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Chapter 1

Introduction

Path splitting is a new compiler technique for transforming the structure of a program's

control flow graph in order to increase the amount of data flow information available to

subsequent passes. The goal of this work is to increase the performance of compiled code by

extending the range of applicability of optimizations that depend on data flow information,

such as copy propagation, common subexpression elimination, and dead code elimination [1,

5]. In short, path splitting increases the accuracy of reaching definitions information by

replicating code to remove joins.

Path splitting was implemented in the SUIF compiler. Experimental results indicate

that this technique effectively restructures loops, modifying the control flow graph so as to

improve reaching definitions information and hence enable further "classical" optimizations.

Path splitting can decrease the cycle count of loops by over a factor of two. Measurements

show that such transformations can result in over 7% run time performance improvements

for large C benchmarks. Although path splitting can cause exponential growth in code size,

applying it only to regions where it is beneficial limits code growth to below 5% for realistic

C programs. Cache simulations reveal that in most cases this code growth does not harm

program performance very much.

This thesis describes the path splitting algorithm, places it in the context of data flow

analysis techniques, and evaluates its performance on several benchmarks. Furthermore, it

outlines the implementation of path splitting in the SUIF compiler toolkit, and discusses how

path splitting may be useful for extracting additional instruction-level parallelism on super-
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scalar machines. Lastly, based on the experience accumulated during the implementation

of path splitting, the thesis makes some general comments on compiler design.

The following section provides some background necessary for understanding subsequent

chapters. Section 1.2 presents motivations for path splitting. Section 1.3 outlines the rest

of the thesis.

1.1 Background

The purpose of code optimizations in a compiler is to improve the performance of emitted

code to a level ever nearer the best achievable, while respecting reasonable constraints on

compilation time and code size. As mentioned in [1], "optimization" in this context is a

misnomer: it is rarely possible to guarantee that the code produced by a compiler is the

best possible. Nevertheless, transformations performed by the compiler to improve naively

written or generated code can have a large impact on performance.

Code-improving transformations fall under two general categories: machine-dependent

optimizations, such as register allocation and "peephole" optimizations [33, 13], and machine-

independent transformations. The latter use information available statically at compile time

to restructure the code in ways intended to improve performance independently of the spe-

cific characteristics of the target machine. These techniques include constant folding, copy

propagation, common subexpression elimination, dead code elimination, and various loop

transformations, such as unrolling, induction variable elimination, code hoisting, and un-

switching [1, 5]. All such machine independent optimizations rely on some form of data flow

analysis, the process of collecting information about the way in which variables are used at

various points throughout a program.

Path splitting enables code improvement techniques that otherwise could not be per-

formed due to the structure of the control flow graph. Before providing motivating examples

for path splitting, we first define a few terms.

A control flow graph is a program representation used to specify and reason about the

structure of a piece of code. It can be defined as a triple G = (N, E, no), where N is a finite

set of nodes corresponding to program statements, E (the edges) is a subset of N x N, and

no E N is the initial node. Edge (x, y) leaves node x and enters node y, indicating that

y may be executed immediately after x during some execution of the program. There is a
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path from no to every node (for the purposes of the control flow graph, we can ignore code

which is unreachable and hence never executed).

N := {nO, nl, n2}

E := {(nO,nl), (n,n2), (nl,n2))

The assignment in node nO is ambiguous,

since the pointer w may point to v;
the assignment in node nI is unambiguous.

Both definitions reach the use in node n2.

Figure 1.1. An example of a control flow graph.

Figure 1.1 gives an example of a control flow graph. Node no ends in a fork: more than

one edge (namely edges (no,nl) and (no, n2)) leaves it. Node n2, on the other hand, begins

with a join: more than one edge enters it. A basic block is any sequence of instructions

without forks or joins. Throughout this thesis, every node in the graphical representation of

a flow graph is intended to represent a basic block. For simplicity, in each node we explicitly

portray only the least number of instructions necessary to convey a point. However, of

course, a basic block may consist of arbitrarily many instructions.

A cycle in a flow graph is called a loop. If one node nl in a loop dominates all the

others, meaning that every path from no to any node in the loop contains ni, then the

loop is reducible, and nl is called the head of the loop. Any node n2 in the loop, such that

(n2, n1) E E, is referred to as a tail of the loop, and the edge (n2, n1) is a back edge of the

loop. Figures 1.2 (a) and (b) depict a reducible and irreducible flow graph, respectively.

For example, in Figure 1.2(a), node ao dominates all nodes in the cycle, so the cycle is a

reducible loop with back edge (a2, ao). On the other hand, in Figure 1.2(b) there is a cycle

containing nodes b and b2, but neither dominates the other, since either can be reached

from b without passing through the other. The loop is therefore irreducible. Henceforth,

we only consider reducible loops.

A definition of a variable v is a statement (corresponding to some n E N) that either

assigns or may assign a value to v. A definition that definitely assigns a value to v, such

as an assignment, is an unambiguous definition. Ambiguous definitions are those in which

17



(a) (b)

Figure 1.2. A reducible loop and an irreducible loop.

assignment may, but cannot be proven to, occur. Ambiguous definitions include (1) assign-

ments to pointers that may refer to v, and (2) procedure calls in which v is either passed

by reference or in the scope of the callee, or aliased to another variable that is itself either

passed by reference or in the scope of the callee. A use of v is any statement that references

v (i.e., explicitly uses its value).

Every unambiguous definition of v is said to kill any definition prior to it in the control

flow graph. A definition d is live if the value it defines is used on some path following d

before being redefined (killed). If a statement is not live, it is dead. A definition d reaches

a use u of v if there is a path in the control flow graph of the procedure from the point

immediately following d to u on which v is not killed. The classical reaching definitions

problem consists of determining, for all variables, which uses of each variable are reached

by which definition (and conversely, which definitions of each variable reach which use). A

detailed description of the problem and its solution is given in [1].

An expression e is available at a point u if it is evaluated on every path from the source

of the control flow graph to u, and if, on each path, after the last evaluation prior to u,

there are no assignments (either ambiguous or unambiguous) to any of the operands in e.

1.2 Motivation

Path splitting is a technique intended to be composed with other optimization algorithms

so as to improve their applicability. It increases the accuracy of reaching definitions infor-

mation within selected regions of the control flow graph by replicating code to remove joins.

18



This section motivates the use of path splitting; Chapter 2 will describe the path splitting

algorithm in detail.

Copy propagation is one example of an optimization technique that can be improved

by path splitting. Copy propagation aims to eliminate statements s of the form x := y,

by substituting y for x in each use of x reached by s. A copy may be "propagated" in this

fashion to each use u of x if the following two conditions hold:

1. s is the only definition of x reaching u.

2. There are no assignments to y on any path from s to u, including cyclic paths that

contain u.

Copy propagation reduces to constant propagation in the case when y is a constant,

trivially satisfying condition (2) above.

(a) (b) (c)

Figure 1.3. Control flow graphs that benefit from copy propagation and path splitting.

Figure 1.3 illustrates three flow graphs that could benefit from copy propagation and

path splitting. In Figure 1.3(a), all definitions of x can be propagated to the appropriate

use without path splitting. In (b), however, too many definitions reach the use of x, whereas

in (c) copy propagation cannot occur because a is redefined along the path on the right,

violating condition (2). As a result, copy propagation normally could not occur in cases (b)

and (c).

Path splitting is intended to solve the problems encountered in cases (b) and (c), by in-

creasing the amount of data flow information available to the compiler. Figure 1.4 illustrates

its effects. Dashed ovals indicate instructions that can be removed after some optimizations.

In part (a), no path splitting needs to be done. The constant values are propagated, and the

assignments to x, now dead, can be removed. In (b), path splitting replicates instructions so

19



(a) (b) (c)

Figure 1.4. Control flow graphs after path splitting and copy propagation.

that only one definition reaches each use of x. This enables constant propagation (and dead

code elimination, as in (a)) to both uses. In (c), by path splitting we can copy propagate

the assignment to a along one of the two paths. Thus x := a becomes dead along that

path, so partial dead code elimination [28] might be used to place it only onto the path on

which it is used.

(a) (b)

Figure 1.5. Control flow graphs that benefit from CSE and path splitting.

Common subexpression elimination (CSE) is another important code improvement tech-

nique that can be enabled by path splitting. It relies on available expressions. If an expres-

sion e computed in a statement u is available at that point in the flow graph, its value may

be assigned to a temporary variable along each of the paths coming in to u, and this variable

may be referenced rather than re-evaluating the entire expression. Figures 1.5(a) and 1.6(a)

illustrate common subexpression elimination. Unfortunately, as shown in Figure 1.5(b), if

even one assignment to any operand of e appears on any path coming into u after the last

evaluation of e, then common subexpression elimination cannot be performed.

It is certainly possible for the operands of e to each have multiple reaching definitions

20



at u and for e to be available: this happens, for example, when occurrences of e on different

paths leading to u are preceded by different definitions of operands in e on two or more of

these paths. However, if each operand in e has exactly one reaching definition at u, and e

is computed on each path leading to u, and e is available when considering any one path

entering u alone, then e is available at u, and common subexpression elimination may be

performed.

