
N

A Video Controller and Distributed Frame Buffer
for the J-Machine

by

Eric Lawrence McDonald

S.B., M.I.T.
(1990)

Submitted to the Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

Massachusetts Institute of Technology
January 1995

(@1995 Massachusetts Institute of Technology. All rights reserved.

t" - on- , n , n

Signature of Author __

Department of Electrical Engineering and Computer Science
January, 1995

,zl)

Certified by 7.

Associate Professor of Electrical Engineering

A n){.

Prof. William J. Dally
and Computer Science

Thesis Supervisor

Accepted by -- -

Prof. Frederic Morgenthaler
Chair an, Departmental Committee on Graduate Students

Eng,
MASSACHIJSErS INSTITUTE

.r !. - - -

APR 13 1995

LIBRARIE

- - - - - -

_

/-)

A Video Controller and Distributed Frame Buffer
for the J-Machine

by

Eric Lawrence McDonald

Submitted to the
Department of Electrical Engineering and Computer Science

on January 20, 1995, in partial fulfillment of
the requirements for the Degree of Master of Science in

Electrical Engineering and Computer Science

Abstract

A high-bandwidth video system for the J-Machine concurrent computer has been developed.
The system integrates a physically distributed frame buffer with a commercial video con-
troller chip to provide a unique research tool in the field of computer graphics. Combined
with the fine-grain programming mechanisms of the J-Machine, the flexibility of the system
allows research into a number of distributed graphics algorithms without the dampening
effects of low video memory bandwidth. The video system is scalable to provides a range of
price/performance tradeoffs. Applications for the J-Machine video system include scientific
visualization, animation, and high-speed photorealistic rendering.

Thesis Supervisor: Prof. William J. Dally
Title: Associate Professor of Electrical Engineering and Computer Science

Keywords: Video, Distributed, Graphics, J-Machine.

-

Acknowledgments

Many people have given me invaluable help and guidance throughout my years here at
M.I.T, and I'd like to offer them my whole-hearted thanks.

I would first like to thank my thesis advisor, Prof. Bill Dally, for giving me such a challenging
research project. His wealth of knowledge and expertise helped me though some critical
design decisions, and yet he kept enough distance to let me find solutions to the exciting
problems on my own.

Several members of the CVA group offered their wisdom as well. My first few months with
the group were spent under the tutelage of Mike Noakes, who was more than generous with
his time when I was trying to learn as much as possible about the J-Machine hardware.
Toward the end of the project, the debugging advice offered by Andrew Chang helped me
untangle some crucial puzzles. And the advice, opinions, and humor of Stuart Fiske and
Rich Lethin have helped me put some perspective on where I've been and where I'm going.

The faculty at M.I.T. is tremendous, and I would like to extend my particular thanks to
Profs. Don Troxel and Al Drake. As a TA in their courses, I experienced some of my most
worthwhile and rewarding moments here at the institute.

Many, many thanks go out to my family. The love and support from my parents have given
me all the confidence I need to make a difference in life. My brother and sister have already
demonstrated the successful lives that a loving family can foster. The warmth of my family,
and Jellybean (my cat, not the Machine), have always been able to keep my spirits aloft.

My deepest gratitude goes out to my best friend Dave. His friendship, tolerance, insight,
and humor have helped me to appreciate the better parts of life. The experiences we've
shared since high school have instilled in me the sense of optimism and hope that I possess
today. It is with excitement and wonder that I wait for the future to unfold.

- - -

To Mom and Dad

Contents

1 Introduction
1.1 Overview .
1.2 Background

1.2.1 The J
1.2.2 The

1.3 Video Systen
1.4 Prior Work
1.5 Results...
1.6 Thesis Outlit

13
....... 13

. 14

[-Machine 14
)emands of High-speed Rendering 15
n Hardware Overview . 16....................................17....................................17ae 18

2 Pixel Storage Node
2.1 Purpose
2.2 Module Descriptions

2.2.1 MDP Module
2.2.2 DRAM Module
2.2.3 FIFO Module
2.2.4 MREAD Module
2.2.5 MUX Module
2.2.6 VRAM Module

2.3 Fabrication

3 Video Controller
3.1 Purpose
3.2 Module Descriptions

3.2.1 MDP Module
3.2.2 DRAM Module
3.2.3 FIFO Module
3.2.4 ERM Module
3.2.5 XLM Module
3.2.6 SCM Module
3.2.7 TIM Module
3.2.8 MPU Module
3.2.9 Bt463

3.3 Fabrication

9

19
19
20
21
22
23
26
28

30
35

37
37
37
38
39
39
42
44
47
54
56
58
58

4 Configuring the Video System
4.1 Number of Pixel Storage Nodes . . .
4.2 Display Resolution
4.3 Starting an Application
4.4 Initializing the XLM

4.4.1 Single-line frame buffer . . .
4.4.2 Single-screen frame buffer . .
4.4.3 Multiple-screen frame buffer.

4.5 Initializing the SCM
4.6 Classes of Pixel Messages

4.6.1 Address/Pixel List
4.6.2 Raster Operations
4.6.3 Proxy Messages

4.7 Increasing Effective Storage
4.8 Hardware Scrolling and Stretching
4.9 Stereo Monitors

5 Conclusion
5.1 Summary
5.2 Further Work

A PSN Schematics and PAL Files

B VC Schematics and PAL Files

10

59
59
60
60
62
63
63
65
65
65
66
66
67
68
68
69

71
71
72

73

108

.

.

.

..

List of Figures

1.1 Small Video System for the J-Machine . .

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

Pixel Storage Node Hardware Modules
PSN FIFO Block Diagram
Logic Analyzer Plot of EMI Write Cycle
MREAD Block Diagram
MUX Block Diagram
Single-bit VRAM Layer
VRAM Block Diagram
Flow Chart for VRAM Controller
Timing Diagram- VRAM Refresh Cycle
Timing Diagram - VRAM Row Transfer
Timing Diagram - VRAM Write
Timing Diagram- VRAM Read

3.1 Video Controller Hardware Modules
3.2 VC FIFO Block Diagram
3.3 Data transfer between FIFO and MPU . . .
3.4 ERM Block Diagram
3.5 XLM Block Diagram
3.6 Shift Clock Timing for a One-Of-Four PSN
3.7 Shift Clock Timing for a One-Of-Eight PSN
3.8 General Structure of SCM module
3.9 Preventing LdClk Timing Violations with a Delay Line.
3.10 MPU Block Diagram

4.1 Displaying the Same Color Using True-Color and Pseudo-color Modes
4.2 Single-buffer VRAM Usage with Four PSNs per Scan Line
4.3 Multi-buffer VRAM Usage with Eight PSNs per Scan Line
4.4 Increasing Effective Storage through Pixel Compaction
4.5 Using the XLM to Scroll an Image Vertically

11

16

20
24
25
27
29
30
31
32
32
33
34
34

38
40
41
42
45
49
49
51
54
57

.. 62

.. 64

.. 64

.. 69

.. 69

..
.
.
.
.
.

.

.

.

List of Tables

2.1 Effects of Increasing the Number of PSNs
2.2 EMI Address Multiplexing Scheme
2.3 MREAD Memory Map
2.4 MUX Selection

3.1 FIFO Interpretation of EMI Address Bits 17 & 16
3.2 ERM Memory Map
3.3 XLM Usage of Data and Address Bits From FIFO
3.4 SCM Usage of Data and Address Bits From FIFO
3.5 MPU Usage of Data Bits From FIFO

12

22
24
26
29

40
43
46
51
56

..

Chapter 1

Introduction

My goal is simple. It is complete understanding of
the universe, why it as it is and why it exists as all.

-STEPHEN HAWKING

There is a theory which states that if ever anyone discovers
exactly what the Universe is for and why it is here, it will

instantly disappear and be replaced by something even more
bizarre and inexplicable. There is another which states

that this has already happened.
- DOUGLAS ADAMS in The Restaurant at the End of the Universe

1.1 Overview

This thesis describes a video system that has been developed for the J-Machine concurrent
computer. The video system, also called the Distributed Frame Buffer (DFB), allows the
J-Machine to be used as a research tool in the field of distributed graphics processing.
The DFB provides the J-Machine with high-bandwidth, multiple-buffer, high-resolution
video capability required for applications such as scientific visualization, animation, and
photorealistic graphics rendering.

The J-Machine itself is a fine-grain, concurrent computer that provides efficient mecha-
nisms to support several proposed models of concurrent computation. While it has always
been possible to use the J-Machine for the calculations involved in graphics applications,
the results previously had to be fetched with significantly low-bandwidth bit-serial retrieval.
The DFB allows the rapid display of information-rich video generated by the J-Machine pro-
cessor array.

The DFB is both distributed and scalable. Distributing the physical location of the
pixel frame buffers eliminates the bottleneck created by a single video bus and thus pro-
vides greater bandwidth into the video system. The scalable nature of the DFB allows
J-Machine owners to balance cost against performance in accordance with their particular
graphics requirements. The DFB is extremely flexible, with many configuration options
under software control.

13

-

CHAPTER 1. INTRODUCTION

Before discussing the video system in detail, some background information is needed on
both the J-Machine architecture and modern-day graphics requirements.

1.2 Background

1.2.1 The J-Machine

The DFB has been targeted for use with the J-Machine, a fine-grain concurrent computer
built by MIT's Concurrent VLSI Architecture Group [9]. A 1024-node version of the J-
Machine has been operating since mid-1993.

The J-Machine Philosophy

The J-Machine is a concurrent computer; rather than optimizing execution on a single
node, the emphasis is on dividing a job efficiently across many nodes. Moreover, it is a
fine-grain concurrent computer, allowing programs to be efficiently partitioned into tasks
(with an average size of a few dozen instructions) and data objects (with an average size
of a few dozen words). The J-Machine provides hardware mechanisms that support several
distinct concurrent programming models. For example, the hardware provides efficient
synchronization and object translation across multiple nodes.

The processing elements in the J-Machine, called Message Driven Processors (MDPs),
are connected through a very low latency, synchronous, three-dimensional mesh network.
Since inter-node communication in a fine-grain concurrent computer occurs as frequently as
procedure-calling in sequential programs, low overhead for message sends is desirable. To
this end, MDP message sends are user-level instructions and do not require bulky system-
level calls. Furthermore, the delivery mechanism and message buffering is performed by
dedicated logic on the MDP chip, freeing up the main processor for program execution.

Although parallel graphics processing is becoming commonplace, very little research in
the field has been done with the fine granularity provided by the J-Machine. The J-Machine
and its video system now provide fertile ground for the study of this model.

The J-Machine Hardware

The J-Machine contains up to 65,536 computing nodes, each with an MDP and 256 KWords
of external DRAM memory. An MDP chip consists of an ALU, register files, 4K 36-bit
words of internal memory, a network interface, and control logic for the external DRAM.
The network that links the MDP nodes is provably deadlock-free.

An MDP also contains a diagnostic port used for initializing the chip, halting and
examining its state, and reading and writing to its memory. Although any MDP in the
J-Machine array can be individually accessed through its diagnostic port, such access is bit-
serial and thus slow. It is through this serial port that images from a previous ray-tracing
experiment [4] were retrieved.

A single J-Machine processor board can accommodate 64 MDP nodes. Within a board,
routing of the x and y network channels is accomplished with copper traces. Between
boards, network routing takes place over ribbon cables (x and y dimensions) and elastomeric

14

1.2. BACKGROUND

connectors (z dimension). The J-Machine chassis can accommodate up to 16 processor
boards with an additional 32 peripheral boards.

1.2.2 The Demands of High-speed Rendering

Modern graphics applications such as 3-dimensional rendering, photorealistic animation,
and scientific visualization demand far higher performance than non-specialized computing
environments can suitably provide. Graphics users must often accept either a slow response
time or lower resolution to accomplish work at a tolerable rate. Two obstacles need to
be overcome to meet the demands of today's high-performance graphics: pixel processing
power and frame buffer memory bandwidth [5].

Pixel processing requirements

The rendering of three-dimensional scenes relies heavily on two fundamental types of data
processing: geometry processing is used to transform the objects in a scene according to
the observer's viewpoint, and rasterization is needed to scan-convert the transformed ob-
jects into pixel representations. The amount of such computation needed in a real-time
high-quality animation sequence can be staggering. For example, rendering a high-quality
Gouraud-shaded scene of 100,000 polygons updated at 30 Hz requires about 350 million
floating-point operations per second and 750 million integer operations per second [7]. Stan-
dard uniprocessor designs simply cannot satisfy such computational requirements.

An obvious way to overcome the processing barrier is to distribute the computational
problem among multiple processors. This can be accomplished with parallel processing,
hardware pipelining, or a combination of both techniques.

A video system that used a purely parallel approach was proposed as early as 1979
at UNC [6]. In this system, all polygons were broadcast to a set of processing elements,
but each processing element only computed those pixels for which it was responsible. This
parallel processing was used for both geometry processing and rasterization.

More often, specialized hardware pipelines are used in conjunction with parallel process-
ing. In the Pixel Machine [10], a pipeline of nodes was employed to perform the intrinsically-
sequential rendering operations that would otherwise reduce the efficiency of its parallel
array of processors. Both the pipeline unit and parallel array were connected to each other
and a host computer through a single bus, which posed a potential bottleneck. A system
developed at SGI [1] used a more tightly integrated sequence of hardware pipeline and par-
allel processing stages. However, as is typical with designs containing hardware pipelines,
this system was somewhat constrained to a particular rendering algorithm.

The J-Machine video system uses a more flexible approach to satisfy the pixel processing
requirements. The entire J-Machine processor array is used to perform pixel processing
calculations. The nodes are grouped into functional units which can then be linked in a
pipeline or parallel array. The allocation of nodes to the stages of the rendering algorithm
is arbitrary, as is the rendering algorithm itself. No specialized rendering hardware is used
to perform the data processing. Processing can be done at either the pixel level or object
level. However, this flexibility brings with it the non-trivial challenges of synchronization
and load balancing.

- -

15

CHAPTER 1. INTRODUCTION

Two independent Pixel
Storage Nodes per board

Scalable
PSN

array

Figure 1.1: Small Video System for the J-Machine

Frame buffer bandwidth

The second potential bottleneck in rendering architectures is the bandwidth of the video
memory used to store the computed image. To meet this high demand, all of the rendering
architectures mentioned thus far have used memory interleaving in one form or another.
The distributed nature of the J-Machine's frame buffer provides a similar mechanism to
meet these bandwidth requirements. The maximum configuration of the video system can
support 140 million 32-bit writes to the frame buffer per second.

The frame buffer is scalable, so the exact size of the video system can be tailored to the
performance requirements of individual installations. Although fewer frame buffer boards
reduces total memory bandwidth, the dollar cost of the system is reduced.

1.3 Video System Hardware Overview

The J-Machine video system consists of two types of printed circuit boards. The first type
contains two independent and identical nodes called Pixel Storage Nodes (PSNs); multiple
PSNs comprise the distributed frame buffer storage. The second type is called the Video
Controller (VC) board. There is only a single VC per system; its function is to coordinate
the real-time transfer of pixel data and to display images on an RGB monitor.

Each type of board connects to an edge of the J-Machine processor array. Figure 1.1
shows one possible configuration of the video system, consisting of an array of eight Pixel
Storage Nodes and a single Video Controller Board.

The VC must repeatedly retrieve pixel data for every line of each screen refresh cycle;
no buffering is performed on the VC itself. The video specification provides for up to
a 1280 x 1024 pixel screen with 24-bit deep pixels. The RGB video adheres to RS-343
synchronization standards [3], making it compatible with most high-performance monitors.

Although there is only one VC per video system, synchronization between multiple VCs

16

1.4. PRIOR WORK

is possible if multiple video systems are installed in a single J-Machine. This permits the
generation of high-resolution three-dimensional images on a stereo monitor.

As shown in the figure, the aggregate PSN array is ultimately responsible for supplying
four pixel streams to the VC. Although the resulting data bus is four times the size of the
pixels (the video controller IC has a massive 128-bit input port), the buses need operate
only at one-quarter the 120 MHz pixel rate. So instead of retrieving a single pixel every
120 MHz clock cycle, four pixels are retrieved every 30 MHz clock cycle. Because of this
arrangement, the video system requires at least four PSNs and a single VC. If more than
four PSNs are used, each pixel stream bus is shared in a time-multiplexed fashion, with the
VC providing bus arbitration.

A typical screen update proceeds as follows: an application is distributed throughout
MDPs in the J-Machine cube. Each MDP is responsible for computing pixels for a certain
region of the display. The MDPs have halted at a barrier synchronization because they
are waiting for the recently-computed frame to be displayed. When they receive word from
the VC that the end-of-frame has arrived, they can send their pixel updates to the frame
buffer1 . These pixel messages are sent to one or more of the PSNs over the J-Machine inter-
processor network. Before every scan line in the new frame, the VC instructs the PSNs to
download a row of pixel data into shift registers. The VC sequences through this data for
the duration of the scan line. It fetches pixels from four PSNs at a time and spreads them
across the next four display columns. When the end of a horizontal scan line is reached, the
PSNs are instructed to download another row of pixel data. All communication between
the PSNs and the VC takes place over a dedicated set of ribbon cables. When every scan
line has been displayed, the process repeats.

1.4 Prior Work

This research builds upon initial work performed by S. Zamani [12]. In his Bachelor's thesis,
Zamani proposed a design to deal with some of the fundamental architectural requirements
of a video system for the J-Machine. The J-Machine video system includes some of those
early design ideas, specifically with respect to the Pixel Storage Node.

In addition, other peripheral boards have been developed for the J-Machine. A SCSI
interface was implemented to provide scalable non-volatile disk storage [11]. An SBus
interface was built to allow a Sparc workstation to function as the front end to the J-
Machine [8]. Since all of the peripheral boards must integrate into the J-Machine, they
share a set of common logic.

1.5 Results

The J-Machine video system achieves the high-bandwidth required by modern graphics
applications, but it has some weaknesses. Most notably, the various levels of interleaving
required to achieve this bandwidth (discussed in Chapter 3) presents a convoluted mapping
between position in memory and location on the display. Although a software library

lIf all updates can be computed and delivered to the frame buffer in time, only a single buffer is needed.
Otherwise, at least two buffers are needed and the VC is instructed which buffer to use for the current frame.

-

17

18 CHAPTER 1. INTRODUCTION

can abstract away any confusion, it will also incur a performance penalty. A truly high-
performance application therefore needs to understand the hardware at a fundamental level.
For less demanding applications, the J-Machine video system can be quite useful.

1.6 Thesis Outline

Chapter 2 discusses the architecture of the Pixel Storage Node and some of the tradeoffs
that were made in the interest of design simplicity. Chapter 3 describes the Video Con-
troller board and the flexible graphical environment it provides. Chapter 4 presents a range
of system configurations, each with its own performance and cost. Chapter 5 closes by
discussing potential future research issues and summarizing the results of this thesis.

Chapter 2

Pixel Storage Node

Do, or do not. There is no try.
-YODA

Even if you are on the right track,
you'll get run over if you just sit there.

-UNKNOWN

2.1 Purpose

Each Pixel Storage Node (PSN) provides a portion of the physical storage for the pixels in
the video frame buffers. The relation between a storage location on a PSN and a position
on the screen is not fixed by the hardware. Instead, it is configurable by the user via the
Video Controller board. This mapping cannot be completely arbitrary, however, and will
be discussed in Chapter 3.

The pixels of an image are typically generated by computations in the J-Machine proces-
sor array, transferred to one or more of the PSNs, and then fetched repeatedly by the VC.
The native J-Machine inter-processor network provides the data path from the J-Machine
to the PSN; this path is used when pixel values need to be modified. The second data path
- from the PSNs to the VC - uses a separate set of ribbon cables. This path is used very
frequently, since the Video Controller must refresh the CRT display.

There are two distinct methods for generating pixel data. One method requires that the
precise pixel address and pixel value be computed by the J-Machine, and then transferred
pixel-for-pixel to the PSNs. Such a message might say "put pixel value 0x3bf in VRAM
location 0x0201." The second method requires only that general raster operations (ROPs)
be generated by the main J-Machine array; the PSNs then interpret the ROPs locally to
generate and store the exact pixel values. Such a message might say "draw a blue line from
display coordinates (0,0) to (50,100)." The list of supported ROPs appears in section 4.6,
along with a discussion of the tradeoffs associated with these two methods.

19

J --

CHAPTER 2. PIXEL STORAGE NODE

Address

Shift
Clock

Row Transfer
Address

(from VCB)

Pixel

Figure 2.1: Pixel Storage Node Hardware Modules

2.2 Module Descriptions

Figure 2.1 shows the modules that comprise a Pixel Storage Node. Various control signals
between the modules have been omitted for clarity. Pixel messages flow in from the J-
Machine through the network connection on the upper left. The MDP decodes each message
and writes address/pixel pairs out to its external memory interface (EMI), where they are
placed into either standard external DRAM or into a FIFO directed toward the video RAM
(VRAM). If the MDP tries to read from its EMI, the request will be serviced either by
DRAM or by the MREAD module (which can read directly from the VRAM), depending
on the address. A MUX is needed to select the address lines for the VRAM, since an address
can come from the FIFO module (pixel write), the MREAD module (pixel read), or the
Video Controller Board (in the form of a row-transfer request, discussed in section 2.2.6).
The dual-ported VRAM has a serial output port which is constantly supplying pixel data
to the video controller. The video controller uses a "shift clock" to sequence through this
data as it retraces the display.

The remaining sections of this chapter discuss each of the modules in more detail. PAL
program listings and full schematics for all modules appear in the appendices.

20

2.2. MODULE DESCRIPTIONS

2.2.1 MDP Module

The MDP provides a data link between the J-Machine processor array and the rest of the
PSN. Its 20 MByte/sec 1 port is connected via ribbon cable to an MDP along one of the J-
Machine processor board edges. It is over this path that incoming pixel messages, generated
somewhere within the J-Machine array, arrive at the MDP. The PSN must somehow retrieve
this pixel data from the MDP to complete the pixel data path.

The MDP's external memory interface (EMI) is used to accomplish this task. Normally,
the EMI allows the MDP to manage up to 1 Mword (36-bit words) of external DRAM
storage. However, if the MDP copies data from network messages to its EMI interface, the
data can instead be grabbed off the EMI bus and used by the rest of the PSN.

The network protocol used by the MDP to communicate with neighboring MDPs is
obviously well-defined, so the question arises: why dedicate an expensive MDP to carry
out this rather trivial task of copying data, instead of using some dedicated programmable
logic? The two primary reasons are:

* The handshaking and token-passing network protocol was deemed too complicated to
attempt to implement with programmable logic. It is also not clear that PALs or other
PLDs could achieve the goal with the given timing constraints. For these reasons, the
PSN and two other peripheral boards - the Video Controller board discussed later and
the SCSI Interface Board used for the disk array - use an MDP for this data-bridging
function. The single J-Machine peripheral board that obviates the use of an MDP is
the SBus interface board; the tradeoff there, however, is that two-way communication
is achieved by requiring connections to two MDPs in the processor array (one for each
direction).

* Without an MDP available to process the incoming network messages, the format
of incoming pixel messages needs to be rather tightly specified when the PLDs are
programmed. An MDP, on the other hand, allows both pixel messages and raster
operations to be sent to the PSNs (as discussed in section 2.1). This flexibility would
not be possible without a processing engine - one more complicated than a finite state
machine implemented in PLDs, for example.

A key disadvantage to using an MDP in this fashion is that its EMI interface has a paltry
bandwidth of 8.75 MBytes/sec. The primary reason for this low bandwidth was a lack of
I/O pins on the 168-pin PGA package used for the MDP. Because of the pin limitation,
two MDP cycles are required to specify an external DRAM address, and three cycles are
required to fetch 36 bits of data over 12 data lines (although the first data cycle is coincident
with the second address cycle). Additional delay is caused by the need to copy each pixel
out of the MDP's network buffer, into a register, and out to its EMI.

Thus, the pixel bandwidth into a single node is limited not by the J-Machine's network
bandwidth but by the MDP's EMI bandwidth. It is important to note, however, that one
can compensate for this lower bandwidth by scaling up the number of PSNs in the video

'Numerical figures in this thesis assume a J-Machine operating frequency of 20 MHz. As such, the
network clock is 20 MHz while the MDP processor clock is one-half this rate. In theory, the operating
frequency can be increased to 32 MHz.

21

CHAPTER 2. PIXEL STORAGE NODE

Table 2.1: Effects of Increasing the Number of PSNs

system. Table 2.1 shows the effect scaling has on the pixel bandwidth into the video system.
Also shown is the maximum frame storage and refresh rate assuming 32-bit pixels and a
1024x 1024 display.

Realistic animation demands at least 15 frames per second to provide the illusion of
continuous motion. Thus table 2.1 indicates that the video system requires at least 8 PSNs
to meet the lower threshold for full-screen, 32-bit animation. However, if the rendering
algorithm can pack multiple pixel values into a single 32-bit word (as discussed in Chapter
4), animation is still possible in a system with 4 PSNs. In essence, speed can be achieved
at the expense of simultaneous color range.

The MDP module also requires a host of support components to integrate it into the
J-Machine diagnostic and routing network. The schematics and PAL files that provide this
support appear in the appendices; a more detailed description can be found in [8], [9], and
[11].

2.2.2 DRAM Module

The external DRAM connected to the MDP module could potentially be used in two ways:

* As normal MDP external memory, available for program and data storage. Data
intended for the VRAM would be addressed beyond the address range of the DRAM.
No installed J-Machine node has more than 256 KWords of external DRAM, so it
makes little sense to install more than that on the peripheral boards. This leaves 768
KWords of unused address space that can be memory mapped into VRAM space.

* As shadow video memory, to be used for duplicate pixel storage only. All EMI writes
would be directed into both the DRAM and the VRAM, but EMI reads would be
serviced by the DRAM. This would allow the MDP to use rendering algorithms that
require the current value of a pixel before updating it. (Even though the MREAD
module provides a read path between the MDP and VRAM, it is much slower than
the DRAM path for reasons revealed in section 2.2.4.) Obviously, this scheme requires
at least as much DRAM memory as VRAM memory per node; since 512 KWords of
VRAM are installed per PSN, this would also be the minimum DRAM storage.

The first method was chosen over the second. A high-performance application uses
many more J-Machine nodes than there are PSN nodes. To minimize the effects of low
EMI bandwidth, a read-modify-write algorithm should be distributed across this larger set

PSN Nodes Aggregate Refresh rate Storage Cap.
EMI Bandwidth (32-bit pix) (32-bit pix)

4 35 MB/s 8.75 fps 2 frames
8 70 MB/s 17.5 fps 4 frames

16 140 MB/s 35.0 fps 8 frames
32 280 MB/s 70.0 fps 16 frames

22

2.2. MODULE DESCRIPTIONS

of nodes; the shadow memory model therefore loses its appeal. Note that a PSN can still
use its DRAM to locally implement a read-modify-write algorithm, but it must write to
DRAM and VRAM with separate instructions.

2.2.3 FIFO Module

Design Considerations

The FIFO module serves to decouple the timing constraints of the MDP (which supplies
the pixel data) from those of the VRAM (which consumes the data).

Since the EMI was designed solely as a memory interface, it has none of the provisions of
a more general-purpose peripheral interface such as request, acknowledge, and ready lines.
Thus, it is useful only for devices capable of consuming or producing data when the MDP
demands it.

This requirement makes it impossible to directly connect the VRAM to the EMI bus.
The VRAM may be in the midst of a refresh cycle, or may be servicing a row-transfer
request for the video controller. Disruption of either of these activities would produce
undesirable results, but the EMI interface has no provisions for detecting this not-ready
condition. Without some kind of queue, any writes during this period need to be ignored
by the VRAM module.

Since external DRAM memory should still be available to the MDP, the FIFO allows
both DRAM and VRAM accesses by using a memory-mapping scheme: addresses less
than x80000 correspond to the DRAM and addresses greater than or equal to x80000
correspond to the VRAM. To implement this scheme, the FIFO controller must understand
the multiplexing mentioned in section 2.2.1. During an EMI access, the eleven address
lines are time-multiplexed to provide a 20-bit wide address with two bits of phase, and the
twelve data lines are time-multiplexed to produce 36-bit wide data. The two-cycle address-
multiplexing scheme is shown in table 2.2. The three-cycle data-multiplexing scheme is
simply the three 12-bit portions of the data word from lowest to highest significance. Since
the VRAM's data port is 32 bits wide, the FIFO must assemble the three 12-bit data chunks
appropriately. Note that the FIFO drops the four most significant bits, which are normally
used as a tag for the data word; the video controller neither requires nor recognizes more
than 32 bits of pixel data.

The FIFO module must take care to disable the external DRAM when an EMI access is
intended for the VRAM. It therefore suppresses the write signal when the EMI address is
greater than Ox7ffff. It should also disable the DRAM when a read is made from this upper
address range, since the MREAD module is then responsible for driving the bus.

Implementation

As shown in figure 2.2, the FIFO module consists of separate address and data FIFOs, all
coordinated by a 22v10B PAL. When the PAL detects an EMI write access to an address
greater than Ox7ffff, it sequentially strobes the shift-in control lines of the FIFOs (SIAddr,
SIWordO, SIWordl, SIWord2) to capture both the address and data. An FSM in the
VRAM module can detect the subsequent data ready signal produced by the FIFOs and
will eventually shift out the address/data pair.

23

CHAPTER 2. PIXEL STORAGE NODE

from EMI from EMI

LIX

to VRAM to VRAM

/OE /WR
to DRAM

Figure 2.2: PSN FIFO Block Diagram

Table 2.2: EMI Address Multiplexing Scheme

24

from EMI

MCLK

/RAS

/CAS

/WR

EA[10: 8]

CSB[1 :0]

EMI line 1st cycle 2nd cycle
EA10 A19 A18
EA9 A17 A16
EA8 A15 A14
EA7 A13 A12
EA6 All A10

EAS A9 A8
EA4 A7 A6
EA3 A5 A4
EA2 A3 A2
EAl A1 CSB1
EAO AO CSBO

ly

2.2. MODULE DESCRIPTIONS

MCLK

/WRITE

/RAS ! I

/CAS

CSBO

CSB1 ._Il
SIAddr SIWordO , , , , , , II,

SIWordl , , _ l

SIWord2 1,I!~~~~~~~~~~~~I

20 ns grid I I I I

Figure 2.3: Logic Analyzer Plot of EMI Write Cycle

Figure 2.3 is the logic analyzer output produced by an EMI write to an address greater
than Ox7ffff. MCLK is the MDP's processor clock. The A19 bit appears on the EA10 line
(not shown) when RAS first falls. If it is high and WRITE is low, the PAL will proceed to
monitor the gAS and CSB lines. When CAS first drops, the PAL shifts in the EMI address
(SIAddr) and the first twelve bits of the data (SIWordO). As the CSB cycle counter increases
during subsequent CAS cycles, the second and third twelve-bit words will be shifted into
their respective FIFOs.

The FIFO shift signals must be registered because they are derived from the combina-
tional CSB lines. However, MCLK doesn't provide a suitable clock for these registers; as seen
in the plot above, the rising edge of MCLK occurs before the falling edge of CAS, which is the
time the data is valid. And the falling edge of MCLK occurs too late into the CAS cycle to
satisfy the FIFO hold time requirements. Thus, an external JK flip-flop, clocked by A-S, is
needed to align SIWordl and SIWord2 with the falling edges of CAS.

The address and data FIFOs are 64 words deep, which is more than enough space to
queue the pixel data. In the worst-case scenario, the VRAM would require 13 clock cycles
to perform an entire row-transfer (and subsequent memory refresh) before even recognizing
the FIFO data. It would then take 13 cycles to process the data and shift it out of the
FIFO. However, any further data would only require 13 cycles between shift outs, since
row-transfers occur infrequently. These cycles are based on a 40 MHz clock, quadruple the
speed of the MDP processor clock. And since the MDP needs at least six of its cycles
between successive writes, the VRAM will quickly drain the FIFO should it begin to fill
up. 2

Although the EMI's RAS and CAS control lines pass unimpeded to the DRAM chips, the
WRR signal is routed through the PAL so that it can be squished when the address is greater
than Ox7ffff. And while most J-Machine nodes permanently enable their DRAM outputs,

2The FIFO depth was selected before optimizing the time required by a row-transfer and before the 40
MHz clock was chosen.

