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Abstract

Under an adaptive chosen ciphertext attack (CCA2), the security of an encryption scheme must hold
against adversaries that have access to a decryption oracle. We consider a weakening of CCA2 security,
wherein security need only hold against adversaries makiray@ori boundednumber of queries to
the decryption oracle. Concerning this notion, which we balinded-CCAZecurity, we show the
following two results.

1 Bounded-CCA2 secumon-malleableencryption schemes exist if and only if semantically-secure
(IND-CPA-secure) encryption schemes exist. (As far as we know, bounded-CCA2 non-malleability
is the strongest notion of security known to be satisfiable assuming only the existence of semantically-
secure encryption schemes.)

1 In contrast to CCA2 security, bounded-CCA2 security aldoes noimply non-malleability. In
particular, if there exists an encryption scheme that is bounded-CCA2 secure, then there exists
another encryption scheme which remains bounded-CCA2 secuis,halleable under a simple
chosen-plaintext attack.

Keywords: Public-key Encryption, Non-Malleability, Chosen Ciphertext Security.



1 Introduction

Historically, encryption has been a mechanism helps aclpigvacyof data. This goal of privacy is captured
in the notion of semantic security [GM84] which, roughly stated, says that “whatever an adversary can learn
after seeing the ciphertext, it could have learnt without seeing the ciphertext”.

Non-malleability as defined by Dolev, Dwork and Naor [DDNOQ], is a stronger notion of security for
encryption schemes. In addition to the normal “privacy” guarantee, non-malleability guarantees that it is
infeasible for an adversary todifya vector of ciphertextas, ..., a,, into other ciphertexts of messages
which are related to the decryptiona®f, . . . , a,,. It has been widely acknowledged that this stronger notion
of security is critical for many practical applications. Recently, the same authors have showed that for the
weaker class of chosen-plain text attacks, any encryption scheme that is semantically secure (against chosen
plain-text attacks) can be transformed into one that is non-malleable (against chosen-plaintext attacks),
without relying on any additional assumptions [PSV06a].

Stronger Types of Attacks Under the traditional type of chosen-plaintext attack (CPA) on an encryption
scheme, the adversary is required to act on its own without any additional help [GM84]. Naor and Yung
[NY90], and Rackoff and Simon [RS93], considered the security of encryption schemes under stronger
types of attacks. In the strongest of these, cadlddptive chosen cipher-teattacks (CCA2), security is
required to hold with respect to adversaries that have access to an decryption oracle. Interestingly, it has
been showed that under CCA2 attack, the otherwise weaker notion of semantic security in fact implies also
non-malleability [DDNOO].

Nevertheless, constructions of CCA2-secure encryption schemes are rare [DDN0O, CS98] and it is open
whether any semantically secure encryption scheme can be transformed into one that is also CCA2 secure,
without making additional complexity theoretic assumptions.

Our results In this paper we introduce a weakening of the notion of a CCA2 attack which we call
bounded-CCA2 attack. In such an attack, the adversary is restricted to makiagpaiori boundednumber
of queries to the decryption oracle. Thus, we may discuss the notionaflzounded CCA2 non-malleable
encryption scheme as one that is “non-malleable” with respect to an adversary making @i deasyption
queries.

With this terminology, our main result shows that bounded-C®@Ag&-malleableencryption schemes
exist if and only if CPA-secure encryption schemes exist. As far as we know, the notion of bounded-CCA2
non-malleability is the strongest notion of security for encryption schemes known to be satisfiable under
only the assumption of CPA-secure encryption schemes.

Theorem 1 (Informal) Suppose there exists a IND-CPA-secure public-key encryption scheme. Then, for
any polynomialn, there exists am:-bounded CCA2 non-malleable encryption scheme.

We mention that the encryption scheme constructed depends on the panarmnatekin fact the length
of both the the public-key and the ciphertexts grows linearly with

Let us point out that one may also consider the notiomefounded IND-CCA2 semantically-secure
encryption (without the extra non-malleability requirement). As mentioned above, in the case of full CCA2-
attacks, semantical security has been shown to imply non-malleability. In the case of bounded-CCA2 secu-
rity, however, we show that this equivalence does not hold. More dramatically, we show that bounded-CCA2
security for any fixedn does not even imply non-malleability under the simple chosen plaintext attack.

Theorem 2 (Informal) Assume the existence of a IND-CPA-secure public-key encryption scheme. Then, for
everym, there exists an encryption scheme thatisdounded IND-CCA2-secure, but is not non-malleable
(even under CPA attacks).



This separation of notions highlights the importance of directly proving non-malleable of our scheme
(which complicates the analysis). While we find the idea of setting an upper-limit on the number of decryp-
tion queries a quite reasonable relaxation of a standard CCA2 attack, we view non-malleability as a principal
desiderata for the security of an encryption scheme.

Remark on Non Black-box techniques. We mention that our construction makes a non black-box use of

the underlying semantically-secure encryption scheme. In particular, we use a proof that several ciphertexts
are encryptions of the same message, and this may require analyzing the encryption circuit to form a theorem
statement. A very recent result by Gertner, Malkin, and Myers [GMMO07] shows the impossibility of black-
box constructions of (fully) CCA2-secure encryption schemes from semantically secure encryption schemes,
where thedecryptionalgorithm of the CCA2-secure scheme does not make use efitryptionalgorithm

of the semantically secure scheme. It seems that their proof extends to rule out the same type of black-box
constructions ohon-malleablesncryption schemes even under chosen plaintext attacks (and thus also under
bounded-CCAZ2 attacks). In this sense, non-blackbox techniques nrecbesaryor our results.

On the other hand, even though our construction uses ZK proofs and thus costly géReareductions,
for many encryption schemes, these proofs can be substituted with much more efficient proofs (based on,
say, 2 protocols) for the type of theorems we need to prove in our construction. In this sense, the non-
blackbox property may not have significant overhead in practical situations.

