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ABSTRACT

It has been found that amplitude limiters which contain
storage elements convert some of the amplitude modulation
present at the 1lnput into phase modulation at the output. 1In
general, this effect is undesireble in frequency modulation
systems.

The analysis of a simple limiter has been carried out in
this thesis. The model chosen is a parallel GLC circuit with a
clipper voltage limiter composed of ideal diodes and batteries.
The input is considered to be the current fed into the device,
and the output 1s the voltage across it. By means of Daplace
transform technigues, representations are found for the circuit
parameters, and a relation is developed for the phase deviation
of the output voltage for a given amplitude modulation present
at the input.

In order to determine the amplitude to phase -conversion
when the nonlinear part of the c¢ircuit does not consist of ideal
elements, the analysis technique 1s changed from that of a
transient nature to a Fourier decomposition of the voltage wave-
form. An analysls technique is developed to characterize and
relate the current and voltage in the nonlinear element., Then
an example 1is carried out in whieh voltage-current phase shift
is determined in a circuit with a representative limiting element.

Thesis Supervisor: Samuel J. Mason
Title: Assoclate Professor of Electrical Engineering.
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INTRODUCTION AND STATEMENT OF THE PROBLEM

A major part of the development of electrical engineer-
ing has been the formulation and sblution of linear problems.
The'application of the principle of superposition has permitted
the utilization of various techniques, such as the introduction
of the exponential frequency term and the complex transform, and
these have paved the way for theoretical solutions to most 1if
not all linear lumped passive structure properties.

The linear circuit is, however, an ideal model for a
physical device, and the solutions obtained are useful only so
long as é representation of a nonlinear element by its linear
approximation 1s satisfactory. If the nonlinear properties are
such that this is not reasonable, then it is necessary to resort
to experimental trials or to various approximation techniques
unless the problem is sufficiently simple to permit an exact
solution.

in the past few years there has been progress toward the
general solution of nonlinear problems. The work of Wiener per-
mits the characterization of general nonlinear circuits for
stochastic inputs, thus opening a world of analysis and synthesis
heretofore barred from those thinking in terms of linear circuitry.
However, there still remains the dilemma of solving nonlinear
circuit problems for sinusoidal or transient inputs. Many approx-

imation methods have been expounded, but few give useful results
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except in special cases or classes of problems. Until a method
is found by which general nonlinear problems may be solved for
arbitrary inputs, we must content ourselves with developing and
extending the present techniques in order to ga%n some insight
into each special case considered.

One such problem is that of the action of amplitude
limiters, used in frequency modulation systems to remove un-
wanted.amplitude modulation present on the frequency modulated
carrier. Here the "noise” need not be considered stochastic;
it is usually a combination of tones and signal which has been
converted to amplitude modulation by nonlinearities within the
system. The purpose of the system limiters is to remove this
perversion of the signal, leaving a wave which contains only
the wan;ed information. -

However, it has been found experimentally that limiters
used for this purpose have converted some of the unwanted amp-
litude modulation into phase modulation, thus corrupting the
desired signal. |

In order to gain some knowledge of the mechanism of this
amplitude to phase conversion in limiters, Mr. R. L. Madsen of
the Bell Telephone Laboratories began a study of static conver-
sion. Using for a model a parallel GLC network with symmetri-
cal elipper voltage limiter connected across it, he.obtained
relations for the phase difference between the zero crossings

of the voltage waveform and those of the sinusoidal input current.l

iRaymond L. Madsen, Amplitude to Phase Conversion in
Clipper Lim ters, Technlical Memorandum 54-212-14%, Bell
Telephone Laboratories (1554).
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This thesis is an extension of his work. First, the
relations he obtained will be given, with some explanation as
to their applicability, Then, a limiting case of the problem,
namely an LC (non-dissipative) tank circuit with a switch type
limiter, will be analyzed. This wlll be shown to be the sever-
est case of-aﬁplitude to phase distortion and may be looked
upon as an upper bound to the distortion from this effect. A
few graphs of parameters will end Chapter I.

The analysis of the IC limiter will be developed by phy-
sical reasoning in Chapter II, and by means of suitable approxi-
mations, relations will be determined for the amount of phase
shift in the first harmonic of the voltage for a given amplitude
modulation of the input current.