(a) (b)

Figure 1.6. Control flow graphs after path splitting and CSE.

As a result, by performing path splitting based on the definitions reaching a and b in

t := a+b, we enable the maximum possible amount of common subexpression elimination

within this region of code. In other words, CSE will become possible on every path to

the use u of an expression e along which e is evaluated, independently of assignments to

operands of e along any other paths reaching u. Path splitting and the common subex-

pression elimination which it enables for the flow graph of Figure 1.5(b) are illustrated in

Figure 1.6(b).

It can be useful to view path splitting in terms of static single assignment (SSA)

form [12]. In this program representation, each variable is assigned only once in the pro-

gram text, with the advantage that only one use-definition chain is needed for each variable

use. In SSA form, whenever two paths in the control flow graph having different data flow

information meet, a function is used to model the resulting loss of data flow information.

A -function is a function whose value is equal to one of its inputs. Consider Figure 1.7: we

must assign q(xo,xi) to x2 because we cannot know which value of x will reach that point

in the flow graph at run time. In this context, path splitting is an attempt to minimize the

number of &functions required in the SSA representation of a procedure. In other words,

it increases the accuracy of reaching definitions information within the flow graph.
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if (a=2) if (a=2)
x := 3; x0 := 3;

else else
x := 4; x1 := 4;

... x2 := (x0,x1);
j := x; ...

j := X2;

All assignments to x are converted to assignments to distinct "versions" of
x, such that no variable is assigned more than once.

Figure 1.7. Inserting a -function at a join in SSA form.

In summary, it is possible to improve the effectiveness of copy propagation, common

subexpression elimination, dead code elimination, and other code optimization algorithms

by restructuring a program's control flow graph. Path splitting is a technique for identify-

ing where data flow information could be improved, and then replicating code to remove

problematic joins and restructure the code appropriately.

1.3 Overview of Thesis

This thesis is organized as follows: Chapter 2 discusses the path splitting algorithm and

how the compiler decides to apply it. Chapter 3 analyzes its effects in terms of a lattice-

theoretical data flow framework, showing that path splitting results in optimal downward

data flow information in selected regions of code. Chapter 4 describes the implementation of

path splitting, including SUIF, the Stanford University compiler toolkit within which it was

developed. Chapter 5 presents concrete examples of code improved by path splitting, and

discusses results obtained by compiling several benchmarks using path splitting. Chapter 6

outlines alternative algorithms for path splitting and techniques for limiting code growth,

and relates path splitting to trace scheduling and compilation on super-scalar machines.

It also makes some general comments on compiler implementation and design. Chapter 7

discusses related work. Lastly, Chapter 8 concludes.
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Chapter 2

The Path Splitting Algorithm

This chapter presents the details of the path splitting algorithm. Roughly speaking, path

splitting can be divided into three phases:

1. Removal of joins within a loop to create a tree, where each leaf is a back edge of the

loop;

2. "Path specialization," a process by which the path from the head of the loop to each

of the back edges is replicated and appended to itself, "in place" of the back edge;

3. Removal of unnecessary code.

This process is outlined in Algorithm 2.1. Since loops are the regions of a program

executed most often, they are the places where it is usually most profitable to invest compi-

lation time and easiest to justify code size growth. Consequently, path splitting is performed

only within loops.

The rest of this chapter is divided into three sections, corresponding to the three phases

described above. Throughout the text we refer to a simple example in which path splitting

provides benefits. The original flow graph, before path splitting or any other optimizations,

appears in Figure 2.1.

2.1 Removing Joins

In order to minimize code size growth, code is replicated to remove joins only when doing

so will improve reaching definitions information at some point in the code. The compiler

23



SPLIT-PATHS(p:procedure)
find-reaching-definitions(p)
foreach l:loop in reverse-post-order(loops(p)) do

foreach s:statement in reverse-bfs-order(statements(l)) do
o:operand := find-specializable-operand(s)
if (o # 0) then

specialize-operand(o, s, 1)
find-reaching-definitions(p)

specialize-loop(l)
remove-unnecessary-code(l)

Code

* find-reaching-definitions(p) solves the reaching definitions problem for procedure p.

* find-specializable-operand(s) finds an operand of s, if any, which is reached by more
than one useful definition at s. A useful definition is one that could be profitable in later
analysis stages, such as an assignment from a scalar variable or a constant. If no such
operand exists, it returns a null value.

* loops(p) returns a tree, the nodes of which are the reducible loops in procedure p. This
tree is structured as follows:

- If a loop A is lexically within a loop B, then the tree node corresponding to B is an
ancestor of the node corresponding to A.

- If loop A textually follows loop B at the same scoping level in the code, then the
node corresponding to B is a left sibling of A in the tree.

* remove-unnecessary-code(l) performs on the task described in Section 2.3.

* reverse-bfs-order(g) performs a breadth-first search over a flow graph g, which is derived
from g by reversing all edges in g (i.e., for every directed edge (x, y) in the set of edges of
g, the set of edges of g' contains a directed edge (y, x)). The search starts from the node
corresponding to the "sink" of g (the point where control exits g). If g has more than one
sink (a loop may have more than one exit point), then breadth-first searches are performed
from one or more of the nodes of g' corresponding to these sinks, in an arbitrary order,
until all nodes ("statements") in the loop body have been visited.

* reverse-post-order(t) returns each of the loops in the tree of loops t by traversing t in
reverse post-order (right child, left child, parent).

* specialize-loop(l) is described in Algorithm 2.4.

* specialize-operand(o, s, ) is described in Algorithm 2.2.

* statements(l) is the flow graph of all statements in the body of loop (this does not
include loop back edges or jumps out of the loop).

Legend

Algorithm 2.1. Path Splitting: Top Level Algorithm.
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Figure 2.1. Example flow graph, before any changes.

therefore first performs reaching definitions analysis, and then runs FIND-SPECIALIZABLE-

OPERAND (see description in Algorithm 2.1) to identify statements that use one or more

variables reached by one or more useful definitions. In this chapter, an operand refers to any

value or location used or defined by a statement. A useful definition is one that could be

profitable in later analysis stages, such as an assignment from a scalar variable or a constant.

Once a statement that could benefit from path splitting is found, the compiler attempts to

improve data flow information by executing SPECIALIZE-OPERAND (Algorithm 2.2).

Figure 2.2. Example flow graph, after removing joins.

This process of restructuring the flow graph of the loop body is detailed in algo-

rithms 2.2 (SPECIALIZE-OPERAND) and 2.3 (SPECIALIZE-REPLICATE-CODE). Its effect

on our example flow graph (see Figure 2.1) is illustrated in Figure 2.2. At a high level,

path splitting eliminates joins that cause any statement following them in the loop body

to have ambiguous reaching definitions information caused by definitions within the loop.

If the reaching definitions information for a variable is already ambiguous on loop entry,

path splitting cannot generally improve things, and so will not be applied. If, however,

as in the example, it can be applied, then it results in a flow graph in which each node
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SPECIALIZE-OPERAND(o:operand, s:statement, l:loop)
foreach st:statement in statements(l) do

colorEst] := white
color Es] := gray
Enqueue(Q:queue, s)
while Q 7 0 do

sc:statement := head EQ]
foreach sp:statement in predecessors Esc] do

if has-unique-reaching-definition(sp, o) then
specialize-replicate-code(o, sp, sc, 1)

else if color [sp] =-white then
color [sp] := gray
Enqueue(Q, sp)

Dequeue(Q)
color[sc] := black

Code

* This algorithm is essentially a slightly modified version of breadth-first search [11].

* has-unique-reaching-definition is true if only one definition of o reaches its use at sp,
and if this definition is an assignment from a scalar variable or a constant.

Legend

Algorithm 2.2. Path Splitting: function SPECIALIZE-OPERAND.

in the loop body is reached by no more than one definition of each of its operands in the

loop body. As a result, the loop body is mostly a tree, in which joins exist only if they do

not corrupt downward data flow information, and otherwise each basic block only has one

direct predecessor. In our example, for instance, the original loop has been "split" into two

loops (or, more accurately, into a sequence of code with two back edges), neither of which

contains a join.

2.2 Creating Specialized Loops

Converting the flow graph within a loop to tree form may often be insufficient to improve

data flow information in the loop. Information that flows down through the control flow

graph will reenter the loop through the back edges, so that at the head of the loop there is

no more data flow information than there was before joins were removed. This is a problem,
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SPECIALIZE-REPLICATE-CODE(o:operand, sp, sc:statement, :loop)
if is-unconditional-jump(sp) then

seq:sequence := copy(code-sequence(sc, 1))
mark-end-of-path(seq)
insert-sequence(seq, sp)
delete-statement(sp)

else if is-conditional-branch(sp) then
l:statement := new-label()
insert-after(l, sp)
reverse-and-redirect(sp, 1)

seq:sequence := copy(code-sequence(sc, 1))
mark-end-of-path(seq)
insert-sequence(seq, sp)
delete-statement(sp)

else if not is-indirect-jump(sp) then
seq:sequence := copy(code-sequence(sc, 1))
mark-end-of-path(seq)
insert-sequence(seq, sp)

Code

* code-sequence(s, ) returns the straight-line code sequence from s to the end of 1, inclu-
sive.

