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ABSTRACT

It has been found that amplitude limiters which contain
storage elements convert some of the amplitude modulation
present at the input into phase modulation at the output. in
general, this effect is udiicsirable in freoucncy uT ati n
systems.

The analysis of a simple liMiter has been carried out in
this thesis. The model chosen is a parallel GLC circuit with a
clipper voltage limiter composed of ideal di-des -nd batteries.
The input is considered to be the current fec. into the device,
and the output is the voltage across it. Ey means of Laplace
transform techniques, representations are found for the circuit
parameters, and a relation is developed for the phase deviation
of the output voltage for a given amplitude modulation present
at the input.

In order to determine the amplitude to phase conversion
when the nonlinear part of the circuit does not consist of ideal
elements, the analysis technique is changed from that of a
transient nature to a Fourier decomposition of the voltage wave-
form. An analysis technique is developed to characterize and
relate the current and voltage in the nonlinear element. Then
an example is carried out in which voltage-current phase shift
is determined in a circuit with a representative limiting element.

Thesis Supervisor: Samuel J. iason
Title: Associate Professor of Electrical Engineering.
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INTRODUCTION AND STATEMENT OF THE PROBLEM

A major part of the development of electrical engineer-

ing has been the formulation and solution of linear problems.

The application of the principle of superposition has permitted

the utilization of various techniques, such as the introduction

of the exponential frequency term and the complex transform, and

these have paved the way for theoretical solutions to most if

not all linear lumped passive structure properties.

The linear circuit is, however, an ideal model for a

physical device, and the solutions obtained are useful only so

long as a representation of a nonlinear element by its linear

approximation is satisfactory. If the nonlinear properties are

such that this is not reasonable, then it is necessary to resort

to experimental trials or to various approximation techniques

unless the problem is sufficiently simple to permit an exact

solution.

In the past few years there has been progress toward the

general solution of nonlinear problems. The work of Wiener per-

mits the characterization of general nonlinear circuits for

stochastic inputs, thus opening a world of analysis and synthesis

heretofore barred from those thinkingj in terms of linear circuitry.

However, there still remains the dilemma of solving nonlinear

circuit problems for sinusoidal or transient inputs. Many approx-

imation methods have been expounded, but few give useful results
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except in special cases or classes of problems. Until a method

is found by which general nonlinear problems may be solved for

arbitrary inputs, we must content ourselves with developing and

extending the present techniques in order to gain some insight

into each special case considered.

One such problem is that of the action of amplitude

limiters, used in frecency modulation systems to remove un-

wanted amplitude modulation present on the frecuenc-; modulated

carrier. Here the "noise" need not be considered stochastic;

it is usually a combnation of tones and signal which has been

converted to amplitude modulation by nonlinearities within the

system. The purpose of the system limiters is to remove this

perversion of the signal, leaving a wave which contains only

the wanted information.

However, it has been found experimentally that limiters

used for this purpose have converted some of the unwanted amp-

l tude modulation into phase modulation, thus corrupting the

desired signal.

In order to gain some knowledge of the mechanism of this

amrlitude to phase conversion in limiters, Mr. R. L. Madsen of

the Bell Telephone Laboratories began a study of static conver-

sion. Using for a model a parallel GLC netwurk with symmetri-

cal clipper voltage limiter connected across it, he obtained

relations for the phase difference between the zero crossings

of the voltage waeform and those of the sinusoida.l input current.1

Raymond L. Padsen, Amplitude to Phase Corivers on in
Clipper Lim ters, TechnicAl Memorandum 54-21-t', Bell
Telephone Laboratories (1>).



This thesis is an extension of his work. First, tie

relations he obt(ajned will be iven, w1th scne ex 1 t2ofn -s

to their applicabi t . Then, a limiting case of the problem,

namely an LC (non-d-issijotive) tnk clrcuit with a swit' tI e

1 ulter, will be analy 1zed.. This q' ' e shuw to be sever-

est case of amplitude to ihase distortion and may be looked

upon as an up-er bound to the distortion from this effect. A

few graphs of parameters will end Chapter I.

