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Abstract
An optical system is investigated to generate tunable coherent radiation at 1.6 /um by
difference-frequency mixing (DFM) in cesium titanyl arsenate (CsTiOAsO4 , CTA).
The input laser sources are provided by a krypton-ion laser at Ap = 530.9 nm and a
Ti:sapphire ring laser whose output is tunable from As = 770 - 810 nm. To increase
the generated output power, the CTA crystal is placed inside a cavity, forming a
configuration for resonant difference-frequency mixing (RDFM).

To verify the feasibility of the proposed schemes, DFM and RDFM experiments
were performed. The generated output by DFM was tunable from 1566.9 nm to
1652.5 nm with output powers in the 1 uW range for a pump power of 156 mW
and a signal power of 37 mW. The phase-matching angles for DFM in CTA were also
experimentally measured and were compared with those calculated from the Sellmeier
equations for CTA. The RDFM experiment was performed for a fixed input signal at
A8 = 790.0 nm. The maximum generated output idler power at Ai = 1618.7 nm was
100 W for pump and signal powers of 230 mW and 57 mW, respectively.
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Chapter 1

Introduction

The laser has made a significant impact in many areas of research by providing a

highly coherent source for a wide variety of applications. The numerous types of

available lasers can cover a wide wavelength range, but the tuning range of any single

laser is, with a few exceptions, very limited. After the laser was invented in the late

1950's, intensive research was performed to develop sources that can provide tunable

coherent radiation for the entire optical spectrum. Many applications require sources

whose output frequencies can be tuned continuously over a broad spectrum. High-

resolution spectroscopy requires a tunable coherent cw radiation that can provide

precise wavelength resolution, high power, and good frequency and amplitude stabil-

ity. A wavelength resolution of better than 1 MHz and an output power greater than

1 /W are desirable for high sensitivity and time-resolved absorption spectroscopy.[8]

A wideband highly coherent tunable light source is especially convenient in such areas

as quantum optics where measurements in the atomic levels and of fundamental phys-

ical constants are required. For precision optical measurements, a coherent optical

frequency sweep generator (OFSG) with the frequency coverage from the ultraviolet

to the infrared is required as a coherent light source.[27]

A variety of nonlinear frequency conversion techniques can be used to cover a

wide frequency range and to generate new frequencies of light. Ironically it was the

laser that was responsible for the practical applications of these nonlinear devices.

Perhaps the simplest approach to generating tunable radiation is second-order para-
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metric generation in nonlinear crystals. Optical parametric generation (OPG) in

various nonlinear crystals can provide a practical means to generate coherent tunable

radiation from the ultraviolet to the far infrared. The main advantage of OPG sources

over conventional tunable sources such as dye lasers is that they offer a much broader

tuning bandwidth. In addition, OPG sources can generate radiation in regions that

are not conveniently accessible by laser sources and can have very high efficiencies.

Most of the nonlinear second-order interactions can be viewed as three-wave mix-

ing (3WM) processes in which the interaction of two input waves in a second-order

nonlinear crystal generates a third wave. If the two input waves at the lower frequen-

cies wI and w2 generate a higher frequency wave at w 3 = w1 + w2 , then the process is

called sum-frequency mixing (SFM). For the special case of SFM where the two input

waves are degenerate ( 1 = w2 = w), we have second-harmonic generation (SHG)

since an output at w3 = 2w is generated. The other possible interaction in which the

two input waves at w3 and w2 (w3 > w2 ) generate a wave at Wl = 3 - w2 is called

difference-frequency mixing (DFM). In each of these processes, conversion of energy

among the three electromagnetic waves takes place under the condition wl + w2 = w3.

By 1965, all the basic three-wave mixing techniques, including optical parametric

amplification and optical parametric oscillation, had been demonstrated using a vari-

ety of lasers and nonlinear materials.[7] After the initial progress in the theoretical and

experimental studies of three-wave mixing, the development of this kind of tunable

source in practical applications was hampered by the limitations of available pump

lasers and the lack of nonlinear crystals with desirable properties. Common problems

at that time included optical damage to the nonlinear crystal, insufficient crystal

nonlinearities, and overly stringent requirements on the laser source. In recent years,

interest in three-wave mixing has been renewed because of improved laser sources

and improved quality and variety of nonlinear crystals. Innovations in the growth

of nonlinear crystals have produced new and better crystals with sufficiently large

nonlinearities, high laser damage thresholds, and wide transparency ranges. Some

of these nonlinear crystals produced during the past twenty-five years include potas-

sium dihydrogen phosphate (KDP), potassium titanyl phosphate (KTP), beta barium

12



P Crystal Wi = -
ws

Figure 1-1: The difference-frequency mixing process.

borate (BBO), lithium triborate (LBO), silver thiogallate (AgGaS2), lithium iodate

(LiIO3), lithium niobate (LiNbO3), and potassium niobate (KNbO3). As tunable

sources by three-wave mixing have improved, they have attracted renewed interest

in such applications as combustion diagnostics, process control, remote sensing and

environmental monitoring.[13]

1.1 Difference Frequency Mixing

As discussed earlier, difference-frequency mixing (DFM) involves two input waves

incident on a second-order nonlinear medium to generate a third wave at the difference

frequency of the two input waves. This DFM process is shown in Figure 1-1. Using

the conventional terminology for DFM, we will refer to the high frequency input wave

as the pump (p), the low frequency input wave as the signal (ws), and the output

wave as the idler (wi). Therefore, the generated idler frequency can be expressed as

Wi = Wp - Ws.

According to this equation, the idler frequency can be tuned by varying the pump

and/or the signal frequency. The common approach is to generate the idler frequency

using a tunable laser and a fixed frequency laser as the input sources. For this thesis, a

krypton-ion laser provides a fixed wavelength output for the pump and a Ti:sapphire

laser is the tunable source for the signal frequency.

Difference-frequency mixing is mainly used to generate coherent radiation in the

infrared region. Currently, a wavelength range of great interest in the infrared region

is around 1.5 - 1.6 um for optical fiber communications. The main sources for this

wavelength region are diode lasers. However, the cw output powers and linewidths

13



of diode lasers are generally unsatisfactory for many applications. In addition, the

tunability of any one particular diode laser is limited even though a combination

of many diode lasers can be used to cover a large wavelength region. Difference-

frequency mixing in nonlinear crystals provides an attractive and simple method to

improve these deficiencies of diode lasers.

Generation of tunable infrared radiation by difference-frequency mixing in non-

linear crystals has been widely studied. A large majority of the published article on

DFM involves pulsed sources, while cw sources are reported less frequently. A cw

pump source offers significantly smaller spectral linewidths than a pulsed source, bet-

ter frequency stability, and continuous scan possibilities. However, the disadvantage

of cw sources is a lower conversion efficiency. For cw DFM, output idler powers are

limited to the W levels for inputs in the 100 mW levels.

Difference-frequency mixing was first demonstrated as a convenient, tunable cw

light source for high-resolution infrared spectroscopy by Pine.[23] The spectrometer

was realized by mixing the single-frequency outputs from an argon-ion laser and a tun-

able cw dye laser in a lithium niobate (LiNbO3 ) crystal to generate a 0.5 W output

from 2.2 to 4.2 gm. Wellegehausen et al. obtained tunable cw infrared radiation from

2.3 to 4.6 pm at about 0.5 W by noncollinear difference-frequency mixing in lithium

iodate (LiIO3).[30] More recently, Heilscher et al. built a cw laser spectrometer based

on DFM using Ti:sapphire and dye lasers in silver thiogallate (AgGaS2) to gener-

ate outputs from 4.76 to 6.45 /m.[16] Wang and Ohtsu reported DFM in potassium

titanyl phosphate (KTP) at 1.6 m by using two cw single-frequency MQW-DFB

diode lasers at 0.78 m and 1.54 Mm to produce an output of 0.3 /W tunable from

1.58-1.62 m.[27]

This thesis investigates a tunable light source similar to that of Wang and Ohtsu.

The main difference is that the 1.6 m output by difference-frequency mixing is per-

formed in cesium titanyl arsenate (CsTiOAsO4 , CTA),[9] using a krypton laser and

Ti:sapphire laser as inputs. CTA is a relatively new nonlinear crystal that is iso-

morphic to KTP and belongs to an orthorhombic system with point group symmetry

mm2. CTA is a positive biaxial crystal with n < < < n, where n is the refrac-

14
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tive index and the subscripts x, y and z refer to the three crystallographic axes.

CTA has many desirable optical properties, including large nonlinear coefficients, a

high damage threshold, good thermal and chemical stability, and a wide tempera-

ture bandwidth for angle phase-matching.[9] Since CTA exhibits a broader infrared

transparency range from 0.35 to 5.3 um and slightly larger nonlinear coefficients than

KTP, CTA is potentially better suited than KTP for three-wave mixing at larger

wavelengths.

Difference-frequency mixing requires phase-matching among the three interacting

waves, limiting the range of idler wavelengths that can be generated. Wavelength

tuning of the output idler is then typically achieved by angle or temperature tuning

the nonlinear crystal. The Type II phase-matching curve calculated from the Sellmeier

equations for CTA is shown in Figure 1-2. According to this graph, to achieve the

desired idler output at Ai 1.6 ,um for a fixed pump wavelength of Ap = 530.9 nm, the

required Ti:sapphire laser output wavelength is from As 780-800 nm. Furthermore,

the range of phase-matching angles is small enough for one CTA crystal to cover a

large wavelength region. At the present, no experimental demonstration of difference-

frequency mixing in CTA has been reported. In fact, this thesis provides the first

demonstration of cw optical parametric generation in CTA.

1.2 Resonant Difference-Frequency Mixing

One way to increase the conversion efficiency of a three-wave mixing process is to

place the nonlinear crystal inside an optical cavity. The feedback provided by the

cavity enhances the interacting waves that are propagating back and forth inside

the resonator. If the increased gain can balance the losses of the cavity, parametric

oscillation can occur. For this optical parametric oscillator (OPO), the only input

beam is the pump as shown in Figure 1-3. The signal and idler photons generated

from parametric fluorescence oscillate forward and backward in the cavity and are

amplified each time they propagate through the crystal. Therefore, tunable outputs

can be obtained if the output mirror is partially transparent for the signal and/or

16
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Figure 1-3: Configuration for an optical parametric oscillator.
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Figure 1-4: Configuration for resonant difference-frequency mixing.

idler.

For a very lossy cavity, a high power pump laser is required to achieve optical

parametric oscillation. If such a laser is unavailable, oscillation will not be possible.

In this case, a resonant difference-frequency mixing (RDFM) process as shown in

Figure 1-4 can be constructed. The configuration for RDFM is similar to that of the

OPO except that the RDFM process requires two inputs (the pump and the signal)

for tunable operation. For a given crystal and phase-matching configuration, the

important parameters for RDFM, as well as DFM, are crystal length, walk-off angle,

absorption of the crystal at the interacting wavelengths, nonlinear coefficients of the

crystal, and focusing of the pump and the signal.

While an optical parametric oscillator is the more useful application, resonant

difference-frequency mixing can provide valuable information on the small signal per-

formance of an OPO. Since optical parametric oscillators are threshold devices, knowl-

edge of the gain in RDFM can improve the design and optimization of an OPO. In

addition, RDFM is an attractive tunable source because it can increase the gain of

the DFM process by as much as a factor of 1000.