* copy copies a code sequence. All labels are renamed uniquely. The destination of a jump
is renamed appropriately if the corresponding label is within the copied sequence.

* is-unconditional-jump returns true if the instruction is an unconditional jump.

* is-conditional-branch returns true if the instruction is a conditional branch.

* insert-after(s, s 2) inserts s after s2.

* insert-sequence(seq, q) inserts sequence s after statement q.

* mark-end-of-path(seq) marks the last statement of seq as an "end of path" node, required
to find points of specialization during the second phase of path splitting.

* new-label returns a new, unique label.

* reverse-and-redirect (j, 1) reverses the test condition of jump j and redirects it to label
1.

Legend

Algorithm 2.3. Path Splitting: function SPECIALIZE-REPLICATE-CODE.
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since it implies that maximally precise downward data flow information is only available

at the bottom of the loop. For example, it can now become difficult to perform dead code

elimination after copy propagation. In Figure 2.2, for instance, after removing joins we

are able to propagate the copy x = a, converting the assignment w = x to w = a, but

cannot remove the assignment x = a.

To counter this difficulty, path splitting unrolls once each of the join-free loops created

in the previous step. Algorithm 2.4 describes this process in some detail. In more abstract

terms, we find the paths from the end of each loop (i.e., from the nodes ending in loop

back-edges, namely those containing w = x and w = a in Figure 2.2) to the head of the

loop, and append a copy of this path to the end of each loop. This process transforms the

flow graph in Figure 2.2 into that shown in Figure 2.3.

Figure 2.3. Example flow graph, after creating specialized loops.

At this point, the original loop containing joins has been transformed into a tree-like

structure, in which each of the leaves (1) contains precise reaching definitions information,

and (2) is followed by a "specialized" loop that is a copy of the path between itself and the

head of the loop. Each such loop contains outgoing but no incoming edges, so the accurate

data flow information entering it is preserved throughout its body. As a result, it is possible

to make strong statements about the values of variables inside some loops, and thus perform
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effective optimizations tailored to that particular set of data flow information - hence the

term "specialized" loop.

In Figure 2.3, for example, the unrolled loop on the right hand side can only be entered

by first passing through the section of the tree on which the assignment x := a occurs.

Since x is never reassigned inside the loop, the assignment x := a inside the unrolled loop

(in block b3) can be removed, as indicated by the dashed box surrounding it in the figure.

The key to effectively creating specialized loops is that, as mentioned earlier, no edges

enter any of these loops (except through the loop head, of course). Edges that leave these

loops are inevitable, since conditional branches inside the loops cannot in general be re-

moved, but they are redirected into the "upper" parts of the unrolled loop structure. As

a result, the "tree" created by splitting joins can be re-traversed, making the appropriate

data flow information precise and available before control enters the destination specialized

loop.

2.3 Removing Unnecessary Code

Path splitting improves information regarding predecessors of a given block. All data flow

information that flows downward, such as reaching definitions and available expressions,

is made more precise. Data flow information that propagates upward in the control flow

graph, such as liveness information, is not improved by the code splitting alone, however.

In fact, liveness information propagating backward along the edges of the control flow graph

can be detrimental to the elimination of code made unnecessary by path splitting.

Figure 2.3 contains a concrete example of this problem. In the previous section, we

mentioned that the assignment x = a in block b3 can be eliminated. This is true, but the

removal will not happen if dead code elimination is performed in the standard fashion [1],

because the use of x in block b, together with the existence of edges (b4, b2) and (b2, bl),

keeps the assignment in b3 live. However, there is no reason why this assignment should

not be eliminated, since the only definition of its destination operand that reaches it is

its own original, and the source operand is not reassigned within the body of the loop.

The code is therefore unnecessary, although not technically dead. To avoid wasting these

opportunities for "unnecessary" code elimination, we search the control flow graph, and

immediately remove any copy that meets the following criteria:
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SPECIALIZE-LOOP(l:oop)
foreach s:statement in statements(l)do

if is-end-of-path-mark(s) then
seq:sequence := copy(reverse-BFS-path(s, head(l)))
insert-sequence(seq, s)
adjust-control-flow(seq, s)

Code

* adjust-control-flow(seq, s) inserts the sequence seq after statement s.

- If s (the end of the path of which seq is a copy) is an unconditional jump to the top
of the current loop (), it is removed, so control flow simply falls from the predecessor
of s into seq. If s is a conditional branch, then its test condition is reversed, and it is
redirected to a new label following 1.

- A new label (the same used in the case when s is a conditional branch) is appended to
1, and an unconditional jump to it is placed directly after s. The different specialized
paths are laid out sequentially in the text segment, so without the branch, flow of
control would not exit the loop after falling out of seq, but would incorrectly fall into
the textually successive specialized sequence.

* is-end-of-path-mark(s) returns true if s is marked as an "end-of-path" statement (always
guaranteed to be a loop back-edge), i.e., if we are at a leaf of the tree formed by the first
stage of path splitting.

* reverse-BFS-path(x, y) returns the sequence of statements on the shortest path from x
to y, moving along reverse control flow arcs, from a node to its predecessor. The sequence
is thus the list (, Pi P2,.. ,x), where y is a predecessor of p1, P1 is a predecessor f P2,
and so forth.

Legend

Algorithm 2.4. Path Splitting: function SPECIALIZE-LOOP.
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1. It is in a basic block that was created as a copy for the purposes of path splitting.

2. The only definition of the destination operand is that corresponding to the assignment

in the original block.

3. The source operand is not redefined within the body of the loop.
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Chapter 3

Lattice-theoretical Properties of

Path Splitting

This chapter describes a framework for data flow analysis, and discusses the advantages in

data flow information resulting from path splitting. It opens with some definitions necessary

for the presentation, outlines monotone and distributive data flow frameworks and the limits

imposed on data flow information by the structure of the control flow graph, and describes

the effects of path splitting on available data flow information. The purpose of this chapter

is to explain how path splitting can provide optimal downward data flow information over

regions of interest.

3.1 Preliminary Definitions

We begin by presenting and explaining some standard definitions required to provide a base

for the rest of the discussion.

Definition 1 A semi-lattice is a set L with a binary meet operation A defined as follows,

for a, b, zi E L:

aAa = a (3.1)

aAb= bAa (3.2)

aA(b A c) =(a A b) A c (3.3)

,. a> biff a A b=b (3.4)
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a>biff a Ab = b and a b

A xi = xl Ax 2 A .. n (3.6)li<n

Definition 2 A semi-lattice has a zero element 0 if, for all x E L, 0 A x = 0O. A semi-

lattice has a one element 1 if, for all x C L, 1 A x = x. We henceforth assume that every

semi-lattice has a zero element.

In other words, a semi-lattice is a partially ordered set of values. The meet operator is

idempotent, commutative, and associative. Definitions 3.4 and 3.5 indicate that the meet

operator takes the lower bound of the operands to which it is applied - it cannot be the

case that a A b = a and a > b. Given this, the one element 1 is the greatest element in the

set of values, and the zero element 0 is the least element.

Definition 3 Given a semi-lattice L, a chain is a sequence xl ... xn E L, such that xi >

xi+l for 1 i < n.

Definition 4 L is bounded if for each x E L there exists a constant b, such that each

chain beginning with x has length at most by.

The concept of a bounded semi-lattice is important in data flow analysis. Definition 4

above does not put a bound on the size of the lattice L - it may well contain an infinite

number of elements. However, it implies that every totally ordered subset of L is of finite

size. We will show later why this is relevant.

....-2 -1 0 1 2....

I
Figure 3.1. An example bounded semi-lattice.

This idea is illustrated in Figure 3.1. In this case, L consists of all the integers, plus the

special symbol L, denoted "bottom." The meet operator A is defined so as to create the

following partial order: for any integers i,j, i A j = if i 0 j, and i A j = i = j if i = j.

Also, for any integer i, i A = . The lattice thus has an infinite number of elements, but

the height of the longest chain is 2, because no ordering relationship is defined between any
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integers. I is the 0 element. If the meet operator is applied to two identical integers, then

the result is that same integer. If it is applied to two different integers, then the result is

.L. The order relationship implies that if the meet is applied to some number of integers,

and any two differ, then the result is .

3.2 Monotone and Distributive Frameworks

This section begins with five definitions necessary to describe a monotone data flow frame-

work, and then goes on to map these definitions onto a concrete instance of a program

representation.

Definition 5 Given a bounded semi-lattice L, a set of functions F on L is a monotone

function space associated with L if the following are true:

* Each f E F satisfies the monotonicity condition,

Vx,y E L,Vf E F ,f(x A y) < f(x) A f(y) (3.7)

* There exists an identity function i in F, such that

Vx E L,i(x) = (3.8)

* F is closed under composition,

f,g E F -fg E F (3.9)

Vx E L, fg(x) = f (g(x)) (3.10)

* For each x E L, there exists f E F such that f(x) = O.