The analysis of the LC limiter will be developed by phy-

sical reisning n CmApter II, mnd by means of suitable approxi-

t ,el-tions will be determined for the mu t (f -h se

shift in the first harmoaic o the volttge f' t -iven rcplltue

modulation, of the input current.

The above work considered the uction in two states: first,

when the swil 1h limiter w -s conducting rnd hcldaiig the vo. ltaL e

at a fixed val ue, nid sec.nd, as a nAc- r c r(.iCt wher the switch

was ope>. In Chapter III a different approach to the prohlem

will be taken; that of - contin) rly acting nonlinear device.

The limiting action will be represented by considering a circuit

element in which the voltage is proportional to the logarithm of

the current. From this an analysis technicue will be developed.

which .s exact for single frec, ency peroi( inputs, :nd -

generalization for arbitrry nonlinear dissipative functions

will be i.entioned.

In Chapter IV an approximation for 'rbitr.ry periodic

inputs to a general nonlinear diss pative device with linear

active elements will be given, and, using the techniques of



Chapter III, a solution will be obtained in terms of Bessel

funcdions of r comilex arLument, for which tables are used

to obtain an answer to the problem. As may well. be imagined,

this techni'que is sibject to strong limitatIons, 'nd the error

grows as the device to be characteri zcd becomes m. re n -nlinpar

or as its signals contain more frequency components. Some of

the limits of the technique w 11 be given in terms of error

curves. Fowever, for the limiter problems, tois method will be

of some worti. The irocedures of Chapters I and II are the mare

useful when the device is in a limited state for the greater

part of the signal period. dHowever, they become very complex

when the circuIt spends over one-fourth of its time in a linear

state. The tec'rniques of Chapters III and IV n-7e of a greater

use whEn the cIrcuit aplroaches a line.r manner of operation,

but t is not sufficiently close to allow any line,'r

approximations.
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STATIC PMPLITUDE TO PHASE CONVERSION

In his technical memorandum R. L. Madsen has made a

statLc analysls of the amrlitude t. phase conversion problem.

Using a parallel GLC network with a cl'pcer voltage 1 miter,

he has found a relation for the voltage acr-ss the clrcoit when

a sinusoidal current is aplied. F'gure 1 shows the circu t

and typical Ilinput and outp,.t waveforms.

Ap y ng Laiace transf cm techniAes to the equation

t
1 ~V ( t)

't+ (-+ + CV(t) (I)

-00

frm tie Ue t:= alil L, w1 le t e u d e rs ar e nO uf t-

ing) he obtavned the relation

V (t) V Wsin wt + Xcos wt
n I R

0
wt

2QA a l t+(/m -X) e Cos( 2Q Q A

where AsinO [A+Q(1-A 2 )cotG]

[Q 2 (l- 2 ) 2 + A"]

As.nO [AcotG -Q(1-A 2 )]

C (-A +)+ Ac]

y_ AsinO [2Q 2A(l-A 2)-A-Q(+P 
2 )cotGl

Q (2-A) 2 +A]
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A - w(TC)1/2

He then used the two breakpoints of the dIodes t,, find 0,

the current p.hase angle, and uotl, the angle dur ng each half

cycle that the voltage

At t1

is not 1 muted.

V(t1 ) -
I R I R

C 0

and at out =w

F
+IT sin(r+9)

- T-n-21 sinG

VW w

00

Integrating V(t.) we

.tt

l 0 RJKL>t

Y+n/m
-2wc

0 t

0
f'nd

+1/ - eQA

- 2 A 11 e

A e cos(L"C - 1

A[Y+2/m -X]
2uQ

and from th s we gain the re

-2sIn - = (1-cos Wt 1 )m A

lat on

+ sin o(tA I

+[-Y-X(LQ2 -1)+1i/m (hJQ- )]2ILI

[Y+/m -X]

Y+2/m -X]

ot
2A--e enA

cut
e W cos

m(V -Wt,)

and 1

-Y

F

0
Q = R(C/L)

1
Tn (3~)

- (v-1:t)

sin( - ~iu5t

C K~

i



Using the other condition

m1
rn Ws in otI +Xcos ot 1

+(l/m -X)

