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Abstract
Low order standard finite element formulations fail when subjected to bending action
and when nearly or totally incompressible situations are encountered. However, due
to numerical advantages, it is very desirable to have a reliable and efficient low order
element, in particular for 3-D analysis. This thesis presents a new low order element
which is based on a mixed interpolation of displacements (velocities), pressure and
strains (velocity strains). The proposed element shows promise for general compress-
ible and incompressible analysis of solids and fluids. We show that the element passes
a numerical inf-sup test, and give results to some standard analysis problems that
demonstrate the capabilities of the element. We also explore other alternatives that
can be considered in the selection of the pressure as well as the strain interpolations
which fail to satisfy the inf-sup condition.
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Chapter 1

Introduction

Much research effort has been spent to obtain an effective four-node quadrilateral

finite element for the analysis of two-dimensional (or eight-node brick element for

three-dimensional) structural problems and fluid flows. Low order elements are par-

ticularly attractive due to the fact that they are computationally more efficient than

higher order elements. However, low order displacement-based formulations fail when

subjected to bending action and also when nearly incompressible conditions are en-

countered [1].

To circumvent this problem many finite elements have been developed, with mixed

formulations the most popular approach. Among them we can mention assumed

strain formulations [2],[3],[4],[5], assumed stress formulations [6],[7] and the u/p for-

mulation. In the first two cases, not only the displacement field but also the strain

field or the stress field respectively are interpolated allowing an enhancement in the

predictive capabilities of the element. The u/p formulation is also widely used. The

latter is particularly attractive when dealing with constrained problems (incompress-

ible analysis). In this scheme the displacement field and the pressure field are inter-

polated separately. Other approaches that have also received considerable attention

are the Lagrange multiplier method, the penalty method, augmented formulations [8]

and the method of orthogonal projections [9].

- 11 -



Introduction 12~~~~~~~~~~~~~~~~~~~

It is our purpose to develop a low order finite element formulation with high pre-

dictive capabilities under bending action and that does not exhibit locking behavior

in the nearly incompressible limit. To this end we use the u/p formulation together

with an enhancement of the strain field. In this context there exists many possibil-

ities to select the pressure as well as the strain interpolations. In our formulation

we specialize a Hellinger-Reissner variational indicator to obtain the algebraic finite

element equations.

The mathematical condition that we would like our element to satisfy is the inf-

sup condition for incompressible analysis [1],[10]. To investigate whether the element

satisfies the inf-sup condition we have implemented a numerical inf-sup test that was

first presented in [11].

The thesis is divided into seven chapters. Chapter 2 presents a review of currently

available four-node quadrilateral elements. We briefly discuss their advantages and

disadvantages as well as some features related to their formulation.

Chapter 3 summarizes basic concepts regarding the inf-sup condition, the presence

of spurious pressure modes and the numerical inf-sup test. It is not our aim to go

deeply into the theory of the inf-sup condition but to present some relevant issues

related to the element implementation.

In chapter 4 we present the proposed element. We describe in detail the quadri-

lateral element for two-dimensional situations and give an extension for axisymmetric

analysis. The numerical inf-sup test presented in chapter 3 is implemented and the

obtained results for different test problems are shown. We also analyze in very detail

other possible options for the selection of the pressure and strain field interpolations.

In chapter 5 the results of some standard numerical tests are shown that demon-

strate the capabilities of the element. The behavior of the element under bending

action and almost incompressible conditions is especially addressed. We also perform

a numerical study to determine the order of convergence of the new element.

In chapter 6 we present a natural extension of our element to three-dimensional

Introduction 12
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analysis and give some numerical results.

Finally some conclusions are drawn in chapter 7.



Chapter 2

Currently available low order

elements

There is a large number of low order elements available for the analysis of solids

and fluids. The simplest one is the four-node displacement-based element, but, as is

well known, this element does not yield sufficiently good results when subjected to

bending action and also when nearly incompressible conditions are encountered. This

phenomenon is usually referred to as "locking". Because of the importance of having

a reliable low order element, due to the ease of meshing and so on, many techniques

have been developed to avoid the locking phenomenon.

Good results have been obtained to handle the shear locking behavior by using

strain or stress assumed methods [2],[3],[4],[5],[6],[7]. An important improvement

is also observed in almost incompressible situations with respect to the standard

displacement-based element but pressure oscillations still appear in certain standard

tests.

The u/p formulation is quite popular when dealing with incompressibility. In

this context, the selection of the pressure interpolation plays a crucial role and the

- 14 -



2.1 The u/p formulation 15~~~~~~~~~

stability of the model is highly dependent on it.

In what follows we briefly discuss the most popular methods currently available.

2.1 The u/p formulation

The formulation must satisfy the inf-sup condition in order to guarantee stability.

The inf-sup condition will detect both, the locking phenomenon when the inf-sup

expression is not bounded from below by a value 3 > 0 and the presence of spurious

pressure modes which correspond to a zero value of the inf-sup expression.

Certain design criteria must be considered when choosing the interpolation func-

tions. Roughly speaking, the main idea is to balance the displacement space and the

pressure space to avoid the locking phenomenon and at the same time to maintain

optimal rates of convergence.

A classical element that falls within this category is the well-known Q1/PO el-

ement (see [10] for a very deep discussion regarding the behavior of this element).

The displacement interpolations are those corresponding to the standard four-node

isoparametric element and the pressure field is assumed to be constant throughout

the element.

Although in the above mentioned Q1/PO element the displacement and pressure

spaces are correctly balanced, this formulation does not work for a general mesh. In

fact, spurious pressure modes will be present in discretizations of equal-size square

elements with certain boundary conditions (see [1], example 4.38). Even though this

effect disappears when distorted elements are used, the element does not satisfy the

inf-sup condition.

Actually, to satisfy the inf-sup condition it is necessary to employ higher order

elements, namely Q2/P1 and Q3/P2 elements. It is also possible to prove stability on

a mesh built of macro-elements as the one shown in Figure 2-1. Each macro-element is

formed using Q1/PO elements. Even though the inf-sup condition is satisfied, the use

2.1 The u/p formulation 15



2.1 The u/p formulation 16

of macro-elements is not quite popular. One of the reasons could be that models made

of macro-elements are really expensive. Note that, in this case, each macro-element

is built using five Q1/P0 elements.

Figure 2-1: Macro-element built with five Q1/P0 elements

Choosing the same order for the interpolation of the displacement and pressure

fields leads to undesirable results in the pressure distribution. Therefore, it is neces-

sary to modify the displacement and pressure approximations in some way to obtain

acceptable results. Hughes, Franca and Balestra proposed in [12] an element with

linear displacement and pressure interpolations. They introduced a modification in

the displacement interpolations by using a Petrov-Galerkin scheme. The formulation

is stable and convergent, but results are dependent on the selection of an external

parameter. Besides, a non-symmetric stiffness matrix is obtained which requires a

special treatment in the solution of the resulting linear system of equations.

Zienkiewicz and Wu proposed in [13] other approaches to deal with incompress-

ibility in the context of the u/p formulation.