17



1.3 Thesis Organization

This thesis describes a technique to generate tunable output light at 1.6 am by

difference-frequency mixing in CTA. To increase the generated idler power, the CTA

crystal is placed inside a cavity for resonant difference-frequency mixing. Chapter 2

reviews the basic theories of nonlinear optics needed to provide the theoretical back-

ground for DFM and RDFM. Chapter 3 presents the theoretical framework for the

generation of tunable light by DFM and RDFM in CTA. Chapter 4 outlines the pro-

cedures and results of the experiments performed on the proposed DFM and RDFM

schemes. Finally, Chapter 5 summarizes the contents of the thesis and suggests fur-

ther potential research ideas.

18



Chapter 2

Review

This chapter reviews the relevant topics in electromagnetic wave theory and nonlinear

optics for establishing the theoretical foundation of difference-frequency mixing. The

main emphasis of this chapter is to derive the system of equations describing the three-

wave coupling process in a nonlinear medium which form the basis for the theory

of difference-frequency mixing and resonant difference-frequency mixing. First in

Section 2.1, we explain the nonlinear interaction between an electromagnetic wave and

a medium using a simple classical model. The electric polarization which describes

the nonlinear response of the medium to the electromagnetic wave is then introduced

in Section 2.2. Next, we present Maxwell's equations in Section 2.3. Maxwell's

equations are then used to obtain the wave equation in Section 2.4. The coupled

wave equations for the three waves interacting in a nonlinear medium with a second-

order nonlinear polarization are derived in Section 2.5. Finally, conservation of energy

among the three interacting waves is demonstrated from the coupled wave equations

in Section 2.6.

2.1 Theory of Nonlinear Interactions

The nonlinear optical effects for optical parametric generation can be explained by

considering the propagation of an electromagnetic wave through a medium. We will

use the electron oscillator model to describe the response of the atoms of the medium

19



when they interact with the electromagnetic wave. Initially, each electron in an atom

is in a certain equilibrium state. The incident wave then displaces the electrons from

their equilibrium state, inducing oscillating dipole moments. These electric dipoles

then immediately serve as secondary sources for new electromagnetic fields. If the

energy provided by the incident light is small compared to the binding energy of the

electrons, then the dipoles will oscillate and emit radiation at the same frequency as

the incident field. As the intensity of the input wave increases to the correspond-

ing energy levels greater than or comparable to the binding energy, the relationship

between the intensity of the input field and the amplitude of the dipole oscillations be-

comes nonlinear. Therefore, the oscillating dipoles will emit radiation at frequencies

different from that of the input beam.

2.2 The Nonlinear Polarization

The nonlinear effect due to a sufficiently high intensity field incident upon a medium is

characterized by the relationship between the induced electric dipole moment per unit

volume P and the input electric field strength E. If we treat the nonlinear contribution

to the interaction as a small perturbation on the linear effects, the polarization of the

medium can be expressed as a Taylor series in terms of the electric field within the

medium:

P = P1 EOX(1) E + PNL- (2.1)

where the first-order term represents the linear polarization of the medium that is

responsible for ordinary optical phenomenon, PNL = 60[P2X(2)E 2 + P3X(3) E 3 + ... ]

is the nonlinear polarization induced by the input electric fields in the medium, E0 is

the permittivity of free space, and X(m) is the mth-order susceptibility.

For difference-frequency mixing, the nonlinear interactions are second-order. In

this case, the nonlinear contribution to the induced polarization is quadratic in the

electric field,

PNL = P 2 O2X ® )E1E2 ,

20



where X( is the second-order optical susceptibility. Since x(2 is a three-dimensional

tensor, the second-order nonlinear polarization can be expressed as

Pi = Pio E X)EjEk,
jk

where i, j, and k each take the coordinate components x, y and z. Conventionally, in

experimental optics the nonlinear coefficient tensor di3k is used instead of X()which

are related by[12]

X(2) - 2dijk.ijk - 23

In addition, we can further simplify the second-order nonlinear polarization by using

a scalar parameter called the effective nonlinear coefficient (deff). In this case, the

second-order nonlinear polarization is[3]

PNL = P2eodeffE1E2 , (2.2)

where P is the unit vector for the second-order nonlinear polarization. The value of

deff depends on the phase-matching condition (Type I or Type II), the crystal class,

and the orientation of the polarization and propagation direction with respect to the

optical axis.

2.3 Maxwell's Equations

The basis of electromagnetic wave theory is Maxwell's equations which describe the

propagation of electromagnetic waves in any given medium. In mnks units, Maxwell's

equations in differential form are[21]

OBFaraday's Law: V x E=-
at

ODAmpere's Law: V x H = - +J
at

Gauss's Law for Electric Fields: V D = p

Gauss's Law for Magnetic Fields: V B = 0
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where V = k + - + iz° is the del operator, E is the electric field strength [V/m],

H is the magnetic field strength [A/m], D is the electric displacement field [C/m2],

B is the magnetic flux density [W/m2 ], J is the electric current density [A/m2], and

p is the electric charge density [C/m3]. The characteristics of the nonlinear medium

is described by the constitutive relations:

D = cE (2.3)

B = puH (2.4)

J = rE (2.5)

where the permittivity e, permeability ,u, and conductivity are the parameters that

characterize the medium. Note that Equation 2.5 is known as Ohm's Law.

For this analysis, we will assume the nonlinear medium is nonconducting and

lossless (o = 0), free from charge (p = 0), and nonmagnetic ( = g 0). In this case,

Maxwell's equations and the constitutive relations reduce to

V xE = -Oat (2.6)

VxH = at (2.7)

V D = 0 (2.8)

V B = 0 (2.9)

D = oE + P (2.10)

B = /oH (2.11)

J = 0 (2.12)

where 0 = 8.85 x 10- 12 F/m and o = 4r x 10- 7 H/m are the permittivity and

permeability of free space, respectively. Note that in Equation 2.10 we have expressed

D as a function of the electric polarization P described in the previous section.
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2.4 The Wave Equation

In nonlinear interactions, the propagation of the electric field in a nonlinear medium

is described by the wave equation. This equation can be derived from Maxwell's

equations. If we take the curl of Equation 2.6 and substitute Equation 2.11 for B,

then

V x (V x E)=--oa(VxH).

Using the identity V x (V x E) = V(V E) - V2E and Equation 2.7, we obtain

V(V. E) - V2E = -~0 D '(2D 3V(V E)-_V2 E =-,o at2 . (2.13)

From Equations 2.8 and 2.10, we see that in general V.E 0 when P exists. However,

if we consider only transverse waves where the electric field and polarization are

orthogonal to the propagation direction, then V E = 0. In this case, Equation 2.13

reduces to

at2V2E--z0t · 2
Substituting Equation 2.10 into this equation for D, we get

V2 E 02E 02p
V2E =/~e0-,- Z +0 2 -t2 ·

Assuming E and P are parallel and substituting Equation 2.1 for P, we obtain the

wave equation for a nonlinear medium with a driving term due to the nonlinear

polarization,

V2 E - ILE [i ± x(1)] 2 - aPN14
V 9t2o at2 (2.14)

This wave equation is the fundamental equation describing the propagation of an

electromagnetic wave in any nonlinear medium.
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2.5 The Coupled Wave Equations

The three-wave interaction in a nonlinear medium can be described by a set of cou-

pled wave equations which are obtained by solving the wave equation. We will assume

the solution to the wave equation is a general quasi-monochromatic wave which can

be written as the product of a plane, monochromatic wave and a slowly varying

amplitude. For simplicity, we will assume that the three interacting waves are co-

propagating along the z direction. (Note that this direction is arbitrary with respect

to the crystallographic axes of the nonlinear medium.)

Within the medium, the total electric field can be expressed as a superposition of

the electric fields of the three interacting waves,

E - Ep + E + El, (2.15)

where Em is the electric field of each interacting wave given by

Em = emEm(z,t)

= emEm(z)e- ji(kmz -wmt) (2.16)

Here Em(z, t) is a slowly varying function of space and time, Em(z) is the complex

field amplitude, km = /_2o, is the wave vector, and = e0 [1 + X( 1)] is the effective

permittivity of the nonlinear medium. Note that the subscript m = p, s, i denotes the

pump, signal and idler, respectively. This notation will be used for the remainder of

this thesis.

Similarly, the total nonlinear polarization in the medium for second-order nonlin-

ear interaction is the sum of the individual polarizations of each interacting field,

PNL = PP + Ps + Pi, (2.17)

where Pm = I5mPm(Z, t) is the second-order nonlinear polarization produced for each
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interacting wave and Pm(z, t) are determined using Equations 2.2 and 2.16,

Pp(z, t)

P (z, t)

Pi(zt)

22c.deffE (z)E, (z)e-3[(ksk,)z-(ws+gw)t]

-2E0deff pZ ()Ez (z)eJ[(kp-k,)z-(wp-,,)ti

= 2codeffEp(z)E* (Z)e-[(kP-ks)z-(w-ws)t]

(2.18)

(2.19)

(2.20)

Substituting Equations 2.15 and 2.17 into the wave equation (Equation 2.14), we

obtain three separate expressions for each of the interacting waves given by

em ( 2Em(z' t)_2jk"
Oz2 jm

OE, (z t) 2 m( - 2 /oc wmtE (zt)
- Io Ot2 at

P "Pm(z t)
Pm*o fat2

OP , m(z t) Pm(
at 

To simplify this equation, we use the slowly varying amplitude assumptions that

aEm(z, t)
km*

az

aEm (z t)
Wm at

02 E(, (Zt)

az 2

f2 Em(z, t)

at2

and

LO2/~oPM (Zt aP(, ) tWULOM m(Z t)»W at
O22Pm (Z, t)at2

Therefore, the slowly varying envelope approximation reduces Equation 2.21 to

0Em(z, t) + Em(z t)
az + 2jWmkoE at ] Pm Wm2O P (, t).

For this analysis, we have assumed that 8m and Pm are parallel. As a result, the

previous expression simplifies to

+ nm aEm (z, t)
c at

- jWmoc p (Z, ),
2nm

where nm is the refractive index and c 1 3 x 108 m/s is the speed ofco 1/0 io
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"m [2jkr

OEm(z t)

az (2.22)



light. In steady-state, - 0 and Equation 2.22 reduces to

OEm(z,t) - jWmOCp( t). (2.23)
OZ 2nm

Substituting Equations 2.18 to 2.20 into this equation for Pm(z, t), we obtain a set of

coupled wave equations:

Mp (z) = jw , g~~~E(~ jAkzEaz -J deff E,(z) Ei(z)ev e(2.24)
O9z npc

ri:c
E (z) = deffEp (z)E* (z)ejkz (2.25)

az nicMi (z) = jooidfEpz s (zejk19Z nic deff Ep (Z) E~~~~, (2.26)

where A\k = k- - ki is the phase mismatch between the interacting waves.