Using relations

W-1,

+ (Y+]/m)(iQl

ot

2QAe

.\. -) 77L

(1) and (b), values for 6 and otImay be deter-

m ned for any given circuit and input sinuso d. These,coupled

with equati'n (2), .n a ely determine the voltage across the

c rcuIt. As may readily be seen, these relations are very

difficult to use. However, under certain conditions

simplifed somewhat. If it is assumed:

(1) The dr~ving frequency equals

they are

the LC resonant

frequency, and

(2) The Q of the linear part of the circuit Is high,

then
A = 1 , ( Q - )

and the relations become

-sin -3
m = cos 0 s n ot +s'n 0a 1

cos (ot 1 +9)

ot
1 2m

- (77 -ot,)

s i1
sin cot -~ 008

1 rn

and 1
-- n m ot

cos ot + 2-l sin(+ot +)I Q (7)

I .ICos wt s1sin otco o 1 cQm 1

- 8 -

(5) we have

s in( Q -i +A

(5)

ot

e~2 C! -

cos Cjt 1

1

Q.+- sinrn

(6)

ot1

ot
2Qm

1 .,7~-s n 0
cC

sin cot

(9
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By using the property
m = R(C/L)1/ 2 F

0

we may rewrite these equations in a more useful form:

-E sin 3 I
0 R = -" s 0 sin wt

-7o Wt cos(Lot +0)

Ewt .
2R -sn ot

+1/si/n cos wot 1

+F(C/L)'-/2 sin wt

F
R-~C Lti -F(C/L) (7r-Wt )

and

-E = Ecos it I + 10 (L/C )1/2 tlsin(t G)

-4o(L/C)1/2sin 0 sin wt, + (L/C)l/2s.n it1

F(L/C)1/2 t cos ot
2 R 11

Although the above relations are rather involved.

rej resent a very close approximation t, the values in the Lictlal

circuit and lend themselves readily to calculations.

A typical waveform may be determined by using relations

(), (3), and(,). Choos Ing a representative circuit with

foll.,wing Iarameters :

L 240 henrys

C= 1000 p tfar

R = 20, CO ohns

milliamperes

rad./sec.

E - 1 volt

it may be found by substittion

cot = rad ans

9 = 180o - 10.40 =

0
L) 1/2

(8)

(9)

they

the

(7 )

= 5*

169.6*
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This means that the voltace requ res 45 degrees during each

half cycle to pass between the extremes of plus and minus

one vlt. Also, it begins the translt'.n between the two states

at a poInt 10.-4 degrees before the nut current ,-sses thrC gh

zero. A gralh of the voltage for this case s shown in Figure 2.

It is of interest to determ ne the effect of decreasing

the resistance in the above example. Intuition would read .ne

to believe that this would have the effect of making the voltage

appear more nearly sinusoidal and in phase with the input

current. This is indeed the case. As the resistance is decreased,

the effect of the active elements upon the voltage is lessened,

and the amount of current passing through the diodes is decreased.

Thus the transit angle between limiting states, ct 1 , is increased,

and the current phase angle, 0 is decreased, bringing the two

zero crossings closer together.

A graph of the effect of resistance upon ut, and 6 for

the circuit described by the relations (1) is given in Figure 2,

n which the aforementioned effects are shown The importance

of this graph, however, is the illustrat'in of the very slight

change of the two quantities for a wide range of circuit Q.

The change in ct s so small as to be neglIgible compared to

ts approximate value of 11-* Thus, for calculatons in a

lim-ter circ.t wIth an appreciable unloaded Q, it is unneces-

sary to consider the effect of the resistance. The factors

which have the greatest effect on the angles are F/I and (L/C).

Since the res.stance has slght effect upon voltage

calculations, and the effect that it does exert is to lessen the
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dIscrelancy between current and voltage zero cross-ngs, one

may cons der the lossless LC e rcit coupled to a symmetrical

ideal diode limiter as the limiting case when determining

voltage parameters. Under the condition R=OO , equat ns ( )

and () become

-I sin 0 = -ocos 0 sin wt + I sin 0 cos wt0 2 1 o 1

,-o Wt cos(Wt +n)

+F (C/ L) s-in wti +E(7,C/L)L (Tr-ot )

and E = Fcos wt + I(L/C) W 
#1 s in(ot + )

-$o(T/C)l sin 0 sin wt. (12)

To obtain an estimate of the ranie of values of ct and

0 several values have been determined by direct sibstitition.