2.1 The u/p formulation 16



2.2 Assumed strain methods

2.2 Assumed strain methods

In standard finite element formulations, the strain field is usually determined through

kinematic relations from the displacement field. When assumed strain methods are

used, the strain field is modified in order to forbear locking behavior of the element.

For example, to deal with shear locking the deviatoric part of the strain field must

be modified, on the other hand, when incompressible situations are encountered the

dilatational part is what we must change.

In [2] Hughes proposed a modification of the B operator (which is directly ob-

tained from the displacement interpolation) for the analysis of incompressible media

by introducing an assumed Bdil operator (also known as B-bar method). Different op-

tions to define the operator Bdil can be considered. Among them we mention selective

integration and the mean-dilatation formulation as the most widely used.

Bathe and Dvorkin [3] proposed a shell element in which the strain field is cal-

culated from the displacement field at certain sampling points and then interpolated

over the element. Therefore the actual strain field is defined at any location inside

the element by interpolating using the strain values obtained at the sampling points.

Based on the same ideas, a two-dimensional element was developed in [4].

Simo and Rifai introduced in [5] a general framework, derived from a Hu-Washizu

principle, in which the strain field is given by the usual one derived from the dis-

placement field plus the addition of an assumed enhanced strain field. The proposed

element shows good behavior when subjected to bending action but some oscillations

in the pressure field are present in incompressible analysis. It is also shown that the

incompatible element of Wilson [14] can be recovered within this framework.

Assumed strain methods can usually be obtained from a variational formulation.

However, sometimes the stress recovery is not variational consistent [15].

17



2.3 Assumed stress methods 18

2.3 Assumed stress methods

They are based on a two-field variational formulation in which the displacement and

stress field are interpolated separately. Since they are based on complementary-energy

variational formulations, it is required that the assumed stress field satisfy a priori

the equilibrium equations.

The works of Pian and Sumihara [6] and Punch and Atluri [7] fall within this

approach.

The extension to non-linear analysis presents some difficulties. Constitutive equa-

tions generally relate the stress tensor to a suitable conjugate strain measure. While

strain methods use this relation directly, stress methods use inverse constitutive re-

lations. Furthermore, standard algorithms in non-linear mechanics are strain driven

(i.e. radial return algorithm in plasticity) and must be modified when employed in

the present context.

2.4 Other approaches

2.4.1 Penalty method

The penalty method has also been extensively used. Here, the displacements are con-

sidered as the basic variable and the problem consists in minimizing a modified func-

tional. This modification introduces a large parameter that leads to ill-conditioning

of the functional. Besides, locking behavior is present and some techniques, like for

example reduced integration, must be implemented. More details can be found in

[10] and references therein.

2.4.2 Augmented Formulations

Augmented formulations consist of weakening the divergence-free constraint by using

2.3 Assumed stress methods 18



2.4 Other approaches 19

div(uh) = h (2.1)

Different forms have been proposed for gh, see for example [8].

In general, the expression for Ah depends on an externally imposed parameter 

and results are highly dependent on it. The main difficulty arises in finding the best

value for .

2.4.3 Orthogonal Projections

The method of orthogonal projections provides a way of solving a set of linear equa-

tions which are subjected to a certain number of linearly independent constraints.

The idea consists of splitting the solution vector in the sum of two orthogonal vec-

tors, one of which lies in the constrained space and the other in an orthogonal space

to that. The major work is spent in the construction of the two projection orthogonal

operators [16].

The same general idea can be applied in the context of the finite element method

when certain restrictions hold (i.e. incompressibility). One of the projection operators

is constructed by vectors that define the constrained space. The other is complemen-

tary in the sense that their sum is the identity matrix. A four-node quadrilateral

element that uses this approach was presented in [9].

2.4 Other approaches 19



Chapter 3

Criterion for stability and

convergence. The inf-sup

condition

A large number of problems in engineering practice reduce to the minimization of a

potential of the form

11(v) = a(v,v) - f(v) v E V (3.1)

If a(., ) is a continuous V-elliptic bilinear form and f(.) is a continuous linear

form, the Lax-Milgram theorem assures that the minimization of I1(v) has one and

only one solution. To estimate the order of convergence, the Cea's lemma together

with some results obtained from interpolation theory give [17]

11u-uhhj < C hk+1- jIujk+l (3.2)

where uh is the finite element solution, k is the order of the polynomial used to

interpolate u and

- 20-



Criterion for stability and convergence. The inf-sup condition

II.H = 3 ( dQ (3.3)
Ikl<j

=9 mM~ 2(o n) dQ (3.4)
m,n=z 19xn d

What eqn. (3.2) tells us is that the rate of convergence of our finite element

solution is governed by a constant C times a certain power of the element size, h.

This power depends on the degree of the polynomial used in the approximations and

gives the order of convergence of our formulation.

The constant C sometimes depends on the conditions of the problem. For example,

if almost incompressible conditions are encountered, C will increase as the Poisson

ratio - 1/2 and, as a consequence, the element will lock. Therefore, a stronger

condition than those imposed by the Lax-Milgram theorem ought to be considered in

order to decide whether a finite element model will have good convergence properties

or not. In this context, the inf-sup condition, often referred to as the Brezzi-Babugka

condition, arises as the criterion to be satisfied to assure stability.

The potential to be minimized is written now as,

1 1~~
I(v) = - a(v,v) + 2n b(v,v) - f(v) v E V (35)

2 2

where both a(., ) and b(., ) stand for continuous bilinear forms and is a very large

parameter.

Two fundamentally different types of problems can be analyzed within this frame-

work,

* Constrained problems.

Formulations in which the potential can be split into two parts and one

of them is magnified by a large coefficient.

21



3.1 Incompressible elasticity 22

Some problems that fall within this category are elasticity problems in which

nearly incompressible conditions are encountered, incompressible fluid flows and beams,

plates and shells when the thickness is very small compared with the side dimensions.

In what follows we refer to incompressible elasticity and results carry over immedi-

ately to the Stokes problem. The extension to beams, plates and shells is not straight

forward. See [11] for the case of beams.

3.1 Incompressible elasticity

In incompressible elasticity the terms involved in eqn. (3.5) are

a(v,v) = 2 G j e'(v) e'(v) dQ (3.6)

b(v,v) = J (div v) 2 dQ (3.7)

f(v) = v fB d + vsf fSf dSf (3.8)

where Q is the volume over which integration is performed, '(v) is the deviatoric

part of the strain tensor, G and are the shear and bulk modulus respectively and

fB and fsf are the externally applied body forces and externally applied tractions.

Sf is the portion of the boundary over which tractions are prescribed while we use

S to denote that part over which displacements (velocities) are prescribed.

We are seeking the displacement field u which minimizes eqn. (3.5) over a vectorial

space V,

V = {v/ EL2();i, = 1..3 and Vis =O; i= 1..3 (3.9)

Let us now consider the discrete problem and let uh denote the approximate

solution or finite element solution lying in the finite dimensional space Vh. Here, Vh

stands for a space of a sequence of finite element spaces that we choose to solve the

3.1 Incompressible elasticity 22



3.1 Incompressible elasticity 23

problem,

Vh = {Vh / ah E L 2(Q); i, j = 13 and Vih Is = ; i = 13} (3.10)

Therefore, each discrete problem

(1
min {- a(vh, Vh) + b(vh, Vh) f (Vh)} (3.11)

VhEVh 2 2

has a unique finite element solution Uh.