The above work considered the action in two states: first,
wvhen the switch limiter was conducting and holding the voltage
at a fixed value, and second, as a linear circuit_whenathe switch
was open. In Chapter III a different approach to the problem
will be taken; that of a continuoisly acting nonlinear device.
The limiting action will be represented by considering a circuit
element in which the voltage is proportional to the logarithm of
the current. From this an analysis technique will be developed
which is exact for single frequency periodic inputs, and a
generalization for arbitrary nonlinéa: dissipative functions
will be mentioned.

In Chapter IV an approximation for arbitrary periodic
1nput§ to a general nonlinear dissipative device with linear

active elements will be given, and, using the techniques of
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Chapter III, a solution will be cbtained in terms of Bessel
funetions of a complex argument, for which tables are used

to obtain an answer to the problem. As may well be imagined,
this technigue is subject to strong limitations, and the error
grows as the device to be characterized becomes more nonlinear
or as its signals contain more frequency components. Some of
the 1limits of the technique will be given in terms of error
curves. However, for the limiter problems, this method will be
of some worth. The procedures of Chapters I and II are the more
useful when the device is in a limited state for the greater
part of the signal period. d However, they become very complex
when the circuit spends over one-fourth of its time in a linear
state. » The techniques of Chapters III and IV are of a greater
use when thercircult approaches a linear manner of -cperation,
but it is not sufficiently close to allow any linear

approximations.



CHAPTER I
STATIC AMPLITUDE TO PHASE CONVERSION

In his technical memorandum R. L. Madsen has made a
static analysis of the amplitude to phase conversion problem.
Using a parallel GLC network with a clipper voltage limiter,
he has found a relation for the voltage acrcss the circuit when
a sinusoidal current is applied. Figure 1 shows the circuit
and typical input and output waveforms.

Applying Laplace transform techniques to the equation

: t
1(t) = I sin(wt+8) = %U/;(t)dt + cd%%t) +6v(t) (1)
- o0
from the time t=0 until t=tl (while the diodes are not conduct-
ing) he obtained the relation

SRR
Vn(t) gk 5 Wsin ot + Xcos wt

wt

H.(.IJQ _1?8 sin(2Q°-1) 50A (2)
_wt

+(1/m -X) eQQAcos(HQE—l)%%

where x = Asin® [A+Q(1—A2)cot9]
[Q2(1-2°)2%+ A%]

_ Asiné [Acot® -Q(1-A%)]
[Q%(1-2%)%+ A°]

_ Asin® [20°A(1-8%)-2-0(1+A%)cot8]
[Q%(1-2°)2 +4°]
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FIGURE 1

THE LIMITER CIRCUIT
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and Lo B i Q = R(C/L)l/2 5 (N cu(LC)l/2
m I R
He then used the two breakpoints of the diodes to find 6,

the current phase angle, and wtl, the angle during each half

cycle that the voltage 1s not limited.

At t x
1 V(%) M (3)
IO R IOR m
and at wt =7 TRk
]
E E
e | +Iosin('n'+9) = %ﬁ(t)dt +I1(O) --—a)-L-(’lT-wtl)

-2 _s1iné —2-10 - lﬁ(t) %O(r-wtl)
o
Integrating V(t) we find

t,
I—iﬂfv(t)dt = TL‘r(l-coa wt ) - -Z% sin wt,
o
oty
A[ Yx(uq —1)+l/m (hg -2)1 EQAsin(uQ 14 &
2a(4Q°-1)/°

__wty i
Y+2/m -X 2QA 2 7 ot
__EL_ Ae cos(ll-Q -1) TMQQ]'

JA[Y+2/m -X])
} o)

and from this we gain the relation

2 _ QW QX
~2sin@ - = = (1=cos wt ) + ¢ sin oty

wt
WX x(4Q° ll+_/m (4g°-2)] _ZAQ' 4
2(4Q°-1) /2 e sin(1e®- 140
.l [}
[Y+2/2 -X] 2QK cos(4Q2-1)12%§1 ()

|Y+2ém -X] _Qm“(,"_ "'mtl)
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Using the other condition (3) we have

Wsin wt,4Xcos wt +i§1&éﬂ)

e
m i (J-I“Q l) e

sin(uq 1)'- “’t

+(1/m -X) e"-ﬁi cos (40° 1)*2QK1 (5)

