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Abstract

Under an adaptive chosen ciphertext attack (CCA2), the security of an encryption scheme must hold
against adversaries that have access to a decryption oracle. We consider a weakening of CCA2 security,
wherein security need only hold against adversaries making ana-priori boundednumber of queries to
the decryption oracle. Concerning this notion, which we callbounded-CCA2security, we show the
following two results.

† Bounded-CCA2 securenon-malleableencryption schemes exist if and only if semantically-secure
(IND-CPA-secure) encryption schemes exist. (As far as we know, bounded-CCA2 non-malleability
is the strongest notion of security known to be satisfiable assuming only the existence of semantically-
secure encryption schemes.)

‡ In contrast to CCA2 security, bounded-CCA2 security alonedoes notimply non-malleability. In
particular, if there exists an encryption scheme that is bounded-CCA2 secure, then there exists
another encryption scheme which remains bounded-CCA2 secure, butis malleable under a simple
chosen-plaintext attack.

Keywords: Public-key Encryption, Non-Malleability, Chosen Ciphertext Security.



1 Introduction

Historically, encryption has been a mechanism helps achieveprivacyof data. This goal of privacy is captured
in the notion of semantic security [GM84] which, roughly stated, says that “whatever an adversary can learn
after seeing the ciphertext, it could have learnt without seeing the ciphertext”.

Non-malleability, as defined by Dolev, Dwork and Naor [DDN00], is a stronger notion of security for
encryption schemes. In addition to the normal “privacy” guarantee, non-malleability guarantees that it is
infeasible for an adversary tomodifya vector of ciphertextsα1, . . . , αn into other ciphertexts of messages
which are related to the decryption ofα1, . . . , αn. It has been widely acknowledged that this stronger notion
of security is critical for many practical applications. Recently, the same authors have showed that for the
weaker class of chosen-plain text attacks, any encryption scheme that is semantically secure (against chosen
plain-text attacks) can be transformed into one that is non-malleable (against chosen-plaintext attacks),
without relying on any additional assumptions [PSV06a].

Stronger Types of Attacks Under the traditional type of chosen-plaintext attack (CPA) on an encryption
scheme, the adversary is required to act on its own without any additional help [GM84]. Naor and Yung
[NY90], and Rackoff and Simon [RS93], considered the security of encryption schemes under stronger
types of attacks. In the strongest of these, calledadaptive chosen cipher-textattacks (CCA2), security is
required to hold with respect to adversaries that have access to an decryption oracle. Interestingly, it has
been showed that under CCA2 attack, the otherwise weaker notion of semantic security in fact implies also
non-malleability [DDN00].

Nevertheless, constructions of CCA2-secure encryption schemes are rare [DDN00, CS98] and it is open
whether any semantically secure encryption scheme can be transformed into one that is also CCA2 secure,
without making additional complexity theoretic assumptions.

Our results In this paper we introduce a weakening of the notion of a CCA2 attack which we call
bounded-CCA2 attack. In such an attack, the adversary is restricted to making ana-priori boundednumber
of queries to the decryption oracle. Thus, we may discuss the notion of anm-bounded CCA2 non-malleable
encryption scheme as one that is “non-malleable” with respect to an adversary making at mostm decryption
queries.

With this terminology, our main result shows that bounded-CCA2non-malleableencryption schemes
exist if and only if CPA-secure encryption schemes exist. As far as we know, the notion of bounded-CCA2
non-malleability is the strongest notion of security for encryption schemes known to be satisfiable under
only the assumption of CPA-secure encryption schemes.

Theorem 1 (Informal) Suppose there exists a IND-CPA-secure public-key encryption scheme. Then, for
any polynomialm, there exists anm-bounded CCA2 non-malleable encryption scheme.

We mention that the encryption scheme constructed depends on the parameterm, and in fact the length
of both the the public-key and the ciphertexts grows linearly withm.

Let us point out that one may also consider the notion ofm-bounded IND-CCA2 semantically-secure
encryption (without the extra non-malleability requirement). As mentioned above, in the case of full CCA2-
attacks, semantical security has been shown to imply non-malleability. In the case of bounded-CCA2 secu-
rity, however, we show that this equivalence does not hold. More dramatically, we show that bounded-CCA2
security for any fixedm does not even imply non-malleability under the simple chosen plaintext attack.

Theorem 2 (Informal) Assume the existence of a IND-CPA-secure public-key encryption scheme. Then, for
everym, there exists an encryption scheme that ism-bounded IND-CCA2-secure, but is not non-malleable
(even under CPA attacks).
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This separation of notions highlights the importance of directly proving non-malleable of our scheme
(which complicates the analysis). While we find the idea of setting an upper-limit on the number of decryp-
tion queries a quite reasonable relaxation of a standard CCA2 attack, we view non-malleability as a principal
desiderata for the security of an encryption scheme.

Remark on Non Black-box techniques. We mention that our construction makes a non black-box use of
the underlying semantically-secure encryption scheme. In particular, we use a proof that several ciphertexts
are encryptions of the same message, and this may require analyzing the encryption circuit to form a theorem
statement. A very recent result by Gertner, Malkin, and Myers [GMM07] shows the impossibility of black-
box constructions of (fully) CCA2-secure encryption schemes from semantically secure encryption schemes,
where thedecryptionalgorithm of the CCA2-secure scheme does not make use of theencryptionalgorithm
of the semantically secure scheme. It seems that their proof extends to rule out the same type of black-box
constructions ofnon-malleableencryption schemes even under chosen plaintext attacks (and thus also under
bounded-CCA2 attacks). In this sense, non-blackbox techniques may benecessaryfor our results.

On the other hand, even though our construction uses ZK proofs and thus costly generalNP reductions,
for many encryption schemes, these proofs can be substituted with much more efficient proofs (based on,
say,Σ protocols) for the type of theorems we need to prove in our construction. In this sense, the non-
blackbox property may not have significant overhead in practical situations.

In contrast to the above,m-bounded IND-CCA secure encryption (without the non-malleability require-
ment) seems possible using black-box techniques [CHK, HI]. As we show in Theorem 2, however, bounded
CCA-secure non-malleable encryption is a strictly stronger requirement than bounded IND-CCA-secure
encryption.