We now define the distance between the exact solution u and the finite element

space Vh as

d(u, Vh) = inf Ju- vhll = jjlu-ll (3.12)
VhEVh

where fi is an element of Vh but is not necessarily the finite element solution.

Our purpose is to find conditions on h such that

I]u-uhI cd(u,Vh) (3.13)

with the constant c independent of the conditions of the problem.

Since it is condition (3.13) which governs the good properties of our formulation,

it is desirable to express it in other forms which are easier to work with. Thus, to

proceed further we define the discrete spaces Kh and Dh

Kh(qh) = {Vh / Vh Vh , div h = qh} (3.14)

Dh = {qh / qh = div Vh for some h E Vh} (3.15)

Note that in the limit, when is infinite, solutions must satisfy the incompress-

3.1 Incompressible elasticity 23



3.1 Incompressible elasticity 24 
ibility constraint exactly. In particular, h is constrained to lie in Kh(O). Thus, if

Kh(O) is too small compared to Vh convergence could be affected. We are interested

in having optimal convergence in our finite element analysis which means that, as

the mesh is refined, the distance between u and uh must remain of the same order of

magnitud as d(u, Vh).

Since the limit case r -+ oo has the highest constraining effect we focus on it for

our analysis. Then, as uh lies in Vh, optimal convergence cannot be guarantee unless

d(u, Kh(O)) < c d(u, Vh) (3.16)

Let Uho be a vector in Kh(0) and let wh be a vector such that

fuh = uho + wh (3.17)

Therefore, condition (3.16) is met provided that for all qh E Dh there is a vector

wh E Kh(qh) such that

IIWhj < cqhll (3.18)

where c' is an independent constant. Figure 3-1 shows schematically the spaces and

vectors involved.
1

Suppose now that c' = is not independent of h. Hence, the distance between

u and Kh(0) will not decrease at the same rate as d(u, Vh). However, convergence

will still occur if d(u, Vh) decreases faster than 3h, though it will not be optimal.

Note that condition (3.18) is a strong guarantee for good convergence properties

of our discretization.

The inf-sup condition follows now from (3.18) (see [1] for a nice derivation),

inf sup fn qh div(vh) dQ > > (319)
qhEr~h VhEVh Ijqhjj jjVhjj1 --

3.1 Incompressible elasticity 24



3.1 Incompressible elasticity 25~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If the inf-sup condition is satisfied for a sequence of finite element spaces, then

our finite element discretization will exhibit the good approximation properties that

we seek, namely, (3.13), (3.16) and (3.18) will all be satisfied.

Figure 3-1: Spaces considered to derive the inf-sup condition

In practice, locking will be present when the potential HI defined in eqn. (3.5)

is directly used. To circumvent this phenomenon, the u/p formulation appears as a

convenient alternative and the following modified potential is used,

II'(vh) = G j '(vh)* E'(vh) d + J (Ph(div vh))2dQ - f(vh) (3.20)

d(u,Kh(O))

U

3.1 Incompressible elasticity 25



3.1 Incompressible elasticity 26

where Ph(.) is the L2-projector operator onto an auxiliary space Qh which we identify

as a pressure space. The projection operator is defined by,

J( Ph(div Uh) - div Uh) qh d = 0 q e Qh (3.21)

Invoking stationarity of I'(vh) we obtain

2 G f e'(h) e'(Vh)dQ -

-f(div

J Ph div Vh dQ

uh + -) qh dQ
;

= f(vh)

= 

V vh E Vh (3.22)

V qh E Qh (3.23)

and we infer from (3.23) that Ph =

Let us now redefine Kh(qh) as

--n Ph(div Uh).

Ki(qh) = {Vh e Vhl/Ph(div Vh) = qh} (3.24)

and the non-locking condition (3.16) becomes,

d(u, Kh(O)) < c d(u, Vh) (3.25)

The inf-sup condition now reads,

inf sup fV qh div(vh) dV
qhEPh(Dh) VhEVh ||qhJ |Vh ll1

(3.26)

where the space Dh in eqn. (3.19) is replaced by Ph(Dh). Therefore, in order to satisfy

the inf-sup condition it is crucial how the space Ph(Dh) relates to the displacement

space Vh. Note that Qh always contains Ph(Dh). Choosing Qh smaller renders Kh(O)

larger leaving (3.25) easier to satisfy. However, taking Qh = {0}, we have that

Kh(O) = h, and nothing remains for the incompressibility constraint. According

to this, the key is to reduce Qh sufficiently to avoid locking but keeping it as large

3.1 Incompressible elasticity 26



3.2 Spurious pressure modes

as possible for reasons of accuracy. On the other hand, using Ph = I (the identity

operator) the displacement-based formulation is recovered and the element locks.

Once the inf-sup condition is satisfied, the following error bounds can be shown

to hold [18]

IU- uhil < C [ u-uIl + 11(- Ph)(P) ] (3.27)

lip- , Ph(div uh)lI < c2 [ u-UII + I(I-Ph)(P)l ] (3.28)

where c and c2 are independent constants.

3.2 Spurious pressure modes

In this section, we discuss some issues related to the presence of spurious pressure

modes.

As mentioned above, in actual finite element discretizations we may well have

Ph(Dh) contained in but not equal to Qh. Therefore, we must consider

inf sup f n qh div(vh) dQ > _ 0 (3.29)
qhEQh VhEVh siqh|| I|Vh|l

instead of (3.26). In case Ph(Dh) = Qh, (3.26) and (3.29) are exactly the same.

In case that the space Qh is larger than the space Ph(Dh), the solution will exhibit

spurious pressure modes. They correspond to (non-zero) pressure distributions p, that

do not interact with the displacements. Thus, they satisfy,

JQ p, divVh d = Vvh E Vh (3.30)

Assume now that we are given a pressure distribution iPh which is proposed to be

a spurious pressure mode. If Qh = Ph(Dh), there is always a vector v'h such that

27



3.3 The in f-sup test 28~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ph =-Ph(diVrh) and

- Ph diVVh dQ = - Ph Ph(div-h) d = dQ > 0 (3.31)

On the other hand, when Qh is larger that Ph(Dh) we can find a pressure distribution

in the space orthogonal to Ph(Dh) which will satisfy (3.30).

Therefore, since we are testing with qh E Qh, expression (3.29) tests whether any

spurious pressure mode is present. Furthermore, when no spurious pressure modes

are present, expression (3.29) tests if condition (3.26) is satisfied.

Spurious pressure modes can lead to large solution errors in case of totally incom-

pressible situations or when prescribed displacements are different from zero. Further

discussion on this topic can be found in [1],[11],[19].