Using relations (%) and (5), values for € and wtymay be deter-

mined for any given circuit
with equation (2), uniquely
circuit. As may readily be
difficult to use. However,
simplified somewhat. If 1t

(1)
frequency, and

(2)

and input sinusoid. These,coupled

determine the voltage across the
seen, these relations are very
under certain conditions they are

is assumed:

The driving frequency equals the LC rescnant

The Q of the linear part of the circuilt is high,

wt
then -
A=1 , (32-1)¥2%x 2q , ey 4 %“—-
and the relations become
-sin € -2 = l'-ccna € sin wt, +sin @ cos ot
m 2 i i |
Lot cos (wt.+0) —g(v -wt, ) (6)
i i ) m i,
Q ot 1
+E sin wtl '2m1 sin wtl -5 cos wtl
and 1 1
~2 .2 0s WLy ¥ 2Q1 sin(wt +9) (7)

wt

“ml cos U)tl +§@“ﬁ sin (Dtl

i

Eésin @ sin wtl



By using the property - TR

we may rewrite these equations in a more useful form:

= 1 :
-Iosin e e 20003.9 sin mtl +I031n € cos mtl

$LA48
—%0 mtlcos(wtl+9) +E(C/L) A sin oty (8)
2
-%%Elsin wt —%cos wt, —E(C/L)L/ (r—wtl)

and
-E = Ecos wty + IO(L/C)]'/2 %}lsin(mtl+9)

—%0(1/0)1/esin 8 sin Wty +§%(L/C)l/esin wty (9)

-5%(L/C)1/2wt1 cos wt,
Although the above relations are rather involved, they
represent a very close approximation tc the values in the actual

circult and lend themselves readlly to calculations.

A typical waveform may be determined by using relations

(2), (8), and(9). Choosing a representative circuit with the

following parameters:

L = 40 phenrys
C = 1000 pufarads Q = 100 } (10)
R = 20,000 ohms

i(t) = 30 sin(wt+6) milliamperes
w = L/(LC)t= 5x106 rad./sec.
E = 1 volt s
it may be found by substitution
wty = % radians = 45°

@ = 180° - 10.4° = 169.6"
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This means that the voltage requires U5 degrees during each
half cycle to pass between the extremes of plus and minus
one volt. Also, it begins the transition between the two states
at a point 10.4 degrees before the input current passes through
zero. A graph of the voltage for this case is shown in Figure 2.
It is of interest to determine the effect of decreasing
the resistance in the above example. Intultion would lead cne
to believe that this would have the effect of making the voltage
appear more nearly sinusoidal and in phase with the input
current. This is indeed the case. As the resistance is decreased,
the effect of the active elements upon the voltage is lessened,
and the amount of current passing through the diodes is decreased.
Thus the transit angle between limiting states, wtl, iz increased,
and the current phase angle, €, is decreased, bringing the two
zero crossings closer together.
A graph of the effect of resistance upon th and 6 for
the circuit described by the relations (10) is given in Figure 3,
in which the aforementioned effects are shown. The importance
of this graph, however, is the i1llustration of the very slight
change of the two quantities for a wide range of circuilt Q.
The change in wt, is so small as to be negligible compared to
its approximate value of 45°. Thus, for calculations in a
limiter circuit with an appreciable unlcaded Q, it 1s unneces-
sary to consider the effect of the resistance. The factors
which have the greatest effect on the angles are E/IO and (L/C).
Since the resistance has slight effect upon voltage

calculations, and the effect that it does exert is to lessen the
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FIGURE 2

A TYPICAL VOLTAGE WAVEFORM
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discrepancy 5etween current and voltage zero crossings, one
may consider the lossless.LC circuilt coupled to a symmetrical
ideal dlode limiter as the limiting case when determining
voltage parameters. Under the condition R=00 , equations (8)

and (9) become

{ |

-Iosin 0 = 50c0s @ sin wtl -+ Iosin @ cos wtl

2o wt cos(wtr+9) (11)

5
+8(0/1) Y 2sin wt, +E(C/L) 1/2(1r-u_>t1)

1

and

. 142 wee &
E = Ecos wt., + IO(L/C) =1 s;n(mt1+9)

1

-%O(L/C)l/gsin @ sin wt (12)

i |

To obtaln an estimate of the range of values of wtl and
@ several values have been determined by direct substitution.
Curves of mtl and © have been plotted as a function of the
ratio % (C/L)l/2 and are given in Figure 4. The values of
milliam;eres given are for the input current to the eircuit
described by the relations (10).

