.6.

5.6.5 Simple Functionality in the System Strategy Net

The algorithm presented in chapter mI is applied here to determine all the simple information

flow paths. There are 479 simple information flow paths. By applying the discrimination method

described in chapter V, the number of relevant simple information flow paths is reduced to 102.

These simple information flow paths are presented in appendix D.

Complete shortfall: There is a single sink in the Required and in the System Petri Net. Since they

correspond, there is no complete shortfall.

Partial shortfall: In order to identify partial shortfalls, the equivalence between sources and

functions has to be made. Table 5.8 presents the equivalence between sources in the two Petri
Nets, while tables 5.9 presents the equivalence between functions across the two Petri Nets.

101

..
.

...

Figure 5~~~.5... fteC mpeeFncdnlt cntutinfrS stmN t#

...

An=He l446*jez*~~~~~~~~~~~~~~-i-= -0,

Wl~~~~~~~~~- M EL

Figure 5.6 MESACC: Complete Functionality for System Net.#

103~~~~~~~~~~~~~~. ...

Table 5.8 Equivalence between Sources

Requirements Sources System Sources
p1 cl
p2 c2, c3, c4, c5, c6, c7,

c8, c9, clO, cll, c12,
c13, c14

It is now possible to proceed with the analysis of partial shortfalls. For each simple
functionality in the requirements net that corresponds to a simple information flow path, a
corresponding simple information flow path is searched in the System Strategy Net, i.e., a
simple information flow path having the same sequence of equivalent functions. Table 5.10
provides the result of this search.

As the table shows, there is a partial shortfall for the simple information flow paths Pa6 and
Pa8. On the other hand, there are eighteen simple information flow paths in the System Net
which have a sequence of functions equivalent to: f2 --> f7 -e f8 -- f10, and sixteen simple

information flow paths which have a sequence of functions equivalent to: f2 -> ff8 - f10. These

simple functionalities cannot be related to the required simple functionalities.
For the remaining six simple functionalities that have equivalent counterparts in the System

Strategy net, the next step is to compare the inputs they use. It is now possible to construct
another table in which the input sources of each simple information flow path can be compared
with the sources of its required equivalent. Given the correspondence between sources
established in table 5.8, it is possible to determine if the same inputs are used by the equivalent
simple functionalities. Table 5.11 shows that relation. In its first column, the input source of the
required simple functionality is shown. In the following columns, the number of equivalent
simple functionalities using the input source on top of the column is shown. The last column
determines if the required functionality uses input sources contained in the input sources used by
the equivalent implemented simple functionalities.

Therefore, only Pal and Pa2 have strictly equivalent counterparts in the implemented
system. Pa3, to Pa6 have equivalent functional paths, but these paths do not use all the sources.
The question is to determine if the non use of certain sources in the implemented system simple
functionalities constitute a shortfall or not.

104

Table 5.9 Equivalence between Functions

Requirements Functions System Functions
fl fl--1

fl-2-1
f2-1-1 -> f2-2-3
f2-1-2 -> f2-2-3
f2-1-3 -> f2-2-3
f2-1-4 -> f2-2-3
f2-1-5 -> f2-2-1
f2-1-6 -> f2-2-1
f2-1-7 -> f2-2-1
f2-1-8 -> f2-2-1

f2 f2-1-5 -> f2-2-2
f2-1-6 -> f2-2-2
f2-1-7 -> f2-2-2
f2-1-8 -> f2-2-2
f2-1-9 ->f2-2-4
f2-1-10 ->f2-2-4
f2-1-11 ->f2-2-4
f2-1-12 ->f2-2-4

f2-1-13
f3 f3-1
f4 f4-1-1

f4-1-2
f5-1 f5-2-1
f/ f7-1-1

f7-1-2
f8-1-1

f8 f8-1-2
f8-1-3
f9-1-1

f9 f9-1-2
f9-1-3
f10-1-i

flO f10-1-2
flO-1-3

fl 1 fll-1-1

For Pa3, the use of messages c6 to c9 seems critical as the first function in that simple
functionality is f3, i.e. "status of allied forces". Therefore there is a problem of inputs.

105

Table 5.10 Partial Shortfalls

Requirements Simple Number of equivalent system
information flow path simple information flow paths

Pal 4
Pa2 4
Pa3 14
Pa4 2
Pa5 20
Pa6 0
Pa7 24
Pa8 0

Table 5.11 Equivalence of input usage

Simple Input Input source in the implemented system net Equivalence
functionality source ci c2 c3 c4 c5 c6 c7 c8 c9 c10 c1l c12 c13 c14

Pal pl 4 YES
Pa2 pl 4 YES
Pa3 p2 2 2 2 2 2 2 2 NO
Pa4 p2 2 NO
Pa5 p2 4 4 4 4 4 NO
Pa7 p2 4 4 4 . 4 4 NO

For Pa4, the use of c6 to c9 may not be critical; on the other hand the use of c 10 and c 11 is
critical, as the first function to be performed is f9, i.e., Penetration/Attrition Analysis. Therefore,
there is an input problem.

For PaS, the use of c6 to c9 is not critical; on the other hand the use of c 10 and c 11, i.e.,
"combat reports" and "immediate combat report" are critical to perform the first function in the
sequence, i.e., "Strike Assessment". Therefore there is a problem of inputs.

For Pa7, the comments are the same as for Pa5.
Therefore, there are two partial shortfalls, four simple functionalities that do not use all the

input sources that they should, and two perfectly equivalent simple functionalities.

Redundancies

Table 5.10 and 5.11 provide a basis for finding eventual redundancies in the System
Strategy Net. Table 5.10 gives the number of simple information flow paths that have the same

106

sequence of equivalent functions. Table 5.12 provides the number of simple information flow

paths that are equivalent, i.e., same source and same sequence of functions. The numbers in the

column cl to c14 are the number of groups of equivalent simple information flow paths. There

are twenty one groups of equivalent simple functionalities. For reasons of simplicity, each group

of equivalent simple functionalities is labeled by using the name of its common source, and the

name of its equivalent simple functionality in the requirements net. A table is constructed that

shows the type of redundancy for the simple functionality of each group.

Table 5.12 Redundancies in the implemented Petri Net #1

Group of equivalent simple functionalitie Number of
Equivalent requirements input source simple functionalities Nature of redundancy

simple functionality
Pal cl 4 concurrency
Pa2 cl 4 concurrency
Pa3 c2 2 concurrency
Pa3 c3 2 concurrency
Pa3 c4 2 concurrency
Pa3 c5 2 concurrency
Pa3 c10 2 concurrency
Pa3 cl 1 2 concurrency
Pa3 c12 2 concurrency
Pa4 c14 2 concurrency
Pa5 c2 4 double concurrency
Pa5 c3 4 double concurrency
Pa5 c4 4 double concurrency
Pa5 c5 4 double concurrency
Pa5 c12 4 double concurrency
Pa7 c2 4 double concurrency
Pa7 c3 4 double concurrency
Pa7 c4 4 double concurrency
Pa7 c5 4 double concurrency
Pa; cl 1 4 double concurrency
Pa7 c12 4 double concurrency

Note that a "double concurrency" means that there are two sequences of concurrent

redundancies, as in the Petri Net shown in Figure 5.7.

107

P1 t1 p4 t4 p7

Figure 5.7 An example of Double Redundancy

Therefore, in Strategy #1 System Net, there are redundancies with concurrency only.

Coordination

Table 5.13 shows, for each function, what the functionalities are that contain it. The same

table is constructed for the Strategy #1 System Net, table 5.14, in which the representation of the
system simple functionalities uses the same notation as in table 5.12. Note that the subfunctions
of f2 are not included. This is deliberate, since in the system net every simple functionality uses
f2, except for the weather reports, i.e., message cl.

Table 5.13 Functions contained in the required Functionality

Function Simple functionality
Pal Pa2 Pa3 Pa4 Pa5 Pa6 Pa7 Pa8

fl P v .
f2
f3 -4

f7,f4 - -

f9

fll 0 __

108

Table 5.14 System Functions contained in the System's Simple Functionalities

Functionality 1-1-1 fl--2f3-1-1 f4-1-1l f4-1-2 f5-1-l f7-1-2 f8-1-2 f9-1-3 flO-l-1 flO-i- 1-1-2-1
Pal cl] '
Pa2 cl
Pa3 c2 T T ~/
Pa3 c3
Pa3 c45
Pa3 c5
Pa3 clO 10
Pa3 cll c _

Pa3 c12 - -
Pa4 c14
Pa5 c2 - - -

Pa5 c3]
Pa5 c4 /
PaS cS
PaS c12
Pa7 c2 - 1 / / _/

Pa7 c3 /
Pa7 c45 /
Pa7 cS
Pa7 cll - - - - r /
Pa7 c12 =

Given the two tables, and the equivalence relationship between functions across the net, it is
now possible to evaluate the lack of coordination. First of all, by inspecting the incidence matrix,
no deadlock appears in this net since every transition has the same number of input places in the
Strategy 1 System Petri Net as in the System Net. Second, it appears that all the simple
functionalities that use a given function in the Required Strategy Net have an equivalent simple
functionality in the System Strategy Net that uses the same equivalent function. Therefore, there
is no problem of coordination in the System Strategy Net, except of course due to the existence
of partial shortfalls.

Summary

This evaluation of functionality reveals:'
· the existence of two partial shortfalls, for Pa6 and Pa8.
· the lack of use of some critical inputs for Pa3, Pa4, Pa5, and Pa7
· the existence of two simple functionalities, namely Pal, and Pa2, having equivalent

109

counterparts in the system net.

However, there are two sets of sequences of functions in the implemented system which do
not have any counterpart in the requirements. As these sequences of function are close to the

sequence of functions of the partial shortfalls, it may not be difficult to derive from the existing
structures a structure that would be closer to the requirements.

Also, there are no problems of redundancy, there is no redundancy with conflict, and all the
existing redundancy is with concurrency. Thus the reliability and the survivability of that
structure is high.

Lastly, there are no deadlocks in the system, and no problems of coordination between the
simple functionalities other than those created by the partial shortfalls.

Now that a detailed evaluation has been provided for one pair of Petri Net, the result of the
global evaluation of the implemented MESACC against its requirements is presented in the next
section.

5.6.6 Evaluation of MESACC

In this section the result of the evaluation of the twenty System Strategy Nets of MESACC
against the two Required Strategy Nets is presented.

COMPLETE SHORTFALL

Since each strategy Petri Net has a single sink, always the same, p190, and its output
corresponds to the requirements output, then there is no complete shortfall.

PARTIAL SHORTFALLS

In every one of the twenty System Strategy Nets, there are always two partial shortfalls.

These correspond to Pa6 and Pa8, in the case of the ten System Strategy Nets denoted from 1 to
10. The shortfalls for the other ten System Strategy Nets noted from 11 to 20 correspond to Pa6
and Pa9, where:

Pa9: p2 I f2--> f5-1 ---> f6--> f4 - -f7 - f8 - f10.

For all twenty nets, there is a lack of use of some critical messages in the simple

110

functionalities corresponding to Pa3, Pa4, and Pa5. Further, and this is due to the difference of
strategy, in the case of the System Strategy Nets labeled from 1 to 10 there is also a lack of use
of some critical data in the case of the simple functionalities corresponding to Pa7, while in the
case of the System Strategy Nets labeled from 11 to 20, there is also a lack of use of some critical
messages for the simple functionalities corresponding to PalO, with:

PalO: p2 I f2 - f5-1 -- f6 -- f4 -f7 ---> f9 -> f10.

REDUNDANCY

There are no redundancies with conflict in any of the System Strategy Nets. Further, any
redundancy is of the concurrency type.