In contrast to the above;-bounded IND-CCA secure encryption (without the non-malleability require-
ment) seems possible using black-box techniques [CHK, HI]. As we show in Theorem 2, however, bounded
CCA-secure non-malleable encryption is a strictly stronger requirement than bounded IND-CCA-secure
encryption.

2 Definitions

Preliminaries. If A is a probabilistic polynomial time (p.p.t) algorithm that runs on inputi(z) denotes
the random variable corresponding to the outputiain inputz and uniformly random coins. Sometimes,
we want to make the randomness useddbgxplicit, in which case, we leti(z; ) denote the output oft
on inputz and random coins. We denote computational indistinguishability [GM84] of ensembleand

Bby A~ B.

Oracles Unless otherwise noted, all of our definitions make use of the following oracle convention. In the
case of a CPA attack, the oracles, O, return the empty string on all queries. In a CCA1 attack, the oracle
O1(PK) returns decryptions of ciphertexts under the public kgywhich is implicit by context). Finally,
in a CCA2 attack, both oracles return decryptions with the exceptior1@K, y) returns L when queried
on a particular ciphertext.

When we refer to a specific type of attack scenario, we will add the suffix CPA,CCAL, or CCA2 to the
name of the definition, e.gND-CCA2. Otherwise, we omit this suffix in order to simplify the notation.

Computational Indistinguishability For the reader’s convenience, we briefly summarize the notion of
computational indistinguishability.

Definition 1 (Computational Indistinguishability) Two ensemble$X,,},cr and {Yy, }er With identi-
cal index setl are said to becomputationally indistinguishablié& for every polynomial-size circuit family
{Dy}ren, every sufficiently largé, and everyw € I N {0,1}*, we have that

[Pr[Di(X,) = 1] — Pr[Dy(Ya) = 1] < u(k).

We denote such sefs(y, bwer ~ {Ya buwer.



Encryption Scheme. Here we review the syntactic functionality of an encryption scheme. Note that we
demand perfect correctness from an encryption scheme. This requirement can be imposed without loss of
generality, since any encryption scheme can be converted into one that has perfect correctness [DNRO4].

Definition 2 (Encryption Scheme) A triple (Gen, Enc, Dec) is an encryption scheme, @en and Enc
are p.p.t. algorithms an@®ec is a deterministic polynomial-time algorithm,

1. Gen on input1® produces a tuplépPk, SK), wherePK, sk are the public and private keys,

2. Enc: PKx {0,1}* — {0,1}* runs on input a public keyk and a message: € {0, 1}* and produces
a ciphertext,

3. Dec : skx{0,1}* — {0,1}*U{L} runs oninpufsk, c¢) and produces either a messagec {0, 1}*
or a special symbal_,

and the algorithms satisfy the perfect correctness property:
(Perfect Correctness)There exists a polynomial k) and a negligible functiom (%) such that forevery
messagen, andevery random tape.,

Prr, < {0,1}*®); (pk, sK) — Gen(1¥;r,); Decsk(Encpk(m;re)) # m] < (k).

2.1 Semantically-Secure IND-CPA-Secure) Encryption
Definition 3 (IND-security) LetII = (Gen, Enc, Dec) be an encryption scheme and let the random vari-

able IND-, (11, A, k, ¢) whereb € {0,1}, A = (A1, A2) andk,?¢ € N denote the result of the following
probabilistic experiment:

INDy(II, 4, R, k)
(PK, SK) « Gen(1%)
(mo,m1,2) — A?l(PK)
y — Enc(PK, mp)
z — Ay (y, 2)
Outputzx

(Gen, Enc, Dec) is indistinguishable under a chosen-plaintext attack fif.p.t. algorithmsA the following
two ensembles are computationally indistinguishable:

{INDD(H,A,k)}k 9 {INDl(H,A,k)}k

eN eN

The oracleO; = Decgk(+) is the decryption oracleD; = Dec¥(-), is the decryption oracle except
thatO- returns_L when queried omy.

If A makes at most: queries toO; andO, together, theriGen, Enc, Dec) is said to ben-bounded
IND-CCAZ2-secure. Further, ifn = 0, then the encryption scheme is said tdR®-CPA-secure.



2.2 Definition of Non-Malleable Encryption

The following definition of non-malleability was introduced in [PSV06a]. There it is shown that the defi-
nition composes, both in terms of the number of messages received by the adversary, and in terms of the
number of keys under which the messages are encrypted.

Definition 4 (NME-security [BS99, PSV06a])LetIl = (Gen, Enc, Dec) be an encryption scheme and let
the random variablNME, (11, A, k, /) whereb € {0,1}, A = (A1, A2) andk, ¢ € N denote the result of
the following probabilistic experiment:
NME,(I1, A, k. £) :
(PK, SK) «— Gen(1F)
(mo, m1, STATE,) — A (PK) s.t. [mo| = |m]
y — Encpg(ms)
(c1,...,¢0) — AS?(y, STATE,)
copy ife;=y
Decsk(c;) otherwise
(Gen, Enc, Dec) is NME-secure ifY p.p.t. algorithmsA = (A;, A;) and for any polynomiap(k), the
following two ensembles are computationally indistinguishable:

{NME(I, A,k p(k)) |~ {NMELILA K p(R)} M

Output(dy, ..., dy) whered; = {

The oracleO; = Decsk(+) is the decryption oracleD; = Dec¥,(-), is the decryption oracle except
thatO, returns. when queried omy.

If A makes at mostn queries ta0; andO, together, theriGen, Enc, Dec) is said to ben-bounded
NME-CCA2-secure. Further, ifn = 0, then the encryption scheme is said tadNidE-CPA-secure.