2.6 Energy Conservation

If we first take the complex conjugate of Equation 2.24 and then multiply the three
coupled equations (Equations 2.24 to 2.26) by nnEp(z) .E,(z) and nE(z, re-

wp ' Ws Wi

spectively, we get

np aEp2(z) = jdeff,.,_,,.EE EeAkz
nS )=_jdeff EpEa, = e (2.27)

Wp '9z C

n, E 2(z) jd~ff-- - -EpZEEe j Akz , (2.28)

ni DEi2 (z) _ jdeff EpE;EjejAkZ (2.2)wi Oz c
Wi aZ C ' 'EpEE " E . (2.29)

The intensity of each interacting wave is related to its electric field by

1 2
Im = -nmceoE (z). (2.30)

2

Using this expression, we see that Equations 2.27 to 2.29 are related by

1 alp I alIs I aIi
Wp z ws sz wi z
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This equality, known as the Manley-Rowe relations, represents the conservation of

photon energy. Each of the three equal terms describes the rate of change of the

number of photons at the corresponding frequency. Therefore, difference-frequency

mixing as well as other second-order nonlinear processes can be described in terms of

a photon model. The DFM process can be viewed as the decay of a pump photon into

a signal photon and an idler photon stimulated by the signal radiation. As a result, for

every idler photon generated, a pump photon is destroyed and an additional signal

photon is also created. Therefore, the DFM process can also be viewed as optical

parametric amplification of the signal wave.
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Chapter 3

Theory

In this chapter, we present the theory of difference-frequency mixing and resonant

difference-frequency mixing. The aim of this chapter is to formulate the equation

for calculating the output idler power for DFM and RDFM. In addition, we extend

the plane-wave theory of the previous chapter to include the effects of the Gaussian

profiles of the beams and Poynting vector walk-off. First, we derive the equation

for the generated output idler power by difference-frequency mixing in Section 3.1.

Next, the concept of phase-matching is introduced in Section 3.2 to optimize the

DFM process. The angle phase-matching condition for DFM in biaxial crystals is

then formulated in Section 3.3. Angle phase-matching is limited by the acceptance

angle which is discussed in Section 3.4. The coupled wave equations for resonant

difference-frequency mixing is then presented in Section 3.5. Using these equations,

we derive the equation to determine the maximum output idler power generated by

RDFM in Section 3.6. Finally, the expression for calculating the minimum threshold

for optical parametric oscillation is derived in Section 3.7.

3.1 The Generated Output Idler Power by DFM

In this section, we derive the expression to calculate the output idler power gener-

ated by difference-frequency mixing using the coupled wave equations in Section 2.5.

This derivation follows from the theory of nonlinear interaction among three single-
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Figure 3-1: Difference-frequency mixing in a second-order nonlinear crystal.

mode electromagnetic fields formulated in a classic paper by Armstrong, et al.[1] The

difference-frequency mixing process is schematically shown in Figure 3-1. Assuming

negligible pump and signal depletions (Ep(z) = Ep and Es(z) = E8 are constants

along the length of the crystal), we can solve for El(z) by simply integrating Equa-

tion 2.26 over the entire crystal length:

Et(z) - i jdeffEpE e-AkZdz
nic 

si(Akf/2)]= r-)acdeffEpEte-iAke/2 [S((e /)

Substituting this equation into Equation 2.30, we find that the intensity of the output

idler is

=2 2f 2 ~e
- 2w deff 1ie 2 sin(Ake/2) 12

ic3 onrnsni P (Akf /2)

87r2d2f 2 sin(A\kt/2) 2

c=onpnsnA L (Ake/2) J

The power of each field can be expressed as Pm = ImAm, where Am is the transverse

beam area. The output idler power is then

87r2 d2ff 2 PpPsAi [sin(Ake/2) 12
- cEonpnsniiA2ApAs (AkE/2) 3

The derivation of the coupled wave equations in Section 2.5 was based on the

assumption that the electric field for each of the three interacting waves is an infinite

uniform plane wave. Therefore, the single-mode beams at the three wavelengths

are assumed to be collimated as they propagate through the crystal (i.e., no beam

divergence). However, actual laser beams have finite beam divergence. In fact, the
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laser outputs for the pump and signal are Gaussian beams. Therefore, the two input

beams must be spatially matched and focused at the center of the crystal to optimize

the efficiency. The spatial overlap of the two input beams is limited by the requirement

that the fields should not be too divergent within the crystal. This condition is
21r

satisfied by making the confocal parameter b = 2irw equal to or greater than the

crystal length.

For confocal parameters greater than the physical crystal length, the electric field

in Equation 2.16 can be appropriately modified to take into account the Gaussian

beam profile,

Em(r) = Eme-r 2/w 2m

= eEm(z, t)e- r2/w (3.2)

where Wm is the beam waist that describes the radial dependence of the Gaussian field.

Using this equation, we find that the nonlinear polarization Pr(z, t) in Equations 2.18

and 2.20 are given by

Pp(z, t) = 2EodeffEsEier2/wpe- [(ks+k) z-( w +w)t], (3.3)

PS(z, t) = 2EodeffEpE* e-r2/w e-i[(kp -k i)z -( p - i)t] (3.4)

Pi(z,t) = 26odffEpEe r2/we -i[(kp-ks)z-(wp-ws)t] (3.5)

where ?vm is the beam radius of the driving polarization given by

1 1 1

2p 2 +s v1 _ 1 1

S WP 2

1 1 1

qV? W2 W2'2 w2 wp +

For difference-frequency mixing, the idler wave is free and therefore, assumes the

profile of its driving polarization (wi = wi). Therefore, the effect of mixing the two
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input Gaussian beams with wp and ws produces a polarization with a beam waist

given by
1 _1 1 (3.6)

For Gaussian beams in the near-field limit, the effective area is Am = 7rw2 . The

derivation of this effective area is found in Appendix A. Substituting this expression

of the effective area and Equation 3.6 into Equation 3.1, we can express the output

idler power as
161rdeff 2 P PS [sin(A\ke/2)

cEonpsiniA?2(W 2 + W2) (Ak/2) (3.7)

This undepleted pump and signal approximation represents the maximum idler power

that can be generated by difference-frequency mixing.

The analysis so far assumes perfect overlap among the three interacting fields, so

that there is no beam walk-off effect caused by the slight refractive-index difference

among the three waves. This Poynting vector walk-off or double refraction limits

the useful crystal length and thereby reduces the conversion efficiency for difference-

frequency mixing. If we now take into account the effects of double refraction for

focused Gaussian beams in the theory of Boyd and Kleinman[5], then the generated

output idler power by difference-frequency mixing is[8]

167rdeffPpPsfhm(, B,) 'sin(Akf/2)]2

i [scEonpnsnin2(kt + -) (Akf/2) J ' (3.8)

where hm(B, ~) is the reduction factor (to be discussed in the following subsection).

In the near-field approximation with negligible walk-off, hm(B, ) -+ (, for ~ < 0.4

and < 1/6B2. Substituting this limit into Equation 3.8, we obtain the expression

without walk-off in Equation 3.7.
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Figure 3-2: The reduction factor hm(B, ~) as a function of ~ with B as a parameter.

3.1.1 The Reduction Factor

Boyd and Kleinman[5] analyzed the effects of focusing on parametric generation and

showed that the Poynting vector walk-off reduces the effective single pass gain by a

factor of hm(B, (), where e =/b is the focusing parameter for the confocal parameter

b 2w2 common to all three waves and B is the double refraction parameter definedA

as

B 2= ek (39)2 2'

where p is the walk-off angle, is the physical crystal length ad A, = 2 is theA,

pump wave number.

For a given B and , the reduction factor can then be deteriitined from the ap-

propriate graphs plotted by Boyd and Kleinman.[5] The relevant graphs for the DFNI

parameters in this thesis are shown in Figures 3-2 and 3-3. The optimium reduction

factor, shown as the dashed curve in Figure 3-3, can be approximated as[5]

hmp (0)
hmm (B) 1 + mm(O)

where hmm(0) = 1.068 is the maximum possible value of hm(B ).
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Figure 3-3: The maximum reduction factor for second-harmrnonic generation hm(B)
and parametric generation hmm(B) as a function of B with ~ = 2.84.

3.1.2 The Walk-Off Angle

Poynting vector walk-off occurs in nonlinear crystals which (exhibit different refractive

indices for the three interacting waves. For biaxial crystals, this effect is characterized

by a tensorial permittivity e. According to Equation 2.3. if the prop)agation direction

k is not along one of the optic axes of the biaxial crystal. then D and E are at different

directions. From Maxwell's equations for a nonrnagnetic nediur, D. E ad k lie in

the same plane and are orthogonal to H. The Poynting vector S = E x H, wlich

represents the direction of the energy flow, also lies in the saIle plane as D. E and k.

but is not necessarily parallel to k. Therefore, the energy does not flow in the sanme

direction as the wave propagation. The relative directions of these vectors are shown

in Figure 3-4. From geometrical relations of Figure 3-4.

sin p -- k,

cos p = C ,

where p is the walk-off angle between S ad k, and d. and k are the unit vectors

denoting the directions of D, E arid k, respectively. From these two relations, we see

that the walk-off angle is

p= tan' e )
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Figure 3-4: The typical directions of the relevant vectors in a biaxial crystal. The
walk-off angle is represented by the parameter p.

Using the expressions for the cosine vectors of D and E, Brehat and Wyncke[6] obtain

the equation to calculate the Poynting vector walk-off for each interaction beam:

Prn tan {n [ k 2 + (2 k 2 + ( )} (3.10)n- 2 _ n- 2 + n-2 n-2 + - -mM Mm y,y Ttn - n-z

where k, k and k are the components of the wave vector, nm is the refractive

index, and nm,, 7t,,,y ad nmz are the principal refractive indices of the crystal.

These indices call be calculated from the Sellmeier equations in the form

2 ~ B 2n (A) A ± -DA
1 - (C/A) 2 (3.11)

where A is the wavelength in gm and the constants A, B, C, and D are the Sellmeier

coefficients for the crystal of interest. The largest Pm calculated fromn Equation 3.10

is the walk-off angle used in Equation 3.9.

According to Equation 3.8, we can increase the generated output idler power by

using a longer crystal. However, when the crystal length increases, the parametric gain

will reach a maximum and then decrease. The reason is due to the Poynting vector

walk-off. As e becomes larger than the length of the overlapping area of the pump

and signal beams in the crystal, an increase in crystal length no longer contributes to

the generation of the idler and absorption by the crystal increases. The crystal length

at which the peak gain occurs can be approximated by the aperture length defined
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as
a 2v=rwoCa -

p

For a fixed crystal length, w0 should be chosen so that a is of the order of e.

3.2 Phase-Matching

A perfectly phase-matched difference-frequency mixing process requires that conser-

vation of energy and momentum be satisfied:

Energy: Ci = P- Ws

Momentum: ki = kp-ks

Note that the momentum conservation condition can be obtained from the coupled

wave equations (Equations 2.24 to 2.26) for A\k -= 0. For an ideal phase-matched

process, the phase velocities of the pump and signal waves are equal, the relative

phase of the polarizations and the waves is constant, and the intensity of the idler

wave increases linearly along the length of the nonlinear crystal. If phase-matching

is not achieved, wavelength dispersion within the crystal causes the pump and signal

to propagate at different velocities. As the two waves propagate through the crystal,

they periodically get out of phase and destructive interference occurs. By phase-

matching, the conversion efficiency can be increased because the two waves remain in

phase to continuously build up the intensity of the output idler. This phase-matching

effect on the gain of the difference-frequency mixing process is represented by the

wave vector mismatch A\k in the sinc function of Equation 3.8. When /Ak = 0 we

have perfect phase-matching and maximum efficiency. As jA\k increases, the gain

decreases. Since perfect phase-matching is nearly impossible to achieve in practice,

the phase-matching condition for difference frequency mixing may be satisfied as long

as IAkl < 7r/£. In this case, the coherence length, defined as the propagation distance

before the interacting waves get out of phase, is fc = r/IAkl.

There are various techniques for phase-matching the three interacting beams. The
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most common method is to use the birefringent characteristics of the nonlinear crystal.