COORDINATION

In the case of System Strategy Net 3, 8, 13 and 18, deadlock can occur because f10-i-1,
and f10-1-2 do not receive all the input messages they should expect. However, this is not a
major problem as there is a third f10 function, f10-1-3 which does not deadlock. However, in
the case of these nets, the use of resources is far from optimum.

There are no other major coordination problems other than those resulting from partial
shortfalls.

CONCLUSION

MESACC has certainly the potential to be a very endurable command center, due to its
extensive redundancy with concurrency. However, as it is, MESACC does not fulfill its
requirements. There are some partial shortfalls to be overcome. However, all the processes
necessary for the implementation of these missing simple functionalities are in place, and some
structural changes are possible to introduce these missing functionalities

111

CHAPTER VI

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

6.1 CONCLUSIONS

The purpose of this study was to evaluate the operations of a proposed or implemented

system against its required functionality. The framework of the research carried out is the

structural analysis of compatible representations of the requirements and of the system with Petri

Nets. The argument used can be expressed in five stages:

1) representation of the required system and of its proposed or implemented counterpart

with Petri Nets for a given scenario.

2) establishment of correspondences between some structural properties of the Petri Net

representation of the system and the functions it performs.

3) development of a set of tools to obtain the sub-nets of interest.

4) definition of various types of shortfalls and overlaps, and of tools to discriminate

among them.
5) investigation of specific examples

The representation of the required system and of its proposed or implemented counterpart

with Petri Nets allows to produce a compatible representation of the two entities. Petri Nets are

ideal tools to represent both synchronization and concurrency. The modeling of the two entities is

made with the use of switches that account for various types of variability, either to allow the

system to adapt its processing to the inputs it receives, or to allow the system to adapt its
structure to the environment.

When this is done, a scenario is chosen which reduces the size of the Petri Net. The use of a

scenario is essential to the consistency of both representations.

On the structural side, a simple information flow path has been defined as a simple path

from a source of the net to a sink, while a complete information flow path is a sub-net of the Petri

Net that contains all the simple information flow paths that end at the same sink. The above

definition holds whether the Petri Net contains cycles or not. Therefore, a simple information

112

flow path traces one specific trajectory that a token can follow from a node to another node. A

complete information flow path shows all the information and all the processing needed to
generate a specific output by the system.

The term functionality has been used to describe a set of coordinated functions that a system

must be capable of carrying out in order to accomplish a task or a sub-task. A simple

functionality represents a sequence of processes that operates on an input message to produce an
output. A simple functionality tracks the processing of a single input as it affects a single output.
A complete functionality is the set of coordinated processes that operates on all the necessary

inputs to produce an output.
The two sets of definitions have been constructed so that a correspondence exists between

the structural properties of a Petri Net model of a system and the functions that this system

performs. A simple information flow path, a structural element of a Petri Net, corresponds to a

simple functionality, while a complete information flow path corresponds to a complete
functionality.

Given this correspondence, the problem becomes one of developing algorithms for the

determination of the simple and complete information flow paths. The theory of S-Invariants of
ordinary Petri Net has been used to devise an algorithm to construct the subnets representing

each complete functionality, while an enhanced version of a graph-theoretic algorithm has been

used to determine the simple information flow paths. These constructs, obtained for both

representations - the requirements net and the net that describes the proposed or implemented

system - form the basis for the comparison and evaluation.
A complete shortfall has been defined as the existence of a complete functionality in the

requirements that is not present in the system, while a partial shortfall has been defined as the

existence of a simple functionality in the requirements net that is not present in the system. Here a

distinction is made between a partial shortfall resulting from reduced processing by the system of

all the appropriate inputs, or from not using all the inputs.
Three types of redundancies have been shown. First, a redundancy with conflict has been

defined as the existence of two equivalent mutually exclusive simple functionalities with no

particular embedded rule allowing resolution. Therefore, such redundancy is detrimental to the

efficient operation of the system. Second, a redundancy with concurrency has been defined as

the existence of two equivalent simple functionalities which produce similar outputs in the
system. While more resources are used, both speed of response time and higher survivability and

reliability may be achieved. Third, a redundancy with synchronization has been defined as the

existence of two equivalent simple functionalities which pproduce outputs that need to be fused

113

in order for the system to carry out its task. Although the quality of the output may improve as a

result of the fusion, such a structure reduces reliability as the failure of any component in one of

the simple functionalities jeopardizes the production of the output, and increases the response

time.
Lastly, issues of coordination among simple functionalities have been tackled that can

produce deadlocks, i.e., a function cannot be performed because it lacks one of its input.

The application of the methodology to MESACC, a hypothetical command center, has

shown the complexity of such an evaluation. However, the graphical nature of the Petri Net, and

the possibility to apply this methodology at an early stage of the conception, design and

implementation of a distributed system allow a quick assessment of a design believed to be

meeting some requirements, or the re-evaluation of an existing system versus new requirements

resulting from evolution of the context in which the system operates.

6.2 DIRECTIONS FOR FURTHER RESEARCH

Research can be carried out in several directions to integrate the different concepts, models

and evaluation tools presented in this work in a comprehensive study of the evaluation of

functionality in distributed systems. Suggestions for future work are presented in the remainder
of this section.

First, the SEA methodology could be applied to study the effect that individual shortfalls and

overlaps have on the system. It would be interesting to study the behavior of a distributed system

when various types of shortfalls and overlaps are introduced. For example, one can investigate

the nature of the trade off between improved accuracy and lower response time in the case of

redundancies with conflict, or the effect that the existence of a partial shortfall has on the output

response of a system.

Second, it would be interesting to develop tools to evaluate such shortfalls and overlaps in

the case of colored nets, thus allowing the investigation of the role that some protocols may play
in the performance of the system.

Third, one could develop more efficient procedures for identifying and classifying the
various types of shortfalls and overlaps. In particular, more sophisticated tools may be needed to
evaluate structurally interleaved shortfalls and overlaps.

Fourth, there is an effort to be made to adapt the currently existing algorithms to construct

complete and simple functionalities. As a matter of fact, the algorithm to construct the complete

functionality tends to create dynamically huge data structures when implemented on a computer,

114

as a result of some typical arrangement of the columns of the incidence matrix of the Petri Net.

As a matter of fact, the first step of this algorithm involves the computation of a generator family

of minimal support S-Invariants. This algorithm is described in detail in Appendix A. It appears

in some occurrences, e.g., in the case of an incidence matrix with two hundred places and

hundred and forty transitions, that several hundred new lines (representing new S-Invariants) are

generated temprarily in an intermediate step of the process; most of them are eliminated by the

end of the step. This consumes a lot of the internal memory of a computer, and leads to a

memory overflow. A solution to that problem could be to create a more efficient heuristic

procedure to limit the number of newly generated lines and test for the minimality of the support

of each new vector, before generating new lines.

Finally, the development of a software package to integrate the various tools and to perform

an automated evaluation of the functionality of a distributed system versus its requirements may

be required in order to gain further insights in these types of problems.

115

REFERENCES

Alaiwan, H., and Toudic, J. M., 1985, "Recherche des Semi-Flots, des Verrous et des Trappes
dans les Reseaux de Petri," Technique et Science Informatiques, Vol 4, No 1, Dunod,
France, pp. 103-112.

Andreadakis, S. K., 1988, "Analysis and Synthesis of Decisionmaking Organizations," Ph.D
Thesis, LIDS-TH-1740, Laboratory for Information and Decision Systems, MIT,
Cambridge, MA.

Beijjani, G., and Levis, A., 1985, "Information Storage and Access in Decisionmaking
Organizations," Proc. 8th MITIONR Workshop on C3 Systems, LIDS-R-1519, Laboratory
for Information and Decision Systems, MIT, Cambridge MA.

BRAMS, G. W., 1983, Reseaux de Petri: Theorie et Pratique tome 1: Theorie et Analyse,
Masson, Paris, France.

BRAMS, G. W., 1983, Rdseaux de Petri: Thgorie et Pratique tome 2: Modelisation et
Applications, Masson, Paris, France.

Bouthonnier, V., and A. H. Levis, 1984, "Effectiveness Analysis for C3 Systems." IEEE
Trans. on Systems, Man, and Cybernetics, SMC-14.

Cothier, P.H., and A.H.Levis, 1986, "Timeliness and Measures of Effectiveness in Command
and Control," IEEE Trans. on Systems, Man, and Cybernetics, SMC-16, No.6.

Demael, J., 1989, "On the Generation of Variable Structure Distributed Architectures," S.M.
Thesis, Laboratory for Information and Decision Systems, MIT, Cambridge, MA. (in
preparation)

Dersin, P., and A.H. Levis, 1981, "Large Scale System Effectiveness Analysis,"
LIDS-FR-1072, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Genrich, H. 1987, "Predicate Transition Nets," in Advance Course on Petri Nets 1986, in
Lecture Notes in Computer Science, Springer Verlag, Berlin, Germany.

Genrich, H. and Lautenbach, K., 1981, "System Modeling with High-Level Petri Nets," in
Theoretical Computer Science, No. 13, pp. 109-136.

Grevet, J.-L., 1988, "Decision Aiding and Coordination in Decisionmaking Organizations,"
LIDS-TH-1737, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Jensen, K., 1987, "Colored Petri Nets" in Advanced Course on Petri Nets 1986, Lecture Notes
in Computer Science, Springer Verlag, Berlin, Germany.

Jin, V. Y., A. H. Levis and P. Remy, 1986, "Delays in Acyclical Distributed Decisionmaking
Organizations," 4th IFAC Symposium on Large Scale Systems: Theory and Applications,
Zurich, Switzerland.

116

Karam, J.-G., 1985, "Effectiveness Analysis of Evolving Systems," LIDS-TH-1431,
Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Martin, P., 1986, "Large Scale C 3 Systems: Experiment, Design, And System Improvement,"
LIDS-TH-1580, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Martinez, J., and Silva, M., 1980, "A simple and fast algorithm to obtain all invariants of a
generalised Petri Net,", in Lecture Notes in Computer Science, No. 52, Spinger Verlag,
FRG, pp. 302-310.

Memmi, G., and Roucairol, G., 1979, "Linear Algebra in Net Theory," in Net Theory and
Application, Lecture Notes in Computer Science, No. 84, Spinger Verlag, FRG, pp.
213-223.

Monguillet, J.-M., 1987, "Modeling and Evaluation of Variable Structure Organizations,"
LIDS-TH-1730, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Perdu, D., and A. H. Levis, 1989, "Evaluation of Expert System in Decisionmaking
Organizations" in Science of Command and Control, Coping with Uncertainty, Edited by S.
E. Johnson and A. H. Levis, AFCEA International Press, Wahington D.C.

Peterson, J. L., 1981, Petri Net theory and the Modeling of Systems, Prentice Hall, Englewood
Cliffs, NJ.

Remy, P., and A. H. Levis, 1988, "On the Generation Of Organizational Architectures Using
Petri Nets," in Advances in Petri Nets 1988, Lecture Notes in Computer Science, Springer
Verlag, Berlin.

Reisig, W., 1985, Petri Net, An Introduction, Springer Verlag, Berlin.

Signori, D., and S. H. Starr, 1987, "The Mission Oriented Approach to Nato C2 Planning,"
Signal, Vol. 42, No. 1, September.

Sweet, R., 1986, "An evolving C2 Evaluation Tool - MCES Theory," Proc. 9th MITIONR
Workshop on C3 Systems. LIDS-R-1624, Laboratory for Information and Decision
Systems, MIT, Cambridge, MA.

Tabak, D., and A. H. Levis, 1985, "Petri Net Representation of Decision Models," IEEE
Transactions on Systems, Man and Cybernetics, Vol. SMC-15, No 6, pp. 812-818.

