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ABSTRACT
Application source code protection is a major concern for
software architects today. Secure platforms have been pro-
posed that protect the secrecy of application algorithms and
enforce copy protection assurances. Unfortunately, these ca-
pabilities incur a sizeable performance overhead. Partition-
ing an application into secure and insecure regions can help
diminish these overheads but invalidates guarantees of code
secrecy and copy protection.

This work examines one of the problems of partitioning an
application into public and private regions, the ability of an
adversary to recreate those private regions. To our knowl-
edge, it is the first to analyze this problem when considering
application operation as a whole. Looking at the fundamen-
tals of the issue, we analyze one of the simplest attacks pos-
sible, a “Memoization Attack.” We implement an efficient
Memoization Attack and discuss necessary techniques that
limit storage and computation consumption. Experimenta-
tion reveals that certain classes of real-world applications are
vulnerable to Memoization Attacks. To protect against such
an attack, we propose a set of indicator tests that enable an
application designer to identify susceptible application code
regions.

1. INTRODUCTION
Proprietary software architects have always been concerned

with software piracy as well as the protection of trade-secret
algorithms. However, the ease with which the Internet has
allowed Intellectual Property (IP) to be stolen has made sys-
tem and application security a first order concern for both
hardware and software designers. This is not only a prob-
lem of individuals knowingly using an unlicensed applica-
tion. But often the ability to “crack” an application can lead
directly to the creation of viruses and Trojan horses that can
affect any number of otherwise honest users. Therefore, ap-
plication designers frequently go to great lengths to ensure
the secrecy of application code.

In this work we investigate one of the most basic meth-
ods for an adversary to determine the functionality of hid-
den application code, a “Memoization Attack .” This attack
is meant to succeed against some of the security systems
recently proposed that protect applications by partitioning
code into public and private regions of execution [30, 46].
We have implemented a Memoization Attack, run it against
a number of applications, and developed methods of identi-
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fying when an arbitrary application might be vulnerable to
such an attack.

Surely, the most secure way to enable copy protection
and maintain code secrecy is to run an entire application on
some kind of Trusted Computing Base (TCB), only commu-
nicating the final outputs to the user when necessary. How-
ever, in practice this would place too much of a burden on
the TCB. For example, secure processors can be thought
of as a TCB that protects sensitive regions of code and
data through encryption. A unique secret can be embed-
ded within a processor and used to decrypt and execute an
application when loaded. Unfortunately, whole-application
encryption can inhibit the use of shared libraries, complicate
upgrades and patches, and most importantly, force cryp-
tographic resources to be used during the execution of an
entire application. Whether the cryptographic logic exists
in hardware or software, there will be sizeable performance
and power penalties to pay. Since typically only a small por-
tion of an application is considered sensitive IP, it does not
make sense to suffer losses from protecting the entire thing.
Therefore, a partitioned application remedies these issues by
only requiring a TCB to execute the sensitive IP, and leaves
all other code to be executed by conventional means.

Application partitioning is a well studied concept that
aims to protect software IP by simply separating all or most
of the sensitive areas of code, and privately executing them
on a TCB. Systems have been developed that can do this
using secure processors [30, 46], secure co-processors [55],
dongles [38], or remote servers [14]. The key requirement of
these systems is only a general purpose computing resource
that can secretly execute code in the face of any kinds of
attack [2, 27, 37].

While it seems self-evident that running an entire piece of
software on a TCB guarantees its IP privacy and licensing
assurances, it is not clear if these guarantees hold true for
individual partitions of a partitioned application. If only a
sub-region of an application is run on a TCB, it may be pos-
sible for an adversary to reconstruct that unknown applica-
tion code. Such a reconstruction would allow the adversary
to create his own application that duplicates the functional-
ity of the original, invalidating the application designer’s IP.
Therefore, it is of the utmost importance to analyze the dif-
ferent ways by which an adversary might recover the hidden
application code found in partitioned applications.

In Section 2, we put forth a simple adversarial model.
Section 3 defines what a Memoization Attack is, and shows
that it is the “best” possible attack an adversary can mount
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given our model. Section 4 describes one practical and effi-
cient implementation of this attack, and Section 5 describes
when the attack can be effective. Using these insights, Sec-
tion 6 proposes heuristic metrics that can be used to identify
whether a partitioned region of application code is suscep-
tible to an Memoization Attack. Section 7 discusses other
work in this area and Section 8 concludes.

2. ATTACK MODEL
In this work, we restrict our focus to one of the simplest

types of adversary imaginable. As will be described in Sec-
tion 2.4, our adversary can only observe the execution of a
partitioned application and then attempt to reconstruct the
hidden regions that are run on a TCB using that observa-
tion. More sophisticated adversaries are easy to envision,
however, we feel it prudent to explore a very basic model
to its fullest extent. Further, the adversarial powers we de-
scribe here can be considered necessary for a number of more
complex types of adversaries.

2.1 TCB and Partitioned Application Model
For the sake of clarity we will only focus on one type of

TCB model so that we can describe more concretely what
actions an adversary can and cannot take, and what con-
stitutes a partitioned applications. To this end, we look at
physically secure processors and co-processors [30, 46, 55]
since these represent some of the most secure methods that
exist for TCB code execution. Specifically, we choose the
aegis secure architecture [46] because of its fairly straight-
forward protocol for the execution of partitioned applica-
tions. The remainder of this paper and all of our experi-
ments assume this model for a TCB.

In the aegis secure architecture a partitioned application
is merely a combination of private encrypted regions and
public unencrypted regions of code that switch back and
forth during execution using two distinct processor modes.
Application memory is also separated into encrypted and
unencrypted regions, conceptually forming private and pub-
lic divisions of data and code. The encrypted portions of
code can only run in a secure mode that decrypts instruc-
tions, executes them, and protects the secrecy and integrity
of any private data these instructions operate on. While ex-
ecuting in this mode an adversary can only observe accesses
to public data, and cannot observe or modify private data or
program execution. Unencrypted portions of a partitioned
application run in an insecure mode, with no protection of
the data the instructions operate on.