In a birefringent crystal, the interacting fields can only propagate as ordinary and

extraordinary waves. The ordinary waves correspond to the linearly polarized waves

that are perpendicular to the plane formed by the main optic axis and the direction

of propagation, and the extraordinary waves are parallel to this plane. The refractive

indices of these two types of waves depend on the temperature of the crystal and the

angle of propagation with respect to the main optic axis. Therefore, the two general

techniques used to achieve phase-matching are temperature tuning and angle tuning.

For temperature phase-matching, the propagation direction of the interacting

beams is usually chosen to be along one of the optic axes of the crystal to elimi-

nate Poynting vector walk-off. Since the refractive indices vary with crystal tempera-

ture, the phase-matching condition can be satisfied by heating or cooling the crystal.

For birefringent crystals that cannot be temperature phase-matched, angle phase-

matching is achieved by tuning the angle between the direction of propagation and

the main optic axis at a fixed crystal temperature to satisfy the phase-matching con-

dition. The angle tuning is done by rotating the crystal or by changing the direction

of the input laser beams with respect to the main optic axis.

3.3 Angle Phase-Matching in Biaxial Crystals

In this section, we formulate the Type II phase-matching condition in positive biax-

ial crystals to determine the phase-matching angle for difference-frequency mixing.

A general approach for calculating the phase-matching conditions has been given

by Yao and Fahlen[29] for second-harmonic generation and Kaschke and Koch[18]

for sum-frequency mixing. Using the same general approach, we will express the

phase-matching conditions for difference-frequency mixing in terms of the principal

refractive indices of the crystal and the wave vector.

The phase-matching condition for a difference-frequency mixing process is given

by

kp- k- ki = 0. (3.12)
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Since km-Ž21f,- 2=n, the phase-matching condition can be expresses asSinc kA A'hephs

-- Ai 0. (3.13)
Ap As Ai

For a given propagation direction of an electromagnetic wave with wavelength Am in

a biaxial crystal, only two linearly orthogonally polarized waves with phase velocities

v$mx) and v(2) are allowed. The corresponding refractive indices (nl) and n )) of these

two phase velocities must satisfy Fresnel's equation

k2 k 2 k 2

+ + Z =0, (3.14)n-2 n-2 n-2 - n-2 n-2 n-2
m mx m my m m,z

where kx = sin cos b, ky = sin 0 sin 0, and k = cos 0 are the components of the wave

vector, and rim,x, m,y, and nm,z are the principal refractive indices of the crystal.

The relationship of the polar angle 0 and X describing the propagation direction k to

the principal axes x, y and z is shown in Figure 3-5. The polar angle 0 is the angle

between the z axis and k, and is the angle from the x axis to the projection of k

in the xy plane. The crystal principal refractive indices can be determined from the

Sellmeier equations (Equation 3.11).

To obtain the angle phase-matching condition for DFM in positive biaxial crystals,

we need to solve Fresnel's equation (Equation 3.14), which can be rewritten as

n4 - bmnm + Cm = 0, (3.15)

where
bm = k2 (nt2my + n2m,z) + ky(n2 m, ,z) + kz(2m, + nmy)

m'y m'_z) ykm,x +m,z,) z nm,X m'y)

and

Cm = kn2 2mz + kn n2 + k2n2 n2

Using the binomial formula to solve Equation 3.15, we obtain the following two solu-

37



z
k

y

x

Figure 3-5: The principal axes and polar angles defining the direction of the wave
vector k in a biaxial crystal.

tions:

(l) (bm b 24m)c
M ~2

and

n(2 )(bm±+ bm2-4cm)
( 2

For Type II phase-matching, the signal and idler waves are orthogonally polarized.

From Equation 3.13, the two possible Type II phase-matching conditions for positive

biaxial crystals are

p S _ = 0 (3.16)
Ap A, Ai

and

p)nl _ ( ) = O* (3.17)
AP, A, Ai

The first condition represents the case where the polarizations of the pump and signal

are parallel. Equation 3.17, in which the pump and signal polarizations are perpen-

dicular, is the relevant phase-matching condition for the difference-frequency mixing

and resonant difference-frequency mixing experiments in this thesis. For a given com-
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bination of Ap and As, angle phase-matching is achieved by choosing and 0 such

that the phase-matching condition is satisfied.

3.4 The Acceptance Angle

An important consideration in angle phase-matching is that the dependence of refrac-

tive index on propagation direction used to tune the phase-matching also limits the

angular acceptance of the process. The acceptance angle is defined as the angle at

which the output idler power decreases to one-half of its peak power.[32] To calculate

the angular acceptance, we expand the phase mismatch Ak in a Taylor series about

0= 00, where 00 is the exact phase-matching angle. For small mismatches,

\k(O) = Akoo=0+X0 )+ + 1 __

( 0=00 2 0=0)

For angle phase-matching, the calculation of the acceptance angle depends on the lin-

ear term OAk/Oq. The angular acceptance can then be formulated from the condition

that
[sin(\ke/2)2_0 5.sin(Ak/2) 2

0.5.

The solution to this equation, Ak = 0.8867r/e, is at half-width at half-maximum

(HWHM). Therefore, the angular acceptance at full-width at half-maximum (FWHM)

is
1.772w3

(azAk/q0) (3.18)

For a 1 cm long crystal, the acceptance angle is typically several milliradians. There-

fore, the angular divergence of the input laser sources for difference-frequency mixing

must be minimized and similarly lasers must have narrow linewidths and high spatial

coherence.

39



Nonlinear
Crystal

Nonlinr N

i 11 1 I 12 

Figure 3-6: Cavity configuration for resonant difference-frequency mixing.

3.5 The Coupled Wave Equations for RDFM

This section derives the coupled wave equations for resonant difference-frequency

mixing (RDFM). Consider a doubly-resonant DFM process consisting of a nonlinear

crystal inside a linear cavity having a large finesse for the signal and idler fields,

but not for the pump field. The configuration of this RDFM process is shown in

Figure 3-6. The physical cavity length can be expressed as

ecav = + -air, 

where is the physical crystal length and air = 11 + 12 is the free space length of the

cavity.

For RDFM, the three interacting waves are linearly polarized fields with Gaussian

profiles. To include the effects of the Gaussian beams into the coupled wave equations,

we simply substitute Equations 3.3 to 3.5 into Equation 2.23. The coupled wave

equations with Gaussian beams are then

OMp(z) 2 22defjk
E(z) _ ~j ~p 2WsWdeff 2 Ei(z)Es(z)ej 'kz (3.19)

OZ npc 2w + WP2 + W?
Ws 2+W

0E8 (z) _ jiws 2w2wi deff tAkz
A ..... 2= _2 , 2_2 , 2Ep (z)E* (z) e - a kz ' (3.20)Ag W r elJ~~~~~~aX2 1 elz~~~~~~e, 1 qll~~~~~q,,2 t~~

aE. (z) 1W.- 2w-w-d..
- 22 2Ep~(z)Es(z)e i . (3.21)dz cw ± w+nic WpWs + W +w2w P

To simplify the complexity of these expressions, we normalize the three coupled
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equations in terms of photon interaction:

OAp(z)
Oz

OA (z)

Oz
OAi(z)

az

where

is the complex field amplitude normalized such that Aml2 are in units of photons per

second, h = 6.63 x 10 - 34 J.s is Planck constant and

I

161rhd2ff A 2WpwsWi

eonpnsniApAsAz W W+ Ws W + W2Wi

is the gain coefficient. According to Boyd and Ashkin[4], the maximum parametric

conversion is achieved when
1 1

w-2 w 2 + ;2'
WP Ws

In that case, the gain coefficient reduces to

[' [Enrs167rhd2] l
- onpnsniAAsi(w 2 + wi2)

If we integrate Equations 3.22 to 3.24 over the entire crystal length (from z = 0

to z = ) and consider only the lowest order terms of the field amplitudes, then[11]

Ap(t) - Ap(O)

A s(e)- As(0)

Ai(e) - A(O)

= -XAs(O)Ai(O),

= Ap(O)A*(O),

= XAp(O)A*(O),
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= -IAs (z)Ai(z)ejAkz

= "Ap(z)A*(z)eJkZ

= rAp(z)A* (z)ekz,

(3.22)

(3.23)

(3.24)

Am(z) =j (EonhmAm7w)

1

Em(Z)

(3.25)

(3.26)

(3.27)



where

p2£2e-jAke [sin(Ake/2)2(Akf/2)

167rhd2ff 2e-iAke sin(Ake/2) (3.28)
e ~~~~~~~~~~~(3.28)

0OnpnsiApAsAi(Ws2 + w2) (Akf/2) 

is in units of seconds and contains the relevant crystal parameters (deff, , n). If we

now take into account the effects of the Poynting vector walk-off as analyzed by Boyd

and Kleinman, then

2 _ 167rde2ffhfhm(B, ()e - k- [sin(A\k/2)12. (3.29)
X EOnpnsnipAAjsi( s '+ k) 329 (

Note that if the walk-off is negligible, hm(B, ) -4 and Equation 3.29 reduces to

Equation 3.28.

To determine the field amplitudes inside the cavity, we modify the coupled wave

equations to take into account the gain and losses experienced by the various fields

when they propagate inside the cavity. For self consistency, the field at each point in

the cavity and the field after one round-trip at the same point must be equal. In this

case, the set of coupled wave equations is[11]

Ap[1 - rp(1 - p)e- jP] =- -X*AsAirpe- j P + tpEp, (3.30)

A[1 - r(1 - as)e- jis] = XApA rse-jis + tEs, (3.31)

A[1 - ri(1 -oi)e- j i]-= XApAsrie- j i, (3.32)

where am is the percentage of the field amplitude loss due to absorption in the

crystal, rm is the effective field reflection coefficient for the cavity mirrors, /m =

2km(nme + Lair) is the round-trip phase shift inside the cavity, and tp and t are the

field transmission coefficients for the input fields Ep and E, normalized such that

JEpj2 and Es2 are in units of photons per second. Note that for this analysis, we are

not considering the phase shifts due to the reflection from the cavity mirrors. Note

also that the coupled wave equations derived in Chapter 2 assumed that the nonlinear
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medium was lossless ( = 0). If the analysis in Section 2.5 had included the effects of

a lossy medium, the only modification to the coupled wave equations is an extra loss

term which shows up in Equations 3.30 to 3.32 as mAm, where cam is a function of

r.

3.6 The Maximum RDFM Output Idler Power

In this section, we derive the equation to calculate the maximum output idler power

that can be generated by resonant difference-frequency mixing. The starting point

of this derivation is the coupled wave equations (Equations 3.30 to 3.32). Obviously,

the maximum output idler power is generated when all three interacting waves are

at resonance (m = 
2 pmWT, where Pm is an integer). In this case, the coupled wave

equations for RDFM without cavity detunings are

rpAp - -X*AsAi + tpEp, (3.33)

nSA~ = XApA* + tE, (3.34)

iAi = XApA s , (3.35)

where nm = 1- rm(1 - Cm) is the percentage of the total field amplitude loss in the

cavity. Note that am, m, rm, and tm are dimensionless parameters ranging from 0

to 1. Assuming no pump depletion, we can reduce the coupled wave equations to

Ap = tpEp (3.36)
~p

xAp A* + tsESA8 = A (3.37)

A= xAiA (3.38)
/Ki
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Substituting Equations 3.36 and 3.37 into Equation 3.38 for Ap and As, and solving

for Ai, we get

Ai XtpEptsEs
A'PKsli x2tE- A;)

If we now substitute Equation 3.36 into this equation for Ap, we obtain an expression

for the internal idler field amplitude as

-XtptsEpEs
nipsaff [1- t2 EP1]2

The expected output idler power is then

Pi =t2 hc Ai2
' z

hc t2t2tX2 E 12 E 12P S z ~~~~~~~~(3.39/
K2 K2 ,2

- X4S 2 [ p ]i

Suitable focusing parameters for the RDFM cavity and the input beams can be

determined by considering the focused beam waists inside the crystal and the angular

acceptance of the crystal. According to Boyd and Ashkin[4], the optimum parametric

gain is achieved when the confocal parameters of the pump and signal beams at the

center of the crystal are the same. From the calculation of the reduction factor in

Section 3.1.1, we see that hm(B, ), and therefore the output idler power, increases

as the beam waist decreases. However, when the focused beam waist decreases, the

angular divergence of the laser source becomes larger than the acceptance angle of

the crystal, reducing the gain of the RDFM process.