Definition 6 A monotone framework is a triple D = (L, A, F), where

* L is a bounded semi-lattice with meet A as above.

* F is a monotone function space associated with L.

Definition 7 A distributive framework is a monotone framework D = (L, A, F) that sat-

isfies the distributivity condition:

Vx,y E L,f E Ff(x A y) = f(x) A f(y) (3.11)
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Definition 8 An instance of a monotone framework is a pair I = (G, M), where

* G = (N, E, no) is a flow graph.

* M: N - F maps each node in N to a function in F.

Definition 9 Given an instance I = (G,M) of D = (L, A,F), f denotes M(n), the

function in F associated with node n. In addition, let P = nj, n2,... , nm be a path in G.

Then fp(x) = fn o f2 °o... o° fn

Figure 3.2. Another example control flow graph.

Having stated all these definitions, we now attempt to make them more concrete by

placing them in the context of the example control flow graph in Figure 3.2 and the data

flow values associated with it. In this case, the flow graph G in Definition 8 consists of nodes

N = {bo, bl,b 2 , b3 , b4 }, edges E = {(bo, bl), (bl, b2 ), (bl, b3 ), (b2 , b4), (b3, b4)}, and initial node

b0 .

Let us construct a data flow framework useful for copy propagation over this graph.

Informally, L will be some set of sets of pairs (v, k), where v is any variable in the program

(x, a, or w), and k is any variable or integer. Then define the meet operator A to be set

intersection. Let F in Definition 5 consist of functions fbk, such that M in Definition 8

maps bk F- fbk, and each fbk models the assignments, if any, in the corresponding block bk

in the flow graph. For the sake of simplicity in this example, we let such a "block" contain

exactly one instruction, and we ignore pointers. Thus, if a block b consists of an assignment

to a variable v1 from a variable v2 or a constant c, then fb(x) (where x E L) is a function

that removes all ordered pairs (vl, k) for any k from x, and then adds to x the ordered pair

(v1, v2) or (vi, c), respectively.

36



Having constructed this framework, we can now find which copies reach which nodes

in the flow graph. For each node n E N, we shall denote the copies entering n by A[n].

We must initialize each A[n] to some value. Since no copies can enter the root node, and

since we do not want to miss possible copy information anywhere else, we set A[no] = 0

(the 0 element, ie. the empty set of copies), and A[n] = 1 (the 1 element, ie. the universe

of all possible pairs of copies)) for all other nodes n. Then, for each n, A[n] is the meet

of f (A[p]) over all predecessors p of n. We repeatedly apply this process until we reach a

fixed point over all A[n]. This is guaranteed to occur eventually, since, by Definitions 3.4

and 3.5, a A b > a and a A b b for all a, b G L, and L is bounded. The fact that L is

bounded, emphasized earlier, is necessary in order for this to hold true.

At the end of this iterative relaxation procedure (which in this case actually requires

only one iteration, if we traverse the nodes in the direction of control flow, since there are

no loops), in the case of our example we find that A[bo] = 0 (it never had an opportunity

to change, since b has no predecessors), A[bl] = A[b2] = A[b3] = A[b4] = {(a, 3)}. Nothing

about x can be said in b4, since {(a, 3), (x, 2)} n {(a, 3), (x, a)} = {(a, 3)}.

3.3 Solving Data Flow Analysis Problems

This section adds some details to and formalizes the concepts introduced in the example

above. It turns out that many other data flow analysis problems of interest, such as live

variable analysis, can be expressed in terms of the monotone frameworks described in the

previous section [25]. The relaxation method for solving such problems, presented by ex-

ample above, is due to Kildall [27], and is outlined in Algorithm 3.1. Iterative algorithms

(such as those used in path splitting) to solve data flow problems can all be reduced to

this generic prototype. Depending on the specific problem, the nature of A and F, the

types of values stored in elements of L (the A[N]s in Algorithm 3.1), and the direction of

information flow (whether the meet is taken over all predecessors or all successors), need to

be defined appropriately.

Executing this algorithm results in A[n] for each n, which are the maximum fixed point

(MFP) solution to the following set of simultaneous equations:

A[no] = 0 (3.12)
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foreach n E N do
if n = no then A[n] = 0 else A[n] = 1

while changes to any A[n] occur do
foreach n E N do

A[n] = ApEPRED(n) fp(A[p])

where PRED(n) refers to the predecessors of n, ie. all m G N such that (m, n) E E.

Algorithm 3.1. Monotone Framework Iterative Analysis.

Vn E N- {no}, A[n] = A fp(A[p]) (3.13)
pEPRED(n)

The desired solution to a data flow problem is generally referred to as the meet over

all paths (MOP) solution. If we define PATH(n) to be the set of paths in G from no to

n E N, then the MOP solution is APEPATH(n) fp(O) for each n. Theorem 1 formalizes

the relationship between this MOP solution and the MFP solution obtainable by Kildall's

iterative relaxation algorithm.

Theorem 1 Given an instance I = (G,M) of D = (L,A,F), executing Algorithm 3.1 we

obtain, for each n E N,

A[n] < A fp(O) (3.14)
PEPATH(n)

Proof: See [25].

When a data flow problem can be expressed in terms of a distributive framework D =

(L, A, F), then the MFP solution is always the MOP solution [27]. However, in the case

of a framework which is monotone but not distributive, the maximum fixed point of the

data flow equations is not necessarily the MOP solution - it is at most equal to the MOP

solution [1].

The copy propagation framework described in the previous section, for instance, is

not distributive. A small and classic example of a framework which is monotone but not

distributive is constant propagation, as presented in [27]. Constant propagation can be for-

malized as a monotone framework CONST = (L, A, F), where L C 2VXR, V = {A1, A 2, ... }

is an infinite set of variables, R is the set of all real numbers, and A is set intersection. This

definition is simply a more formal way of describing a lattice similar in structure to the one
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B2

B4

Figure 3.3. Example in which MFP < MOP because CONST is not distributive.

used as an example in Section 3.2. Intuitively, each z E L is the set of information about

variables at a given point in the program. Thus, for A E V and r E R, (A, r) E L indicates

that the variable A has value r at some n E N. The functions in F model the effect of

assignments within each node in N on the sets of definitions in L.

A simple example taken from [1] illustrating CONST's lack of distributivity and the

resulting disadvantages in terms of data flow analysis appears in Figure 3.3. In this case,

N = {B,...,B s}. Let M(Bs) = fB 5 E F, and define fB5 = (C := A+B). Then xAy = 0,

so f(x A y) = 0, whereas f(x) A f(y) = (C, 5)} A {(C, 5)} = (C, 5)}. Essentially, in the

case of the maximum fixed point solution data flow information flows down to B5 as if there

existed paths B - B2 B3 - B5 and B - B1 -- B4 -* B5.

3.4 Improvements Resulting from Path Splitting

Path splitting transforms the control flow graph so as to increase the amount of information

available during data flow analysis. It provides two main advantages, which will be discussed

in more depth in the following sections. It improves the quality of the MOP solution at

nodes of interest, and it removes limitations, such as that described in the last section in

the case of CONST, associated with non-distributive monotone frameworks.
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3.4.1 Improving the MOP Solution

Path splitting creates specialized sequences of nodes in the control flow graph corresponding

to every path that may be taken through a loop. This section shows that the downward

data flow information available in each of these specialized loops is at least as good as before

path splitting, and in fact that it is optimal, in the sense that it cannot be improved further

by rearrangements of the control flow graph.

We assert, omitting the proof of correctness of the algorithm, that each of the specialized

loops created by algorithm SPECIALIZE-LOOP contains no joins, except when such joins do

not corrupt downward reaching definitions information. Recall also that control may enter

the sequence only through the header node, which is immediately preceded by one of the

leaves of the tree created by function SPECIALIZE-REPLICATE-CODE.

Pick any one of these specialized loops, let N' be the set of all its component nodes, and

let n' N' be its head. The fact that there are no joins inside this loop that corrupt data

flow information means that for every n' in that specialized loop, there are no two paths

Pi and Pj from no to n' such that one has different data flow information than another. In

other words, if there in fact is more than one distinct downward path from n' to any n', then

for every pair of such paths, Pi and Pj, f,(A[n]) A fpj(A[n]) = fpi(A[n']) = fp (A[n]).

So we can conclude that after path splitting, within each specialized loop,

('Vn' E N')[A[n'] = fp(A[n'])] (3.15)

where P can be picked from any one of the paths from no to n'.

From the definitions of a lattice in Section 3.1, we know that, given a lattice L and

a, b E L,

a > aA ( A bi) (3.16)
1<i<j

As a result, if we let PATH be the set of all paths from the original loop head (no) to any

other node n in the original loop body, and PATH contains at least one pair of paths Pi and

Pj such that fpi(A[no]) A fpj(A[no]) < f(A[no]) or fpi(A[no]) A fpj(A[no]) < fpj(A[no])

(i.e., the flow graph contains joins harmful to downward data flow information), then

fp(A[n']) > A fp(A[no]) (3.17)
PEPATH(no,n)
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meaning that downward data flow information in each specialized loop after path splitting

is at least as good as before path splitting. Moreover, since we are not taking a meet over

more than one path, this data flow information cannot be improved.