Curves of wt 1 and 0 have been plotted as a funct on of the

ratio . (C/L)l/2 and are given in Figure 1. The values of
0

mil1amperes given are 2 r the in1l..t c rrent to the c rcuit

described b the relat on. (1 ).

As m 1ght be exiected, the dIfference between zero

cr ss.ngs and between limIting states decreases as the ratio

of io(L/C)/2 is increased It Is the case cf small transit

angles that will be considered 'n Chapter II.
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CHAPTER II

DYNAMIC AMPLITUDE TO PHASE CONVFRSION

The results obtained from the exact expressions deter-

mined by Laplace transform techniques are cuite involved, and

any attempt to use them to find fundamental harmonic phase

shift is doomed to derangement. However, the circuit equa-

tions may be solved approximately by physical reasoning and by

applying the results of Chapter I.

It may be noticed that the waveform of Figure 2 between

t=0 and t=t1 resembles a parabola which is determined by

v(O) E

d v(C) 0
dt

v(t )-F

The approximate equation for the voltage between t = C ind t tl

is, therefore
v(t) = E - 2- F Ctt (25)

t

The zero crossing of this is

which, for the example of Figure 2 is

Wt 3 1.8*

The actual zero crossing is about 34 degrees; thus this rough

approximation has caused nearly 7 percent error in this case.

Later in this charter a relation for the error caused by this
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approximation will be given.

Now let us reconsider the exact expression for the voltage

given by equation (2). With the conditions R = co, 1 the

relation becomes greatly simplified:

V(t) = 0-o(/C)1/2wt sin(wt+G)

-o(L/C)1/2sinO sin ot (11)

+Ecos wt

w)2We shall now approximate sin wt by wt and cos ot by 1- .

A similar ap-roximation will be used for sin e and cos 0, and

any terms' of order higher than two will be neglected. Then equa-

tion (1i) becomes

V(t) ~- E -w) E+[ L/)/2 t t

Comparing this with equation (13), we find

F 2 2
W2F+ W 2 1o(L/C)/2

pt

cot1 ~ 4 [F (C/L)1/2]1/2
1+I o(L/ C) -/ 1

One other relation is needed in crder Ato determine 0

and ot * Let us examine the circuit and waveforms of Figure 5,

which represent the quantitIes now being considered. Yith the

above _ ,rximate relation for the voltage, the incuctor current

iL = v"t may bc written, and the symmetry of the limiters,

which rue tA v(t+ )= -v(t), enables us to determine the

zero crossings of iL(t). Thus we may obtain

2Et E E Ft tF
iL(t) = +L +L

t L
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E,(tw )F E-/t
iL(t) = 3L + wL (- ) t

Writing the Kirchoff current relations for the time t =0,

i(0) = I sin = iL(0)

. ~2Ft E V
I sin 1 =- + 2 o 3L 2cuL

sin (C/L)1/'27 CWt (17)

Substituting equation (16) into (17),

sin 1 L c/L)l/2L 1/ 2(

The two relations (16) and (18) yield a convenient

method for calculating the parameters of a given circui a .

input. They are, however. -useful only for small values of 6

and wt 1 . By using the more precise values of 0 and wt 1 obtained

in Chapter I (see Figure I) the error caused by the approxima-

tion may be found. This has been done and is shown in Figure 6.

The current values on the E (C/L)1/2 axis are for the input
0

current maximum, 1 0, of the circuit described by the relations (10)

With the above equations for 0 and wt 1 the fundamental

frequency components of the voltage may be determined. The

amplitude of the fundamental component of the voltage that is

ir phase with the intut current is given by
2 rr/lW

0 /r U)+-

V -L4-'r ( n t+ 0)d tlS 
f
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Introducing the notation

(C ) 2(20)

then wt-~ 2a

and sin 6 - a

and the in phase component is found to be

V [l-a. +2.1a - . 2 ] (21)

where terms of order greater than a have been neglected.