3.7 The Threshold for Parametric Oscillation

Since the RDFM cavity can provide resonances for both the signal and idler waves,

at a particular threshold pump power, the parametric gain will cause simultaneous
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oscillation at both the signal and idler frequencies. The threshold for this oscillation

corresponds to the point at which the parametric gain just balances the losses of the

signal and idler waves. We can use the coupled wave equations to determine this

oscillation condition for the doubly resonant optical parametric oscillator. Since the

minimum threshold occurs for 6 m = 0 (no detunings), the coupled wave equations for

an OPO assuming negligible pump depletion are

pp -= tpEp, (3.40)

rA = xApA*, (3.41)

riA = XApAs*. (3.42)

If we multiply Equation 3.41 by the conjugate of Equation 3.42, we get

A 2 KSKi
P X2

Substituting this expression into Equation 3.40, we find that the minimum pump

threshold is
2

EB2 -= K2Ep/%i
P tp2X 2

Therefore, the minimum pump power threshold for optical parametric oscillation is

hc p2KS lipth = he K 2
fC8 K~ (3.43)

p h =Ap tp 2X
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Chapter 4

Experiments

Experiments are performed to generate tunable continuous-wave output at 1.6 /,m

by difference-frequency mixing in CTA. After the DFM experiment is completed, the

CTA is enclosed in a resonator to perform the RDFM experiment. This chapter

describes the procedures and presents the results of these two experiments. For

both experiments, the krypton-ion laser serves as the pump and the Ti:sapphire ring

laser is the source for the input signal. These two laser systems are described in

Sections 4.1 and 4.2. Next, we present in Section 4.3 the optical characteristics of the

CTA crystal used in the experiments. The procedures and results of the DFM and

the RDFM experiments are then presented in Sections 4.4 and 4.5, respectively.

4.1 The Krypton Laser

The pump laser source is provided by the fundamental mode output of a commercial

cw krypton-ion laser (Coherent, Innova 200) at Ap = 530.9 nm. An alternative to the

krypton laser is the frequency-doubled Nd:YAG laser at A = 532 nm. The krypton

laser consists of a two mirror linear cavity as shown in Figure 4-1. The laser gain

medium is contained in a tube filled with ionized krypton gas. The ends of the tube

are at Brewster's angle to reduce losses and to obtain linearly polarized output light.

The krypton ions are excited by passing an electric current through the gas along the

length of the tube.
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Figure 4-1: The krypton-ion laser.

The krypton laser can operate with one line or multiple lines. For single-frequency

operation, the krypton laser cavity contains a prism which bends light of different

wavelengths at different angles. At a fixed back mirror position, only one wavelength

is bent at the proper angle to oscillate back and forth between the cavity mirrors. All

other wavelengths are reflected out of the laser cavity by the back mirror, preventing

oscillation at those wavelengths. The prism and the back mirror in combination can

then be tuned to select the output wavelength.

The krypton-ion laser system is shown in Figure 4-2. The single-frequency output

of the krypton laser passes through a Faraday isolator which is used to block any

optical feedback from entering the laser cavity. Such a device is especially necessary

for the RDFM experiment since a large percentage of the input light is reflected back

from the RDFM cavity. The isolator consists of two polarizers and a Faraday rotator

as shown in Figure 4-2. Light in the forward direction is linearly polarized by the

input polarizer P1. The plane of polarization is then rotated 45° by the Faraday

rotator. Since the output polarizer is oriented at 45° to the input polarizer, the light

exits the isolator with very little attenuation, but its linear polarization is at 45°

with respect to the input light. In the backward direction, the reflected light will

be linearly polarized at an angle of 45° after passing P2. Due to its nonreciprocal

property, the Faraday rotator then turns the plane of polarization another 45 so

that now the polarization is 90° with respect to P1. As a result, the reflected light is

totally rejected by P1. The Faraday isolator used in the experiments provides 40 dB

(0.01%) isolation.

The electro-optic modulator (EOM) is used to stabilize the intensity of the krypton

laser output. When an electric field is applied across an electro-optic crystal, the

refractive index of the crystal changes. A linearly polarized light passing through

47



BS

Faraday Isolator
Det

Figure 4-2: The krypton laser system.

the crystal will then be elliptically polarized. If we denote the plane of polarization

of the input light as the xy plane and the linear polarization as in the x direction,

then the phase shifts for the x and y components depend on the applied voltage. A

polarizer oriented at right angles to the polarization of the input beam blocks the x

component. The intensity of the transmitted light therefore depends on the ellipticity

of the polarization which can be altered by varying the applied field. To stabilize the

intensity, a small percentage of the output light is reflected by the beamsplitter (BS)

into a photodetector. The DC voltage from this detector is compared to a voltage

reference and the feedback circuit provides the appropriate voltage across the electro-

optic crystal so that the detected intensity is locked to the reference. We can then

obtain intensity-stabilized krypton laser output at various power levels by varying the

voltage reference.

4.2 The Ti:Sapphire Laser

The laser source for the input signal is a home-built cw titanium-doped sapphire ring

laser whose single-frequency output is tunable from As = 770- 810 nm (near infrared

region). An alternative source to the Ti:sapphire laser is the dye laser. Since the

Ti:sapphire laser is a solid-state laser, it is more convenient to use and intrinsically

more stable than dye lasers. Therefore, the Ti:sapphire laser has now replaced the

dye laser as the preferred source for the wavelength range from 700- 1100 nm.

A ring cavity configuration is chosen for single-frequency operation since spatial

hole burning is eliminated for unidirectional operation.[25] Therefore, the Ti:sapphire

laser consists of a four mirror astigmatically compensated ring cavity as shown in
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Figure 4-3. M serves as the input coupler for the argon pump and M2 is a high

reflector for the intracavity wavelengths. Since M1 and M2 are both spherical mir-

rors with 10 cm radius of curvatures, they produce astigmatic Gaussian beams that

have different spot sizes, wavefront curvatures, and beam waist positions in the two

orthogonal directions. Therefore, the two mirrors are positioned such that the angle

of incidence at each mirror is 15° for astigmatism compensation.[19] M3 is a high

reflector flat mirror and M4 is a flat mirror that serves as the 6% output coupler for

the Ti:sapphire laser output. The total cavity length is 120 cm which corresponds

to a free spectral range (FSR) of 250 MHz. Finally, the elements of the cavity are

mounted on a small aluminum table (75 cm x 38 cm x 2.5 cm) isolated from the

principal optical table with rubber spacers.

The pump source for the Ti:sapphire laser is a commercial cw argon-ion laser

(Spectra-Physics, Model 2030-18) operating at all lines from A = 460- 514 nm which

covers most of the main absorption bands of Ti:A120 3 between A = 450 - 550 nm

(blue-green region). The polarization of the argon laser output is made horizontal

by passing the beam through a half-wave plate. This horizontally polarized beam is

then focused through M1 into the Ti:sapphire crystal using a plano-convex lens with

15 cm focal length to mode match the argon beam to the mode of the Ti:sapphire

cavity. To optimize the output power, the Ti:sapphire cavity is configured such that

the beam waists are at the center of the Ti:sapphire crystal with b = 1.7 cm and at

the midpoint between M3 and M4 with b = 90.3 cm.

The intracavity elements of the Ti:sapphire ring cavity consists of a Brewster-cut

Ti:A120 3 crystal, an optical diode, a three-plate birefringent filter, a thick etalon,

and a thin etalon. The Ti:sapphire laser gain medium is a crystal of sapphire (A12 03)

doped with titanium (Ti3+ ) ions.[22] The sapphire host does not participate directly

in the lasing action, while the Ti3+ ions provide the energy levels for both the pumping

and lasing transitions. The Ti:A1203 crystal was manufactured by Union Carbide for

0.05% Ti 3+ dopant concentration by atom percent and Brewster-cut at B = 60.255°

to reduce losses for the horizontally polarized waves in the cavity. The dimensions of

the crystal are 3 mm in diameter and 2 cm in length.
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For a ring laser, intracavity wave propagation can occur in two directions. Due to

the homogeneously broadened gain characteristics of Ti:A1203 , the travelling waves in

the cavity can couple out at either direction, causing unstable and unreliable output

for each direction. To eliminate this problem, an optical diode consisting of a Faraday

rotator and an optical rotator is used to ensure unidirectional oscillation.[17] The

Faraday rotator is a 12 mm long Brewster-cut piece of Faraday material placed inside

a magnetic field to provide nonreciprocal rotation. The optical rotator is a thin,

optically active plate used to provide reciprocal rotation. When these two rotators

are used in combination, the polarization rotations cancel in the forward propagating

direction, while the rotations add for the backward direction. Therefore, the loss

for the forward wave is unaffected since its horizontal polarization is unchanged.

However, the backward wave is no longer horizontally polarized, and experiences a

net loss since its vertical field component is reflected at the many Brewster-angle

surfaces in the cavity. A rotation of a few degrees is sufficient to create the small

loss difference between the forward and backward waves needed to allow the forward

wave to oscillate, and suppress the oscillation of the backward wave.

Since the gain curve of Ti:A1203 is broad, many oscillation wavelengths can fall un-

der the gain bandwidth. Therefore, selective elements (birefringent filter, thick etalon

and thin etalon) are used to obtain single-frequency operation of the Ti:sapphire ring

laser. The three-plate birefringent filter is used for broad wavelength tuning.[31] Each

plate is made of quartz, with its optic axis in the plane of the plate, and are oriented

such that the angle of incidence is at Brewster's angle. When the intracavity beam

propagates through a birefringent plate, the incident horizontally polarized light is

transformed into elliptically polarized light due to the phase difference between the

ordinary and extraordinary waves. The phase difference and therefore the eccentric-

ity of the elliptical polarization depends on the wavelength. After these elliptically

polarized waves propagate through the plates and other Brewster surfaces in the cav-

ity, they will experience reflection losses. As a result, those wavelengths whose phase

difference is an integral multiple of 27r are not transformed through the birefringent

plates, remain horizontally polarized, and encounter minimum loss. One of these
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wavelengths will suffer the lowest overall loss and this wavelength is the selected las-

ing wavelength. A new wavelength can then be selected by rotating the quartz plates

about the axis orthogonal to the face of the plates. The birefringent filter used in this

Ti:sapphire laser can tune wavelengths every 2.2 nm.

The thick etalon is used to isolate the Ti:sapphire laser output to a single-frequency

and for fine wavelength tuning. The etalon is a 5 mm thick piece of glass coated for

20% reflection on both sides with a FSR of 20 GHz. The interference effects of the

thick etalon provide discriminating loss to all the possible oscillating wavelengths

except one. Therefore, the etalon acts as a bandpass filter, introducing enough loss

in all other modes to suppress oscillations at their corresponding wavelengths. By

tilting the etalon, we can provide a lower loss to another mode, thereby tuning the

oscillating wavelength (about every 0.1 nm).