3.4.2 Tackling Non-distributivity

Over regions on which it is performed, path splitting also solves problems, such as those

illustrated in the CONST example, due to joins in non-distributive data flow frameworks.

From Definition 7, a monotone framework D = (L, A, F) is not distributive, if there

exist x, y E L and f E F, such that f(x A y) < f (x) A f(y). After path splitting, as claimed

earlier, within each specialized loop there are no joins that corrupt data flow. Since there

are no joins within these regions of code, the meet operator never needs to be applied, so

the issue of distributivity inside these pieces of code disappears.
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Chapter 4

Implementation

This chapter describes the implementation of path splitting used for this thesis. Section 4.1

gives an overview of the SUIF compiler toolkit from Stanford University, which was used

as a base for this work. Section 4.2 describes parts of the actual implementation of path

splitting.

4.1 The SUIF System

This thesis was implemented using SUIF, the Stanford University Intermediate Format [3,

4, 21], version 1.0.1. The SUIF compiler consists of a set of programs which implement

different compiler passes, built on top of a library written in C++ that provides an object-

oriented implementation of the intermediate format.

This format is essentially an abstract syntax tree annotated with a hierarchy of symbol

tables. As illustrated in Figure 4.1, the abstract syntax tree can expose code structure at

different levels of detail. At one level, referred to as "high-SUIF," it consists of language-

independent structures such as "loop," "block," and "if." This level is well-suited for passes

which need to look at the high-level structure of the code.

The leaves of this abstract syntax tree comprise "low-SUIF," and consist of nodes which

represent individual instructions in "quad" format. This form works well for many scalar

optimizations and for code generation. SUIF supports both expression trees, in which the

instructions for an expression are grouped together, and flat lists of instructions, in which

instructions are totally ordered, losing the structure of an expression but facilitating low-
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level activities such as instruction scheduling. Every SUIF node can contain "annotations,"

which are essentially pointers to arbitrary data.

fileset

fileset entry fileset entry

tree proc tree proc

trenodeisttreenodejist

treeblock

tree_node_list

tree_node_list

W EU i !tree_nodelist
operand

treeloop operandJ~~w operand

treenodelist

tree_nodelist

GLOBAL

FILES

PROCEDURES

TRUCTURED

;ONTROL FLOW

treeinstr

I

nsctio EXPRESSION

operand operand TREES

I, or 

var-syrn instruction

Figure 4.1. The SUIF abstract syntax tree structure (from the SUIF on-line documenta-
tion, http: //suif . stanford. edu).

Each program (or pass) in the SUIF system performs a single analysis or transformation

and writes the results out to a file. All the files share the same SUIF format, so passes can

be reordered simply by running the programs in a different order, and new passes can be

freely inserted at any point in the compilation. The existence of a consistent underlying

format and large libraries which use it encourages code reuse, and makes experimentation

with different passes or combinations of passes easy. A sample usage of the SUIF toolkit,

appears in Figure 4.2. The top half of the figure consists of passes which parse the C or

FORTRAN source into SUIF and then do various high-level parallelizing optimizations.

The bottom part of the figure outlines the available back-end options. Those of primary
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Figure 4.2. A sample ordering of SUIF compiler passes (from the SUIF on-line documen-
tation, http: //suif .stanford. edu).

interest are an optimizing back-end targeted to the MIPS architecture, and the SUIF-to-C

converter, which provides portability to other architectures.

In addition to the core intermediate language kernel and the compiler system written

on top of it, SUIF provides several libraries (most of them useful for compilation of parallel

programs) and various utility programs. Among them is Sharlit, a data flow analyzer

generator [41, 42]. Similarly to how YACC or other parser generators create source code for

a parser given a grammar, Sharlit uses a specification of a data flow problem to generate

a program that performs data flow analysis on a SUIF program representation. Using

Sharlit, one can describe various types of data flow analyses, including iterative relaxation

and interval analysis. In our experience, Sharlit has proved to be useful and versatile. It is

a good tool for quickly describing and prototyping data flow analyses.
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4.2 The Implementation of Path Splitting

Due to the structure of SUIF, the path splitting program, paths, is not excessively com-

plicated. Reaching definitions and liveness analysis data flow problems were specified using

Sharlit, and the rest of the algorithm was written using the main SUIF library. The entire

path splitting algorithm, together with flow graph and data flow information abstractions,

facilities for I/O and debugging, and Sharlit data flow specifications is a little over 4000

lines of commented C++ code.

The consistent interface between passes made inserting the path-splitting pass into the

rest of the compiler simple. As shown in Figure 4.3, the path-splitting program, paths, is

invoked after invoking the porky program. A C program to be compiled is first fed through

the preprocessor, then converted to SUIF by the program snoot, and subsequently modified

by porky. porky performs various optimizations, including constant folding and propaga-

tion, induction variable elimination, and forward propagation of loop tests, and ensures

that no irreducible loops are associated with high-level "loop" constructs in the abstract

syntax tree. paths reads the intermediate form produced by porky, and for each procedure

performs reaching definitions analysis, finds well-structured loops (by searching for SUIF

"loop" constructs), and performs path splitting. It then writes the binary intermediate

form out to disk for use by the back end.

After path splitting, porky and oynk perform additional scalar optimizations, and then

mgen and mexp generate MIPS assembler code, which is passed to the system assembler

and linker. At various points throughout the compilation, other minor passes convert the

intermediate representation to and from two slightly different flavors of the SUIF format

used by different passes, but their operation is transparent and we omit them for simplicity.

When emitting code to a machine other than the MIPS, a SUIF-to-C translator is invoked

in place of oynk and the rest of the back end. Optimization and code generation are then

performed by the system C compiler.

46



C source code to be compiled

T

Data flow problem description

,
Salit I

............ paths source code 

C++ code for
data flow analysis

/---\II
I .
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Chapter 5

An Evaluation of Path Splitting

Previous chapters outlined the design and implementation of path splitting: this chapter

describes and evaluates its effects. First, Section 5.1 presents simple examples of code for

which path splitting improves data flow analysis, enabling other data flow optimizations,

such as copy propagation and common subexpression elimination. Subsequently, Section 5.2

reports the results of performing path splitting on a variety of benchmarks.

5.1 Examples

This section presents small examples of code for which path splitting is useful, and illustrates

the algorithm's effect on them. In each figure, the fragment of code on the left can be

improved by applying path splitting together with traditional optimizations. The fragment

on the right is the C representation of the result of applying these optimizations to the

fragment on the left.

Consider Figure 5.1. The value of x is a function of a, and may be determined directly

for all values of a, but the code is written in such a way that standard data flow analysis

will not provide any useful information. After path splitting, however, each assignment to

y is specialized to a set of values of a, so that the appropriate value of x is known in each

case. As a result, x is no longer needed, enabling the removal of the assignment x = 2 and

potentially freeing one register or avoiding a memory reference.

Figure 5.2 is an example of how path splitting can help in common subexpression elim-

ination. In the loop, the expression k+z would be available at the assignment to x for all

values of a other than a=50. As a result of this exception, CSE cannot be performed. After
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. . .

int x = 2;

int y = 0;

while (a<100) {

if (a>50)

x = 3;

y = y+x;

a++;

}

eee

int y = 0;

while (a<100) {

if (a>50) {

y = y+3;

a++; continue;

} else {

y = y+2;

a++; continue;

}

...

before after

Figure 5.1. Code example 1: constant propagation.

e.e

int x = 2;

while (a<100) {

w = k+z;

eee

if (a==50)
k++;

eee

int x = 2;

while (a<100) {

w = k+z;

eee

if (a==50) {

k++; x = k+z;

a++;

continue;

} else {

x = w; a++;

continue;

}
...

x = k+z;

a++;

}

before after

Figure 5.2. Code example 2: common subexpression elimination.

path splitting on the use of k in x=k+z, however, each copy of this assignment is reached by

a unique definition of its operands, and k+z is available at one of the assignments, allowing

it to be substituted with a reference to w.

Figure 5.3 illustrates how path splitting can enable copy propagation (in this case,

actually, constant propagation). The improved data flow information leads to folding of an
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... for (jO;j<10O;j++) {

for (j=O;j<100;j++) { if (j%2) {

if (j%2) if (j%/3)
a 3; c += 9;

else else
a = 4; c += 10;

if (j,3) } else {
b = 6; if (j%3)

else c += 10;
b = 7; else

c += a+b; c += 11;

} }

}

before after
Figure 5.3. Code example 3: copy propagation and constant folding.

arithmetic expression on every path through the loop, decreasing the number of instructions

which need to be performed on each iteration.

Figure 5.4 is another example of copy propagation, constant folding, and code motion

permitted by path splitting. Note that the C continue statement is generally implemented

by a jump to the bottom of the loop, where an exit condition is evaluated and a conditional

branch taken to the top of the loop if the exit condition is false. Exploiting the ideas of [34],

we save the additional jump to the loop test by duplicating the loop test at all points where

a loop now ends. If the test evaluates to false, a jump is taken to the end of the entire loop

"tree" so that execution can continue in the right place.