Weingaertner, S. T., and A. H. Levis, 1989, "Evaluation of Decision Aiding in Submarine
Emergency Decisionmaking," Automatica, Vol. 25, No 3.

117

APPENDIX A

ALGORITHM TO OBTAIN ALL THE MINIMAL SUPPORT S-INVARIANTS
OF AN ORDINARY PETRI NET

The complete proof of the algorithm can be found in Alaiwan and Toudic (1985). The
description of the algorithm is presented first, and then an explanation of how it works is given.

In the following desription, C is assumed to be the Incidence Matrix of the Petri Net, of
dimension n x m, where n is the number of places and m the number of transitions. Cij denotes,
as usual, the elements corresponding to the i-th row and j-th column of C and In denotes the
n x n identity matrix.

The objective of the algorithm is to find a family of S-Invariants all having a minimal
support relative to the set of S-Invariants. Therefore, a minimal generator family will be
obtained, and any S-Invariant will be obntained as a linear combination with rational
coefficients of the elements of this family of S-Invariants. If it is imposed that the greatest
common divisor of all the values of the non null elements of any minimal support S-Invariant be
one, then there is unicity of such a generator family. Although this family is a generator family
and is minimal, it is not a basis, as any linear combination of these S-Invariants is not necessarily
an S-Invariant.

ALGORITHM:

BEGIN
A = C; D = In { initialization, the matrix [In, C] is considered }
repeat for j = 1 { main loop }

Determine the sets I1 and 1I2 such that:
I = {i such that aij > 0} and K = {k such that Akj < 0}

For all pairs (i, k) e IxK do
Append to the Matrix [D, A] E the row vector:

Eij * (kh row of E) - Ekj (ith row of E) { the resulting jth element is null }

Eliminate the jth column of A i
Eliminate from E- all the rows with index i E I u K
Eliminate from Ej all the rows, which when restricted to Dj have a non-minimal support
with respect to the other rows of D. If two rows have the same support, eliminate one of
them.

until j = m
The rows of Dm determine all the minimal support S-invariants of the net.

END.

118

Proof: By induction

Initially, all vectors of D = In contains all the minimal support S-Invariants of all its

transitions (we denote by R i the Petri Net obtained by eliminating the transitions
{i+l, ...,m}). Starting from the minimal support S-Invariants of R i, the algorithm will
generate all Ri+l S-Invariants. Any Ri+l S-Invariant, Yji+l, is also an R i S-Invariant,
although it is not necessarily a minimal support S-Invariant. Therefore, any YJi+l can be
written as a linear combination of the Ri minimal support S-Invariants.

EXAMPLE: Consider the net depicted in Figure A. 1.

pl

Figure A.1 Petri Net PNa

The computation starts with matrix E 1, provided below:

1000000000 -1 0 0 0 0 0
0100000000 1-1 0 0 0 0
0010000000 0 1 -10 0 0
0001000000 0 0 1 0 0 0
0000100000 -11 0-1 1 0
0000010000 0-1 1 0-1 1
0000001000 0 0 0-1 0 0
0000000100 0 0 0 1-1 0
0000000010 0 0 0 0 1-1
0000000001 0 0 0 0 0 1

In C

119

I n represents all the minimal support S-Invariants of R0, (each place is the support of a

minimal support S-Invariant).

Q p2 p3 4

0 5 0 p6

p7

o Op8 Op9 plo0

Figure A.2 Petri Net RO

By applying the algorithm, E2 is constructed, and presented below:

j V V V V V V V V , - % V V

0010000000 1-1 0 00
0001000000 0 1 000
0;000000 -JJUVJ_ 1 -1 1 0
0000010000 -1 1 0-1 1
0000001000 00 -1 0 0
0000000100 00 1-10
0000000010 0 0 0 1-1
0000000001 0 0 0 0 1
1100000000 -1 0 0 0 0 New rows
0100100000 0 0-1 1 0 1 1row

It is still possible to check that the rows of D1 are the minimal support S-Invariants of the

Petri Net R 1.

120

pl ti p2 p3

OP3 oP 4

p5 Qp6

p7

0 0 0 p 010°

Figure A.3 Petri Net R 1

In this appendix, the main loop is applied a last time, and thus E 3 is constructed, and

presented below:

-000000000 n 1 n

0000001000 0 -1 0 0
0000000100 0 1-1 0
0000000010 0 0 1-1
0000000001 (I 0 0 0 1

0100100000 0-1 1 0
0010010000 (0 -1 1 New.....
1110000000 -1 1 0N r

It is still possible to verify that the rows of D 2 are the minimal support S-Invariants of the

Petri Net R 2.

121

plt p2 p3 OP 4

p6

p7

0 0 p8 0 p9 0 plO

Figure A.4 Petri Net R 2

CONCLUSION: This is a fast (incidence matrices are in general shallow) and powerful

algorithm, which generates a generator family of minimal support S-Invariants.

122

APPENDIX B

PROPERTIES OF S-INVARIANTS IN A DECISION FREE PETRI NET

Some properties of S-Invariants, defined in chapter II, are presented here. Some of them are

general, while others are more specific to the class of Petri Nets considered in this work. The

class of Petri Nets used has the following characteristics:
· The Petri Net contains a set of sources, i.e., a set of places with no input transitions.

Sources represent nodes where information arrives from the sensors of the system.
* The Petri Net contains a set of sinks, i.e., a set of places with no output transitions.

Sinks represent outputs or responses of the system to the environment.

* The Petri Net is decision free, i.e., there is no place with more than one output transition.

This property is translated into the following relation:

V p P, card(p')<1 (B.1)

More precisely, if a place is not a sink, we have, for any other place of the net the

following relation:

V p e P, card(p') = 1 (B.2)

A Petri Net model of a distributed system may contain directed circuits. Among these

directed circuits, two structurally different classes are distinguished. These two classes are

presented below.

Definition B.1:
A resource loop is an elementary circuit which is a marked graph.

Definition B.2:
An information loop is a directed circuit such that it contains at least a place that has more

than one input transition.

123

Property B.1:

Given the class of Petri Net used in this work, any loop belongs in one of the two

categories.

Proof:

If a circuit is a marked graph, then, none of its places has more than one input transition.

Conversely, a circuit that contains a place that has more than one input transition is not a

marked graph. No loop can belong to both categories.

The decision free nature of the Petri Nets under consideration in this work insures that a

directed circuit does not contain any place having more than one output transition. Therefore any

loop, which is not a marked graph is such that it contains at least a place having more than one

input transition. Thus, every loop belongs to one of the two categories.

In a Petri Net model of a distributed system, a resource loop is used to model the availability

of a resource to a function or a group of functions. An information loop is used to model the

storage of data or information. As a matter of fact, it will be shown later that a flow of
information in a net that contains an information loop stops in the loop.

Lemma B.1:

In a Petri Net, the following conditions are necessary for a subnet to be an S-Component:

* i) there are no transitions in the net having their preset being empty.
* ii) there are no transitions in the net having their postset being empty.

Proof:

Given a subnet, if it is the S-Component of an S-Invariant, then, for the n places of the

subnet, the following relation holds:

M (p). xi = constant (B.3)
i=l

where any xi is strictly positive.
If i) is not verified, then there exists a transition which, when firing, removes a token from a

place, Pn, of the subnet, and does not create any token in any place of the net. Therefore,

after the firing of that transition, the left hand side of the relation becomes:

124

, M (p.. x i + (M (p,) - 1). x n (B.4)

The difference between the left hand side of relation (B.3), and relation (B.4) is x n. By

definition of an S-Invariant, x n is non null, and therefore, relation (B.3) is not verified
whatever the firing. The subnet cannot be the S-Component of an S-Invariant.
Similarly, if ii) is not verified, then there exists a transition which, when firing, creates a
token in a place, Pn, of the subnet, and does not remove any token in any place of the
subnet. Therefore, after the firing of that transition, the left hand side of the relation
becomes:

r-1

M (p)-. xi + (M (PN) + 1) xn (B.5)
i=1

The difference between relation (B.5), and the left member of relation (B.3) is x n. By
definition of an S-Invariant, xn is non null, and therefore, relation (B.3) is not verified

whatever the firing. The subnet cannot be the S-Component of an S-Invariant.

Lemma B.2:

Given a subnet, a necessary condition for it to be an S-Component is that, for any place of
the subnet, the number of input transitions in the subnet equals the number of its input
transitions in the Net.

In other words, the necessary condition is that the subnet must contain all the input transitions of

any of its places in the net.

Proof:

If it is supposed that a place pi of an S-Component, S, is such that one of its input
transitions, tl, is not present in the subnet, then by definition of an S-Component, no input

place of tl belongs to the subnet. Therefore, {-t} r' PS = 0. The firing of tl creates a new

token in pl and no token is removed from any place of the subnet. Therefore, ii) from
lemma B. 1 can be applied. The subnet is not an S-Component.

Lemma B.3:

In a Petri Net, if a circuit is a marked graph, then this circuit is a minimal support
S-Invariant.

125

This lemma states that a resource loop is a minimal support S-Invariant. This result has been

generalized by Hillion, (1986), who proved that in a Petri Net, any directed elementary circuit is

a minimal support S-Invariant.

Proof:

Given that the circuit is a marked graph, the firing of any transition in the circuit removes a

token from its input place that belongs to the circuit, and creates a token in the output place

that belongs to the circuit. Therefore, there is conservation of tokens in the circuit. If the
firing of a transition that does not belong to the circuit is considered, then no token can be

removed from a place of the circuit, since by hypothesis it is a marked graph, and as such,

each place has only one output transition that is part of the circuit. Similarly, no token can be
created in the circuit since each place of the circuit has only one input transition that is part of
the circuit. The S-Invariant is a minimal support S-Invariant since the removal of places in

the circuit creates a subnet that is a simple path. In this path, there is at least a place such that

its input transition, tl, does not belong to the path. In turn, this place has no input place

belonging to the path. As a result, the firing of tl allows the creation of a token in a place

without any token removal from any place of the path. Therefore, ii) from lemma B.1 can be

applied. The subnet is not an S-Component.

Lemma B.4:

In a Petri Net with sources and sinks, given a subnet which is not a resource loop, if it does
not contain a source, then it is not an S-Component.

Proof: Consider an S-Component which is not a resource loop, and one of its places, Pi. If this

place is not a source, then, rule ii) of lemma B. 1 states that there exists a transition, t i,

belonging to -Pi, the non empty preset of Pi-. Rule i) of lemma B. 1 can in turn be applied to

ti . Therefore, there exists a place, pj, belonging to the non empty preset of ti . This process

can be applied recursively to construct a sequence of nodes. As the subnet is not a resource

loop, it is possible to construct that sequence of nodes without including twice the same

node in the sequence. Therefore, given the finite nature of the net and the constraint of

lemma B.1, the sequence stops when a source is encountered.

Lemma B.5:

A directed circuit, in which at least one of its places, Pi, has more than one input transition is

126

not an S-Component. More precisely, any S-Invariant whose S-Component contains such a
loop, contains at least a directed path from a source to the place Pi. Further, to be the
S-Component of a minimal support S-Invariant, such S-component cannot contain 1) any
directed path originating from a node of the loop and containing nodes that do not belong to
the loop, and 2) any directed path from a source to the loop, whose first node belongs to the
loop is a transition.

This lemma states that:

a) -an information loop can not be a minimal support S-Invariant.
b) any S-component that contains an information loop must contain some directed path

from sources to the multi input places of the loop.
c) any S-Component of a minimal support S-Invariant that contains an information

loop, does not contain any directed path originating from a node of the information
loop and containing nodes that do not belong to the loop.

d) any S-Component of a minimal support S-Invariant that contains an information
loop does not contain any directed path from a source to the information loop whose
first node belonging to the loop is a transition.