3.3 The inf-sup test

It is not easy to determine whether a particular finite element formulation satisfies

the inf-sup condition and only for a very few number of elements an analytical proof

is available. See [1] for a review of existing elements. Thus, the numerical inf-sup test

proposed in [11] appears as a very useful tool to predict if a certain discretization is

likely to satisfy the inf-sup condition. Such a test can be applied to newly proposed

elements and also to discretizations with elements of distorted geometries. However,

we understand that this test, when passed, does not assure the satisfaction of the inf-

sup condition, but, of course, if the numerical test is not passed that automatically

means that the inf-sup condition is not satisfied.

To establish the basis of the inf-sup test, we consider the matrix problem associ-

ated with eqns. (3.22) and (3.23) for finite values of ;
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Ah B Uh Fh

7Th] V = H (3.32)
Bh Th Ph 0

Clearly, from the last equation we have

1 PhBhUh - -ThPh = =Ph -T- BhUh (3.33)

and it follows that -T- 1 Bh is the matrix form associated with the linear operator

Ph(div(.)).

We can also write condition (3.26) in terms of nodal quantities instead of the

fields. We note that having qh G Ph(Dh) it is always possible to find wh such that

qh Ph(div Wh). Thus, we obtain an all-displacement form of the inf-sup condition

WT Gh Vh
inf sup W= h > (3.34)
Wh Vh W Gh Wh Vh Sh Vh

where

Vh ShVh = 'E i"1 '~i9 dV (335)
i,j=l Ozj xj d

wT Ghvh = J div(wh) Ph(divvh) dV (3.36)

with Sh a symmetric positive definite matrix and Gh a symmetric positive semi-

definite matrix.

The key is the evaluation of the inf-sup value of the expression in (3.34). To do

that, the following eigenproblem must be considered.

Gh Vh = A Sh Vh

3.3 The inf-sup test 29
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Let us now call Ap the first non-zero eigenvalue. Then, the inf-sup value is simply

/p (see [11]) and we require that for any sequence of meshes this value remain

bounded from below by a constant oh > 0.

We can also detect the presence of spurious pressure modes in our formulation.

Suppose that we have nu displacement and np pressure degrees of freedom. We should

get that AnU-np+l is the first non-zero eigenvalue. Otherwise, spurious pressure modes

are present in our finite element discretization.

Summarizing, to perform the inf-sup test it is necessary to design a proper analysis

problem and consider a sequence of meshes to evaluate the first non-zero eigenvalue in

eqn. (3.37). If the values obtained approach asymptotically a value greater than zero

(and there are no spurious pressure modes) the inf-sup test is passed. Even though

to pass the numerical inf-sup test does not guarantee that the inf-sup condition is

satisfied in all cases, it is a very rigorous test. Results of the numerical inf-sup test

applied to existing formulations can be seen in [1]. In chapter 4 we implement this

test for our proposed element.
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Chapter 4

Development of the element

In this chapter we present a new formulation which shows promise for general com-

pressible and incompressible analysis of solids and fluids. First, we present our pro-

posed element which is based on a mixed interpolation of displacements (velocities),

pressure and strains (velocity strains). We implement the inf-sup test in section 4.2

and also discuss other possibilities that can be used in the selection of the interpola-

tion fields in the last section.

4.1 The new proposed element

4.1.1 Variational formulation

Let B be a general body in the space with prescribed displacements over the boundary

S, applied tractions over S and Su n Sf = 0. The material response is assumed

to be represented by a polyconvex stored energy function W(x, e), where x indicates

material points and E denotes the strain tensor. We can always split the strain tensor

into a deviatoric and spherical or volumetric part,

Is' = As t1f =E- - tr(e) tr(e') = 0 (4.1)
3

-31 -
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e = tr(E) (4.2)

where 6 denotes the unit second order tensor.

The stress tensor and the constitutive tensor are given by

a9W(x,,)
W(x, ) (4.3)

C = Oe0 (4.4)OE0= 2W(x, E) (4.4)

Note that the tensor C as defined in (4.4) is neither isotropic nor constant. More-

over, it only depends on the stored energy function W(x, e).

We now assume a physical situation in which volumetric and deviatoric response

are uncoupled and by virtue of the kinematic split (4.1) and (4.2) we can rewrite W

as a function of E' and E,,. Namely, W(x, c) can be written as

W(x, e) = W'(x, E') + Wv(x, ev) (4.5)

and now

= aW'(x, e') C a 2W'(x E') (4.6)
9E' 0E'

P W (x e) _ 2 Wv(x,,e) (4.7)
P= &ev n ~ =-ke~e

where Tr' is the deviatoric part of the stress tensor and p is the pressure. In the

following we will refer to isotropic elasticity with constant material properties. We

call C' the stress-strain matrix law and n the bulk modulus. However, because of the

generality of the variational principles, our results are applicable to any solid provided

the corresponding expression of the stored energy function is used. Moreover, they

are also valid even if the material response cannot be uncoupled as assumed in eqn.
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(4.5).

Let us consider the following variational indicator [1]

In*(u,p) = f[ e'. C' E' +

where u denotes the displacement field. The term 7R(u) accounts for the externally

applied body forces fB and surface tractions fsf,

%(u) = v U. fB dV + IouSf fsf dSf

Inspired by the developments given in [51 and [14], we write the strain field as,

Ef = 6qU + (4.10)

where &9u is the strain corresponding to the displacement field u and e represents

an enhancement in the strain field. The deviatoric and volumetric strains are now

given by,

E' = 6,U + e

Ev = &e1 + v

Substituting from eqns. (4.11) and (4.12) into eqn. (4.8), we obtain

II(u, e, Xp) = JV[ (,, U + ). C' (u + ') -

1 p 2

2K: - p (a, u + Z,)] dV
2 

- R(u)

(4.11)

(4.12)

(4.13)

Note that we obtain the stress tensor r as

1 p 2

2 
- (P

K
(4.8)

(4.9)
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+ E')] dV - R(u)
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r = r' -p 6 (4.14)

where the deviatoric part is

= C (,u + ) (4.15)

Invoking stationarity of II we obtain the following governing variational equations,

[6u. C' ( u + ,) - ,,6u p] dV - 67Z(u) = 0

|[hi * C' (,u + - p )- ,] dV = 0 (4.16)

P (,p + (u+ EV))]dV = 0

The first of eqns. (4.16) gives the well-known equilibrium equation and the last

one gives the relation between pressure and volumetric strain. Since we know that

the stress field cannot be zero under the action of externally applied loads the second

equation imposes conditions to the enhanced strain field, which means that it cannot

be arbitrarily selected. In fact, for the constant stress field case (patch test) the

second of eqns. (4.16) becomes,

r-6EdV = 0 (4.17)

which means that the integral of the enhanced strain field must vanish. We will choose

our finite element interpolations of the enhanced strain field such that condition (4.17)

is satisfied and will refer to this point in more detail in the following section.

4.1 The new proposed element 34
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4.1.2 Implementation

The geometry and the displacement field are described using the standard 4-node

isoparametric interpolations

4

x = h(r) xi (4.18)
{=1

4

u = Ehi(r) u (4.19)
i=1

In these equations, hi are the usual interpolation functions, r indicates the isopara-

metric coordinates, and xi and ui are the nodal point coordinates and nodal point

displacements, respectively. The deviatoric and volumetric strains corresponding to

u are

Y9 ,u = B'(r) fi (4.20)

Ou = B.(r) fi (4.21)

where B'(r) and B, (r) are, respectively, the corresponding strain interpolation ma-

trices and d contains the nodal point displacements.