3 Strong Designated Verifier NIZK

Pass, shelat, and Vaikuntanathan [PSV06a] used designated verifier NIZK proofs to condtMeCRA-

secure encryption scheme from BMD-CPA-secure one. We define a stronger notion of soundness for
designated verifier NIZK proofs and show that the construction of [PSV06a] indeed satisfies this notion of
soundness. We will later use this in the construction of our boutdMd=CA2-secure encryption scheme.

3.1 Defining Strong Designated Verifier NIZK Proof Systems

In the designated verifier model, a non-interactive proof system has an associated polynomial-time sam-
pleable distributiorD over binary strings of the forrtpp, SP). During a setup phase, a trusted party samples
from D, publishesep and privately hands the VerifieP. The Prover and Verifier then use their respective
values during the proof phase.

Definition 5 (Strong Designated Verifier NIZK Proof System) A triple of algorithms(D, P, V'), is called
a designated verifier non-interactive zero-knowledge proof system for an N'P-languageL with wit-
ness relationR;, if the algorithmsD and P are probabilistic polynomial-time, the algorithi¥i is deter-
ministic polynomial-time and there exists a negligible functiosuch that the following three conditions
hold:

e COMPLETENESS For every(x,w) € Ry,

Pr| (PRsP) — D(1F); 7w — P(PRz,w) : V(PPSRa,m) =1 | =1 p(le])



e m-BOUNDED STRONG SOUNDNESSFor every oracle Turing machinB that has access to the verifier
oracleV (sp, PP, -, ), and makes at most oracle queries td/,

(PP.SP) — D(11*N)(",7')  BY(SPPP-I(pp) : 2/ ¢ I and

Pr
V(ppsp ', 1’) =1

< p(lzl)

e STRONG ADAPTIVE ZERGKNOWLEDGE: For every p.p.t. theorem chooser, there exists a p.p.t.
simulatorS = (.51, S2) such that the outputs of the following experiments are indistinguishable.

EXPTZK A (k) EXPTZK (k)
(PP, SP) « D(1%) (PP, SP, STATE) « S1(1%)
(x,w,STATE4) < A(PP, SP) (x,w, STATE4) <« A(PF, SF)
7w «— P(PP,z,w) 7!« Sy(PP, SF, x, STATE)
If (x,w) ¢ Ry, output.L If (x,w) ¢ Ry, output.L

Else outpui PP, SP, z, T, STATE, ) Else output PP, SP, z, ©’, STATE,)

Some technical remarks are in order. First of all, the difference between the adaptive zero-knowledge
definition here and the one in [PSV064] is that, we give the theorem cheesar addition toPr. The
definition of [PSV06a] only gaveprto the theorem chooser. Despite this strengthening, we will show that
the designated verifier proof system of [PSV06a] meets the stronger definition as given here. Secondly,
the soundness condition is required to hold for unbounded prover algorithriiee only restriction o3
being that it can access the verifier oracle an a-priori bounded number of times. Finally, the Veisfiar
deterministic machine. This extra restriction is only used to simplify the exposition of our constructions.

3.2 The Construction

The construction is the same one presented in [PSV06a], which we briefly review for completeness. Our
only complexity assumption is the existence of a semantically-secure encryption scheme. We note that Ca-
menisch and Dan#éyd use a similar idea in [CDOO] to construct an interactive verifiable encryption scheme.
The roots of this idea begin to appear much earlier in [KMO89].

Theorem 3 Assume there exists a semantically secure encryption scheme. Then, for every polynomial
m(|z|), there exists a strong designated verifier NIZK proof system withx|)-bounded soundness for
any languagd. € N'P.

Proof: The NIZK protocol is in Figure 1. The completeness property follows from the completeness of the
3-roundX protocol. The adaptive zero-knowledge property we need is stronger than the one in [PSV06a]
as noted above. Nevertheless, the protocol also achieves this stronger notion of zero-knowledge. A proof is
given in Appendix A.

[PSV06a] show th@-bounded strong soundness of this protocol. More precisely,

Proposition 4 ([PSV06a]) (D, P, V) is 0-bounded sound. That is, for any cheating proist,

(PP, SP) — D(1*N(", 7"y — B*(PP) : 2/ ¢ L and

<2k
V(ppspz/,7')=1 | —

Pr

We will use this to show that the same protocol satisfiégr|)-bounded soundness.
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Letk &' m(|z]) + |z|.

Sampling Algorithm D(1%). Fori = 1,...,k andb = 0, 1, runGen(1*) 2k times with independent
random coins, to gelt key-pairs(Pk?, sk?) . Fori = 1,...,k, flip coin f; < {0,1}. Generate
the receiver messagefor a two-round commitment scheme.

def

LetPry, = [(PKY, PK!, o)k, andsry, g, sk/']k_, . Output(PPy,, SPa,).
Prover P(PPy,, z,w). Fori =0, ..., k, generate triples as follows:
(aiy 8i) < Pi(z,w)
cp,i < Pa(s,b) for bothb = 0,1
Qpg EnCprﬂ.(Cb,i) forb=0,1.

and OUtpUh’ d:ef [(CLZ‘, Qo 01171‘)}?:1.

Verifier V(PPyy, SPyy, z, ). Parser into k triples of the form(a;, ag i, a1,). Fori = 1,...,k,
computem; def DecSKfi(afi,i) and run the verifie¥(a;, fi,m;). If all k& proofs are accepted,
OUtPUtACCEPT, else OUtpUREJECT

Figure 1: DESIGNATED VERIFIERNIZK PROTOCOL

Proposition 5 (D, P, V) satisfiesn(|z|)-bounded strong soundness.

Proof: Suppose there is a cheating proverthat asks the verifier oracle(|z|) queries and breaks the
soundness with probability~1#!.