_ @

25

CHAPTER 2. PIXEL STORAGE NODE

Table 2.3: MREAD Memory Map

here the OE signal is generated by the FIFO PAL so as to avoid bus contention during
MREAD cycles.

2.2.4 MREAD Module

Design Considerations

The MREAD module allows the MDP to read pixel data directly out of VRAM. In theory
this is unnecessary because the MDPs themselves (both in the PSN and in the J-Machine)
are responsible for setting the VRAM contents in the first place - they presumably can
maintain a copy of what they send into the VRAM. But for debugging purposes this module
provides an essential feedback mechanism. During testing it is always a good idea to be
able to read back what one has written.

It is impossible to satisfy the MDP's request for VRAM data during the same memory
cycle it is issued. The VRAM module may be busy accepting data from the FIFO or
performing a row-transfer for the video controller. But even if the VRAM were idle, the
EMI address lines could not be decoded fast enough to initiate a VRAM read cycle that
could complete in time. The MREAD module must therefore use a multi-phase approach:
the MDP first issues an EMI read to a memory-mapped address range. It then monitors
a flag in a separate memory-mapped location to determine when the pixel data is ready.
The data is then retrieved in a final read cycle. This reduces the read bandwidth from
the VRAM to the MDP, but is acceptable because the MREAD interface was implemented
primarily for testing purposes.

Implementation

Figure 2.4 is a block diagram of the MREAD module. Much like the FIFO module, a
controlling PAL monitors the EMI lines of the MDP. When the PAL detects an EMI read
to an address greater than Ox7ffff, the PAL latches the multiplexed address with LdRAS
and LdAddr, and then raises its DataREQ line to the VRAM module. Since it will take the
VRAM module some time to supply the pixel, the value driven onto the EMI bus for that
initial read will be the last pixel fetched, not the one just requested. Eventually the VRAM
module will place the newly-read pixel into the DATA registers with PixLd and then assert
DataACK to indicate completion. The MREAD PAL releases DataREQ when it sees this, so
after first initiating a read the MDP should poll DataREQ and wait for it to drop before
going back to read the returned pixel.

Address Interpretation
0x80000 - Oxbffff Request VRAM data from Address minus 0x80000
OxcOO0 - Oxcffff Poll DataREQ line and view data returned from last request.

Also selects bank for next read to Bank A.
OxdOOOO - Oxdffff Same as above, but selects bank for next read to Bank B.

26

from EMI

to VRAM

Figure 2.4: MREAD Block Diagram

2.2. MODULE DESCRIPTIONS 27

Data

from EMI

MCLI

/RA.

/CA.

/W

EA[10 :81

CSB [1:01

DataACI
(from VRA

CHAPTER 2. PIXEL STORAGE NODE

Since the MDP will typically be polling the MREAD module after issuing a request, the
MREAD module must not interpret every MREAD access as a VRAM data request. To
do so would cause the PAL to re-assert DataREQ each time the MDP polled DataREQ, and
this could create a race condition with the DataACK signal being returned by the VRAM
module. The MREAD PAL therefore maps the address space as shown in table 2.3. Only
MDP reads in the 0x80000 to 0xbffff address range will fetch the VRAM contents of that
address (minus 0x80000). This allows an 18-bit address range for each VRAM bank (the
two VRAM banks are discussed in section 2.2.6). To decide which VRAM bank to read,
the MREAD PAL looks back to the last read made from an address greater than 0xbffff. If
it was in the 0xc0000 page, VRAM bank A will be used on the next read cycle. If it was
the 0xdO000 page, VRAM bank B will be used instead. A read from either of these pages
will also return the DataREQ status in bit 35 of the data, without initiating another VRAM
read cycle.

When the MREAD PAL drives data onto the bus with its DrvW[2:0] signals, it relies
on the PAL in the FIFO module to disable the external DRAM to avoid bus contention.
Thus, the FIFO PAL must monitor for both FIFO and MREAD accesses to control the
DRAMs appropriately.

2.2.5 MUX Module

Design Considerations

The MUX module selects one of three sources for the address lines of the VRAMs. An
address may come from the FIFO as a place to store a given pixel, from the MREAD
module as an address to read, or from the VC as a row-transfer address. To conform to
the VRAM address interface, the 18-bit address supplied by each of these sources must be
broken up into a nine-bit column and a nine-bit row.

Implementation

The VRAM module provides the three MUX control signals shown in figure 2.5. When Pix
is high the address will come from the ADDR FIFOs. When it is low the address will come
from either the VC or the MREAD module, depending on the state of Line. The VRAM
expects its address to be multiplexed into a row and column, so when CAS is high the lower
9 bits of the address will be selected; otherwise the upper 9 bits will be selected. Table 2.4
summarizes this behavior.

Although straightforward in function, the MUX module requires eight chips as imple-
mented with simple discrete multiplexors. The upper mux in the figure requires five quad
2-to-1 chips, and the lower one requires three quad 4-to-1 chips. The chip count could have
been reduced with more elaborate components, but at a higher dollar cost. If the area on
the circuit board had been smaller, this module would have been the first to get streamlined.

28

2.2. MODULE DESCRIPTIONS

LineAddr MreadAddr PixAddr

Line/Mread

CAS/R
Pix/Xf

to VRAM

Figure 2.5: MUX Block Diagram

Table 2.4: MUX Selection

CAS/RAS Pix/Xfer Line/Mread Output
0 X X Upper nine bits (row)
1 X X Lower nine bits (column)
X 0 0 Mread address
X 0 1 Row transfer address
X 1 X Pixel write address

29

CHAPTER 2. PIXEL STORAGE NODE

AM

NM

hat

SCMk

Figure 2.6: Single-bit VRAM Layer

2.2.6 VRAM Module

Design Considerations

The video memory is the primary resource of a PSN, and the complexity of the VRAM
module reflects this importance. The VRAM controller must communicate with three other
modules - the FIFO, MREAD and XFER modules - to arbitrate their access to the video
storage. FIFO and MREAD accesses have already been discussed; XFER accesses are
generated once per scan line and will be described in section 2.2.4.

Contention for the video memory would have been exacerbated had we needed to worry
about the video controller's requirement to refresh the display. Fortunately, today's dual-
ported Video RAM (VRAM) architecture eliminates this potential bottleneck. Figure 2.6
is a simplified diagram of a single-bit3 layer of VRAM storage. A standard array of RAM
is supplemented by the Serial Access Memory (SAM) shown on the right. A "read transfer
cycle" copies an entire row from the RAM array into the SAM4, after which time the SAM
can be accessed completely independently (and faster) than the RAM array. The TAP is a
9-bit counter that indexes one of the 512 copied values and sends it to the output port. The
TAP increments on the rising edge of SClk (shift clock), eliminating the need for separate
address lines. This sequential access approach is not as flexible as the general random access
used on the RAM side, but it is targeted at video applications where most accesses are in
fact sequential.

Implementation

Figure 2.7 is a block diagram of the VRAM module. The first thing to notice is that
the memory is segmented into two 256K banks. This is necessary to satisfy the video
controller's read cycle time in a minimum video system. In a system with only 4 PSNs,

3The single layer shown is replicated four times in the VRAM chips used in this project. The chips are
organized in groups of eight to provide 32-bit wide pixels.

4A "write transfer cycle" transfers data in the other direction, but this capability isn't used.

30

2.2. MODULE DESCRIPTIONS 31

from FIFO
ADDR DATA

DataRBQ---
PixBankMR-
(from MREAD)

LineXfer-
(from VCS)

FifoOR---
PixBank-

(from FIFO)

FClk-

I gu

DataACK
PixLd

Line
Pix

MuxCAS

FifoOE
FifoSO

RAS,CAS,

WE, OE
__

.> WE,OE

to READ

- to MUX
_

_ to FIFO

-- l to Bank A

-- to Bank B

Figure 2.7: VRAM Block Diagram

the time between successive reads from a given PSN is only 23 ns, whereas the VRAM
serial port requires at least 30 ns between reads. Thus, subsequent reads from a given PSN
are alternately satisfied by banks A and B. Although the timing can be more relaxed in a
system with more PSNs, the PSN is hardwired to always deliver pixels to the VC in this
alternating fashion.

This mode of operation is nearly transparent to the user. The FSM determines the bank
in which to store a given pixel by looking at the PixBank bit, which is actually the least
significant bit of the pixel's address. Thus, pixels written to even addresses are placed in
bank A, and those written to odd addresses are placed in bank B.

However, when using the MREAD module to read data back from the VRAM, the bank
to read must be set explicitly as described earlier in section 2.2.4 and table 2.3. Since the
MREAD module is principally used only during testing, this inconvenience is not important.

Pixels fetched from the SAM ports of the VRAMs are put into registers before being
enabled onto the common PixChan bus. Notice that the SClk signal that provides the shift
clock for the SAM is also used as the output enable for the register. Thus, the low-to-
high transition of SC1k transfers data from the VRAM to the register and increments the
VRAM's TAP, but the pixel isn't driven onto the pixel bus until the next time SClk goes
low. This design eliminates the need for a separate output-enable going to each register, but
causes the SClk signal to assume two roles. The implications of this design are discussed in
the next chapter.

FClk is a 40 Mhz clock signal supplied by the VC. It is asynchronous to the J-Machine
clocking network, and allows the VRAM controller to run at a higher speed. More im-
portant, it is not selectable by the J-Machine user (who can choose between three system
clocks). If the FSM frequency were not fixed, it would be difficult to arrange those portions
of the state diagram that must meet certain VRAM timing constraints.

CHAPTER 2. PIXEL STORAGE NODE

Figure 2.8: Flow Chart for VRAM Controller

The flow chart in figure 2.8 reveals that the most frequent operation of the FSM is the
VRAM refresh cycle, which is required to maintain the integrity of the volatile memory.
An internal refresh function provided by the VRAM chips reduces this task to the simple
CAS-before-RAS operation shown in figure 2.9. An internal address counter eliminates the
need to supply a row address for each refresh cycle.

In the last three refresh states, the controller sequentially checks for requests coming
from the XFER, FIFO, and MREAD modules respectively. The XFER module gets first
priority because the row of data must be transfered to the serial port before the beginning
of the next scan line. There is no danger of permanently blocking requests from FIFO and
MREAD because XFER requests are generated only once every 16 s.

Figure 2.10 is a timing diagram for the row-transfer operation. The VRAM recognizes a
row-transfer request when DTOE drops before RAS does. The FSM drives Line high to select

State (fO

RAS

CAS L

I

. ed

50ns IfnS lUUns 12lns 15 0ins 1'75ns

Figure 2.9: Timing Diagram - VRAM Refresh Cycle

I l)

- l W

32

25ns

I E(Ref5\

i

-I
n__ s e__

2.2. MODULE DESCRIPTIONS

State E
Line

MuxRAS ---

Addr =~1
DTOE

RAS

CAS

XfrlX fer2l

cii

\Xfer4 _i

Tap

25ns 50ns 7 5ns lOOns 125ns 150ns

Figure 2.10: Timing Diagram- VRAM Row Transfer

the transfer address from the MUX. The row to be transferred is specified by the nine bits
latched on the falling edge of RAS. The TAP counter is initialized to the nine bits latched
on the falling edge of CAS.

Without an outstanding row-transfer request, the FSM next looks for the FifoOR con-
dition. This indicates that one or more pixels is waiting to be transferred from the FIFO
to VRAM. Although there may be a continuous flood of FIFO data, the controller always
performs a VRAM refresh and possibly a XFER cycle between successive writes. The write
operation is depicted in figure 2.11. The DATA FIFO outputs are directly connected to the
VRAM, so the pixel data will be valid by the time FifoOR is raised. The address must be
selected in the normal multiplexed fashion. At the end of the write, the VRAM uses FifoSO
to shift the data and address out of the FIFOs.

Lowest in priority is the MREAD module, which may be attempting to read a value out
of VRAM. Requests from MREAD will be deferred if there are any outstanding XFER or
FIFO requests, but this is acceptable given the debugging purpose of MREAD. As shown
in figure 2.12, the VRAM distinguishes a VRAM read from a row-transfer based on the
state of DTOE when RAS falls. The FSM releases FifoOE to disable the outputs of the DATA
FIFO, allowing the VRAM to use the common bus to drive data into MREAD. This data
is latched by the PixLd signal.

Following the read, the FSM maintains DataACK and awaits the fall of DataREQ, indi-
cating that MREAD has recognized the completion of the read cycle5 . This REQ/ACK
handshaking is necessitated by the the different operating frequencies of the MREAD and
VRAM modules. In operation, the loop only lasts for about two MREAD cycles. Note that
a hardware- or software-level failure in one of the PALs engaging in the handshaking could

'This acknowledgment is presumably being polled by the MDP as discussed in section 2.2.4

RefO

-rn-i

-rn-i

-J

l

R(---- I
C_

33

F_
Ker]3

F��

--- IL_
i

i
I
I

7_��
i
i I

i

F_
F_
7-

PIXEL STORAGE NODE

State

MuxRAS

Addr

RAS

CAS

Data

WBWE

Fi f oSO

Figure 2.11: Timing Diagram - VRAM Write

State Edo

MuxRAS -

Addr l
RAS

CAS

DTOE

FifoOE

Data InFro

PixLD

L Rd2
i w

MiQWiO A

lI
25ns 50ns

1Rd4 ~ Rd5

,olumr

Pixe lOut

1-i
125ns 150ns.L U U IS

Figure 2.12: Timing Diagram - VRAM Read

I

hi

(Rd5

I-
1-

i
r

mmmmmmmmmI

|]
~mmmmmmm

| |

- q

u l

1m

-

| l
-

l-

mmmmmmmmq

-
.

CHAPTER 2.34

r% . -£-.-

, I(

I II Dns
q f

!mmmmmmm~l

2.3. FABRICATION

cause MREAD to loop infinitely, allowing the VRAM contents to decay and producing
garbage on the display.

2.3 Fabrication

The form factor used for J-Machine peripheral circuit boards is rather large (11 inches wide
by 15 inches long), so two PSNs fit onto a single circuit board dubbed the Pixel Storage
Board (PSB). Thus, as discussed in section 1.3, the minimum video system configuration
requires two PSBs (four PSN nodes) and a Video Controller board. The PSB has a ground
plane, power plane, and six signal layers.

The PSB has gone through two fabrication runs. The first version of the board differed
from the second in two significant ways: each node had only a single bank of VRAM, and
the two nodes were laid out vertically along the length of the board. Several other changes
were made, most of them bug fixes or format changes.

The effect of the first difference was that twice as many nodes were needed in the
minimum configuration in order to meet the video controller timing requirements. A type
of "pixel funneling" was experimented with along the lines proposed by [12], but this was
changed in favor of the dual-bank/common-pixel-bus approach now in use.

The nodes were rearranged for the second version to keep the two MDPs fairly close to
the ribbon-cable connector that couples them to the J-Machine. In the first version, one
of the MDPs was about 12 inches away from the connector. It is uncertain whether this
layout posed a potential reliability problem, but it was decided to keep the distance between
MDPs as small as possible.

The clock signals were hand-routed to minimize signal reflection. The MDP clock trace
was made as identical as possible to the MDP clock trace on the J-Machine processor boards
in terms of length, signal layer usage, and number of buffers used.

Aside from the MDP and an assortment of registers, latches, and PALs, the PSB required
four specialized types of ICs:

* High speed FIFOs. To easily interface with the EMI bus, these were needed in 9-bit
wide versions for ADDR and in 12-bit wide versions for DATA. The DATA FIFOs also had
to have an output enable for reasons discussed in section 2.2.4. Fortunately, Cypress
Semiconductor manufactures FIFOs that meet almost all of these requirements (an
8-bit and 4-bit FIFO were coupled for DATA).

* VRAM. The Toshiba TC524256BZ-80 chip provided all of the functionality described
in section 2.2.6. Due to their sheer number, the combined cost of the VRAM was
higher than any other portion of the PSN except the MDP. At approximately $12 per
megabit, each 16-megabit PSN requires about $200 worth of VRAM.

* Pixel bus drivers. The registers/drivers needed between the VRAM and the pixel
bus had to combine high speed with high output drive. The Signetics ABT series
74ABT646 provided the solution. The outputs of these tri-state registers can sink 64
mA and source 32 mA, with an average enable/disable time of 5 ns. Although these
chips are only used to drive the bus, they are actually bidirectional. Jumpers were

35

36 CHAPTER 2. PIXEL STORAGE NODE

added to the PSN so that a future research project could use this input capability to
implement a frame grabber or similar input device.

* Clock receivers. The FCLK and -E signals used by the VRAM module are supplied by
the VC. To protect these signals from EMI interference, differential signal pairs are
used on the ribbon cables. AT&T manufactures a series of drivers/receivers that use
balanced pseudo-ECL levels - ECL levels shifted by 5V to run on a single +5V power
supply. The PSB uses a 41LR quad receiver to convert the pseudo-ECL signals to
TTL levels. On the other end, the VC uses a 41LP driver to convert and drive the
signals. These chips are also used to transport the MDP clock.

Chapter 3

Video Controller

Where a calculator on the ENIAC is equipped with 18,000
vacuum tubes and weighs 30 tons, computers in the future

may have only 1,000 vacuum tubes and perhaps weigh 1.5 tons.
-POPULAR MECHANICS, March 1949

My primary and cerebral functions are now operating almost
entirely from within the computer. They have expanded to such
a degree that it would be impossible to return to the confines of
my human brain. Any attempt to do so would mean my death.

-LT. BARCLAY in Star Trek: The Next Generation Episode #93

3.1 Purpose

The Video Controller (VC) coordinates the flow of pixels in the system and produces an
image on the display. While the Pixel Storage Nodes are busy delivering new pixels to the
VRAM buffers, the VC determines which pixels to fetch, how to interpret them, and where
to place them on the screen. All of the VC modules are configurable - some directly by
software- providing multiple graphical environments.

At the heart of the VC is a Brooktree Bt463 high-performance RAMDAC. When sup-
plied with digital-level pixels and timing signals, this chip generates the analog RS-343 video
signals accepted by many monitors. Every VC module supports the Bt463 in one way or
another. The Timing Module and MPU module directly interface to the Bt463 to provide
clocking and control. The XferAddr Lookup Module and Shift Clock Module provide indi-
rect support by controlling the flow of pixel data. The MDP and FIFO modules direct the
progress of the other modules. And the EMI Readback Module allows the system status to
be monitored.

3.2 Module Descriptions

Figure 3.1 is a block diagram of the VC. An MDP acts as a link between the J-Machine
and the VC. A FIFO provides a data path from the MDP to the other modules without

37

-

CHAPTER 3. VIDEO CONTROLLER

Pixel
Streams

...- - a XferAddr 32 SClk pairs
to display to PSN bus to individual

PSNs

Figure 3.1: Video Controller Hardware Modules

constraining their timing requirements. The ERM allows the MDP to check on the status
of the modules. The MPU interfaces to the Bt463 and provides dynamic control over
numerous display options. The XLM dictates which portion of VRAM storage should be
displayed for each scan line, and the SCM selects those VRAMs that should take part in
this process. Finally, the TIM module generates the system clock, pixel clock, and monitor
synchronization signals.

3.2.1 MDP Module

The VC employs the same method to communicate with the J-Machine as the Pixel Storage
Node: an MDP translates certain incoming network messages into EMI accesses, which are
acted upon by VC modules that spy on the EMI bus. Much of the discussion in section 2.2.1
applies, but the traffic seen by the VC's MDP and the PSN's MDP differs in two respects:

* The rate of incoming messages is much smaller on the VC. For many applications,
the only communication with the VC will be to perform one-time initialization of
the display options. Even those applications which modify these options between
successive video frames send only a handful of messages per frame.

38

3.2. MODULE DESCRIPTIONS

* Messages are sent in both directions. In contrast to the one-way flow of pixels into a
PSN, the VC may be asked to reply with messages indicating the beginning of video
blanking periods or the current status.

With these differences in mind, there is little incentive to use anything other than an
MDP as a link to the J-Machine. Despite its low bandwidth, the EMI interface does
not introduce a bottleneck during the execution of practical graphic applications. One
might take issue with the cost of an MDP versus any alternatives, but the ease with which
messages can be injected into the network by the MDP overwhelms this objection. Still,
some operations performed by the VC MDP are less than elegant: for instance, the MDP
must perform polling to obtain status updates since it lacks a general-purpose interrupt
mechanism.

3.2.2 DRAM Module

The MDP is equipped with the standard ration of 256 KWords of external DRAM memory.
This can be used for program or data storage, but is unused in the current VC software
driver, which was written in assembly and fits within the MDP's internal RAM.

3.2.3 FIFO Module

Design Considerations

The VC's FIFO has the same task as the PSN's FIFO: monitor the EMI bus for transactions
with addresses greater than 0x7ffff, and push the assembled address and data into FIFOs
for use by the rest of. the VC. However, there are now multiple consumers of FIFO data;
the MPU, XLM, and SCM modules are all possible destinations. The FIFO module must
be split into two parts:

* A controller that inserts data into the FIFOs. This controller operates with the same
clock as the MDP so as to decode the EMI signals properly.

* A controller that detects data ready on the other end of the FIFO and directs it to
the appropriate module. This controller must perform handshaking with each module
since the receiver may not be ready to accept new data. The receiver modules all
operate at a higher clock rate than the MDP, so for efficiency this controller is also
operated at the higher rate.

As discussed in later sections, the XLM and SCM modules both make use of to pri-
vate tables during their operation. The "active table" number can be set to increment
automatically at the bottom of every video frame. However, since the modules operate in-
dependently, they require a common "reset" signal to align their active table numbers. The
MDP initiates this TabSync synchronization by strobing a certain EMI address. Since the
table counters increment together, this is only necessary at start-up or when the number of
tables is changed. The most convenient place to recognize the request to generate TabSync
is in the FIFO module.

39

CHAPTER 3. VIDEO CONTROLLER

EXIFSIK & F1708

MCk-b I
I rs L~~~~~~~~~~~~~~~~~~~~~~~~~~~

/RAS-b4 A16,A17 1

/CAS--J sot l
/WR-1 I

EMIAddr '--

EMIDatal- I

I . I
I I
I Addr Data

to modulesto modules

FCk-

2,

from
modulesfro (i

MODFSM

26v12

OR

ModSel

SO

MpuAck

XlmAck

ScmAck

/VBlk

D Q rahfvne

F 74 j

TSynoFF

-'I- Formpu
-ba- Foru3M
-- Forscm

Figure 3.2: VC FIFO Block Diagram

Table 3.1: FIFO Interpretation of EMI Address Bits 17 & 16

40

to
ERM

.II ~ First Last Addr Data
Targeted ModSel Valid Valid Bits Bits
Module A [17:161 Address Address Used Used

MPU 00 0x80000 0x80000 0 32
XLM 01 0x90000 Ox91fff 13 23
SCM 10 OxaOOOO Oxa0fff 12 13

TabSync . 11 OxbOOOO OxbOOOO 0 0

_

L

3.2. MODULE DESCRIPTIONS

State ()

OR

SO

ForMpu

MpuAck

tlewD)

-E
F_

HndO

-

-3

F---

=

--- d1I-7

i

E
I

I

25ns 5Ons 75ns lOOns 125ns l5Ons

Figure 3.3: Data transfer between FIFO and MPU

Implementation

A block diagram for the FIFO appears in figure 3.2. The dashed block on the left
contains a PAL and set of FIFO chips identical to the PSN's FIFO block shown earlier on
page 24.

MODFSM is a finite state machine implemented with a 26V12 PAL. Whenever it detects
an output ready condition from the FIFOs, it examines bits 16 and 17 of the captured EMI
write address1. Using these bits, it hands the data and the lower 13 address bits to one of
the modules according to the memory map shown in table 3.1. Note that not all modules
use all of the address and data bits.

A special "module" that uses neither the address nor data bits is actually the TabSync
signal, which is memory-mapped to address OxbOO0O. TabSync must be delayed by an
external flip-flop to prevent race conditions that can occur if it is asserted too close to
the end-of-frame; because the XLM and SCM modules are running independent FSMs, we
must prevent the possibility that one module sees TabSync in time to reset its table counter
but the other does not. So although MODFSM presents the TabSync request to the flip-flop
immediately after receiving it, the flip-flop will pass it through only when the TIM module
asserts and then releases VBlk, indicating the end of vertical blanking. Positioning TabSync
at the beginning-of-frame ensures that both modules have enough time to recognize it.

The MPU, XLM, and SCM modules all share the ADDR and DATA bus outputs of the
FIFOs. MODFSM notifies the module that should accept new input with ForMPU, ForXlm,
or ForSCM. An example of the data transfer routine executed by the FSM is shown in
figure 3.3; upon noticing an output ready condition R, the FSM decodes the MODSEL bits
in state "NewData" and signals the appropriate module in state "HandoffO." It remains in
this state until it sees an ACK signal from the module, and then enters "Handoffl" where
it waits for the ACK to go away. The FIFO entries are shifted out by the falling edge of SO
when the FSM returns to the "Idle" state.

1EMI bit 19 must also be set for the FIFO to have accepted the data in the first place.

41

CHAPTER 3. VIDEO CONTROLLER

MCLK -

RAS --

CAS -+

WR-

EMIAddr4

MpuRdy-
from MPU

ERawsm

-- /XLM2ERM to XLM
-a- /FIFO2ERM to ERM

- /MPU2ZER1
_ /XPU2E1 to MPU

-0-/MPU2ERM2

-_- ErmAck ERMBUF

8

from modules
from modules

F827
En

9
_9 to

EMIDATA

Figure 3.4: ERM Block Diagram

The module selected to receive the new input will not necessary accept it immediately.
The module may have previously received data flagged with a request to delay further
processing until the end of the current scan line (HHOLD flag) or the end of the current frame
(VHOLD flag). In such an event, MODFSM is forced to remain in "HandoffO" until the module
has processed the previous data. Because the new data can't be shifted out, the FIFOs can
subsequently begin to fill up.

The FIFOs have a depth of 64 words, which is enough storage to queue as many EMI
writes as the MDP can produce in a single 16 Us scan line. But if multiple FIFO entries have
their HHOLD flag set, or if a single entry has its VHOLD flag set, the FIFOs can potentially fill
up. To allow the MDP to check for the FIFO-full condition, the Input Ready (IR) status of
the FIFO chips is provided to the ERM. Also provided to the ERM, primarily for debugging
purposes, are ForMPU, ForXLM, ForSCM, OR from the FIFO chips, and TabSync. The EMI
address from which these status bits can be fetched is revealed in the next section.

A feedback path that allows stalled FIFO data to be pushed out of the way from the
head back to the tail of the queue was considered but ultimately dismissed for three reasons.
First, out-of-order processing might not be acceptable to the application. Second, the
coordination that would be required between MODFSM and EMIFSM (which shifts data into
the FIFOs) added too much overhead. Finally, such transfers could get preempted by new
EMI writes, creating the risk of data loss.

3.2.4 ERM Module

The MDP, acting on behalf of the application, needs the ability to monitor various status
signals within the VC. The EMI Readback Module (ERM) provides this ability, assuming
a role similar to the MREAD module in the PSN. But whereas MREAD was designed to
assist during debugging, the ERM provides information more useful to an application. For
example, it would be difficult for animation programs to know when to update the frame

22v10B
,>

EA10,9,1,0

/BUFEN

MPUSTAT

42

P. C

D.

3.2. MODULE DESCRIPTIONS

Table 3.2: ERM Memory Map

buffer without being notified when the end-of-frame occurs. And as noted in the previous
section, the MDP must be able to verify the readiness of the FIFO to accept new data
before sending it.

The ERM consists of a single 22v10B PAL and a tri-state buffer, shown in figure 3.4.
ERMBUF provides isolation between the ErmBus and the EMI bus. ERMFSM, an FSM running
on the MDP clock, monitors the EMI for read attempts from addresses greater than Ox7ffff.
The FSM interprets these addresses according to the memory map listed in table 3.2. When
a read request is detected, the FSM enables two tri-state buffers - ERMBUF and a tri-state
buffer in the appropriate module - to drive the EMI bus during its three data cycles2.
ERMFSM relies on the FIFO module to prevent bus contention by disabling the external
DRAMs during these cycles.

The status signals provided by the FIFO and XLM modules are asynchronous with
respect to the MDP clock. It therefore behooves the MDP to read the status from these
modules several times in succession to verify signal stability.

Special care is put into reading values back from the MPU module - which provides
not status information, but data fetched from the Bt463. As explained in section 3.2.8,
the actual request for Bt463 data is initiated by an EMI write access through the FIFO
module. When the MPU module finally receives the request, it fetches the data and returns
it through the ERM.

Due to the delay that follows an MPU request, the MDP must poll the ERM's MpuStat
flag to determine when the Bt463 data has been fetched. ERMFSM asserts MpuStat once it
has received an MpuRdy signal from the MPU. The MDP should poll MpuStat using address
0x80000. But the MPU module itself needs to be notified when the data it is providing
has been read by the MDP, so that it can re-use its output buffers for any further data
requests. So once the MDP has detected MpuStat using address x80000, it should make

2The VC MDP must disable ECC error correction for proper operation.

Data
Address Bits Meaning

FIFO 0xd0000 0 Fifo OR
1 Fifo IR
2 TabSync
3 ForMpu

4 ForXlm

5 ForScm

XLM OxcOO0 0-3 TabCtr
MPU 0x80000 0-7 Word 0 from Bt463

or 12-19 Word 1 from Bt463
0x90000 24-31 Word 2 from Bt463

8 MpuStat

43

CHAPTER 3. VIDEO CONTROLLER

a final read from address 0x90000. Although the MDP will have already fetched the new
value along with MpuStat, only an access to 0x90000 causes ERMFSM to send an ErmAck back
to the MPU, freeing it for further processing. The separate addresses are needed to prevent
confusion in the handshaking protocol between MREAD and MPU.

3.2.5 XLM Module

Before a horizontal scan line can be displayed on the screen, each VRAM must be instructed
to perform a "row-transfer" to copy a row of pixels from its primary memory array to its
serial SAM port. This allows rapid, sequential access to the pixels via the SClk shift
clock signal. The particular row to transfer and the starting column within that row are
jointly called a XferAddr transfer address. It is the responsibility of the XferAddr Lookup
Module (XLM) to broadcast the row-transfer request and the 18-bit XferAddr to all VRAMs
during horizontal blanking periods.

Instead of fixing the relation between a row number and its XferAddr in hardware, a
RAM table allows arbitrary mapping. A single table contains 1024 18-bit entries, one entry
for every row of the highest supported resolution. Up to eight tables may be defined in
advance to provide eight logical frame buffers. An XLM write operation can change the
active table (frame buffer) at any time, but to ease the task of animation the tables can
be set to sequence automatically when the end-of-frame occurs. Alternatively, it is possible
to use a single table and simply overwrite its contents when necessary. There is more than
enough time between video frames to modify all 1024 entries in an XLM table.

Figure 3.5 is a block diagram of the XLM. The registers that accept data from the ADDR
and DATA FIFOs are shown on the left. From top to bottom in the middle of the figure
are the scan line counter, the active table counter, the valid table registers, and the XLM
controller. The SRAM is the large block on the right. In the upper right are shown two
flip-flops that are triggered by the horizontal and vertical blanking periods, respectively.
They ensure that the XLM controller notices these events, even though it may be busy at
the time they occur.

The XLM can execute three operations: an XLM write places a new XferAddr entry
into SRAM; an end-of-line update increments the scan line counter and broadcasts a new
XferAddr to the VRAMs; and an end-of-frame update increments the active table pointer.

XLM write

When the FIFO's ForXlm line is raised, XLMFSM asserts XlmACK, which simultaneously ACKs
the FIFO module and latches in 22 bits from the DATA FIFO and 13 bits from the ADDR
FIFO. XLMFSM maintains XlmACK until ForXm drops, and then decodes the data and
address words according to table 3.3.

If either the HHold or VHold flag is set, XLMFSM doesn't immediately perform the write.
It instead sets an internal "blocked" flag, which instructs it to process only Eol (end-of-
line) and Eof (end-of-frame) events. Once the blocked flag has been cleared by one of these
operations, the new data will be written. Thus, HHold and VHold prevent XLM changes
from taking place mid-line or mid-screen. If neither HHold nor VHOLD is high, the XLM
write commences immediately according to the TYPE of data being received.