The crucial ingredients of the element formulation are the interpolations of the

pressure field and the enhanced strain field. As is well known, using the bilinear dis-

placement interpolation and no enhanced strain field (that is, using e = 0), the "best"

element is the displacement/constant pressure element (the 4/1 or Q1/P0 element).

Any higher order pressure interpolation deteriorates the element performance in al-

most incompressible analysis, and even the constant pressure element is not reliable

(unless used in certain macro-element patterns). The 4/1 element does not satisfy

the inf-sup condition.

We are using the enhancement in the strain field to increase the predictive capa-
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bility of the element in bending and enlarge at the same time the "divergence space"

of the element. Based on these thoughts, we propose to use the same interpolation

for the pressure as for the displacements, that is

4

p= Zhi(r) pi = H(r) (4.22)
i=1

where the Pi are the nodal point pressure values.

Hence the element will yield a continuous pressure field across the element bound-

aries.

With the above displacement and pressure interpolations it is now crucial to select

an appropriate strain field e.

Let us define the enhanced strain field interpolation as

C = G(r) a (4.23)

The matrix G(r) (to be defined in detail) contains functions of r and the vector

a contains the internal element parameters.

Using eqns. (4.18) to (4.23) in eqns. (4.16) we obtain the following discrete finite

element equations,

Kuu, KUQ KU p 1 1a
K K, Kp = 0 (4.24)

K T KTp Kpp p 0
~~K wherepJ

where
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K uu = B (r) C' B(r) dV K = -J B (r) H(r) dV

Kpp = J|-HT(r) H(r) dV Kap = - GV (r) H(r) dV (4.25)

K = f vGIT(r) C' G'(r) dV K = v B (r) C' G'(r) dV

and R is the usual load vector.

The final stiffness matrix is obtained by statically condensing out the internal

parameters xa at the element level.

The matrix G(r) must satisfy the requirement that the linear system of equations

(4.24) be solvable, that is, after elimination of the physical rigid body modes. We

also want that the element passes the patch test.

Of course, satisfying these requirements does not assure that we have a stable

finite element discretization. However, this solvability condition is necessary and the

passing of the patch test indicates whether the element will be useful. Ideally, as

mentioned above, we would be able to analytically show that the element formulation

satisfies the inf-sup condition for incompressible analysis.

The system of equations (4.24) will be solvable if the matrix Kaa is invertible,

which is guaranteed if the columns of the matrix G(r) are linearly independent.

According to our variational principle, the integral of e over the volume of the element

must vanish. Hence, assuming a constant thickness we must have

f +1 +1
/+ |/+ G(r) J(r) dr = - (4.26)

where J(r) is the Jacobian determinant for the transformation from the physical
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coordinates (x,y) to the isoparametric coordinates (r,s).

We will now establish the enhanced strain interpolation defined in eqn. (4.23).

Let us consider first a square element of size 2x2. In this case we use G(r) = G*(r),

r 0 0 0 rs 

G*(r) 0 s 0 0 0 rs (4.27)

0 0 r s 0 0

Note that the first four columns of G* define the strain interpolations that actually

correspond to the incompatible displacement interpolations used in the element of

Wilson [14]. The two columns that we add in G*(r) enable the element to pass the

numerical inf-sup test given in section 3.3.

If the element is a general quadrilateral we need to transform the strains in the

isoparametric coordinate system to the physical coordinate system and we perform

this tensor transformation in matrix form,

G(r) - J(r) Xo G*(r) (4.28)

where

_-1 Xo2 Xo2l Xo1Xo21
-1

Xo = Xo2 Xo22 X012Xo22 (4.29)

2Xol 2Xoj 2Xo 2 1Xo 22 X0 11oX 0 2 2 + X0 12 X0 21

and

9x(r)
X oar =o and Jo = Jlr=O (4.30)

Hence, we use in eqn. (4.28) the geometry gradient and determinant evaluated at

the center of the element. Since the condition (4.26) is satisfied for the square element,
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the same condition is also satisfied for the element of general geometric shape.

We note that, of course, higher order terms can be included in the strain inter-

polation matrix G*(r) provided condition (4.26) is satisfied. However, we performed

some numerical experimentation which showed that no significant improvements are

obtained by including higher-order terms (see section 4.3).

4.1.3 The axisymmetric element

For axisymmetric analysis due to the hoop strain and the presence of the factor xr (r)

(the radius expressed as a function of the natural coordinates) in the integrations,

some extensions of the above element formulation are needed.

To include an enhancement for the hoop strain we modify the enhanced strain

interpolation (4.27). Consider the 2x2 element and the interpolation matrix

G (r) =

r 0 0 0 rs 0

0 s 0 0 0 rs

0O r s 0 0
0 0 0 0 rs rs

(4.31)

tv*

Using G (r) condition (4.26) is now violated due to the additional thickness factor

xr(r) in the integral and a normalization of the interpolation (4.31) is required.

Let

~ * t 

G*(r) = G (r) + G, (4.32)

i- *

where G, is a correction matrix of constant elements to satisfy eqn. (4.26). Then we

obtain

G*(r) = G (r)-.f ( d G (r) x(r) dr (4.33)
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The matrix G(r) for a general quadrilateral element is then obtained by the trans-

formations defined in eqns. (4.28) to (4.30).

4.2 Implementation of the numerical inf-sup test

In the numerical inf-sup test we choose an analysis problem and investigate whether

the inf-sup values in the finite element solutions of that problem, with increasingly

finer meshes, are bounded. We choose the constrained cavity and the cantilever

problem shown in Figure 4-1 to perform our analysis.

/ f/ / / /

/ /

,//

/ / / / / / 

Constrained cavity Cantilever

Figure 4-1: Inf-sup test. Problems considered

We use here the inf-sup condition as written in terms of the nodal quantities (eqn.

(3.34)) and solve the eigenproblem given by eqn. (3.37).

The key is the evaluation of the matrices Gh and Sh defined by eqns. (3.35) and

(3.36) respectively. To this end we consider the matrix problem that corresponds to

I
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the variational formulation defined in eqns. (4.16),

Ah B4 {Uh} Fh}

Bh - Th Ph 
K 

From eqn. (4.24) we can immediately identify,

(Kuu)h (Kua)h

Ah =

(Ku,)T (KQQ)h

BT [ (Kup)h]

h (Kp)h

Th = X HT(r) H(r) dV

Uh ={

:1
O~

Ph = {}

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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R(u)

Fh = (4.40)

0

Gh is now directly obtained from, [11]

Gh = B T 1 Bh (4.41)

Note that externally applied loads and material parameters do not affect the

expressions in eqns. (3.35) to (3.37).