2 Definitions

Preliminaries. If A is a probabilistic polynomial time (p.p.t) algorithm that runs on inputx,A(x) denotes
the random variable corresponding to the output ofA on inputx and uniformly random coins. Sometimes,
we want to make the randomness used byA explicit, in which case, we letA(x; r) denote the output ofA
on inputx and random coinsr. We denote computational indistinguishability [GM84] of ensemblesA and

B byA
c
≈ B.

Oracles Unless otherwise noted, all of our definitions make use of the following oracle convention. In the
case of a CPA attack, the oraclesO1, O2 return the empty string on all queries. In a CCA1 attack, the oracle
O1(PK) returns decryptions of ciphertexts under the public keyPK (which is implicit by context). Finally,
in a CCA2 attack, both oracles return decryptions with the exception thatO2(PK, y) returns⊥ when queried
on a particular ciphertexty.

When we refer to a specific type of attack scenario, we will add the suffix CPA,CCA1, or CCA2 to the
name of the definition, e.g.,IND-CCA2. Otherwise, we omit this suffix in order to simplify the notation.

Computational Indistinguishability For the reader’s convenience, we briefly summarize the notion of
computational indistinguishability.

Definition 1 (Computational Indistinguishability) Two ensembles{Xw}w∈I and {Yw}w∈I with identi-
cal index setI are said to becomputationally indistinguishableif for every polynomial-size circuit family
{Dk}k∈N, every sufficiently largek, and everyw ∈ I ∩ {0, 1}k, we have that

|Pr [Dk(Xw) = 1]− Pr [Dk(Yw) = 1]| < µ(k).

We denote such sets{Xw}w∈I
c
≈ {Yw}w∈I .
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Encryption Scheme. Here we review the syntactic functionality of an encryption scheme. Note that we
demand perfect correctness from an encryption scheme. This requirement can be imposed without loss of
generality, since any encryption scheme can be converted into one that has perfect correctness [DNR04].

Definition 2 (Encryption Scheme) A triple (Gen,Enc,Dec) is an encryption scheme, ifGen and Enc
are p.p.t. algorithms andDec is a deterministic polynomial-time algorithm,

1. Gen on input1k produces a tuple(PK, SK), wherePK, SK are the public and private keys,

2. Enc : PK×{0, 1}∗ → {0, 1}∗ runs on input a public keyPK and a messagem ∈ {0, 1}∗ and produces
a ciphertextc,

3. Dec : SK×{0, 1}∗ → {0, 1}∗∪{⊥} runs on input(SK, c) and produces either a messagem ∈ {0, 1}∗
or a special symbol⊥,

and the algorithms satisfy the perfect correctness property:
(Perfect Correctness)There exists a polynomialp(k) and a negligible functionµ(k) such that forevery

messagem, andevery random tapere,

Pr[rg
R← {0, 1}p(k); (PK, SK)← Gen(1k; rg); DecSK(EncPK(m; re)) 6= m] ≤ µ(k).

2.1 Semantically-Secure (IND-CPA-Secure) Encryption

Definition 3 (IND-security) LetΠ = (Gen,Enc,Dec) be an encryption scheme and let the random vari-
able IND-b(Π, A, k, `) whereb ∈ {0, 1}, A = (A1, A2) and k, ` ∈ N denote the result of the following
probabilistic experiment:

INDb(Π, A,R, k)
(PK, SK)← Gen(1k)
(m0,m1, z)← AO1

1 (PK)
y ← Enc(PK,mb)
x← AO2

2 (y, z)
Outputx

(Gen,Enc,Dec) is indistinguishable under a chosen-plaintext attack if∀ p.p.t. algorithmsA the following
two ensembles are computationally indistinguishable:{

IND0(Π, A, k)
}

k∈N

c
≈

{
IND1(Π, A, k)

}
k∈N

The oracleO1 = DecSK(·) is the decryption oracle.O2 = Decy
SK(·), is the decryption oracle except

thatO2 returns⊥ when queried ony.
If A makes at mostm queries toO1 andO2 together, then(Gen,Enc,Dec) is said to bem-bounded

IND-CCA2-secure. Further, ifm = 0, then the encryption scheme is said to beIND-CPA-secure.
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2.2 Definition of Non-Malleable Encryption

The following definition of non-malleability was introduced in [PSV06a]. There it is shown that the defi-
nition composes, both in terms of the number of messages received by the adversary, and in terms of the
number of keys under which the messages are encrypted.

Definition 4 (NME-security [BS99, PSV06a])LetΠ = (Gen,Enc,Dec) be an encryption scheme and let
the random variableNMEb(Π, A, k, `) whereb ∈ {0, 1}, A = (A1, A2) andk, ` ∈ N denote the result of
the following probabilistic experiment:

NMEb(Π, A, k, `) :
(PK, SK)← Gen(1k)
(m0,m1, STATEA)← AO1

1 (PK) s.t. |m0| = |m1|
y ← EncPK(mb)
(c1, . . . , c`)← AO2

2 (y, STATEA)

Output(d1, . . . , d`) wheredi =

{
COPY if ci = y

DecSK(ci) otherwise
(Gen,Enc,Dec) is NME-secure if∀ p.p.t. algorithmsA = (A1, A2) and for any polynomialp(k), the
following two ensembles are computationally indistinguishable:{

NME0(Π, A, k, p(k))
}

k∈N

c
≈

{
NME1(Π, A, k, p(k))

}
k∈N

(1)

The oracleO1 = DecSK(·) is the decryption oracle.O2 = Decy
SK(·), is the decryption oracle except

thatO2 returns⊥ when queried ony.
If A makes at mostm queries toO1 andO2 together, then(Gen,Enc,Dec) is said to bem-bounded

NME-CCA2-secure. Further, ifm = 0, then the encryption scheme is said to beNME-CPA-secure.

3 Strong Designated Verifier NIZK

Pass, shelat, and Vaikuntanathan [PSV06a] used designated verifier NIZK proofs to construct anNM-CPA-
secure encryption scheme from anIND-CPA-secure one. We define a stronger notion of soundness for
designated verifier NIZK proofs and show that the construction of [PSV06a] indeed satisfies this notion of
soundness. We will later use this in the construction of our bounded-NM-CCA2-secure encryption scheme.