We will use B to construct an algorithnB* that breaks the normal soundness of the protocol with
probability more thar2—*, which is a contradiction to the [PSV06a] theoreRt. works as follows: (1)B*
answersB’s queries to the verifier oracle by flipping a random bit and returning it, and (2) \iBhemtputs
a pair(z, 7) at the end B* outputs(z, 7) too.

The probability thatB* gives the correct answers 8's queries is exactlz—"(=). In other words,
with this probability, 3* simulates the verifier oracle perfectly. Thits|{B* succeeds> Pr[B succeeds\
B* simulates the verifier oracle perfedtly 2-I#l2—m(z)) = 9=k

Thus, B* breaks the ordinary soundness of the proof system with proba®ititywhich is in contra-
diction to the result of [PSV06a] mentioned above in Proposition 4 [

4 Constructing BoundedNM-CCA2-Secure Encryption Scheme

In this section, we construct an encryption scheme that-lsoundedNM-CCA2-secure, starting from

any semantically securéND-CPA-secure) encryption scheme. The constructiothéssameas the DDN
construction [DDNOOQ] and the construction of Pass, Shelat and Vaikuntanathan [PSV06a], except that the
NIZK proof used is a designated-verifier NIZK proof with-bounded strong soundness. By the results from

the previous section (the constructionmatbounded designated verifier proof systems from semantically
secure encryption schemes), our construction only relies on the assumption of the existence of a semantically
secure encryption scheme.



Theorem 6 (Main Theorem) Assume there is an encryption scheme thdND-CPA-secure. Then, for
every polynomiain, there exists an encryption scheme thanivoounded\NM-CCA2-secure.

Our proof closely follows the proof of [PSV06a]. We highlight the crucial differences between their
proof and ours in the appropriate places.

Proof:(of Theorem 6) Le{Gen, Enc, Dec) be any semantically secure encryption scheme(Gen,;,, Sign, Ver)
be any existentially unforgeab#rongone-time signature schemaithout loss of generality, assume that
Gen,;, produces verification keys of lengkl? Define theN'P-languagel as follows:

[(c1,...,cx), (p1,...,p)] € Lifand only if
3[m, (r1,...,mn)] such that; = Ency, (m;r;) fori =1,...,n.

In words, the languagé contains pairs consisting offatuple of ciphertexts and k-tuple of public keys
such that the ciphertexts are encryptions ofghme message under thek public keys.

Let (D, P, V) be anm-bounded designated verifier NIZK proof system far We show that the en-
cryption schemél = (NMGen, NMEnc, NMDec) defined in Figure 4 is am-boundedNM-CCA2-secure
encryption scheme. The proof has two parts.

Just as in [DDNO0O] and [PSV06a], we define an encryption schEme (Gen’, Enc’, Dec’) in which
one simply encrypts a messagémes withk independently chosen public keys, and we show Hids a
semantically secure encryption scheme under the assumptioi@#atEnc, Dec) is one. This is identical
to [PSV064a] and is stated in Lemma 7.

Then in Lemma 8, we show that is anm-boundedNM-CCA2-secure encryption schemeif is a
semantically secure encryption scheme. The proof is concluded by noting thatHmthnded designated
verifier NIZK proofs and strong one-time signatures can be constructed given any semantically secure en-
cryption scheme (The former is true by virtue of Theorem 3. The latter follows by combining the observation
that encryption implies one-way functions, Rompel’s result showing that one-way functions imply univer-
sal one-way hash functions [Rom90], and the result that universal one-way hash functions imply strong
one-time signature schemes [Gol04, Lam79]).0d

The definition of the encryption scheni# = (Gen’, Enc’, Dec’) below is exactly as in DDN, repro-
duced below for the sake of completeness.

e Gen'(1%): Fori = 1,...,k, run (PK;, Sk;) < Gen(1*) with independent random coins. Sat o
(PKy,...,PKg) andsk def (SKi,...,SKg).

e Encpy(m): Output[Encpg, (m;r1),. .., Encpk, (m;ry)].

e Decgk([c1,ca, ..., ck]): Computem) = Decsk, (c;). If all the m/ are not equal, output, else output

/
ml.

Lemma 7 [DDNO0O, PSV064a] If(Gen, Enc, Dec) is semantically secure, theiGen’, Enc’, Dec’) is se-
mantically secure.

Lemma 8 If B’ = (Gen’, Enc’, Dec’) is a semantically secure encryption scheme, fliiemanm-bounded
NM-CCAZ2-secure encryption scheme.

A strong signature is one in which, given a signaturef a messagen, it is infeasible to produce a messagé and a valid
signatures’ of m’, such thai{o, m) # (o’,m’). i.e, it is infeasible also to produce a different signature forstime message

2This is without loss of generality since we can %eto be an upperbound on the length of verification keys Gef,;,
produces.



NMGen(1F) :

1. Fori € [1,k],b € {0,1}, runGen(1%) to generate key-pairf®k’, sk?).
2. RunD(1%) to generatépPp, SP).

Setpk & {((PK?, PKINE |, PP} andsk & {((SK?, skINE SP}.

NMEnCpK(m> .
1. Run the signature algorith@ens;,(1%) to generatésksIG, VKSIG).
Let (v1,...,v;) be the binary representation oksIG.
2. Compute the ciphertexts < Encpyvi (m). Lete (c1,¢2,. .., Ck).

3. Run the designated verifier NIZK Prover to generate a proof that
[(c1, ... ew), (PR, ... PKIM)] € L.

4. Compute the signature — Signgk s g((¢, m)).
Output the tupléc, 7, VKSIG, ].
NMDeCSK(C) .

1. Verify the signature with/eryks|g[(¢, ), o]; output_L upon failure.
2. Verify the proof withV (PP, SP, (¢, PK), m); output L upon failure.
3. LetVKSIG = (v1,...,v;). Computem; = Decgycs (c1) and output the result.