The main purpose of the thin etalon is to prevent mode-hopping of the laser output

from one oscillating mode to another. The etalon is a 0.11 mm thick fused silica plate

with a FSR of 900 GHz. Since the two surfaces of the etalon are uncoated, the thin

etalon provides a small, but additional loss to all the modes except the oscillating

mode. The etalon can also be used in conjunction with the thick etalon for fine

wavelength tuning.

The single-frequency cw output of the Ti:sapphire laser is horizontally polarized

and broadly tunable from 770-810 nm (near infrared spectral region) with a linewidth

of 4 MHz. The Ti:sapphire laser threshold is about 1.5 W of argon laser power and the

Ti:sapphire output power versus the pump power is shown in Figure 4-4. The output

of the Ti:sapphire laser passes through an optical diode to prevent reflected light

from coupling back into the Ti:sapphire cavity and an electro-optic modulator (EOM)

which is used for intensity stabilization of the output beam. A small percentage of the

output power is then reflected by the beamsplitter (BS) to a wavemeter (Burleigh)

and a spectrum analyzer (Newport, Model SR-140-C) to determine the wavelength

and frequency stability of the Ti:sapphire laser output. The Ti:sapphire laser system,

shown in Figure 4-5, is very similar to the krypton laser system described in the

previous section.
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Figure 4-5: The Ti:sapphire laser system.
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Figure 4-6: The geometry of the CTA crystal with crystal dimensions and orientation.

4.3 The CTA Crystal

The CTA crystal used in the difference-frequency mixing and the resonant difference-

frequency mixing experiments was grown by DuPont. [9] The dimensions of the crystal

are 5 mm x 5 mm x 14.6 mm as shown in Figure 4-6. It was cut for Type II phase-

matching in the xy plane ( = 90°) at an internal propagation angle of q = 46.0°± 1°.

The two end faces are polished and antireflection coated for the three interacting

wavelengths. The measured single-pass transmission through the CTA crystal are

64.3% at A = 530.9 nm, 99% at A = 790.0 nm, and 98% at Ai = 1530.0 nm. Note

that although some of the transmission loss can be attributed to the antireflection

coatings at the two end faces, the absorption of the three interacting wavelengths by

the CTA crystal is relatively high as compared to that of most nonlinear crystals which

exhibit absorptions of only a few tenths of a percent. Since CTA is a new nonlinear

crystal, its growth process has not been perfected, resulting in crystal quality that

is less than ideal. For the single-pass difference-frequency mixing process, the large

absorption does not significantly affect the output idler power. However, for resonant

difference-frequency mixing, the absorption can reduce the parametric gain by as
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much as a factor of 100.

The three principal refractive indices for CTA are determined from the Sellmeier

equations at room temperature given by Cheng, et al.[10]

2 1.048632nx(A) = 2.34498+ 1 - (0.22044/A)2 --0.01483A 2 , (4.1)

2~(A) 1 - (0.70733 )
ny(A) = 2.74440 + 1 - (0.26033/A)2 - 0.01526A2, (4.2)

2 1.106002nz(A) = 2.53666 + 1 - (0 24988/) 2 -001711A 2 (43)

where A is expressed in ,u/m. As an example, the principal refractive indices for the

three interacting wavelengths of the RDFM experiment are as follows:

A (nm) nx ny nz

530.9 1.899 1.916 1.988

790.0 1.864 1.878 1.938

1618.7 1.837 1.852 1.904

In the xy plane ( = 90°), the effective second-order nonlinear coefficient for Type

II phase-matching is[28]

deff = -(d 15 sin 2 X + d 24 cos 2 q).

The derivation of this expression is done in Appendix B. The CTA nonlinear coeffi-

cients, determined using the Maker fringes technique at 1.064 um by Cheng, et al.,

are d15 = d31 = 2.1 pm/V, d24 = d32 = 3.4 pm/V, and d33 = 18.1 pm/V each with

±20% uncertainty.[10] The deff plot for Type II phase-matching in the xy plane is

shown in Figure 4-7.

The Poynting vector walk-off angles (calculated from Equation 3.10) and the ac-

ceptance angles (calculated from Equation 3.18) for Type II phase-matching in the

xy plane of the CTA crystal are plotted in Figures 4-8 and 4-9, respectively. For the

DFM and RDFM experiments, the calculated walk-off angle is p ~ 0.49 ° (8.55 x 10 -
3

radians) and the acceptance angle is about 36 milliradians for = 14.6 mm.
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Figure 4-7: The Type II effective nonlinear coefficient (deff) in the xy plane for CTA
as a function of the phase-matching angle .
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Figure 4-8: The CTA crystal Poynting vector walk-off angle as a function of the
phase-matching angle for 0 = 90° and AP = 530.9 nm.
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4.4 The DFM Experiment

4.4.1 Experimental Setup

This subsection describes the setup to perform the CTA difference-frequency mixing

experiment. The experimental setup is schematically shown in Figure 4-10. The

crystal was mounted on a small rotation stage (Newport, Model MT-RS) which was

on top of a five-axis aligner (New Focus, Model 9081), so that both the angle and

position of the crystal could be adjusted. The z-axis of the CTA crystal was in the

vertical direction and the incident angle of the input laser beams was changed in the

0 direction for tuning. The quarter-wave and half-wave plates in combination were

used to transform the input beams to the desired polarization. The waveplates were

slightly tilted for nonnormal incidence to eliminate the back reflections from the plates

into the laser cavity. For the crystal orientation shown in Figure 4-6, the waveplates

were adjusted such that the pump was horizontally polarized (perpendicular to the

z-axis) and the input signal was vertically polarized (parallel to the z-axis) to satisfy

Type II phase-matching. Therefore, the output idler must be horizontally polarized.

The pump and signal beams were focused using plano-convex lenses (L1 and L2) with

focal lengths of 25 cm and 20 cm, respectively. These lenses, mounted on three-axis

translation stages, were positioned such that the focus was at the center of the crystal

with a confocal parameter of b = 1.75 cm. The corresponding beam waists were then

Wp = 28 Mm, ws = 34 um, and wi = 21 Mm.

The polarizing beamsplitter (PBS) was used to combine the two orthogonally

polarized input beams into the CTA crystal. The three beams leaving the crystal

then encountered a high-pass filter (made of Schott colored glass) for wavelengths

above 830 nm which transmitted the idler beam while blocking the pump and signal

beams. Since one filter leaked a bit of the signal beam, two filters were needed to

completely block the signal beam. The divergent idler beam was then focused by a

bi-convex lens (L3) with 25.4 cm focal length into the InGaAs photodetector coupled

to a transimpedance amplifier with 500 kQ feedback resistance.
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4.4.2 Experimental Procedures

This subsection gives a detail account of the alignment and optimization procedures

to obtain the maximum output idler power by difference-frequency mixing in CTA.

Without the mode-matching lens L1 in place, we adjusted the relevant mirrors so that

the pump beam passed straight through the CTA crystal. The same procedure was

done for the signal beam with L2 taken out. When L1 and L2 were inserted into the

proper positions, the pump and signal beams should propagate through the crystal

more or less parallel to each of the four side faces of the crystal. Next, we adjusted

the five-axis aligner such that the input beams were reflected directly back from the

front end of the crystal.

As an initial check of the mode-matching, we adjusted L1 and L2 such that the

input beams propagated through air right above the CTA crystal. The adjustments

of the mode-matching lens were along three directions. For the sake of clarity, we will

refer to the adjustments from left and right as in the x direction, up and down as

in the y direction, and forward and backward as in the z direction. In this case, the

previous procedure was accomplished by adjusting L1 and L2 in the y direction. For

proper mode-matching, we then adjusted L1 and L2 in the z direction such that the

foci of the two beams were located at the same spot about halfway between the front

end and the center of the crystal. In addition, the pump and signal beams should

have comparable spot sizes at every position after the polarizing beamsplitter.

After the pump and signal beams were suitably mode-matched, we then proceeded

to adjust L1 in the x and y directions to find a spot in which the pump beam passed

through the crystal without distortions. When this spot was found, L1 was then kept

fixed at that position. We next adjusted L2 in the x and y directions so that the

signal beam spatially overlapped the pump beam at various points after the polarizing

beamsplitter. Without the high-pass filter in place, we now used the signal beam to

align L3 to optimally focus light into the InGaAs photodiode.

After this alignment was completed and the filter was back in place, we then tuned

the crystal to the calculated X position for the chosen signal wavelength. If the pump
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and signal beams were well mode-matched, then output idler power was detected by

finely rotating the crystal in the X direction. In this case, we rotated the crystal to

the position which generated the most power and then iteratively adjusted L1 and

L2 in the x, y and z directions to optimize the generated output idler power.

If the output idler power was not generated by tuning the crystal, then we needed

to better mode-match the two input beams. First, we rotated the crystal back to

the calculated X position. Without adjusting L1, we iteratively adjusted the x and

y positions of L2 to spatially overlap the signal beam to the pump beam. If output

idler power was still not generated, the crystal needed to be tuned iteratively with

L2 as well. The adjustments of L2 and the crystal positions was sufficient to generate

some output idler power. When output idler was detected, small adjustments of L1

and L2 in the x, y and z directions and fine tuning of the crystal in the X direction

would optimize the output power.

After the optimization was completed, the angle of incidence of the input beams

at the front end of the crystal was noted and the generated output idler powers

were recorded for various input pump and signal power levels. The Ti:sapphire laser

output was then tuned to a different wavelength by tuning the birefringent filter and

thick etalon. Since the pump and signal beams were well mode-matched, rotating

the crystal in the 0 direction was sufficient to generate the output idler for this new

signal wavelength. If necessary, the same procedures mentioned earlier was used to

optimize the output idler power.

4.4.3 Results

This subsection summarizes the results of the difference-frequency mixing experiment.

Output idler wavelengths were generated from 1566.4 nm to 1652.5 nm by tuning the

signal wavelength from 782.2 nm to 803.1 nm with a fixed pump wavelength at 530.9

nm. The power levels for the idler wavelengths generated from the DFM experiment

are summarized in Tables 4.1 to 4.4 for various pump and signal input power levels.

The pump power Pp is 80% of the actual power after the PBS from the krypton laser

to take into account the 20% reflection loss from the coating of the front face of the
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Table 4.1: The measured and calculated
mixing for various input power levels of
A8 = 782.2 nm and Ai = 1652.5 nm.

Table 4.2: The measured and calculated
mixing for various input power levels of
As = 786.6 nm and Ai = 1633.2 nm.

output idler powers by difference-frequency
the pump and signal with Ap = 530.9 nm,

output idler powers by difference-frequency
the pump and signal with Ap = 530.9 nm,

CTA crystal, while Ps is the actual power after the PBS from the Ti:sapphire laser.

The measured output idler power ranges from 0.1 W to 1.0 ,uW. Since the generated

idler power is sufficiently small, the undepleted pump and signal assumptions used to

derive Equation 3.8 is valid. To compare the expected output idler power calculated

from Equation 3.8 and the observed data, we plotted the theoretical and measured

values in Figures 4-11 to 4-15. From the tables and plots, we see that the generated

idler powers are within 12- 30% of the calculated powers. Therefore, Equation 3.8

is a reasonably accurate expression to determine the output idler power.