3.1 Defining Strong Designated Verifier NIZK Proof Systems

In the designated verifier model, a non-interactive proof system has an associated polynomial-time sam-
pleable distributionD over binary strings of the form(PP, SP). During a setup phase, a trusted party samples
fromD, publishesPP and privately hands the VerifierSP. The Prover and Verifier then use their respective
values during the proof phase.

Definition 5 (Strong Designated Verifier NIZK Proof System) A triple of algorithms,(D, P, V ), is called
a designated verifier non-interactive zero-knowledge proof system for anNP-languageL with wit-
ness relationRL, if the algorithmsD andP are probabilistic polynomial-time, the algorithmV is deter-
ministic polynomial-time and there exists a negligible functionµ such that the following three conditions
hold:

• COMPLETENESS: For every(x,w) ∈ RL

Pr
[

(PP, SP)← D(1|x|); π ← P (PP, x, w) : V (PP, SP, x, π) = 1
]
≥ 1− µ(|x|)
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• m-BOUNDED STRONG SOUNDNESS: For every oracle Turing machineB that has access to the verifier
oracleV (SP, PP, ·, ·), and makes at mostm oracle queries toV ,

Pr

[
(PP, SP)← D(1|x|)(′, π′)← BV (SP,PP,·,·)(PP) : x′ 6∈ L and

V (PP, SP, x′, π′) = 1

]
≤ µ(|x|)

• STRONG ADAPTIVE ZERO-KNOWLEDGE: For every p.p.t. theorem chooserA, there exists a p.p.t.
simulatorS = (S1, S2) such that the outputs of the following experiments are indistinguishable.

EXPTZKA(k) EXPTZKS
A(k)

(PP, SP)← D(1k) (PP′, SP′, STATE)← S1(1k)
(x,w, STATEA)← A(PP, SP) (x,w, STATEA)← A(PP′, SP′)
π ← P (PP, x, w) π′ ← S2(PP′, SP′, x, STATE)
If (x,w) /∈ RL, output⊥ If (x,w) /∈ RL, output⊥
Else output(PP, SP, x, π, STATEA) Else output(PP′, SP′, x, π′, STATEA)

Some technical remarks are in order. First of all, the difference between the adaptive zero-knowledge
definition here and the one in [PSV06a] is that, we give the theorem chooserSP, in addition toPP. The
definition of [PSV06a] only gavePP to the theorem chooser. Despite this strengthening, we will show that
the designated verifier proof system of [PSV06a] meets the stronger definition as given here. Secondly,
the soundness condition is required to hold for unbounded prover algorithmsB, the only restriction onB
being that it can access the verifier oracle an a-priori bounded number of times. Finally, the VerifierV is a
deterministic machine. This extra restriction is only used to simplify the exposition of our constructions.

3.2 The Construction

The construction is the same one presented in [PSV06a], which we briefly review for completeness. Our
only complexity assumption is the existence of a semantically-secure encryption scheme. We note that Ca-
menisch and Damg̊ard use a similar idea in [CD00] to construct an interactive verifiable encryption scheme.
The roots of this idea begin to appear much earlier in [KMO89].

Theorem 3 Assume there exists a semantically secure encryption scheme. Then, for every polynomial
m(|x|), there exists a strong designated verifier NIZK proof system withm(|x|)-bounded soundness for
any languageL ∈ NP.

Proof: The NIZK protocol is in Figure 1. The completeness property follows from the completeness of the
3-roundΣ protocol. The adaptive zero-knowledge property we need is stronger than the one in [PSV06a]
as noted above. Nevertheless, the protocol also achieves this stronger notion of zero-knowledge. A proof is
given in Appendix A.

[PSV06a] show the0-bounded strong soundness of this protocol. More precisely,

Proposition 4 ([PSV06a]) (D, P, V ) is 0-bounded sound. That is, for any cheating proverB∗,

Pr

[
(PP, SP)← D(1|x|)(′, π′)← B∗(PP) : x′ 6∈ L and

V (PP, SP, x′, π′) = 1

]
≤ 2−k

We will use this to show that the same protocol satisfiesm(|x|)-bounded soundness.
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Let k
def= m(|x|) + |x|.

Sampling Algorithm D(1k). For i = 1, . . . , k andb = 0, 1, runGen(1k) 2k times with independent
random coins, to getk key-pairs(PKb

i , SKb
i) . For i = 1, . . . , k, flip coin fi

R← {0, 1}. Generate
the receiver messageσ for a two-round commitment scheme.

Let PPdv
def= [(PK0

i , PK1
i , σ)]ki=1 andSPdv

def= [fi, SK
fi
i ]ki=1. Output(PPdv, SPdv).

Prover P (PPdv, x, w). For i = 0, . . . , k, generate triples as follows:

(ai, si)← P1(x,w)
cb,i ← P2(s, b) for bothb = 0, 1
αb,i ← EncPKb,i

(cb,i) for b = 0, 1.

and outputπ
def= [(ai, α0,i, α1,i)]ki=1.

Verifier V (PPdv, SPdv, x, π). Parseπ into k triples of the form(ai, α0,i, α1,i). For i = 1, . . . , k,

computemi
def= Dec

SKfi
i

(αfi,i) and run the verifierV2(ai, fi,mi). If all k proofs are accepted,

outputACCEPT, else outputREJECT.

Figure 1: DESIGNATED VERIFIER NIZK PROTOCOL

Proposition 5 (D, P, V ) satisfiesm(|x|)-bounded strong soundness.

Proof: Suppose there is a cheating proverB that asks the verifier oraclem(|x|) queries and breaks the
soundness with probability2−|x|.

We will useB to construct an algorithmB∗ that breaks the normal soundness of the protocol with
probability more than2−k, which is a contradiction to the [PSV06a] theorem.B∗ works as follows: (1)B∗

answersB’s queries to the verifier oracle by flipping a random bit and returning it, and (2) WhenB outputs
a pair(x, π) at the end,B∗ outputs(x, π) too.