Figure 2: THE NON-MALLEABLE ENCRYPTION SCHEME II

Proof: To prove thafll is a non-malleable encryption scheme, we need to show that for any p.p.t. adversary
A that queries the decryption oracle at mostimes and for all polynomialg(k),

{NMEO(H,A,k,p(/ﬂ))}kGN ~ {NMEl(H’A’k’p<k))}keN

We show this by a hybrid argument. The sequence of hybrid expts is the same as in [PSV06a] except that
we need to handle the decryption queries of the adversary. This is done below 'ihiSiNMEI()l) and in
Step2 in NMEI(f). Consider the following experiments:

Experiment NMEgl)(H,A,k,p(k‘)) — Using a Simulated NIZK Proof: Proceeds exactly likbNME,

except that the simulator for the designated verifier NIZK proof system is used to generate the public pa-
rameters and to compute the challenge ciphertext (as opposed to generating an honest proof by running the
prover algorithmP). Let.S = (51, S2) denote the simulator guaranteed by the adaptive zero-knowledge of

(D, P, V). More formaIIy,NMEISl) proceeds exactly likBIME, except for the following differences:

1. The encryption keyPK, SK) is generated by (1) honestly running the key-generation algoi@lem
to generate thek encryption keygPk?, sk?), but (2) running the simulatos; (1%) to generate the
key-pair (PP, sP) for the designated verifier NIZK (instead of runnifg1*) as inNMGen).
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2. Generaté encryptions ofn;, (just as in Step$ and2 of NMEnc). But, instead of using the designated
verifier prover, generate a “simulated proof” by runnitig (Note thatS, does not use the withess—
namely,m; and the randomness used for encryption—in order to generate the simulated proof).

3. Answering the Decryption Queries: Let thei?” decryption query be of the forfid, 7, vksIG, o] (If
the decryption query is not of this form, retutr).

If the signaturer is not valid under the verification keyks1G, outputsL. Check the NIZK proofr in
the ciphertext using the NIZK secret-parameter|f the proof is not accepting, returh. Otherwise,
: " N . VKSIG,

find a position? such thatvksiG, # VKsIG;. Decryptc, using the secret-kegk, and return
the answer.

Experiment NMEl(f) (I1, A, k, p(k)) — Semantic Security ofE’:  proceeds exactly IikBIME,()I) except for
the following differences:

1. RunGen’ to get two sets of public keyPK = {Pk;}%_, and PK’ = {PK!}¥_,, along with the
corresponding secret-key®& = {sk;}¥_, andSK’ = {sk/}*_,. Generate a verification key and
signing key for the signature schermexsiG*, sksSIG"). Construct a public-key fdil as follows: Let
v; be thei™ bit of VKSIG*. SetPk? = PK;, Sk = L, Pk ™" = pK/ andsk! " = sk/. (NME.”

)

will use the secret-keys corresponding to eagh but notPk;, later in the experiment).

2. Answering the Decryption Queries: Exactly as irNMEél).

3. After receiving the tupléy, . . ., 1) of ciphertexts fromA,, decrypt each; = [¢;, 7}, VKSIG;, 0;]
as follows: If the signature; in 1»; does not verify, output.. If VKSIG; = vKSIG*, output_L. If the
NIZK proof 7; fails verification, outputL. Else, decrypt one of the components/gf for which the
secret-key is known (such a component is guaranteed to exist,\s®e; # VKSIG*) and output
the result.

We now show that these experiments are indistinguishable. The following claim follows from the adap-
tive zero-knowledge property of the NIZK system. We here rely on the stronger variant of adaptive zero-
knowledge (See Definition 5).

| < M
Claim 9 {NMEb(H,A,k,p(k))}keN 5 {NMEb (H,A,k,p(kz))}kEN

Proof: Assume, for contradiction, that there exists a p.p.t. algorithwhich distinguisheBIME,(I1, A, k, p(k))
from NME,()D(H, A, k,p(k)). Then, we construct a theorem-choosgr and a ZK distinguisheD,, that
violate the adaptive zero-knowledge of the proof systémpP, V') for the languagd.. That is, D, distin-
guishes between the experime#ts,, andZKik, whereS is the zero-knowledge simulator.

On input(PP, SP), the theorem-chooset,, works as follows:

1. RunGen(1¥) 2k times, to generatek key-pairs(PK?, Sk?),cix pefo,13- RUN the adversaryl; on
input [(PK?)ie[kLbe{O’l}, PP}. Aj returns a pair of plaintexts,; andm, and a strings TATE.

2. Answer decryption queries exactly as in the experirrl‘rdVIEl()l).
3. Produce the challenge cipherteéis follows:

e Generate a key-paisKsIG", vksIG*) for the signature scheme. LeksSIG* = (v],v3,...,v}).
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e Pick a randomb € {0,1}, and forl < i < k, let¢; « EncPKU; (mp;7i), wherer; is the
randomness used for encryption. '
Let & denote(cy, o, . . ., cx) andPk denote(PKll’1 e PKZ’“), andr denote(ry,ra, ..., 7).

4. Letz = (¢,PK) andw = (my, 7). Output the theorem-witness pdir, w). Also output the contents
of the work-tape asSTATE4.