There are other small advantages to be had from path splitting. On machines with

direct-mapped instruction caches, for example, we expect path splitting to improve locality

in those loops where a test is made but the condition changes rarely. Consider Figure 5.5.

In this case, path splitting on the value of test after the if statement would create two

specialized sub-loops: one containing "code block 1," and the other without it. If test

is indeed false, executing in the specialized loop not containing code block 1 will result in

better locality. In this sort of situation, path splitting is a "conservative" version of loop

un-switching [5]: it does not replicate the entire loop, but only certain portions of its body.
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. . .
for (x=O;x<a;x++) {

switch(j) {

case 1:

c = 4;

d = 7;

break;

case 2:

d = 2;

break;

case 3:

c = 4;

break;

default:

}
g(c+d);

}

for (x=O;x<a;x++) {

switch(j) {

case 1:

c = 4; d = 7;

g(11);

continue;

case 2:

d = 2; g(c+2);

continue;

case 3:

c = 4; g(d+4);

continue;

default:

g(c+d); continue;

}
}

before after

Figure 5.4. Code example 4: copy propagation, constant folding, and code motion.

test = f ();
while (condition) {

if (test)
/* code block 1 here */

/* other code here */
}

return y;

Figure 5.5. Code example 5: path splitting as a variant of loop un-switching.

5.2 Benchmarks

Path splitting introduces a tradeoff between static code size and dynamic instruction count.

The more aggressively code is replicated and special-cased to certain sets of data flow values,

the more effectively, presumably, other data flow optimizations will be performed, lowering

the program's dynamic instruction count. Excessive code growth, however, can lead to poor

cache behavior and, in extreme cases, to object files which are impractically large.
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This section explores these concerns by measuring several benchmarks. The first group

of benchmarks is "synthetic" - programs in this group are small, and contrived so as

to especially benefit from path splitting. Each consists of one or more loops, in which

joins prevent copy propagation, common subexpression elimination, constant folding, and

dead code elimination from occurring. They are to some degree an upper bound on the

improvements available through path splitting.

The second group of benchmarks consists of real programs, among them some SPECint92

benchmarks, the Stanford benchmarks, and some in-house utility programs for extracting

statistics from text files (word histogram, word diameter).

In order to obtain significant data, we performed three kinds of measurements: (1)

instruction counts, both static and dynamic, (2) cache simulations, and (3) actual run time

measurements. We briefly describe each in turn:

1. Static and dynamic instruction count. The former is simply the number of instructions

in the object file, the latter is the number of cycles executed at run time. Note that the

latter number is not an especially good indicator of program run time, since it ignores

all memory hierarchy effects and operating system-related events such as network

interrupts. Both measurements were taken using pixie and the xsim [39] simulator.

2. Cache "work." The numbers reported, labeled "Traffic" and "Misses," are the cumu-

lative number of reads and writes to memory and the number of demand misses in the

cache respectively. The data was collected with the dineroIII cache simulator from

the WARTS toolkit [6, 31], modeling direct-mapped separate instruction and data

caches of 64KB and 128KB respectively, as in a DECstation 5000/133 workstation.

3. Actual run times. This is how long the program actually took to run, averaged

over 300 trials, each timed with the getrusage system call. Measurements were

taken in a realistic environment, on a DECstation 5000/133 with 64MB of main

memory, connected to the network and running in multi-user mode. As a sanity

check, measurements for the large benchmarks were also made on a DECstation 3100

running in single user mode and disconnected from the network.

'The diameter of a list of words is the longest of all shortest paths between any two words in the list,
where a path is a sequence of words in the list, each of the same length, such that two adjacent words differ
only by one letter.
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Before presenting the actual data, we outline the major results which can be drawn from

them:

* Path splitting can provide large performance improvements over regions of code where

it is applied, but at the cost of significant code growth.

* Path splitting does not significantly harm the cache performance of large programs,

and can in fact sometimes improve it.

* Regions where path splitting is profitable are not extremely common. As a result, real

run time benefits on large programs range between 0.2% and 7.5%, and code growth

is always limited to under 5%.

* It is not always necessary to perform all of path splitting. Experiments show that

simply performing the first phase, splitting the loop body into tree form, obtains

noticeable performance improvements with relatively little code growth. Performing

phase two (specializing loops) often degrades performance and causes code size to

grow.

* Path splitting should be considered a "speculative" optimization, like loop unrolling

or function inlining. In certain cases, it can cause the performance of a compiled

program to degrade slightly.

5.2.1 Results for Synthetic Benchmarks

We begin by analyzing the results for the synthetic benchmarks. Figure 5.6 presents the

dynamic instruction count results. The numerical data for these graphs, as well as for all

other graphs in this section, is available in Appendix A. As can be seen, performing path

splitting can significantly decrease the dynamic instruction count of a program.

Figure 5.7 documents actual run times of these benchmarks on a DECstation 5000/133.

The black horizontal line on top of each bar is the "upper-bound" error bar corresponding

to the 95% confidence interval for the data displayed. Error bars of this sort are provided

in all figures which depict noisy or variable data. Please refer to Appendix A for additional

information on the confidence intervals. From the figure we notice that path splitting does

not provide as much run time benefit as could be hoped by looking only at the dynamic

instruction counts. This is probably due primarily to two factors: (1) slightly poorer cache
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Before moving on to larger benchmarks, we must consider code size growth and cache

effects resulting from compiling the synthetic benchmarks with path splitting. Figure 5.8

illustrates the growth in static code size in the case of the synthetic benchmarks. We see

that, especially in three of the four cases, static code size grows relatively little compared

to the vast decreases in dynamic instruction count visible in Figure 5.6.

Finally, Table 5.1 shows the effect of path splitting on the synthetic benchmarks' cache
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performance. As mentioned previously, the "Tlaffic" columns refer to total traffic to memory

(both reads and writes). The "Misses" column refers to the number of demand misses

in the cache. The three columns, "SUIF -02," "Paths (1)," and "Paths (2)," refer to

measurements taken when the micro-benchmarks were compiled without path splitting,

with only the first phase of path splitting (without unrolling specialized loops), and with

complete path splitting, respectively. As expected, increasing code size has negative effects

on cache performance, but this performance loss is small: memory traffic increases by no

more than 5%, even in cases with dramatic code growth. This result is due in part to

the small size of the benchmarks themselves. However, as discussed later, even for larger

benchmarks cache performance decreases only by a small amount.

(SUIF -02) Paths () Paths (2)
Benchmark Traffic Misses Traffic Misses Traffic Misses

Switch 2544 278 2536 278 2680 296
For-loops 2536 278 2560 281 2600 286

Rep-loops 2520 276 2536 278 2592 285
Simple 2528 277 2552 279 2592 284

Table 5.1. DineroIII results for synthetic benchmarks.

5.2.2 Results for Large Programs

Having discussed the synthetic benchmarks, we now present results on more representa-

tive, "real" code. These include 3 benchmarks from the SPECint92 suite (008.espresso,
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023. eqntott, 026. compress), the Stanford benchmark from the MIPS architecture bench-

mark suite, the classic 8queens problem, Histogram, a program which measures the fre-

quency of words in a text file, and Wordstat, which finds the diameter of a list of words.

We proceed as with the synthetic benchmarks, first presenting run time performance

numbers, and then moving on to code size and cache effects. In order to obtain data about

performance both in a "realistic" multi-user system and in a more controlled environment,

we made run time measurements both on a fully functional DECstation 5000/133 in multi-

user mode and on a DECstation 3100 in single-user mode disconnected from the network.

. .

; SUIF-02

5 Path splitting

008.espresso 023.eqntott 026.compress 8queens Stanford Histogram Wordstat

Figure 5.9. Dynamic instruction count results for the "real" benchmarks (see also Ta-
ble A.4).

Figure 5.9 shows the normalized dynamic instruction count results for each one of these

benchmarks, whereas Figure 5.10 is a normalized plot of measured run times on a DEC-

station 5000/133 in multi-user mode. The dynamic instruction count data shows that path

splitting can decrease the number of instructions executed at run time by as much as 7%

(Histogram). In one case, eqntott, path splitting results in an executable which actually

takes more cycles at run time than the original. Although path splitting does not increase

the number of instructions along any path, examination of assembly code has shown that in

some cases (such as eqntott) restructuring loops can lead to less efficient use of delay slots,

resulting in slightly negative results. This appears to be a very rare occurrence, however.

Run time performance after path splitting can improve by over 7% (Histogram). More-

over, since the 95% confidence intervals, denoted by the error bars, generally do not overlap
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SUIF-02

II Path splitting

008.espresso 023.eqntott 026.compress 8queens Stanford Histogram Wordstat

Figure 5.10. Measured run times of the "real" benchmarks (seconds) (see also Table A.5).

(in the case of compress there is a small overlap; only for Wordstat is there significant

overlap), these measurements appear convincing. Only in one case (Wordstat) does path

splitting degrade performance. Nevertheless, in that case performance only falls by 0.42%,

and the confidence intervals overlap significantly, indicating that system noise influenced

results to a large degree.