The probability thatB∗ gives the correct answers toB’s queries is exactly2−m(|x|). In other words,
with this probability,B∗ simulates the verifier oracle perfectly. Thus,Pr[B∗ succeeds] ≥ Pr[B succeeds∧
B∗ simulates the verifier oracle perfectly] > 2−|x|2−m(|x|) = 2−k

Thus,B∗ breaks the ordinary soundness of the proof system with probability2−k, which is in contra-
diction to the result of [PSV06a] mentioned above in Proposition 4.� �

4 Constructing Bounded-NM-CCA2-Secure Encryption Scheme

In this section, we construct an encryption scheme that ism-boundedNM-CCA2-secure, starting from
any semantically secure (IND-CPA-secure) encryption scheme. The construction isthe sameas the DDN
construction [DDN00] and the construction of Pass, Shelat and Vaikuntanathan [PSV06a], except that the
NIZK proof used is a designated-verifier NIZK proof withm-bounded strong soundness. By the results from
the previous section (the construction ofm-bounded designated verifier proof systems from semantically
secure encryption schemes), our construction only relies on the assumption of the existence of a semantically
secure encryption scheme.
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Theorem 6 (Main Theorem) Assume there is an encryption scheme that isIND-CPA-secure. Then, for
every polynomialm, there exists an encryption scheme that ism-boundedNM-CCA2-secure.

Our proof closely follows the proof of [PSV06a]. We highlight the crucial differences between their
proof and ours in the appropriate places.

Proof:(of Theorem 6) Let(Gen,Enc,Dec) be any semantically secure encryption scheme. Let(Gensig,Sign,Ver)
be any existentially unforgeablestrongone-time signature scheme.1 Without loss of generality, assume that
Gensig produces verification keys of lengthk.2 Define theNP-languageL as follows:[

(c1, . . . , ck), (p1, . . . , pk)
]
∈ L if and only if

∃
[
m, (r1, . . . , rn)

]
such thatci = Encpi(m; ri) for i = 1, . . . , n.

In words, the languageL contains pairs consisting of ak-tuple of ciphertexts and ak-tuple of public keys
such that the ciphertexts are encryptions of thesame messagem under thek public keys.

Let (D, P, V ) be anm-bounded designated verifier NIZK proof system forL. We show that the en-
cryption schemeΠ = (NMGen,NMEnc,NMDec) defined in Figure 4 is anm-boundedNM-CCA2-secure
encryption scheme. The proof has two parts.

Just as in [DDN00] and [PSV06a], we define an encryption schemeE′ = (Gen′,Enc′,Dec′) in which
one simply encrypts a messagek times withk independently chosen public keys, and we show thatE′ is a
semantically secure encryption scheme under the assumption that(Gen,Enc,Dec) is one. This is identical
to [PSV06a] and is stated in Lemma 7.

Then in Lemma 8, we show thatΠ is anm-boundedNM-CCA2-secure encryption scheme ifE′ is a
semantically secure encryption scheme. The proof is concluded by noting that bothm-bounded designated
verifier NIZK proofs and strong one-time signatures can be constructed given any semantically secure en-
cryption scheme (The former is true by virtue of Theorem 3. The latter follows by combining the observation
that encryption implies one-way functions, Rompel’s result showing that one-way functions imply univer-
sal one-way hash functions [Rom90], and the result that universal one-way hash functions imply strong
one-time signature schemes [Gol04, Lam79]).� �

The definition of the encryption schemeE′ = (Gen′,Enc′,Dec′) below is exactly as in DDN, repro-
duced below for the sake of completeness.

• Gen′(1k): For i = 1, . . . , k, run (PKi, SKi) ← Gen(1k) with independent random coins. SetPK
def=

(PK1, . . . , PKk) andSK
def= (SK1, . . . , SKk).

• Enc′PK(m): Output[EncPK1
(m; r1), . . . ,EncPKk

(m; rk)].
• Dec′SK([c1, c2, . . . , ck]): Computem′

i = DecSKi
(ci). If all them′

i are not equal, output⊥, else output
m′

1.

Lemma 7 [DDN00, PSV06a] If(Gen,Enc,Dec) is semantically secure, then(Gen′,Enc′,Dec′) is se-
mantically secure.

Lemma 8 If E′ = (Gen′,Enc′,Dec′) is a semantically secure encryption scheme, thenΠ is anm-bounded
NM-CCA2-secure encryption scheme.

1A strong signature is one in which, given a signatureσ of a messagem, it is infeasible to produce a messagem′ and a valid
signatureσ′ of m′, such that(σ, m) 6= (σ′, m′). i.e, it is infeasible also to produce a different signature for thesame message.

2This is without loss of generality since we can setk to be an upperbound on the length of verification keys thatGensig

produces.
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NMGen(1k) :

1. For i ∈ [1, k], b ∈ {0, 1}, runGen(1k) to generate key-pairs(PKb
i , SKb

i).

2. RunD(1k) to generate(PP, SP).

SetPK
def=

{
(〈PK0

i , PK1
i 〉)k

i=1, PP
}

andSK
def=

{
(〈SK0

i , SK1
i 〉)k

i=1, SP
}

.

NMEncPK(m) :

1. Run the signature algorithmGensig(1k) to generate(SKSIG, VKSIG).
Let (v1, . . . , vk) be the binary representation ofVKSIG.

2. Compute the ciphertextsci ← EncPKvi
i

(m). Let~c
def= (c1, c2, . . . , ck).

3. Run the designated verifier NIZK Prover to generate a proofπ that
[(c1, . . . , ck), (PKv1

1 , . . . , PK
vk
k )] ∈ L.

4. Compute the signatureσ ← SignSKSIG(〈~c, π〉).

Output the tuple[~c, π, VKSIG, σ].

NMDecSK(c) :

1. Verify the signature withVerVKSIG[〈~c, π〉, σ]; output⊥ upon failure.

2. Verify the proof withV (PP, SP, (~c, ~PK), π); output⊥ upon failure.

3. Let VKSIG = (v1, . . . , vk). Computem1 = DecSKvi
1

(c1) and output the result.