The ZK distinguishetD,, on input(PP, sP), the theoren{c, Pk), the proofr and the statsTATE,, does
the following:

1. RunA; on input the ciphertexiz, 7, VKsIG, Signsk s c((¢, 7))] to produce a sequence of ciphertexts
(¥1,%2, ..., ¥pk))- Run the decryption algorithrDecsk(z;) on each of these ciphertexts to get

plaintexts(ii1, pa; - - - Hp(k))-

2. Run distinguisheD on the sequence of plaintexis:, s, - - - , () @and output whateveld outputs.

The experimenZK 4, (that is, whenD, is given as input the real proof), perfectly simulates the ex-
perimentNME, (11, A, k, p(k)), whereas the experimeﬁKf1zk (that is, whenD, is run with a simulated

proof) perfectly simulateBIMEl()l)(H, A, k,p(k)). If the outputs ofD in the experiments are different, then

D, distinguishes between a real proof and a simulated proof, contradicting the adaptive zero-knowledge of
the NIZK proof systemD, P, V). O O

Next, we show that experimenﬂxﬁ\AElgl)(- --) and NMEl(f)(- -+ ) are statistically indistinguishable. To
this end, we define three evenbadNIZK(Expt), badSig(Expt) andbadKey(Expt), corresponding to the

experimentExpt. We show that the experimeriw\/IEél) andNMEl(f) areidentical under the assumption
that the eventdadNIZK, badSig andbadKey neverhappen in these experiments. Then, we show that the
bad events happen with negligible probability in both the experiments. Taken together, these two statements
let us conclude tha\IMEl()l) andNMEl(,Q) are statistically indistinguishable. Details follow.

The proof of the following claim is similar in structure to that in [PSV06a]. The difference is in (1)
Subclaim 11, where we use the-bounded strong soundness of the designated verifier NIZK, as opposed
to ordinary soundness and, (2) Subclaim 12, where we use the strong adaptive zero-knowledge property of
the designated verifier NIZK.

Claim 10 {NME[()I)(H, A,k:,p(k))} L {NME(()Q)(H,A,k,p(k))}

keN keN

Proof: Define the evenbadNIZK(Expt), to capture the event that the adversdryiolates the soundness of
the NIZK proof system in experimeiiixpt (i.e, the adversary produces a false statement together with an
accepting proof).

More precisely, let) denote a ciphertext that the adversary produces (this could either be a query to the
decryption oracle or one of the ciphertexts in its output). H=eiNIZK(Expt) denote the following event: In
experimenExpt, there exists a ciphertextthat the adversary produces in which: (1) the NIZK proofin
is accepted by the verifiér, but (2) all thek ciphertexts that are part gf do not decrypt to the same value
(in other wordsy) contains aracceptingproof of afalsestatement).

In the subclaims below, we show thaidNIZK(NMEgj)) happens only with negligible probability.

Subclaim 11 For b € {0, 1}, Pr[badNIZK(NME;)] = negl(k)
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Proof: Suppose, for contradiction, that this is not true. That is, there is a polynatialsuch that
Pr[badNIZK(NME;] > ﬁ Then, we construct a maching, that violates the soundness of the proof

system(D, P, V') with probability at Ieastpk)lw. A, can also access the verifier oracle at madtmes.

On input a public parameter, A works as follows:

1. Simulate the experimeMME, usingPP, until A, outputsp(k) ciphertexts. Note thatl; does not
need to know the secret parameserto perform these steps — to answer the decryption quetigs,
simply uses the verifier oracle to check the correctness of the NIZK proof in the decryption query.

2. A, picks at random one of the ciphertexts that the adversary produces (which includes both the adver-
sary’s queries to the decryption oracle, as well as his output ciphertexts). Say the ciphertext chosen is
[¢,m,VKSIG, o]. Output the paifc, 7).

The probability thatd; outputs a false statement and an accepting proof pair is, by our assumption, at
Ieastm, which is a contradiction to the:-bounded strong soundness(@f, P, V). [

The proof of the subclaim below follows [PSV06a] exactly, except for the use of strong adaptive zero-
knowledge, in the same way it was used in Claim 9.

Subclaim 12 For b € {0, 1}, Pr[badNIZK(NME")] = Pr[badNTZK(NME\?)] = negl(k).

Proof: We start by noting thaPr[badNIZK(NMEl()l))] = Pr[badNIZK(NMEéQ))]. This follows because the
adversary’s view in experimenN;MEl()l) and NMEI()Q) are identical until the point when the adversaty
outputs the ciphertexts. We proceed to show thabfar{0, 1}, Pr[badNIZK(NMEZ()l))} is negligible ink.

This is shown by an argument similar to the one used in the proof of Claim 9. Assume, for contradiction,
thatPr[badNIZK(NMEgl))} is non-negligible. Then, we construct a pair of machifés, D,i) that violate

the adaptive zero-knowledge of the proof syst@m P, V).

On input a public parameter for the NIZK proof systemA,, and D, work exactly as in the proof of
Claim 9, except that in Step 3, wheh, returns a sequence of ciphertexts, . . ., ¥, ), D2« looks for a
ciphertexty; such that not all the componentsfdecrypt to the same message, and the NIZK proaf;in
is accepting. If there exists such grihen D, returns “Fail” and otherwise returns “OK”.

Note that by definition, wheh,, receives a real proof, it outputs “Fail” with probabilifyr [badNIZK(NME)].
On the other hand, when run on a simulated proof, it outputs “Fail” with probaB’iﬁ@’adNIZK(NMEl()l))].
However, in the previous subclaim, we showed that the former probability is negligible. If the latter prob-
ability is non-negligible, therD,, distinguishes between a simulated proof and a real proof, contradicting
the adaptive zero-knowledge property of the proof systemP, V). O

Lety; = [, m;, VKSIG;, ;] denote the®” ciphertext returned byl,. DefinebadSig(NMEf)j)) to be
the event that, in experimemMEéj)(H,A, k,p(k)), there exists an indeksuch thatvksiG; = VKSIG
andVer(VKsIG;, ¢, m;) = ACCEPT. Since the signature scheme is (strongly) existentially unforgeable, it
follows that, forb € {0, 1} and; € {1,2}, Pr[badSig(NME\)] = negl(k).