44

3.2. MODULE DESCRIPTIONS 45

J

F112a of

Kc

I

I I
I I
I I
I i
I I
I I
I I

I IRN

I
I

XLMBUFF

2 x ABT823

1 ,-18 /OESram

PSNs

Figure 3.5: XLM Block Diagram

XlmAC

From
ADDR
FIFO
9:0

From
ADDR
FIFO
12:10

From
DATA
FIFO
9:0

From
DATA
FIFO
17:10

From
DATA
FIFO
31:28
For_X

Tabsy

2:10] A[9:0]
ble Line

2 x CY7C182
(8K x 9 SRAM)

1/0[17:0]

0 all-o all

11 PSNs

1

- - - ~ M ze R@....

'I

CHAPTER 3. VIDEO CONTROLLER

31 30 29 28 17 0

VH HH TYPE I unused] DATA I DATA word

VH VHold - If set, don't perform write until next vertical blanking period
HH HHold - If set, don't perform write until next horizontal blanking period

DATA The TYPE-specific data to be used
TYPE The type of data being specified:

00 Xfer Address Write DATA into SRAM location specified by ADDR bus
01 Valid Tables Set LVT register = DATA[2:0], FVT register = DATA[5:3]
11 Flags Set FLAGS register = DATA[2:0] (for future use)

12 10 9 0

I TABADDR I LINEADDR 1 ADDR word

3 upper
s cycled

bits specify one of eight tables. The active
between the FVT and the LVT register values.

10 bits specify one of 1024 scan lines. The active
unter is incremented at the end of each scan line.

Table 3.3: XLM Usage of Data and Address Bits From FIFO

* If the TYPE is 00, the 18 bits of DATA specify a XferAddr, and the 13 bits of ADDR
specify the scan line (lower 10 bits) and table number (upper 3 bits) that should
contain this XferAddr. The SRAM store is performed with the DrvAddr, DryData,
and WRSram control lines.

* If the TYPE is 01, the Last Valid Table (LVT) register is loaded from DATA[2:0]
and the First Valid Table (FVT) register is loaded from the DATA[5:3] by asserting
DrvData and LdVT. The registers are maintained in TABPAL, which also contains a
comparator that checks the active table counter against LVT.

* If the TYPE is 11, the lower 2 bits of DATA are stored in a 2-bit register in TABPAL
by asserting DryData and LdFlags. These flags are for "future use" and are currently
ignored by the XLM.

Once the FSM has processed the data according to its type, it loops back to wait for
another ForXlm, Eol, or Eof signal.

End-of-line update

If Eol goes high but Eof remains low, XLMFSM fetches an 18-bit XferAddr from SRAM and
instructs every VRAM in the PSN array to use it to perform a row-transfer. If Eof is also
high, the XLMFSM will perform an end-of-frame update before the end-of-line update.

l|

-- - -- - - - - -~~~~~~~~~~~~~~~

&

46

3.2. MODULE DESCRIPTIONS

The XferAddr value at the SRAM location pointed to by TABCTR and LINECTR is latched
into the XLMBUFF buffers by asserting DrvCtrs and OESram. Transfer is raised to advertise
a valid address on the broadcast bus and to request each of the PSN nodes to perform the
row-transfer. LineInc is then asserted to increment the LINECTR in preparation for the
next end-of-line update.

Next, if XLMFSM's internal "blocked" flag has been set, an XLM write is awaiting exe-
cution. Either HHold or VHold will be set; if HHold is set, XLM write is always performed
and the "blocked" flag is cleared; if VHold is set, XLM write is not performed unless Eof is
also high; if VHold is set but Eof isn't, XLMFSM re-enters the tight loop that checks only for
Eof or Eol.

If "blocked" hasn't been set, XLMFSM loops back to wait for another ForXlm, Eol, or
Eof. In all cases, ERes is asserted to clear the Eol (and possibly Eof) condition.

End-of-frame update

If Eof is detected, LINECTR and TABCTR are updated before performing the end-of-line
update (Eol will always be true when Eof is true). LINECTR is reset to zero by asserting
LineRes. If Tabsync is high, TABCTR is reset to the value in the FVT register by asserting
TabLd. Otherwise, TABCTR is compared against the value in the LVT register by checking
Eot. If Eot is high, TABCTR has reached the last valid table and is loaded with FVT.
Otherwise, TabInc is asserted to increment TABCTR by one.

An end-of-line update is then performed.

3.2.6 SCM Module

Design Considerations

The Shift Clock Module (SCM) generates the SClk signals used to sequence through the
pixels in VRAM. With two VRAM banks per PSN and a maximum of 16 PSNs per video
system, the SCM needs to generate and distribute up to 32 separate SClk signals.

The SClk signals do more than shift pixels out of the VRAMs; they determine the very
access patterns made into the PSN array and implicitly provide pixel bus arbitration. The
figure below shows that between every VRAM and its pixel bus is register/driver chip. SClk
is not only fed into the VRAM - it also latches the register and is used as the output enable
for the driver. So while the low-to-high transition of SClk transfers data from the VRAM
to the register, the data is not driven onto the pixel bus until SC1k next goes low (which
would only be in preparation for the next data transfer). In effect, a pipeline stage has been
formed.

e VRAM
'BANK

8C~k- ;32 SCk8
SI~~~Cl~~~~k~ Idle; another VRAM bank Pixel N+l

> REGISTER must drive pixel bus J transferred from
-_ -_ -_ -_ -_ N VRAM to Register

Pixel N Pixel N
DRIVER t ransferred from driven onto

32b VRAM to Register pixel bus
32

Pixel Bus

47

CHAPTER 3. VIDEO CONTROLLER

The SCM does not support completely arbitrary access patterns made into the set of
all VRAM banks. Since each PSN has two VRAM banks driving the same pixel channel, it
is pointless to enable both of them onto the channel simultaneously. The two SClks sent to
an active PSN are therefore asserted alternately, pulling data from the even VRAM bank
one cycle and the odd VRAM bank the next. Indeed, as discussed earlier in section 2.2.6,
the VRAM banks were created with this alternating access in mind.

At least four PSNs must contribute pixels to a scan line because precisely four pixels are
needed every LdClk cycle (LdClk is a clock running at one-quarter the true pixel rate; four
pixels are loaded into the video controller every LdClk cycle, and the video controller spreads
the pixels across the next four display columns using the true pixel clock). Therefore, in a
minimum configuration with four PSNs, every PSN must contribute to every scan line. But
when more PSNs are installed, the update rate of the display can be increased by allowing
more nodes to contribute to a single scan line. So the SCM is designed to use either four
or eight PSNs per scan line. If eight PSNs are used, four of them deliver pixels during
even-numbered LdClk cycles and the other four deliver pixels during odd-numbered LdClk
cycles.

It is important to distinguish the three levels of interleaving:

1. Interleaving between VRAM banks. Consecutive pixels from a given PSN are fetched
from alternating VRAM banks by interleaving its two SClk signals.

2. Interleaving between PSN nodes. Four pixels are driven simultaneously by four sepa-
rate PSNs during every LdClk cycle. The video controller ingests these pixels all at
once but then distributes them across the next four display columns; this is column
interleaving.

3. Interleaving between groups of PSN nodes. If eight PSNs are contributing to a scan
line, four of them provide pixels during even-numbered LdClk cycles and the other
four provide pixels during odd-numbered LdClk cycles.

If just four PSNs are contributing to a scan line, only the first two types of interleaving
occur. Figure 3.6 illustrates the SClk timing in this case. Shown are the separate SClk
signals that drive the two VRAM banks of a single PSN. These two banks alternately drive
the connected pixel channel every LdClk cycle. Because of the second form of interleaving
in the above list, the pixels fetched from the PSN as a whole supply columns 0, 4, 8, 12,
etc. Because of the first form of interleaving, bank A supplies columns 0, 8, 16, etc. and
bank B supplies columns 4, 12, 20, etc. All remaining columns are supplied by the other
three participating PSNs.

Since the two SClks shown are complements of each other, one might be tempted to use
the true and inverted versions of a single SClk supplied by the VC. Although inversion can
be accomplished by flipping the SClk ECL lines before sending them through the ECL-to-
TTL converter, this wouldn't reduce the VC logic needed to generate the SClks: the VC
must still support the one-of-eight PSN scan line mode.

Figure 3.7 shows the timing for scan lines with eight contributing PSNs. Now, the third
form of interleaving means that this PSN as a whole supplies columns 0, 8, 16, 24, etc. Of
these columns, bank A supplies 0, 16, 32, etc. and bank B supplies 8, 24, 40, etc. The other
seven contributing PSNs supply the remaining columns.

48

3.2. MODULE DESCRIPTIONS 49

FSM Cycle 0 -F----SM Cycle 1 I

SClkO
Bank A

SClkO
Bank B

I
P ix N /ix N /\PixAN+l)/PixBN+l /\PixAN+2/h.Pixel n|

Chane .. 1 f*t5!
VidVid Video Video Video Video

| Cycle 0 Cycle 1I Cycle 2 Cycle 3 Cycle 4
L

IColuCol C olumn 4 Column Colun 12 Col umn 1

DisplayrT -T y-yyy yyyy y-
Rows Oa la I2a 3a Ob lb 2- 3b Oa Ob

Display / \
Columns Node Bank

Figure 3.6: Shift Clock Timing for a One-Of-Four PSN

-- ----- FSM Cycle 0 ----- -'
I ~ ~ ~ ~ ~

SClkO I

Bank B

I~~ 1 {

Pixel A ~/Drivanby\ B h/'rivenbY\APixel ano t e another
Channel Pix N / \noe Pix N node Pix N+1

Video Video Video I Video I Video I
Cycle O0 Cycle I Cycle 2 Cycle 3 Cycle 4

I Column OJ-Column 4 Column 8 Column 12 Column 16

Displayr~7 7 7 7 7 7
Rows .0a1a.a3a6.

Display N B n
Columns Node Bank

Figure 3.7: Shift Clock Timing for a One-Of-Eight PSN

-

CHAPTER 3. VIDEO CONTROLLER

Although the same four or eight nodes are used for the entire scan line, other scan lines
need not use the same nodes. Like the XLM, the SCM uses an SRAM table to fetch the
configuration for the current scan line. Unlike the XLM, the SCM does not need to allow
up to 1024 unique configurations, one for every scan line; there aren't 1024 ways to access
(at most) 16 PSNs. So the SCM allows up to sixteen different configurations to be defined
during a single frame, and will sequence through each of them on consecutive scan lines.
The SCM wraps around to the first configuration when the last valid (LVL) configuration
has been reached, and will continue to cycle through the list for the entire video frame.
This list is allowed to have just a single entry if every scan line uses, the same PSNs.

In this context, the list of all valid configurations to be sequenced is called a "table." An
application may find it desirable to use different tables for different video frames. Separate
tables can be used to create logical frame buffers, using certain PSNs for one buffer and
other PSNs for the next 3. So the SCM provides space for up to eight tables (each with up to
sixteen configuration entries). The active table pointer can be incremented automatically
at the end-of-frame. "First Valid Table" and "Last Valid Table" registers specify the range
of tables to use; an identical protocol was discussed in the XLM section.

Figure 3.8 depicts the general structure of the SCM. The SRAM in the middle is shared
between two blocks clocked at different frequencies. ScmCtrl on the left, clocked by the
same 40 MHz FClk used by most of the VC modules, communicates with the FIFO. One of
its responsibilities is to await new SClk table data and write it into SRAM.

ScmCtrl is also the caretaker of the Go flag. Bad table entries can cause damaging bus
contention by driving more than one VRAM bank onto the same pixel bus at once. The
SCM cannot detect this conflict, but a special measure is taken to prevent contention due
to garbage in the SRAM following a power cycle: the SCM will only operate when the Go
flag has been set. Go gets cleared by a system reset or power-cycle, and must be explicitly
set by the J-Machine application (after it has initialized the SRAM with valid data).

When ScmCtrl sets Go at the request of an application, the SClkGen block on the
right proceeds to fetch data from SRAM to generate up to 32 SClk signals. To keep the
SClks synchronous with the Bt463 video controller, SClkGen needs to be clocked by LdClk.
To determine which SClks to assert, SClkGen uses that configuration indexed by the line
and table counters, which are updated during horizontal and vertical blanking periods
respectively. The TTL clocks generated by SClkGen are converted to pseudo-ECL logic
levels before being transmitted over twisted pairs to the individual VRAM banks.

ScmCtrl Implementation

The overall structure of ScmCtrl is similar to the XLM, and includes:

* Registers that accept data from the FIFO;

* An FSM that decodes the FIFO data. Table 3.4 describes how the DATA and ADDR
words are interpreted;

* Flip-flops triggered by the horizontal and vertical blanking periods;

3 in contrast, separate tables in the XLM allow certain portions of VRAM to be used for one logical buffer
and other portions for the next.

50

3.2. MODULE DESCRIPTIONS

.le

from F.

to E

--- ~ to
- to r . VRAK

ECLL--i banks

LdClk --- I

Figure 3.8: General Structure of SCM module

31 30 29 28 3 0

I VH HH TYPE unused DATA I DATA word

VH VHold - If set, don't perform write until next vertical blanking period
HH HHold - If set, don't perform write until next horizontal blanking period

DATA The TYPE-specific data to be used
TYPE The type of data being specified:

00 NUT Entry Write DATA[3:0] into SRAM location ADDR
01 Valid Tables Set registers LVT = DATA[2:0], FVT = DATA[5:3]
10 Last Valid Line Set LVL register = DATA[3:0]
11 Go Flag Set the Go flag equal to DATA bit 0.

11 9 8 5 4 0
l TABADDR I LINEADDR I NUTADDR I ADDR word

Table 3.4: SCM Usage of Data and Address Bits From FIFO

TABADDR These 3 upper bits specify one of eight tables. The active
table is cycled between the FVT and the LVT register values.

LINEADDR These 4 bits specify one of 16 scan lines. The active
line counter is cycled between 0 and the LVL register.

NUTADDR An index into the Node Usage Table for the given table and
line. The Node Usage Table contains 9 entries.

51

I

CHAPTER 3. VIDEO CONTROLLER

* PALs which implement the FVT and LVT registers and the Go flag. The PALs also
perform line and table counting similar to the way it is accomplished by the XLM.
One important difference is that the output enables of these counters are controlled
by the SClkGen FSM, not the ScmCtrl FSM. Handshaking takes place between the
two FSMs to arbitrate access to the SRAM and counters.

The complete schematics and PAL file listings for the ScmCtrl block appear in the
appendix; since it is very similar to the XLM logic, attention shall instead be turned to the
SClkGen block.

SClkGen Implementation

The individual SClk signals are best thought in terms of pairs, since each PSN requires two
of them for its two VRAM banks. Each of the SClk pairs is implemented as the lower two
state bits of a finite state machine that simply loops throughout the entire scan line. Before
the scan line begins, the FSMs (one for every PSN) are told how to behave for that line.
This "behavior" is determined by three flags:

1. An active flag. Unless this flag is set, the FSM remains idle for the entire scan line
and the following two flags are ignored.

2. An odd flag. Only applicable in 8PSN mode (below). If set, the initial state for the
FSM will be such that the associated PSN supplies pixels during odd-numbered LdClk
cycles. Otherwise, the PSN supplies pixels during even-numbered LdClk cycles.

3. An 8PSNflag. If set, the FSM will loop through the following state transition table:

Q2 Q1 Q0
0 0 1 (Initial state if odd is false)
0o o 0

0 i 0
1 0 0 (Initial state if odd is true)

If the 8PSN flag is clear, the FSM will loop through the shorter transition table:

Q2 Q1 QO
0 0 1 (Initial state)
0 1 0

Note that the last two state bits of an "active" FSM create the SClk patterns shown
earlier in figures 3.7 and 3.6.

A "Node Usage Table" in SRAM contains the above three flags for every PSN in the
system. The table consists of sixteen 2-bit entries and a 1-bit flag using the following format:

3 2 1 0 +- bit
ConfigN01 Co figN00
ConfigN02 ConfigN03

......
ConfigN15 ConfigN14

18PSN

Word 0
Word 1

Word 7
Word 8

52

I

3.2. MODULE DESCRIPTIONS 53

Each ConfigNxx field in the table corresponds to a different PSN. The high and low bits
of the field specify the active and odd flags, respectively. The global 8PSN flag at the end
of the table is used by all of the FSMs.

In 8PSNmode, exactly eight of the 16 entries should have their active flag set. Of those
eight, four should also have their odd flag set. If the 8PSN flag is not set, then exactly four
of the 16 entries should have their active flag set, and the odd flags are ignored.

Before concluding this section, some examples may help to clarify SClk generation:

1. In a system with four PSNs, there is only one valid SCM table because all four PSNs
are needed every LdClk cycle of each scan line:

WO: 1 0 1 0 Nodes 1 and O will be active

Wi: 1 0 1 0 Nodes 3 and 2 will be active
W2: 0 0 0 0 All other nodes are inactive...
W3: 0 0 0 0
W4: 0 0 0 0
W5: 0 0 0 0
W6: 0 0 0 0
W7: 0 0 0 0
W8: 0 0 0 0 We're not in8PSNmode

This table produces the following access patterns into the VRAM banks:

Oa la 2a 3a Ob lb 2b 3b Oa la 2a 3a..

LdClk 0 LdClk 1 LdClk 2

which uses PSN interleaving within a LdClk cycle and VRAM bank interleaving be-
tween LdClk cycles.

2. In a full video system with 16 PSNs, numerous SCM tables can be defined. The
following table retrieves pixels from eight of the 16 PSNs:

WO: 1 0 1 0 Nodes 1 and 0 active during even LdClks
WI1: 1 0 1 0 Nodes 3 and 2 active during even LdClks
W2: 1 1 1 1 Nodes 5 and 4 active during odd LdClks

W3: 1 1 1 1 Nodes 7 and 6 active during odd LdClks
W4: 0 0 0 0 All other nodes are inactive...
W5: 0 0 0 0
W6: 0 0 0 0
W7: 0 0 0 0
W8: 0 0 0 1 We are in 8PSN mode

This table produces the following access patterns into the VRAM banks:

pa la 2a 3a 4a 5a 6a 7a Ob lb 2b 3b 4b 5b 6b 7b Oa la 2a 3a.
LdClk 0 LdClk 1 LdClk 2 LdClk 3 LdClk 4

which interleaves at three levels: the PSNs within a LdClk cycle; groups of PSNs
between LdClk cycles; and VRAM banks between every other LdClk cycle.

CHAPTER 3. VIDEO CONTROLLER

I I I I
I I I I

SCM State
with delayed

LdClk

SClkA

BufOutA

Bt463
ZdClk

Figure 3.9: Preventing LdClk Timing Violations with a Delay Line

3.2.7 TIM Module

The various timing signals used throughout the video system are supplied by the timing
module (TIM). As described in this section, the logic required to generate these signals
varies from a simple, self-contained support chip to a more complex FSM with counters and
a PROM table.

VidClk and LdClk

The VidClk video clock runs at the pixel rate of 111.5 MHz. The only component that
requires the full pixel rate is the Bt463 video controller. However, the ECL-level VidClk
passes through a Brooktree Bt438 support chip on its way to the Bt463.

The Bt438 divides the VidClk frequency by four to produce a TTL-level LdClk signal
that instructs the Bt463 when to accept four new pixel values. The Bt463 requires both
VidClk and LdClk to perform 4:1 pixel multiplexing.

LdClk as delivered to SCM

The LdClk signal delivered to the SCM module is used to generate the SClk signals sent
to the VRAM banks. It is almost identical to the LdClk delivered to the Bt463; the only
difference is that it is disabled during blanking periods to give the VRAM an opportunity to

54

3.2. MODULE DESCRIPTIONS

perform row-transfers; the VRAM specifications do not allow an active SClk during these
operations.

The Bt438 actually produces two versions of LdClk. A version that is always active is
sent to the Bt463. Another version that can be disabled is sent to the SCM. The Blank
signal described below is used to disable this version of LdClk.

The upper part of the figure 3.9 shows a timing violation that would occur if we were
to allow LdClk to directly clock the SClk FSMs. The edges of LdClk and SClk would
nearly align, which would be unacceptable since SClk is also used as an output enable onto
the pixel bus. The hold-time following a rising Bt463 LdClk would not be met. Thus,
LdClk is passed through a tapped-delay line before being used by the SClk FSMs. This
programmable delay, with a nominal delay of one-half the LdClk period, pushes the output-
enable periods further into the next LdClk cycle. As shown in the bottom part of the figure,
this allows the hold-time to be met.

Blanking and Sync signals

The Bt463 requires composite Blank and Sync TTL inputs so that it can generate the
analog video synchronization signals needed by the monitor. In addition, various modules
in the VC need to be alerted when horizontal blanking (HB-k) and vertical blanking (VB-k)
periods begin.

The TIM module generates these four signals with a 13-state FSM, two 16-bit counters,
and a small table in PROM. At various stages in the FSM, the table entries are transferred
from the PROM to the counters, which then count either LdClk cycles or HBlk cycles (where
HBlk itself is generated by the FSM). Those entries in the following table with units of LdClk
cycles are based on a 27.875 MHz LdClk (derived from a 111.5 MHz VidClk).

Cycles Time
Parameter Value Counted (Us) Description

HFrontPorch 12 LdClk 0.466 Blanking time between end of scan
line and beginning of horiz sync

HSync 38 LdClk 1.40 Duration of horizontal sync pulse
HBackPorch 54 LdClk 1.97 Blanking time between end of horiz

sync and active scan line
HActive 339 LdClk 12.20 Duration of active scan line

HLinesActive 897 HBlk - Number of active horizontal scan lines
HLinesInVFP 6 HBlk - Number of off-screen scan lines at

bottom of display
HLinesInVBP 31 HBlk - Number of off-screen scan lines at

top of display
HActiveInVBlk 411 LdClk 14.78 Time between horiz sync serrations

during vertical blanking
HBPaVBP 68 LdClk 2.48 Length of horiz sync serrations

during vertical blanking
HLinesInVS 4 HBlk - Number of horiz sync serrations

during vertical sync

.

55

CHAPTER 3. VIDEO CONTROLLER

31 30 29 28 27 26 25 24 23 16 15 8 7 0

VH HH unused RW WC Cl,Co I Word2 IWordl WordO I

VH VHold - If set, don't perform access until next vertical blanking
HH HHold - If set, don't perform access until next horiz blanking
RW Selects either read access (1) or write access (0)
WC Word Count - Access is a long (1) or short (0)

C1,C0 Control lines fed directly to Bt463; help determine MPU address
WordO First byte to write in a "long" access

(Only byte to write in a "short" access)
Wordi Second byte to write in a "long" access
Word2 Last byte to write in a "long" access

Table 3.5: MPU Usage of Data Bits From FIFO

3.2.8 MPU Module

The MPU module allows the application to read from or write to the MPU interface of the
Bt463 video controller. This provides access to things such as the Bt463 control registers
and color palettes. Some of these locations are read-only, but most of them are read/write
and require initialization to properly set up the Bt463.

A potential source of confusion is the manner in which MPU reads are performed by
the MDP. The only way to get information (including a request for return data) from the
MDP to the MPU is through the FIFO, but the FIFO only accepts data when the MDP
writes to its EMI. So both MPU reads and writes require the MDP to write a value to some
memory-mapped address. A flag within the data word itself indicates whether the MPU
access should be handled as a read or write.

Figure 3.10 shows the organization of the MPU module. As with most VC modules, some
registers (on the left) accept data from the FIFO under the control of an FSM (bottom).
Another set of registers (right) provide configuration data read out of the Bt463 to the
ERM. The MPU interface of the Bt463 is shown in the middle.

The complete Bt463 MPU interface is detailed in the Brooktree data sheets. Its data
bus is only eight bits wide, but some of the configuration entries are 24 bits wide. Thus,
depending on the specific location, reads and writes require either one cycle or three cycles.
A Word Count (WC) flag in the data sent by the MDP informs the MPUFSM how many cycles
the access requires, and should be consistent with what the Bt463 expects. The R/W input
selects either a read or write, and is fed directly from the data word coming from the FIFO.

Table 3.5 details how MPUFSM interprets the FIFO data. Note that unlike other modules,
none of the ADDR FIFO bits are used. The Bt463 has some internal counters which, along
with the C1 and CO lines, specify the address. These counters automatically increment after
each access, and can be set to specific values through the data lines.

If the MPU access is a read, the appropriate data will be loaded by this module into
registers in the ERM module. After the read is complete, the MPU module signals the ERM

56

3.2. MODULE DESCRIPTIONS 57

DATAO
K"UYU

MpuA

Frox
DATJ
FIF(
7:0

From
DATA
FIFO
15:8

From
DATA
FIFO
23:16

From
DATA
FIFO
31:24

ForMpu

to
ERM

to FIFO
buffers

to output
buffers

to Bt463
to ERM

Figure 3.10: MPU Block Diagram

>MX_'>EYUm.

CHAPTER 3. VIDEO CONTROLLER

module so that it can in turn provide the data to the MDP. This protocol was described
earlier in section 2.2.4.

3.2.9 Bt463

All of the modules described in this chapter have a single unified purpose: to provide control,
timing, and pixels for the Bt463 video controller. The Brooktree part was selected because
it met two criteria:

* It is configurable. Many RAMDACs have rigid behavior and rely on copious support
logic to provide such features as variable colormaps and plane depth. The Bt463, on
the other hand, provides internal colormaps and pixel depth that can vary by pixel.
These two features can be combined to compress multiple pixels into a single 32-bit
word; as shown in the next chapter, this compression can be used to increase frame
buffer storage and bandwidth.

* It provides 4:1 multiplexing. This scheme requires four pixels to be presented at the
same time, but quadruples the period length between fetches. This allows most of
the PSN and VC modules to operate at one-quarter the pixel rate, a reasonable speed
for TTL logic. If the modules had been required to work at the full 111.5 MHz, the
system would require a faster logic family and delicate timing analysis.

The examples in the next chapter demonstrate the flexibility provided by the Bt463
video controller, and the J-Machine video system as a whole.

3.3 Fabrication

Only a single fabrication run of the VC board could be made, but few bug fixes were
required. The most visible modification is the addition of a fourth BNC connector next to
the red, green, and blue outputs of the Bt463. This connector makes the composite Sync
signal (generated by the TIM module) available to the display. The initial design did not
include this connector because the Bt463 has the ability to superimpose the Sync signal
on top of the green output. Many newer monitors support the "sync on green" standard,
but the funds for such a monitor became unavailable. As a result, the system uses an older
monitor that requires a separate Sync signal.

Some very specific Bt463 layout recommendations from Brooktree were implemented.
For instance, the board fabricator was asked to control the impedance between each of
the six signal layers and the power planes to an optimal 75Q. In addition, two "fingers"
delineate the area between the Bt463 and the video output connectors; these fingers do not
have any copper in their signal and power layers. They prevent current loops on the board
from affecting the video outputs.

Finally, the usual precautions were taken with the clock signals, hand-routing them and
providing termination at the end of long runs. The complementary outputs of the various
ECL clocks were run parallel to each other to improve their immunity to EMI interference.

58

Chapter 4

Configuring the Video System

One machine can do the work of fifty ordinary men.
No machine can do the work of one extraordinary man.

-ELBERT GREEN HUBBARD

It is the quality rather than the quantity that matters.
- Lucius ANNAEUS SENECA (4 BC - AD 65)

The J-Machine video system supports a variety of configurations. Some of the parame-
ters that establish these configurations need to be changed only when more PSNs are added
or a different monitor is used, so they are determined by jumpers and PROMs. Others
affect how the application interacts with the system and need to be changed frequently.
These are set with software routines that modify various registers and RAM tables.

This chapter presents some sample configurations of the video system. It describes
the parameters that can be changed and the effects they produce. It also examines some
methods useful in a minimum-sized system to compensate for its smaller bandwidth and
storage capacity. This chapter makes liberal use of the terms and concepts discussed in
Chapters 2 and 3.

4.1 Number of Pixel Storage Nodes

Up to sixteen PSNs may be installed to increase the aggregate network bandwidth be-
tween the J-Machine and video system. Sufficiently parallel applications can use this larger
bandwidth to achieve faster updates and smoother animation. The effects of scaling were
illustrated earlier in table 2.1. It is not necessary to connect the same number of PSNs to
each pixel channel. The VC requires only that at least one PSN connect to each of the four
channels.

Two issues should be addressed before installing more than the minimum requirement
of four PSNs:

1. Bandwidth. Although the maximum frame buffer bandwidth increases with PSN
count, it will go unused unless the rendering application has a sufficient degree of
parallelism. If only a handful of J-Machine nodes are producing pixel data for a full
screen animation, the refresh rate is dominated by computation time, not bandwidth.

59

CHAPTER 4. CONFIGURING THE VIDEO SYSTEM

2. Storage capacity. Improvements in bandwidth cannot be made without an increase
in VRAM storage capacity, regardless of the application's desire or ability to use this
expensive extra storage.

The second point assumes that one doesn't build socket adapters that allow the 256K-
by-4-bit VRAMs to be replaced with less costly VRAMs with a smaller address range. Al-
ternatively, if one is willing to dispense with the flexibility provided by 32-bit words, certain
VRAM sockets may be left empty. The value of maintaining 32-bit words is demonstrated
later in this chapter.

4.2 Display Resolution

The display resolution of the video system is fixed by the frequency of the pixel clock. This
frequency is related to the horizontal resolution (RH), vertical resolution (Rv), and monitor
refresh rate (Nfps) by

f RHf=
Nfp..Rv - (7 x 10-6)

where N 1 .Rv is the time allowed per scan line if Rv scan lines must fit within a single

screen refresh period (N-) Of this time, the RS-343 synchronization signals consume 7#s,

with the remaining time available to display RH columns.
If the pixel clock is changed, so must the TIM module's PROM table entries1 listed

earlier in section 3.2.7. Although the Bt463 is compatible with any pixel clock below
135MHz, an arbitrarily slow pixel clock cannot be used because TIM generates its signals by
counting cycles of LdClk, whose period is one-quarter that of the pixel clock. If a very slow
pixel clock is used, the granularity of the counting process erodes and the synchronization
signals fall out of tolerance.

Some monitors look for synchronization signals superimposed on the green video output,
while others require a separate sync signal. Although the J-Machine video system was
intended for use with the first type of monitor, a SYNC connector was added to support the
second type. The Bt463 supports both types, selectable with a control register.

The resolution of the monitor currently used by the video system is 1280 columns by
900 rows.

4.3 Starting an Application
This section lists some start-up activities required by a simple J-Machine video application.
An interface for each of these activities is provided by a C library call.

'The TIM PROM table is large enough to hold 32 separate tables; the active table is specified by jumper
pins.

60

4.3. STARTING AN APPLICATION

1. Initializing the Bt463. These Bt463 registers, accessible through the MPU module,
must always be set when an application starts up:

CommandReg0 0x40 Select 4:1 multiplexing
CommandReg1 OxOO0 Use upper 4 pixel bits as overlay planes
CommandReg2 OxO0O No sync on green, no IRE blanking pedestal
MaskRegisters OxFF Enable all bits of pixel word

2. Initializing the window types. The Bt463 requires that each pixel word be tagged with
a 4-bit value called a "window type" (WT). A set of sixteen registers in the Bt463
specify how the word possessing each WT should be interpreted. The WT determines
the following attributes of the pixel:

* Display mode. The display mode can either be true-color (where the R,G, and
B values are contained in the pixel itself) or pseudo-color (where the entire pixel
is treated as a colormap index from which to retrieve the R,G, and B values).

* Number of planes. In true-color mode, this corresponds to the number of bits in
each R,G, and B field (from 0 to 8). In pseudo-color mode, it corresponds to the
number of bits in the colormap index number (from 0 to 9).

* Starting position within the data word.

* Starting address of colormap. The colormaps, discussed below, are contained in
the Bt463.

It should be emphasized that the WT tag allows these characteristics to be specified
on a pixel-by-pixel basis.

A simple application using 24-bit true-color pixels might write (ode=TrueColor,
NumbPlanes=8, Start=O, Colormap=O) into WT register zero and then ensure that
all pixels ae tagged with WT=0.

3. Initializing the colormaps. Both true-color and pseudo-color display modes use col-
ormaps to translate pixels into values that drive the R, G, and B digital-to-analog
converters:

* In true-color mode, three independent colormaps are indexed by the three pixel
fields. A simple application might simply load each 256-entry colormap with
values from 0 to 255. An advantage gained by using true-color mode is that all
224 available colors may be specified by a single 24-bit word.

* In pseudo-color mode, a single colormap is indexed to determine the values for
all three DACs. When an application needs to display a pixel with a new color, it
allocates a colormap entry and uses its index as the pixel's value. An advantage
gained by using pseudo-color mode is that fewer bits are necessary to specify a
color.