Figure 2: THE NON-MALLEABLE ENCRYPTION SCHEME Π

Proof: To prove thatΠ is a non-malleable encryption scheme, we need to show that for any p.p.t. adversary
A that queries the decryption oracle at mostm times and for all polynomialsp(k),{

NME0(Π, A, k, p(k))
}

k∈N

c
≈

{
NME1(Π, A, k, p(k))

}
k∈N

We show this by a hybrid argument. The sequence of hybrid expts is the same as in [PSV06a] except that
we need to handle the decryption queries of the adversary. This is done below in Step3 in NME(1)

b and in

Step2 in NME(2)
b . Consider the following experiments:

Experiment NME(1)
b (Π, A, k, p(k)) – Using a Simulated NIZK Proof: Proceeds exactly likeNMEb

except that the simulator for the designated verifier NIZK proof system is used to generate the public pa-
rameters and to compute the challenge ciphertext (as opposed to generating an honest proof by running the
prover algorithmP ). LetS = (S1, S2) denote the simulator guaranteed by the adaptive zero-knowledge of

(D, P, V ). More formally,NME(1)
b proceeds exactly likeNMEb except for the following differences:

1. The encryption key(PK, SK) is generated by (1) honestly running the key-generation algorithmGen
to generate the2k encryption keys(PKb

i , SKb
i), but (2) running the simulatorS1(1k) to generate the

key-pair(PP, SP) for the designated verifier NIZK (instead of runningD(1k) as inNMGen).
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2. Generatek encryptions ofmb (just as in Steps1 and2 of NMEnc). But, instead of using the designated
verifier prover, generate a “simulated proof” by runningS2. (Note thatS2 does not use the witness—
namely,mb and the randomness used for encryption—in order to generate the simulated proof).

3. Answering the Decryption Queries: Let theith decryption query be of the form[~c, π, VKSIG, σ] (If
the decryption query is not of this form, return⊥).

If the signatureσ is not valid under the verification keyVKSIG, outputs⊥. Check the NIZK proofπ in
the ciphertext using the NIZK secret-parameterSP. If the proof is not accepting, return⊥. Otherwise,
find a positioǹ such thatVKSIG` 6= VKSIG∗

` . Decryptc` using the secret-keySK
VKSIG`
` and return

the answer.

Experiment NME(2)
b (Π, A, k, p(k)) – Semantic Security ofE′: proceeds exactly likeNME(1)

b except for
the following differences:

1. Run Gen′ to get two sets of public keysPK = {PKi}ki=1 andPK ′ = {PK′
i}ki=1, along with the

corresponding secret-keysSK = {SKi}ki=1 andSK ′ = {SK′
i}ki=1. Generate a verification key and

signing key for the signature scheme(VKSIG∗, SKSIG∗). Construct a public-key forΠ as follows: Let

vi be theith bit of VKSIG∗. SetPK
vi
i = PKi, SK

vi
i = ⊥, PK

1−vi
i = PK′

i andSK
1−vi
i = SK′

i. (NME(2)
b

will use the secret-keys corresponding to eachPK′
i, but notPKi, later in the experiment).

2. Answering the Decryption Queries: Exactly as inNME(1)
b .

3. After receiving the tuple(ψ1, . . . , ψ`) of ciphertexts fromA2, decrypt eachψj =
[
~cj , πj , VKSIGj , σj

]
as follows: If the signatureσj in ψj does not verify, output⊥. If VKSIGj = VKSIG∗, output⊥. If the
NIZK proof πj fails verification, output⊥. Else, decrypt one of the components ofψj , for which the
secret-key is known (such a component is guaranteed to exist, sinceVKSIGj 6= VKSIG∗) and output
the result.

We now show that these experiments are indistinguishable. The following claim follows from the adap-
tive zero-knowledge property of the NIZK system. We here rely on the stronger variant of adaptive zero-
knowledge (See Definition 5).

Claim 9
{

NMEb(Π, A, k, p(k))
}

k∈N

c
≈

{
NME(1)

b (Π, A, k, p(k))
}

k∈N

Proof: Assume, for contradiction, that there exists a p.p.t. algorithmD which distinguishesNMEb(Π, A, k, p(k))
from NME(1)

b (Π, A, k, p(k)). Then, we construct a theorem-chooserAzk and a ZK distinguisherDzk that
violate the adaptive zero-knowledge of the proof system(D, P, V ) for the languageL. That is,Dzk distin-
guishes between the experimentsZKAzk

andZKS
Azk

, whereS is the zero-knowledge simulator.
On input(PP, SP), the theorem-chooserAzk works as follows:

1. Run Gen(1k) 2k times, to generate2k key-pairs(PKb
i , SKb

i)i∈[k],b∈{0,1}. Run the adversaryA1 on
input

[
(PKb

i)i∈[k],b∈{0,1}, PP
]
. A1 returns a pair of plaintextsm0 andm1 and a stringSTATE.

2. Answer decryption queries exactly as in the experimentNME(1)
b .

3. Produce the challenge ciphertext~c as follows:

• Generate a key-pair(SKSIG∗, VKSIG∗) for the signature scheme. LetVKSIG∗ = (v∗1, v
∗
2, . . . , v

∗
k).

9



• Pick a randomb ∈ {0, 1}, and for1 ≤ i ≤ k, let ci ← Enc
PK

v∗
i

i

(mb; ri), whereri is the

randomness used for encryption.

Let~c denote(c1, c2, . . . , ck) and ~PK denote(PK
v∗1
1 , . . . , PK

v∗k
k ), and~r denote(r1, r2, . . . , rk).

4. Let x = (~c, ~PK) andw = (mb, ~r). Output the theorem-witness pair(x,w). Also output the contents
of the work-tape asSTATEA.

The ZK distinguisherDzk, on input(PP, SP), the theorem(~c, ~PK), the proofπ and the stateSTATEA, does
the following:

1. RunA2 on input the ciphertext
[
~c, π, VKSIG,SignSKSIG(〈~c, π〉)

]
to produce a sequence of ciphertexts

(ψ1, ψ2, . . . , ψp(k)). Run the decryption algorithmDecSK(ψi) on each of these ciphertexts to get
plaintexts(µ1, µ2, . . . , µp(k)).