Let badKey(NMEl(f)) denote the event that for one of the public keys, Bay generated in the ex-

perimentNMEéj), there exists a pair of messagesm’ and random coins, r’ such thatn # m’ and
Enc(pk,m,r) = Enc(pk,m’,r'). Since the encryption scheme used is perfectly correct, by the union
bound, we havé’r[badKey(NMEl(f))] = negl(k).

Let faily(-) denote the everdadNIZK(-) vV badSig(-) V badKey(:). It follows, by a union bound,

thatPr[£ail,(NMEY))] = negl(k), for j € {1,2}.
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We show that conditioned on the eve‘milb(NMEgj)) (for j € {1,2}) not happeningNMEgl) and
NMEISQ) are identical. Note that the view of in both the experiments is (syntactically) the same. Since
badSig(NMEI()j)) does not happem uses a different verification key in all the ciphertextsit returns.
This means thd%lMEl()j) can decrypt at leasineof the components of eaaly, using a secret-key it knows,
to get a message,;. SincebadNIZK(NMEl()j)) does not happemp; must be the message that is encrypted
in all the other components @f; too. Thus,y; is avalid encryption ofm;. Also, sincebadKey(NMEl(f))
does not happemy; is theuniquesuch message. Thus the tuple of messages returned irNMEIél) and
NMEZ(E) are exactly the same, and thus the outpuﬂ!slMEl()l) andNME,(,Q) are identical.

Combining the above with the fact that the evefus1,(-) occur with a negligible probability, we have
NMESY(TT, A, &, p(k)) & NME (T, A, k, p(k)). O
The proof of the following claim is identical to that in [PSV06a].

Claim 13 For every p.p.t. machind, there exists a p.p.t. machidgsuch that fo, € {0, 1},

{NMEI(>2) (IL, 4, k’p(k))}keN = {INDI’(E,’ B, k)}keN

Proof: The machineB is constructed as followsB simply simulates the experimeNII\/IE(Q), except that
instead of generatingk by itself, it usesPk = {Pk;}*_, received from the outside. Létng,m1) be the
pair of messages the adversaty returns. B then outputgmg, m;) and receives a challenge ciphertext
¢, from the outside.B performs the same operations as the experirhMEl(f) to generate the challenge
ciphertextC, for Az. Finally, A returns a sequence of ciphertexts, ¢, . .., ¥,x)). B decrypts these
ciphertexts just as iNME,(f) and outputs the plaintexts. (Note tHﬁMEI(f) uses onlysk’ and notsk in
order to decrypt the messages).

It is easy to see thdk simulates the experimehﬂ\/IE,(f) perfectly using the public-keys and ciphertexts
received from the outside, and thus

{NMEI()Q) (IL, A, k,p(k»}keN = {INDb(E,’ B, k)}keN

Il

To conclude the proof, we combine the last three claims to conclude that for every p.p.t. advgrsary
there is a p.p.t. adversafysuch thaNME(IT, A, k, p(k)) ~ NME\ (1, A, k, p(k)) & NME\? (11, A, k, p(k)) =
IND,(E’, B, k). Since by the semantic security &f, INDy(FE’, B, k) ~ IND:(E', B, k), it holds that
NMEo(IT, A, k, p(k)) ~ NMEy (IL, A, k, p(k)). O
5 Separating BoundedIND-CCA2 from NM-CPA
In this section, we show that under bounded chosen cipher attacks, non-malleability of the encryption
scheme is not immediately implied by indistinguishability. In particular, we show an encryption scheme
that is indistinguishable-secure undér-aounded cca attack, bobteven non-malleable under even a cho-

sen plaintext attack. In contrast, it has been shown that unlinfitBdCCA2 security implies (some form
of) non-malleability (See [PSV06b] for a discussion).

Theorem 14 If there exists amm-boundedND-CCA secure cryptosysteifii, then there exists anothet-
boundedND-CCA secure cryptosysteil’ that is notNM-CPA-secure.
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Gen'(1%) : RunGen(1*) and get a pair of keyérk, SK). Supposesk is an/-bit string. Choose a
random degrees polynomialp(z) = p,,z™ + - - - + prz + SK with coefficients inGF'(2¢) and
whose constant term &x. OutputPk’ = PK andsk’ = (SK, p).

Enc’(Pk,m) : Getc « Encpk(m) and output0, c).

Dec'(skK,c) : Parsec as(ci,cz). If ¢; = 0, outputDec(sk, cz). Else, ifca > 0, outputp(cs) and
otherwise returm.

Figure 3: AN IND-m-CCA ENCRYPTION SCHEMEIT’ WHICH IS MALLEABLE .

Remark: Theorem 6 shows that the existence of a semantically-secure cryptosystem implies the existence
of anm-boundedND-CCA cryptosystem. Therefore, the “if” clause of the above theorem can be simplified.
However, we choose to present it as is to highlight the point that boulilBedCCA2 does not imply
bounded non-malleability.

Proof: Assume that there exists an encryption schéfen, Enc, Dec) that ism-boundedIND-CCA2-

secure. Then, we construct an encryption sché@en’, Enc’, Dec’) (given in Figure 5) that is alser-
boundedND-CCA2-secure, but is ndiiM-CPA-secure. The proof follows from the following two claims.

Claim 15 (Gen’, Enc’, Dec’) is m-boundedND-CCA2-secure.

Proof: Suppose not. We use the adversaryhat breaks the security @’ to construct ann-bounded
IND-CCAZ2 attack againsil. The new adversary’, on inputPk, simply runsA(Pk). When asked to
decrypt a ciphertext0, c¢), it forwards the query to its own decryption oracle. When asked to decrypt a
ciphertext of the form(1, c2), it returns eithei0 if c; = 0 or a random value. Sincd makes at most

m queries, thend’ will be able to answer all queries. The simulation is perfect because the degree-
polynomialp(-) is m-wise independent. This adversaty succeeds with the same probability Aswhich
contradicts the assumption tHatis m-bounded secure. [J

Claim 16 (Gen’, Enc’, Dec’) is notNM-CPA-secure.