Proof:
Because Pi has an input transition that does not belong to the information loop, the firing of
that transition creates a new token in Pi, but does not affect the marking of the other places
of the directed circuit. Therefore the result of ii) of lemma B.1 is applicable: an information
loop is not the S-Component of an S-Invariant.
Lemma B.3 can also be applied to the information loop, and therefore, if there is not at least

a directed path from a source to Pi that is part of the subnet containing the information loop,
then that subnet cannot be an S-Invariant.

Given the decision free nature of the Petri Net, any directed path originating from a node of
the loop contains a transition, tO, of the loop and one of its output place, pO, that does not
belong to the loop itself. If this directed path is part of the S-Component of a minimal
support S-Invariant which also contains the information loop, then a relation similar to (B.3)
exists. The firing sequence involving the directed sequence of transitions of the loop,
starting from tO is considered. The result of that firing sequence is that the marking of the
loop is unchanged, and a token has been created in pO. Therefore, the weighted conservation
of token can hold only if, when tO fires, a token is removed from an input place to tO that is
not part of the loop. In this case, the firing of tO results in a twofold independent
conservation of tokens, one within the loop, and the other along the directed path which

127

contains only one node of the loop, tO. In this case, there is an S-Invariant which is the
result of the combination of at least two minimal support S-Invariants. That subnet is not the
S-component of a minimal support S-Invariant.

Similarly, if a directed path existed in the S-Component whose first node in common with
the loop in its sequence is a transition, ti, the same firing sequence as above would show the
creation of a token in the output place of ti that belongs to the loop, Pi, and the marking of
the other places of the loop would be unchanged. Therefore, the weighted conservation of
token can hold only if, when ti fires, a token is created in an output place of ti that is not part
of the loop. In this case, the firing of ti results in a twofold independent conservation of
tokens, one within the loop, and the other along the directed path which contains only one
node of the loop, ti . In this case, there is an S-Invariant which is the result of the
combination of at least two minimal support S-Invariants. That subnet is not the
S-component of a minimal support S-Invariant.

Corollary B.1:

A subnet which is the S-Component of a minimal support S-Invariant and which contains an
information loop does not contain any sink.

Proof:

If such a subnet existed, then there would be a directed path from a node of the loop to the
sink. This is in contradiction with the result of lemma B.3 that in order to be a minimal

support S-Invariant, an S-Component containing an information loop does not contain such
a directed path.

Lemma B.6:

In a decision free Petri Net, there is no subnet that contains two sinks and which is the
S-Component of a minimal support S-Invariant.

Proof:

Suppose there is a subnet with two sinks, and it is a minimal support S-Invariant. Then,
according to corollary B.1, this subnet contains sources and it can be inferred that it consists
of a set of directed paths from sources to sinks. Furthermore, as the subnet is, by
hypothesis, a minimal support S-Invariant, then there is no loop attached to it. If there exists
more than one sink, then that means that some directed paths diverge at a certain node. This
node cannot be a place as it would contradict the decision free assumption. Therefore the
node is a transition. If the node is a transition, then it is clear that there exists a conservation

128

of tokens for the set of directed paths from the sources to a given sink, regardless of what
the firing is of the other transitions in the other branch, from the transition to the sink.
Therefore, we can evidence another S-Invariant whose support is included in the support of
the other S-Invariant. Therefore, the subnet cannot be the S-Component of a minimal
support S-Invariant.

Theorem B. 1:
In a decision free Petri Net with multiple sources and multiple sinks, there are at
most three classes of minimal support S-Invariants:

a) minimal support S-Invariants whose S-Components are resource loop.
b) minimal support S-Invariants whose S-Components are sets of directed paths from a

set of sources to a set of sinks, and which do not include any loop.
c) minimal support S-Invariants whose support is made of:

* a set of directed paths from a set of sources to an information loop.
* the information loop itself.

Proof:
In lemma B.3, it has been established that a resource loop is the S-Component of a minimal
support S-Invariant. Therefore, any subnet containing a resource loop cannot be the
S-Component of a minimal support S-Invariant, as the support of the resource loop would
be included in the support of the subnet.
Suppose there exists an S-Component of a minimal support S-Invariant which consists of
directed paths from a set of sources to> a set of sinks, and an information loop. It has been
established in corollary B. 1 that a minimal support S-Invariant whose support contains an
information loop cannot contain any sink. Therefore, the S-Component under consideration
cannot be inferred from a minimal support S-Invariant.

In this appendix, minimal support S-Invariants have been categorized into three classes, as
described in theorem B.1. Further, the decision free nature of the Petri Nets implies that there is
no minimal support S-Invariant containing in its support more than one sink.

The methodology to construct complete information flow paths consists of two steps after
the S-Components have been determined. In the first step, the S-Components that contain the
sink of the complete information flow path are coalesced together. Theorem B.1 shows that these
S-Components are of type b). In the second step, the S-Components added are of type a) and c),
and correspond to S-Components containing a cycle.

129

APPENDIX C

MINIMAL SUPPORT S-INVARIANTS IN THE SYSTEM NET # 1

In this appendix, the full list of all the minimal support S-Invariants that are present in the

stategy system net 1 is presented. They have been obtained by a computer implementation of the

algorithm by Alaiwan and Toudic (1985) presented in Appendix A. The listing of these minimal

support S-Invariants is made by providing the support of each S-Invariant.

Invariant 1:

c2 c3 c4 c5 pl p14 p35 p42 p 49

Invariant 2:

c2 c3 c4 c5 pl p 14 p37 p44 p51
Invariant 3:

cll c12 p62 p63 j5 p67 p69 p71

Invariant 4:

c10 cll c12 p61 j3 p110 jll p116 p117 p122

Invariant 5:

c2 c3 c4 c5 pl p14 p31 j3 pllO1 jll p116 p117 p122

Invariant 6:

clO cll c12 p61 j3 pill p112 jll p116 p117 p12 2

Invariant 7:

c2 c3 c4 c5 pl p 14 p31 j3 plll p 112 jll p116 p1 17 p 122

Invariant 8:

c2 c3 c4 c5 pl p 14 p33 p177 p187 p18 8 j8-1 p190

Invariant 9:

clO cll c12 c13 p3 p15 p53 p149 p177 p187 p188 j7-2 j8-1 p190

Invariant 10:

clO cll c12 c13 p3 p15 p53 p147 p148 p177 p187 p188 j7-2 j8-1 p190

Invariant 11:

c12 p74 p75 p76 j4 p177 p182 p187 p188 j9-1 p190

130

Invariant 12:

c2 c3 c4 c5 c12 pl p14 p36 p75 p76 j4 p177 p182 p187 p188

j9-1 p190

Invariant 13:

cll c12 p62 p63 j5 p68 p75 p76 j4 p177 p182 p187 p188 j9-1

p190

Invariant 14:

c12 p74 p75 p78 p82 j4 p177 p182 p187 p188 j9-1 p190

Invariant 15:

c2 c3 c4 c5 c12 pl p14 p36 p75 p78 p82 j4 p177 p182 p1 87

p188 j9-1 p190

Invariant 16:

cll c12 p62 p63 j5 p68 p75 p78 p82 j4 p177 p182 p187 p188 j9-1 p190
Invariant 17:

c12 p74 p75 p79 p83 j4 p177 p182 p187 p188 j9-1 p190

Invariant 18:

c2 c3 c4 c5 c12 pl p14 p36 p75 p79 p83 j4 p177 p182 p187 p188 j9-1 p190

Invariant 19:

cll c12 p62 p63 j5 p68 p75 p79 p83 j4 p177 p182 p187 p188 j9-1 p190

Invariant 20:

c2 c3 c4 c5 pl p14 p33 p178 p179 p187 p188 j8-1 p190

Invariant 21:

clO cll c12 c13 p3 p15 p53 p149 p178 p179 p187 p188 j7-2 j8-1 p190

Invariant 22:

clO cll c12 c13 p3 p15 p53 p147 p148 p178 p179 p187 p188 j7-2 j8-1 p190
Invariant 23:

c12 p74 p75 p76 j4 p178 p1 79 p182 p187 p1 88 j9-1 p190
Invariant 24:

c2 c3 c4 c5 c12 pl p14 p36 p75 p76 j4 p178 p 179 p 182 p187 p188 j9-1 p190
Invariant 25:

cll c12 p62 p63 j5 p68 p75 p76 j4 p178 p179 p182 p187 p 188 j9-1 p190
Invariant 26:

c12 p74 p75 p78 p82 j4 p178 p179 p182 p187 p188 j9-1 p190

131

Invariant 27:

c2 c3 c4 cS5 c12 pl p14 p36 p75 p78 p82 j4 p178 p179 p182 p187 p188 j9-1 p190

Invariant 28:

cll c12 p62 p63 j5 p68 p75 p78 p82 j4 p178 p179 p182 p187 p188 j9-1 p190
Invariant 29:

c12 p74 p75 p79 p83 j4 p178 p179 p182 p187 p188 j9-1 p190

Invariant 30:

c2 c3 c4 c5 c12 pl p14 p36 p75 p79 p83 j4 p178 p179 p182 p187 p188 j9-1 p190

Invariant 31:

cll c12 p62 p63 j5 p68 p75 p79 p83 j4 p178 p179 p182 p187 p188 j9-1 p190

Invariant 32:

c2 c3 c4 c5 clO cll c12 pl p14 p33 p61 j3 p110 jll p114 p177 p187 j8-1 p190

Invariant 33:

clO cll c12 c13 p3 p15 p53 p61 j3 p110 jll p114 p149 p177 p187 j7-2 j8-1 p190

Invariant 34:
clO cll c12 c13 p3 p15 p53 p61 j3 p110 jll p114 p147 p148 p177 p18 7 j7-2 j8-1
p190

Invariant 35:

clO cll c12 p61 p74 p75 p76 j4 j3 p110 jll p114 p177 p182 p187 j9-1 p190
Invariant 36:

c2 c3 c4 c5 clO cll c12 pl p14 p36 p61 p75 p76 j4 j3 p110 jll p114 p177 p182

p187 j9-1 p190
Invariant 37:
clO cll c12 p61 p62 p63 j5 p68 p75 p76 j4 j3 p110 jll p114 p1 77 p182 p18 7 j9-1
p190
Invariant 38:

c1lO cll c12 p61 p74 p75 p78 p82 j4 j3 p110 jll p114 p177 p182 p187 j9-1 p190

Invariant 39:

c2 c3 c4 c5 cO1 cll c12 pl p14 p36 p61 p75 p78 p82 j4 j3 p110 jll p114 p177

p182 p1 87 j9-1 p190
Invariant 40:

clO cll c12 p61 p62 p63 j5 p68 p75 p78 p82 j4 j3 p110 jll p114 p1 7 7 p182 p1 87

j9-1 p190

132

Invariant 41:

clO cll c12 p61 p74 p75 p79 p83 j4 j3 pllO jll p114 p177 p182 p187 j9-1 p190

Invariant 42:

c2 c3 c4 c5 clO cll c12 pl p14 p36 p61 p75 p79 p83 j4 j3 p110 jll p114 p177

p182 p187 j9-1 p1-90
Invariant 43:

clO cll c12 p61 p62 p 63 j5 p68 p75 p79 p83 j4 j3 p110 jll p114 p1 77 p182 p187

j9-1 p190
Invariant 44:

c2 c3 c4 c5 pl p14 p31 p 33 j3 pllO jll p114 p 177 p 187 j8-1 p190
Invariant 45:

c2 c3 c4 c5 clO cll c12 c13 pl p3 p14 p15 p31 p53 j3 pllO jll p114 p149 p177

p187 j7-2 j8-1 p190
Invariant 46:

c2 c3 c4 c5 clO cll c12 c13 pl p3 p14 p15 p31 p53 j3 pllO jll p114 p147 p148

p177 p 187 j7-2 j8-1 p190
Invariant 47:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p76 j4 j3 pllO jll p114 p177 p182 p187 j9-1

p190
Invariant 48:

c2 c3 c4 c5 c12 pl p 14 p31 p36 p75 p76 j4 j3 pllO jll p114 p1 77 p182 p1 87 j9-1

p190
Invariant 49:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p 63 j5 p68 p75 p76 j4 j3 pllO jll p114 p1 77

p182 p1 87 j9-1 p190
Invariant 50:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p7 8 p 82 j4 j3 pllO jll p 114 p177 p1 82 p1 87

j9-1 p190
Invariant 51:

c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p78 p 82 j4 j3 pllO jll p114 p177 p182 p187

j9-1 p190
Invariant 52:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p78 p82 j4 j3 pllO jll p114

p177 p182 p1 87 j9-1 p190

133

Invariant 53:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p79 p83 j4 j3 pllO jll p114 p177 p182 p187

j9-1 p190

Invariant 54:

c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p79 p83 j4 j3 pllO jll p114 p177 p182 p187

j9-1 p190

Invariant 55:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p79 p83 j4 j3 pllO jll p114

p177 p182 p187 j9-1 p190

Invariant 56:

c2 c3 c4 c5 clO cll c12 pl p14 p33 p61 j3 plll p112 jll p114 p177 p187 j8-1

p190

Invariant 57:

clO cll c12 c13 p3 p 15 p53 p61 j3 plll p112 jll p114 p149 p177 p187 j7-2 j8-1

p190

Invariant 58:

clO cll c12 c13 p3 p15 p53 p61 j3 plll p112 jll p114 p147 p148 p177 p187 j7-2

j8-1 p190

Invariant 59:

clO cll c12 p61 p74 p75 p76 j4 j3 pill p112 jll p114 p177 p182 p187 j9-1 p190

Invariant 60:

c2 c3 c4 c5 clO cll c12 pl p14 p36 p61 p75 p76 j4 j3 pill p112 jll p114 p177

p182 p187 j9-1 p190

Invariant 61:

clO cll c12 p61 p62 p63 j5 p68 p75 p76 j4 j3 pill pl112 jll p114 p177 p182 p187

j9-1 p190

Invariant 62:

clO cll c12 p61 p74 p75 p78 p82 j4 j3 pill p112 jll p114 p177 p182 p187 j9-1

p190

Invariant 63:

c2 c3 c4 c5 clO cll c12 pl p14 p36 p61 p75 p78 p82 j4 j3 pill p112 jll p114

p177 p182 p187 j9-1 p190

134

Invariant 64:

clO cll c12 p61 p62 p63 j5 p68 p75 p78 p82 j4 j3 plll p112 jll p114 p177 p182

p187 j9-1 p190

Invariant 65:

clO cll c12 p61 p74 p75 p79 p83 j4 j3 plll p112 jll p114 p177 p182 p187 j9-1

p190
Invariant 66:

c2 c3 c4 c5 cO1 cll c12 pl p14 p36 p61 p75 p79 p83 j4 j3 plll p112 jll p114

p177 p182 p187 j9-1 p190
Invariant 67:

clO cll c12 p61 p62 p63 j5 p68 p75 p79 p83 j4 j3 pll p112 jll p114 p177 p182

p187 j9-1 p190
Invariant 68:

c2 c3 c4 c5 pl p14 p31 p33 j3 pll p112 jll p114 p177 p187 j8-1 p190
Invariant 69:

c2 c3 c4 c5 clO cll c12 c13 pl p3 p14 p15 p31 p53 j3 pll p112 jll p114 p149

p177 p187 j7-2 j8-1 p190
Invariant 70:

c2 c3 c4 c5 clO cll c12 c13 pl p3 p14 p15 p3i p53 j3 plll p112 jll p114 p147

p148 p177 p187 j7-2 j8-1 p190

Invariant 71:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p76 j4 j3 pll p112 jll p114 p177 p182 p187

j9-1 p190

Invariant 72:

c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p76 j4 j3 pll p112 jll p114 p177 p182 p187

j9-1 p190
Invariant 73:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p76 j4 j3 plll p112 jll p114

p177 p182 p187 j9-1 p190

Invariant 74:

c2 c3 c4 c5 c12 pl p 14 p31 p74 p75 p78 p82 j4 j3 plll p 112 jll p114 p177 p182

p187 j9-1 p190

135

Invariant 75:
c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p78 p82 j4 j3 plll p112 jll p114 p177 p182

p187 j9-1 p190

Invariant 76:

c2 c3 c4 c5 cll c12 pl p1 4 p31 p62 p63 j5 p68 p75 p78 p82 j4 j3 plll p112 jll
p114 p177 p182 p187 j9-1 p190

Invariant 77:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p79 p83 j4 j3 plll p112 jll p114 p177 p182

p187 j9-1 p190

Invariant 78:

c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p79 p83 j4 j3 plll p112 jll p114 p177 p182

p187 j9-1 p190
Invariant 79:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p79 p83 j4 j3 plll p 112 jll

p114 p177 p182 p187 j9-1 p190

Invariant 80:

c2 c3 c4 c5 clO cll c12 pl p14 p33 p61 j3 p110 jll p114 p178 p179 p187 j8-1

p190
Invariant 81:

clO cll c12 c13 p3 p15 p53 p61 j3 p110 jll p114 p149 p178 p179 p187 j7-2 j8-1

p190
Invariant 82:

c10 cll c12 c13 p3 p15 p53 p61 j3 p110 jll p114 p147 p148 p178 p179 p187 j7-2

j8-1 p190
Invariant 83:

clO cll c12 p61 p74 p75 p76 j4 j3 p110 jll p114 p178 p179 p182 p187 j9-1 p190
Invariant 84:

c2 c3 c4 c5 cO1 cll c12 pl p14 p36 p61 p75 p76 j4 j3 p110 jll p114 p178 p179

p182 p187 j9-1 p190

Invariant 85:

c10 cll c12 p61 p62 p63 j5 p68 p75 p76 j4 j3 p110 jll p114 p178 p179 p182 p187

j9-1 p190

136

Invariant 86:

clO cll c12 p61 p74 p75 p78 p82 j4 j3 p110 jll p114 p178 p179 p182 p 187 j9-1

p190

Invariant 87:

c2 c3 c4 c5 c10 cll c12 pl p14 p36 p61 p75 p78 p82 j4 j3 pllO jll p114 p178

p179 p182 p187 j9-1 p190

Invariant 88:

clO cll c12 p61 p62 p63 j5 p68 p75 p78 p82 j4 j3 p110 jll p114 p178 p179 p182

p187 j9-1 p190

Invariant 89:

clO cll c12 p61 p74 p75 p79 p83 j4 j3 p110 jll p114 p178 p179 p182 p187 j9-1

p190

Invariant 90:

c2 c3 c4 c5 clO cll c12 pl p14 p36 p61 p75 p79 p83 j4 j3 pllO jll p114 p178

p179 p182 p187 j9-1 p190

Invariant 91:

clO cll c12 p61 p62 p63 j5 p68 p75 p79 p83 j4 j3 pllO jll p114 p178 p179 p182

p187 j9-1 p190

Invariant 92:

c2 c3 c4 c5 pl p14 p31 p33 j3 pllO jll p114 p178 p179 p187 j8-1 p190

Invariant 93:

c2 c3 c4 c5 clO cll c12 c13 pl p3 p14 p15 p31 p53 j3 pllO jll p114 p149 p178

p179 p187 j7-2 j8-1 p190

Invariant 94:

c2 c3 c4 c5 clO cll c12 c13 pl p3 p14 p15 p31 p53 j3 pllO jll p114 p147 p148

p178 p179 p187 j7-2 j8-1 p190

Invariant 95:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p76 j4 j3 pllO jll p114 p178 p179 p182 p187

j9-1 p190

Invariant 96:

c2 c3 c4 c5 c12 pl p14 p31 p 36 p75 p76 j4 j3 pllO jll p114 p178 p179 p 182 p1 87

j9-1 p190

137

Invariant 97:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p76 j4 j3 pllO jll p114 p178

p179 p182 p187 j9-1 p190

Invariant 98:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p78 p82 j4 j3 pllO jll p114 p178 p179 p182

p187 j9-1 p190

Invariant 99:

c2 c3- c4 c5 c12 pl p14 p31 p36 p75 p78 p82 j4 j3 p110 jll p114 p178 p179 p182

p187 j9-1 p190

Invariant 100:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p78 p82 j4 j3 p110 jll p114
p178 p179 p182 p187 j9-1 p190

Invariant 101:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p79 p83 j4 j3 pllO jll p114 p178 p179 p182

p187 j9-1 p190

Invariant 102:

c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p79 p83 j4 j3 pllO jll p114 p178 p179 p 182

p187 j9-1 p190

Invariant 103:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p7 5 p 79 p83 j4 j3 pllO jll p114
p178 p179 p182 p187 j9-1 p190

Invariant 104:

c2 c3 c4 c5 clO cll c12 pl p1 4 p33 p61 j3 pill p112 jll p114 p178 p179 p1 87

j8-1 p190
Invariant 105:
clO cll c12 c13 p3 p 15 p53 p61 j3 plll p112 jll p114 p14 9 p178 p17 9 p187 j7-2

j8-1 p190
Invariant 106:

clO cll c12 c13 p3 p15 p53 p61 j3 pill p112 jll p114 p14 7 p14 8 p178 p179 p1 87

j7-2 j8-1 p190
Invariant 107:

clO cll c12 p61 p 74 p75 p76 j4 j3 plll p112 jll p114 p1 78 p179 p18 2 p187 j9-1

p190

138

Invariant 108:

c2 c3 c4 c5 clO cll c12 pl p14 p36 p61 p75 p76 j4 j3 plll p112 jll p114 p178

p179 p182 p187 j9-1 p190

Invariant 109:

clO cll c12 p61 p62 p63 j5 p68 p75 p76 j4 j3 plll p112 jll p114 p178 p179 p182

p187 j9-1 p190

Invariant 110:

c10 cll c12 p61 p74 p75 p78 p82 j4 j3 plll p112 jll p114 p178 p179 p182 p187-

j9-1 p190

Invariant ll1:

c2 c3 c4 c5 c10 cll c12 pl p14 p36 p61 p75 p78 p82 j4 j3 pll p112 jll p114

p178 p179 p182 p187 j9-1 p190

Invariant 112:

clO cll c12 p61 p62 p63 j5 p68 p75 p78 p82 j4 j3 plll p112 jll p114 p178 p179

p182 p187 j9-1 p190

Invariant 113:

clO cll c12 p61 p74 p75 p79 p83 j4 j3 plll p112 jll p114 p178 p179 p182 p187

j9-1 p190

Invariant 114:

c2 c3 c4 c5 cO1 cll c12 pl p14 p36 p61 p75 p79 p83 j4 j3 pll p112 jll p114

p178 p179 p182 p187 j9-1 p190

Invariant 115:

clO cll c12 p61 p62 p63 j5 p68 p75 p79 p83 j4 j3 pll p112 jll p114 p178 p179

p182 p187 j9-1 p190

Invariant 116:

c2 c3 c4 c5 pl p14 p31 p33 j3 plll p112 jll p114 p178 p179 p1 87 j8-1 p190

Invariant 117:

c2 c3 c4 c5 cO1 cll c12 c13 pl p3 p14 p15 p31 p53 j3 plll p112 jll p114 p149

p178 p179 p187-j7-2 j8-1 p190

Invariant 118:

c2 c3 c4 c5 cO1 cll c12 c13 pl p3 p14 p15 p31 p53 j3 pll p112 jll p114 p147

p148 p178 p179 p187 j7-2 j8-1 p190

139

Invariant 119:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p76 j4 j3 plll p112 jll p114 p178 p179 p182

p187 j9-1 p190

Invariant 120:

c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p76 j4 j3 plll p112 jll p114 p178 p179 p182

p187 j9-1 p190

Invariant 121:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p76 j4 j3 plll p112 jll p114

p178 p179 p182 p187 j9-1 p190

Invariant 122:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p78 p82 j4 j3 plll p112 jll p114 p178 p179

p182 p187 j9-1 p190

Invariant 123:

c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p78 p82 j4 j3 plll p112 jll p114 p178 p179

p182 p187 j9-1 p190

Invariant 124:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p78 p82 j4 j3 plll p112 jll

pll4 p178 p179 p182 p187 j9-1 p190

Invariant 125:

c2 c3 c4 c5 c12 pl p14 p31 p74 p75 p79 p83 j4 j3 pll p112 jll p114 p178 p179

p182 p187 j9-1 p190

Invariant 126:

c2 c3 c4 c5 c12 pl p14 p31 p36 p75 p79 p83 j4 j3 pll p112 jll p114 p178 p179

p182 p187 j9-1 p190
Invariant 127:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p63 j5 p68 p75 p79 p83 j4 j3 plll p1 12 jll

p114 p178 p179 p182 p187 j9-1 p190

Invariant 128:

c-1 p95 p96 jl p98 p104 p190

Invariant, 129:

c-1 p95 p96 jl p107 p108 p109
Invariant 130:

clO cll c12 p61 c-1 p95 p96 jl p98 j3 p110 jll p114 p190

140

Invariant 131:

c2 c3 c4 c5 pl p14 p31 c-1 p95 p96 jl p98 j3 p110 jll p114 p190

Invariant 132:

clO cll c12 p61 c-1 p95 p96 jl p98 j3 plll p112 jll p114 p190

Invariant 133:

c2 c3 c4 c5 pl p14 p31 c-1 p95 p96 jl p98 j3 plll p112 jll p114 p190

Invariant 134:

c2 c3 c4 c5 pl p14 p33 c-1 p95 p96 jl p98 p188 j8-1 p190

Invariant 135:
clO cll c12 c13 p3 p15 p53 c-1 p95 p96 jl p98 p149 p188 j7-2 j8-1 p190

Invariant 136:

clO cll c12 c13 p3 p15 p53 c-1 p95 p96 jl p98 p147 p148 p188 j7-2 j8-1 p190

Invariant 137:

c12 p74 p75 p76 j4 c-1 p95 p96 jl p98 p182 p188 j9-1 p190

Invariant 138:
c2 c3 c4 c5 c12 pl p14 p36 p75 p76 j4 c-1 p95 p96 jl p98 p182 p188 j9-1 p190

Invariant 139:

cll c12 p62 p63 j5 p68 p75 p76 j4 c-1 p95 p96 jl p98 p182 p188 j9-1 p190

Invariant 140:
c12 p74 p75 p78 p82 j4 c-1 p95 p96 jl p98 p182 p188 j9-1 p190

Invariant 141:

c2 c3 c4 c5 c12 pl p14 p36 p75 p78 p82 j4 c-1 p95 p96 jl p98 p182 p188 j9-1

p190

Invariant 142:

cll c12 p62 p63 j5 p68 p75 p78 p82 j4 c-1 p95 p96 jl p98 p182 p188 j9-1 p190

Invariant 143:

c12 p74 p75 p79 p83 j4 c-1 p95 p96 jl p98 p182 p188 j9-1 p190

Invariant 144:

c2 c3 c4 c5 c12 pl p14 p36 p75 p79 p83 j4 c-1 p95 p96 jl p98 p182 p188 j9-1

p190

Invariant 145:

cll c12 p62 p63 j5 p68 p75 p79 p83 j4 c-1 p95 p96 jl p98 p182 p188 j9-1 p190

Invariant 146:

c2 c3 c4 c5 pl p14 p33 c-1 p95 p96 jl p104 p177 p187 j8-1 p190

141

Invariant 147:

clO cll c12 c13 p3 p15 p53 c-1 p95 p96 jl p104 p149 p177 p187 j7-2 j8-1 p190

Invariant 148:

clO cll c12 c13 p3 p15 p53 c-1 p95 p96 jl p104 p147 p148 p177 p187 j7-2 j8-1

p190

Invariant 149:

c12 p74 p75 p76 j4 c-1 p95 p96 jl p104 p177 p182 p187 j9-1 p190

Invariant 150:

c2 c3 c4 cS c12 pl p14 p36 p75 p76 j4 c-1 p95 p96 jl p104 p177 p182 p187 j9-1

p190

Invariant 151:

cll c12 p62 p63 j5 p68 p75 p76 j4 c-1 p95 p96 jl p104 p177 p182 p187 j9-1 p190

Invariant 152:

c12 p74 p75 p78 p82 j4 c-1 p95 p96 jl p104 p177 p182 p187 j9-1 p190

Invariant 153:

c2 c3 c4 cS c12 pl p14 p36 p75 p78 p82 j4 c-1 p95 p96 jl p104 p177 p182 p187

j9-1 p190

Invariant 154:

cll c12 p62 p63 j5 p68 p75 p78 p82 j4 c-1 p95 p96 jl p104 p177 p182 p187 j9-1

p190

Invariant 155:

c12 p74 p75 p79 p83 j4 c-1 p95 p96 jl p104 p177 p182 p187 j9-1 p190

Invariant 156:

c2 c3 c4 c5 c12 pl p14 p36 p75 p79 p83 j4 c-1 p95 p96 jl p104 p177 p182 p187

j9-1 p190

Invariant 157:

cll c12 p62 p63 j5 p68 p75 p79 p83 j4 c-1 p95 p96 jl p104 p177 p182 p187 j9-1

p190

Invariant 158:

c2 c3 c4 c5 pl p14 p33 c-1 p95 p96 jl p104 p178 p179 p187 j8-1 p190

Invariant 159:

clO cll c12 c13 p3 p15 p53 c-1 p95 p96 jl p104 p149 p178 p179 p187 j7-2 j8-1

p190

142

Invariant 160:

clO cll c12 c13 p3 p15 p53 c-1 p95 p96 jl p104 p147 p148 p178 p179 p187 j7-2

j8-1 p190

Invariant 161:

c12 p74 p75 p76 j4 c-1 p95 p96 jl p104 p178 p179 p182 p187 j9-1 p190

Invariant 162:

c2 c3 c4 c5 c12 pl p14 p36 p75 p76 j4 c-1 p95 p96 jl p104 p178 p179 p182 p187

j9-1 p190

Invariant 163:

cll c12 p62 p63 j5 p68 p75 p76 j4 c-l p95 p96 jl p104 p178 p179 p182 p187 j9-1

p190

Invariant 164:

c12 p74 p75 p78 p82 j4 c-1 p95 p96 jl p104 p178 p179 p 182 p187 j9-1 p190

Invariant 165:

c2 c3 c4 c5 c12 pl p14 p36 p75 p78 p82 j4 c-1 p95 p96 jl p104 p178 p179 p182

p187 j9-1 p190

Invariant 166:

cll c12 p62 p63 j5 p68 p75 p78 p82 j4 c-1 p95 p96 jl p104 p178 p179 p182 p187

j9-1 p190

Invariant 167:

c12 p74 p75 p79 p83 j4 c-1 p95 p96 jl p104 p178 p179 p182 p187 j9-1 p190

Invariant 168:

c2 c3 c4 c5 c12 pl p14 p36 p75 p79 p83 j4 c-1 p95 p96 jl p104 p178 p179 p182

p187 j9-1 p190

Invariant 169:

cll c12 p62 p63 j5 p68 p75 p79 p83 j4 c-1 p95 p96 jl p104 p178 p179 p182 p187

j9-1 p190

Invariant 170:

c6 c7 c8 c9 p2 p7 p13 p17 p22 p27

Invariant 171:

c6 c7 c8 c9 p2 p7 p13 p19 p149 p177 p187 p188 j7-2 j8-1 p190

Invariant 172:

c6 c7 c8 c9 p2 p7 p13 p19 p147 p148 p177 p187 p188 j7-2 j8-1 p190

143

Invariant 173:

c6 c7 c8 c9 p2 p7 p13 p19 p149 p178 p179 p187 p188 j7-2

j8-1 p190

Invariant 174:

c6 c7 c8 c9 p2 p7 p13 p19 p147 p148 p178 p179 p187 p188 j7-2 j8-1 p190

Invariant 175:

c6 c7 c8 c9 clO cll c12 p2 p7 p13 p19 p61 j3 p110 jll p114 p149 p177 p187 j7-2

j8-1 p190

Invariant 176:

c6 c7 c8 c9 clO cll c12 p2 p7 p13 p19 p61 j3 p110 jll p114 p147 p148 p177 p187

j7-2 j8-1 p190
Invariant 177:

c6 c7 c8 c9 c2 c3 c4 c5 pl p2 p7 p13 p14 p19 p31 j3 p110 jll p114 p149 p177

p187 j7-2 j8-1 p190

Invariant 178:

c6 c7 c8 c9 c2 c3 c4 c5 pl p2 p7 p13 p14 p19 p31 j3 p110 jll p114 p147 p148

p177 p187 j7-2 j8-1 p190

Invariant 179:

c6 c7 c8 c9 clO cll c12 p2 p7 p13 p19 p61 j3 pll p112 jll p114 p149 p177 p187

j7-2 j8-1 p190

Invariant 180:

c6 c7 c8 c9 clO cll c12 p2 p7 p13 p19 p61 j3 pll p112 jll p114 p147 p148 p177

p187 j7-2 j8-1 p190

Invariant 181:

c6 c7 c8 c9 c2 c3 c4 c5 pl p2 p7 p13 p14 p19 p31 j3 plll p112 jll p114 p149

p177 p1 87 j7-2 j8-1 p190
Invariant 182:

c6 c7 c8 c9 c2 c3 c4 c5 pl p2 p7 p13 p14 p19 p31'j3 pll p112 jll p114 p147

p148 p177 p187 j7-2 j8-1 p190

Invariant 183:

c6 c7 c8 c9 c10 cll c12 p2 p7 p13 p19 p61 j3 p110 jll p114 p149 p178 p179 p187

j7-2 j8-1 p190

144

Invariant 184:

c6 c7 c8 c9 clO cll c12 p2 p 7 p13 p19 p61 j3 pllO jll p114 p147. p148 p178 p179

p187 j7-2 j8-1 p190

Invariant 185:

c6 c7 c8 c9 c2 c3 c4 c5 pl p2 p7 p13 p14 p19 p31 j3 pl-10 jll p114 p14 9 p178

p179 p187 j7-2 j8-1 p190

Invariant 186:

c6 c7 c8 c9 c2 c3 c4 c5 pl p 2 p7 p13 p1 4 p 19 p31 j3 p110 jll p114 p147 p148

p178 p179 p187 j7-2 j8-1 p190

Invariant 187:

c6 c7 c8 c9 clO cll c12 p2 p7 p13 p19 p61 j3 plll p112 jll p114 p149 p178 p179

p187 j7-2 j8-1 p190

Invariant 188:

c6 c7 c8 c9 clO cll c12 p2 p7 p13 p19 p61 j3 plll p112 jll p114 p147 p148 p178

p179 p187 j7-2 j8-1 p190

Invariant 189:

c6 c7 c8 c9 c2 c3 c4 c5 pl p2 p7 p13 p14 p19 p31 j3 plll p112 jll p114 p149

p178 p179 p187 j7-2 j8-1 p190

Invariant 190:

c6 c7 c8 c9 c2 c3 c4 c5 pl p2 p7 p13 p14 p19 p31 j3 plll p112 jll p114 p147

p148 p178 p179 p187 j7-2 j8-1 p190

Invariant 191:

c6 c7 c8 c9 p2 p7 p13 p19 c-1 p95 p96 jl p98 p149 p188 j7-2 j8-1 p190

Invariant 192:

c6 c7 c8 c9 p2 p7 p13 p19 c-1 p95 p96 jl p98 p147 p148 p188 j7-2 j8-1 p190

Invariant 193:

c6 c7 c8 c9 p2 p7 p13 p19 c-1 p95 p96 jl p104 p149 p177 p187 j7-2 j8-1 p190

Invariant 194:

c6 c7 c8 c9 p2 p7 p13 p 19 c-1 p95 p96 jl p104 p 147 p148 p1 77 p187 j7-2 j8-1

p190
Invariant 195:

c6 c7 c8 c9 p2 p7 p13 p19 c-1 p95 p96 jl p104 p149 p178 p179 p187 j7-2 j8-1

p190

145

Invariant 196:

c6 c7 c8 c9 p2 p7 p13 p19 c-1 p95 p96 jl p104 p147 p148 p178 p179 p187 j7-2

j8-1 p190

Invariant 197:

cll c12 p62 p64 p65 j5 p67 p69 p71 p191

Invariant 198:

cll c12 p62 p64 p65 j5 p68 p75 p76 j4 p177 p182 p187 p188 p1 91 j9-1 p190

Invariant 199:

cll c12 p62 p64 p65 j5 p68 p75 p78 p82 j4 p177 p182 p187 p188 p191 j9-1 p190
Invariant 200:

cll c12 p62 p64 p65 j5 p68 p75 p79 p83 j4 p177 p182 p187 p188 p191 j9-1 p190
Invariant 201:

cll c12 p62 p64 p65 j5 p68 p75 p76 j4 p178 p179 p182 p187 p188 p191 j9-1 p190

Invariant 202:

cll c12 p62 p64 p65 j5 p68 p75 p78 p82 j4 p178 p179 p182 p187 p188 p191 j9-1

p190

Invariant 203:

cll c12 p62 p64 p65 j5 p68 p75 p79 p83 j4 p178 p179 p1 82 p187 p188 p191 j9-1

p190

Invariant 204:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p76 j4 j3 p110 jll p114 p177 p182 p187
p191 j9-1 p190

Invariant 205:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p78 p82 j4 j3 pllO jll p114 p177 p182

p187 p191 j9-1 p190

Invariant 206:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p79 p83 j4 j3 pllO jll p114 p17 7 p182
p187 p1 91 j9-1 p190
Invariant 207:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p76 j4 j3 pllO jll p114
p177 p182 p187 p191 j9-1 p190
Invariant 208:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p78 p82 j4 j3 pllO jll
p114 p 17 7 p 182 p187 p191 j9-1 p190

146

Invariant 209:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p79 p83 j4 j3 p110 jll
p114 p177 p182 p187 p191 j9-1 p190

Invariant 210:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p76 j4 j3 plll p112 jll p114 p177 p182

p187 p191 j9-1 p190

Invariant 211:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p78 p82 j4 j3 pll p112 jll p114 p177

p182 p187 p191 j9-1 p190

Invariant 212:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p79 p83 j4 j3 plll p112 jll p114 p177

p182 p187 p191 j9-1 p190

Invariant 213:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p76 j4 j3 plll p1 12 jll

p114 p177 p182 p187 p191 j9-1 p190

Invariant 214:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p78 p82 j4 j3 plll p1 12

jll p114 p177 p182 p187 p191 j9-1 p190

Invariant 215:

c2 c3 c4 cS cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p79 p83 j4 j3 plll p11 2

jll p114 p177 p182 p187 p191 j9-1 p190

Invariant 216:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p76 j4 j3 p110 jll p114 p178 p179 p182

p187 p191 j9-1 p190

Invariant 217:

c10 cll c12 p61 p62 p64 p65 j5 p68 p75 p78 p82 j4 j3 p110 jll p114 p178 p179

p182 p187 p191 j9-1 p190

Invariant 218:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p79 p83 j4 j3 p110 jll p114 p178 p179

p182 p187 p191 j9-1 p190

Invariant 219:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p76 j4 j3 p110 jll p114
p178 p179 p182 p187 p191 j9-1 p190

147

Invariant 220:

c2 c3 c4 c5-cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p78 p82 j4 j3 pllO jll

p114 p 178 p 17 9 p 18 2 p1 87 p191 j9-1 p190

Invariant 221:

c2 c3 c4 c5 cll c12 pl p 14 p31 p62 p6 4 p65 j5 p 68 p75 p7 9 p83 j4 j3 p110 jll

p114 p 17 8 p179 p 182 p187 p191 j9-1 p190

Invariant 222:

clO cll c12 p61 p62 p64 p65 j5 p68 p75 p76 j4 j3 plll p112 jll p114 p178 p179

p182 p187 p191 j9-1 p190

Invariant 223:

clO cll c12 p61 p 62 p64 p65 j5 p68 p7 5 p78 p 82 j4 j3 plll p112 jll pl14 p17 8

p179 p182 p187 p191 j9-1 p190

Invariant 224:

clO cll c12 p61 p62 p6 4 p65 j5 p68 p75 p79 p83 j4 j3 plll p112 jll p114 p178

p179 p 182 p 187 p191 j9-1 p190

Invariant 225:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p76 j4 j3 plll p11 2 jll

p14 p 178 p 179 p182 p 187 p1 91 j9-1 p190

Invariant 226:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p78 p82 j4 j3 plll p112

jll p114 p178 p179 p182 p187 p191 j9-1 p190

Invariant 227:

c2 c3 c4 c5 cll c12 pl p14 p31 p62 p64 p65 j5 p68 p75 p79 p83 j4 j3 plll p 112

jll p114 p178 p179 p182 p187 p191 j9-1 p190

Invariant 228:

cll c12 p62 p64 p65 j5 p68 p75 p76 j4 c-1 p95 p96 jl p98 p182 p188 p191 j9-1

p190

Invariant 229:

cll c12 p62 p64 p65 j5 p68 p75 p78 p82 j4 c-1 p95 p96 jl p98 p 182 p188 p191

j9-1 p190

Invariant 230:

cll c12 p62 p64 p65 j5 p68 p75 p79 p83 j4 c-1 p95 p96 jl p98 p1 82 p188 p1 91

j9-1 p190

148

Invariant 231:

cll c12 p62 p64 p6 5 j5 p68 p75 p76 j4 c-1 p95 p96 jl p104 p177 p182 p187 p191

j9-1 p190
Invariant 232:

cll c12 p62 p64 p65 j5 p68 p75 p78 p82 j4 c-1 p95 p96 jl p104 p177 p182 p187

p191 j9-1 p190
Invariant 233:

cll c12 p62 p64 p65 j5 p68 p75 p79 p83 j4 c-1 p95 p96 jl p104 p177 p182 p187

p191 j9-1 p190

Invariant 234:

cll c12 p62 p64 p65 j5 p68 p75 p76 j4 c-1 p95 p96 jl p104 p178 p179 p1 82 p187

p191 j9-1 p190
Invariant 235:

cll c12 p62 p64 p65 j5 p68 p75 p78 p82 j4 c-1 p95 p96 jl p104 p178 p179 p182

p187 p191- j9-1 p190
Invariant 236:

cll c12 p62 p64 p65 j5 p68 p75 p79 p83 j4 c-1 p95 p96 jl p104 p178 p179 p182

p187 p191 j9-1 p190

Invariant 237:

c-14 p94 p124 p127 p149 p177 p187 p188 j7-2 j8-1 p190

Invariant 238:

c-14 p94 p124 p127 p147 p148 p177 p187 p188 j7-2 j8-1 p190

Invariant 239:

c-14 p94 p124 p177 p187 p188 p197 j9-1 p190

Invariant 240:

c-14 p94 p124 p127 p149 p178 p179 p187 p188 j7-2 j8-1 p190

Invariant 241:

c-14 p94 p124 p127 p147 p148 p178 p179 p187 p188 j7-2 j8-1 p190

Invariant 242:

c-14 p94 p124 p178 p179 p187 p188 p197 j9-1 p190
Invariant 243:

clO cll c12 p61 c-14 p94 j3 pllO jll p114 p124 p127 p149 p177 p187 j7-2 j8-1

p190

149

Invariant 244:

clO cll c12 p61 c-14 p94 j3 pllO jll p114 p124 p1 27 p147 p148 p177 p187 j7-2
j8-1 p190
Invariant 245:
clO cll c12 p61 c-14 p94 j3 pllO jll p114 p124 p177 p1 87 p1 97 j9-1 p190
Invariant 246:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 pllO jll p114 p124 p127 p149 p177 p187 j7-2

j8-1 p190
Invariant 247:

c2 c3 c4 c5 pl p1 4 p31 c-14 p94 j3 pllO jll p114 p12 4 p127 p147 p14 8 p1 77 p18 7

j7-2 j8-1 p190
Invariant 248:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 pllO jll p114 p124 p177 p187 p197 j9-1 p190
Invariant 249:

clO cll c12 p61 c-14 p94 j3 pl.ll p112 jll p114 p124 p127 p149 p177 p1-87 j7-2

j8-1 p190

Invariant 250:

clO cll c12 p61 c-14 p94 j3 plll p112 jll p114 p12 4 p12 7 p1 47 p1 48 p1 77 p 18 7

j7-2 j8-1 p190

Invariant 251:

clO cll c12 p61 c-14 p94 j3 pll p112 jll p114 p124 p177 p187 p 197 j9-1 p190
Invariant 252:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 plll p112 jll p114 p124 p127 p149 p177 p187

j7-2 j8-1 p190
Invariant 253:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 plll p112 jll p114 p124 p127 p147 p148 p1 77

p187 j7-2 j8-1 p190
Invariant 254:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 plll p112 jll p114 p124 p177 p187 p197 j9-1

p190
Invariant 255:

clO cll c12 p61 c-14 p94 j3 pllO jl-l pll4 p124 p127 p149 p178 p179 p187 j7-2

j8-1 p190

150

Invariant 256:

clO cll c12 p61 c-14 p94 j3 pllO jll p114 p124 p127 p147 p148 p178 p179 p187

j7-2 j8-1 p190

Invariant 257:

clO cll c12 p61 c-14 p94 j3 p110 jll p114 p124 p178 p179 p187 p197 j9-1 p190

Invariant 258:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 p110 jll p114 p124 p127 p149 p178 p179 p187

j7-2 j8-1 p190

Invariant 259:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 p110 jll p114 p124 p127 p147 p148 p178 p179

p187 j7-2 j8-1 p190
Invariant 260:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 pllO jll p114 p124 p178 p179 p187 p197 j9-1

p190

Invariant 261:

clO cll c12 p61 c-14 p94 j3 plll p112 jll pl14 p124 p127 p149 p178 p179 p187

j7-2 j8-1 p190
Invariant 262:

clO cll c12 p61 c-14 p94 j3 plll p 112 jll pl14 p 124 p1 27 p147 p 148 p178 p179
p187 j7-2 j8-1 p190
Invariant 263:

clO cll c12 p61 c-14 p94 j3 plll p112 jll p114 p124 p178 p179 p187 p 197 j9-1
p190