As might be expected, the difference between zero
crossings and between limiting states decreases as the ratio

of %o(L/C)L/E is increased It is the case of small transit

angles that will be considered in Chapter II.
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CHAPTER II
DYNAMIC AMPLITUDE TO PHASE CONVERSION

The results obtained from the exact expressions deter-
mined by Laplace transform techniques are quite involved, and
any attempt to use them to find fundamental harmonic phase
shift is doomed to derangement. However, the circult equa-
tions may be solved approximately by physical reasoning and by
applying the results of Chapter I.

It may be noticed that the waveform of Figure 2 between

t+=0 and tntl resembles a parabola which is determined by

v(@) = E
da v(0) _

at §

v(t1)= -E
The approximate equation for the voltage between t = 0 and t = 131

is, therefore t2
LR T 0%t€t (13)

t

1

The zero crossing of this is
2 o
to=Bb
which, for the example of Figure 2 is

wto 2 -E/-é-'?- 21.8°

The actual zero crossing is about 34 degrees; thus this rough
approximation has caused nearly 7 percent error in this case.

Later in this chapter a relation for the error caused by this
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approximation will be given.

Now let us reconsider the exact expression for the voltage
given by equation (2). With the conditions R = 0o, ® =,.ﬂ1.'5" the

relation becomes greatly simplified:
v(t) = %O(I/C)l/ea)t sin(awt+0)

_%O(L/c)l/esine sin wt | (1%)

+Ecos wt

_ ' gum12
We shall now approximate sin wt by wt and cos wt by 1- % "
A similar approximation will be used for sin 6 and cos €, and
any terms' of order higher than two will be neglected. Then equa-

tion (1%) becomes
2
v(t) S E - -(9%) -{E+IO(L/C)1/2] 0% t<t,
Comparing this with equation (13), we find

R e 2 L

L
3 /2 » 51 E 1/2q1/2 (16)

1%0(1/0)1,/2} SACOMS

ne

2[

wbl

Qn: other relation is needed in order ﬁto determine ©
and mtl. Let us examine the circuit and waveforms of Figure 5,
which represent the quantities now being considered. With the
above approximate relation for the voltage, the inductor current
iL = % vdt may be written, and the symmetry of the limiters,

which requires that v(t+£) = -v(t), enables us to determine the

zero crossings of 1L(t). Thus we may obtain

_ _2Et, .Ew _Et _ 2t’E
1(%) BTN e 0%ty
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A ET E T
iL(t) = —-351 + ey (Tr-wtl) t et

Writing the Kirchoff current relations for the time t =0,
i(0) = I.8in @ = 1L(o)

= 2kt EmT
Iosin e s . o 1+ el
s1n 0 = E (o/1)V2[F 28t (17)
0]

Substituting equation (16) into (17),
sin 0 = & (/1) 2(Z - & [HY4 (18)

o
The two relations (16) and (18) yield a convenient

method for calculating the parameters of a given circuit-and
input. They are, however, mseful only for small values of 6
and wty. By using the more precise values of 6 and mtl obtained
in Chapter I (see Figure !) the error caused by the approxima-
tion may be found. - This has been done and is shown in Figure 6.
The current values on the % (C/L)l/? axis are for the input
current maximum, Io’ of theocircuit described by the relations (10).
With the above equations for € and wtl the fundamental
frequency components of the voltage may be determined. The
amplitude of the fundamental component of the voltage that is

in phase with the input current is given by

27/
-
Vg ?j/;(t) sin (wt+6)dt
£ o T/w
Vyg = 22 [v(t)sin(wt+6)dt + Z2[(-E)sin(wt+6)dt (19)

18 T
[+] 'er
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FIGURF 5

THE 1LC CLIPPER LIMITER
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Introducing the notation

% (C/L)l/2 2 2 (20)
o)
then wt = 28
& 2 SN
and sin 6 2 a [§ - 3&]
and the in phase component is found to be
~ L1E 2 3 U
Vg —l1-2" 42.1a" -3.12a"] (21)

where terms of order greater than a lLhave been neglected.
Similarly, the out of phase fundamental component of V

may be determined from the relation
2T/

Vig = %i/;(t)cos(um+9)dt
yielding "

e

v E%a[-l.}} +#1.57a -.82a° +.252"] (22)

1C
The first harmonic of the voltage may be represented as

Vy = Vyy sin(wt+6-¢]

{I

where - Vg = Vyycos ¢

Thus

tan ¢ = _%10 ~ a{liB? 5%.57a +.§2a2 —.23&”] fo3)
18 a” 4+ 2.la’ -3.12a"% ]

where ¢ 1s the phase angle between the current and the voltage

fundamental. Notice that for any small value of a the voltage

lags the current.