The evaluation of Sh must include the fact that we are interpolating not only the

displacements but also strains. Making use of Korn's inequality [17], we therefore

use instead of the 1-norm that enters in eqn. (3.26) and evaluated in eqn. (3.35), an

equivalent norm defined in terms of the components of the strain tensor,

(3 1/2

lV = E II Ej 112 (4.42)
i,j=-1

Figure 4-2 shows the results of the test applied to the constrained cavity shown in

Figure 4-1. The figure shows that the test is passed. Also, the count of the number

of zero eigenvalues, after removal of the physical pressure mode, shows that spurious

modes are not present.

The evaluation of the inf-sup value was performed for three uniform meshes in

which N=2,4,8 where N is equal to the number of elements per side. IS = Vp, where

Ap is the smallest nonzero eigenvalue.
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LOG (1/N)
I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ aN

, I ,I I I I , , I I , , I I [I I ,I

-0.8 -0.6 -0.4 -0.2 0

N=2,4,8

IS= F/p

-U.;,"

-0.0
0

-0.2 -

CO- 0
- 0_-J
-0.4

-0.6

-n A

Figure 4-2: Results of the inf-sup test for the constrained cavity shown in Figure 4.1.
N is the number of elements per side of plate in Figure 4.1 and IS is the
calculated inf-sup value

The results of the numerical inf-sup test applied to the cantilever problem shown

in Figure 4-1 are shown in Figure 4-3. We performed the test over a regular and a

distorted mesh. The test is passed in both cases. It can be inferred from the picture

that the distortion of the elements does not affect appreciably the results.
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LOG (1/N)

-UZ

-0.0
0

-0.2

* 00
-J

-0.4

-0.6

-n R

, ·; . : , - . , I I
-0.8 -0.6 -0.4 -0.2 0

N=2,4,8

IS =/p

Regular mesh

...- c Distorted mesh

Figure 4-3: Results of the inf-sup test for the cantilever problem shown in Figure 4.1.
N is the number of elements per side of plate in Figure 4.1 and IS is the
calculated inf-sup value

4.3 Other possibilities in the selection of interpo-

lation fields

Since we are interpolating both, the strain and pressure fields, many possibilities are

open to select their approximations. Of course, once we choose the interpolations we
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do not know a priori whether they will work or not. However, based on theoretical

knowledge we can predict if a certain selection will fail or not. Other cases are not so

obvious and their usefulness is determined by numerical experience.

We want to discuss in this section different approaches that we have investigated

and the thoughts that guided us to arrive to our final results.

The main objective is to develop a new element that satisfies the relevant inf-

sup condition. The numerical inf-sup test presented in chapter 3 and implemented

in section 4.2 when strain interpolations are used, is employed as a tool to predict

whether the element is likely to satisfy the inf-sup condition. Ideally a mathematical

proof is available.

To establish the approximations for our element, we focus our attention on some

well-known elements like the 4/1, 4/3, 9/3 and 9/4-c elements. These elements fall in

the context of the u/p formulation and analytical proofs that determine whether they

satisfy the inf-sup condition are available [1],[10] . The first two do not satisfy the

inf-sup condition. The 4/1 element presents spurious pressure modes under certain

modeling conditions while in the 4/3 element the pressure space is too large to satisfy

the incompressibility constraint. On the other hand, for the last two, the inf-sup

condition is satisfied. Also, nine-node elements present an additional advantage,

namely, they give exact results under bending action even if distorted elements are

used.

4.3.1 The enhanced strain field interpolation

Since it is the strain field that enters in the potential II defined in eqn. (4.8), we

begin our analysis by comparing the strain field obtained with the four-node and the

nine-node square elements (note that the Jacobian matrix is constant in this case).

Let us first construct the B matrix for the four-node square element. By inspection,

we determine that it spans the same space as the column space of the following linear

operator
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1 0 0 s 0 0 0

B (r) 0 1 0 0 r 0 0 (4.43)
0 0 1 0 0 r s

We now consider the space generated by the B matrix obtained from the nine-

node displacement interpolations. To obtain this space, it is necessary to add the

following columns to B1

r 0 rs 0 0 s2 0 0 0 rs 2 0 0 0

G 1 (r)= 0 s 0 rs 0 0 r2 0 0 0 sr2 0 0 (4.44)

0 0 0 0 rs 0 0 r 2 s 2 0 0 sr 2 rs 2

We remark that in the case of distorted elements the Jacobian matrix is no longer

constant and the above matrix entries are changed.

Let us now concentrate on expression (4.44). We could use G1 as our enhanced

strain field interpolation (eqn. (4.27)). However, we can immediately appreciate that

G1 does not satisfy condition (4.26) which implies that the patch test will not be

passed. Clearly, the integral over the volume of the element of terms like r2 and

s2 is not zero. Deleting the columns in G1 that contain those terms will leave us

with condition (4.26) satisfied at the price of loosing the capabilities of the nine-node

ment. Therefore, we have

r 0 rs 0 0 rs2 0 0 0

) = 0 s 0 rs 0 0 sr 2 0 0 (4.45)

0 0 0 0 rs 0 0 sr 2 rs 2

' -,, ,
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Using this operator as our enhanced strain interpolations requires the inversion

of a 9x9 matrix to condense out the internal parameters a. Furthermore, exact inte-

gration requires the use of a 3x3 quadrature rule which would make the element very

expensive. The computational cost can be reduced further by noting that numerical

results are not much affected if we neglect the last four columns in (4.45). However,

the resulting enhanced strain interpolation operator still differs from the one that

we have defined in (4.27). Our numerical experience showed that better results are

obtained if we use (4.27) when distorted elements are present in the model. Thus, we

finally use,

r 0 0 0 rs 0

G*(r) 0 s 0 0 0 rs (4.46)

0 0 r s 0 0

If the last two columns of G* are not used the incompatible element of Wilson

[14] is recovered. We would like to make some comments at this point regarding the

use of

r 0 0 0

G*(r) = 0 s 0 0 (4.47)

0 0 r s

First of all, the patch test is passed since G*, satisfies condition (4.26). Let us now

consider the cantilever problem that we use in Section 4.2 to perform the numerical

inf-sup test. We clearly have in this model, if we use (4.47), that n > np which is

a necessary condition for a discretization to be stable but not sufficient. In fact, the

numerical inf-sup test is not passed. A spurious pressure mode is present and the

value of the first non-zero eigenvalue is not bounded from below as shown in Figure

4-4.
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Figure 4-4: Results of the inf-sup test using the strain interpolations defined in eqn.
(4.47). N is the number of elements per side of plate in Figure 4.1 and IS
is the calculated inf-sup value

4.3.2 Pressure interpolations. Internal degrees of freedom

Once the strain interpolation functions have been defined, it only remains to decide

the interpolation of the pressure field. We analyze in this section different options

that can be considered.

Constant pressure interpolation

The pressure is defined to be constant throughout the element and the space Qh

defined in chapter 3 is the space of constant functions. In the context of the u/p

formulation the equivalent element is the 4/1 or Q1-P0 element. We know that the

4/1 element has a spurious pressure mode. However, due to the fact that we have an

LOG (1/N)

. I I I I . I I J I I I I I I I I I I I .