15-
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-
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Figure 5.11 I.
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3.6 3.7 3.8

Run time (seconds)

Histogram of 008. espresso run times.

The issue of system noise when measuring actual run times on a workstation needs to

be carefully considered. As an example, Figures 5.11 and 5.12 are intended to illustrate,
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more clearly than the error bars in Figure 5.10, the degree of noise and variability in system

measurements when running the benchmarks on a fully configured workstation connected

to the network. They are histograms of run times for the 008.espresso and Histogram

benchmarks, respectively. The x-axis measures time, in seconds, and the y-axis measures

number of occurrences. In other words, a point at (x, y) indicates that the runtime of

the given benchmark was x for y of the 300 measurements made. Despite the noise, path

splitting still provides measurable and statistically significant performance improvements.

0
norm

- m- paths

Run time (seconds)

Figure 5.12. Histogram of histogram run times.

To provide real run time data less influenced by system noise, we also measured each

benchmark's performance on a DECstation 3100 running in single-user mode and discon-

nected from the network. We applied the same methodology employed in the multi-user

environment: 300 test runs per benchmark, with timings obtained through getrusage. Fig-

ure 5.13 depicts the resulting normalized data. Although performance differences change

(path splitting appears to be relatively more effective on Stanford and Wordstat, and less

effective on the other benchmarks), we still observe that path splitting offers significant

performance improvements.

We now discuss code growth and cache performance issues. Figure 5.14 shows normalized

static instruction counts for each benchmark. This data shows that, for large benchmarks,

code growth caused by path splitting is generally less than 5% of the original code size.

Table 5.2 reports on cache activity for large benchmarks. In this case, unlike for the
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Figure 5.13. Measured run times of the "real" benchmarks in single-user-mode (see also
Table A.6).

• SUIF-02

| Path splitting

008.espresso 023.eqntott 026.compress 8queens Stanford Histogram Wordstat

Figure 5.14. Static instruction count results for the "real" benchmarks (see also Ta-
ble A.7).

synthetic tests, cache activity was only measured for the path splitting policy that produced

best run time results. In general, this involved only phase one of path splitting (splitting

the loop body into tree form), without specializing sub-loops, which did not improve run

time performance and increased code size. As can be seen from the data, applying limited

path splitting does not significantly harm cache behavior, and can sometimes even improve

it (for example, 008.espresso, 026.compress).
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(SUIF -02) Path Splitting % increase
Benchmark Traffic Misses Traffic [ Misses Traffic Misses

008.espresso 160552 18533 146520 16779 -8.73 -9.46
023.eqntott 27376 2022 27432 2029 0.20 0.35
026.compress 806704 61431 806160 61431 -0.07 0.00
8queens 1776 179 1776 179 0.00 0.00
Stanford 536 51 536 51 0.00 0.00
Histogram 178056 13915 199536 16044 12.06 15.30
Wordstat 12936 8056 13000 1011 0.49 -87.45

Table 5.2. DineroIII results for real benchmarks.

5.3 Summary of Results

To conclude, path splitting can be useful. For most real benchmarks it provides noticeable

improvements in real run time with negligible code growth. Decreases in performance,

when they occur, are minimal and usually statistically insignificant, but they nonetheless

indicate that path splitting is a "speculative" optimization, and should be applied with care.

One slightly surprising discovery is that performing simply the first phase of path splitting,

without specializing loops, is usually preferable to running both phases. Running both

phases incurs large code growth penalties and related cache effects, while the additional

data flow information apparently does not enable much more optimization. By running

only the first phase of path splitting we reduce both code size growth and time required for

compilation, while still preserving the performance benefits of path splitting.
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Chapter 6

Discussion

This chapter discusses potential ramifications and extensions of path splitting, and com-

ments on compiler design. Section 6.1 describes how path splitting can impact trace schedul-

ing [16, 18], a technique for improving code generation on super-scalar systems. Section 6.2

describes a variant of the algorithm presented in Chapter 2 which appears useful for trace

scheduling, and discusses possible methods for limiting the resultant code growth. Lastly,

Section 6.3 comments on compiler construction, presenting experience gleaned through ex-

tensive work with a number of public-domain compilers.

6.1 Trace Scheduling

Trace scheduling is a technique for increasing the amount of instruction-level parallelism

exploitable on a super-scalar or Very Long Instruction Word (VLIW) processor. The algo-

rithm can be summarized as follows:

Trace selection The compiler selects a loop-free, linear section of code, possibly spanning

several basic blocks, that has not yet been scheduled. This section of code is called a

trace.

Instruction scheduling The compiler schedules instructions within the selected trace as

if it were a single basic block, with no consideration for the source block of a given

instruction. Two invariants are maintained: the relative order of branches is not

changed, and an instruction is not moved up above a conditional branch if it kills a

value live on the off-trace edge.
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"Patch code" generation Where necessary, the compiler emits copies of instructions

scheduled on the trace. Copies occur for two reasons:

* An instruction has been rescheduled after a conditional branch that used to

follow it, so it needs to be placed before the target of the off-trace edge;

* Joins that jumped into the trace can only jump to a point after which all instruc-

tions present were originally following the join. Any instructions moved above

the join must be replicated to execute before the join in the rescheduled trace.

By considering an entire trace (which may consist of any number of basic blocks) as a

basic block, the compiler has a greater opportunity to schedule instructions so as to make

use of the greatest number of functional units on any given cycle.

Aggressive path splitting, by replicating code to eliminate joins even when this does not

directly benefit data-flow information, produces two advantages for trace scheduling:

* Like loop unrolling, inlining, and other techniques, it increases the amount of code

available for selecting traces on which to reschedule instructions.

* The specialized loop bodies emitted at the end of path splitting have no joins entering

them, potentially decreasing the amount of code which needs to be replicated per trace

during the generation of patch code (of course, path splitting increases the size of code

in any case, but this code growth can at least be used to enable other optimizations).

We are currently still determining the effects of path splitting and uncontrolled path

splitting on super-scalar machines with trace-scheduling compilers. Although data is not

yet available, this chapter nevertheless presents uncontrolled path splitting. Section 6.2.1

describes the algorithm. Section 6.2.2 discusses issues related to limiting code size increase.

6.2 Another Flavor of Path Splitting

The path splitting algorithm presented in Chapter 2 only performs splitting when the use

of a variable is "specializable": in other words, when, according to some criterion (reaching

definitions, for example), data flow information reaching a node is imprecise and could lead

to additional optimizations if made more precise.
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This "usefulness" check is beneficial for compiling code on normal scalar machines,

since it controls code size growth. However, as described above, it may be profitable to

more aggressively increase code size and restructure the bodies of loops in the interests of

trace scheduling. "Uncontrolled" path splitting is a variation of the path splitting algorithm

which removes joins without considering benefits to data flow information. Code size growth

is limited by only performing the splitting on the most heavily executed regions of code, as

determined through run-time feedback or static branch prediction.

6.2.1 Uncontrolled Path Splitting

Algorithm 6.1 outlines uncontrolled path splitting. The last two steps are identical to those

of the first path splitting algorithm. The first phase of the algorithm, however, differs in

that it removes all joins present in a given region, whether this removal improves data flow

information or not. Algorithms 6.2 and 6.3 describe this phase of path splitting. Since

joins are introduced either by unconditional jumps or by the meeting of the branch-taken

and fall-through paths following a conditional branch, these two procedures simply traverse

the given loop body, replicating code to eliminate unconditional jumps and to remove joins

caused by conditional branches.

SPLIT-PATHS-UNCONTROLLED(p:procedure)
foreach l:loop in reverse-post-order(loops(p)) do

remove-unconditional-jumps(l)
remove-joins(l)
specialize-loop(l)
remove-unnecessary-code(l)

Code

* Functions remove-unconditional-jumps and remove-joins are described in algo-
rithms 6.2 and 6.3 respectively.

* Other notation, and functions specialize-loop and remove-unnecessary-code are as
in Chapter 2.

Legend

Algorithm 6.1. Uncontrolled Path Splitting.
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REMOVE-UNCONDITIONAL-JUMPS(1:1loop )

foreach s:statement in reverse-bfs-order(statements(l)) do
if is-unconditional-jump(s) and not is-loop-back-edge(s) then

j:statement := branch-taken-successor(s)
if parent-loop(s) = parent-loop(j) then

seq:sequence := copy(find-sequence(j))
insert-sequence(seq,s)
mark-end-of-path(seq)

Code

* branch-taken-successor(s) returns the successor of conditional branch s that is on the
path taken when the branch condition is true.

* find-sequence(s) returns the sequence of instructions between s and the end of the in-
nermost loop containing s.

* is-loop-back-edge(s) returns true if one of the successors of s is .the head of the reducible
loop that s is in.

* parent-loop(s) returns the innermost loop containing s.

* All other notation is as in Chapter 2.