For simplicity, we assume that procedures and the data
structures they “own” are the fundamental units of pub-
lic and private division. We also assume that procedures
do not maintain state across calls within encrypted regions
of memory. Disallowing a procedure to maintain encrypted
state between calls allows for a more clean analysis and is
fairly realistic for a large number of procedures within ap-
plications

2.2 What an Adversary Can Observe
Figure 1 depicts a fragment of a partitioned application

while it is run on an aegis secure architecture. Progress-
ing downward is an execution trace of an application as it
switches from a public region of code to a private region and
back. To reduce clutter, we only show reads and writes to
main memory and do not show any other machine opera-

tions (such as add, etc.).
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Figure 1: Visible and hidden procedure inputs and

outputs in a partitioned application.

Beginning in box I a public region of code executes and
performs some arbitrary procedure. Note that, this being
a public procedure, all accesses to memory can only touch
regions of memory that are also public. Since this is unen-
crypted code executing on a conventional processor, an ad-
versary can inspect everything involved with the procedure.
The procedure itself can be read to determine its control
flow, the processor state can be examined cycle-by-cycle,
and all memory requests and responses can be sniffed.

At the end of box I the procedure calls a private region of
code (box II) and transfers control to the TCB to execute
that private procedure. This call requires procedure argu-
ments to be passed to the TCB, as shown by the registers
“r1,” etc. in Figure 1 (as defined by the application bi-
nary interface and including the stack and frame pointers).
Similarly, once the procedure completes, a return value is
also passed back from the TCB to the conventional pro-
cessor. Since the private procedure was encrypted, an ad-
versary cannot inspect the code directly to determine its
control flow, nor can it examine the processor state cycle-
by-cycle since its a TCB. Further, this TCB model hides
any accesses to its private memory stack that the private
procedure makes.

Therefore, the only information an adversary can observe
relating to the private code is the arguments passed into the
procedure, the return value passed back from the procedure,
and any accesses to public memory that the private proce-
dure makes (since public memory requests cannot be hidden
by the TCB and the values within public memory are unen-
crypted). All three of these can be described as a collection
of Address/Value (AV) pairs, where the “Address” indicates
a memory address or argument register identifier, and the
“Value” is the actual data being accessed. Once the private
procedure returns to execution to public code (box III), the
adversary can again observe everything.

2.3 Adversary Goals
Principally, IP secrecy and copy protection depends on

preventing an adversary from discovering the contents of a
partitioned application’s private code. However, it is critical
that we notice that an adversary does not need to exactly
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determine the contents of a private region of code, but must
only reproduce a private procedure’s effect on the system suf-
ficiently well as to allow the entire partitioned application to
continue to function as designed . Therefore, an adversary’s
most simple goal is to replace “authentic” private proce-
dures with indistinguishable “counterfeit” procedures that
can reproduce the adversary’s desired “functionality” and
“utility” of the partitioned application as a whole.

Ultimately, the only functionality that matters to an ad-
versary is the set of application outputs that result from
some set of inputs he is interested in. If the set of inputs
are time-dependent, then the adversary may further only be
interested in reproducing functionality for a limited amount
of time. To this extent, an adversary need not understand
each private procedure, but must only duplicate its external
effects. For example, assume a fragment of an application
performing the power function f(x, p) = xp is made secret.
If an adversary only ever cares about executions when p = 3
then his only interest is in duplicating code that performs
f(x, 3) = x3.

Consequently, this limited sense of duplication of func-
tionality is exactly what we should be concerned with when
analyzing possible attacks on a partitioned application. This
can be formally defined as Temporal Application Operation
Equivalence (T-AOE).

Definition 1. T-AOE(APP ′, APP ′′, 〈Λ〉, ts, ω)

Assume two applications APP ′ and APP ′′ begin execu-
tion at time 0 and finish execution at the same time H.
During each unit of time between 0 and H, both applica-
tions are given the same, new vector of inputs Λt chosen
from some set of many input vectors, the total available in-
put set 〈Λ〉. These applications are T-AOE at some time
ts for the length of time ω if, during the period [ts, ts + ω],
the responses or results of both applications Ψ′

t and Ψ′′
t , are

exactly equivalent (assuming 0 ≤ ts ≤ H and (ts +ω) ≤ H).

Given this definition, the adversary we are concerned with
aspires to create a counterfeit private region of code for a
specific partitioned application that maximizes T-AOE time
ω (ideally, ω → (H − ts)). This ω can be thought of as the
adversary’s “time-till-failure.”

2.4 Adversarial Powers
Unfortunately, any realistic adversary we try to model in-

volves a human who has some innate prior knowledge about
the application under attack that can make the process of
recreating a hidden region of code trivial. For all we know
the adversary may even be the author of the original source
code for a private procedures.

Given the inability to formally capture such knowledge,
we will simply treat a private procedure as a mathematical
function with inputs and outputs the adversary is capable
of observing. Our adversary has no understanding of the
purpose of a private procedure and can only obtain knowl-
edge of the code’s functionality by observing the procedure
arguments, the public memory accesses, and the procedure
output of an authentic application run on a TCB. Note,
although it seems probable for a real-world attack, our ad-
versary does not analyze the available public code at all to
infer any “meaning” to the application. This would again
prove quite troublesome to model.

To formally specify these powers, we say that for each call
to a private procedure, an adversary is aware of an input set
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Figure 2: Basic technique a Memoization Attack.

λ of memory reads and the procedure’s arguments, and an
output set ψ of memory writes and the procedure’s return
value. These can be thought of as a vector of data values
indexed by addresses or register numbers. Combining these
vectors forms a single input/output relationship pair (λ,ψ).
An adversary observing multiple calls to a private procedure
can collect a multiple number of these pairs.