Figure 4.1 illustrates the use of colormaps in true-color and pseudo-color modes to
produce the same color. The same set of colors is accessible to both modes, but

61

CHAPTER 4. CONFIGURING THE VIDEO SYSTEM

True-colo

/
/

Red
Colonnap

r mode:

-- - - _-- I.. FRW
I m Green DAC

Colormap DE DO

//I / .
' iI/

I II I
. I I

I I
Pixel DE 86

Pseudo-color mode:

PIxel 07

F-Red R

{ I | > aocI

07 DO s0 se o

Single Colo~ap
Single C lr a

Figure 4.1: Displaying the Same Color Using True-Color and Pseudo-color Modes

in pseudo-color mode only 512 of these colors may be used at once. Note that the
true-color example adjusts the values of the R, G, and B fields before sending them
to the DACs. The application has set the colormap to implement a technique called
"gamma correction," which compensates for non-linearities in the color response of
the monitor, as well as non-linearities in intensity as perceived by the human eye.

Multiple colormaps can exist at once within the Bt463, which is why the WT must
specify the starting address of the pixel's colormap.

The next two sections describe the steps that are taken after the initialization in this
section has been performed.

4.4 Initializing the XLM

At least one XLM table must be initialized to specify the segment of VRAM to display.
The table contains a XferAddr entry for every scan line of the display. These examples all
assume a display resolution of 1280x900, so the last table index used by the XLM is 899.

62

G

a

19

4.4. INITIALIZING THE XLM

4.4.1 Single-line frame buffer

A very simple XLM table has all of its entries set to the same XferAddr, for example:

000: $0
001: $0
002: $0

898: $0
899: $0

Here, row zero of VRAM is used to produce every single scan line. Though not not very
practical except for screen fills, this type of table proved useful during testing. One of the
first images produced by the video system was a color test pattern; since the pattern simply
contained vertical bands of color, there was no need to make any line look different from
the others.

4.4.2 Single-screen frame buffer

Most of the time, an application would like to allow each scan line to look different from
the rest, so the XferAddr entries will differ. Assuming that four PSNs are used per scan
line, a useful XLM table is:

000: $0
001: $200
002: $400
003: $600

898: $70400
899: $70600

Notice that XferAddr increases by 0x200 (512 decimal) on successive scan lines. With 1280
columns, the four PSNs are each responsible for providing 320 pixels per scan line, so why
increment XferAddr by 512? The answer to this question lies in the VRAM architecture.

The VRAM segments XferAddr into two parts: the upper nine bits specify which of the
VRAM's 512 rows to transfer, and the lower nine bits specify the starting column of the
shift register's SAM pointer. Once the SAM pointer reaches the end of the row, it wraps
around to the first column of the same row, not the next row. Suppose the second entry
in the table above were instead set to 0x140 (320 decimal), which is actually located in
the first row of VRAM. Then, only the first (512- 320) x 4 =768 columns of the second
line would differ from the first. The remaining portion of the second line would begin to
duplicate the first line.

Figure 4.2 illustrates the wasted VRAM in this simple configuration. The last 192 words
of each VRAM bank become unusable for the first 900 rows. The remaining 1024 - 900 =124
rows supply a small amount of off-screen storage, but not enough to fill a screen. Methods
to reduce the wasted VRAM are explored later in this chapter.

63

CHAPTER 4. CONFIGURING THE VIDEO SYSTEM

320 active worda
320 active words

320 active word
320 active word

|Z 320 ative words

70800 52t p; ntially ativ ad
$70AO 320 potentially active ord

$70DO 320 potentially active word

!

Figure 4.2: Single-buffer VRAM Usage with Four PSNs per Scan Line

Frame Buffer
I

Frame Buffer
2

Frame Buffer I
I

. I _ I _

160 tiv word. 160 active wor. 160 active d

160 active words. 160 active word. 160 active o

160 active words 160 active words 160 active wrds

160 active word 160 tive word. 160 active word.

160 aotive wod. 160 activ ward I 160 active wordi

160 potentially 160 potetially 160 potetially
activ active Wrds tv words

160 potetially 160 potentially 160 potentially
active word activ wordl active ords

160 potetially 160 potentially 160 pottially
ative word. active wod active r

Figure 4.3: Multi-buffer VRAM Usage with Eight PSNs per Scan Line

64

$0

$200
$400

$600

$70600

900
active
lines

124
off-screen

lines

900
active
lines

124
off-screen

lines

$0

$200

$400

$600

$70600

$70800

$70A00

$70D00o

I

4.5. INITIALIZING THE SCM

4.4.3 Multiple-screen frame buffer

Unless the type of pixel compaction described later is used, a system with four PSNs
has only enough storage for the single buffer just described. However, if eight PSNs are
installed, the following tables can be used to specify three separate frame buffers:

000: $0 000: $AO 000: $140

001: $200 001: $2A0 001: $340

002: $400 002: $4A0 002: $540

003: $600 003: $6A0 003: $740

898: $70400 898: $704A 898: $70540
898: $70400 898: $704A0 898: $70540
899: $70600 899: $706A0 899: $70740

Figure 4.3 shows only 32 words per VRAM row are unusable in 8PSN mode, as compared
with the 192 words in 4PSNmode. Note that the amount of wasted VRAM depends on both
the horizontal screen resolution RH and the number of PSNs per scan line. The fraction of
wasted VRAM in 8PSN mode is:

512 mod z8
512

4.5 Initializing the SCM

With only four PSNs, the installed video system must configure the SCM table as shown
on page 53; all PSNs will drive during all LdClk cycles, and the pixels will be pulled from
alternating VRAM banks.

If multiple frame buffers are desired in a video system with more than four PSNs, several
models can be used:

1. Each PSN contains a portion of all buffers. This is accomplished with appropriate
XLM tables as described in the last section.

2. Each PSN is dedicated to a subset of the buffers. Multiple SCM tables are needed for
this approach, which holds the most benefit for full 16-PSN systems.

3. A combination of 1 and 2.

The first approach is best suited to applications that have even load distribution through-
out the J-Machine processor array; the network traffic to the video system would then be
evenly distributed as well. The second approach can be used by applications that divide
the processor array into upper and lower portions. The two sub-arrays would then send
their messages exclusively to the upper and lower groups of PSN boards, respectively.

4.6 Classes of Pixel Messages

Once the necessary registers and tables have been initialized, the application can begin to
write pixels to the frame buffer. The J-Machine messages that encapsulate these pixels
are handled by drivers that are loaded into the PSN MDPs. The messages fall into three
classes, each with different costs and benefits.

65

CHAPTER 4. CONFIGURING THE VIDEO SYSTEM

4.6.1 Address/Pixel List

An Address/Pixel List (APL) contains a list of pixel values and the explicit VRAM addresses
to which those pixels should be written. For example, the following APL sent to one of the
PSNs would produce a 4-pixel long vertical line in the upper left region of the display:

Ox000: $de
0x200: $de
0x400: $de
0x600: $de

The precise column of the line depends on which PSN receives the message and how the
XLM was initialized. The precise color of the line depends on the colormap tables and
on the display mode of the pixel. When the PSN receives this message, it simply uses
each address as an offset from 0x80000 (the memory-mapped address for the beginning of
VRAM) and copies each pixel until the list is exhausted. The addresses of this vertical line
increment in steps of 0x200 for reasons discussed earlier in section 4.4.2.

Due to the column-wise interleaving of PSNs, a continuous horizontal line requires that
APL messages be sent to all four (or eight) contributing PSNs. If messages were sent to
only one PSN, only every fourth (or eighth) column would be drawn. Assuming that the
SCM is in 4PSN mode, the following APL sent to all four PSNs produces a 12-pixel wide
horizontal line:

OxOOO: $de
0x00I: $de
0x002: $de
0x003: $de

Here the addresses only increment in steps of one, but the corresponding columns are
implicitly incrementing in steps of four.

4.6.2 Raster Operations

A raster operation (ROP) is a primitive graphic operation performed on the frame buffer
data. The supported operations and the contents of their corresponding ROP messages are:

ROP I Message contents

Draw Points (x1,yl,pixl), (2, y2,pix 2), ...
Draw HPoints x, y,pixl, pix2, pix 3, ...

Increments x between pixels
Draw VPoints Same as above, but increments y between pixels
Draw HLines (x1, Yl,pi 1, lenl), (2 , Y2 ,piX2 ,/en 2),

Increments x by one for len iterations
Draw VLines Same as above, but increments y

These operations were selected to form the basis of a rudimentary graphics library. They
serve as templates for more elaborate routines that can handle objects such as arbitrary
lines, triangles, and other polygons.

66

4.6. CLASSES OF PIXEL MESSAGES

Just as with APL messages, continuous horizontal lines can only be drawn by sending
the same ROP to all four (or eight) PSNs contributing to a scan line. Presently, the line
"length" specified in Draw Hlines is treated as an iteration count, so the corresponding line
is four times as long.

ROPs do not contain actual VRAM addresses; vertices are instead specified using the
display (x, y) coordinate system. To perform coordinate-to-address translation, the PSNs
need to know the contents of the XLM and SCM tables. In principle, the driver can
accommodate any XLM and SCM table, but for testing purposes the driver assumes the
tables have been initialized to particular values2. The driver also assumes 24-bit pixels are
being used; as described later in this chapter, this need not be the case.

The key advantages to using ROPs instead of APLs are:

1. Simpler interface. The library provides an abstraction that hides the coordinate-to-
address translation from the application.

2. Smaller messages. The messages sent to the PSNs are generally much smaller than
APLs, causing less congestion of the network and buffers.

On the other hand, several important drawbacks of ROPs are:

1. Slower pixel updates. The MDPs on the PSNs must now do more than simply copy
data; they must supply varying degrees of computation. Although the routines listed
above are not very compute-intensive, every cycle "wasted" on computation cuts into
the pixel update rate.

2. Fixed format. As noted earlier, the present driver assumes a fixed format for the XLM,
SCM, and WT tables. Although a driver can be written to accommodate dynamic
changes to these tables, this implies that additional parameters would need to be
fetched for every ROP (to determine the current configuration). This would exacer-
bate the effects of item (1). A compromise solution would have different drivers com-
piled for different table configurations; the appropriate driver would then be loaded
into the PSNs during application set-up.

A very robust application will assume all responsibility for coordinate-to-address trans-
lation itself; it will distribute the computation load for ROP processing across its own nodes
and use the PSN MDPs simply to copy APL messages into VRAM. This load distribution
would help combat a major weakness of the MDP: its lack of native floating-point support.

Less demanding applications can capitalize on the abstraction offered by PSN ROP
processing, but at the expense of the pixel update rate.

4.6.3 Proxy Messages

The dimension-ordered J-Machine network routes messages first in the x dimension, then
in y, and finally in z. If the PSNs boards were part of the J-Machine cube, this routing
algorithm would be sufficient. However, the boards actually jut out from the cube along

2Specifically, it assumes the XLM entries are OxO0000, x00200, x00400, etc. and that the SCM is in
4PSN mode.

67

CHAPTER 4. CONFIGURING THE VIDEO SYSTEM

the y dimension, and they do not form z-dimension connections with their neighboring
peripheral boards. As a result, J-Machine messages can only reach a PSN if they originate
from MDPs on the same z-plane as that PSN. Messages generated on any other plane will
reach the appropriate x and y coordinates, but never reach the z destination.

As a workaround, one or more "proxy" J-Machine nodes are allocated on each z plane
with a PSN board attached. A node on another plane can send its message directly to the
proxy node, which then re-sends the message to the PSN. A proxy message is not a distinct
class of pixel message; rather, it is an encapsulation of an APL, or ROP message.

Proxy nodes add a small latency to the time required for pixel message delivery. But
as long as there are at least as many proxies as there are PSNs, they do not significantly
reduce the bandwidth to the peripheral boards. Care must be taken, however, to evenly
distribute the load of proxy messages among the proxy nodes.

A proxy node is also needed to deliver messages to the Video Controller board. However,
this proxy is also needed by the VC MDP to return messages to the application.

4.7 Increasing Effective Storage

A video system with four PSNs has only enough VRAM storage for 1.12 frame buffers using
24-bit pixels. This section describes a way to gain effective storage at the expense of color
range.

Section 4.3 introduced the concept of window types. A 4-bit WT attached to each 24-bit
data word determines how that data word is interpreted, including the size (NPlanes) and
offset (Start) of the pixel value. Normally a true-color application 3 would specify 24-bit
pixels so as to access all 16 million colors available. But if it doesn't actually require such a
large color range, the size of the pixels can be reduced and multiple pixels can be stored in
the same data word. Each pixel would belong to a different frame buffer, and the application
would select the active frame buffer by modifying the Start field of the WT register.

Figure 4.4 demonstrates how a four-PSN system can use this method to achieve two
12-bit deep frame buffers. As indicated in the table below, this method can be used to
achieve as many as 48 frame buffers in a four-PSN system; only two colors are allowed in
this extreme case.

Pixel Max number Effective
Size of colors storage

24 16 million 2 MPixels

12 4 thousand 4 MPixels

1 2 48 MPixels

4.8 Hardware Scrolling and Stretching

The XLM provides a convenient method to perform scrolling of an image without the need
to shuffle pixels in and out of VRAM. Vertical scrolling is easily accomplished by rotating

3The methods in this section also apply to pseudo-color applications.

68

4.9. STEREO MONITORS

WT

4
Red

4

II Green I

8

Frame Buffer
0

Red [Green Blue

4 4 4

Blue |

8

I Frame

Red Gr4 '

Buf
1

47
I

ffer

Blue
4

Figure 4.4: Increasing Effective Storage through Pixel Compaction

Frame 1
Xfor
Addr

$200

$400

$600

Frame 2
Xfer
Addr

$400

$600

$800

Frame 3

Figure 4.5: Using the XLM to Scroll an Image Vertically

the entries in the XLM table. Figure 4.5 depicts three successive video frames and the XLM
tables used to scroll the image upward one row per frame.

Limited horizontal scrolling is also available. Here, the "wasted" VRAM discussed
earlier provides a buffer between the left and right edges of the pixel row. The width of
this buffer determines the degree of horizontal scrolling available before the image begins
to spill across multiple scan lines.

The XLM can also be used to stretch the image vertically. Here, two or more successive
table entries would contain the same XferAddr. However, due to the fixed nature of SC1k
generation, horizontal stretching is not available.

4.9 Stereo Monitors

Two independent video systems, each with their own VC and array of PSNs, can be com-
bined within the J-Machine to generate three-dimensional images on stereo monitors. To
couple the video systems, their VC boards must be synchronized so that one provides im-
ages during even frames and the other provides images during odd frames. An observer
wears glasses which alternately block the left and right eyes.

Existing jumpers and external connectors can be used accommodate this behavior. In
stereo mode, the two VC boards are configured differently:

* One VC is the master; as usual, its Bt438 derives the quarter-rate LdClk from the

Zfer
Addr

$000

$200
$400

a

69

!l

- -_ -

70 CHAPTER 4. CONFIGURING THE VIDEO SYSTEM

PixClk oscillator and sends it to the Bt463 and TIM module. But it also passes the
signal through a TTL-to-ECL converter, out onto a ribbon cable, and over to the
other VC. It sends its local Reset signal to the other VC as well.

* The other VC is the slave; although it still requires a local PixClk oscillator, it uses
the master's LdClk as its own LdClk. It also feeds the master's Reset line to its TIM
FSM.

The goal of sharing a single LdClk and TIM Reset signal is to align the HBLK, VBLK,
and SYNC signals produced by TIM. This insures that the scan lines and frames are in sync.
Note that because the slave's LdClk is not directly derived from its PixClk, the edges of
the two will not necessarily be aligned. This could potentially wreak havoc with a video
controller, which uses both signals. However, the Bt463 has an internal phase-locked loop
that resolves any delay between their edges; as long as the periods of PixClk and LdClk do
not vary, the PLL will align the signal edges.

Chapter 5

Conclusion

What lies behind us and what lies before us are tiny matters
compared to what lies within us.

-RALPH WALDO EMERSON

We shall not cease from exploration; and the end
of all our exploring will be to arrive where we started

and to know the place for the first time.
- T.S. ELLIOT in Little Gidding

5.1 Summary

This thesis described the Distributed Frame Buffer, a video system built for the J-Machine
concurrent computer. The DFB provides a high-bandwidth data path from the J-Machine
to video memory. The combination of this data path and the aggregate processing power of
the J-Machine provides a valuable research tool into high-performance rendering algorithms.

Modern graphics applications such as virtual reality require tremendous processing
power to transform scenes according to some observer's viewpoint. After the objects have
been transformed, additional processing is needed to scan-convert the objects into pixels.
Many existing systems try to satisfy the demands of these two processing stages with a
mixture of parallel architecture and hardware pipelines. Unfortunately, such systems must
make assumptions about the specific rendering algorithm being used. They are optimized
to perform very well if these assumptions are correct, but suffer significantly if they are not.

The J-Machine and its DFB provide a more flexible approach. Rather than fixing the
rendering algorithm in hardware, the J-Machine computing nodes can implement the algo-
rithm in software. A unique trait of the J-Machine is its built-in support for fine-grain tasks
and data objects. This support distinguishes the J-Machine from other massively-parallel
computers and makes it much more suited to graphics-oriented distributed algorithms. Since
many algorithms also contain operations that must be serialized, the J-Machine nodes can
be organized into a pipeline. The number of nodes allocated to each stage of the pipeline
can be modified dynamically to meet varying demands. The DFB is distributed to avoid
the bottleneck of a single video bus. It is also scalable, allowing a tradeoff between price

71

CHAPTER 5. CONCLUSION

and performance.
The cost of all this flexibility is that careful attention must be paid to load distribution.

A distributed graphics algorithm can slow down to a crawl if its computation isn't balanced
across the nodes; even though the nodes can often compute their pixels locally, the video
frame will not normally be able to advance until it has been completely updated.

The DFB consists of two types of nodes. An array of Pixel Storage Nodes accepts
incoming pixel messages from the J-Machine, and a Video Controller node repeatedly fetches
frame buffer data from the PSNs to display the pixels on a monitor. For every PSN added to
the array, an additional 8.75 MBytes/sec of bandwidth and 2 MBytes of storage is gained.

The PSNs can be configured to understand different classes of pixel messages. Simple
address/pixel lists require little processing by the PSN and must be used to achieve maxi-
mum bandwidth into the system. More abstract raster operations can be specified instead,
but these reduce the frame buffer bandwidth and should be used only by less-demanding
applications.

The VC has many configuration options: it can work with monitor resolutions up to
1280x1024; the format of pixel data is flexible, and allows true-color, pseudo-color, and
plane depth to be specified on a pixel-by-pixel basis; the portion of VRAM corresponding
to an area of the screen can be changed dynamically by the application, allowing the VRAM
to be segmented into multiple logical buffers; the VC can accommodate from four to sixteen
PSNs; and it can be coupled with another VC to drive stereo monitors.

5.2 Further Work

Now that the hardware foundation exists, much software remains to be developed to val-
idate the performance of the video system under realistic demands. Although a simple
graphics library has been developed, a true test of the system requires a full-fledged ren-
dering algorithm executing in the J-Machine cube. A rigorous application would also test
the fine-grain mechanisms provided by the J-Machine, a challenge that has not been fully
met to date.

Such an application would also demonstrate how well a heavily-distributed algorithm
can compensate for the lack of floating-point hardware in the J-Machine nodes. The first
stage of rendering - object transformation - is very floating-point intensive and would
require many costly software calls. Would this cripple a demanding J-Machine graphics
application, or can the task be sufficiently partitioned and executed in parallel to reduce its
overall cost?

Recent research suggests that the use of multiple frame buffers hampers virtual reality
applications by requiring full-frame updates before the next frame can begin [2]. This often
introduces enough visual lag during head movement to frustrate the observer; for a given
frame buffer bandwidth, it may be more important to update the observer's viewpoint
immediately (with partial images) than to supply full (but jerky) updates. The DFB has
enough flexibility to investigate this claim more thoroughly.

The fine-grain mechanisms provided by the J-Machine lend themselves naturally to
many inherently distributed graphics algorithms. The combination of the J-Machine and
the Distributed Frame Buffer can supply a fertile and flexible testing ground for these and
future algorithms.

72

Appendix A

PSN Schematics and PAL Files

73

APPENDIX A. PSN SCHEMATICS AND PAL FILES

a)
07

I.1 9-

I i.

It. I
I

I' I

ii iI

ii, II

74

T 1,
I I
It Fiji I

APPENDIX A. PSN SCHEMATICS AND PAL FILES 75

I H I

A
j I I

I

i

76 APPENDIX A. PSN SCHEMATICS AND PAL FILES

JslI

Js

M.

I it 4~

; 1t~ I&

II' I

.18�

y

,.

APPENDIX A. PSN SCHEMATICS AND PAL FILES 77

ae i2 1119

ARt1

ttt 4

APPENDIX A. PSN SCHEMATICS AND PAL FILES78

APPENDIX A. PSN SCHEMATICS AND PAL FILES

a I 8 I

.

79

80 APPENDIX A. PSN SCHEMATICS AND PAL FILES

ndpmode. abl

module mdpmode

title 'MDP Diag Interface - MDPModePal Eric McDonald January 15, 1994'

mdpmode device 'P22V10';

"*** Inputs

Mclk
Mmode0, Mmodel
X0, xi
SoutO, Soutl

"*** Outputs

!Phl
BSout
ModeO_O, Model_0
ModeO_l, Model_l
!FifoReset

Pin 23;
Pin 22;
Pin 21, 20 istype 'reg,buffer';
Pin 19, 18 istype 'reg,buffer';
Pin 17;

"*** Buses

Mmode
Mode0
Model

= [Mmodel , Mmode0];
= [Model_ , ModeO_O];
= [Model_l , ModeO_l];

"*** Aliases

NOP
EX
SH
RESET

0 , 0];
0 , 1];
1 , 0];
1 , 1];

H, L, X = 1, 0, .X.;

"*** Equations

equations

"The registers are clocked by MCLK
[Mode0, Model, Phl].clk = Mclk;

"Phl held hi by reset (stops during Phl hi).
Phl := (Phl == L) (Mmode == RESET);

" The new Mode arives during phl.
"Normally, pass it on ph2. Hold until next phl when reset goes away
" Note: (Phi == L) means that PH1 is about to go hi
Mode0 := (XO == H) & (

((Mmode == RESET) & Mmode)

((Mmode != RESET) & (Mode0.fb == RESET) & (Phl == H) & Mode0.fb)
((Mmode != RESET) & (Mode0.fb == RESET) & (Phl == L) & Mmode)

((Mmode != RESET) & (Mode0.fb != RESET) & (Phl == H) & Mmode) #
((Mmode != RESET) & (Mode0.fb != RESET) & (Phl == L) & Mode0.fb)

Pin 1;
Pin 2, 3;
Pin 4, 5;
Pin 6, 7;

#

APPENDIX A. PSN SCHEMATICS AND PAL FILES 81

mdpmode.abl

);i

Model := (Xl == H) & (
((Mmode == RESET) & Mmode) #

((Mmode != RESET) & (Model.fb == RESET) & (Phl == H) & Model.fb) #
((Mmode != RESET) & (Model.fb == RESET) & (Phl == L) & Mmode) #

((Mmode != RESET) & (Model.fb != RESET) & (Phl == H) & Mmode) #
((Mmode != RESET) & (Model.fb != RESET) & (Phl == L) & Model.fb)
) ;

BSout = (SoutO & XO) # (Soutl & Xl);

FifoReset = ((XO == H) # (Xl == H)) & (Mmode == RESET) & Phl;

end mdpmode

APPENDIX A. PSN SCHEMATICS AND PAL FILES

mdpsel.abl

module mdpsel

title 'MDP Diag Interface - MDPSelectPal

mdpsel device 'P22V10';

"*** Inputs

"These 5 signals are asserted LOW
BS, AS, DS, RW
MATCH

DO, D, D2, D3

"'*** Outputs

" BSel is asserted LOW
BSel
X0, Xl
A0, A1
Xen

"*** Bus definitions

Eric McDonald January 15, 1994'

Pin 2, 3, 4, 5;
Pin 10;

Pin 6, 7, 8, 9;

Pin 22;
Pin 21, 20;
Pin 19, 18;
Pin 17;

ADDR = [D1, DO];
ADDRB = [A1, A];
DATA = [D1, D];
XR = [Xl, XO];

"*** Alias equates

XEREG = [0, 0];
YE_REG = [0, 1];
ATO_D_REG = [1, 0];
H, L, X = 1, 0, .X.;

"*** Output equations

equations

!BSel = (!BS & !MATCH) # (BS & BSel);

"Store the register address selection.
ADDRB = (!BSel & AS & ADDR) (!(!BSel & AS) & ADDRB);

"Latch the X register with the appropriate value.

"Note that this value is not encoded base 2...instead, each 1/0 bit
"corresponds to one MDP node.
Xen = !BSel & DS & RW & (ADDRB == XEREG);
XR = (DATA & Xen) # (XR & Xen);

end mdpsel

82

APPENDIX A. PSN SCHEMATICS AND PAL FILES

mdpfan.abl

module mdpfan

title 'MDP Diag Interface - MDPFanoutPal Eric McDonald January 15, 1994'

mdpfan device 'P16V8';

"*** Inputs

Mclk
MmodeO, Mmodel
Sin
ModeInOO, ModeInlO
ModeInOl, ModeInl_l

"*** Outputs

Sin0_O, Sin_l
Phl_0, Phl_l
ModeO_O, Model_0
ModeO_l, Model_l

Pin
Pin
Pin
Pin

19, 18;
17, 16 istype 'reg';
15, 14 istype 'reg';
13, 12 istype 'reg';

"*** Buses

Mmode = [Mmodel , MmodeO];

"*** Aliases

NOP = [
EX = [
SH = [
RESET = [
H, L, X = 1,

0 , 0
0, 1
1, 0
1, 1
0, .X.;

];I;
I;
I];

"*** Equations

equations

[Phl_0, Phll].clk = Mclk;

"Just buffer and distribute Sin:

Sin_0 = Sin;

Sin_l = Sin;

"Just buffer and distribute Mode:
ModeOO := ModeInO_0;
Model_0 := ModeInl_0;
Mode0_l := ModeInO_l;
Model_l := ModeInl_l;

"Calculate and distribute phl

Phl_0 := (PhlO == L) # (Mmode == RESET);
Phl_l := (Phll == L) # (Mmode == RESET);

end mdpfan

83

Pin
Pin
Pin
Pin
Pin

1;
2, 3;
4;
5, 6;
7, 8;

84 APPENDIX A. PSN SCHEMATICS AND PAL FILES

Al3

ahit-- I---

RAI

-- --
-IF-HE 3

--i,

I L

APPENDIX A. PSN SCHEMATICS AND PAL FILES 85

v .

F .'
i 9 I

I

86 APPENDIX A. PSN SCHEMATICS AND PAL FILES

I;
1
7

I

II

X In

E-Fi

>aj

APPENDIX A. PSN SCHEMATICS AND PAL FILES 87

i

88 APPENDIX A. PSN SCHEMATICS AND PAL FILES

h

b

I I

I 5&.b I
i =
2 1 .

& n i- I;� �; A

ii-&Il r Al

Ol

tlo

APPENDIX A. PSN SCHEMATICS AND PAL FILES

fifopal.abl
module FifoPal
title 'FIFO Controller Pal

Eric McDonald
Last revised:

February 15, 1994
February 15, 1994'

" DESCRIPTION:
n ------------

This PAL watches all emem accesses made by the MDP.
" If the access is to an address < $80000, the PAL does nothing but

pass along the /WE and /OE signals to the DRAMs.
However, accesses to >= $80000 disable the DRAM /WE and /OE lines.
For WRITEs, the specified data and some bits of the address
are shifted into the appropriate FIFOs.

For READs, nothing is done besides disabling /WE and /OE (to allow
the MREAD PAL to respond to the read request).

FifoPal device 'P22V10';

"*** Inputs

PH1
WR,CAS,RAS
CSB0, CSB1
EA10

Pin 1;
Pin 2, 3,
Pin 5, 6;
Pin 9;

4; "EMI control signals
"Indicate which word is on bus.

"*** Outputs

"FIFO control
LdAddr
SIaddr

lines...

SIwordO
SIwordlset
SIword2set
SIwordReset

"EMI DRAM control lines...
WE
OE

"For internal use
RASDelayed
A19

Pin 23; "Latch 10 bits of address
Pin 22; "Shift in all 20 bits of address

"(current 10 + latched 10)
Pin 19; "Shift in first 12 data bits
Pin 18; "...next 12 data bits (to JK FF)
Pin 17; "...and last 12 data bits (to JK FF)
Pin 16; "Clear SIword{1,2} from JK FF

Pin 21; "/WE line for DRAMs
Pin 20; "/OE line for DRAMs

Pin 15 istype 'reg';
Pin 14;

"*** Aliases

DRAM_ACCESS = !A19;
FIFO_ACCESS = A19;

H, L, C, X = 1, 0, .C., .X.;
ZERO = [0, 0];
ONE = [0, 1];
TWO = [1, 0];
CSB = [CSB1, CSB0];

"DRAM takes the lower half of address space
"..and the Video RAM takes the upper half

WordO = (CSB == ZERO);

89

90 APPENDIX A. PSN SCHEMATICS AND PAL FILES

fifopal.abl
Wordl = (CSB == ONE);
Word2 = (CSB == TWO);

RASGoingLow = !RAS & RASDelayed;

*** Equations

equations

RASDelayed.clk = PH1;
RASDelayed := RAS;

"A19 (provided on EA10 when /RAS drops) will be high for address >= $80000
A19 = (!PH1 & RASGoingLow & EA10) # (!RAS & A19);

.. ***

"DRAM control lines...
.. ****

"DRAM /OE and /WE lines are disabled during A19 accesses
OE = A19 # !WR;
WE = A19 # WR;

.. ***

"FIFO control lines...
.. **

"The high-to-low transition of /LdAddr latches the row of the external
" memory address. Keep it low for the entire emem access cycle.
!LdAddr = (EA10 & !WR & !RAS & CAS) # (!RAS & !LdAddr);

"The low-to-high transition of SIaddr shifts the latched addr row and the
" current addr column into the FIFOs. The subsequent high-to-low return
" of SIaddr propagates the address through the FIFO.

SIaddr = (Al9 & !WR & !CAS & WordO) # (SIaddr & !RAS);
WARNING: Watch out for a race condition here. The 'output ready' from

the FIFO's comes only from a DATA FIFO, so it is assumed that the
ADDR FIFO is in sync with it. However, SIaddr goes low at 'about'
the same time as the Sword's do, so the ADDR FIFO may not have
propagated the address all the way through yet.

"SIwordO goes right to its FIFO. SIword{1,2} go to the J inputs of a
"JK Flip Flop whic is clocked off the falling edge of /CAS.
SIwordO = (A19 & !WR & !CAS & WordO) # (SIwordO & !RAS);
SIwordlset = (SIwordO & Wordl);
SIword2set = (SIwordO & Word2);
!SIwordReset = RAS;

end FifoPal

APPENDIX A. PSN SCHEMATICS AND PAL FILES 91

92 APPENDIX A. PSN SCHEMATICS AND PAL FILES

mread. abl

module MRead

title 'MDP Readback PAL

Eric McDonald July 14, 1992
Last revised: April 28, 1994'

DESCRIPTION:

When the MDP makes a READ access to address >= $80000 (A19=1), we
initiate a request to the VRAM PAL to supply us with the pixel
value for the given address in VRAM.

The request is made with DataREQ and is acknowledged with DataACK once
the VRAM module has clocked the data into our registers with /PixLd.

The two valid address ranges for this module are:
I!