-0.8 -0.6 - -0.2 0
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IS= p
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0
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enhancement in the strain interpolations, we may expect that the spurious pressure

modes be filtered out in the model.

Let us define now the following operators,

1I' = I - 6®6 (4.48)
3

I = § 5 (4.49)

where I is the unit fourth-order tensor with components Iijkl = { 6 ikSjt + 6i1Sjk}.

They are linear operators that map a second order tensor into its deviatoric and

spherical part respectively. Thus, we can apply these operators to each column of our

enhanced strain operator (note that each column of G* is a second order tensor by

itself) to obtain G' and G,.

Clearly, the resulting operators G' and Gv will both satisfy similar conditions to

(4.26), namely,

+1 +1f f G'(r)J(r)dr = 0 (4.50)
-1 1

fJ Jf Gv(r) J(r) dr = 0 (4.51)

Although we have enhanced the strain field, we will show that, as for the 4/1

element, a spurious pressure mode will appear in certain situations and the inf-sup

condition is not satisfied. To demonstrate that a spurious pressure mode is present

we need to prove that given a (non-zero) pressure distribution p we have

jp di Vh dQ = Vvh Vh (4.52)

Let us consider a finite element discretization like the one shown in Figure 4-5

with the pressure distribution (checkerboard) indicated in Figure 4-6. In this model
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all displacements along the boundary are set to zero.

Figure 4-5: Spurious pressure modes. Element discretization

Figure 4-6: Spurious pressure modes. Checkerboard distribution

Over each element we have
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div Uh = v = Oev + 'ev

ev = Gv a

fa, Pe div uhdQe = Pe Jf(aev + v) de

= e fn,-(&cu + G a) de

= Pe fne O, u dQe

(4.53)

(4.54)

use (4.53)

use (4.54)

use (4.51)

(4.55)

If a patch of four elements is considered, for the displacement ui shown in Figure

4-7 we have,

Jn p div h dQ = [pei(1) + pe2 (1) + pe) + e3() + pe4(-1)] = 0 (4.56)

The same holds true when any displacement vi is considered. Therefore, the rela-

tion (4.52) is satisfied for any nodal point displacement when the pressure distribution

is the indicated checkerboard pressure.

We conclude that when using strain interpolations with the pressure field constant

over the element the satisfaction of the inf-sup condition is not possible.

where

and
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4.3 Other possibilities in the selection of interpolation fields

Figure 4-7: Spurious pressure modes. Patch of four equal elements

Linear pressure interpolation

We now discuss the possibility of using a linear pressure interpolation with internal

degrees of freedom, that means, they can be condensed out at the element level. The

pressure interpolation in this case is given by

= 1 + 2 r + 3 s (4.57)

The space Qh is defined as

Qh = {1,r,s} (4.58)

We can immediately see that, according to what we have discussed for the con-

stant pressure interpolation, the first column of Kap is zero. The other two columns

are different from zero and they add some extra terms that contribute to improve

G1 ~~~0
p p

pi p

._Pe PP4
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4.3 Other possibilities in the selection of interpolation fields

the performance of the element with respect to the classical 4/3 element. However,

pressure oscillations still exist in some cases (for example, driven cavity test) and we

consider that the element is not reliable.

4.3.3 The use of bubble functions

The so-called bubble functions are used to enrich the displacement space. They consist

of quadratic functions which vanish along the boundary of the element. The most

common is the following function

hb = (1-r 2) (1-s 2) (4.59)

The added degrees of freedom are internal ones and can be condensed out at the

element level. Since the bubble function values vanish along the boundary of the

element, we end up with a compatible element.

Although we are introducing external degrees of freedom, it has been shown that

the use of the bubble function presents no improvements in typical problems (see

[20]). If a bubble function is used in the context of the u/p formulation, since its

divergence has zero mean value, we can make a similar analysis as in section 4.3.2 to

demonstrate that the inf-sup condition will not be satisfied.
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Chapter 5

Numerical Tests

5.1 Beam Bending

A beam clamped at one end and subjected to an applied moment at the other end

is modeled using two finite elements. The mesh is distorted by rotating the common

edge of the elements. This is a classical test to evaluate the capabilities of elements

when subjected to distortions. Figure 5-1 shows the calculated results in comparison

with the analytical solution as a function of the degree of skew.

5.2 No-Flow test

An almost incompressible solid/fluid rests in a non-square cavity subjected to gravity

loading, see Figure 5-2. The velocities normal to the walls are prescribed to be zero

and the pressure at the free surface is p = 0. The solution must give zero displace-

ments/velocities and a linear distribution in pressure. Our numerical results give

negligible displacements/velocities (because we are using an almost incompressible

material) and an almost linear distribution in pressure as shown in the figure. The

deviation from linearity is larger when distorted elements are used.
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Figure 5-1: Bending test. Poisson's ratio = 0
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5.3 Driven Cavity

DATA

10 10

Figure 5-2: No-flow test

5.3 Driven Cavity

A square cavity with boundary velocities constrained to zero along three edges and

a uniform prescribed velocity applied along the top edge is considered, see Figure

56
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5.3 Driven Cavity 57

5-3. The pressure distribution compared with the 9/4-c (or Q2/Q1) element (that is,

the biquadratic velocity and bilinear continuous pressure element) as well as pressure

band plots are shown in Figure 5-4 for lOxlO and 20x20 meshes, respectively.

Detail of boundary condition
for corner element

u=1
v =0

Yt u=1 ,-- --U =1
11 ~V =0 I IJ

I

I

U =0
V =0

U =0 x

V =0

-1

Figure 5-3: Driven cavity. Boundary condition at corner element
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Figure 5-4: Driven cavity. Pressure distribution
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Figure 5-4: Driven cavity. Pressure bands
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5.4 Convergence analysis 61

5.4 Convergence analysis

To study the rate of convergence of our new element we have implemented an ad-

hoc test problem which is free of boundary singularities. Indeed, we prescribed a

displacement field such that it vanishes and the stress field presents no singularities

along the boundaries of the model considered. The displacement field is defined by

u = (x - x2 ) (y - y 2) eky cos(2kx) (5.1)

v = (x - x2 ) (y - y2) eky sin(2kx) (5.2)

The stress and strain field are obtained through kinematic relations and constitu-

tive equations respectively. The exact applied body forces are then given by,

B = -T.[ + 1 (5.3)
ax + 1y

B a[OrX O ry y
h -B = - [azD + .1~ ~~~~ a(5.4)fy a~x + OyJ

We load our model with these calculated body forces to obtain the nodal displace-

ments and the required norms

| u- h II = 112E- 2EhI (5.5)

where E is the elastic strain energy.