3. MEMOIZATION ATTACKS
A “Memoization Attack” is the name we give to an attack

that uses an authentic private procedure’s input/output re-
lationship pairs to create an alternate counterfeit version.
Figure 2 shows one way a Memoization Attack can be per-
formed. The adversary begins by running an authentic ap-
plication using a TCB for some amount of time. During this
time all input/output relationship pairs (λ,ψ) of the private
procedures are observed and stored into a single “Interaction
Table.” At some point the adversary stops executing the au-
thentic application on the TCB and constructs replacement
private procedures using the interaction table that was cap-
tured. He can then continue to execute the application using
these counterfeit private procedures. Whenever a counter-
feit procedure is called, the set of inputs λ are read, and the
interaction table is searched for a match. If a match is found
the counterfeit procedure returns the corresponding output
set ψ, emulating the procedure, and continues execution of
the application. Otherwise the application fails and termi-
nates. The application continues running as long as calls to
the counterfeit procedure are completed correctly, agreeing
with our previous definition of failure under T-AOE.

To determine just how powerful this attack can be, let
us first assume there exists an adversary with infinite mem-
ory and computational power, but who must also abide by
the restrictions on adversarial powers discussed in Section
2. Note, while this adversary may have infinite general pur-
pose computational power, we assume that he cannot de-
crypt private procedures and is restricted to the use of a
real TCB to run authentic applications. Therefore what an
adversary can observe from the execution of an authentic
application remains the same as in a Memoization Attack
since this is essentially defined by our model (although with
infinite memory this adversary can save everything). Our
question is then: can this omnipotent adversary mount a
different type of attack that can outperform a Memoization
Attack (that is, have a longer ω value for T-AOE).
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Now let us assume that this adversary observes L calls
to an authentic private procedure, somehow creates and in-
serts his own counterfeit procedure, and continues running
the application. No matter how the counterfeit procedure is
constructed, when the counterfeit procedure is called during
emulation only one of two things can happen. If the exact
set of inputs λ had been seen during the observation phase,
then the adversary can simply return the set of correspond-
ing outputs ψ that it had saved. However, if the set of in-
puts to the counterfeit procedure contain any new elements,
then the adversary must rely on some other knowledge to
decide what to output. Unfortunately, the only knowledge
the adversary has is the set of input/output relationship
pairs already seen. In the absence of any other knowledge,
there’s no reason to believe there’s any correlation between
prior input/output relationship pairs and the current input.
Such a correlation requires a “prior” or an abstract learning
model. Therefore this adversary’s best option is simply to
uniformly guess the values within the output set.

If the maximum number of outputs the procedure returns
is σ, and the number of possible different outputs is κ, then
the probability of the adversary guessing every output cor-
rectly is

`

1
κ

´σ
. Assuming each set of inputs is uniformly

selected from the set of all possible inputs, Γ, the proba-
bility of an adversary correctly emulating a new call to a
counterfeit procedure is
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Assuming an extremely large set Γ, the probability of a
guess being correct is practically zero, which makes this at-
tack look quite the same as a Memoization Attack. Further,
the probability of an adversary successfully emulating ω calls
is simply a sequence of Bernoulli trials, so Pω = (Pcall)

ω.
Therefore, even an adversary with access to unlimited

memory and unlimited computational power cannot do bet-
ter than simply memoizing every input/output relationship
pair he observes. Given no innate knowledge of a private
procedure, nor any idea of its output distribution, an attack
as simple as a Memoization Attack is also the best attack
possible.

Note, we do not consider adversaries with knowledge of
a non-uniform output distribution of a private procedure.
These adversaries may be able to increase their probability
of success when guessing, but algorithmic effort to increase
this probability likely exhibits diminishing returns. That
is, it is our intuition that the computation time required to
approximate the output distribution grows exponentially as
a function of this approximation’s accuracy.

4. IMPLEMENTING MEMOIZATION
To investigate the feasibility of a Memoization Attack, we

implemented a tool that is capable of observing the execu-
tion of a partitioned application, constructing an interaction
table, replacing all private procedures with counterfeit pro-
cedures, and re-running the partitioned application on alter-
nate inputs. Although building such a tool may sound easy,
a naive implementation would require more computational
and storage resources than are available on a standard com-
puter workstation. Therefore, we present here some of the
tactics used to streamline the implementation so that it can
be executed efficiently.

4.1 System Setup
To create a tool that performs a Memoization Attack, we

created a special functional simulator for our chosen TCB
(an aegis processor). Binary applications are run on the
simulator, using some input data set, while attack-specific
tasks are performed in the background whenever a transi-
tion is encountered from a public to a private procedure. In
an attack, the simulator is first started in an observation
mode, which saves an interaction table to disk as the ap-
plication is run. The simulator is then restarted, using a
different input data set, and uses the saved interaction table
to emulate all private procedures. An assembly rewriting
tool was constructed to automate the separation of public
and private procedures in compiled applications.

4.2 Creating an Interaction Table
At first glance, creating an interaction table sounds quite

simple: observe an application execute and create a flat
mapping of each private procedure’s inputs and correspond-
ing outputs. However, emulating a private procedure with
such a flat lookup does not work on real systems. The prob-
lem is: at the moment when a private procedure is first
called an adversary cannot know all of the input values to
that private procedure. This is because the procedure it-
self determines what memory addresses are to be read as
inputs during execution. This is what we call “Input Self-
Determination,” and is demonstrated in Figure 3. As we
can see in the figure, an adversary cannot know whether ad-
dress B is actually part of the input set until we know the
value at address A.

?