$80000 - $bffff Request pixel data for selected bank from
~~" ~ (address & $3ffff) (strip 2 MSBs)

$c0000 Poll DataREQ status flag and view data returned
~~" ~ from last read request. Also selects bank for
~~~" ~ next read to Bank A.

$dOOOO Same as above, but selects bank for
"N~~~ ~ next read to Bank B.

A summary of the bit usage is:
A19 A18 A17 A16
1 0 X X Request data
1 1 X 0 Poll and select bank A (PixBankMR = 0)

" 1 1 X 1 Poll and select bank B (PixBankMR = 1)

After requesting the data by addressing the $80000 range,
the MDP should keep reading from $cOOOO or $eOOOO. It should
ignore the data it sees until the DataREQ line goes low again, at
which point the data is valid.

MRead device 'P22V10';

"*** Inputs

PH1 Pin 1;
RAS, CAS, WR Pin 2, 3, 4;
VRAMDataACK Pin 5;
CSBO, CSB1 Pin 6, 7;
EA9, EA10 Pin 9, 10;

"*** Outputs

VRAMDataREQ Pin 23 istype 'reg';
DriveWordO, DriveWordl, DriveWord2 Pin 22, 21, 20;
LoadRAS, LoadMDPAddr Pin 18, 19;
PixBankMR Pin 17 istype 'reg';

"*** Outputs used internally
A19
RASDelayed, CASDelayed

Pin 16;
Pin 15, 14 istype 'reg';



APPENDIX A. PSN SCIIEMATICS AND PAL FILES 93

mread. abl

"*** Aliases

H, L, C, X = 1, 0, C., .X.
ZERO = [0, 0];
ONE = [0, 1];
TWO = [1, 0];
CSB = [CSB1, CSB0];
RASGoingLow = !RAS & RASDelayed;
RASGoingHigh = RAS & !RASDelayed;
CASGoingLow = !CAS & CASDelayed;
A19Read = !RAS & A19 & WR;

"*** Equations

equations

[VRAMDataREQ,RASDelayed,CASDelayed].clk = PH1;

RASDelayed := RAS;
CASDelayed := CAS;

" A19 appears on EA10 during the initial memory cycle...
A19 = (!PH1 & RASGoingLow & EA10) # (!RAS & A19);

"LoadRAS is asserted during *every* read with A19 == 1
LoadRAS = (WR & EA10 & RASGoingLow)

# (LoadRAS & !RAS);

LoadMDPAddr is asserted only during reads with A19 == 1 and A18 == 0
(A18 appears on EA10 when CAS drops and CSB==0)

" (A16 appears on EA9 when CAS drops and CSB==0)
VRAMDataREQ depends on this signal.

LoadMDPAddr = (A19Read & !EA10 & CASGoingLow & (CSB == ZERO))
# (LoadMDPAddr & !VRAMDataREQ);

PixBankMR := (A19Read & EA10 & CASGoingLow & (CSB == ZERO) & EA9)
# (!(A19Read & EA10 & CASGoingLow & (CSB == ZERO)) & PixBankMR);

This signals to the VRAM PAL that we have a complete address and would
like to read data from the VRAM.

It also clears the LoadMDPAddr signal.
VRAMDataREQ := (LoadMDPAddr & RAS)

# (VRAMDataREQ & !VRAMDataACK);

!DriveWordO = A19Read & CAS & (CSB == ZERO);
!DriveWordl = A19Read & !CAS & (CSB == ONE);
!DriveWord2 = A19Read & !CAS & (CSB == TWO);

end MRead



APPENDIX A. PSN SCHEMATICS AND PAL FILES

,

I 1. I I I i
_ I I I I I I I

i a a a a i a11 tS1S All 1t~~~t t 21 .,, X1 
11 k k k k k k k k 11 k k k k k k t k I I k k

t l

. 1 t

94

I

I

i

I

J
1.



APPENDIX A. PSN SCHEMATICS AND PAL FILES 95



APPENDIX A. PSN SCHEMATICS AND PAL FILES

xfer. abl

module Xfer

title 'Xfer Pal for VRAM FSMs

Eric McDonald
Last revised:

May 12, 1994
May 12, 1994'

" DESCRIPTION:

Xfer device 'P22V10';

"*** Inputs

FClk
Transfer
AckO,Ackl
FFTransfer

Pin 1;
Pin 2;
Pin 3,4;
Pin 5;

"Async. transfer signal from VC
"VRAM FSMs saw the transfer signal
"Transfer signal from Flip Flop

"*** Outputs

Xfer0,Xferl Pin 23,22 istype 'reg,buffer'; " Sent to VRAM FSMs
TransferNot Pin 21 istype 'invert'; Complement of Transfer
FFReset Pin 20 istype 'reg,invert'; "Reset FF

"*** Bits used internally
XferSync Pin 19 istype 'reg,buffer'; Sync up the Transfer sig
XferSyncDel Pin 18 istype 'reg,buffer';
OKToReset Pin 17 istype 'reg,buffer';

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;

"*** Equations

equations

[XferSync,XferSyncDel,OKToReset,Xfer0O,Xferl].clk = FClk;

TransferNot = Transfer;

XferSync := FFTransfer;
XferSyncDel := XferSync;

"Async sets the FF

Sync the FF output to our clock

Xfer0 := (XferSync & !XferSyncDel)
# (Xfer & !AckO);

Xferl := (XferSync & !XferSyncDel)
# (Xferl & !Ackl);

OKToReset := XferSync " OK
# (OKToReset & XferSync);

to reset after we've seen the signal

!FFReset := OKToReset & TransferNot.pin; "Must be sure not to assert
" /FFReset and /TransferNot simult.

96



APPENDIX A. PSN SCHEMATICS AND PAL FILES

vcO. abl

module VC0

title 'VRAM Control PAL #0

Eric McDonald
Last revised:

July 14, 1992
April 28, 1994'

"DESCRIPTION:

Most of the
However, it

Broadcast
FifoOR
DataREQ

time this FSM is simply providing refresh strobes to the VRAMs.
also services three kinds of requests:
- VC has asked us to transfer a row in VRAM to the serial ports
- FIFO has data to be written into VRAM
- The MDP (via the MREAD module) would like us to read a
piece of data out of VRAM

VC0 device 'P22V10';

"*** Inputs

FClk
FifoOR
PixBank
DataREQ
Transfer
PixBankMR_0
PixBankMR_1

Pin
Pin
Pin
Pin
Pin
Pin
Pin

1;
2;

4;
3;
5;
6;
7;

" FIFO has data ready
" The FIFO data should go into this bank
" MDP wants to read data back from the VRAM
" VC wants us to transfer a row of data
" The MDP0 readback data should come from this bank
The MDP1 readback data should come from this bank

"*** Outputs

DataACK
PixLoad
FifoDisable
Broadcast
Pixel
Q0,Q1,Q2,Q3,Q4

Pin
Pin
Pin
Pin
Pin
Pin

23 istype 'reg,buffer'; "ACK back to MDPRead PAL
22 istype 'reg,buffer'; "Latch data into MDPRead buffers
21 istype 'reg,buffer'; " When high, disables FIFO data
20 istype 'reg,buffer'; " Select Brdcst or MDPRead addr
19 istype 'reg,buffer'; " Pixel or Brdcst/MDP address
14,15,16,17,18 istype 'reg,buffer'; " State bits

"*** State declarations
Ginclude 'vc.sta'

"*** Equations

equations

[current_state,DataACK,PixLoad,FifoDisable,Broadcast,Pixel].clk = FClk;

statediagram current_state;

State Init:
goto RefreshO;

State RefreshO:
" !CASa := 1; !CASb := 1;

goto Refreshl;
State Refreshl:

" !CASa := 1; !CASb := 1;
I" !RASa := 1; !RASb := 1;

97

I.I!IIII

I!



APPENDIX A. PSN SCHEMATICS AND PAL FILES

goto Refresh2;
State Refresh2:

!CASa := 1; !CASb
!RASa := 1; !RASb
goto Refresh3;

State Refresh3:
!CASa := 1; !CASb
!RASa := 1; !RASb
goto Refresh4;

State Refresh4:
!CASa := 1; !CASb
! RASa := 1; !RASb

:= 1;
:= 1;

:= 1;
:= 1;

:= 1;
:= 1;

goto Refresh5;
State Refresh5:

if (Transfer) then XferO;
else Refresh6;

State Refresh6:
if (FifoOR) then WriteO;

else Refresh7;
State Refresh7:

if (DataREQ) then ReadO;
else RefreshO;

State XferO:
Broadcast := 1;

" !OEa := 1; OEb := 1;
MuxRAS := 1;
goto Xferl;

State Xferl:
Broadcast := 1;

" !OEa := 1; OEb := 1;
" !RASa := 1; !RASb := 1;

MuxRAS := 1;
goto Xfer2;

State Xfer2:
Broadcast := 1;

" !OEa := 1; OEb := 1;
" !RASa := 1; !RASb := 1;

goto Xfer3;
State Xfer3:

Broadcast := 1;
" !OEa := 1; OEb := 1;
" !RASa := 1; !RASb := 1;
" !CASa := 1; !CASb := 1;

goto Xfer4;
State Xfer4:

Broadcast := 1;
" !OEa := 1; OEb := 1;
" !RASa := 1; !RASb := 1;
" !CASa := 1; CASb := 1;

goto Init;

State WriteO:
Pixel := 1;
MuxRAS :=.1;
goto Writel;

State Writel:

First bring /DT low

Then bring /RAS low
with valid row

Relase MuxRAS and let settle

And finally bring /CAS low with SAM

Drive row address and let settle

98

vcO. abl



99APPENDIX A. PSN SCHEMATICS AND PAL FILES

vcO.abl

Pixel := 1;
" !RASa := !PixBank; !

MuxRAS := 1;
goto Write2;

State Write2:
Pixel := 1;
!RASa := !PixBank; !
goto Write3;

State Write3:
Pixel := 1;
IRASa := !PixBank; !
!CASa := !PixBank; !
goto Write4;

State Write4:
Pixel := 1;
!RASa := !PixBank; !
!CASa := !PixBank; !

" !WEa := !PixBank; !
goto Write5;

State Write5:
" !RASa := !PixBank; !
" !CASa := !PixBank; !

FifoSO := 1;
goto Init;

State ReadO:
MuxRAS := 1;
goto Readl;

State Readl:
MuxRAS := 1;
!RASa := !PixBankMR;
FifoDisable := 1;
goto Read2;

State Read2:
!RASa := !PixBankMR;

" !OEa := !PixBankMR;
FifoDisable := 1;
goto Read3;

State Read3:
!RASa := !PixBankMR;

" !CASa := !PixBankMR;
" !OEa := !PixBankMR;

FifoDisable := 1;
goto Read4;

State Read4:
" !RASa := !PixBankMR;
" !CASa := !PixBankMR;
" !OEa := !PixBankMR;

FifoDisable := 1;
PixLoad := 1;
goto Read5;

State Read5:
DataACK := 1;
if (DataREQ) then
else Init;

RASb := PixBank;

RASb := PixBank;

RASb := PixBank;
CASb := PixBank;

RASb
CASb
WEb

Bring /RAS low with valid row

Drive col address and let settle

Bring /CAS low with valid column

:= PixBank;
:= PixBank;
:= PixBank;

RASb := PixBank;
CASb := PixBank;

Drive row addr & let settle

!RASb := PixBankMR;

!RASb := PixBankMR;
lOEb := PixBankMR;

!RASb
iCASb
lOEb

! RASb
iCASb
lOEb

:= PixBankMR;
:= PixBankMR;
:= PixBankMR;

Bring /RAS low w/valid row

Drive col addr & let settle

Bring /CAS low w/valid col
Drive the VRAM data out

:= PixBankMR;
:= PixBankMR;
:= PixBankMR;

Read5;

' Eliminate trap states...



100 APPENDIX A. PSN SCHEMATICS AND PAL FILES

vcO. abl

State TrapO: goto Init;
State Trapl: goto Init;
State Trap2: goto Init;
State XferTrap: goto Init;
State ReadTrap: goto Init;
State WriteTrap: goto Init;

end VCO



APPENDIX A. PSN SCHEMATICS AND PAL FILES

vcl_O.abl

module VC1_0

@const MDP = 0;

title 'VRAM Control PAL #1

Eric McDonald
Last revised:

July 14, 1992
April 28, 1994'

VCl_0 device 'P22V10';

"*** Inputs
FClk
Q0,Q1,Q2,Q3,Q4
FifoOR
PixBank
DataREQ
Transfer
PixBankMR_0
PixBankMR_l

"*** Outputs
MuxRAS
FifoSO
RASa,RASb
CASa,CASb
WEa,WEb
OEa,OEb

"*** Aliases
@if (MDP == 0)
@if (MDP != 0)

Pin 1;
Pin 2,3,4,5,6; " State bits generated by VCtrlO
Pin 7; " FIFO has data ready
Pin 9; " The FIFO data should go into this bank
Pin 8; " MDP wants to read data back from VRAM
Pin 10; " VC wants us to transfer a row of data
Pin 11; " The MDP0 readback data should come from this bank
Pin 13; " The MDP1 readback data should come from this bank

Pin 23 istype 'reg,buffer'; "Mux RAS or CAS select
Pin 22 istype 'reg,buffer'; "Shift FIFO one word
Pin 21,17 istype 'reg,invert'; "VRAM /RAS signals
Pin 20,16 istype 'reg,invert'; "VRAM /CAS signals
Pin 19,15 istype 'reg,invert'; "VRAM /WBWE signals
Pin 18,14 istype 'reg,invert'; "VRAM /DTOE signal

{ PixBankMR = PixBankMR_0; }
{ PixBankMR = PixBankMRl; 

"*** State declarations
@include 'vc.sta'

"*** Equations

equations

[MuxRAS,FifoSO,RASa,RASb,CASa,CASb,WEa,WEb,OEa,OEb].clk = FClk;

FifoSO := InState(Write5);

MuxRAS := InState(Xfer0)
# InState(Xferl)
# InState(Write0)
# InState(Writel)
# InState(Read0)
# InState(Readl);

!RASa := InState(Refreshl)
# In_State(Refresh2)
# In_State(Refresh3)
# In_State(Refresh4)
# In_State(Xferl)
# In_State(Xfer2)

101



APPENDIX A. PSN SCHEMATICS AND PAL FILES

vcl_O. abl

# In_State(Xfer3)
# In_State(Xfer4)
# (InState(Writel) & !PixBank)
# (InState(Write2) & !PixBank)
# (InState(Write3) & !PixBank)
# (InState(Write4) & !PixBank)
# (InState(Write5) & !PixBank)
# (InState(Readl) & !PixBankMR)
# (InState(Read2) & !PixBankMR)
# (InState(Read3) & !PixBankMR)
# (InState(Read4) & !PixBankMR);

!RASb := In_State(Refreshl)
# InState(Refresh2)
# InState(Refresh3)
# In_State(Refresh4)
# In_State(Xferl)
# In_State(Xfer2)
# InState(Xfer3)
# In_State(Xfer4)
# (InState(Writel) & PixBank)
# (InState(Write2) & PixBank)
# (InState(Write3) & PixBank)
# (InState(Write4) & PixBank)
# (InState(Write5) & PixBank)
# (InState(Readl) & PixBankMR)
# (InState(Read2) & PixBankMR)
# (InState(Read3) & PixBankMR)
# (InState(Read4) & PixBankMR);

!CASa := In_State(RefreshO)
# In_State(Refreshl)
# In_State(Refresh2)
# In_State(Refresh3)
# In_State(Refresh4)
# InState(Xfer3)
# In_State(Xfer4)
# (InState(Write3) & !PixBank)
# (InState(Write4) & !PixBank)
# (InState(Write5) & !PixBank)
# (InState(Read3) & PixBankMR)
# (InState(Read4) & !PixBankMR);

!CASb := In_State(RefreshO)
# In_State(Refreshl)
# In_State(Refresh2)
# InState(Refresh3)
# In_State(Refresh4)
# InState(Xfer3)
# In_State(Xfer4)
# (InState(Write3) & PixBank)
# (InState(Write4) & PixBank)
# (InState(Write5) & PixBank)
# (InState(Read3) & PixBankMR)
# (InState(Read4) & PixBankMR);

!WEa := (In_State(Write4) & !PixBank);

102



APPENDIX A. PSN SCHEMATICS AND PAL FILES

vcl._O. abl

!WEb := (InState(Write4) & PixBank);

!OEa := In_State(XferO)
# In_State(Xferl)
# In_State(Xfer2)
# In_State(Xfer3)
# In_State(Xfer4)
# (InState(Read2)
# (InState(Read3)
# (InState(Read4)

!OEb := InState(XferO)
# In_State(Xferl)
# InState(Xfer2)
# In_State(Xfer3)
# InState(Xfer4)
# (InState(Read2)
# (InState(Read3)
# (InState(Read4)

& PixBankMR)
& !PixBankMR)
& !PixBankMR);

& PixBankMR)
& PixBankMR)
& PixBankMR);

end VC1_0

103



APPENDIX A. PSN SCHEMATICS AND PAL FILES

~itt

NI;

4

R~ 

44Vi N~t
F

w v ~i2 zv * %I RN

T

llfd~zvz I N

F

LJ

7K

II

IQ
i

�JjJ

- - - -
- - - -

- - - -

- - - -9 R R R

I v �! 2 I !2 it !� I I 2 � 1. M I

. . . . - - - -

9 R R � s s � �

W:2�TZV*ril 101. mbi

. . . . . .

m

. . . .

9 9 2 � HU

I

. . . . . . . .

9 R 9 � s � � �

. . . . . . . .9 9 R � � � I �

I 
I I-

R

104

I

IMI I

!A R �.

!A

�Qv�l 101,16

!A R

6!
�

i
1.



APPENDIX A. PSN SCHEMATICS AND PAL FILES 105

-7-

I !

&! I I

Ii ~I 

11



APPENDIX A. PSN SCHEMATICS AND PAL FILES

11

J

11

Ii

m

Ri.Iiii-

J

1

q L

- -I I I-

N 9

I]

.!I

I

I t
P.c�!n,I I

11

rlI

1T 11~
R 9 ;4 I

., I{WM1 

I

-J

I -
I--

IK-

3

I !

q1 ER R I
2. 9

I E&7-

IIi
I

I2 I

sN

I P

I-
LJ J

e
N.

1 1;

'1:C!. LI

I

'P:
P

N

41 AM

~ NJ NJ 

%tM Wi'

I
R Nil

I 
el

K 
I1

§E~ II I:Ii]
9 li 9 A .~ ~I'~ I

I

, 
qE w w w - - Z - w._ _ ._7 _ 

- - - - - - - - i -

1 I - -- - - -
L~ 

: 

. . . - - - - - - - - - - - - - -

9 1 11
I ;4 .

I
i El � � 6A S "A r, , A 9 TS-..... . ................P SIf s|| -|| || || U|

- - - - - -

I . . .

- - - - - - - . . . . . . - - - - - - -

,,,. . . . -.--...- 
. . . . . . . .

I

I
I

1

L

I

106

Ii
9
A:

� 1
'I �

II
i
N

1

I
Ii

.Ie
V

1
1,I

1!

I

i I i I

I

I A 

1I h

i
i I tl [I tl I

I e'
Iq
9

I

i 
.1

I
hL

I I

I j I11
i i

P.

1

I
el

,I

I

!I

I11 1

J

i

I ] J
I

i I

I I

L
I I 

I

At

I R
6 13

'ill."AsAr.

L-f

pi

1 4E E

i N
K 9 2 ei 12Bs

A A

L� �

I

I i- W X

R . i

E.,

94 I -1

�f ;
i

�4. I
9



APPENDIX A. PSN SCHEMATICS AND PAL FILES

i.

J
I .

jI i I .,
k !~; a.

I

By- ----- - - - - - - - - - - - - - - - - - - - - - - - - - -

I I4 q l IRE a i r x t t ( } q t q q f i
gt - - 'tot~t't t t .. ' tttt t t't t t' t .Lttt .

u~~~~~~~~~~ _ T _ _1 _ _T __ T __ ____ .,,

107



Appendix

VC Schematics and PAL Files

108

B



APPENDIX B. VC SCHEMATICS AND PAL FILES 109

t-

I

. . .

i ;1 #g

]LVL

a-0
Zr



APPENDIX B. VC SCHEMATICS AND PAL FILES

mn M{I I 'I
T T T T T

ii i I i i

I m ,I I t t 1
lT T + T 

T T T fT?

I I is I I~ ~~~~~I 4~

I I I

t t t t

LLLL 
~, iI ;

I I~
It 1 T T

II

if

mb8111111 AtSgnfgQ f| 5

I f Ia 46[44N4 I 9a'I 
a 1s8!A N 68+ ^5il

* |ditlisJ~lJ 1,. Y

I I 

II
i

12 d 

I t !Im

II I I I

Lj

4a

I.

4.)

0.

r

c
0

z

III 1=.

r I

I , 4 ,.4 

H

!

110

~m

_v 81_

I U
L

I I

� � i



APPENDIX B. VC SCHEMATICS AND PAL FILES 111

11

11

I



APPENDIX B. VC SCHEMATICS AND PAL FILES

mdplsel. abl

module mdpsel

title 'MDP Diag Interface - MDPSelectPal

mdpsel device 'P22V10';

"*** Inputs

"These 5 signals are asserted LOW
BS, AS, DS, RW
MATCH

DO, D, D2, D3

"*** Outputs

"BSel is asserted LOW
BSel
X0, Xl
A0, Al
Xen

*** Bus definitions

ADDR = [D1, DO];
ADDRB = [Al, A];
DATA = [D1, D];
XR = [Xl, X];

"*** Alias equates

Eric McDonald

Pin 2, 3, 4, 5
Pin 10;

Pin 6, 7, 8, 9

Pin 22;
Pin 21, 20;
Pin 19, 18;
Pin 17;

January 15, 1994'

XEREG = [0, 0];
YEREG = [0, 1];
ATO_DREG = [1, 0];
H, L, X = 1, 0, .X.;

"*** Output equations

equations

!BSel = (!BS & MATCH) # (BS & BSel);

"Store the register address selection.
ADDRB = (!BSel & !AS & ADDR) # ( !(!BSel & !AS) & ADDRB);

"Latch the X register with the appropriate value.

"Note that this value is not encoded base 2...instead, each 1/0 bit
"corresponds to one MDP node.
Xen = IBSel & !DS & RW & (ADDRB == XE_REG);
XR = (DATA & Xen) # (XR & !Xen);

end mdpsel

112



113APPENDIX B. VC SCHEMATICS AND PAL FILES

mdpfan. abl

module mdpfan

title 'MDP Diag Interface - MDPFanoutPal Eric McDonald January 15, 1994'

mdpfan device 'P16V8';

"*** Inputs

Mclk
MmodeO, Mmodel
Sin
ModeInO0O, ModeInl_0
ModeInOl, ModeInl_l

"*** Outputs

Sin.0_O, Sinl
Phl_0, Phl1_l
ModeOO, Model_0
ModeOl, Model_l

Pin 19, 18;
Pin 17, 16 istype 'reg,invert';
Pin 15, 14 istype 'reg';
Pin 13, 12 istype 'reg';

"*** Buses

Mmode = [Mmodel , Mmode0];

"*** Aliases

NOP
EX
SH
RESET
H, L,

= [

= [1,= [= [
X = 1,

0 , 0
0, 1
1, 0
1, 1
0, .X.;

];
1;
];
I;

"*** Equations

equations

[Phl_O, Phl_l].clk = Mclk;

"Just buffer and distribute Sin:

Sin_0 = Sin;
Sin_l = Sin;

"Just buffer and distribute Mode:
Mode0_0 := ModeInO_0;
Model_0 := ModeInl_0;
Mode0_l := ModeInO_l;
Model_l := ModeInl_l;

"Calculate and distribute phl

Phl_0.d := (PhlO.q == L) (Mmode == RESET);
Phl_l.d := (Phl_l.q == L) (Mmode == RESET);

end mdpfan

Pin 1;
Pin 2, 3;
Pin 4;
Pin 5, 6;
Pin 7, 8;



114 APPENDIX B. VC SCHEMATICS AND PAL FILES

ma

i-
md
md

-I,

4-
.R 



APPENDIX B. VC SCHEMATICS AND PAL FILES 115

I I

� 9

- I



116 APPENDIX B. VC SCHEMATICS AND PAL FILES

h
I
1I

I

I
I

L

I Ii

.



APPENDIX B. VC SCHEMATICS AND PAL FILES

!il ~

h~inlugolq~fl45gg4L~t~ll~i~l~l484;l~Ip I.l

§152isQ;24Q;i-22i;;4@;;1

J$I.)Xls~lffl~lawlillis~ttiiiitt~t~iita~teRvii 91

117



APPENDIX B. VC SCHEMATICS AND PAL FILES

i

118



119APPENDIX B. VC SCHEMATICS AND PAL FILES

erm. abl

module Erm

title 'EMI Readback Module PAL

January 5, 1994
February 15, 1994'

" DESCRIPTION:- ------------
"Decodes EMI reads from address
" A[19:16] Sample address

" l0Xl $90000
I!
..

$80000
$coooo0000
$dOOOO

>= $80000 according to this table:
Output signal

_____________

/MPU2ERMO (cycle 0)
/MPU2ERM1 (cycle 1)
/MPU2ERM2 (cycle 2)
(access here will also set ErmAck)
same as above w/o setting ErmAck
/XLM2ERM
/FIFO2ERM

Erm device 'P22V10';

"*** Inputs

PH1
RAS, CAS, WR
EA10, EA9, CSB1, CSBO
MpuStat
RESET

Pin
Pin
Pin
Pin
Pin

1;
2, 3, 4;
5, 6, 7, 8;
9;
10;

"*** Outputs

Xlm2Erm
Fifo2Erm
Mpu2ErmO, Mpu2Erml, Mpu2Erm2
ErmAck
BufEn
MpuReady
Extra

Pin
Pin
Pin
Pin
Pin
Pin
Pin

"*** For internal use
DoAck

23 istype 'invert';
22 istype 'invert';
21, 20, 19 istype 'invert';
18 istype 'reg,buffer';
17;
16 istype 'reg,buffer';
15;

Pin 14 istype 'reg,buffer';

"*** Aliases

H, L, C, X = 1, 0,
ZERO = [0, 0];
ONE = [0, 1];

TWO = [1, 0];
CSB = [CSB1, CSBO];

.C., .X.;

"*** Equations

equations

[DoAck,ErmAck,MpuReady].clk = PH1;

Eric McDonald
Last revised:

10X0

11 11X0

1. lixi



120 APPENDIX B. VC SCHEMATICS AND PAL FILES

erm. abl

Extra = 0;

A19 appears on EA10 during the zeroth cycle (when RAS first drops), and
A18,A16 appear on EA10,EA9 during the next memory cycle (when CAS 1st drops).

!BufEn = (WR & EA10 & !RAS & CAS) # (!BufEn & !RAS);

!Fifo2Erm = (!BufEn & !CAS & EA10 & EA9 & (CSB == ZERO))
# (!Fifo2Erm & iRAS);

lXlm2Erm = (!BufEn & CAS & EA10 & !EA9 & (CSB == ZERO))
# (!Xlm2Erm & !RAS);

!Mpu2ErmO = (!BufEn & !CAS & EA10 & (CSB == ZERO));

!Mpu2Erml = (!BufEn & CAS & !EA10 & (CSB == ONE));

!Mpu2Erm2 = (!BufEn & !CAS & EA10 & (CSB == TWO));

DoAck := (!BufEn & CAS & EA10 & EA9 & (CSB == ZERO))
# (DoAck & ErmAck);

ErmAck := (MpuReady & !Mpu2Erm2 & DoAck)
# (ErmAck & MpuReady);

MpuReady := MpuStat;

end Erm



APPENDIX B. VC SCHEMATICS AND PAL FILES 121

I



APPENDIX B. VC SCHEMATICS AND PAL FILES

1-

I Iw I*II 

9: rm, e

! _ = 
b 

? A l? 4 

I 4 5 

.bi11i 11 1 1 1 I I I 1

122

.:-. -- .1- I 

0 0 0 0 0 0

g gi 8 II 8 1 Rh



APPENDIX B. VC SCHEMATICS AND PAL FILES

fifopal.abl
module FifoPal
title 'FIFO Controller Pal

Eric McDonald
Last revised:

February 15, 1994
March 1, 1994

DESCRIPTION:

Determines whether an MDP emem access is meant for the DRAM (< $80000)
or the FIFO (>= $80000). It provides appropriate signals to DRAMs and PALs.'

FifoPal device 'P26V12';

"*** Inputs

PH1
WR,CAS,RAS
CSB0, CSB1
EA9,EA10
RESET

Pin 1;
Pin 2, 3, 4;
Pin 5, 6;
Pin 9, 10;
Pin 11;

UEMI control signals
"Indicate which word is on bus.

"*** Outputs

"FIFO control
LdAddr
SIaddr

lines...

SIwordO
SIwordlset
SIword2set
SIwordReset

"EMI DRAM control lines...
WE
OE

"FIFO reset line
FifoMR

"Internal register bits
A19
A19Read

Pin 27; "Latch 10 bits of address
Pin 26; "Shift in all 20 bits of address

"(current 10 + latched 10)
Pin 23; "Shift in first 12 data bits
Pin 22; "...next 12 data bits (to JK FF)
Pin 20; "...and last 12 data bits (to JK FF)
Pin 19; "Clear SIword{1,2} from JK FF

Pin 25; "/WE line for DRAMs
Pin 24; "/OE line for DRAMs

Pin 17;

Pin 18;
Pin 16;

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;
ZERO = [0, 0];
ONE = [0, 1];
TWO = [1, 0];
CSB = [CSB1, CSB0];

DRAM_ACCESS = !A19;
FIFO_ACCESS = A19;

"DRAM takes the lower half of address space
"..and the Video RAM takes the upper half

WordO = (CSB == ZERO);
Wordl = (CSB == ONE);
Word2 = (CSB == TWO);

123



124 APPENDIX B. VC SCHEMATICS AND PAL FILES

fifopal.abl

"*** Equations

equations

"All MDP external WRITES to locations >= $80000 should go to the FIFO.
"Therefore, if EA10 is 1 when RAS first goes low (i.e. A19 = 1) during
" a write access, we are writing into the FIFO.
A19 = (!WR & RAS & EA10) # (!RAS & A19);
A19Read = (RAS & WR & EA10) (!RAS & A19Read);

.. ***

"DRAM control lines...
.. ***

"We should de-assert the DRAMs /OE and /WE inputs for the duration of
" FIFO or MDPReadBack access cycles.

OE = A19Read # !WR;

WE = FIFO_ACCESS WR;

.. ***

"FIFO control lines...
.. ***

"The high-to-low transition of /LdAddr latches the row of the external
" memory address. Keep it low for the entire emem access cycle.
!LdAddr = (EA10 & !WR & RAS & CAS) # (!RAS & !LdAddr);

"The low-to-high transition of Saddr shifts the latched addr row and the
" current addr column into the FIFOs. The subsequent high-to-low return
" of SIaddr propagates the address through the FIFO.

SIaddr = (!WR & !RAS & FIFO_ACCESS & CAS & WordO) (SIaddr & !RAS);
WARNING: Watch out for a race condition here. The 'output ready' from