Invariant 264:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 plll p112 jll pl14 p124 p127 p149 p178 p179

p187 j7-2 j8-1 p190

Invariant 265:

c2 c3 c4 c5 pl p14 p31 c-14 p94 j3 p111 p112 jll p114 p124 p127 p147 p148 p178

p179 p187 j7-2 j8-1 p190
Invariant 266:

c2 c3 c4 c5 pl p 14 p31 c-14 p94 j3 plll p 112 jll p114 p124 p178 p 17 9 p187 p197

j9-1 p190

Invariant 267:

c-1 c-14 p94 p95 p96 jl p98 p124 p127 p149 p188 j7-2 j8-1 p190

151

Invariant 268:

c-1 c-14 p94 p95 p96 jl p98 p124 p127 p147 p148 p188 j7-2 j8-1 pl90

Invariant 269:

c-1 c-14 p94 p95 p96 jl p98 p124 p188 p197 j9-1 p190

Invariant 270:

c-l c-14 p94 p95 p96 jl p104 p124 p127 p149 p177 p187 j7-2 j8-1 p190

Invariant 271:

c-1 c-14 p94 p95 p96 jl p104 p124 p127 p147 p148 p177 p187 j7-2 j8-1 p190

Invariant 272:

c-1 c-14 p94 p95 p96 jl p104 p124 p177 p187 p197 j9-1 p190

Invariant 273:

c-1 c-14 p94 p95 p96 jl p104 p124 p127 p149 p178 p179 p187 j7-2 j8-1 p190

Invariant 274:

c-1 c-14 p94 p95 p96 jl p104 p124 p127 p147 p148 p178 p179 p187 j7-2 j8-1 p190

Invariant 275:
c-1 c-14 p94 p95 p96 jl p104 p124 p178 p179 p187 p197 j9-1 p190

152

APPENDIX D

SIMPLE INFORMATION FLOW PATHS IN THE SYSTEM NET # 1

In this appendix the list of the simple information flow paths contained in the implemented
Petri Net # 1 is presented. This list has been obtained by running a computer implementation of

the algorithm described in appendix A. The simple information flow paths are obtained as an

ordered list of their transitions, from a source to the sink. Then, the labelling described in chapter
IV is applied to discriminate between the transitions representing functions, and those

representing an artifact of the model, communication protocols, or requests for information from

the database. Therefore, only the transitions representing processes are kept in each sequence of

a simple informationflow path. Thus, it may happen that some reduced sequence of processes are

the same. Therefore the redundant simple information flow paths are eliminated from the list.

Finally, there are one hundred and two simple information flow paths left. They are listed below

in the form of a source followed by a sequence of functions. Furthermore, they are grouped by

type of equivalent sequence of processing.

cl I fl-l-1 f10-1-1
cl I fl-1-1 f10-1-2

cl fl-2-1 flO-0-1
cl I fl-2-1 f10-1-2

cl I fl-l-l fll-l-l f10-1-i
cl I fl-l-1 fll-l-1 f10-1-2

cl I fl-2-1 f11-1-1 f--1 0-1-1

cl I fl-2-1 fll-l-1 flO-1-2

c2 I f2-1-1 f2-2-3 f3-1-1 fll-l-1 f10-1-1

c2 I f2-1-1 f2-2-3 f3-1-1 fll-l-1 f10-1-2

c3 I f2-1-2 f2-2-3 f3-1-1 f1-1-i f10-1-1
c3 I f2-1-2 f2-2-3 f3-1-1 fl1-1-1 f10-1-2
c4 I f2-1-3 f2-2-3 f3-1-1 fl 1-1-1 f10-1-1

153

c4 I f2-1-3 f2-2-3 f3-1-1 fll-1-l flO-1-2

c5 I f2-1-4 f2-2-3 f3-1-1 fll-l-1 flO-1-1
c5 I f2-1-4 f2-2-3 f3-1-1 fll-1-1 flO-1-2
clO I f2-1-9 f3-1-1 fll1-1-1 flO-1-1

clO I f2-1-9 f3-1-1 fll-l-l flO-1-2

cll I f2-1-10 f3-1-1 fll-l-l flO-1-1

cll I f2-1-10 f3-1-1 fl 1-1-1 flO-1-2

c12 I f2-1-11 f3-1-1 fll-l-1 flO-l-1

c12 1 f2-1-11 f3-1-1 fll-1-1 flO-1-2

c14 I f2-1-13 f9-1-3 flO-1-1

c14 I f2-1-13 f9-1-3 flO-1-2

c2 I f2-1-1 f2-2-3 f4-1-1 f9-1-3 flO-l-1

c2 I f2-1-1 f2-2-3 f4-1-2 f9-1-3 flO-1-1
c2 I f2-1-1 f2-2-3 f4-1-1 f9-1-3 f10-1-2
c2 I f2-1-1 f2-2-3 f4-1-2 f9-1-3 flO-1-2
c3 I f2-1-2 f2-2-3 f4-1-1 f9-1-3 flO-1-1
c3 I f2-1-2 f2-2-3 f4-1-2 f9-1-3 flO-1-1

c3 I f2-1-2 f2-2-3 f4-1-1 f9-1-3 flO-1-2

c3 I f2-1-2 f2-2-3 f4-1-2 f9-1-3 flO-1-2
c4 I f2-1-3 f2-2-3 f4-1-1 f9-1-3 flO-I-1

c4 I f2-1-3 f2-2-3 f4-1-2 f9-1-3 flO-1-2
c4 I f2-1-3 f2-2-3 f4-1-1 f9-1-3 flO-1-2
c4 I f2-1-3 f2-2-3 f4-1-2 f9-1-3 flO-l-1
c5 I f2-1-4 f2-2-3 f4-1-1 f9-1-3 f10-1-1
c5 I f2-1-4 f2-2-3 f4-1-1 f9-1-3 flO-1-2
c5 1 f2-1-4 f2-2-3 f4-1-2 f9-1-3 flO-l-1

c5 1 f2-1-4 f2-2-3 f4-1-2 f9-1-3 flO-1-2
c12 I f2-1-11 f4-1-1 f9-1-3 flO-l-1
c12 I f2-1-11 f4-1-1 f9-1-3 flO-1-2
c12 I f2-1-11 f4-1-2 f9-1-3 flO-I-1

c12 I f2-1-11 f4-1-2 f9-1-3 flO-1-2

154

c2 I f2-1-1 f2-2-3 f5-1-1 f4-1-2 f9-1-3 flO-1-1

c2 I f2-1-1 f2-2-3 f5-1-1 f4-1-1 f9-1-3 flO-l-1

c2 I f2-1-1 f2-2-3 f5-1-1 f4-1-2 f9-1-3 f10-1-2

c2 I f2-1-1 f2-2-3 f5-1-1 f4-1-1 f9-1-3 fO1-1-2
c3 I f2-1-2 f2-2-3 f5-I-1 f4-1-2 f9-1-3 f10-1-1

c3 I f2-1-2 f2-2-3 f5-1-1 f4-1-1 f9-1-3 flO-l-l
c3 I f2-1-2 f2-2-3 f5-i-1 f4-1-2 f9-1-3 fO1-1-2

c3 I f2-1-2 f2-2-3 f5-1-1 f4-1-1 f9-1-3 fO1-1-2
c4 I f2-1-3 f2-2-3 f5-1-1 f4-1-2 f9-1-3 flO-l-1

c4 I f2-1-3 f2-2-3 f5-1-1 f4-1-1 f9-1-3 flO-1-1
c4 I f2-1-3 f2-2-3 f5-1-1 f4-1-2 f9-1-3 flO-1-2
c4 I f2-1-3 f2-2-3 f5-1-1 f4-1-1 f9-1-3 flO-1-2

c5 I f2-1-4 f2-2-3 f5-l-1 f4-1-1 f9-1-3 flO-l-1
c5 I f2-1-4 f2-2-3 f5-l-1 f4-1-2 f9-1-3 flO-l-1

c5 I f2-1-4 f2-2-3 f5-1-1 f4-1-1 f9-1-3 flO-1-2
c5 I f2-1-4 f2-2-3 f5--1 f4-1-2 f9-1-3 flO-1-2

cll I f2-1-10 f5-1-1 f4-1-1 f9-1-3 flO-l-1
cll I f2-1-10 f5-1-1 f4-1-2 f9-1-3 flO-i-1
cll I f2-1-10 f5-1-i f4-1-2 f9-1-3 flO-1-2
cll I f2-1-10 f5-1-1 f4-1-1 f9-1-3 flO-1-2
c12 I f2-1-11 f5-l-1 f4-1-2 f9-1-3 flO-l-i
c12 I f2-1-11 f5-1-1 f4-1-1 f9-1-3 flO-l-1
c12 I f2-1-11 fS-l-1 f4-1-1 f9-1-3 flO-1-2

c12 I f2-1-11 f5-1-1 f4-1-2 f9-1-3 flO-1-2

c14 I f2-1-13 f7-1-2 f8-1-2 flO-l-1

c14 I f2-1-13 f7-1-2 f8-1-2 flO-1-2
c9 I f2-1-8 f2-2-1 f7-1-2 f8-1-2 flO-l-i

c13 I f2-1-12 f2-2-4 f7-1-2 f8-1-2 flO-l-1
c9 I f2-1-8 f2-2-1 f7-1-2 f8-1-2 flO-1-2
c13 I f2-1-12 f2-2-4 f7-1-2 f8-1-2 flO-1-2
c6 I f2-1-5 f2-2-1 f7-1-2 f8-1-2 flO-l-1

c7 I f2-1-6 f2-2-1 f7-1-2 f8-1-2 flO-l-1

155

c8 I f2-1-7 f2-2-1 f7-1-2 f8-1-2 flO-l-1

clO I f2-1-9 f2-2-4 f7-1-2 f8-1-2 flO-1-1
cll I f2-1-10 f2-2-4 f7-1-2 f8-1-2 flO-l-1
c12 I f2-1-11 f2-2-4 f7-1-2 f8-1-2 flO--l1
c6 I f2-1-5 f2-2-1 f7-1-2 f8-1-2 flO-1-2
c7 I f2-1-6 f2-2-1 f7-1-2 f8-1-2 flO-1-2
c8 I f2-1-7 f2-2-1 f7-1-2 f8-1-2 flO-1-2

clO I f2-1-9 f2-2-4 f7-1-2 f8-1-2 flO-1-2

cl1 I f2-1-10 f2-2-4 f7-1-2 f8-1-2 flO-1-2

c12 I f2-1-11 f2-2-4 f7-1-2 f8-1-2 flO-1-2

c2 I f2-1-1 f2-2-3 f8-1-2 flO-l-1
c3 I f2-1-2 f2-2-3 f8-1-2 flO-l-1
c4 I f2-1-3 f2-2-3 f8-1-2 flO-l-1
c9 I f2-1-8 f2-2-1 f8-1-2 flO-l-i
c2 I f2-1-1 f2-2-3 f8-1-2 flO-1-2
c3 I f2-1-2 f2-2-3 f8-1-2 flO-1-2
c4 I f2-1-3 f2-2-3 f8-1-2 flO-1-2

c9 I f2-1-8 f2-2-1 f8-1-2 flO-1-2
c6 1 f2-1-5 f2-2-1 f8-1-2 flO-l-1
c7 I f2-1-6 f2-2-1 f8-1-2 flO-l-1

c8 I f2-1-7 f2-2-1 f8-1-2 flO-l-1

c6 I f2-1-5 f2-2-1 f8-1-2 flO-1-2

c7 I f2-1-6 f2-2-1 f8-1-2 flO-1-2

c8 I f2-1-7 f2-2-1 f8-1-2 flO-1-2
c5 I f2-1-4 f2-2-3 f8-1-2 flO-l-1

c5 I f2-1-4 f2-2-3 f8-1-2 flO-1-2

156