BA C D

Memory Addresses

{A}

{A,B}

{A,C}

{A,B,C}

{A,C,B}

Input Set =

Z = read(A)

X = read(B)

if (Z)

else
X = read(C)

write (D,X)

priv_proc():

Figure 3: When procedure is called, full set of inputs

are unknown due to Input Self-Determination.

Therefore, our interaction table must contain more infor-
mation than just the input/output relationship pairs; the
table must keep information about the temporal ordering of
those pairs as they occurred during the execution of the au-
thentic application. One way to visualize such a table is
shown in Figure 4, where each “column” represents a call to
the procedure which holds an ordered list of Address/Value
pairs.

Register Input

( Address, Value )
Pair

Register Output

time

r1 = 0xfff4

Call  N

r8 = 0x0

r1 = 0xfff4

Call  2

r8 = 0x2

r11 = 0x0

r1 = 0xfff4

r8 = 0x7

r11 = 0x1

Call  1

read  ( 0x4012, 0x1 )

write  ( 0x4452, 0x1e )

write  ( 0x4460, 0xf0 )

read  ( 0x4012, 0x0 )

write  ( 0x4452, 0x62 )

write  ( 0x4450, 0x20 )

read  ( 0x4020, 0x8 )

write  ( 0x4210, 0x4 )

r11 = 0x0

Figure 4: Basic private procedure interaction table.

4.3 Emulation using an Interaction Table
Once an adversary has created an interaction table of the

type discussed in Section 4.2, he can quite easily emulate
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r1 = 0xfff4
r3 = 0x7

r11 = 0x1

read  ( 0x4072, 0x12 )

read  ( 0x4012, 0x5 )

read  ( 0x4100, 0x64 )

write  ( 0x4440, 0xe4 )

r1 = 0xfff4

read  ( 0x4084, 0x1d )

read  ( 0x4080, 0xfe )

r1 = 0xfff4
r3 = 0x7

r11 = 0x4

read  ( 0x4012, 0x5 )

read  ( 0x4100, 0x54 )

r1 = 0xfff4
r3 = 0x7

r11 = 0x1

read  ( 0x4072, 0x12 )

read  ( 0x4012, 0x5 )

Column  2 Column  3 Column  4

r11 = 0x8

r3 = 0x3

write  ( 0x4432, 0xe0 )

read  ( 0x4100, 0x54 )

read  ( 0x4072, 0x30 )

write  ( 0x4400, 0x0 )

read  ( 0x4088, 0x20 )

Emulation Procedure:

Column  1

Candidate Columns

Read r1 = 0xfff4
r3 = 0x7

1 { 1, 2, 4 }

Read3

Read ( 0x4012, 0x5 )2 { 1, 2, 4 }

Read ( 0x4100, 0x64 )4

Write ( 0x4440, 0xe4 )5 { 2 }

r11 = 0x1Write6

( 0x4072, 0x12 )

{ 2 }

{ 1, 2 }

{ 2 }

Figure 5: Emulation steps using a basic interaction

table.

any private procedure that is run on inputs he has already
seen. We show how this emulation can be done in Figure
5. When a private procedure is called, the input arguments
(registers r1, etc.) are matched against the previously seen
arguments found at the beginning of each column (indepen-
dent procedure call) in the table. The set of columns with
matching arguments then constitutes a set of candidate pre-
viously observed procedure calls that the current procedure
call might be an exact copy of. Notice, the next row of all
the candidate columns is the same and dictates whether a
memory read or write happened in the previously observed
calls. If the next row is a write, the write is performed and
the following row is inspected (which will still be the same
for all columns). However, if the next row is a read, there
exists a new input value and the set of candidate rows can
possibly be reduced. This continues until a row contains the
procedure’s return value, in which case the emulation suc-
ceeds, or the set of candidate columns is reduced to zero, in
which case the emulation fails.

4.4 Compressing an Interaction Table
The method for creating an interaction table described in

Section 4.2 is sound and will work on procedures that have
very few inputs or are called only a few times. However, be-
cause of the way it maintains order information, this table’s
size will grow unmanageably when dealing with procedures
that have numerous inputs (many memory reads) or proce-
dures that are called often with many different values for
their inputs.

To solve this issue, we instead imagine the structure keep-
ing track of the ordering of inputs and outputs as a tree.
Instead of each column representing a unique call to the
procedure, the root of the tree represents the beginning of
any call to the private procedure and each branch leaving
the root is one possible execution path. Such a tree can re-
duce the amount of redundant data found in our interaction
table (as might have been noticed in Figure 5).

An example of what this tree might look like is shown in
Figure 6. Notice that since only memory reads can change
an execution path, each “tree node” contains the memory
address of the next read that should be performed in that
one execution path, as well as any writes that must be made
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List of writes
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0x7
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( 0x4424, 0x0 )

r3 = 0x7 r3 = 0x7

write ( 0x4410, 0x1e )

r1 = 0xfff4

read ( 0x4100, . . . )

. . .

r1 = 0xffc0

. . .

r1 = 0xffc0

write ( 0x4420, 0x60 )

read ( 0x4072, 0x2 )

r1 = 0xfff4

r3 = 0x3

read ( 0x4100, . . . )

. . .

r3 = 0x3

write ( 0x4420, 0x5c )

read ( 0x4088, . . . )

read ( 0x4100, 0x20 )

r3 = 0x7

write ( 0x4410, 0x1e )

read ( 0x4072, 0x1 )

r1 = 0xfff4

. . . . . .

read ( 0x4104, . . . )read ( 0x4100, . . . )

write ( 0x4424, 0x0 )

Figure 6: An interaction tree holding the same in-

formation as in Figure 5, but in a compressed form.

before that next read is input. A private procedure can
be emulated using this tree in much the same way as an
interaction table is used as described in Section 4.3.

Although this tree drastically reduces the amount of data
we must save to perform a Memoization Attack, it still con-
tains some redundancies. The actual data structure used in
the implementation of our attack tool is significantly more
complicated, and is basically a full, possibly cyclic graph
that intelligently keeps track of unique paths from a single
start node to many possible end nodes.