Similarly, the out of phase fundamental component of V

may be determined from the re-ti on

yielding 0

V, C 1a[-1.33 + 1 .5h7 -.82 a2 +.25a ] (22)

The first harmonic of the voltage may be represented as

V = V lM s in(wt+0-4 )

where Vc VMCos @

and V -V sin *

Thustan V C a[1.33 -1. 57a +.,8 2a -. 25s I
V 1 - a + 2.1a3 -3.12a (

where 0 is the phase angle between the current and the voltage

fundamental. Notice that for an small value of a the voltage

lags the current.

This equation enables one to plot the voltage and current

phase difference for values of the limiting ratio ( L
0
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This has been done in Figure 7. There is also on the graph a

plot of the phase difference of the zero crossings of the cur-

rent and the complex voltage waveshape. As might be expected

for the case of small a , the difference of the two curves is

slight.

It is now possible to develop an approximate relation

for dynamic amplitude to phase conversion. Throughout this and

the preceding development it has been necessary to assume small

transition angles (otl) in order to avoid equations of stagger-

ing complexity. The error curve of Figure 6 is a good indica-

tion of representative errors in calculations. Now it becomes

necessary to further aproximate equation (23) by

tan 3 - [1.33 -l.57a +.?2a (2))
1 - a ]

TI-The error caused by this Is about 5 percent at t 1=T ane consid-

erably less as ct 1 becomes smaller.

If the input current is amplitude modulated by a wave

mcos omt then the equations involving

i(t) = I sin(out+G)

must be modified to account for

i(t) = I sin(wt+G) = I (1+ mcos W t )sin(Wt+G)

di t rThe operations which are net exact are J ttct

Considering the derivative as an example, we fine

di(t) WI (1+ mcosw t)cos(cut+G) -w I msincu tsLn(Gut+G)dt o I m o m

and if
Cu

CL

(.
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we may use di(t) d
It t (t -sin(ot+e)

With the above stuitement and equation (24) an approximate

expression may be determined for the Lhase deviation of the

voltage fundamental harmonic comornent. The jhase deviation is

a complicated function of time, but the higher frequency harmon-

ics drop off rapidly as rr decreases. Thus the fIrst harmonic )f

the phase deviation f <- is found to be

s[-.33+3.l1ha -3.79/a] mcosc t (25.)
Li -a ]

The ihase modulated wave is often represented as

v(t) = Vc sin(Wt + k mcosC t)

where k. is the phase deviation ratio. For the limiter,

a[-.1. +3.11'a -3.79a(

i 2[l -aC]

A plot of k as a function of a for small values of amplitude

1modulation (iK)is shown in Figure B.
Ci
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CHAPTER iil

A NONLINFAR ANALYSIS TFCHNIQUE

In the preceding part of this thesis it was necessary

to assume large limit ng ratLoQ of -o in order to obtainF

simple ex- ressions for the voltage parameters. However. this

was not due to any radical behavior on the part of the voltage;

rather, it was a consequence of the mathematic l technique.

The cliiger or switch type limiter and the Lluce trinsform

method, while yielding perfectly good expressions, completely

obscured their meaning.

This is but one of the fa 1 ,hsoffrhe switch type

limiter as a representati.n f - typical circuit. The other

serLous drawback is the assumption of ideal d !odes. For any

1hysLcal structure used for fairly small limiting ratios the

nonlinear element is a smooth curve with a finite conductance

at all ioints.

The need, then, is for a method which will permit an

accurate representation of actual circu t parameters and enable

one to determine these w thout resorting to overly nvolved

computation.

To this end, Figure 1 may again be examined. To better

represent this circuit, it is necessary to find a suitable
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relation for the diode current and voltage, and this has been

done by Shockley'

i ~ kT Ii = I [ e~" - 1d s

With this expression the diode current of Figure 1 may be

represented by an hyperbolic sine equation. For the moment,

however, let us concern ourselves with the solution of the

equation

y(t) = G epX(t)

for if we are able to determine the relations among the Four-

ier coefficients of x and y we may aply this result to more

general Iroblems.