the FIFO's comes only from a DATA FIFO, so it is assumed that the
ADDR FIFO is in sync with it. However, SIaddr goes low at 'about'
the same time as the SIword's do, so the ADDR FIFO may not have
propagated the address all the way through yet.

"SIwordO goes right to its FIFO. SIwordf1,2} go to the J inputs of a
"JK Flip Flop whic is clocked off the falling edge of /CAS.
SIwordO = (!WR & RAS & FIFO_ACCESS & !CAS & WordO) (SIwordO & !RAS);
SIwordlset = (!WR & !RAS & FIFO_ACCESS & Wordl);
SIword2set = (!WR & !RAS & FIFO_ACCESS & Word2);
!SIwordReset = RAS;

FifoMR = RESET;

end FifoPal



APPENDIX B. VC SCHEMATICS AND PAL FILES

HI

.!

r

j

A X Ifl ffi

SI ti 

i i I1 I "b
. . . .ne 51| :1 494 

0000 0x3A

- -!

125

fli
�E
A
I

! i

I
I ;
i,;; �

21

I

9

I
-z
z
3
ia



126 APPENDIX B. VC SCHEMATICS AND PAL FILES

mod. abl

module Mod

title 'FIFO Mod FSM

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

" DESCRIPTION:

" Awaits OR condition from FIFOs and tries to deliver data to
" appropriate module, as determined by the table:

Modsel Beg. MDP Addr.

"1 000
" 001
"1 100

" 101

$80000
$90000
$coooo
$dOOOO

Module

MPU
XLM
SCM
Tabsync

Mod device 'P26V12';

"*** Inputs

FClk
OR
ModSelO, ModSell, ModSel2
MpuAck, XlmAck, ScmAck
TabSync
RESET

Pin
Pin
Pin
Pin
Pin
Pin

1;
2;
3, 4, 5;
6, 8, 9;
10;
11;

"FIFO Output Ready
"Addr[18:16]
"ACKs from modules

"*** Outputs

SO Pin 27 istype 'reg,buffer'; "FIFO Shift Out
ForMpu, ForXlm, ForScm Pin 26, 25, 24 istype 'reg,buffer'; " RDYs to mods
QO, Q, Q2, Q3 Pin 23, 22, 20, 19 istype 'reg,buffer'; " state bits
TSyncSet Pin 17;

"*** Bits used internally
TSet Pin 16 istype 'reg,buffer';

'*** Aliases

H, L, C,
ModSel =
MPUSEL =
XLMSEL =
SCMSEL =
TSYNCSEL

X = 1, 0, C., X.;
[ModSel2..ModSelO];

[0, 0, 0];
[0, 0, 1];
[1, 0, 0];

= [1, 0, 1];

"*** State declarations

current_state = [Q2..QO];

" Requires single-bit-only differences between:
" Init0,Idle (coming from Initl)



127APPENDIX B. VC SCHEMATICS AND PAL FILES

mod. abl

" Idle,NewData (coming from Idle)

InitO =
Initl =
Idle =
NewData =
BadData =
HandoffO =
Handoffl1 =
TabSyncO =

[ 0, 0, 0 ];
[ O, O, 1 ];
[ 0, 1, 0 ];
[1 1, , 0 ];
[ 1, 1, 1 ];
[ O, 1, 1 ];
[ 1, 0, 0 ];
[ 1, O, 1 ];

"*** Equations

equations

[current_state,TSet].clk = FClk;
[current_state,TSet].ar = !RESET;
[SO,ForMpu,ForXlm,ForScm].clk = FClk;

TSyncSet = TSet (TSyncSet & !TabSync);

State_Diagram current_state
state InitO:

SO := 1;
goto Initl;

state Initl:
if (OR) then InitO;

else Idle;

state Idle:
if (OR) then NewData
else Idle;

"Upon RESET, flush FIFO

Wait here for OR from FIFO

state NewData:
if (ModSel == MPUSEL) then HandoffO

with ForMpu := 1 endwith;
else if (ModSel == XLMSEL) then HandoffO0

with ForXlm := 1 endwith;
else if (ModSel == SCMSEL) then HandoffO0

with ForScm := 1 endwith;
else if (ModSel == TSYNCSEL) then TabSyncO

with SO : 1; TSet := 1 endwith;
else BadData

with SO := 1 endwith; "Ignore unrecognized MODSEL
state BadData:
goto Idle; " This state allows SO to be asserted after bad data

state HandoffO0: " Tell module valid data is waiting
ForMpu := ForMpu; ForScm := ForScm; ForXlm := ForXlm;
if ((ForMpu & MpuAck) (ForXlm & XlmAck) # (ForScm & ScmAck))

then Handoffl;
else HandoffO;

state Handoffl: " Drop our DR signal and wait
SO := 1; " for module to drop its ACK...
if (MpuAck # XlmAck ScmAck)

then Handoffl; I Note that ALL ACKs must be clear

0
1
2
6
7
3
4
5

' Q=
II Q=
IQ=

IQ=

"Q=

I'Q=.IQ=
1. Q--



128 APPENDIX B. VC SCHEMATICS AND PAL FILES

mod. abl

else Idle; " (can fix this with more states)

state TabSyncO:
goto Idle; "This state allows TSet and SO to be asserted

end Mod



APPENDIX B. VC SCHEMATICS AND PAL FILES 129

I
VI



130 APPENDIX B. VC SCHEMATICS AND PAL FILES

hA

i

I A

jir I I

.4,



APPENDIX B. VC SCHEMATICS AND PAL FILES

mpuO. abl

module Mpu0

title 'Bt463 Mpu FSM PAL#0

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

Mpu0 device 'P22V10';

"*** Inputs

FClk
Eol, Eof
Sp0, Spl
ForMpu
Read
Wcnt
HHold, VHold
ErmAck
RESET

Pin 1;
Pin 2,
Pin 4,
Pin 6;
Pin 7;
Pin 8;
Pin 9,
Pin 11;
Pin 13;

3;
5;

"Horiz and Vert syncs
"Spare inputs (unused)
H FIFO has data for us
" Is access read or /write?
" # of 8-bit wrds? 0->1 1->3
"Should we sync up?
ERM rcvd our data
Global /RESET line

10;

"*** Outputs

ERES
Mpu_Ack
CE
Q0,Q1,Q2,Q3,Q4,Q5,Q6

Pin 23 istype 'reg,invert'; Reset Eol, Eof
Pin 22 istype 'reg,buffer'; "Latch & ACK data
Pin 21 istype 'reg,invert'; " Bt463 /CE line
Pin 20,19,18,17,16,15,14 istype 'reg,buffer';

"*** Bits used internally

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;
LongWord = (Wcnt == 1);
ShortWord = (Wcnt == 0);
Write = !Read;

current_state = [Q6..Q0];
@include 'mpu.sta'

"*** Equations

equations

[current_state, ERES, MpuAck, CE].clk = FClk;
[current_state].ar = !RESET;

State_Diagram current_state

state Idle: " Loop here...
if (ForMpu) then NewData " If new incoming data, grab it

with MpuAck := 1; ERES := 1; endwith;
else Idle;

131



132 APPENDIX B. VC SCHEMATICS AND PAL FILES

mpuO.abl

state NewDataO: Loop until we know FIFO has seen our ACK
if (For_Mpu) then NewDataO with MpuAck := 1 endwith;

else NewDatal;
state NewDatal:

if (VHold # HHold) then LoopTilEnd;
else case Read : ReadData0a;

Write : WriteDataOa;
endcase;

state LoopTilEnd:
if ((VHold & Eof) # (HHold & Eol)) then LoopTilEnd;

else Dispatch;
state Dispatch:

!ERES := 1;
case Read : ReadDataOa;

Write : WriteDataOa;
endcase;

state WriteDataOa:
!DriveWO = 1;
!CE : 1;
goto WriteDataOb;

state WriteDataOb:
!DriveWO = 1;
!CE := 1;
goto WriteDataOc;

state WriteDataOc:
!DriveWO = 1;
if (ShortWord) then Idle;
else WriteDatala;

state WriteDatala:
!DriveWl = 1;
!CE := 1;
goto WriteDatalb;

state WriteDatalb:
!DriveWl = 1;
!CE := 1;
goto WriteDatalc;

state WriteDatalc:
!DriveWl = 1;
goto WriteData2a;

state WriteData2a:
!DriveW2 = 1;
!CE := 1;
goto WriteData2b;

state WriteData2b:
iDriveW2 = 1;
iCE := 1;
goto WriteData2c;

state WriteData2c:
!DriveWl = 1;
goto Idle;

state ReadData0a:
iCE := 1;



APPENDIX B. VC SCHEMATICS AND PAL FILES

mpuO. abl

goto ReadDataOb;
state ReadDataOb:

!CE := 1;
! LdMRO := 1;
goto ReadDataOc;

state ReadData0c:
!CE := 1;
if (ShortWord) then SendToErmO;

else ReadDataOd;
state ReadDataOd:

goto ReadDatala; "Meets minimum CE high requirement

state ReadDatala:
!CE := 1;
goto ReadDatalb;

state ReadDatalb:
ICE := 1;
!LdMR1 := 1;
goto ReadDatalc;

state ReadDatalc:
!CE := 1;
goto ReadDatald;

state ReadDatald:
goto ReadData2a;

state ReadData2a:
!CE := 1;
goto ReadData2b;

state ReadData2b:
!CE := 1;
!LdMR2 := 1;
goto ReadData2c;

state ReadData2c:
!CE := 1;
goto ReadData2d;

state ReadData2d:
goto SendToErmO;

"Meets minimum !CE high requirement

1 Meets minimum CE high requirement

state SendToErmO:
MpuRdy := 1;
goto SendToErml;

state SendToErml:
MpuRdy := 1;
if (ErmAck) then SendToErm3;

else SendToErm2;
state SendToErm2:

MpuRdy := 1;
if (For_Mpu) then NewDataO" If new incoming data, grab it

with Mpu_Ack := 1 endwith;
else SendToErml;

state SendToErm3:
if (ErmAck) then SendToErm3;

else SendToErm4;
state SendToErm4:

goto Idle;

"Wait for ErmAck to drop

133

end MpuO



134 APPENDIX B. VC SCHEMATICS AND PAL FILES

mpul.abl

module Mpul

title 'Bt463 Mpu FSM PAL#1

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

Mpul device 'P22V10';

"*** Inputs

FClk
Q0,Q1,Q2,Q3,Q4
Read
Wcnt
HHold, VHold
ErmAck
RESET

Pin 1;
Pin 2,3,4,5,6;
Pin 7;
Pin 8;
Pin 9, 10;
Pin 11;
Pin 13;

"Is access read or /write?
" # of 8-bit wrds? 0->1 1->3
"Should we sync up?
"ERM rcvd our data
"Global /RESET line

"*** Outputs

DriveW0,DriveWl,DriveW2
LdMR0,LdMRl,LdMR2
MpuRdy

Pin 23,22,21 istype 'reg,invert'; " /OE
Pin 20,19,18 istype 'reg,invert'; "/Latch
Pin 17 istype 'reg,buffer'; "To ERM module

"*** Aliases

H, L, C, X = 1, 0, C., X.;

current_state
Idle =
NewData0 =
NewDatal =
LoopTilEnd =
Dispatch =

WriteData0 =
WriteDatal =
WriteData2 =

ReadData0b =
ReadDatalb =
ReadData2b =

SendToErm0 =
SendToErml =
SendToErm2 =
SendToErm3 =
SendToErm4 =

In_State MACRO (st)

= [Q4..Q0];
[0, 0, 0, 0, 
[0, 0, 0, 1,
[0, 0, 0, 1,
[0, 0, 0, 0,
[0, 0, 0, 0,

0 ];
0 ];
1 ];
1 ];
1 ];

0, 0, 1, 0, 0 ];
[ o, 0, 1, o, 1 ];
0, 0, 1, 1, 1 ];

[ 0, 1, 0, 0, 1 ];
[ 0, 1, 0, 1, 1 ];
[ 0, 1, 1, 1, 1 ];

[ 1, 0, 0, 0, 0 ];
[ 1, 0, 0, 0, 1 ];
[ 1, 0, 0, 1, 1 ];
[ 1, 0, 1, 1, 1 ];
[ 1, 0, 1, 1, 1 ];

{ (currentstate == ?st) };

"*** Equations



APPENDIX B. VC SCHEMATICS AND PAL FILES

mpul. abl

equations

IDriveWO ;= In_Stat6(Writ6DataO);
!DriveWl := In_State(WriteDatal);
!DriveW2 := In_State(WriteData2);

!LdMRO := InState(ReadData0b);
!LdM4Rl := InState(ReadDatalb);
!LdMR2 := InState(ReadData2b);

MpuRdy := InState(SendToErmO)
# InState(SendToErml)
# InState(SendToErm2);

end Mpul

135



136 APPENDIX B. VC SCHEMATICS AND PAL FILES

mpu. sta

"*** State declarations
"These pairs require one-bit state bit differences:
" Idle->NewData0

NewData0 -> NewDatal
LoopTilEnd -> Dispatch

" SendErm2, SendErm3 (from SendErml)
" SendErm3 -> SendErm4

Idle =
NewData0 =
NewDatal =
LoopTilEnd =
Dispatch =

WriteDataOa =
WriteData0b =
WriteData0c =

WriteDatala =
WriteDatalb =
WriteDatalc =

WriteData2a =
WriteData2b =
WriteData2c =

ReadDataOa =
ReadData0b =
ReadData0c =
ReadData0d =

ReadDatala =
ReadDatalb =
ReadDatalc =
ReadDatald =

ReadData2a =
ReadData2b =
ReadData2c =
ReadData2d =

SendToErm0 =
SendToErml =
SendToErm2 =
SendToErm3 =
SendToErm4 =

[ 0,
[ 0,
[ 0,
[ 0,

0,

0, 0, 0, 0,
0, 0, 1, 0,
0, 0, 1, 1,
.0, 0, 0, 1,
0, 0, 0, 1,

[ 0, 0, 1, 0, 0,
[ 0, 0, 1, 0, 0,
[ 0, 0, 1, 0, 0,

[ 0, 0, 1, 0, 1,
[ 0, 0, 1, 0, 1,
[ 0, 0, 1, 0, 1,

[ 0, 0, 1, 1, 1,
[ 0, 0, 1, 1, 1,
[ 0. 0, 1,1 , 1,

[ 0,
[ 0,
[ 0,
[ 0,

[ 0,
[ 0,
[ 0,
[ 0,

[ 0,
[ 0,
[ 0,
[ 0,

[ 1,
[ 1,
[ 1,
[ 1,
[ 1,

1, 0, 0, 0,
1, 0, 0, 1,
1, 0, 0, 0,
1, 0, 0, 0,

1, 0, 1, 0,
1, 0, 1, 1,
1, 0, 1, 0,
1, 0, 1, 0,

1,
1,
1,
1,

0,
0,
0,
0,
0,

1, 1, 0,
1, 1, 1,
1, 1, 0,
1, 1, 0,

0, 0, 0,
0, 0, 1,
0, 1, 1,
1, 1, 1,
1, 1, 1,

0, 0 ];
0, 0 ];
0, 0 ];
0, 0 ];
0, 1 ];

0, 0 ];
0, 1 ];
1, 1 ];

0, 0 ];
0, 1 ];
1, 1 ];

0, 0 ];
0, 1 ];
1, 1 ];

0, 0 ];
O, 0 ];
0, 1 ];
1, 1 ];

0, 0 ];
O, 0 ];
0, 1 ];
1, 1 ];

0, 0 ];
0, 0 ];
0, 1 ];
1, 1 ];

O, 0 ];
0, 0 ];
0, 0 ];
0, 0 ];
0, 1 ];

"00-0
"02-0
"03-0
"01-0
"01-1

"04-0
"04-1
"04-3

"05-0
"05-1
"05-3

"07-0
"07-1
"07-3

"08-0
"09-0
"08-1
"08-3

"Oa-0
"Ob-0
"Oa-1
"Oa-3

"Oe-O
"0 f-0
"Oe-1
"Oe-3

"10-0
"11-0
"13-0
"17-0
"17-1

(00)
(08)
(Oc)
(04)

(05)

(10)
(11)
(13)

(14)
(15)
(17)

(lc)
(ld)
(if)

(20)
(24)
(21)
(23)

(28)
(2c)
(29)
(2b)

(38)
(3c)
(39)
(3b)

'(40)
(44)
(4c)
(5c)
(5d)



APPENDIX B. VC SCHEMATICS AND PAL FILES 137

A

e
Ae

5-I

II

I

2

2I

lb

i



APPENDIX B. VC SCHEMATICS AND PAL FILES

E I a

I 

Ii I I Q it II 9 l IggoXIRRIMi

I I AI I ,
Mv . ll I

I I II 'l 

-~~~~ :,
I _I .

I ; lii 9 

iti wm.1 11 I
III

.1

I

1,1!I I
Lo!I

I I

J Il1

b

. 1

:lil,

11111I11
I-~ MWi

fttttthfft

!RllBB"p',

_ _______I 11~~III..I11111
A 11, a A : : 0 :b"A 

ae 5g BILKAA11 . 9 A a a ~ h11
I u 19 IE 19A~~~~~~

tftt tttt

I
D.Esg

ii ,, ,ll
'tttttit tt

t tfftt

I

it

ccau
LI

x. al I~~~,

vL i A A Y L

I

.1 llmlu

11i1

Pid l P P P P 

1 . . . . . . . . . . . . . .

_ _ . _

. 11111-1111 111111111 .
.- of qqqq

a
if 19 I el A

_ R _ _ e e _ R . _ _ _ _ _ 7 _ _ _ _ _ _ _ _L'...... L'.id

_ _ _ _

, h hh A.h , h -h-hh-A---A

_ _ 

rr Y Y Y - - - - - - - -

, _____________ ................................... ___________ M~ j, mm l, mh i

I

138

- - -Ilsx-xx�r-
. . . . . . .

11
R

I IP IPIPI. P_ P lII |_l _|_1_l 

X ' . . . . . -.

------ IB1111d

11-1 1111
.1 3 3 .2

~B
Bmmmmmmllmll----

II
I

1� '.1 1411,11111,111 11,11,r

:J!d J'a

N'Tit. iiiWil.1 111i ittlilit



APPENDIX B. VC SCHEMATICS AND PAL FILES

4-R I

-M YY y J . . IJ

| W,. E F I' I I' I I' I' I' I' I' I2 ' , 
i 

0

III II I
. ..4 4 

I I
I I

i N 1 11

...... 

t 1ht

M.

jJii! I I

'iV1

t 
Ca

U) t t

3 1 1 1
A A I I I

kilsilill
t

,XtUAI 
.

I - - - - - - - | 
4 � . 1. 1. 1. 1. 1. 1. 1. 1. 1. I 1. W . 1. 1. 1. 1. 1. 1. 1. 1. I

I I
x -- _ ... ..... . x< ...

....

!

- - * . BL· , , ! 

il I I 

e II

&&

139

I_ql1' 
'

I
I

i I I 

I

I =

�l I

1) no A
II -,; DI I d

I--



140 APPENDIX B. VC SCHEMATICS AND PAL FILES

xlmO. abl

module XlmO

title 'XLM FSM PAL#O

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

XlmO device 'P26V12';

"*** Inputs

FClk
Eol_Async, EofAsync
HHold, VHold
For_XlmAsync
Type0, Typel
TabSync
Eot
SpO
HBlk, VBlk
RESET

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

1;
2, 3;
4, 5;
6;
8, 9;
10;
11;
12;
13, 14;
28;

"Horiz and Vert syncs
"Should we sync up?
FIFO has data for us

"Type of data

Reached end of tables?
Unused spare
Blanking signals
Global /RESET line

"*** Outputs

ERES
Xlm_Ack
TRANSFER
Q0, Q, Q2, Q3, Q4
Eol,Eof,ForXlm

"*** Bits used internally
Blocked

Pin 27 istype
Pin 26 istype
Pin 25 istype

'reg,invert'; " Reset Eol, Eof
'reg,buffer'; " Latch & ACK data
'reg,buffer'; " XLM addr valid

Pin 22,20,19,18,17 istype 'reg,buffer'; "State
Pin 24,16,15 istype 'reg,buffer'; "Sync up

Pin 23 istype 'reg,buffer'; " Waiting for blk?

"*** Aliases

H, L, C, X = 1, 0, C., X.;

Type =
WRITE_XFERADDR
LOAD_TABLES
LOAD_FLAGS
UNDEFINED

[Typel, TypeO];
= [0, 0];
= [0, 1];
= [1, 1];
= [1, 0];

"*** State declarations
include 'xlm.sta'

"*** Equations

equations

current_state.clk = FClk;
[TRANSFER,ERES,XlmAck,Blocked,Eof,Eol,For_Xlm].clk = FClk;
current_state.ar = !RESET;

l!

11

II

II

1!



APPENDIX B. VC SCHEMATICS AND PAL FILES 141

xlmO.abl

Eol := Eol_Async;
Eof := Eof_Async;
For_Xlm := For_Xlm_Async;

StateDiagram current_state

state Idle:
if (Eof&ERES) then UpdateCtrs; "End of frame, update counters

else if (Eol&ERES) then BroadcastO; "End of line, send address
else if (ForXlm) then NewDataO "New table data, record it

else Idle;

state NewDataO: " Loop until we know FIFO has seen our ACK
if (ForXlm) then NewDataO

with Xlm_Ack := 1 endwith;
else NewDatal;

state NewDatal:
if (HHold # VHold) then LoopTilEnd
else goto Dispatch;

state Dispatch:
if (Type == WRITE_XFERADDR) then WriteDataO;
else if (Type == LOAD_TABLES) then LoadTables;
else if (Type == LOAD_FLAGS) then LoadFlags;
else goto Idle;

state LoopTilEnd:
Blocked := 1;
if (Eof # Eol) then

else LoopTilEnd;

state WriteDataO:
!DRADDR : 1;
!DRDATA := 1;
goto WriteDatal;

state WriteDatal:
!DRADDR : 1;
!DRDATA : 1;
!WRSRAM := 1;
goto WriteData2;

state WriteData2:
!DRADDR := 1;
!DRDATA : 1;
goto Idle;

state LoadTables:
!DRDATA : 1;
LDVT := 1;
goto Idle;

state LoadFlags:
!DRDATA : 1;
LDFLAGS : 1;
goto Idle;

state UpdateCtrs:
!LINERES := 1;

Discard unknown data type

BroadcastO;

Enable address and data lines coming
from FIFO registers...

Write into SRAM one cycle later

And keep address/data valid for 1 more cycle

Drive FIFO data lines and ask TABPAL to
latch in new tables

Drive FIFO data lines and ask TABPAL to
latch in new flags

Reset low SRAM address bits to zero

.1
11

.1

1.

11

.1

11



142 APPENDIX B. VC SCHEMATICS AND PAL FILES

xlmO.abl

if (TabSync # Eot) then ResetTabCtr; "Reset high addr bits if
last table or TabSync

else IncTabCtr; "Otherwise, just increment them
state ResetTabCtr:

!TABLD := 1;
goto BroadcastO;

state IncTabCtr:
!TABINC := 1;
goto BroadcastO;

state BroadcastO:
Blocked := Blocked;
!DRCTRS := 1;
!OESRAM := 1;
goto Broadcastl;

state Broadcastl:
Blocked := Blocked;
!DRCTRS := 1;
!OESRAM := 1;
goto WaitO;

"Remember if blocked
Drive address lines
and drive SRAM into

"Remember if blocked
Drive address lines
and drive SRAM into

to SRAM...
output latches

to SRAM...
output latches

state WaitO:
Blocked := Blocked;
goto Waitl;

state Waitl:
Blocked := Blocked;
goto Wait2;

state Wait2:
Blocked := Blocked;
goto Wait3;

state Wait3:
Blocked := Blocked;
if (!VBlk)

then BrdcstWithoutInc;
else

BrdcstAndInc;

state BrdcstAndInc:
Blocked := Blocked; Remember if blocked
TRANSFER := 1;
!LINEINC := VBlk;
if (!Blocked) then Idle

with ERES := 1 endwith;
else if (HHold (VHold & Eof)) then Dispatch

with !ERES := 1 endwith;
else LoopTilEnd

with Blocked := 1; !ERES := 1 endwith;
state BrdcstWithoutInc:
Blocked := Blocked; "Remember if blocked
TRANSFER := 1;
if (!Blocked) then Idle

with ERES := 1 endwith;
else if (HHold (VHold & Eof)) then Dispatch

with ERES := 1 endwith;

It

All



APPENDIX B. VC SCHEMATICS AND PAL FILES

xlmO.abl

else LoopTilEnd
with Blocked := 1; !ERES := 1 endwith;

end XlmO

143



144 APPENDIX B. VC SCHEMATICS AND PAL FILES

xlml.abl

module Xlml

title 'XLM FSM PAL#1

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

DESCRIPTION:

Xlml device 'P22V10';

"*** Inputs

FClk
Q0, Q1, Q2, Q3,
Sp0, Spl
TabSync
Type0, Typel
RESET

Pin
Q4 Pin

Pin
Pin
Pin
Pin

1;
2,3,4,5,6;
7, 8;
9;
10, 11;
13;

State
Unused spares

Type of data
Global /RESET line

"*** Outputs

Pin 23 istype
Pin 22 istype
Pin 21 istype

'reg,invert';
'reg,invert';
'reg,invert';

"Ctrl sgnl to ADDR0,1
"Ctrl sgnl to DATA0,1
"Ctrl sgnl to LINE/TAB

'reg,invert';
'reg,invert';
'reg,invert';
'reg,invert';
'reg,invert';

Pin 15 istype 'reg,buffer';
Pin 14 istype 'reg,buffer';

"Ctrl sgnl to TABPAL
"Ctrl sgnl to TABPAL

"*** Aliases

H, L, C, X = 1, 0, C., X.;

Type =
WRITE_XFERADDR
LOAD_TABLES
LOAD_FLAGS
UNDEFINED

[Typel, Type0];

= [0, 0];
= [0, 1];
= [1, 1];
= [1, 0];

"*** State declarations
@include 'xlm.sta'

"*** Equations

equations

[DRADDR,DRDATA,DRCTRS].clk = FClk;

!DRADDR := In_State(WriteData0) #

DRADDR
DRDATA
DRCTRS

LINEINC
LINERES
TABINC
TABRES
TABLD

Pin 20
Pin 19
Pin 18
Pin 17
Pin 16

istype
istype
istype
istype
istype

LDFLAGS
LDVT

" Ctrl
"Ctrl
"Ctrl
" Ctrl
" Ctrl

sgnl
sgnl
sgnl
sgnl
sgnl

to LINEPAL
to LINEPAL
to TABPAL
to TABPAL
to TABPAL

.,

II

I!

II



APPENDIX B. VC SCHEMATICS AND PAL FILES

xlml. abl

InState(WriteDatal) #
InState(WriteData2);

!DRDATA := InState(WriteDataO) #
InState(WriteDatal) #
InState(WriteData2) #
InState(LoadTables) #
InState(LoadFlags);

!DRCTRS := InState(BroadcastO) #
InState(Broadcastl);

!LINEINC := InState(BrdcstAndInc);

!LINERES := InState(UpdateCtrs);

!TABINC := InState(IncTabCtr);

!TABLD := InState(ResetTabCtr);

!TABRES := 0;

LDFLAGS := InState(LoadFlags);

LDVT := InState(LoadTables);

end Xlml

145



146 APPENDIX B. VC SCHEMATICS AND PAL FILES

xlm2 .abl

module Xlm2

title 'XLM FSM PAL#2

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

Xlm2 device 'P22V10';

"*** Inputs

FClk
Q0, Q, Q2, Q3, Q4
Eol, Eof
HBlk,VBlk
SpO
RESET

Pin
Pin
Pin
Pin
Pin
Pin

1;
2,3,4,5,6;
7, 8;
9, 10;
11;
13;

" State
"Horiz and Vert syncs
"Blanking signals
" Unused spare
"Global /RESET line

"*** Outputs

OESRAM
WRSRAM
HReset,VReset
Auxl,Aux2,Aux3,Aux4

Pin
Pin
Pin
Pin

23 istype 'reg,invert';
22 istype 'reg,invert';
21,20;
19,18,17,16;

"Ctrl sgnl to SRAM
"Ctrl sgnl to SRAM

"*** Aliases

H, L, C, X = 1, 0, C., X.;

"*** State declarations
@include 'xlm.sta'

"*** Equations

equations

[OESRAM,WRSRAM,Auxl,Aux2,Aux3,Aux4].clk = FClk;

!OESRAM := In_State(Broadcast0) #
In_State(Broadcastl);

!WRSRAM := In_State(WriteDatal);

HReset = Eol;

VReset = Eof;

Auxl = !HBlk;

Aux2 = !VBlk;

end Xlm2



APPENDIX B. VC SCHEMATICS AND PAL FILES

xlm. sta

"*** State declarations

current_state = [Q4, Q3, Q2, Q1, QO];

Idle = [ , , , 0, 0 ]; "Q= 00

NewData0 = [ 0, 0, 0, 0, 1 ; "Q= 01
NewDatal = 0, 0, 0, 1, 0 ; "Q= 02
Dispatch = [ 1, 0, 0, 1, 1 ]; "Q= 13

LoopTilEnd

WriteData0
WriteDatal
WriteData2

LoadTables
LoadFlags

BroadcastO
Broadcastl

= [ 0, 0, 0, 1, 1 ];

= [ 0, 1, 0, 0, 0 ];
= [ 0, 1, 0, O, 1 ];
= [ 0, 1, 0, 1, 0 ];

= [ 0, 1, 1, 0, 0 ];
= [ 0, 1, 1, 1, 0 ];

= [ 1, 0, 0, 0, 0 ];
= [ 1, 0, O, O, 1 ];

"Q= 03

"Q= 08
"Q= 09
"Q= Oa

"Q= Oc
"Q= Oe

"Q= 10

"Q= 11
BrdcstAndlnc = [ 1, 0, 0, 1, 0 ; "Q= 12
BrdcstWithoutInc = [ 1, 0, 1, 1, 0 ; Q=16

WaitO0
Waitl
Wait2
Wait3

= 0,
= I 0,
= [ 0,
= [ 0,

0, 1, 0, 0 ];
0, 1, 0, 1 ];
0, 1, 1, 1 ];
0, 1, 1, 0 ];

UpdateCtrs = [ 1, 1, 0, 0, 0 ];
ResetTabCtr = [ 1, 1, 1, 0, 0 ];
IncTabCtr = [ 1, 1, 1, 1, 0 ];

"Q=04
"Q=05
"Q=07
"Q=06

"Q= 18
"Q= lc
"Q= le

In_State MACRO (st) { (current_state == ?st) };

147



148 APPENDIX B. VC SCHEMATICS AND PAL FILES

xlmline.abl

module XlmLine

title 'XLM Line Counter FSM

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

DESCRIPTION:

"This PAL is basically just a 10-bit counter with /INC, /RES, and /OE lines

XlmLine device 'P22V10';

"*** Inputs

FClk
LineInc
LineRes
OE
GRESET

Pin 1;
Pin 2;
Pin 3;
Pin 4;
Pin 5;

" Increment counter
"Reset counter to zero
"Output enable
"Global /RESET line

"*** Outputs

A9,A8,A7,A6,A5,A4,A3,A2,A1,A0
Pin 14,15,16,17,18,19,20,21,22,23 istype 'reg,buffer';

"*** Equations

HOLD = LineInc & LineRes;
INC = !LineInc;
RESET = LineInc & !LineRes;

equations

[A9..A0].clk
[A9..A0].oe
[A9..A0].ar

!A0 := RESET
# (HOLD
# (INC

!A1 := RESET
# (HOLD
# (INC
# (INC

= FClk;
= !OE;
= !GRESET;

& !A0.fb)
& A0.fb);

& !Al.fb)
& !A0.fb &
& A0.fb &

!Al.fb)
Al.fb);

!A2 := RESET
# (HOLD
# (INC
# (INC
# (INC

!A3 := RESET
# (HOLD &
# (INC &
# (INC &

& !A2.fb)
& !A0.fb &
& !Al.fb &
& A0.fb &

!A3. fb)
IA0.fb &
!Al.fb &

!A2.fb)
!A2.fb)
Al.fb & A2.fb);

!A3.fb)
lA3.fb)



APPENDIX B. VC SCHEMATICS AND PAL FILES

xlmline.abl
# (INC & !A2.fb & !A3.fb)
# (INC & A.fb & Al.fb & A2.fb & A3.fb);

!A4 := RESET
$ (HOLD &
# (INC &
# (INC &
# (INC &
# (INC &
# (INC &

!A5 := RESET
# (HOLD &
# (INC &
# (INC &
# (INC &
# (INC &
# (INC &
# (INC &

!A6 := RESET
* (HOLD &
# (INC &
# (INC &
# (INC &
# (INC &
# (INC &
# (INC &
# (INC &

! A4.fb)
!A0.fb &
!Al.fb &
!A2.fb &
!A3.fb &
A0.fb &

!A5.fb)
!A0.fb &
!Al.fb &
1A2.fb &
!A3.fb &
!A4.fb &
A0.fb &

!A6.fb)
!A0.fb &
!Al.fb &
!A2.fb &
!A3.fb &
!A4.fb &
!A5.fb &
A0.fb &

!A7 := RESET