The motivation for this is based on the following obser-
vation: when a tree keeps track of inputs and outputs to
a private procedure, loops within a single call can create
an extremely deep and repetitive tree, even when the same
memory addresses and values are being read over and over.
Further, often multiple calls to a private procedure that dif-
fer in their initial arguments can later exhibit identical input
and output traces for long periods of time. For example, a
procedure that takes two input arguments, computes many
values using the first argument, but only uses the second
argument at the very end of the procedure. When using
a tree data structure this would create two separate, but
nearly identical branches from the root.

Unfortunately, due to space constraints, we cannot de-
scribe exactly how this graph data structure is constructed
and used for emulation, but only that it is based on a unique-
numbering method that pinpoints divergences and conver-
gences of execution traces. We have found that by using
such a graph data structure, surprisingly less space will be
consumed than with a tree data structure.

5. EFFECTIVENESS OF MEMOIZATION
After running our implementation of a Memoization At-

tack on a number of applications in the SPEC CPU2000 [22]
suite, we found that two particular types of partitioned ap-
plications are susceptible to this attack. By this we mean
that an adversary has a good chance of successfully emu-
lating the private procedures of a partitioned application,
given an arbitrary or naive partitioning of that application
into public and private regions. The two classes of applica-
tions can be identified by the types of inputs they require to
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accomplish their task, applications with Partially Repeated
Input Sets and applications with Composite Input Sets.

5.1 Applications with Partially Repeated
Input Sets

The first class of partitioned applications we found to be
susceptible to a Memoization Attack are those that have pri-
vate procedures that are called when the exact same inputs
are given to a single execution of an application over and
over (such as a repeated common function like “save”), or
those that have private procedures that are only ever called
when the application reads identical inputs on every execu-
tion (such as fixed runtime flags or a common data set).

To illustrate this class, we examined the “Parser” appli-
cation found in the SPEC CPU2000 suite, and assumed a
partitioning scheme that only treats individual procedures
as private or public. Parser executes in two stages, first it
processes a fixed dictionary file, and second it analyzes sen-
tences for their grammatic structure using that dictionary.
At any time it also accepts special directives from a user that
can perform the same operation over and over. Both traits
(two stage execution and special directives) are indicative of
an application with partially repeated input sets.

To test whether a Memoization Attack would succeed, we
designated the special command() procedure in main.c to
be private. We then observed the application while sending
the !echo directive (that sets whether to display output to
the screen) which uses the special command() procedure.
Parser was then run on new input data and we were able
to emulate the call the !echo without any problems.

Next, we made the is equal() procedure in read-dict.c

private and observed the application when run on the stan-
dard dictionary file and the input file “smred.in” taken from
MinneSPEC [42]. This procedure is only called while Parser
reads the dictionary file. In our attack, we were able to
correctly emulate this procedure when executing the entire
Parser application on much larger input files mdred.in and
lgred.in. Both attacks proved successful. Further, Table 1
shows that the storage requirements for the interaction table
(or actually graph, cf. Section 4.4) are not large at all.

Metric
Parser Parser

special command() is equal()

Total number of
283 5

nodes in graph
Size on disk

26,972 3,042,968
(in Bytes)

Maximum number of inputs
743 5

per call

Table 1: Size of memoized private procedures.

5.2 Applications with Composite Input Sets
The second class of partitioned applications we found sus-

ceptible to Memoization Attacks are those that contain pri-
vate deeply “inner” procedures (such as libraries) that are
only ever fed a finite number of unique inputs (due to the
control flow of the calling procedures), no matter what ex-
ternal inputs are given to the application as a whole. In
this case a Memoization Attack might succeed by simply
observing an authentic application run on any large set of
inputs, hoping to “cover” or “saturate” the set of inputs to
the inner procedure. Because these “saturating” procedures
are often not immediately apparent (unlike, perhaps, those
mentioned in Section 5.1) this class of applications repre-

sents a significant problem for a software architecture who
would like to prevent Memoization Attacks.

To test whether a Memoization Attack would succeed on
this class of applications we attempted to emulate a few
procedures from the Gzip and Parser applications in the
SPEC CPU2000 suite, assuming a partitioning scheme that
only treats individual procedures as private or public. Table
2 summarizes the results.

In our attack of Gzip, we attempt to emulate a number
of procedures using the input file ref.log after observing
the execution of Gzip on just the ref.random input file,
both the ref.random and ref.graphic input files, and so
on. Even though there is virtually no overlap between these
inputs, we found that the bi reverse() procedure can be
emulated almost entirely correctly. Of the 1, 797 calls made
to bi reverse() while processing ref.log, 1, 741 of the calls
contained the exact same procedure inputs as had been ob-
served when running Gzip on the first four input files.

Similarly, our attack on Parser attempted to emulate a
number of procedures using the the mdred.in and smred.in

input files after observing the execution of the application
using the lgred.in input file. Although none of the proce-
dures could be fully emulated after memoizing input/output
relationships pairs from lgred.in, it is clear that there are
still many duplicated procedure calls between the two unre-
lated input files. It might even be possible for an adversary
to fully emulate the contains one() procedure if he simply
observes a large enough set of application inputs from an
input file.

From this experimentation we see that a Memoization At-
tack may be able to succeed even when application inputs
seen during emulation are completely unrelated to applica-
tion inputs recorded during observations.

6. IDENTIFYING APPLICATIONS THAT
ARE VULNERABLE TO ATTACK

In Section 5 we have shown that a Memoization Attack
can succeed on certain classes of applications. This may
be useful information for an attacker, however, we would
rather help software architects avoid such attacks through
their choice of what procedures to make private and what
procedures to make public.