Let us begin by considering

x = x sin wt

en 00

kuot =GeIx osin ot (2)

This relation sugg~e ts trie Lr Y LU[ C ti n

Bessel coefficients which ic -ivF n v

1 *
-z (r r--

r

for if we let
jot

r e z -j px

then 00

r)

Ihus, fror. ccui w

Yk =G Jk(- Ixo)

W. Shockley, Flectrns and Holes in Semiconductors,
hew York (1:1C).

3G. N. Watson, Theory of Bessel Functions (1922).



This relation may also be deduced from the defining

equati n of the E uncti

T

-Tr

-J InLA.)
Cl. t4

here thce ' - -A, j i C'

frequency component .f ejzinot ,determined by integration

over a period.

For the two terms Y and Y ,

jkwt
=Gil e J(-jpx,) +

I,)

- j kwt

J-k

But J_ (z) = ()n (z)

nd
Jd(ze' ) = jnTJ z

n n

Using these relations one finds

for k even

for k odd

Yrj kwt - Vkot .
Yke + Y-ke = GJk( ipo )cos kot

ikWt kwtI e + Y-e jk = 2G )ej sin kwtk - k 0

The Bessel function of a complex argument most frequently

tabulated is

I (z) = en

Writing the above expressions in terms of In, the final form

is obtained:

+ Y-k e

+ Y-ke

-jkwt

-jkcot

k

= 2G(-) I o(x)cos kot

k-1 (29)

= 2G(-) Ik (px )sin kot

C .ti.

jkwt
Y kek

- jk ot
+ Y e-k

J n(jz)

k even

k odd

Yke
j kot

j kwt
Yke



0

k = 0 Y = GI (ix ) (29)

In this manner we are able to find the harmonics of

y(t). If we denote the kth harmonic frequency of y by Yk'

then y(t) + + + +

and from the relations (e9),

Y GI (px )

y = ?GI 1jx )sin Cat

y 2Ir(px )cos 2Wt

-GI (Ix )sin 3ot

Y4= cGI (px 0 ) cos )!it

etc.

The values of Ik(x) are tibulated in Watson and Jahnke and

Emde over a sufficient range to col e with most problems. For

an illustration, consider the simple example of Figure 9, in

which

= 

T ]

Then
i(t) = esin t

sin t

1

and the harmonics of i(t) are found to be

idc = 0 . 26 amps

- .l2 sin t amps

= -. 2jl cos2t amps

i = -0.0" sin 3t amps

etc.

There is no aiproximation involved in this solution;
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the series found represents the exact Fourie' series. The

drawback to this method is that for involved circuitry the

equations determining the parameters become transcendental,

and in general the solutiun is difficult to finu.

Since nonlinear dissipation functions usually have

kv
current-voltage relations other than i = e , it is neces-

sary to use some technique to adapt the above method to

arbitrary n. storage functions. This may be done by resolving

the dissi ;tion function

i = f(v)

into a series if exponential terms. In certain cases it may

be possible to use an orthogonal exlansion; or, if the function

becomes infinite for infinite values if v, which is usually

the case, then often the inverse function

i' 1 (v)

has the yrolert-

-00

and may be expnued i. cs I' sums of Exp nentials in v

by accepted techniques. The recipr oI rny then be ipprox-

imated by division of numerator by den minator.

In any event, some manner of curve fitting is needed to

represent nonlinear dissipative functions by series of exponen-

tials. For the nonlinear element of Figure 1, eaci liode may

be assumed to obey relation (27). Then the diode circuit which

conducts for icsitive voltage may be represented by

a (V-F)
i =I [ ekT

+5
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and the diode and battery wiich act during negative voltages

obey the relation

(v+E)

The total nonlinear element current is

-E qhv(t)

inonlin(t) = Ie [ CkT - e' T (hO)

oe
or (51)

which is the expansion of this diode network current in

exponential voltage terms.