We considered a sequence of meshes as shown in Figure 5-5 for non-distorted

elements and in Figure 5-6 for distorted elements. The results are plotted in Figures

5-7 and 5-8 respectively. The obtained order of convergence is approximately equal

to 2 as theory predicts. We also give a comparison with the results obtained using

other standard finite elements.
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Figure 5-7: Convergence analysis. Uniform mesh results
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Figure 5-8: Convergence analysis. Distorted mesh results
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5.5 Axisymmetric cylinder under internal pres-

sure

To test the axisymmetric element we consider a thick cylinder of infinite length (it

cannot expand in the z direction). The internal radius is R/ = 1 and outer radius is

Ro = 2. The internal pressure is p = 6 and the Young's modulus is E = 1000. The

analytical solution for this problem is

(5.6)
U = ( g+R ) pRi) [1° + (1 - 2v) r]

2pR 2 (+v)
3 R R2

7T 7T 7T-

I-_ _ _0 __ I

D_ D_ D__QI
U UT

Figure 5-9: Cylinder under internal pressure. Model considered

We show in Figure 5-9 the two meshes used and in table 5-1 we list the results ob-

tained with both meshes and the analytical results for different values of the Poisson's

(5.7)
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5.5 Axisymmetric cylinder under internal pressure

ratio.

Table 5-1: Cylinder under internal pressure. Results

We also studied the rates of convergence using this rather simple case with a

Poisson's ratio v = 0.4999. Figure 5-10 shows the L2 norms of the analytical dis-

placement minus the finite element displacement and the analytical pressure minus

the finite element pressure as a function of the mesh size h.

We note that in this analysis, the proposed element converges with order 2 in

the displacement norm and an order larger than in the pressure norm. It is also

interesting to compare the performance with the convergence of the 9/4-c element

(the Q2-Q1 element) and the displacement-based element. The order of displacement

convergence of both 9-node elements is 3, but the error using the displacement-based

element is much larger. Considering that 11 u- h [o- c h3 , this error is due to a

large constant c, typical of the locking behavior.

Displacement at r = 0 x 10- 2

__ Regular mesh Skewed mesh Exact
0.0 0.99686 0.99566 1.000
0.3 1.13919 1.13472 1.144
0.49 1.19138 1.18920 1.198
0.4999 1.19327 1.19108 1.199
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5.6 Thin cylinder under bending action

The behavior of the axisymmetric element under bending action is tested in this case.

A cylindrical shell of median radius R = 167.5, height h = 51 and thickness t = 1 is

considered. The Young's modulus is E = 11250 and a moment M = 2000 is applied

at one end. The shell is clamped at the other end as shown in Figure 5-11.

The analytical results are given by

M Et
WtoP = 2 2 D; 4 R2 D

and the obtained results are listed in table 5-2

D = Et3

12(1 - ,2)

- , I I I I I I I I I I I I I I I

Figure 5-11: Thin cylinder under bending action. Model considered

Table 5-2: Thin cylinder under bending action. Results

(5.8)

Top displacement
v Model Exact
0.0 0.60536 0.6158
0.3 0.57778 0.5875
0.49 0.52857 0.5368
0.4999 0.52519 0.5334
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5.7 Circular plate under uniformly distributed load

5.7 Circular plate under uniformly distributed load

A circular plate of radius R = 10 and thickness t = 1 is subjected to a uniformly

distributed load q = 1. The Young's modulus is E = 1875 and the exact solution for

the central displacement is given by

q R 4

Wmax - 64 D
(5 + v

+ v
4 3+v
3 1- 2

t2) D = (E t3

12(1 - 2 )
(5.9)

Figure 5-12 shows the mesh used and the results are given in table 5-3.

Figure 5-12: Circular plate under uniformly distributed load. Model considered

Table 5-3: Circular plate under uniformly distributed load. Results

1 IdI I I 1©
K1 

Central displacement
v Model Exact
0.0 5.3192 5.0320
0.3 4.1440 3.7436
0.49 3.3330 2.8248
0.4999 3.2863 2.7855
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Chapter 6

Three-dimensional analysis

We extend in this chapter our element presented in chapter 4 to three-dimensional

analysis and present some numerical results.

6.1 The three-dimensional element

Low order three-dimensional models present, generally, the same difficulties that we

have discussed in previous chapters for two-dimensional analysis. Furthermore, the

computational cost is critical and the use of higher order elements is very expensive.

As for the case of two-dimensional analysis, Q1/PO elements fail to satisfy the inf-sup

condition and we refer again to [10] for further details. Also, see [21] for a discussion

in the context of assumed strain fields.

We obtain here our three-dimensional element as a natural extension of the ele-

ment presented in chapter 4 for two-dimensional analysis. The element is based on

the same variational formulation and therefore, we use eqns. (4.16) to obtain our

governing finite element equations.

The three-dimensional element has eight corner nodes used for the coordinate,

displacement and pressure interpolations,
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6.1 The three-dimensional element 70

8

x = E hi(r) xi
i=1

8

u = Ehi(r) ui
i=1

8

p E hi(r) pi
i=1

(6.1)

Again, the selection of the interpolation for

crucial role. The requirements to be satisfied by

those discussed for the quadrilateral element. We

undistorted element and define,

G*(r) =

the enhanced strain field plays a

this interpolation are the same as

now consider, as before, the 2x2x2

r 0 0 0 0 0 0 0 0 rs 0 0 rt 0 0

0 s 00 0 0 0 0 0 0 sr 0 0 st 0

O 0 t 0 0 0 0 0 0 0 0 tr 0 0 ts

O O O r s 0 0 00 0 0 000 

O O O O O r t 00 000 OOOOO
0 O O O O O O s t 00 000 0

(6.2)

For a general distorted element, the enhanced strain interpolation operator is

obtained in the physical coordinate system from the isoparametric coordinate system

by equation (4.28). In this case,
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where X0 is defined in eqn. (4.29).

6.2 Numerical results

6.2.1 Patch test

We performed the patch test shown in Figure 6-1 and the element passes this test.

6.2.2 Beam bending

This is a similar problem to the one presented in section 5.1 for 2-dimensional analysis.

We distorted the elements according to the patterns shown in Figure 6-2 and also plot

the corresponding results.

_ -1
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°22

Xo2x°23
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726.2 Numerical results

Figure 6-1: Patch test for 3-D analysis
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Chapter 7

Conclusions

The main objective of this thesis was to develop a low order element with good

predictive capabilities in structural bending problems and in the analysis of almost

incompressible media (solids and fluids). The results presented in Chapter 5 for vari-

ous test problems show the behavior of the element. The element behaves well when

subjected to bending action (beam bending test) and also when almost incompressible

conditions are encountered (no-flow test and driven cavity test). Furthermore, results

do not deteriorate drastically when the element is subjected to large distortions.

The optimal rate of convergence, as theory predicts, was obtained for the displace-

ment in numerical tests. On the other hand, the rate of convergence for pressure lies

between 1 and 2. A numerical inf-sup test was also implemented and the element

passes this test.

We have extended in Chapter 6 the proposed element to three-dimensional anal-

ysis. It was straight forwardly obtained from the two-dimensional element. However,

more work must be done to obtain an improvement when the element is subjected to

different types of distortions.

We also reported other possibilities for the selection of the interpolation fields.

We explained in detail why other strain fields do not yield improvements in the

element behavior. We also showed that, in the context presented in chapter 4, the
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use of constant pressure interpolation and an enhancement of the strain field always

leads to the presence of spurious pressure modes. We consider that this section has

relevant importance since it gives some insight for future developments based on

mixed interpolations of strain and pressure fields.
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