Ideally, we would like to have some test that tells us
whether a particular private procedure can be easily em-
ulated via a Memoization Attack. The simplest test could
be to just run our a Memoization Attack on that procedure.
However, to run this attack on all procedures in an appli-
cation would be computationally infeasible. Instead, infor-
mation theoretic analyses could be applied, but these might
also prove ineffective for practical applications because of
their assumptions on entropy, complexity, input space, and
“learnability” may be too general. [13, 48, 49].

Thus, we propose the use of two heuristics, or “indicators
of insecurity ,” that speculate upon the likelihood that a pri-
vate procedure can be emulated in a partitioned application.
Importantly, these indicators focus on the interaction of the
procedure with the application, rather than the procedure
itself. While these tests are not absolute, a procedure that
passes them can be given a high confidence that it is immune
to a Memoization Attack. Such methods of identifying neg-
ative results are used often in problems that do not have a
clear positive indicator, for example, tests determining the
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Gzip procedure
Percentage of correct procedure calls while emulating ref.log

(Lines of assembly)
after observing input set(s) ref.*

{random} {random,graphic} {random, graphic,program} {random,graphic,program,source}
bi reverse (11) 38% (681/1797) 76% (1362/1797) 84% (1518/1797) 97% (1741/1797)
huft build (438) 0% (0/27) 0% (0/27) 0% (0/27) 0% (0/27)

Parser procedure Percentage of correct procedure calls after observing input set lgred.in
(Lines of assembly) emulating mdred.in emulating smred.in

contains one (123) 33% (1136/3485) 0% (0/71)

Table 2: Success of a Memoization Attack on applications with composite input sets.

“randomness” of a random number generator [26, 33, 35].

6.1 Indicator 1: Input Saturation
Our first test, Input Saturation tracks whether a private

procedure is only ever fed a finite number of distinct inputs
(AV pairs) by the rest of its application. A simple way to
detect this is to run an application using successively more
inputs, and observe whether the number of distinct inputs
fed to a procedure is linearly related to the number of inputs
fed to the application, or if the number of distinct inputs fed
to that procedure saturates at some level. Procedures that
are input saturating are likely easy to emulate through a
Memoization Attack (assuming a correlation between the
number of unique input AV pairs and the total number of
ordered sets of input AV pairs).

Many techniques exist that can estimate the number of
unique input AV pairs given to a procedure, however, we
simply created a tool that counts and efficiently stores this
number while an application is run on a specific input set.
Given a large enough input set, this method quickly sepa-
rates input saturating procedures from those that are not.

As a case example we used this tool to identify input sat-
urating procedures in the SPEC CPU2000 application Gzip.
Figure 7 plots the number of unique AV pairs that are fed
to the Gzip procedure ct tally() during Gzip’s execution
on five large, orthogonal input sets. For normalization pur-
poses, the x-axis represents the number of calls made to the
procedure instead of time. We call this a “cumulative input
density” plot, and use it as a helpful visualization of when
a procedure might be input saturating.

In Figure 7, we see that the rate of increase in the number
of unique AV pairs decreases as more input sets are applied.
In fact, the input set ref.log did not cause any new AV
pairs to be fed to the procedure, implying that an adversary
might be able to emulate ct tally() on ref.log given the
observation of the prior four input sets. (Note, in reality
this fact would not guarantee a 100% successful attack since
our metric does not account for input order, but the metric
does correlated with a high level of success.)

To numerically quantify the information in the cumulative
input density plot we can use two specific metrics. First, the
“average input delta” (Avg.I∆%) can tell us the percentage
increase in the number of unique AV pairs input to a proce-
dure from call to call. This gives an estimate of how many
procedure calls are expected before a new input is seen, and
correlates exactly to ω in the formulation of T-AOE in Sec-
tion 2.3. Second, the “saturation weight” (SW ) is a single
number that gives an idea of the shape of the cumulative in-
put density plot. If the function w(c) represents the number
of unique inputs for the cth call out of N calls, then SW is
the normalized integral

SW =
1

Nw(N)

Z N

0

w(c) dc.
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Figure 7: Cumulative input density plot of unique

AV pairs for Gzip’s ct tally, when run on a large

input set.

Looking closer at our example, we’ve run Gzip on a smaller
version of the same set of inputs and highlighted five of its
procedures to demonstrate different levels of input satura-
tion typical in applications. Figure 8 shows a cumulative
input density plot for these procedures executing on the five
inputs (normalizing the total number of calls and inputs be-
tween procedures to make comparison easier), and Table 3
gives their average input delta and saturation weight values.

By simply “eyeballing” the plots in Figure 8, we see that
the ct tally() and bi reverse() procedures are probably
input saturating, and would be susceptible to a Memoization
Attack, while the build tree() and longest match() pro-
cedures are probably not. It is less clear if the huft build()

procedure is input saturating since it does not appear to
plateau overall, but does plateau for each workload. We
attempted a full Memoization Attack on huft build() (Ta-
ble 2) and found that we could not successfully emulate the
procedure. This might lead us to say that only “clearly”
saturating procedures should be labeled as vulnerable.

The SW values for these procedures also agree with our
conjectures, giving values close to 1.0 for easily emulated
procedures. However, the Avg.I∆% values do not show a
correlation. This is important to note: Avg.I∆% only es-
timates ω for one specific procedure and has little meaning
when used for comparison.

Finally, Table 3 also shows the average input delta and
saturation weight values of the Gzip ct tally() procedure
using the larger version of the input set. Over the smaller in-
put set, this larger input set causes a drastic decrease in SW

from 0.87 to 0.77, lowering it to levels near huft build()
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Figure 8: Cumulative input density plots from Gzip.