CHAPTER IV

A LIFFERENT ANALYSIS OF THF PROBLEM

The results of the previous ch pter may now be applied

to the problem of amilitude to phase conversion in limiters.

Before proceeding witr the solution, however, it is necessary

to examine the behavior of ev for voltages other than sinusoids.

An arbitrary periodic voltage may be reiresented by a

Fuurier series

v(t) V 0 +V sin(Wt+0) +V sin(2ot+$D ) +
u lo 3 20

which for simplicity may be written

v(t) V +V (t) +V 2 (t) +

If this voltage is i plied t: the nconinear omert

represented by i = Ge , the current is

V +V + V, +
i = G e 02)

for which there is no simile relation by which the Fourier

series of i(t) may be determined. In fact, the harmonic

coefficients of the current are related to the voltage by a

set of infinite determinental ecuations.

To escape this ailemma, it is necessary to approximate

equation ('2) in some manner which leads to a solution. The

approxi, Tion chosen for a voltage with k frequency components

i 4 ii'1 v~E7V Z2 -V -k -- )
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Note that this expression gives equal weight to each

of the cornioLents, and that the current chnges exponentially

with each voltage component.

This approximation may now be applied to the current

in the circuit of Figure 1. Observing the symmetricol action

of the nonlinear elements, elementary circuit analysis leads

to

v~t )=-v(t)

whicL LmI lies that there are no even frequency harmonics

iresent in v(t) . Tius for the circuit of Figure 1,

v(t) = V 1(t) +V (t) +V (t) +

If the first term of v(t) is the only one considered

in the analysis, no phase shift in the voltage will be

found if the input current frequency equals the active element

resonant frequency. This is an erroneous result, for the

acti-n of the nonlinear element is to introduce higher fre-

quency terms which shift the fundamental voltage term away

from the drivIng current, as was shown in Chapter I. By

considering a second term, V3 , in the analysis, the effect

&f this term upon the phase difference between current and

voltage may be found. It would be desirable to use several

harm nic terms; however, the mechanics of solution of the

equati'ns obtained become much too great and involved f r

its worth. Consequently, the circuit will be examined over

the range in which harmonics higher than V are negligible

in terms of phase shift determInation.
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For the limiter, equation (33) becomes

v +v v v V
e 1 e + e +V 1 e +V e -V -V- -1

In order to esti-mate the errors caused by this approx-

imation, two numerical examples have been calculated and

plotted. The first examrle is

V = sin t

V =cos 3t

The exact relation, its approximation, and the error have

been plotted in Figure IC. The second example Ls

V = 4sin t

V = cs3t-

which is plotted in Figure 11. These exam, les were closen

because they represent vultage coefficients similar t- tose

found in the limiter analysis. As may be seen from the two

figures, the Prn grows,,- the vr) ta' c-, <ficients 1c ome

1 rger.

Returning to the analysis of the iLmiter circuit

Kircho ff urre rt t4

21 e sinh a-V +C- U

where equation (31) ias -been a-u ea rcresent the nonl1 near

element. Let

V(t) = V sin(t+t) +V sin(3t+$ )
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Then the equation for the fundamental harmonic is

Ie aE[sinh aVIlst h + CV cos(t+$ 4) -Icos(t+$ ) +

+GV1 sIn(t+ ) = I sin t

and the equation for the third harmonic is

21 eaE [sinh aVI +5CV, os (5t+$ ) -s .rd har. 5

- &s (rt+$ ) +GV sin()t+ ) =0

For computational purlcoses, the following values were

assigned to the circuit parameters:

1
L 200

a = 1 E 1 , e G = 0s

A number was then assigned to the magnitude of the fundamental

harmonic, and the remaining unknowns were determined by straight-

forward manipulation and substitution, using the tables of

In(v) compiled in Watson's Theory of Bessel Functions. The

results 're shown in Figure 12. The phase angles obtained are

considerably less than those of Chapter II. This is primmarily

due t, two causes. Ihe first is the assumptLon of only one

harmonic other than the fundamental. However, of principal

importance is the fact that the nonlinear element is continuous-

ly acting; there are no sharp breaks in the voltage-current curve

to produce strong higher harmonics which will shift the phase

of the fundamental. This effect may also be regarded from the

standioint (f the stored energy in the capacitor. The Irimary
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purpuse of the input current is to change the capacitor voltage

from +F to -E twice during each cycle. In an LC clipper limiter

such as that analyzed in Chapters I and II, this transition

must be accomplished almost entirely by the input current.