2. Run distinguisherD on the sequence of plaintexts(µ1, µ2, . . . , µp(k)) and output whateverD outputs.

The experimentZKAzk
(that is, whenDzk is given as input the real proof), perfectly simulates the ex-

perimentNMEb(Π, A, k, p(k)), whereas the experimentZKS
Azk

(that is, whenDzk is run with a simulated

proof) perfectly simulatesNME(1)
b (Π, A, k, p(k)). If the outputs ofD in the experiments are different, then

Dzk distinguishes between a real proof and a simulated proof, contradicting the adaptive zero-knowledge of
the NIZK proof system(D, P, V ). � �

Next, we show that experimentsNME(1)
b (· · · ) andNME(2)

b (· · · ) are statistically indistinguishable. To
this end, we define three events,badNIZK(Expt), badSig(Expt) andbadKey(Expt), corresponding to the

experimentExpt. We show that the experimentsNME(1)
b andNME(2)

b areidentical, under the assumption
that the eventsbadNIZK, badSig andbadKey neverhappen in these experiments. Then, we show that the
bad events happen with negligible probability in both the experiments. Taken together, these two statements
let us conclude thatNME(1)

b andNME(2)
b are statistically indistinguishable. Details follow.

The proof of the following claim is similar in structure to that in [PSV06a]. The difference is in (1)
Subclaim 11, where we use them-bounded strong soundness of the designated verifier NIZK, as opposed
to ordinary soundness and, (2) Subclaim 12, where we use the strong adaptive zero-knowledge property of
the designated verifier NIZK.

Claim 10
{

NME(1)
0 (Π, A, k, p(k))

}
k∈N

s
≈

{
NME(2)

0 (Π, A, k, p(k))
}

k∈N

Proof: Define the eventbadNIZK(Expt), to capture the event that the adversaryA violates the soundness of
the NIZK proof system in experimentExpt (i.e, the adversary produces a false statement together with an
accepting proof).

More precisely, letψ denote a ciphertext that the adversary produces (this could either be a query to the
decryption oracle or one of the ciphertexts in its output). LetbadNIZK(Expt) denote the following event: In
experimentExpt, there exists a ciphertextψ that the adversary produces in which: (1) the NIZK proof inψj

is accepted by the verifierV , but (2) all thek ciphertexts that are part ofψ do not decrypt to the same value
(in other words,ψ contains anacceptingproof of afalsestatement).

In the subclaims below, we show thatbadNIZK(NME(j)
b ) happens only with negligible probability.

Subclaim 11 For b ∈ {0, 1}, Pr[badNIZK(NMEb)] = negl(k)

10



Proof: Suppose, for contradiction, that this is not true. That is, there is a polynomialq(k) such that
Pr[badNIZK(NMEb] ≥ 1

q(k) . Then, we construct a machineAs that violates the soundness of the proof

system(D, P, V ) with probability at least 1
p(k)q(k) . As can also access the verifier oracle at mostm times.

On input a public parameterPP,As works as follows:

1. Simulate the experimentNMEb usingPP, until A2 outputsp(k) ciphertexts. Note thatAs does not
need to know the secret parameterSP to perform these steps – to answer the decryption queries,As

simply uses the verifier oracle to check the correctness of the NIZK proof in the decryption query.

2. As picks at random one of the ciphertexts that the adversary produces (which includes both the adver-
sary’s queries to the decryption oracle, as well as his output ciphertexts). Say the ciphertext chosen is[
~c, π, VKSIG, σ

]
. Output the pair(~c, π).

The probability thatAs outputs a false statement and an accepting proof pair is, by our assumption, at
least 1

p(k)q(k) , which is a contradiction to them-bounded strong soundness of(D, P, V ). �
The proof of the subclaim below follows [PSV06a] exactly, except for the use of strong adaptive zero-

knowledge, in the same way it was used in Claim 9.

Subclaim 12 For b ∈ {0, 1}, Pr[badNIZK(NME(1)
b )] = Pr[badNIZK(NME(2)

b )] = negl(k).

Proof: We start by noting thatPr[badNIZK(NME(1)
b )] = Pr[badNIZK(NME(2)

b )]. This follows because the

adversary’s view in experimentsNME(1)
b andNME(2)

b are identical until the point when the adversaryA2

outputs the ciphertexts. We proceed to show that forb ∈ {0, 1}, Pr[badNIZK(NME(1)
b )] is negligible ink.

This is shown by an argument similar to the one used in the proof of Claim 9. Assume, for contradiction,
thatPr[badNIZK(NME(1)

b )] is non-negligible. Then, we construct a pair of machines(Azk, Dzk) that violate
the adaptive zero-knowledge of the proof system(D, P, V ).

On input a public parameterPP for the NIZK proof system,Azk andDzk work exactly as in the proof of
Claim 9, except that in Step 3, whenA2 returns a sequence of ciphertexts(ψ1, . . . , ψp(k)), Dzk looks for a
ciphertextψi such that not all the components ofψi decrypt to the same message, and the NIZK proof inψi

is accepting. If there exists such ani, thenDzk returns “Fail” and otherwise returns “OK”.
Note that by definition, whenDzk receives a real proof, it outputs “Fail” with probabilityPr[badNIZK(NMEb)].

On the other hand, when run on a simulated proof, it outputs “Fail” with probabilityPr[badNIZK(NME(1)
b )].

However, in the previous subclaim, we showed that the former probability is negligible. If the latter prob-
ability is non-negligible, thenDzk distinguishes between a simulated proof and a real proof, contradicting
the adaptive zero-knowledge property of the proof system(D, P, V ). �

Let ψi =
[
~ci, πi, VKSIGi, σi

]
denote theith ciphertext returned byA2. DefinebadSig(NME(j)

b ) to be

the event that, in experimentNME(j)
b (Π, A, k, p(k)), there exists an indexi such thatVKSIGi = VKSIG

andVer(VKSIGi,~ci, πi) = ACCEPT. Since the signature scheme is (strongly) existentially unforgeable, it

follows that, forb ∈ {0, 1} andj ∈ {1, 2}, Pr[badSig(NME(j)
b )] = negl(k).