(0.72). However, huft build() shows very little suscepti-
bility to a Memoization Attack and ct tally() shows very
high susceptibility (as mentioned earlier, no new inputs are
seen when the input set ref.log is applied). This implies
that our original statement that only “clearly” saturating
procedures are vulnerable should be rethought, and, more
importantly, this stresses the need for a conservative inter-
pretation of these heuristic metrics when making any secu-
rity decisions.

6.2 Indicator 2: Output Weighting
Our second test, Output Weighting , tracks the values that

a private procedure outputs and those values’ usefulness to
the application as a whole. In essence, this determines how
important a private procedure is to the entire application.
Output Weighting is possibly a better test than input satu-
ration since it indicates how important a private procedure
is to the entire application.

Since an adversary only cares about whole-application
functionality, partitioning an application by making less im-
portant procedures private may lead to a more successful
Memoization Attack. For example, assume during a mem-
oization attack that an adversary cannot return the correct
outputs for a private procedure call but continues running.
If the previous values in memory still produce the correct
behavior (because of range checks, etc.) then the adversary
will still be content. This “low importance” of the outputs of
the private procedure has allowed a Memoization Attack to
succeed. Another good example arises when a private proce-
dure’s outputs are only ever used by a single, simple public
procedure that is itself easily emulated. In this case, the
inputs and outputs of the private procedure do not matter,

Procedure
Tot. uniq. Tot. uniq. Public Φ(·)

reads writes readers weight
inflate codes 4,240,569 5,151,281 9 390,657

ct tally 2,837 4,214,758 4 1,343,144
bi reverse 581 259 2 93
huft build 3,586 59,224 4 96
build tree 32,672 21,000 4 2

longest match 11,610,835 515 1 13,010

Table 4: Output weights for six Gzip procedures.

and a Memoization Attack can succeed by simply emulating
the simple public procedure wrapping the private procedure.
The output weighting of a private procedure should be able
to identify both cases as susceptible to a Memoization At-
tack.

Tracing the entire flow of data throughout an application
and deriving “usefulness” information is again a hard task.
Therefore we suggest a simple test that estimates how much
“usefulness” public procedures derive from the outputs of a
private procedure. This test recognizes that a private proce-
dure can only impact the outputs of the entire application if
its own outputs are passed along and or used by other public
procedures. This test is called the the “output weight” Φ(·)
of a procedure, and is defined by

Φ(η) =
X

∀(ιi,κi)∈η

κi

ιi

.

Here η is a set of pairs (ι, κ), where ι is the number of
unique outputs written by a private procedure and read by
a public procedure, and κ is of the total number of unique
outputs from that public procedure. For example, if five
public procedures use the outputs of one private procedure
as their input, then |η| = 5. Here the fraction κi

ιi
indicates

the impact of a private procedure’s outputs on the outputs
of public procedures. In other words, this indicates how the
utility of a private procedure’s outputs is “amplified” as the
outputs are used by the rest of the application. A very large
value of κi

ιi
implies that a private procedure’s outputs are

important.
As with input saturation, the output weight of a procedure

can be estimated using many techniques. However, for sim-
plicity we made a tool that efficiently tabulated the number
of unique outputs that are transferred between procedures
while an application is run on some input set. From these
tabulations we can compute the output weight, as shown
in Figure 9 where the number of unique outputs out of the
inflate codes() procedure in Gzip are used to determine
an output weight of Φ(·) = 390, 657.

Looking again at our Gzip example, Table 4 gives the
computed output weight of six select procedures from an
execution of Gzip on the small version of the same five in-
put sets. We also show the number of unique reads and
write a private procedure performs, and the number of pub-

Procedure
Total unique inputs seen after execution on the input set(s) ref.*

Avg.
SW

{random} {random,graphic}
{random,graphic, {random,graphic, {random,graphic,

I∆%
program} program,source} program,source,log}

ct tally (large input) 47,074 72,455 81,228 83,226 83,226 9.7x10−9 0.77

ct tally (small input) 2,304 2,550 2,768 2,836 2,837 6.9x10−7 0.87

bi reverse 569 580 580 580 581 6.3x10−5 0.99

huft build 0 2,500 3,170 3,510 3,586 7.4x10−3 0.72

build tree 11,873 23,611 29,945 32,103 32,672 5.9x10−3 0.51

longest match 4.78 M 8.33 M 10.13 M 11.19 M 11.61 M 2.7x10−6 0.51

Table 3: Rate of input saturation for five Gzip procedures.
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Uniq−reads: 5,905,400 / 78,683,800
Uniq−writes: 261 / 32,800

Uniq−writes: 1,234 / 8,976
Uniq−reads: 921 / 8,108

Uniq−writes: 560 / 17,396
Uniq−reads: 534 / 17,239

Uniq−writes: 247 / 6,804
Uniq−reads: 140 / 3,036

Uniq−writes: 318 / 21,172
Uniq−reads: 574 / 22,517

Uniq−writes: 4,609,247 / 24,745,259
Uniq−reads: 2,439,169 / 24,782,375

Uniq−reads: 96 / 860

Uniq−reads: 2,650,792 / 28,619,384

Uniq−writes: 11,942,800 / 24,732,447
Uniq−reads: 10,828,238 / 24,765,895

Uniq−writes: 59,224 / 2,620,180
Uniq−reads: 3,586 / 4,300,496

Uniq−writes: 3,773 / 564,916
Uniq−reads: 14,966 / 709,514

inflate_dynamic()

flush_window()

inflate_fixed() inflate_block() inflate()

inflate_codes()

Uniq−writes: 5,151,281 / 40,591,375
Uniq−reads: 4,240,569 / 136,621,025

spec_read() huft_build()

inflate_stored()

unzip()

Uniq−writes: 46 / 840

spec_write()

fill_inbuf()

Uniq−writes: 3,121,972 / 15,904,885

Figure 9: The unique outputs of the inflate codes() procedure in Gzip which can be used to compute its

output weighting. of Φ(·) = 390, 657.