This equation enables one to plot the voltage and current

phase difference for values of the limiting ratio % (G/L)L/géae.
o)
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This has been done in Figure 7. There is also on the graph a
plot of the phase difference of the zero crossings of the cur-
rent and the complex voltage waveshape. As might be expected
for the case of small a , the difference of the two curves is
slight. | .

It 1s now possible to develop an approximate relation
for dynamic amplitude to phase‘conversion. Throughout this and
the preceding development 1t has been necessary to assume small
transition angles (wtl) in order to avoid equations of stagger-
ing complexity. The error curve of Figure 6 is a good indica-
tion of representative errors in calculations. Now it becomes
necessary to further approximate equation (23) by

cans & o & el1i33 SRNGTR & 524 ) (21)
¥ [ 1w &N l

The error caused by this is about 5 percent at wt1=% and consid-
erably less as wtl becomes smaller.
If the input current is amplitude modulated by a wave
mcos mht then the equations involving
i(t) = Iosin(wt+9)
must be modified to account for
i(t) = Iosin(mt+9) = IO(1+ mcos @ t )sin(wt+6)
The operations which are not exact are —liEl and‘/hl(t)dt
Considering the derivative as an example, we find

di(t)
at

and if

= wIO(1+ mcoswmt)cos(wt+9) -mblomsinwmtsin(wt+9)

@D
Z—Dm <]

we may use
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we may use &
—%gt) = Io(t)é%sin(wb+9)
and
i(t)dt = I (t) [ sin(wt+6)
(@]

With the above statement and equation (249 an approximate
expression may be determined for the phase deviation of the
vultage fundamental harmonic component. The phase deviation is
a complicated function of time, but the higher frequency harmon-
ics drop off rapidly as m decreases. Thus the first harmonic of
the phase deviation for m(—é— is found to be

o & al-1.33 +3.1% -3.79a°]
2[1 -a°]

mcosw t  (25)

The phase modulated wave 1ls often represented as

vit) = Vcsin(wt + kpmcoswmt)

where kp is the phase deviation ratio. For the limiter,

2
r 2 afl-1.33 +3-1g—a -3.79a°] (26)
P 2f1 -a“]

A plot of kp as a function of a for small values of amplitudé

modulation (m(—é—Q is shown in Figure 8.
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CHAPTER III
A NONLINEAR ANALYSIS TECHNIQUE

In the preceding part of this thesis it was necessary
to éssume large limiting ratios of %o in order to obtain
simple expressions for the voltage parameters. However, this
was not due to any radical behavior on the part of the voltage;
rather, it was a consequence of the mathematical technique.

The clipper or switch type limiter and the Laplace transform
method, while yielding perfectly good expressions, completely
obscured their meaning.

This 18 but one of the failings of the switch type
limiter as a representation of a typlecal circuit. The other
serious drawback is the assumption of ideal diodes. For any
physical structure used for féirly small limiting ratios the
nonlinear element is a smooth curve with a finite conductance
at all points.

The need, then, is for a method which will permit an
accurate representation of actual circuit parameters and enable
one to determine these without resorting to overly involved
computation.

To this end, Figure 1 may agaln be examined. To better

répresent this circuit, it is necessary to find a suitable
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relation for the diode current and voltage, and this has been

done by Shockley2 Qv

ekT

i, = L1 =11

s
With this expression the diode current of Figure 1 may be
represented by an hyperbolic sine equation. For the moment,
however, let us concern ourselves with the solution of the

equation
y(t) = @ ePx(t)

for if we are able to determine the relations among the Four-
ier ccefficients of X and y we may apply this result to more
general problems.
Let us begin by considering
X = xosin wt
Then a
y(t) o Sykejkmt - epxosin wt (28)

Kes -0
This relation suggests the generating function of the

Bessel coefficients which is given by Watson3 as

1 i ot
zz(r-3)
L ro= :E:Jn(z) r
for 1f wve let
r=e p z =-jpxo

then
1 1
e§z ( r'——r—) 4

pxosin wt i.‘.j,nwt
e =n’_”e Jn(—,]pxo)

Thus, from equation (28) we find

Y, =G J (-jpx,)

2W..Shockley, Electrons and Holes in Semiconductors,
New York (1950).