# (HOLD & !A7.fb)
# (INC & !A0.fb &
# (INC & !Al.fb &
# (INC & !A2.fb &
# (INC & !A3.fb &
# (INC & !A4.fb &
# (INC & !A5.fb &
# (INC & !A6.fb &
# (INC & A0.fb &

& A7.fb);

A4. fb)
!A4.fb)
!A4.fb)
!A4.fb)
Al. fb

!A5.fb)
!A5.fb)
!A5. fb)
!A5.fb)
!A5.fb)
Al. fb

!A6.fb)
!A6.fb)
!A6.fb)
!A6. fb)
! A6. fb)
!A6.fb)
Al. fb

!A7. fb)
!A7. fb)
!A7. fb)
!A7. fb)
! A7. fb)
!A7. fb)
! A7. fb)
Al. fb

!A8 := RESET
# (HOLD & !A8.fb)
# (INC & !A0.fb & !A8.fb)
# (INC & !Al.fb & !A8.fb)
# (INC & iA2.fb & !A8.fb)
# (INC & !A3.fb & !A8.fb)
# (INC & !A4.fb & !A8.fb)
# (INC & !A5.fb & !A8.fb)
# (INC & !A6.fb & !A8.fb)
# (INC & !A7.fb & !A8.fb)
# (INC & A0.fb & Al.fb

& A7.fb & A8.fb);

& A2.fb & A3.fb & A4.fb);

& A2.fb & A3.fb & A4.fb & A5.fb);

& A2.fb & A3.fb & A4.fb & A5.fb & A6.fb);

& A2.fb & A3.fb & A4.fb & A5.fb & A6.fb

& A2.fb & A3.fb & A4.fb & A5.fb & A6.fb

"A9.fb is programmed differently because it was stuck on a pin without

149



150 APPENDIX B. VC SCHEMATICS AND PAL FILES

xlmline.abl

enough product terms (we need 11 but have only 8).
It doesn't toggle back to 0 once it's been set.
But we shouldn't be trying to write beyond the 10-bit address space anyway.

A9 := (HOLD & A9.fb)
# (INC & A9.fb)
# (INC & A.fb & Al.fb & A2.fb & A3.fb & A4.fb & A5.fb & A6.fb

& A7.fb & A8.fb & !A9.fb);

end XlmLine



151APPENDIX B. VC SCHEMATICS AND PAL FILES

xlmtab. abl

module XlmTab

title 'XLM Table Counter FSM

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

XlmTab device 'P26V12';

"*** Inputs

FClk
TabInc
TabLd
TabRes
LdFlags
LdVT
RESET
LvtD0,LvtDl,LvtD2
FvtD0,FvtDl,FvtD2

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

1;
2;
3;
4;
5;
6;
8;
10,11,12;
13,14,28;

"Increment table counter
"Load FVT into table counter
" Reset table counter to 0
"Load into FLAGS register
Load FVT and LVT registers

"Global /RESET line
"Inputs for LVT
"Inputs for FVT

"*** Outputs

LVT0,LVT1,LVT2
FVT0,FVT1,FVT2
Tab0,Tabl,Tab2
SpO, Spl
Eot

Pin
Pin
Pin
Pin
Pin

27,26,25 istype 'reg,buffer';
24,23,18 istype 'reg,buffer';
22,20,19 istype 'reg,buffer';
17,16 istype 'reg,buffer';
15; "Current table == Last

"Last Valid Table
"First Valid Table
"Current table
"Spare flags

Valid Table

"*** Bits used internally

"*** Aliases

H, L, C, X = 1, 0, C., X.;

LVT = [LVT2, LVT1, LVT0];
FVT = [FVT2, FVT1, FVT0];
Tab = [Tab2, Tabl, TabO];
LvtData = [LvtD2, LvtD1, LvtD0];
FvtData = [FvtD2, FvtD1, FvtD0];

HOLD = TabInc & TabLd;
INC = !TabInc;
LOAD = TabInc & !TabLd;

"*** Equations

equations

LVT.clk = FClk; FVT.clk = FClk;
[Spl,Sp0].clk = FClk;

Tab.clk = FClk;

"Reload FVT and LVT registers upon receipt of LdVT signal from XLM0 Pal
FVT0 := (!LdVT & FVT0) # (LdVT & FvtD0);



152 APPENDIX B. VC SCHEMATICS AND PAL FILES

xlmtab.abl

FVT1 := (!LdVT & FVT1) # (LdVT & FvtDl);
FVT2 := (!LdVT & FVT2) # (LdVT & FvtD2);

LVT0 := (!LdVT & LVT0) # (LdVT & LvtD0);
LVT1 := (!LdVT & LVT1) # (LdVT & LvtDl);
LVT2 := (!LdVT & LVT2) # (LdVT & LvtD2);

"Reload FLAGS register
Sp0 := (!LdFlags & Sp0)
Spl := (!LdFlags & Spl)

upon receipt of LdFlags signal from XLM0 Pal
# (LdFlags & LvtD0);
# (LdFlags & LvtDl);

"The table counter can either hold, reload, or increment by one

Tab.ar = !RESET;

!TabO := (HOLD & !TabO)
# (LOAD & !FVT0)
# (INC & TabO);

!Tabl := (HOLD & !Tabl)
# (LOAD & FVT1)
# (INC & !TabO &
# (INC & TabO &

!Tabl)
Tabl);

!Tab2 := (HOLD & !Tab2)
# (LOAD & !FVT2)
# (INC & TabO &
# (INC & !Tabl &
# (INC & TabO &

!Tab2)
!Tab2)
Tabl & Tab2);

"Raise Eot output when table counter == LVT

Eot = Tab == LVT;

end XlmTab



APPENDIX B. VC SCHEMATICS AND PAL FILES

ii

N~~

jh I I

Aunt neh °Lr fllS^iSLLLI~sLE I

153



154 APPENDIX B. VC SCHEMATICS AND PAL FILES

II,

I 

I

v

v

I

v

v

v

0
1.

.1 Ii
Wid I

r-L7 17- -I1'17 � 0
IV h �



APPENDIX B. VC SCHEMATICS AND PAL FILES 155



156 APPENDIX B. VC SCHEMATICS AND PAL FILES

scmline. abl

module ScmLine -

title 'SCM Line Counter FSM

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

" DESCRIPTION:
I - - - -

"This PAL implements a 4-bit counter, a 4-bit register, and a comparator
"between the pair.

ScmLine device 'P22V10';

"*** Inputs

FClk
LineInc
LineRes
OE
LdLVL
GRESET
SpO
LvlD0,LvlD1,LvlD2,LvlD3

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

1;
2;

3;
4;
5;
6;
7;
9,10,11,13;

" Increment counter
" Reset counter to zero
"Output enable
" Load LVL register
"Global /RESET line
" Spare; unused
"Data inputs for LVL register

"*** Outputs

L0,L1,L2,L3
LVL0,LVL1,LVL2,LVL3
NotAtEot

Pin 23,22,21,20 istype 'reg,buffer';
Pin 19,18,17,16 istype 'reg,buffer'; "Last Valid Line
Pin 15 istype 'invert'; " Current cntr != LVL

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;

Line = L3..L0];
LVL = LVL3..LVL0];

HOLD = !LineInc & LineRes;
INC = LineInc & LineRes;
RESET = !LineInc & LineRes;
IGNORE = LineInc & LineRes;

"*** Equations

equations

[Line,LVL].clk = FClk;
Line.oe = !OE & !LineInc & !LineRes;
Line.ar = !GRESET;

"Reload LVL registers upon receipt of LdLVL signal from SCM0 Pal
LVL0 := (!LdLVL & LVL0) # (LdLVL & LvlD0);
LVL1 := (!LdLVL & LVL1) # (LdLVL & LvlD1);
LVL2 := (!LdLVL & LVL2) # (LdLVL & LvlD2);
LVL3 := (!LdLVL & LVL3) # (LdLVL & LvlD3);



APPENDIX B. VC SCHEMATICS AND PAL FILES 157

scmline abl

!L0 := RESET
# (HOLD & !L0.fb)
# (IGNORE & !L0.fb)
# (INC & L0.fb);

!L1:= RESET
# (HOLD & !Ll.fb)
# (IGNORE & Ll.fb)
# (INC & !L0.fb & !Ll.fb)
# (INC & L.fb & Ll.fb);

!L2 := RESET
# (HOLD & !L2.fb)
# (IGNORE & !L2.fb)
# (INC & !L0.fb & !L2.fb)
# (INC & !Ll.fb & !L2.fb)
# (INC & L.fb & Ll.fb & L2.fb);

!L3 := RESET
# (HOLD & !L3.fb)
# (IGNORE & !L3.fb)

# (INC & !L0.fb & !L3.fb)
# (INC & !Ll.fb & !L3.fb)
# (INC & !L2.fb & !L3.fb)
(INC & L.fb & Ll.fb & L2.fb & L3.fb);

Raise Eot output when line counter == LVL
!NotAtEot = (Line.fb != LVL);

end ScmLine



158 APPENDIX B. VC SCHEMATICS AND PAL FILES

scmtab.abl

module ScmTab

title 'SCM Table Counter FSM

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:
i - - - -

ScmTab device 'P26V12';

"*** Inputs

FClk
TabInc
TabLd
OE
LdFlags
LdVT
RESET
LvtD0,LvtDl,LvtD2
FvtD0,FvtDl,FvtD2

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

1;
2;
3;
4;
5;
6;
8;
10,11,12;
13,14,28;

"Increment table counter
"Load FVT into table counter
"Output enable for Tab[2:0]
"Load into FLAGS register
"Load FVT and LVT registers
"Global /RESET line
"Inputs for LVT
"Inputs for FVT

"*** Outputs

Tab0,Tabl,Tab2
FVT0,FVT1,FVT2
LVT0,LVT1,LVT2
Go
SpO
NotAtEot

Pin
Pin
Pin
Pin
Pin
Pin

27,26,25 istype 'reg,buffer';
24,23,22 istype 'reg,buffer';
20,19,18 istype 'reg,buffer';
17 istype 'reg,buffer';
16 istype 'reg,buffer';
15 istype 'invert';

"Current table
"First Valid Table
"Last Valid Table
"ScmGo signal
"Spare flags

"*** Bits used internally

"*** Aliases

H, L, C, X = 1, 0, C., X.;

LVT = [LVT2, LVT1, LVT0];
FVT = [FVT2, FVT1, FVT0];
Tab = [Tab2, Tabl, TabO];
LvtData = [LvtD2, LvtDl, LvtD0];
FvtData = [FvtD2, FvtDl, FvtD0];

HOLD =
INC =
LOAD =
IGNORE

!TabInc & TabLd;
TabInc & !TabLd;
!TabInc & TabLd;

= TabInc & TabLd;

"*** Equations

equations

[LVT,FVT,Tab,Go,SpO].clk = FClk;

"Reload FVT and LVT registers upon receipt of LdVT signal from SCM0 Pal



APPENDIX B. VC SCHEMATICS AND PAL FILES

scmtab.abl

FVT0 := (!LdVT & FVT0)
FVT1 := (!LdVT & FVT1)
FVT2 := (!LdVT & FVT2)

:= (!LdVT & LVT0)
:= (!LdVT & LVT1)
:= (!LdVT & LVT2)

# (LdVT & FvtD0);
# (LdVT & FvtDl);
# (LdVT & FvtD2);

# (LdVT & LvtD0);
# (LdVT & LvtDl);
# (LdVT & LvtD2);

"Reload FLAGS register upon receipt of LdFlags signal from SCM0 Pal
Go.ar = !RESET;
Go := (!LdFlags & Go) # (LdFlags & LvtD0);
Sp0 := (!LdFlags & Sp0) # (LdFlags & LvtDl);

"The table counter can either hold, reload, or increment by one

Tab.ar = !RESET;
Tab.oe = !OE & !TabInc & !TabLd;

!TabO := (HOLD & !TabO.fb)
# (IGNORE & !TabO.fb)
# (LOAD & !FVT0)
# (INC & TabO.fb);

!Tabl := (HOLD & !Tabl.fb)
# (IGNORE & !Tabl.fb)
# (LOAD & !FVT1)
# (INC & !TabO.fb & !Tabl.fb)
# (INC & TabO.fb & Tabl.fb);

!Tab2 := (HOLD & !Tab2.fb)
# (IGNORE & !Tab2.fb)
# (LOAD & !FVT2)
# (INC & !TabO.fb & !Tab2.fb)
# (INC & !Tabl.fb & !Tab2.fb)
# (INC & TabO.fb & Tabl.fb & Tab2.fb);

"Raise Eot output when table counter == LVT

!NotAtEot = (Tab.fb != LVT);

end ScmTab

159

LVT0
LVT1
LVT2



160 APPENDIX B. VC SCHEMATICS AND PAL FILES

scmO. abl

module Scm0

title 'Scm FSM PAL#O

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

" DESCRIPTION:

Scm0 device 'P26V12';

"*** Inputs

FClk
Eol, Eof
HHold, VHold
For_Scm
Type0, Typel
TabSync
LVT,LVL
RamCEAck
ReloadAck
poRESET
SpO

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

1;
2, 3;
4, 5;
6;
8, 9;
10;
11, 12;
13;
14;
28;
15;

Horiz and Vert syncs
Should we sync up?
FIFO has data for us
Type of data

Reached end of tables?
ACK from SCCtl for RamCE request
ACK from SCCtl for Reload request
Power-on/global RESET line
Unused spare

"*** Outputs

ERES
Q0,Q1,Q2,Q3,Q4
Reload
RamCE
Scm_Ack

Pin
Pin
Pin
Pin
Pin

27 istype 'reg,invert'; " Reset Eol, Eof
25,24,23,22,20 istype 'reg,buffer'; "State bits
19 istype reg,buffer'; " Reload SCBlocks request
18 istype 'reg,buffer'; " Assert /RAMCE request
17 istype 'reg,buffer'; " Latch & ACK FIFO data

"*** Bits used
Blocked

internally
Pin 26 istype 'reg,buffer'; "Data ready to be written?

"*** Aliases

H, L, C, X = 1, 0, .C., X.;

Type =
WRITE_DATA
LOAD_TABLES
LOAD_LVL
LOAD_FLAGS

[Typel,Type0];
= [0, 0];
= [0, 1];
= [1, 0];
= [1, 1];

"*** State declarations
@include 'scm.sta'

"*** Equations

equations

[current_state,ERES,Reload,RamCE,ScmAck,Blocked].clk = FClk;
current_state.ar = poRESET;

II

II

II

II

II

II

I'

II

II

II



APPENDIX B. VC SCHEMATICS AND PAL FILES 161

cmO. bl

State_Diagram current_state
state IdleO: " If end of line, reload SCBlocks

if (Eol) then DoReload;
else Idlel;

state Idlel: " If new data from FIFO, ack and process it
if (ForScm) then NewDataO with Scm_Ack := 1 endwith;

else IdleO;

state NewDataO: " Loop until we know FIFO has seen our ACK
if (ForScm) then NewDataO with Scm_Ack := 1 endwith;

else NewData1;
state NewDatal:

if (HHold # VHold # (Type == LOAD_FLAGS)) then LoopTilEol;
We require an implicit HHold on LOAD_FLAGS to avoid race conditions
with the Go flag-in ScmCt0l

else Dispatch;

state LoopTilEol:
Blocked := 1;
if (Eol) then DoReload;

else LoopTilEol;

state DoReload:
Blocked := Blocked; "Remember if blocked
Reload := 1; Ask SCCtl to do a reload
if (!ReloadAck) then DoReload; "Loop here until we get ReloadAck

else if (Eof) then UpdateTab; " TAB and LINE get updated at Eof
else UpdateLine; " Just LINE gets updated at Eol

state UpdateTab:
Blocked := Blocked;
TabOp = (LVT & LOAD) # (!LVT & INC);
LineOp = LOAD;
goto UpdateDone;

state UpdateLine:
Blocked := Blocked;
LineOp = (LVL & LOAD) # (!LVL & INC);
goto UpdateDone;

state UpdateDone:
!ERES := 1;
if (!Blocked) then IdleO;

else if (!VHold # Eof) then Dispatch;
else LoopTilEol;

state Dispatch:
if (Type == WRITE_DATA) then WriteDataO;

else if (Type == LOAD_TABLES) then LoadTables;
else if (Type == LOAD_LVL) then LoadLvl;

else LoadFlags;

state LoadTables:
!DRDATA := 1; Drive FIFO data lines and ask TABPAL to
LDVT := 1; latch in new tables
goto IdleO;

state LoadFlags:
!DRDATA := 1; Drive FIFO data lines and ask TABPAL to
LDFLAGS := 1; latch in new flags



APPENDIX B. VC SCHEMATICS AND PAL FILES

scmO. abl

goto IdleO;

state LoadLvl:
!DRDATA := 1; Drive FIFO data lines and ask LINEPAL to
LDLVL :=1; latch in new LVL
goto IdleO;

state WriteDataO: Wait here til SCCtl has seen our RamCE request
RamCE := 1;
TabOp = IGNORE; LineOp = IGNORE;
if (!RamCEAck) then WriteDataO;
else WriteDatal;

state WriteDatal:
RamCE := 1;
TabOp = IGNORE; LineOp = IGNORE;
!DRADDR : 1; Enable address and data lines coming
!DRDATA := 1; from FIFO registers...
goto WriteData2;

state WriteData2:
RamCE := 1;
TabOp = IGNORE; LineOp = IGNORE;
!DRADDR := 1; Write into SRAM one cycle later
!DRDATA := 1;
!WRSRAM := 1;
goto WriteData3;

state WriteData3:
RamCE := 1;
TabOp = IGNORE; LineOp = IGNORE;
IDRADDR := 1; And keep address/data valid for 1 more cycle
!DRDATA := 1;
goto WriteData4;

state WriteData4:
TabOp = IGNORE; LineOp = IGNORE;
if (RamCEAck) then WriteData4; Wait for SCCtl to drop RamCEAck

else IdleO;

end ScmO

162

1.

11

11

11

1.

11

1.

1.

11

1.



163APPENDIX B. VC SCHEMATICS AND PAL FILES

scml. ab

module Scml

title 'Scm FSM PAL#1

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

Scml device 'P22V10';

n*** Inputs

FClk
Q0,Q1,Q2,Q3,Q4
TabSync
LVT, LVL
poRESET
SpO

Pin 1;
Pin 2,3,4,5,6;
Pin 7;
Pin 8, 9;
Pin 10;
Pin 11;

State bits

Reached end of tables?
Power-on/global RESET line
Unused spare

"*** Outputs

DRADDR,DRDATA
LINEINC,LINERES
TABINC,TABLD
LDFLAGS,LDVT,LDLVL
WRSRAM

Pin 23,22 istype 'reg,invert'; "Drive registers
Pin 21,20; " LINEPAL signals
Pin 19,18; " TABPAL signals
Pin 17,16,15 istype 'reg,buffer';" More PAL load sigs
Pin 14 istype 'reg,invert'; " Ctrl signal to SRAM

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;

TabOp =
LineOp =
INC =
LOAD =
IGNORE =

[TABINC,
[LINEINC,
[ 1,

[ 0,
[ 1,

TABLD];
LINERES];
0 ];
1 ];
1 ];

"*** State declarations
@include 'scm.sta'

"*** Equations

equations

[DRDATA,DRADDR,LDFLAGS,LDVT,LDLVL,WRSRAM].clk = FClk;

InState(WriteDatal)
InState(WriteData2)
InState(WriteData3);

In_State(LoadTables)
In_State(LoadFlags)
In_State(LoadLvl)
InState(WriteDatal)
InState(WriteData2)

!DRADDR :=

!DRDATA :=
#
#
#
#

I.



164 APPENDIX B. VC SCHEMATICS AND PAL FILES

scml.abl

# InState(WriteData3);

LineOp = (InState(UpdateTab) & LOAD)
# ((InState(UpdateLine) & LVL) & LOAD)
# ((InState(UpdateLine) & !LVL) & INC)
# (InState(WriteDataO) & IGNORE)
# (InState(WriteDatal) & IGNORE)
# (InState(WriteData2) & IGNORE)
# (InState(WriteData3) & IGNORE)
# (InState(WriteData4) & IGNORE);

TabOp = ((InState(UpdateTab)
# ((InState(UpdateTab)
# (InState(WriteDataO)
# (InState(WriteDatal)
# (InState(WriteData2)
# (InState(WriteData3)
# (InState(WriteData4)

& LVT) & LOAD)
& !LVT) & INC)
& IGNORE)
& IGNORE)
& IGNORE)
& IGNORE)
& IGNORE);

LDFLAGS := In_State(LoadFlags);

LDVT := In_State(LoadTables);

LDLVL := In_State(LoadLvl);

!WRSRAM := InState(WriteData2);

end Scml



APPENDIX B. VC SCHEMATICS AND PAL FILES

scm. sta

"*** State declarations
"These pairs require one-bit state bit differences:
" Idle->NewData0

NewData0 -> NewDatal
LoopTilEnd -> Dispatch

" SendErm2, SendErm3 (from SendErml)
" SendErm3 -> SendErm4

Idle = [ 0, 0,
NewData0 = [ 0, 01
NewDatal = [0, 0,
LoopTilEnd = [0, 0,
Dispatch = [0, 0,

WriteData0a = [0, 0,
WriteData0b = [0, 0,
WriteData0c = [0, 0,

WriteDatala = [ 0, 1,
WriteDatalb = [ 0, 1,
WriteDatalc = [ 0,-1,

0, 0, 0,
0 1, 0,
0, 1, 1,
0, 0, 1,
0, 0, 1,

1, 0, 0,
1, 0, 0,
1, 0, 0,

1, 0, 0,
1, 0, 0,
1, 0, 0,

0, 0 ]; "00-0
0, 0 1; "02-0
0, 0 ]; "03-0
0, 0 ; "01-0
0, 1 ]; "01-1

0, 0 ]; "04-0
0, 1 ; "04-1
1, 1 ]; "04-3

0, 0 ]; "06-0
0, 1 ]; "06-1
1, 1 ]; "06-3

WriteData2a =
WriteData2b =
WriteData2c =

0 1, 0, 0 0,
[ 0, 1, 0, 0 0,
[ 0, 1, 0, 0 0,

0, 0 ; "08-0
0, ]; 08-1
1, 1 ; "08-3

ReadData0a
ReadData0b
ReadData0c
ReadData0d

ReadDatala
ReadDatalb
ReadDatalc
ReadDatald

ReadData2a
ReadData2b
ReadData2c
ReadData2d

SendToErm0
SendToErml
SendToErm2
SendToErm3
SendToErm4

= [ 1 0 , 0, , 0 , ]; "10-0
= [ 1, 0, 0, 0, 1, 0, 1 ]; 11-1
= [ 1, 0, 0, 0, 0, 0, 1 ]; "10-1
= [ 1, 0, 0, 0, 0, 1, 1 ]; "10-3

= [ 1, 0, 0, 1, 0, 0, 1 ]; "12-0
= [ 1 0, 0, 1, 1, 0, 1 ]; 13-1
= [ 10, 0, 1, 0, 0, 1 ]; 12-1
= [ 1, 0, 0, 1, 0, 1, 1 ]; "12-3

= [ 1, 0, 1, 1, 0, 0, 0 ]; "16-0
= [ 1, 0 , 1 1 0 1 ]; "17-1
= [ 1, 0, 1, 1, 0, 0, 1 ]; "16-1
= [ 1, 0, 1, 1, 0, 1, 1 ]; "16-3

= [ 1, 1, 0, 0, 0, 0, 0 ]; "18-0
= [ 1, 1, 0, 0, 1, 0, 0 ]; "19-0
= [ 1, 1, 0, 1, 1, 0, 0 ]; "lb-0
= [ 1, 1, 1, 1, 1, 0, 0 ]; "lf-0
= [ 1, 1, 1, 1, 1, 0, 1 ]; "lf-1

165

(00)
(08)
(0c)
(04)
(05)

(10)
(11)
(13)

(30)
(31)
(32)

(20)
(21)
(23)

(40)
(45)
(41)
(43)

(48)
(4d)

(49)
(4b)

(58)
(5d)

(59)
(5b)

(60)

(64)
(6b)
(7b)
(7d)



166 APPENDIX B. VC SCHEMATICS AND PAL FILES



APPENDIX B. VC SCHEMATICS AND PAL FILES

scmct10.abl

module ScmCtlO

title 'SCCtrl FSM PAL#0

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

ScmCtlO device 'P26V12';

"*** Inputs

Clk
HBlk,VBlk
Reload
RamCE
Go
DRCTRS
GReset

Pin
Pin
Pin
Pin
Pin
Pin
Pin

1;
2, 3;
4;
5;
6;
8;
28;

"Horiz and Vert blanking
"Scm request to Reload
"Scm request to enable /DRCTRS
"Sync'd Go signal
" Drive ADDR bits only when !DRCTRS
"Reset signal

"*** Outputs

ReloadAck
RamCEAck
AO,A,A2,A3,A4
Q0,Q1,Q2,Q3,Q4

Pin
Pin
Pin
Pin

27 istype 'reg,buffer'; " ACK for Reload request
26 istype 'reg,buffer'; " ACK for RamCE request
25,24,23,22,20 istype 'reg,buffer'; " RAM address
19,18,17,16,15 istype 'reg,buffer'; " State bits

"*** Aliases

H, L, C, X = 1, 0, C., X.;

"*** State declarations
@include 'scmctl.sta'

"*** RAM Addresses
Addr =
Setup_NOl0_N00
Setup_N03_N02
Setup_N05_N04
Setup_N07_N06
Setup_N09_N08
Setup_NllN10
Setup_N13_N12
Setup_N15_N14
DFB8_Flag

[A3,A2,A1,A0];
= [ 0, 0, 0, 0 ];
= [ 0, 0, 0, 1 ];
= [ 0, 0 1 0];
= [ 0, 0, 1, 1 ];
= [ 0, 1, 0, 0 ];
= [ 0, 1, 0, 1];
= [ 0, 1 1, 0 ];

= [ 1, 0, 0, 0 ];

"*** Equations

equations

[current_state,ReloadAck,RamCEAck,Addr].clk = Clk;
[current_state,ReloadAck,RamCEAck].ar = GReset;
A4 = 0;
Addr.oe = !DRCTRS & !RamCEAck;

167



168 APPENDIX B. VC SCHEMATICS AND PAL FILES

scmctlO .abl

State_Diagram current_state

NOTE: Reload, RamCE, and Go are guaranteed (by ScmO) not to go high
close to each other. In addition, none of them will occur close
to VBlk or HBlk going high.

If we're not in Go condition, loop in Idle looking
for Reload and RamCE requests or a Go condition

state Idle:
" op = ((GReset == 1) & CLEAR_REG);

if (Reload) then RelO;
else if (RamCE) then CEO;

else if (Go) then AwaitVBlanking;
else Idle;

state CEO:
!DRCTRS : 1;
RamCEAck := 1;
if (RamCE) then CEO;

else CE1;
state CE1:
goto HBlankingO; If we actually came here from Idle, we'll

get back to Idle after a hop through
HBlankingO and HBlankingl

When we first see a Go condition, we wait until Eof before doing
anything

state AwaitVBlanking:
if (VBlk) then AwaitVBlanking;
else HBlankingO;

We wait here during HBlanking periods, servicing any Reload or RamCE
requests while we wait for the next Active period

state HBlankingO:
if (!Go # Reload # RamCE) then HBlankingl;
else if (HBlk & VBlk) then ActiveO;

else HBlankingO;
ONLY enter this state if we know Go, Reload or RamCE is true

state HBlankingl:
if (Reload) then RelO;

else if (RamCE) then CEO;
else Idle;

state ActiveO:
Op = GO_INITSTATE;
goto Activel;

state Activel:
Op = NEXT;
if (!HBlk) then HBlankingO;

else Activel;

state RelO: " Enable /DRCTRS
!DRCTRS := 1;
goto RelOa;

state RelOa: "Copy RAM [0] -> SCRegO
Addr = Setup_NOlNOO;
[DRCTRS := 1;



APPENDIX B. VC SCHEMATICS AND PAL FILES

scmctlO. abl

SelO = 1;
Op = LOAD_SETUP;
goto RelOb;

state RelOb: Copy RAM
Addr = SetupN03_N02;
!DRCTRS := 1;

SelO = 1;
Op = LOAD_SETUP;
goto Rella;

state Rella: Copy RAM
Addr = SetupNO5_NO4;
!DRCTRS := 1;

Sell = 1;
Op = LOAD_SETUP;
goto Rellb;

state Rellb: Copy RAM
Addr = Setup_N07_N06;
!DRCTRS := 1;

Sell = 1;
Op = LOAD_SETUP;
goto Rel2a;

state Rel2a: Copy RAM
Addr = Setup_N09_N08;
!DRCTRS := 1;
Se12 = 1;
Op = LOAD_SETUP;
goto Rel2b;

state Rel2b: Copy RAM
Addr = Setup_NlN10;
!DRCTRS := 1;
Se12 = 1;
Op = LOAD_SETUP;
goto Rel3a;

state Rel3a: Copy RAM
Addr = Setup_N13_N12;
!DRCTRS := 1;
Sel3 = 1;
Op = LOAD_SETUP;
goto Rel3b;

state Rel3b: Copy RAM
Addr = Setup_N15_N14;
!DRCTRS := 1;

[1] -> SCRegO

[2] -> SCRegl

[3] -> SCRegl

[4] -> SCReg2

[5] -> SCReg2

[6] -> SCReg3

[7] -> SCReg3

Se13 = 1;
Op = LOAD_SETUP;
goto Rel4;

state Rel4: Copy RAM [8] -> SCReg[0:3]
Addr = DFB8_Flag;
SelO = 1; Sell = 1; Se12 = 1; Sel3 = 1;
Op = LOAD_DFB8;
goto Re15 with ReloadAck := 1; endwith;

state Rel5:
ReloadAck := 1;
if (Reload) then Rel5;
else HBlankingO;

end ScmCtlO

169

11

1.

.1

11

11

11

11

11

11

11



170 APPENDIX B. VC SCHEMATICS AND PAL FILES

scmtll.abl

module ScmCtll

title 'SCCtrl FSM PAL#1

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

ScmCtll device 'P22V10';

"*** Inputs

Clk
Q0,Q1,Q2,Q3,Q4
HBlk,VBlk
ASyncGo
GReset

Pin 1;
Pin 2,3,4,5,6;
Pin 7, 8;
Pin 9;
Pin 13;

"State bits
"Horiz and Vert blanking
"Asynchronous Go signal
"Reset signal

"*** Outputs

Op0,Opl,Op2
SeSell,Sel12,Se13
DRCTRS
Go

Pin 23,22,21; "Op command
Pin 20,19,18,17; "Select SCBlock control lines
Pin 16 istype 'reg,invert';
Pin 14 istype 'reg,buffer';

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;
In_State MACRO (st) { (currentstate == ?st) };

"*** State declarations
@include 'scmctl.sta'

"*** Op command definitions (consistent with scmreg.abl and scmdrv.abl)
@include 'scmctl.ops'

"*** Equations

equations

[DRCTRS,Go].clk = Clk;
Go.ar = GReset;

Go := ASyncGo;

Op = (InState(Idle) & (GReset == 1) & CLEAR_REG)
# (InState(Active0) & GOINITSTATE)
# (InState(Activel) & NEXT)
# (InState(RelOa) & LOAD_SETUP) # (InState(RelOb) & LOAD_SETUP)
# (InState(Rella) & LOAD_SETUP) # (InState(Rellb) & LOADSETUP)
# (InState(Rel2a) & LOAD_SETUP) (InState(Rel2b) & LOADSETUP)
# (InState(Rel3a) & LOAD_SETUP) # (InState(Rel3b) & LOAD_SETUP)
# (InState(Rel4) & LOAD_DFB8);



APPENDIX B. VC SCHEMATICS AND PAL FILES

scmctll. abl

SelO = (InState(RelOa))
# In_State(Rel4);

Sell = (InState(Rella))
# InState(Rel4);

Sel2 = (InState(Rel2a))
# In_State(Rel4);

Sel3 = (InState(Rel3a))
# InState(Rel4);

!DRCTRS := InState(CEO)
# InState(RelO)
# InState(RelO1
# InState(Rellz
# InState(Rel2e
# InState(Rel3z

# (InState(RelOb))

# (InState(Rellb))

# (InState(Rel2b))

# (In State(Rel3b))

a) # InState(RelOb)
i) # InState(Rellb)
a) # InState(Rel2b)
a) # InState(Rel3b);

end ScmCtll

171



172 APPENDIX B. VC SCHEMATICS AND PAL FILES

samctl. ata

"*** State declarations

States transitions that demand single-bit changes only:
Idle -> AwaitVBlanking, CEO, RelO
CEO -> CE1
AwaitVBlanking.-> HBlankingO
HBlankingO -> ActiveO, HBlankingl
Activel -> HBlanking0;

current_state = [Q4,Q3,Q2,Q1,QO];
Idle = 0, 0, 0, 0, 0 ]; "00

AwaitVBlanking =[ 0, 0, 0, 1, 0 ]; "02

CEO = [0, 0, 1, 0, 0 ]; "04
CE1 = [ 0, 0, 1, 0, 1 ]; "05

HBlanking = [ 0, 0, 0, 1, 1 ]; "03
HBlankingl = [ 0, 0, 0, 1 1 ]; "01

Active = [0, 0, 1, 1, 1 ]; "07
Activel = [ 0, 1, 0, 1, 1 ]; "Ob

RelO = [ 1, 0, 0, 0, 0 ]; "10
RelOa = [ 1, 1, 0, 0, 0 ]; "18
RelOb = [ 1, 1, 0, 0, 1 ]; "19
Rella = [ 1, 1, 0, 1, 0 ]; "la
Rellb = [ 1, 1, 0, 1, 1 ]; "lb
Rel2a = [ 1., 1, 1, 0, 0 ]; "lc
Rel2b = [ 1, 1, 1, 0, 1 ]; "ld
Rel3a = [ 1, 1, 1, 1, 0 ]; "le
Rel3b = [ 1, 1, 1, 1, 1 ]; "if
Rel4 = [ 1, 0, 0, 0, 1 ]; "11
Re15 = [ 1, 0, 0, 1, 0 ]; "12



APPENDIX B. VC SCHEMATICS AND PAL FILES 173

It.

A

A I

Ii
jb hiT

6

Irl.



174 APPENDIX B. VC SCHEMATICS AND PAL FILES

scmreg. abl

module ScmReg

title 'ScmReg PAL

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

DESCRIPTION:

ScmReg device 'P26CV12';

"*** Inputs

Clk
Data0, Datal,Data2,Data3
Op0,Opl,Op2
Sel

Pin 1;
Pin 2,3,4,5;
Pin 6,8,9;
Pin 10; "Select line

"*** Outputs
DFB8
OddO,Act0O,Oddl,Actl,

Odd2,Act2,Odd3,Act3

Pin 27 istype 'reg,buffer';

Pin 23,22,20,19,18,17,16,15 istype 'reg,buffer';

"*** For internal use
do_loadsetup
do_load_dfb8
clearreg

Pin 26;
Pin 25;
Pin 24 istype 'reg,buffer';

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;

"*** Op command definitions
(include 'scmctl.ops'

"*** Equations

equations

[OddO..Odd3,ActO..Act3,DFB8,clear_reg].clk = Clk;
[OddO..Odd3,ActO..Act3,DFB8].ar = clear_reg;

do_loadsetup = Sel & (Op == LOAD_SETUP);
do_load_dfb8 = Sel & (Op == LOAD_DFB8);
clearreg := (Op == CLEARREG);

:= (do_loadsetup & DataO)
:= (do_loadsetup & Datal)
:= (do_loadsetup & Data2)
:= (do_loadsetup & Data3)

:= (do_loadsetup & OddO)
:= (do_loadsetup & ActO)
:= (do_loadsetup & Oddl)
:= (do_load_setup & Actl)

# (!do_load_setup & OddO);
# (!do_load_setup & ActO);
# (!do_load_setup & Oddl);
# (!do_load_setup & Actl);

# (!do_loadsetup & Odd2);
# (!do_loadsetup & Act2);
# (!do_loadsetup & Odd3);
# (!do_loadsetup & Act3);

OddO
ActO
Oddl
Actl

Odd2
Act2
Odd3
Act3



APPENDIX B. VC SCHEMATICS AND PAL FILES

scmreg.abl

DFB8 := (do_load_dfb8 & DataO) # (!do_load_dfb8 & DFB8);

end ScmReg

175



176 APPENDIX B. VC SCHEMATICS AND PAL FILES

scmdrv.abl

module ScmDrv

title 'ScmDrv PAL

Eric McDonald January 5, 1994
Last revised: February 15, 1994'

DESCRIPTION:

ScmDrv device 'P26CV12';

"*** Inputs

Clk Pin 1;
OddO,ActO,Oddl,Actl,
Odd2,Act2,Odd3,Act3 Pin 2,3,4,5,11,12,13,14;

OpO, Opl, Op2 Pin 6,8,9;
Sel Pin 10; Select line
DFB8 Pin 28; 8DFB flag

"*** Outputs

SCaO,SCbO,SCal,SCbl,SCa2,SCb2,SCa3,SCb3 Pin 23,22,20,19,18,17,16,15
istype 'reg,buffer'; SClk signals

SCqO,SCql,SCq2,SCq3 Pin 27,26,25,24 istype 'reg,invert';

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;

"*** Op command definitions
@include 'scmctl.ops'

SClk = [SCqO,SCbO,SCaO];
SClkl = [SCql,SCbl,SCal];
SClk2 = SCq2,SCb2,SCa2];
SClk3 = [SCq3,SCb3,SCa3];

"*** State declarations
EnabA = [0, 0, 1 ];
IdleO = [ 0, 0, 0 ];
EnabB = [ 0, 1, 0 ];
Idlel = [ 1, 0, 0 ];
Trap4 = [ 0, 1, 1 ];
Trap5 = [ 1, 0, 1 ];
Trap6 = [ 1, 1, 0 ];
Trap7 = [ 1, 1, 1 ];

do_state_diag macro (SVar,Act,Odd) {
state_diagram ?SVar
state EnabA:

if (?Act & (Op == NEXT)) then
case !DFB8 : EnabB;

DFB8 : IdleO;
endcase;

else if (?Act & (Op == GO_INIT_STATE)) then



APPENDIX B. VC SCHEMATICS AND PAL FILES

scmdrv.abl

case (!DFB8) : EnabA;
(DFB8 & !?Odd) : EnabA;
(DFB8 & ?Odd) : IdleO;

endcase;
else IdleO;

state IdleO:
if (?Act & (Op == NEXT)) then

case !DFB8 : EnabA; Should never reach here
DFB8 : EnabB;

endcase;
else if (?Act & (Op == GO_INITSTATE)) then

case (!DFB8) : EnabA;
(DFB8 & !?Odd) : EnabA;
(DFB8 & ?Odd) : IdleO;

endcase;
else IdleO;

state EnabB:
if (?Act & (Op == NEXT)) then

case !DFB8 : EnabA;
DFB8 : Idlel;

endcase;
else if (?Act & (Op == GO_INIT_STATE)) then

case (!DFB8) : EnabA;
(DFB8 & !?Odd) : EnabA;
(DFB8 & ?Odd) : Idle0;

endcase;
else IdleO;

state Idlel:
if (?Act & (Op == NEXT)) then
case !DFB8 : EnabA; "Should never reach here

DFB8 : EnabA;
endcase;

else if (?Act & (Op == GO_INIT_STATE)) then
case (!DFB8) : EnabA;

(DFB8 & !?Odd) : EnabA;
(DFB8 & ?Odd) : IdleO;

endcase;
else IdleO;

state Trap4:
goto

state Trap5:
goto

state Trap6:
goto

state Trap7:
goto

}

Idle0;

IdleO;

IdleO;

IdleO;

"*** Equations

equations

[SClkO,SClkl,SClk2,SClk3].clk = Clk;

do_state_diag(SClkO,ActO,OddO);

do_state_diag(SClkl,Actl,Oddl);

177



178 APPENDIX B. VC SCHEMATICS AND PAL FILES

scmdrv.abl

do_state_diag(SClk2,Act2,Odd2);

do_statediag(SClk3,Act3,Odd3);

end ScmDrv



APPENDIX B. VC SCHEMATICS AND PAL FILES 179



APPENDIX B. VC SCHEMATICS AND PAL FILES

li

, 
J

n- ul

I 1- I

I I 

i m m I I I I I I I I I I

�1I
Ui

I II

I i I!N My VLNYXSX . ."A~bAAAb

I-
IF -- fl

III I

I I

I II

n - W11111,

I1 r : FF1 II' I s§ss9

I I�.

iI

m7

'4

I I

Ii'

i

II

T T T T TTT TTT TT

i! 1 1 A i A I

9 I h ! 
A A A Ak AE~~~~~~..EU)

It-

WI " I I I I I I I

- - -

a 1 p-f!

- _
. . -

_-_ _ . . - - - -

m

/ 

I · I I I J . h - - -%
I 'L 'LI I I 

I -r -I- -I- -{' 'J 'I' 1'

i
I, I
aAM11 ',:!L

3

,%-Y' . .

I

I e .

'r'V 
'

. . . . . . . . . . I

, id D.

I A

A;I 11

- - -----

B

180

J

I
I
II

I

i
j

]

1

I I

-1

I
l

i

I

A i 

.6 LIg I I

iI
9 2.6I

11

I



181APPENDIX B. VC SCHEMATICS AND PAL FILES

timotrO. abl

module TimCtrO

title 'TIM module HCtrO/VCtrO counter FSM

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

"This PAL compares an 8-bit input value with an internal down counter.
" Asserts CO when counter == 0 and CI == 0,
" asserts Zero when counter == 0 regardless of CI.
"The counter can be decremented with Dec or loaded with Load.

TimCtr0 device 'P22V10';

"*** Inputs

Clock
Dec
Load
@Ifdef HIGH_ORDER
{CI
@Ifndef HIGH_ORDER
{CI = 1;

Pin 1;
Pin 2;
Pin 3;

Pin 4;

" Decrement counter
"Load counter with D inputs

Carry bit input}

"No carry bit input on low order ctr}

D0,D1,D2,D3,D4,D5,D6,D7 Pin 5,6,7,8,9,10,11,13; " Data inputs

"*** Outputs

Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7
CO
Zero

Pin 22,15,21,16,20,17,19,18 istype 'reg,buffer';
Pin 23 istype 'reg,buffer';
Pin 14;

"*** Equations

HOLD = !Dec & Load;
DEC = Dec & !Load;
LOAD = Load;

equations

[CO,Q7..Q0].clk = Clock;

!Q0 := (HOLD &
# (LOAD &
# (DEC &
# (DEC &

!Q1 := (HOLD &
# (LOAD &
# (DEC &
# (DEC &
# (DEC &

!Q0)
!DO)
!CI &
CI &

!Q1)
!D1)
!CI &
Q0 &
CI &

!Q0)

QO);

! Q1)
! Q1)
!Q & Q1);

!Q2 := (HOLD & !Q2)



APPENDIX B. VC SCHEMATICS AND PAL FILES

& !D2)
& !CI &
& Q &
& Q &
& CI &

!Q2)
! Q2)
!Q2)
!Q0 & !Q1 & Q2);

!Q3 := (HOLD & !Q3)
# (LOAD & !D3)
# (DEC & !CI &
# (DEC & Q &
# (DEC & Q1 &
# (DEC & Q2 &
# (DEC & CI &

!Q4 := (HOLD & !Q4)
# (LOAD & !D4)

# (DEC & !CI &
# (DEC & Q0 &
# (DEC & Q1 &
# (DEC & Q2 &
# (DEC & Q3 &

# (DEC & CI &

!Q5 := (HOLD & !Q5)
# (LOAD & !D5)
# (DEC & !CI &
# (DEC & Q0 &
# (DEC & Q1 &
# (DEC & Q2 &
# (DEC & Q3 &
# (DEC & Q4 &
# (DEC & CI &

!Q6 := (HOLD & !Q6)
# (LOAD & !D6)
# (DEC & !CI &
# (DEC & Q0 &
# (DEC & Q1 &
# (DEC & Q2 &
# (DEC & Q3 &
# (DEC & Q4 &
# (DEC & Q5 &
# (DEC & CI &

!Q7 := (HOLD & !Q7)
# (LOAD & !D7)
# (DEC & !CI &
# (DEC & Q0 &
# (DEC & Q1 &
# (DEC & Q2 &
# (DEC & Q3 &
# (DEC & Q4 &
# (DEC & Q5 &
# (DEC & Q6 &
# (DEC & CI &

!Q3)
!Q3)
!Q3)
!Q3)
!Q0 &

Q4)
!Q4)
!Q4)
Q4)
IQ4)
!Q0 &

!Q5)
!Q5)
!Q5)
!Q5)
!Q5)
!Q5)
!Q0 &

!Q6)
!Q6)
!Q6)
!Q6)
!Q6)
!Q6)
!Q6)
!Q0 &

!Q7)
!Q7)
!Q7)
!Q7)
!Q7)
!Q7)
*Q7)
*Q7)
!Q0 &

!Q1 & Q2 & Q3);

!Q1 & !Q2 & !Q3 & Q4);

!Q1 & !Q2 & !Q3 & !Q4 & Q5);

!Q & !Q2 & !Q3 & !Q4 & Q5 & Q6);

!Q1 & !Q2 & !Q3 & !Q4 & !Q5 & !Q6 & Q7);

CO := CI & Q0 & Q1 & Q2 & !Q3 & Q4 & !Q5 & !Q6 & Q7;

182

timctrO .abl

# (LOAD
# (DEC
# (DEC
# (DEC
# (DEC



APPENDIX B. VC SCHEMATICS AND PAL FILES

timctrO .abl

Zero = !QO & !Q1 & !Q2 & !Q3 & !Q4 & !Q5 & !Q6 & !Q7;

end TimCtrO

183



184 APPENDIX B. VC SCHEMATICS AND PAL FILES

timctrl. abl

module TimCtrl

@const HIGH_ORDER = 1;

title 'TIM module HCtrl/VCtrl counter FSM

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

DESCRIPTION:
------------

This PAL compares an 8-bit input value with an internal down counter.
Asserts CO when counter == 0 and CI == 0,
asserts Zero when counter == 0 regardless of CI.

"The counter can be decremented with Dec or loaded with Load.

TimCtrl device 'P22V10';

*** Inputs

Pin
Pin
Pin

Clock
Dec
Load
@Ifdef HIGH_ORDER
{CI
cIfndef HIGH_ORDER
{CI = 1;

1;
2;
3;

Pin 4;

" Decrement counter
"Load counter with D inputs

"Carry bit input}

"No carry bit input on low order ctr}

D0,D1,D2,D3,D4,D5,D6,D7 Pin 5,6,7,8,9,10,11,13; "Data inputs

"*** Outputs

Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7
CO
Zero

Pin
Pin
Pin

22,15,21,16,20,17,19,18 istype 'reg,buffer';
23 istype reg,buffer';
14;

"*** Equations

HOLD = !Dec & !Load;
DEC = Dec & !Load;
LOAD = Load;

equations

[CO,Q7..Q0].clk = Clock;

!Q0 := (HOLD & !Q0)
# (LOAD & !D0)
# (DEC & !CI &
# (DEC & CI &

!Q1 := (HOLD & !Q1)
# (LOAD & !D1)
# (DEC & !CI &
# (DEC & Q &
# (DEC & CI &

! Q))
Q0);

!Q1)
!Q1)
!Q0 & Q);



185APPENDIX B. VC SCHEMATICS AND PAL FILES

timctrl. abl

!Q2 := (HOLD & !Q2)
# (LOAD & !D2)
# (DEC & !CI & !Q2)
# (DEC & Q & !Q2)
# (DEC & Q & !Q2)
# (DEC & CI & !Q & !Q1 & Q2);

!Q3 := (HOLD
# (LOAD
# (DEC

# (DEC
# (DEC
# (DEC
# (DEC

!Q4 := (HOLD
# (LOAD
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC

!Q5 := (HOLD
# (LOAD
# (DEC
# (DEC

# (DEC
# (DEC
# (DEC
# (DEC
# (DEC

!Q6 := (HOLD
# (LOAD
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC

!Q7 := (HOLD
# (LOAD
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC
# (DEC

& !Q3)
& !D3)
& !CI &
& Q0 &
& Q1 &
& Q2 &
& CI &

& !Q4)
& !D4)
& !CI &
& Q0 &
& Q1 &
& Q2 &
& Q3 &
& CI &

& !Q5)
& !D5)
& !CI &
& Q0 &
& Q1 &
& Q2 &
& Q3 &
& Q4 &
& CI &

& !Q6)
& !D6)
& !CI &
& Q0 &
& Q1 &
& Q2 &
& Q3 &
& Q4 &
& Q5 &
& CI &

!Q3)
!Q3)
!Q3)
!Q3)
!Q0 &

!Q4)
!Q4)
!Q4)
!Q4)
!Q4)
!Q0 &

! Q5)
!Q5)
! Q5)
!Q5)
!Q5)
!Q5)
!Q &

!Q1 & !Q2 & Q3);

!Q1 & !Q2 & !Q3 & Q4);

!Q1 & !Q2 & !Q3 & !Q4 & Q5);

!Q6)
!Q6)
!Q6)
!Q6)
!Q6)
!Q6)
!Q6)
!Q0 & Q1 & !Q2 & !Q3 & !Q4 & !Q5 & Q6);

& !Q7)
&
&
&
&
&
&
&
&
&
&

!D7)
!CI &
Q0 &
Q1 &
Q2 &
Q3 &
Q4 &
Q5 &
Q6 &
CI &

!Q7)
!Q7)
!Q7)
! Q7)
!Q7)
!Q7)
!Q7)
!Q7)
!Q0 & !Q1 & !Q2 & !Q3 & Q4 & Q5 & !Q6 & Q7);



186 APPENDIX B. VC SCHEMATICS AND PAL FILES

timctrl.abl

CO := CI & !QO & Q1 & !Q2 & !Q3 & !Q4 & !Q5 & !Q6 & !Q7;
Zero = !QO & !Q1 & !Q2 & !Q3 & !Q4 & !Q5 & !Q6 & !Q7;

end TimCtrl



APPENDIX B. VC SCHEMATICS AND PAL FILES 187

A -1t

jII

k 

I ;
1.

11



188 APPENDIX B. VC SCHEMATICS AND PAL FILES

tim40.abl

module Tim40

title 'TIM Module FSM #0

Eric McDonald
Last revised:

January 5, 1994
June 6, 1994'

" DESCRIPTION:

Tim40 device 'P22V10';

"*** Inputs

FClk
HZero
VZero
RESET

Pin 1;
Pin 3;
Pin 5;
Pin 13;

"LdClk from Bt440
"HCtr is 0
"VCtr is 0
"Global /RESET line

"*** Outputs

BLANK Pin 23 istype reg,buffer';
SYNC Pin 22 istype 'reg,buffer';
HBLK,VBLK Pin 21,20 istype 'reg,buffer';

All of the above outputs are inverted outside of this PAL, so we
are writing for the complements

CSYNC4 Pin 19 istype 'reg,invert';
Q0,Q1,Q2,Q3,Q4 Pin 18,17,16,15,14 istype 'reg,buffer'; "State

"*** State declarations
$include 'tim4.sta'

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;

"*** Equations

equations

current_state.clk = FClk;
current_state.ar = !RESET;

SYNC := L;

StateDiagram current_state
state Init:

~" ~ PAddr := HLinesInVFP;
goto VertFrontPorch0;

with VLoad = H; HLinesInVFP -> VCtr

state HorizActive:
PAddr := HFrontPorch;
HDec = H;
if (HZero) then HorizFrontPorch;

with HLoad = H; HFrontPorch -> HCtr
VDec = H;



189APPENDIX B. VC SCHEMATICS AND PAL FILES

t im4 0o. abl

else HorizActive;

state HorizFrontPorch:
BLANK := H; HBLK := H;
HDec = H;
PAddr := HSync;
if (HZero) then HorizSync;

with HLoad = H;
else HorizFrontPorch;

HSync -> HCtr

state HorizSync:
BLANK := H; HBLK := H; !CSYNC4 := H;
HDec = H;
if (HZero) then

if (VZero) then VertFrontPorchO;
with VLoad = H; HLinesInVFP -> VCtr

PAddr := HActiveInVBlk;
else HorizBackPorch;

with HLoad = H; HBackPorch -> HCtr
else HorizSync;
with PAddr := (VZero & HLinesInVFP) # (!VZero & HBackPorch);

state HorizBackPorch:
BLANK := H; HBLK := H;
HDec = H;
PAddr := HActive;
if (HZero) then HorizActive;

with HLoad = H;
else HorizBackPorch;

HActive -> HCtr

state VertFrontPorchO:
[wait state for registered PROM with registered addr inputs]
BLANK := H; VBLK := H;
goto VertFrontPorchl;

state VertFrontPorchl:
BLANK := H; VBLK := H;
goto VertFrontPorch2;

with HLoad = H; HActiveInVBlk -> HCtr
state VertFrontPorch2:

BLANK := H; VBLK := H;
HDec = H;
PAddr := HSync;
if (HZero) then HorizSyncInVFP;

with HLoad = H;
VDec = H;

else VertFrontPorch2;

HSync -> HCtr

state HorizSynclnVFP:
BLANK := H; !CSYNC4 := H; HBLK := H; VBLK := H;
HDec = H;
if (HZero) then

if (VZero) then VertSyncO;
with HLoad = H; HActiveInVBlk -> HCtr

PAddr := HLinesInVS;
else VertFrontPorch2;

with HLoad = H; HActiveInVBlk -> HCtr

.1

.1



APPENDIX B. VC SCHEMATICS AND PAL FILES

tim4O .abl

else HorizSyncInVFP;
with PAddr := HActiveInVBlk;

state VertSyncO:
[wait state for registered PROM with registered addr inputs]
BLANK := H; !CSYNC4 := H; VBLK := H;
goto VertSyncl;

state VertSyncl:
BLANK := H; !CSYNC4 := H; VBLK
goto VertSync2;

with VLoad = H;
state VertSync2:

BLANK := H; CSYNC4 := H; VBLK
PAddr := HSync;
HDec = H;
if (HZero) then HorizSyncInVS;

with HLoad = H;
VDec = H;

else VertSync2;

:= H;

HLinesInVS -> VCtr

:= H;

HSync -> HCtr

state HorizSyncInVS:
BLANK := H; VBLK := H; HBLK := H;
HDec = H;
if (HZero) then

if (VZero) then VertBackPorchO;
with VLoad = H; HLinesInVBP -> VCtr

PAddr := HSync;
else VertSync2;

with HLoad = H; HActiveInVBlk -> HCtr
else HorizSyncInVS;
with PAddr:=(VZero & HLinesInVBP) # (!VZero & HActiveInVBlk);

state VertBackPorchO:
[wait state for registered PROM with registered addr inputs]
BLANK := H; VBLK := H;
goto VertBackPorchl;

state VertBackPorchl:
BLANK := H; VBLK := H;
goto HorizSyncInVBPO;

with HLoad = H; HSync -> HCtr

state VertBackPorch2:
BLANK := H; VBLK := H;
PAddr := HSync;
HDec = H;
if (HZero) then HorizSyncInVBPO;

with HLoad = H; HSync -> HCtr
VDec = H;

else VertBackPorch2;

state HorizSyncInVBPO:
BLANK := H; !CSYNC4 := H; VBLK := H; HBLK := H;
HDec = H;
if (HZero) then

if (VZero) then HorizSyncInVBPl;
with VLoad = H; HLinesActive -> VCtr

PAddr := HBPaVBP;

190

11

1.

.,



191

tim4 0. abl

else VertBackPorch2;
with HLoad = H; HActiveInVBlk -> HCtr

else HorizSyncInVBP0;
with PAddr:=(VZero & HLinesActive)#(!VZero & HActiveInVBlk);

state HorizSyncInVBPl:
[wait state for registered PROM with registered addr inputs]
BLANK := H; !CSYNC4 := H; VBLK := H; HBLK := H;
goto HorizSyncInVBP2;

state HorizSyncInVBP2:
BLANK := H; !CSYNC4 := H; VBLK := H; HBLK := H;
goto HBPAfterVBP;

with HLoad = H; HB

state HBPAfterVBP:
BLANK := H; VBLK := H; HBLK := H;
HDec = H;
PAddr := HActive;
if (HZero) then HorizActive;

with HLoad = H; HA
else HBPAfterVBP;

3PaVBP -> HCtr

.ctive -> HCtr

APPENDIX B. VC SCHEMATICS AND PAL FILES

end Tim40



APPENDIX B. VC SCHEMATICS AND PAL FILES

tim41.abl

module Tim41

title 'TIM Module FSM #1

Eric McDonald
Last revised:

January 5, 1994
February 15, 1994'

"DESCRIPTION:

Tim41 device 'P22V10';

"*** Inputs

FClk
Q0,Q1,Q2,Q3,Q4
HZero
VZero
RESET

Pin 1; " LdClk from Bt440
Pin 2,3,4,5,6; " Current state
Pin 8; "HCtr is 0
Pin 10; " VCtr is 0
Pin 11; "Global /RESET line

"*** Outputs

HDec,HLoad
VDec,VLoad
PromClk, PClr
PA0,PA1,PA2,PA3

Pin 23,22; "Dec and Load signals to HCtr
Pin 21,20; "Dec and Load signals to VCtr
Pin 19,18 istype 'reg,invert'; Ctrl sigs to PROM
Pin 17,16,15,14; " Address inputs to PROM

"*** State declarations
@include 'tim4.sta'

"*** Aliases

H, L, C, X = 1, 0, .C., .X.;

In_State MACRO (st) { (current_state == ?st) };

PAddr = [PA3..PA0];

"PROM addresses of parameters used by timing FSM

HFrontPorch
HSync
HBackPorch
HActive

HLinesActive
HLinesInVFP
HLinesInVBP

HActiveInVBlk
HBPaVBP
HLinesInVS

= [0, 0, 0, 0];
= [0, 0, 0, 1];
= [0, 0, 1, 0];
= [0, 0, 1, 1];

= [0, 1, 0, 0];
= [0, 1, 0, 1];
= [0, 1, 1, 0];

= [0, 1, 1, 1];
= [1, 0, 0, 01];
= [1, 0, 0, 1];

"*** Equations

equations

PromClk = FClk;

192



APPENDIX B. VC SCHEMATICS AND PAL FILES 193

tim4 1.abl

HDec In_State(HorizActive)
# InState(HorizFrontPorch)
# InState(HorizSync)
# InState(HorizBackPorch)
# InState(VertFrontPorch2)
# InState(HorizSyncInVFP)
# In_State(VertSync2)
# InState(HorizSyncInVS)
# InState(VertBackPorch2)
# InState(HorizSyncInVBPO)
# InState(HBPAfterVBP);

HLoad = (InState(HorizActive) & HZero)
# (InState(HorizFrontPorch) & HZero)
# (InState(HorizSync) & HZero & !VZero)
# (InState(HorizBackPorch) & HZero)
# InState(VertFrontPorchl)
# (InState(VertFrontPorch2) & HZero)
# (InState(HorizSyncInVFP) & HZero)
# (InState(VertSync2) & HZero)
# (InState(HorizSyncInVS) & HZero & !VZero)
# InState(VertBackPorchl)
# (InState(VertBackPorch2) & HZero)
# (InState(HorizSyncInVBPO) & HZero & !VZero)
# InState(HorizSyncInVBP2)
# (InState(HBPAfterVBP) & HZero);

VDec = (InState(HorizActive) & HZero)
# (InState(VertFrontPorch2) & HZero)
# (InState(VertSync2) & HZero)
# (InState(VertBackPorch2) & HZero);

VLoad = In_State(Init)
# (InState(HorizSync) & HZero & VZero)
# In_State(VertSyncl)
# (InState(HorizSyncInVS) & HZero & VZero)
# (InState(HorizSyncInVBPO) & HZero & VZero);

!PClr := 0;

PAddr := (InState(Init) & HLinesInVFP)
# (InState(HorizActive) & HFrontPorch)
# (In-State(HorizFrontporch) & HSync)
# (InState(HorizSync) & HZero & HActiveInVBlk)
# (InState(HorizSync) & !HZero & VZero & HLinesInVFP)
# (InState(HorizSync) & !HZero & !VZero & HBackPorch)
# (InState(HorizBackPorch) & HActive)
# (InState(VertFrontPorch2) & HSync)
# (InState(HorizSyncInVFP) & HZero & HLinesInVS)
# (InState(HorizSyncInVFP) & !HZero & HActiveInVBlk)
# (InState(VertSync2) & HSync)
# (InState(HorizSyncInVS) & HZero & HSync)
# (InState(HorizSyncInVS) & !HZero & VZero & HLinesInVBP)
# (InState(HorizSyncInVS) & !HZero & !VZero & HActiveInVBlk)
# (InState(VertBackPorch2) & HSync)



194 APPENDIX B. VC SCHEMATICS AND PAL FILES

tim41. abl

# (InState(HorizSyncInVBPO) & HZero & HBPaVBP)
# (InState(HorizSyncInVBPO) & !HZero & VZero & HLinesActive)
# (InState(HorizSyncInVBPO) & !HZero & !VZero & HActiveInVBlk)
# (InState(HBPAfterVBP) & HActive);

end Tim41



195APPENDIX B. VC SCHEMATICS AND PAL FILES

tim4. sta

current_state = [Q4..QO];

Init
HorizActive
HorizFrontPorch
HorizSync
HorizBackPorch

VertFrontPorchO
VertFrontPorchl
VertFrontPorch2
HorizSyncInVFP

VertSyncO
VertSyncl
VertSync2
HorizSyncInVS

VertBackPorchO
VertBackPorchl
VertBackPorch2
HorizSyncInVBPO
HorizSyncInVBPl
HorizSyncInVBP2
HBPAfterVBP

= [ 0, 0, 0, 0, 0 ]; "0

= [ 0, 0, 0 1 ]; "1
= [ 0, 0, 0, 1, 1 ]; "3
= [ 0, 0, 0, 1, 0 ]; "2

= [ 0, 0, 1, 1, 0 ]; "6

= [ 0, 1, 0, 1, 0 ]; "a
= [ 0, 1, 0, 0, 0 ]; "8

= [ 0, 1, 0, 0, 1 ]; "9
= [ 0, 1, 1, 0, 1 ]; "d

= [ 0, 1, 1, 0, 0 ]; "c
= [ 1 1, 0, 0 ]; "lc

= [ 1, 1, 0, 0, 0 ]; "18

= [1 1, 0, 0, 1 ]; "19

= [ 1, 0 1, 0, 0 ]; "14
= [0 0, 1, 0, 0 ]; "4

= [ 0, 0, 1, 0, 1 ]; "5
= [ 0, o, 1, 1, 1 ]; "7
= [ 1, 0, 1, 1, 1 ]; "17

= [ 1, 0, 1, 0, 1 ]; "15
= [ 1, 0 1, 1, 0 ]; "16



196 APPENDIX B. VC SCHEMATICS AND PAL FILES



APPENDIX B. VC SCHEMATICS AND PAL FILES

I

C I

o.xl tt 0-

c, c IC C

0_ 

IL a.

C I
c1 !
0~

197

I

jSi I

IX



198 APPENDIX B. VC SCHEMATICS AND PAL FILES

A

5 i d

jI I I 

. I M.



APPENDIX B. VC SCHEMATICS AND PAL FILES

r ffff;f- _..rrr';_ , *' ?

I

I~~~~~~~~~~~~~~~~~~~~I
£

I******** *********

199



200 APPENDIX B. VC SCHEMATICS AND PAL FILES



Bibliography

[1] K. Akeley and T. Jermoluk. High-Performance Polygon Rendering. Computer Graph-
ics, 22(4):239-246, August 1988.

[2] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen Scher Zagier. Frameless
Rendering: Double Buffering Considered Harmful. Proceedings of SIGGRAPH '94. In
Computer Graphics Proceedings, 1994, ACM SIGGRAPH. pages 175-176.

[3] Electronic Industries Association Engineering Dept. Electrical Performance Standards
for High Resolution Monochrome Closed Circuit Television Camera. Technical Report
EIA-343-A, Electronic Industries Association, September 1969.

[4] Jerko Fatovic. A Ray Tracer for the J-Machine. MS Thesis, Massachusetts Institute
of Technology Department of Electrical Engineering, May 1992.

[5] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles
and Practice. Addison-Wesley, Reading, MA, 1990.

[6] H. Fuchs and B. Johnson. prepublication draft of "An Expandable Multiprocessor
Architecture for Video Graphics". Proceedings of the 6th ACM-IEEE Symposium on
Computer Architecture, pages 58-67, April 1979.

[7] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed Rendering Using Image
Composition. Computer Graphics, 26(2):231-240, July 1992.

[8] Michael Noakes and John Cha. J-Machine Host Interface Specification. MIT VLSI
Memo, Dec 1993.

[9] Michael Noakes and William J. Dally. System Design of the J-Machine. In William J.
Dally, editor, Sixth MIT Conference of Advanced Research in VLSI, pages 179-194,
Cambridge, MA 02139, 1990. The MIT Press.

[10] M. Potmesil and E. Hoffert. The Pixel Machine: A Parallel Image Computer. Computer
Graphics, 23(3):69-78, July 1989.

[11] Thucydides Xanthopoulos. A Disk Array for the J-Machine. BS Thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science,
May 1992.

201



BIBLIOGRAPHY

[12] Sasan Zamani. A Scalable Distributed Frame Buffer for the J-Machine. BS The-
sis, Massachusetts Institute of Technology, Department of Electrical Engineering and
Computer Science, May 1991.

-) '? 1-_.!C_ , .

202