lic procedures that read what that private procedure writes.
We see from Table 4 that the procedures inflate codes()

and ct tally() produce many unique outputs that are then
fed to other procedures that in turn produce many unique
outputs . If this trend continues, it is highly likely that the
outputs of the application as a whole will depend signifi-
cantly on the outputs of inflate codes() and ct tally().
Alternately, the outputs of the bi reverse(), huft build(),
build tree(), and longest match() procedures only pro-
duce a limited number of unique output AV pairs, and these
outputs are passed to procedures that do not produce many
more unique outputs. Therefore, it might be easy for an ad-
versary to perform a Memoization function on these latter
four procedures

6.3 Interpreting Indicators
The two indicators presented are not absolute and are not

the only possible metrics of whether an application is sus-
ceptible to a Memoization Attack. In practice a software
architect should apply as many tests as possible, includ-
ing more complicated tests, before feeling confident that a
private procedure is safe from attack. Further, the results
from such tests should be weighted in tandem. As we see
in our examples, the set of “safe” procedures that the input
saturation test determined does not perfectly overlap with
the set of “safe” procedures the output weighting test de-
termined. Ultimately, no test can rule out the possibility
of a Memoization Attack since this attack depends directly
on the input set applied to the application. Therefore, the
amount of testing performed is yet another design choice
when deciding how to partition an application into private
and public regions.

7. RELATED WORK
Only a few studies [6, 8, 9, 19, 31] have specifically exam-

ined software secrecy and modification of application code to
prevent an adversary from determining its contents, some-
times suggesting techniques with which to decipher these
contents. To counter such techniques obfuscation transforms
have been proposed that make an application incomprehen-
sible, but still functionally correct [10, 11]. Unfortunately,
it has been proven that cryptographically secure obfusca-
tion is generally impossible for a large family of functions
[4] (although a few specific families have been shown to be
obfuscatable [32, 51]).

A more popular way of concealing application instructions
is through encryption. Homomorphic encryption schemes
[44, 45] allow meaningful computations to be performed on

encrypted data, but are not general enough for practical use.
Instead, many have suggested using a small trusted comput-
ing base to decrypt ciphertext applications and to execute
instructions confidentially [3, 25, 34, 40]. This idea of using
specialized security hardware and secure coprocessors has
seen many manifestations [16, 28, 54, 55, 58].

Recently, physically secure architectures have been pro-
posed that reduce this trusted computing base to a single
chip while also supporting application partitioning [30, 46].
These allow applications to be encrypted and executed on
a processor without revealing any information to even the
device owner. Even though these architectures encrypt ap-
plication instructions, additional methods must still be em-
ployed to defend against side-channel attacks [1, 17, 18, 59].

Application encryption can be used for copy protection
(by bind software execution to a specific key), but con-
cepts of watermarking [11, 50], renewability [24], online-
verification [12, 14], and hardware assisted authentication
[15, 20, 29, 39] have also all been suggested as means to en-
force basic software licensing. Unfortunately, many of these
methods suffer from the same fundamental problem: they
add extra code to the application. While it may be ex-
tremely difficult, a motivated adversary can almost always
remove this extra code.

Architectural support for application partitioning is not a
new concept [52, 55], however we believe that this paper is
the first analysis of the problem of code secrecy when con-
sidering application operation as a whole. Program slicing
has been proposed [57] as a means to prevent piracy, how-
ever it does not address the possibility that program secrecy
may not be guaranteed in a partitioned application. Other
compiler and language support for secure partitioning has
been proposed [5, 56], but focuses on a different problem of
application etiquette and information flow.

Finally, the indicators discussed are basically an analysis
of code complexity. Many empirical software complexity
metrics have been developed over the years [7, 21, 23, 36, 41,
43, 47]. Of these, one [53] does discuss the complexity of de-
constructing an application, but does not focus on security.

8. CONCLUSIONS
Application partitioning has been suggested by a number

of works as a means to allow an application to run efficiently
on a TCB while preserving the TCB’s security guarantees.
We have investigated the problem of maintaining IP secrecy
and copy protection in a partitioned application by looking
at how to prevent an adversary from duplicating the func-
tionality or utility of a private partition. Importantly, this
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analysis often depends more on the make-up of the entire
application than it does on the make-up of a private parti-
tion. This is formalized by the adversarial goal of Temporal
Application Operation Equivalence.

To begin to tackle this question we have analyzed one of
the simplest forms of attack, a Memoization Attack. This
attack simply tabulates input/output relationships seen dur-
ing legitimate executions of a private partition, and replays
what had been saved when it later emulates that private
partition. Under certain assumptions this attack is the best
an adversary can possibly perform.

We implemented a full Memoization Attack, and described
some necessary techniques that allow this attack to run with
reasonable storage and computation time restrictions. By
running this attack on real-world applications, two classes
of partitioned applications were found that are susceptible
to Memoization Attacks.

To help software architects identify these classes of par-
titioned applications during development we proposed two
efficient tests that can be used to identify an application’s
susceptibility to a Memoization Attack. These tests were
implemented efficiently and run on an example application
to demonstrate their usefulness.

This has only been an initial step in the investigation of
the security hazards inherent in partitioned applications.
There are also many complicating issues that can be ex-
plored on this topic, such as the ease with which private
libraries can be attacked (since multiple input sets are used
in a predictable way), or if multiple versions of an applica-
tion can makes it any easier on an adversary.

Ultimately, the question of whether or not an adversary
can duplicate an unseen private partition is problematic at
best. The exact security of a system can only be guaranteed
in terms of the model proposed. Further, such concepts
like “human intuition” do not easily fit into models, even
though this is often the most important factor when per-
forming such attacks. Therefore, our approach in answering
this question is to begin with a simple, practical, but uni-
versal attack model that can then be built upon by more
complicated attack models that address specific domains of
human-injected knowledge.
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