Let badKey(NME(j)
b ) denote the event that for one of the public keys, sayP̂K, generated in the ex-

perimentNME(j)
b , there exists a pair of messagesm,m′ and random coinsr, r′ such thatm 6= m′ and

Enc(p̂k,m, r) = Enc(p̂k,m′, r′). Since the encryption scheme used is perfectly correct, by the union

bound, we havePr[badKey(NME(j)
b )] = negl(k).

Let failb(·) denote the eventbadNIZK(·) ∨ badSig(·) ∨ badKey(·). It follows, by a union bound,

thatPr[failb(NME(j)
b )] = negl(k), for j ∈ {1, 2}.
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We show that conditioned on the eventfailb(NME(j)
b ) (for j ∈ {1, 2}) not happening,NME(1)

b and

NME(2)
b are identical. Note that the view ofA in both the experiments is (syntactically) the same. Since

badSig(NME(j)
b ) does not happen,A uses a different verification key in all the ciphertextsψi it returns.

This means thatNME(j)
b can decrypt at leastoneof the components of eachψi, using a secret-key it knows,

to get a messagemi. SincebadNIZK(NME(j)
b ) does not happen,mi must be the message that is encrypted

in all the other components ofψi too. Thus,ψi is avalid encryption ofmi. Also, sincebadKey(NME(j)
b )

does not happen,mi is theuniquesuch message. Thus the tuple of messages returned in bothNME(1)
b and

NME(2)
b are exactly the same, and thus the outputs ofNME(1)

b andNME(2)
b are identical.

Combining the above with the fact that the eventsfailb(·) occur with a negligible probability, we have

NME(1)
b (Π, A, k, p(k))

s
≈ NME(2)

b (Π, A, k, p(k)). �
The proof of the following claim is identical to that in [PSV06a].

Claim 13 For every p.p.t. machineA, there exists a p.p.t. machineB such that forb ∈ {0, 1},{
NME(2)

b (Π, A, k, p(k))
}

k∈N
≡

{
INDb(E′, B, k)

}
k∈N

Proof: The machineB is constructed as follows.B simply simulates the experimentNME(2)
b , except that

instead of generatingPK by itself, it usesPK = {PKi}ki=1 received from the outside. Let(m0,m1) be the
pair of messages the adversaryA1 returns.B then outputs(m0,m1) and receives a challenge ciphertext

cb from the outside.B performs the same operations as the experimentNME(2)
b to generate the challenge

ciphertextCb for A2. Finally,A2 returns a sequence of ciphertexts(ψ1, ψ2, . . . , ψp(k)). B decrypts these

ciphertexts just as inNME(2)
b and outputs the plaintexts. (Note thatNME(2)

b uses onlySK′ and notSK in
order to decrypt the messages).

It is easy to see thatB simulates the experimentNME(2)
b perfectly using the public-keys and ciphertexts

received from the outside, and thus{
NME(2)

b (Π, A, k, p(k))
}

k∈N
≡

{
INDb(E′, B, k)

}
k∈N

�
To conclude the proof, we combine the last three claims to conclude that for every p.p.t. adversaryA,

there is a p.p.t. adversaryB such thatNMEb(Π, A, k, p(k))
c
≈ NME(1)

b (Π, A, k, p(k))
s
≈ NME(2)

b (Π, A, k, p(k)) ≡
INDb(E′, B, k). Since by the semantic security ofE′, IND0(E′, B, k)

c
≈ IND1(E′, B, k), it holds that

NME0(Π, A, k, p(k))
c
≈ NME1(Π, A, k, p(k)). �

5 Separating BoundedIND-CCA2 from NM-CPA

In this section, we show that under bounded chosen cipher attacks, non-malleability of the encryption
scheme is not immediately implied by indistinguishability. In particular, we show an encryption scheme
that is indistinguishable-secure under ak-bounded cca attack, butnoteven non-malleable under even a cho-
sen plaintext attack. In contrast, it has been shown that unlimitedIND-CCA2 security implies (some form
of) non-malleability (See [PSV06b] for a discussion).

Theorem 14 If there exists anm-boundedIND-CCA secure cryptosystemΠ, then there exists anotherm-
boundedIND-CCA secure cryptosystemΠ′ that is notNM-CPA-secure.
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Gen′(1k) : Run Gen(1k) and get a pair of keys(PK, SK). SupposeSK is an`-bit string. Choose a
random degree-m polynomialp(x) = pmx

m + · · ·+ p1x+ SK with coefficients inGF (2`) and
whose constant term isSK. OutputPK′ = PK andSK′ = (SK, p).

Enc′(PK,m) : Getc← EncPK(m) and output(0, c).

Dec′(SK, c) : Parsec as(c1, c2). If c1 = 0, outputDec(SK, c2). Else, if c2 > 0, outputp(c2) and
otherwise return0.

Figure 3: AN IND-m-CCA ENCRYPTION SCHEMEΠ′ WHICH IS MALLEABLE .

Remark: Theorem 6 shows that the existence of a semantically-secure cryptosystem implies the existence
of anm-boundedIND-CCA cryptosystem. Therefore, the “if” clause of the above theorem can be simplified.
However, we choose to present it as is to highlight the point that boundedIND-CCA2 does not imply
bounded non-malleability.
Proof: Assume that there exists an encryption scheme(Gen,Enc,Dec) that ism-boundedIND-CCA2-
secure. Then, we construct an encryption scheme(Gen′,Enc′,Dec′) (given in Figure 5) that is alsom-
boundedIND-CCA2-secure, but is notNM-CPA-secure. The proof follows from the following two claims.

Claim 15 (Gen′,Enc′,Dec′) ism-boundedIND-CCA2-secure.