2G. N. Watson, Theory of Bessel Functions (1922).
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This relation may also be deduced from the defining

equation of the Bessel function:

w

1 -jzsin wt jnwt

Jn(z) win | @ e dwt
i

Here the Bessel function Jn(z) 1s seen to be the nth Fouriler

jzsinwt

frequency ccmponent of e ,determined by integration

over a perilod.
For the two terms Yk and Y-k ’

jkwt - jkwot jkwt - jkwt
Te +7Y_.e =gl e TBJ (-Jox_ N+ 8 J_ (-Jpx,)

But J_(2) = (-)" J,(z)

and : !
Jkmy _ _ JEnF
Jn(ze ) e Jn(Z)

Using these relations one finds

for k even :

P 2 ekat+ Y

- jkwt
Kk -k

EGJk(jpr)cos kot

for k¥ odé

jkwt - jkwt
Yke + X e

2§67, (jox,)ed sin kot

The Bessel function of a complex argument most frequently

tabulated 1is 1
-§mr j

I (z) =e Jn(jz) ,

Writing the above expressions in terms of I,» the final form

1s obtained:

k even jkwt - 5kt L |
Y e .Y % = 2G(-) Ik(pxo)cos kwt

k odd Jewt - kél (29)
Y.e +Y ¢ = 2G(-) Ik(pxo)sin kwt
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k =0 T i GIO(pr) (29)

In thls manner we are able to find the harmonics of
y(t). If we denote the kth harmonic frequency of y by Vo

and from the relations (29),
¥, = I (px,)
I = EGIl(pxo)sin wt
Yo = -26I,(px_)eos 2wt
- —EGIB(pr)sin Zwt

Ty = 2GIu(pxo)cos Lt
etc.
The values of Ik(x) are tabulated in Watson and Jahnke and
Emde over a sufficient range to cope with most problems. For
an 1llustration, consider the simpie example of Figure 9, in
which '
el T =1, elt)=siat

Then -
1t) = o0 B L 4

and the harmonics of i(t) are found to be

B, = 0.265 amps

&y = 1.125 sin t amps
i, = -0.271 cos2t amps
13 = -0.04%4 sin 3t amps

etc.

There is no approximation involved in this solution;
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A BASIC DIODE CIRCUIT

FIGURE 9
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the series found represents the exact Fouries series. The
drawback to this method is that for involved circuitry the
equations determining the parameters become transcendental,
and in general the solution 1s difficult to find.

Since nonlinear dissipation functions usually have
current-voltage relations other than i = ekv, it is neces-
sary to use some technique to adapt the above method to
arbiltrary no étorage functions. This may be done by resolving
the dissipétion function

1= f(v)

into a series of exponential terms. In certain cases it may
be possible to use an orthogonal expansion; or, if the function
‘becomes infinite for infinite values of v, which is usually
the case, then often the lnverse function
4

32wt el

has the property
(=

L/r;,E dv < @
-0

and may be expanded in a series of sums of exponentials in v
by accepted techniques. The reciprocal may then be approx-
imated by division of numerator by denominator.

In any event, some manner of curve fitting 1s needed to
represent nonlinear dissipative functions by series of exponen-
tials. For the nonlinear element of Figure 1, each diode may
be assumed to obey relation (27). Then the diode circuilt which
conducts for positive voltage may be represented by

_q_(v_E)
i kT
i+ = Is[ e
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and the diode and battery which act during negative voltages

obey the relation

-ch.f( v+E)

L Rt TR ¥ 1

The total nonlinear element current is

_9E Le) -Lv(t
kTr kT kT
Yeontinl(t) =B e [ e - e } (30)

qE
or i e
inonlin(t) = 2L e kT sinhé%v(t) (31)

which 1s the expansion of this diode network current in

exponential voltage terms.