The discrepancy of the calculated idler power and the measured power can be
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Measured Calculated
Pp (mW) P (mW) P (W) P (W)

156 37 0.905 1.092
124 37 0.707 0.868
92 37 0.510 0.644
60 37 0.329 0.420
28 37 0.164 0.196
156 24 0.559 0.708
156 11 0.280 0.325

Measured Calculated
Pp (mW) P (mW) P (W) P (W)

156 37 0.954 1.115
124 37 0.789 0.886
92 37 0.576 0.657
60 37 0.362 0.429
28 37 0.164 0.200

156 24 0.592 0.723
156 11 0.280 0.331



Table 4.3: The measured and calculated
mixing for various input power levels of
As = 791.1 nm and Ai = 1614.1 nm.

Table 4.4: The measured and calculated
mixing for various input power levels of
As = 795.7 nm and Ai = 1595.3 nm.

output idler powers by difference-frequency
the pump and signal with Ap = 530.9 nm,

output idler powers by difference-frequency
the pump and signal with Ap = 530.9 nm,
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Measured Calculated
Pp (mW) P (W) P (W) P (W)

156 37 0.987 1.138
124 37 0.806 0.904
92 37 0.592 0.671
60 37 0.378 0.438
28 37 0.181 0.204

156 24 0.625 0.738
156 11 0.329 0.338

Measured Calculated
Pp (mW) P (mW) P (LW) P (W)

156 37 0.938 1.161
124 37 0.724 0.923
92 37 0.526 0.685
60 37 0.362 0.447
28 37 0.181 0.208

156 24 0.576 0.753
156 11 0.296 0.345
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Figure 4-11: The generated output idler power as a function of the pump power at
A = 530.9 nm for a fixed signal power of 37 mW at A = 782.2 nm. The solid line is
the theoretical plot and the astericks represent the measured experimental data.
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Figure 4-12: The generated output idler power as a function of the pump power at
A = 530.9 nm for a fixed signal power of 37 mW at As = 786.6 nm. The solid line is
the theoretical plot and the astericks represent the measured experimental data.
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Figure 4-13: The generated output idler power as a function of the pump power at
Ap = 530.9 nm for a fixed signal power of 37 mW at As = 791.1 nm. The solid line is
the theoretical plot and the astericks represent the measured experimental data.
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Figure 4-14: The generated output idler power as a function of the pump power at
A = 530.9 nm for a fixed signal power of 37 mW at As = 795.7 nm. The solid line is
the theoretical plot and the astericks represent the measured experimental data.
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Figure 4-15: The generated output idler power as a function of the generated idler
wavelength for a fixed pump and signal powers of 156 mW and 37 mW, respectively.
The pump wavelength is Ap 530.9 nm. The solid line is the theoretical plot and the
astericks represent the measured experimental data.
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Table 4.5: The measured and calculated phase-matching angles for difference-
frequency mixing with Ap = 530.9 nm.

attributed to a number of factors. First, the pump and signal beams may not be

perfectly mode-matched. Since the Ti:sapphire laser output is not completely circular

due to the imperfect astigmatism compensation of the ring cavity, there may be

incomplete spatial overlap of the pump and signal. Although not very likely, another

source of discrepancy may be imperfect phase-matching in the 0 and 5 directions. In

addition, since CTA is a new crystal, its actual nonlinear coefficients may be smaller

than that determined by Cheng, et al., resulting in a smaller deff used to calculate

the expected output idler power.

In addition to the output idler power, the internal phase-matching angle was

also experimentally measured. The results are tabulated in Table 4.5 and shown in

Figure 4-16. The measured internal phase-matching angle (bmeas was determined from

the angle of incidence of the input beams. By using Snell's Law, we can determine

the angle of incidence inside the crystal. Since the crystal is cut at 46.0° ± 1°, Omeas

can easily be found. The calculated phase-matching angle Ocal is determined from

the phase-matching condition presented in Section 3.3. A good agreement between

the calculated and measured phase-matching angles is achieved over the entire tuning

range. Therefore, the Sellmeier equations for CTA (Equations 4.1 to 4.3) are reason-

ably accurate. The tuning range of the idler wavelength for this CTA crystal is about

86 nm. This wavelength bandwidth is only limited by the crystal size and the tuning
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A, (nm) Ai (nm) 9
meas 0 i,,

782.2 1652.5 41.03 ° 42.99 °

785.2 1639.3 42.41 ° 44.75 °

786.6 1633.2 42.88° 45.57°

787.4 1629.7 43.30° 46.03°

789.6 1620.4 44.30° 47.31°

791.1 1614.1 45.24 ° 48.18 °

791.8 1611.2 45.50 ° 48.58 °

795.7 1595.3 47.60 ° 50.85 °

796.6 1591.7 48.18° 51.37°

803.1 1566.4 51.23° 5.19°
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Figure 4-16: The experimental angle tuning curves for difference-frequency mixing in
CTA. The calculated tuning curves, obtained from the Sellmeier equations, are shown
as a dashed line for the signal wavelength and a dotted line for the idler wavelength.
The pump wavelength is Ap = 530.9 nm and the propagation direction is in the xy
plane ( = 90°). The astericks and the circles represent the measured experimental
data for the signal and idler wavelengths, respectively.
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capability of the Ti:sapphire laser.

4.5 The RDFM Experiment

4.5.1 Experimental Setup

This subsection describes the setup for the CTA resonant difference-frequency mixing

experiment. The experimental setup for RDFM is schematically shown in Figure 4-

17. The RDFM cavity consisted of the CTA crystal symmetrically enclosed by a pair

of spherical mirrors each with 25 cm radius of curvature and separated by 48 mm as

shown in Figure 4-18. The two mirrors were each physically 7.75 mm in diameter

and 4 mm thick. The front mirror served as the input coupler for the pump and

was coated for high transmission at the pump wavelength, and high reflection at the

signal and idler wavelengths. The back mirror served as the input coupler for the

signal beam as well as the output coupler for the idler beam and was coated to highly

reflect the pump and partially transmit the signal and idler. The power refiectivities

of the cavity mirrors were directly measured to be 1.4% at Ap, 99.7% at As, and 99.7%

at Ai for the front mirror, and 99.0% at Ap, 99.2% at A, and 99.5% at Ai for the back

mirror. Finesse measurements were also performed at A - 790.0 nm and A, - 1.53

um. For the empty cavity case, the finesse was 570 for the signal and 625 for the

idler. With the CTA crystal in the cavity, the finesse was 200 for the signal.

To make fine adjustments of the cavity length, the back mirror was mounted on a

piezoelectric transducer (PZT). The back mirror and the PZT were held by a flexure

mount (Newport, Model MFM-100) to allow fine adjustments of the back mirror

position for alignment of the RDFM cavity. A ramp generator (Burleigh, Model

RC-43) and a function generator (Wavetek, Model 182) were used for applying a

high-voltage triangular waveform with equal rise and fall times across the PZT. As

the voltage increased, the back mirror moved closer to the front mirror. When the

voltage decreased after the peak, the back mirror returned to its initial position and

repeated the same motion. The tuning rate of the PZT was about 1 nm/V.
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Reflected pump
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US, 48 mm

Figure 4-18: The cavity configuration for resonant difference-frequency mixing in
CTA.

Since the back mirror has a higher transmission for the signal wavelength, it

served as the input coupler for the input signal. Therefore, the pump and signal

beams entered at opposite ends of the RDFM cavity. The pump beam was focused

using a plano-convex lens (L1) with 25 cm focal length and entered the cavity through

the front mirror. The signal was focused with a 20 cm focal length plano-convex lens

(L2) through the back mirror. The lenses, mounted on xyz translation stages, were

positioned such that the focus was at the center of the crystal and mode-matched to

the cavity with b = 3.65 cm inside the crystal. With this confocal parameter, the

beam waists of the three waves at the center of the CTA crystal were 40 /um for the

pump, 49 ,/m for the signal, and 71 ,u/m for the idler. The polarizing beam splitter

(PBS) was used to allow the input signal beam to enter the RDFM cavity and also to

separate the output idler and the reflected signal for detection. A high-pass filter was

used to transmit the idler and block the pump and signal beams. The photodetectors,

D1 and D2, were used to detect the reflected pump and signal beams, respectively.

The output idler beam was focused by a bi-convex lens (L3) with 25.4 cm focal length

into an InGaAs photodetector with feedback resistance of 10OkQ. The DC voltage

output of the InGaAs photodetector then passed through a low-pass filter (Stanford

Research Systems, Model SR650) to reduce noise and provide signal gain.
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4.5.2 Experimental Procedures

This subsection describes the procedures for the alignment and optimization of the

resonant difference-frequency mixing process to generate the maximum output idler

power at Ai - 1618.7 nm for input wavelengths of Ap - 530.9 nm and As - 790.0 nm.

With the RDFM cavity mirrors and the mode-matching lenses (L1 and L2) taken out,

the pump and signal beams were adjusted such that they passed straight through the

CTA crystal. When L1 and L2 were placed back in, the pump and signal beams

should propagate through the crystal more or less parallel to each of the four side

faces of the crystal. Next, the orientation of the CTA crystal was adjusted so that

the input pump beam was reflected directly back from the front end of the crystal.

Then we rotated the crystal in the ¢ direction such that the angle of incidence was

approximately 3 at the front end of the crystal. This angle was extrapolated from

the DFM experiment for As - 790.0 nm.

As an initial check of the correct placement of the mode-matching lens, we adjusted

L1 and L2 in the y direction to locate the foci of the two input beams in air. Then we

adjusted the lenses in the z direction to position the foci at the center of the crystal.

Since there were material imperfections with the CTA crystal, we needed to adjust

L1 in the x and y directions to find an area where the transmitted beam through the

crystal was clear (no scattering or distortions). Unlike the difference-frequency mixing

experiment, finding a good spot is very critical to obtaining the maximum generated

output idler power for RDFM since the losses can add up due to the multiple-pass

nature of the cavity.

Next we aligned the front mirror of the RDFM cavity such that the reflected

pump beam from the mirror overlapped the incident pump beam. For proper mode-

matching, the spot size of the reflected pump beam should be about the same as that

of the input beam. It was convenient to compare the spot sizes at L1. If the reflected

spot size was smaller than the input spot size, moving L1 towards the RDFM cavity

(z direction) increased the reflected spot size. Conversely, L was moved away from

the cavity if the reflected spot size was larger. Finally, we aligned the back mirror
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to reflect the input pump beam directly back. Again the spot sizes of the input and

reflected beams should be similar.

The fine alignment of the RDFM cavity to the pump beam consisted of observing

the reflected pump at D1 while the cavity was scanned for one free spectral range of

the pump resonance. To perform this scan, the PZT was driven with a 300 V peak-

to-peak triangular wave at 60 Hz. Since the cavity was low-finesse for the pump, the

detected signal was a sinusoidal waveform. The flexure mount holding the back mirror

was then adjusted to obtain the largest peak-to-peak signal. Small adjustments of L1

was also done to improve the alignment. Since the pump beam was now well-aligned,

we used the transmitted pump beam through the RDFM cavity and the polarizing

beamsplitter to align L3 to couple the maximum light onto the InGaAs photodetector.

With the RDFM cavity now well-aligned for the pump beam, the next major step

was to align the signal beam to be collinear with the pump beam through the CTA

crystal. Before we perform this alignment, the signal beam should first be mode-

matched to the RDFM cavity. Like the pump beam, we compared the spot sizes of

the input and reflected signal beam at L2. Then L2 was appropriately adjusted as

described earlier for L1 such that the spot size of the reflected beam from the two

cavity mirrors was comparable to that of the input signal beam.