Proof: Without loss of generality, assume that the message spdéenziude the bit® and1. On input a
public keypPkK, the adversary submits as a message paind1.

Upon receiving a ciphertext, the attacker first computes = Enc(PK, ¢). It then returns the vector
(o, B1y .-y Bmy1) Wheres; = (1,14).

Notice that the output of the experiment is the vectop(1), ..., p(m + 1)). The distinguisheD now
works as follows. It first uses(1), ..., p(m + 1) to interpolate the secret keyk, and then run®ec(sk, c¢)
and prints the result as its output.

The distinguisher’s output in tHeME experiment will therefore b@ and its output in th&NME; will
be1, which shows thall’ is not everNM-CPA secure.

As one final point, it may be that the message spadéades not include the ciphertext — for example,
the size of the ciphertext may be too big. This is easily handled. The adversary can simply eircade
bit-by-bit fashion over many ciphertexts, and the distinguisher can simply reconstauperform its test.
0 O
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SIMULATOR (.57, S2) FOR DESIGNATED VERIFIER NIZK

S1(1%) : Follow the instructions of the sampling algoritt#r(1*) and output PPy, SPs,, €).

S2(PPgy, SP4y, 2, STATE) : Recall thatspy, contains bitsfi, ..., fx. For eachi = 1,... k, run theXx-
protocol simulatoiSy; (f;) to produce transcriga;, f;, ¢;). Output the proof

def k
7 i, Encpyo (1 - 1) - ci), Encpy (fi - )|

=1

(One encryption is always an encryptiondofwhile the other is one af;.)

[RS93] Charles Rackoff and Daniel R. Simon. Cryptographic defense against traffic analySisOID
'93: Proceedings of the twenty-fifth annual ACM symposium on Theory of compptggs
672-681, New York, NY, USA, 1993. ACM Press. 1

A Proof of Adaptive Zero-knowledge of the Designated Verifier Proof System
Proposition 17 (D, P, V') satisfies adaptive zero-knowledge.

Proof: At a high level, adaptive zero-knowledge follows from the zero-knowledge df-tioeind> protocol
and the semantic security of the encryption scheme. For any theorem-choosing alghntlenconstruct a
simulatorS = (S, S2) that works as follows.

To show that the distributions EXPTZK 4 andEXPTZKﬁ are indistinguishable, we present the following
series of games. For convenience of notation, we say that theprmofsists of triples(a;, Y, a}) where
a? anda} are encryptions.

Game 0: Same agXPTzZK,4 exceptD is replaced bys;.

Gamel through k: Same as Game 0, except that in the fifsiples of the proofr, the ciphertextx}‘fi is
replaced byEncpy, (0).

Gamek + 1 through 2k: Same as Gamk, except that the firsttriples of the proofr are generated by
and and the remaininky — i proofs are generated .

Notice thaEXPTZK 4 is identical to Game 0 aI‘EZb(PTZKf‘ is identical to Gamek. We establislEXPTZK 4 ~
EXPTZK? through the following two claims, which contradict the assumption.

Claim 18 Gamel is indistinguishable from Game

(Breaking the encryption$uppose for the sake of reaching contradiction, that there exists an algorithm
D which distinguishes Game 1 from Garhewvith non-negligible advantage. This implies there exists
somej for which D distinguishes game Gamjé and Gameg™* + 1 with advantage at leagt/ k.

We construct an adversafy which violates the semantic security Bhc. B’ first guesseg € [1, k.
It then begins to run Gamgwith the following modifications. Leta;, co ;, c1,;) be theX-protocol prover
messages used in thith triple of the proof forz. B’ submits the messagés, c;_y,) ;) as its challenges
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in the semantic security game. (Recall in an indistinguishability attack, one of these messages is randomly
chosen, encrypted and returnedt Let us denote the returned challenge ciphertext gsUpon receipt
of ciphertexty, B’ produces the proaf exactly as described in Ganjevith the exception that it usesin
place ofa;_fj. Finally, B’ feeds the resulting proaf to D and echoe®'’s output.
Conditioned on guessingcorrectly, observe that the distribution ofis identical to that of Gamg* if
y is an encryption ot;_;, and that of Gamg* + 1 otherwise. Thus, a probability calculation shows that
B'’’s advantage in breaking the encryption schem?i%, which contradicts the security &hc.

Claim 19 Gamek is indistinguishable from Gamik.

(Breaking thex-protocol simulator.)A hybrid argument similar to the one used in Claim 18 applies. Assume
by contradiction, there exists sonjieand D which distinguishes Gamg and Gamg™ + 1 with advantage
at leasty/k

B’ receives as input a transcrit, b, ¢) and must decide if the proof was simulated or notlfa, b, ¢) =
0 (i.e., the transcript is not accepting), then outputmediately. Otherwise, guegse [1,k]. If f; # b,
then output a random guess. Otherwise, (€ sK, z, w) (which is given as non-uniform advice) to gen-
erate a proof as described in GagheReplace thgth triple with (a, EncPKg((l —b)- o), EncPK}(b - 0)),
feed the resulting proaf to D and echo its output.

Once again, conditioned on guessjnhgorrectly and ory; = b, the distribution ofr is identical to that
of Gamej* if the input transcript is a real prover transcript, and identical to that of Game 1 if the
transcript is simulated. Recall th#f is chosen uniformly, and sBr(f; = b] = 1. Thus,B"’s advantage
in breaking thex-protocol simulator is;; which is a contradiction. [
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