CHAPTER IV
A DIFFERENT ANALYSIS OF THE PROBLEM

The results of the previous chapter may now be applied
to the problem of amplitude to phase conversion in limiters.
Before proceeding with the solution, however, it is necessary
to examine the behavior of e' for voltages other than sinusoids.

An arbltrary periocdle voltage may be represented by a
Fourier series

v(t) = v, +Vlosin(wt+¢1) +V2031n(2wt+¢2) AL

which for simplicity may be written
vit) = v, +V1(t) +V2(t) TR Ve

If this voltage 1s applied to the nonlinear element

represented by 1 = Gev, the current 1is

Vo s o Wm0 %

i=Ge
for which there is no simple relation by which the Fourier
series of i(t) may be determined. 1In fact, the harmonic
coefficlents of the current are related to the voltage by a
set of infinite determinental equations.
To escape this dilemma, it 1s necessary to approximate

equation (32) ih some manner which leads to a solution. The

approximation chosen for a voltage with k frequency components

©
is: EEV k K
et V.4 v Vs
o i Z il z: Eo: v, (e J-Vj) '%kv' k(33
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Note that this expression gives equal weight to each
of the components, and that the current changes exponentially
with each voltage component.

This approximation may now be applied to the current
in the circuit of Figure 1. Observing the symmetrical action
of the nonlinear elements, elementary circuit analysis leads

t
v v(t%) =-v(t)

‘which implies that there are no even frequency harmonics

present in v(t) . Thus for the ecircuit of Figure 1,
wt) = Vl(t) +V3(t) +V5(t) # o

If the first term of v(t) is the only one considered
in the analysis, no rhase shift in the voltage‘will be
found if the input current frequency equals the active element
resonant frequency. This is an erroneous result, for the
action of the nonlinear element is to introduce higher fre-
quency terms which shift the fundamental voltage term away
from the driving current, as was shown in Chapter I. By
considering a second term, V3 s 2L the analysis,_the effect
of this term upon the phase difference between current and
voltage may be found. It would be desirable to use several
harmonic terms; however, the mechanics of solution of the
equaticns obtalned become much too great and involved for
its worth. Consequently, the circuit will be examined over
the range in which harmonics higher than V3 are negligible

in terms of phase shift determination.
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For the limiter, equation (33) becomes

V.+V

14V v

v A% v
= @ 1 + e 5 +V1e 3 +V3e

1

e ~Vo N -3

1 3

In order to estimate the errors caused by this approx-
imation, two numerical examples have been calculated and
plotted. The first example is

v

i

1 aln t

Vv

3 %cos 3k

The exact relation, its approximation, and the error have

been plotted in Figure 10. The second example is

V1 = bgin t
V3 = %cos 2%

which is plotted in Figure 11. These examples were chosen
because they represent voltage coefficients similar to those
found in the limiter analysis. As may be seen from the two
figures,.the error grows as the voltage coefficients become
larger.

Returning to the analysis of the limiter circuit ,

Kirchoff's current relation may be written

21 e-aEsinh A H0SE 4L LVt 4ov & T(%) = I.sih ot
s (o 2 gl i 140

where equation (31) has been used to represent the nonlinear
element. Let
w=1

V{t) = Vlsin(t+01) +V.sin(3t+¢

3 3)



APPROXIMATION EXAMPIES

approximation

FIGURE 10

—gg -



80

60

40

20

APPROXIMATION EXAMPIES

approximation

FIGURE

11

..9€..



= BT '
Then the equation for the fundamental harmohic is

_aE V
21 e [sinh avllst had® CVlcos(t+¢1) ——rlcos(t+?1) +

+lesin(t+¢ = I sin ¢

1)

and the equation for the third harmonic is

2I_e™®F[sinh av] +30V 5008 G+

3rd har. 3) i

—3%3005(33;+¢3) +GV8in(3t405) = 0

For éomputational purposes, the following values were
assigned to the circuit parameters:

&
L =5 =200

T R e G=20

R
§hl Reh
A number was then assigned to the magnitude of the fundamental
harmonic, and the remaining unknowns were determined by straight-

forward manipulation and substitution, using the tables of

In(v) compiled in Watson's Theory of Bessel Functions. The

results are shown in Figure 12. The phase angles obtailned are
considerably less than those of Chapter II. This is primarily
due to two causes. The first is the assumption of only one
harmonic other than the fundamental. However, of principal
importance 1s the fact that the nonlinear element is continuous-
ly acting; there are no sharp breaks in the voltage-current curve
to produce strong higher harménics which will shift the phase

of the fundamental. This effect may also be regarded from the

standpoint of the stored energy in the capacitor. The primary
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purpose of the input current is to change the capacitor voltage
from +E to -E twice during each cycle. 1In an LC clipper limiter
such as that analyzed in Chapters I and II, this transition
must be accomplished almost entirely by the input current.
However, in the limiter considered in this chapter, the non-
linear functlion possessed a low impedance over most of the
transition from +E to-E. Therefore, the energy stored in the
capacitor could be dissipated through the diodes as the tran-
sition took place. Had the limiting action considered ﬁere been
sharper (larger a), the phase shift would have been greater.

In fact, as a=»00, this model reverts to that considered in -

Chapter I.



SUMMARY AND CONCLUDING REMARKS

The problem of amplitude to phase conversion is one for
which there are no simple solutions leading to a handy graph
or table. Yet, by the proper formulation of the problem and
the assoclated method of analysis, an answer may be obtained
for any given circuit and input.

Thls thesis has attempted to show methods by which a
quantitative determination of the conversion is possible. Some
of the limitations of each method have alsc been mentioned.
However, no attempt has been made to give the reader a set of Aag
graphs from which distortion may be read or error calculated.
In many places the description of errors incurred in approxima-
tions has been limited to the barest essentials of the deter-
mination. It appeared to the author that any long and involved
sets of calculations would make this paper an overly tedious
work to read, and would be of little value to anyone with a
slightly different problem. As a result, this thesis contains
general results where possible, and one or two examples where
specific calculations must be made.

The first two chapters contain an analysis based on the
assumption of perfect diodes and batteries in the nonlinear
device. Consequently, the voltage is fixed when the diodes
conduct, and the transition states are independent of the diodes

except for initial conditions. The approach of Chapter I is that
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of conventional transform techniques. The relations obtained

are exceedingly difficult to use, and a solution by substitution
completely obscures any meaning of the results and leaves one
very prone to computational error. To avoid this, considerable
simplification of the relations is necessary. The error incur-
red by the approximations used has a maximum of about five per
cent at the limits of the curves given. By a close examination
of the circuit element behavior, a certain amount of insight may
be gained into the action during the transition from one voltage
state to the other, and from this a relation may be developed
which yields the voltage-current phase shift. Then, assuming a
slow amplitude modulation present at the input, the phase mod-
ulation coefficient is determined as a function of the cirecuit
parameters. Here again reétrictions are necessary; namely, that
of low index modulation. However, for the situation which created
this problem, the need for better amplitude slope correction
limiters in radio relay systems, the modulation index is low, aﬁd
the relations given in Chapter II are pertinent. For the case

of very widely varying input levels, the phase deviation function
is both large and complex; however, it may be handled by techniques
similar to those presented in Chapter I.

The procedures just described have as their basis ideal
diodes and batteries. In order to show the difference between
such an assumption anfl the reality of continuously acting nonlinear
elements with smooth v-i curves, a different approach to the
problem was taken. Instead of the transient analysis of Chapters

I and II, the voltage waveform is broken into its frequency har-

monice, ad ege o1 terminaad

3
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monics, and these are determined by an analysis technique
developed in Chapter III. An example 1s carried out to give
an idea of a typical result. The method has the advantage
that the fundamental voltage component is obtained directly,
without the need for any further Fourier analysis. However,
the calculation procedure is tedious, and becomes overpowering
if mére than two frequency components are considered. For a
specific problem, however, an answer may be found by straight-
forward although brutal substitution and calculation.

It would be possible to assemble a computer by which
such calculations could be automatically performed. Although
the analysis technique gives results for almost any lumped
circuit with linear storage elements, there is a guestion as
to the error incurred in certain types of problems, namely
those in which there are many very large exponential terms.

If a suitable apﬁroximation or an alteration of the one given
could be found, such a machine would be worthwhile. This needs
further investigation.

The amplitude to phase convefsion in the limiters described
in this work may be reduced to any prescribed amount by the
proper alteration and addition of circuit elements. Work is
being continued in this direction, and a method of reduction

which has been developed will be released soon.
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