However, in the limiter considered in tiis chapter, the non-

linear function possessed a low impedance over most of the

transition from +F to-F. Therefore, the energy stored in the

capacitor could be dissiated through the diodes as the tran-
sition took place. Had the limiting action considereu here been

sharper (larger a), the phase shift would have been greater.

In fact, as 9-* o, this model reverts to that considered in

Chalter I.



SUMvAviARY AND CONCLUDI LG REMIARK6

The problem of amplitude to phase conversion is one for

which there are no simple solutions leading to a handy graph

or table. Yet, by the proper formulation of the problem and

the associated method of analysis, an -nswer may be obtainec

for any given circuit and input.

This thesis has attempted to show methods by which a

quantitative determination of the conversion is possible. Some

of the limitations of each method have also been mentlone.

However, no attemIt has been made to give the reader a set of

graphs from which distortion may be read or er3-or calculateo.

In many places the description of errors incurred in ,pjroxima-

tions has been limited to the barest essentiJs of the deter-

mination. It appeared to the author that any long and involved

sets of calculations would make this paper an overly tedious

work to reau, and would be of little value to anyone with a

slightly different problem. As - result, this thesis contains

general results where possible, and Qne or two examples where

specific calculations must be made.

The first two chapters contain an analysis based on the

assumption of perfect diodes and batteries in the nonlinear

device. Consequently, the voltage is fixed when the diodes

conduct, and the transition states are independent of the diodes

except for initial conditions. The approach of Chapter I is that
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of conventional transform techniques. The relatoons obtained

are exceedIngly difficult to use, and . solution by substitution

completely obscures any meaning of the results and leaves one

very prone to computational error. To avoid this, considerable

simplification of the relations is necessary. The error incur-

red by the approximations used has a maximum of about five per

cent a.t the limits of the curves given. By a close examination

of the circuit element behavior, a certain amount of insight may

be gained into the action during the transition from one voltage

state to the other, and from this a relation may be develoied

which yields the voltage-current phase shift. Then, assuming a

slow amplitude modulation present at the input, the phase mod-

ulation coefficient is determined as a funct"on of the circuit

parameters. Here again restrictions are necessary; namely, that

of low index moduliuioin. K wever, for the situation whici created

this problem, the need for better amplitude slope correction

limiters in radio relay systems, the modulation index is low, and

the relations given in Chai tel II are pertinent. For the case

of very widely varying input levels, the phase deviation function

is both large and comyplex; however, it may be handled by techniques

similar to those presented in Chapter I.

The procedures just described have as their basis ideal

diodes and batteries. in order to show the difference between

such an assumption aid the reality of continuously acting nonlinear

elements with smooth v-i curves, a different approach to the

problem was taken . Instead of the transient analysis of Chapters

I and II, the voltage waveform Is broken into its frequency har-



munics, and these are determined by an analysis technique

developed in Chapter III. An examile is carried out to give

an idea of a typical result. The method has the advantage

that the fundamental voltage component is obtained directly,

without the need for any further Fourier analysis. However,

the calculation procedure is tedious, and becomes overpowering

if more than two frequency components are considered. For a

specific problem, however, an answer may be found by straight-

forward although brutal substitution and calculation.

It would be possible to assemble a computer by which

such calculations could be automatically performed. Although

the analysis technique gives results for almost any lumped

circuit with linear st.rage elements, there is a question as

to the error incurred in certain types of problems, namely

those in which there are many very large exponential terms.

If a suitable approximation or an alteration of the one given

could be found, such a machine would be worthwhile. This needs

further investigation.

The amplitude to phase conversion in the limiters described

in this work may be reduced to any prescrLec nmount bt

proper alteration and addition of cLrcuit elements. r

being continued in this direction, no a method of reduction

which has been develoed will be released soon.

- 4 'e -
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