Proof: Suppose not. We use the adversaryA that breaks the security ofΠ′ to construct anm-bounded
IND-CCA2 attack againstΠ. The new adversaryA′, on input PK, simply runsA(PK). When asked to
decrypt a ciphertext(0, c), it forwards the query to its own decryption oracle. When asked to decrypt a
ciphertext of the form(1, c2), it returns either0 if c2 = 0 or a random value. SinceA makes at most
m queries, thenA′ will be able to answer all queries. The simulation is perfect because the degree-m
polynomialp(·) ism-wise independent. This adversaryA′ succeeds with the same probability asA, which
contradicts the assumption thatΠ ism-bounded secure. �

Claim 16 (Gen′,Enc′,Dec′) is notNM-CPA-secure.

Proof: Without loss of generality, assume that the message space ofΠ include the bits0 and1. On input a
public keyPK, the adversary submits as a message pair,0 and1.

Upon receiving a ciphertextc, the attacker first computesα = Enc(PK, c). It then returns the vector
(α, β1, . . . , βm+1) whereβi = (1, i).

Notice that the output of the experiment is the vector(c, p(1), . . . , p(m+ 1)). The distinguisherD now
works as follows. It first usesp(1), . . . , p(m+ 1) to interpolate the secret keySK, and then runsDec(SK, c)
and prints the result as its output.

The distinguisher’s output in theNME0 experiment will therefore be0 and its output in theNME1 will
be1, which shows thatΠ′ is not evenNM-CPA secure.

As one final point, it may be that the message space ofΠ does not include the ciphertext — for example,
the size of the ciphertext may be too big. This is easily handled. The adversary can simply encodec in a
bit-by-bit fashion over many ciphertexts, and the distinguisher can simply reconstructc to perform its test.
� �
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SIMULATOR (S1, S2) FOR DESIGNATED VERIFIER NIZK

S1(1k) : Follow the instructions of the sampling algorithmD(1k) and output(PPdv, SPdv, ε).

S2(PPdv, SPdv, x, STATE) : Recall thatSPdv contains bitsf1, . . . , fk. For eachi = 1, . . . , k, run theΣ-
protocol simulatorSΣ(fi) to produce transcript(ai, fi, ci). Output the proof

π′
def=

[
ai, EncPK0

i
((1− fi) · ci), EncPK1

i
(fi · ci)

]k

i=1

(One encryption is always an encryption of0, while the other is one ofci.)

[RS93] Charles Rackoff and Daniel R. Simon. Cryptographic defense against traffic analysis. InSTOC
’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
672–681, New York, NY, USA, 1993. ACM Press. 1

A Proof of Adaptive Zero-knowledge of the Designated Verifier Proof System

Proposition 17 (D, P, V ) satisfies adaptive zero-knowledge.

Proof: At a high level, adaptive zero-knowledge follows from the zero-knowledge of the3-roundΣ protocol
and the semantic security of the encryption scheme. For any theorem-choosing algorithmA, we construct a
simulatorS = (S1, S2) that works as follows.

To show that the distributions inEXPTZKA andEXPTZKS
A are indistinguishable, we present the following

series of games. For convenience of notation, we say that the proofπ consists ofk triples(ai, α
0
i , α

1
i ) where

α0
i andα1

i are encryptions.

Game 0: Same asEXPTZKA exceptD is replaced byS1.

Game1 through k: Same as Game 0, except that in the firsti triples of the proofπ, the ciphertextα1−fi
i is

replaced byEncPKi
(0).

Gamek + 1 through 2k: Same as Gamek, except that the firsti triples of the proofπ are generated byS2

and and the remainingk − i proofs are generated byP .

Notice thatEXPTZKA is identical to Game 0 andEXPTZKS
A is identical to Game2k. We establishEXPTZKA

c
≈

EXPTZKS
A through the following two claims, which contradict the assumption.

Claim 18 Game1 is indistinguishable from Gamek.

(Breaking the encryption.)Suppose for the sake of reaching contradiction, that there exists an algorithm
D which distinguishes Game 1 from Gamek with non-negligible advantageη. This implies there exists
somej for whichD distinguishes game Gamej∗ and Gamej∗ + 1 with advantage at leastη/k.

We construct an adversaryB′ which violates the semantic security ofEnc. B′ first guessesj ∈ [1, k].
It then begins to run Gamej with the following modifications. Let(aj , c0,j , c1,j) be theΣ-protocol prover
messages used in thejth triple of the proof forx. B′ submits the messages(0, c(1−fj),j) as its challenges
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in the semantic security game. (Recall in an indistinguishability attack, one of these messages is randomly
chosen, encrypted and returned toB′. Let us denote the returned challenge ciphertext asy. ) Upon receipt
of ciphertexty, B′ produces the proofπ exactly as described in Gamej with the exception that it usesy in
place ofα

1−fj

j . Finally,B′ feeds the resulting proofπ toD and echoesD’s output.
Conditioned on guessingj correctly, observe that the distribution ofπ is identical to that of Gamej∗ if

y is an encryption ofc1−fj
and that of Gamej∗ + 1 otherwise. Thus, a probability calculation shows that

B′’s advantage in breaking the encryption scheme isη
k ·

1
k , which contradicts the security ofEnc.

Claim 19 Gamek is indistinguishable from Game2k.

(Breaking theΣ-protocol simulator.)A hybrid argument similar to the one used in Claim 18 applies. Assume
by contradiction, there exists somej∗ andD which distinguishes Gamej∗ and Gamej∗ +1 with advantage
at leastη/k

B′′ receives as input a transcript(a, b, c) and must decide if the proof was simulated or not. IfV2(a, b, c) =
0 (i.e., the transcript is not accepting), then output0 immediately. Otherwise, guessj ∈ [1, k]. If fj 6= b,
then output a random guess. Otherwise, use(PK, SK, x, w) (which is given as non-uniform advice) to gen-
erate a proof as described in Gamej. Replace thejth triple with (a,EncPK0

j
((1 − b) · c),EncPK1

j
(b · c)),

feed the resulting proofπ toD and echo its output.
Once again, conditioned on guessingj correctly and onfj = b, the distribution ofπ is identical to that

of Gamej∗ if the input transcript is a real prover transcript, and identical to that of Gamej∗ + 1 if the
transcript is simulated. Recall thatfj is chosen uniformly, and soPr[fj = b] = 1/2. Thus,B′′’s advantage
in breaking theΣ-protocol simulator is η

2k2 which is a contradiction. �
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