The alignment of the signal beam was best accomplished by adjusting the input

signal beam to spatially overlap the transmitted pump beam through the RDFM

cavity. If the signal beam was collinear with the transmitted pump beam at every

point between M3 and the back mirror, then the pump and signal beams should

copropagate through the RDFM cavity. With L2 taken out, we first adjusted M3 so

that the signal beam overlapped the pump beam at M2. Since the two spot sizes were

not the same, various points between M2 and M3 were also used for better overlap.

M2 was then adjusted to overlap the signal and pump at MI1. Again various points

between M1 and M2 were used for better alignment. Finally M1 was adjusted to

obtain overlap at points between M1 and the back mirror of the cavity.

Next, we placed L2 back in and adjusted it in the x and y directions to spatially

overlap the signal beam with the pump beam at points between L2 and the cavity
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back mirror. Now we can perform the same adjustments on MI1, M2 and M3 as

discussed earlier to overlap the signal beam to the pump beam. Since both the pump

and signal beams were well mode-matched, the spot sizes of the two beams should be

comparable at all points between M3 and L2. Due to the initial alignment performed

earlier, only small adjustments of the mirrors was necessary.

In order for the InGaAs photodetector to detect the output idler resonances, we

needed to change the spacing between the cavity mirrors at least over a range of 800

nm. By scanning the RDFM cavity, we were also able to observe the reflected signal

resonances at D2 for fine alignment of the signal beam. For a scan of 800 nm, we

obtained two free spectral ranges of the signal beam or three resonances. If the signal

beam was not well-aligned, we should see lower order modes (smaller resonances) in

addition to the three main resonances. We then adjusted Ml, M2 and L2 to collapse

the lower-order modes to the main resonances. During this alignment. output idler

resonances was generated as long as the pump and signal beams remained collinear.

When the signal beam was well-aligned, we were able to easily generate idler

resonances by finely tuning the crystal in the ¢ direction and finely adjusting the back

mirror using the flexure mount. After these adjustments were made, it was necessary

to readjust L2, M1 and M2 to realign the signal beam. Therefore, optimizing the

output idler power was quite difficult and time-consuming since iterative adjustments

of L1, L2, Ml, M2, the flexure mount and the crystal position were all required to

generate the maximum possible output idler power. The optimization was further

complicated by the instability of the generated idler resonances due to the large

absorption of the CTA crystal at the pump and signal wavelength.

4.5.3 Results

This subsection summarizes the results of the resonant difference-frequency mixing

experiment. A typical plot of the generated output idler power by resonant difference-

frequency mixing as the PZT is scanned is shown in Figure 4-19. The ramp voltage

driving the PZT, the reflected pump and the reflected signal are also included in the

graph. The maximum generated output idler powers for various input pump and

77



signal power levels are summarized in Table 4.6 and shown in Figures 4-20 to 4-22.

The generated idler powers range from 10 ,u/W to 100 W.

The theoretical values for the generated output idler power are calculated from

Equation 3.39 with deff= 2.69 pm/V, hm(B,() = 0.15, x2 6.30 x 10-23 s, p -

0.883, s = 0.0155, ri 0.04, t2 0.986, t2 = 0.008, and t2 = 0.005. However, since

the back mirror of the RDFM cavity is highly reflective for the pump wavelength, the

pump in effect makes a double pass through the CTA crystal, increasing the generated

idler power by a factor of between two and four.[11] Due to the 20% reflection of

the pump at the faces of the CTA crystal, this enhancement factor is reduced by

82%. For an enhancement factor of 2.46, we find that the measured idler powers

are about a factor of three smaller than the theoretical values (see Table 4.6). This

large discrepancy of the measured and calculated idler powers may be accounted for

by reflection phase shifts at the RDFM cavity mirrors, imperfect mode matching,

and the uncertainty of the enhancement factor due to the double pass of the pump.

However, the discrepancy is most likely due to the uncertainty in the cavity losses.

Specifically, the cavity mirror reflectivities and the CTA crystal absorption at the

idler wavelength were determined using a 1.53 gim diode laser. Since the generated

idler wavelength is around 1.6 Mm, the total cavity loss i;, may actually be a factor of

two larger. In this case, the measured idler powers are within several percent of the

calculated idler powers.

A major problem with the RDFM experiment was that the output idler does

not stay stable for very long. The main reason for this instability is the poor op-

tical quality of the CTA crystal. When the idler power is generated, the RDFM

cavity is well-aligned for both the pump and signal beams, and a large amount of

power propagates through the crystal. Since the CTA crystal exhibits a relatively

large absorption at the three interacting wavelengths, the crystal physically heats up,

changing the principal refractive indices of the crystal and the optical cavity length.

Therefore, after a certain brief amount of time, the cavity goes out of resonance. Since

the cavity is off resonance, the power through the crystal decreases, and the crystal

begins to cool down. After a while, the crystal may cool to the original temperature,
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Figure 4-19: Plot of the detected power of the three interacting wavelengths as the
RDFM cavity length is scanned. The four plots from top to bottom represent the
voltage scan, reflected pump, reflected signal and output idler.
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Figure 4-20: The output idler power versus the input signal power at A 790.0 nm
for a fixed pump power of 230 mW at AP = 530.9 nm. The solid line is the calculated
plot and the astericks represent the measured experimental data.
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Figure 4-21: The output idler power versus the input signal power at As 790.0 nm
for a fixed pump power of 170 mW at A -= 530.9 nm. The solid line is the calculated
plot and the astericks represent the measured experimental data.
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Figure 4-22: The output idler power versus the pump power at Ap 530.9 nm for a
fixed signal power of 45 mW at A 790.0 nm. The solid line is the calculated plot
and the astericks represent the measured experimental data.
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Table 4.6: The measured and calculated output idler powers by resonant difference-
frequency mixing for various input power levels of the pump and signal with Ap =
530.9 nm, As = 790.0 nm, and Ai = 1618.7 nm.

and if the alignment has not been changed, the idler will be generated again. The

crystal then begins to heat up again and the same process occurs.

The instability of the idler resonances may also be compounded by the refrac-

tion of the interacting beams at various points along the CTA crystal. This beam

refraction is caused by the inhomogeneity in the CTA material probably due to the

nonuniform growth process of the CTA crystal. Therefore, when the three interacting

beams propagate through the crystal, they experience a propagation walk-off due to

imperfect CTA crystal quality. This beam walk-off contributes to the instability of

the generated idler resonances and may account for the relatively large cavity losses

determined by the finesse measurements.
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Measured Calculated
Pp (mW) P (mW) P (W) P (W)

230 57 100.39 317.72
230 45 76.45 250.83
230 34 51.83 189.52
230 22.5 33.69 125.42
230 11.5 24.62 64.10
170 45 51.83 179.04
170 34 41.46 135.28
170 22.5 25.92 89.52
170 11.5 12.96 45.76
120 45 38.87 122.82
60 45 19.44 59.37



Chapter 5

Conclusion

5.1 Summary

Difference-frequency mixing in CTA was demonstrated to provide tunable infrared

outputs in the range between 1.57 and 1.65 jtm using a krypton-ion laser and a

Ti:sapphire laser as the input sources. The measured angle phase-matching tuning

curve determined by the DFM experiment was in good agreement with that predicted

from the Sellmeier equations for CTA. The generated output idler power ranged from

0.1 pW to 1 W for pump powers of 28 - 156 mW and signal powers of 11 - 37 mW.

These measured output idler powers for the DFM experiment were in good agreement

with the calculated values. Resonant difference-frequency mixing in CTA was also

demonstrated for an output idler wavelength of Ai = 1618.7 nm. The maximum

generated output power was 100.39 ,tW for a pump power of 230 mW and signal

power of 57 mW. The measured output idler powers for the RDFM experiment were

a factor of three smaller than the theoretical values.

5.2 Further Research

Due to the large absorption characteristics of the CTA crystal, optical parametric

oscillation could not be achieved. If the absorption is reduced to 0.5%, then the

OPO threshold calculated from Equation 3.43 is about 50 mW, which can easily be
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obtained from a krypton laser. With improvements in the CTA crystal quality, the

CTA optical parametric amplifier/oscillator may potentially be realized and become

the tunable source of choice for many application in the future.

We can also investigate other nonlinear crystals such as lithium triborate (LBO)

as an alternative to CTA. From the Sellmeier equations, we see that tunable outputs

at 1.6 ,/m is possible by Type I phase-matching in LBO at 0 = 90° and X = 11.6°

using the same krypton and Ti:sapphire lasers as inputs. By heating this crystal to

148°C, we can operate at 0 = 90° and ,h = 0° to eliminate Poynting vector walk-off.

In this case, the threshold of 40 mW is low enough for OPO operation.

Since the output idler was very unstable, it would also be helpful to investigate

techniques to stabilize the idler resonances. One method is to stabilize the crystal

temperature by using a thermo-electric (TE) cooler and standard locking techniques

to stabilize the output idler. To obtain stability for the idler frequency, the two input

lasers should also be frequency stabilized.
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Appendix A

Effective Area of Gaussian Beams

The radial variation in the transverse electric field of a Gaussian beam in the near

field of the fundamental mode is given by

E(r) = Eoe-r2/wo2 (A.1)

The power generated by the Gaussian beam can be calculated by evaluating the

following integral:

Po = 2 J E(r)[ 2 rdrd

ncEo j
2 r j Eo 1�2

e - 2 /wdrdq

= nceo IEo12 2i -° do

2
= (A.2)

Therefore the effective Gaussian beam area is

2A = IrwO (A.3)

2
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Appendix B

The Effective Nonlinear

Coefficient

The second-order nonlinear polarization produced by the various field components in

a lossless medium can be written in matrix form as[12]

P ~ dl d2

Pj = o d 21 d 22

P, d3l d32

Since CTA belongs in the mrm2

by

dzjk 

d13 d 14

d 23 d 24

d 3 3 d 3 4

d1 5 d16

d2 5 d2 6

d35 d3 6

ElxE2,x

El,yE2,y

E1,Z E2,Z

El,yE 2 ,z + E1 ,ZE2,y

El ,.E2 ,z + El, E2,.

ElxE2,y + E,yE2,x

orthorhombic symmetry class, its di3k matrix is given

0 0 0 0 d1 5 0

0 0 0 d24 0 0 

d 31 d 32 d 33 0 0 0

A linearly polarized wave in an biaxial crystal can be expressed as a superposition of

the ordinary and extraordinary waves. For Type II phase-matching (o + e - o) in the

xy plane ( = 90°), the electric field components of the two orthogonally polarized
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waves along the xyz crystallographic axes, where z is the main optic axis, are[12]

E 2 = E e =

E o

Ey°=
Ez°

F

E j EeEe-E

where the superscripts o and e represents the ordinary and extraordinary waves,

respectively. Therefore, the polarization components are

P = ¢d5(ExE + EEe)

= 6od15 sin 6E°E , (B.1)

Py = cod24(Ey e- + E° E)

= -cod24 cos E°Ee, (B.2)

P = Eo(d3lExEx + d32 Ey°Ey + d3 3 Ez Ee)

= 0. (B.3)

These components are then used to calculate the total second-order nonlinear polar-

ization:

p = po+pe

= -Px sin q + Py cosq - Pz

= -eo(d 15 sin2 q + d24 cos2 O)E°E e.

Therefore, the effective second-order nonlinear coefficient is

deff = -(d1 5 sin2 q + d24 cos2 q).
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El= E °0

and

(B.4)

(B.5)

}
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