Legend

Algorithm 6.2. Uncontrolled Path Splitting: function REMOVE-UNCONDITIONAL-JUMPS.
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REMOVE-JOINS(l:loop)
foreach s:statement in reverse(statements(l)) do

if is-conditional-jump(s) and not is-loop-back-edge(s) then
j:statement := branch-taken-successor(s)
if parent-loop(j) = parent-loop(s)

and path-exists(immediate-successor(s)j) then
seq:sequence := copy(find-sequence(j))
insert-sequence(seq,immediate-predecessor(j) )
mark-end-of-path(seq)

Code

* immediate-successor(s) and immediate-predecessor(s) refer to the statement (in-
struction) immediately following or preceding (respectively) s in the text segment.

* path-exists(i,j) is true if any path not containing a loop back edge exists from i to j,
false otherwise.

Legend

Algorithm 6.3. Uncontrolled Path Splitting: function REMOVE-JOINS.
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Figure 6.1. Converting the inner body of a loop from a DAG to a tree.

An example of this process appears in Figure 6.1. As can be seen, all joins in the loop

body are removed, by appropriately replicating blocks of code which follow them. The same

restructuring would occur after the first phase of the path splitting algorithm presented in

Chapter 2, if it were the case that each join in the loop body polluted the reaching definition

information of uses following it.

6.2.2 Code Growth Issues

"Uncontrolled" path splitting, without regard for its usefulness in improving data-flow infor-

mation, can lead to code growth exponential in the number of joins in the control-flow graph.

For all real applications compiled with this technique (for example, gcc and espresso), as-

sembler file size often increased by a few orders of magnitude, rendering the technique

infeasible.

One obvious method for reducing this code growth is feedback. Samples [37] presents an

in-depth analysis of light-weight, efficient methods for run-time profiling. Ball and Larus [6]

also discuss this problem. Another, promising technique is static branch prediction and

profile estimation. Various studies [22, 44, 43] indicate that static flow analysis is almost

as accurate as run-time profiling. The approximately 80% branch prediction accuracy of

static methods should be sufficient to identify the critical regions of code in which it might

be profitable to perform uncontrolled path splitting. Moreover, static branch prediction

eliminates the possibly lengthy compilation-feedback-re-compilation loop required for run-
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time profiling, and is not susceptible to the quality of sample data sets used to collect

run-time feedback data.

6.3 Comments on Compiler Design

We now change gears, and present some opinions and ideas about compiler construction

gathered through the implementation (or in some cases, attempted implementation) of this

thesis in a few widely-used publicly available compilers. From this experience, we observe

a dichotomy between the power and versatility of various compilers and the elegance and

modularity of their design.

On one side of this spectrum lies the GNU C compiler, popular because it emits efficient

code and is easily retargetable to new architectures. Unfortunately, gcc suffers from a lack

of internal structure, and is clearly the work of many people hacking often independently

over a long period of time. The loop restructuring algorithms presented in this thesis

were first implemented in gcc, and the resulting compiler emitted correct, appropriately

restructured code. However, the other loop optimizations which should have been enabled

by the restructuring, such as copy propagation, stopped working as a result of undocumented

assumptions made by other passes about the structure of the intermediate representation.

At the other end of the spectrum is SUIF, which provides a clean, well-defined inter-

mediate representation, and in which different optimization passes may be combined and

reordered freely and easily. Unfortunately, as a result of its primary purpose as a compiler

for parallel machines, SUIF generates scalar code slightly inferior in quality (approximately

a 10% slowdown) to that of gcc. In addition, since compilation passes share information by

reading and writing binary files to disk, and since analyses have to be performed indepen-

dently by each pass, SUIF is noticeably slower than other compilers for all but the smallest

programs.

Another compiler in this spectrum is vpcc, the Very Portable C Compiler from the

University of Virginia. vpcc and its companion optimizer, vpo [7], are structured in a

more rational fashion than gcc, but they lack SUIF's powerful hierarchical intermediate

representation, and provide quite minimal facilities for code replication and for structuring

data flow analyses. In addition, fields containing data flow information are embedded

69

a 



directly into vpo's control flow graph, making the addition of new information or analyses

rather awkward.

Lastly, Fraser and Hanson's cc [19] is a well structured, retargetable C compiler, but

currently lacks any facilities for global code optimizations. Nonetheless, it efficiently emits

code of reasonable quality by using aggressive peephole optimizations.

All this research has led to a few considerations about issues and desiderata in the design

of a research optimizing compiler for scalar machines. These ideas are by no means new;

most are "common sense" rules of software design. All are certainly issues to be carefully

considered when designing compilers, not laws set in stone. Each point below is adapted

from Lampson's "Hints for Computer System Design" [29], which, not too surprisingly,

applies to compiler design as well.

* Keep basic interfaces stable. It is certainly both possible and desirable to specify an

intermediate language interface and respect it throughout the compiler. SUIF does

this, making experimentation fast and enjoyable. Unfortunately, gcc does not do

this, so even the smallest change involves discovering obscure assumptions and "cute

hacks" which cause the implementation of the intermediate language to deviate from

its specification.

* Handle normal and worst case separately. SUIF provides an excellent facility for

analyzing the intermediate representation: after every pass, a representation of the

program being compiled is dumped to disk, and may be unparsed at leisure with ap-

propriate tools. However, debugging the intermediate form is the common case for a

relatively small fraction of the life-cycle of a compiler. In every-day, non-development

use, SUIF can be frustratingly slow in compiling large programs. gcc, on the other

hand, keeps the intermediate representation in memory throughout the compilation,

and outputs a printed representation to a file after a given pass only if desired. Unfor-

tunately, it is impossible to reconstruct the intermediate form from this printed repre-

sentation, since the latter does not contain all necessary information. A combination of

these two approaches, offering reasonably fast compilation but the possibility to view

and edit the intermediate form independently, would be ideal. Tanenbaum et al. [40]

take this philosophy to the extreme so as to obtain a system with both short compile

times during the edit-compile-debug cycle and efficient code as a final product: they
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simply generated two customized versions of their base compiler, each optimized for

one of these two cases.

* Make it fast. Peephole optimizations are very useful, especially during the initial

development and debugging of a piece of software, because they provide substan-

tial performance improvement at very little cost. Unlike most global optimizations,

they can be applied in time linear with the size of input. The incremental benefit

of performing global optimizations is generally not worth the compile-time cost, if

compilation is occurring frequently. Thus, global optimizations usually need only be

applied after the main implementation phase of a program is completed. Again, this

is a result amply described in Tanenbaum et al. [40].

* Do one thing well. There appears to be a limit to the functionality that a system

can support before its size and complexity make it essentially unmanageable. gcc's

retargetability features make it extremely useful as a tool for porting code to almost

any architecture, but creeping "featurism" is contributing to making it very hard to

manage. See more on this topic in the next paragraph.

* KISS: Keep It Simple, Stupid. gcc is littered with flags, special-case code, and other

constructs which make development and experimentation painful. Code seems to

have been added over the years without much sense for overall structure or coherence.

When one adds a module to the existing code base, it becomes difficult to reason

about its interactions with the rest of the system. It is likely that such special-casing

generates particularly clever code in many situations, but it is not clear whether this

slight performance improvement is worth the extra cost in development time and

maintainability.

* Use a good idea again. Most classic data flow optimizations fit into a relaxation

scheme wherein some operator is applied iteratively to all nodes in the flow graph

until the data flow values reach a fixed point. Once this structure is identified and

formalized, adding new analyses becomes simple. A data flow analyzer generator

such as Sharlit makes the implementation of new analyses incalculably easier than in,

for example, gcc or vpcc, because it allows the developer to focus on the properties

of the specific data flow problem at a higher, more structured level, ignoring many
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details relating to the implementation of the relaxation algorithm and the underlying

program representations.

* Don't hide power. SUIF provides a set of abstractions for viewing code at different

levels of granularity, from the very high level ("procedure," "body," "loop") to the

very low level ("load instruction," "branch instruction"). The front end presents the

back end with a richly annotated, machine-independent abstract syntax tree, from

which one can easily extract control- and data-flow information.

* Divide and conquer. vpo stores data-flow information (such as information about

successors, predecessors, dominators, etc.) directly within the nodes of the control flow

graph. This renders various tasks, such as code replication or insertion of additional

data-flow information, more involved and less elegant than necessary. Furthermore,

we have found it helpful to make a distinction between the syntactic structure of

a program (including its abstract syntax tree and the layout of instructions in the

text segment), and the representation of its various properties, such as control flow

graphs, data flow graphs, value dependence graphs, etc.. The cost of developing and

maintaining separate representations is likely to be less than that paid to augment

or change a more tightly integrated, monolithic internal representation. Maintaining

an abstract syntax tree as part of the intermediate representation makes analysis of

the program considerably easier. For example, the lack of an abstract syntax tree

representation in cc's back end is, in retrospect, one of its authors' big regrets.

* Cache answers. Incremental compilation and analysis are fundamental to a compiler's

performance. SUIF is quite slow because the intermediate form is written to and read

from disk between each phase. All auxiliary information (such as data and control

flow graphs) is lost and must be recomputed for each pass. Furthermore, the code for

data flow analysis generated by Sharlit can be quite slow because it does not support

incremental additions to the control flow graph. Thus, whenever a substantial change

is made to the program, the entire flow graph must be recomputed and the iterative

data flow analysis performed once more. It would be immensely faster if both data

and control flow graphs could be computed incrementally. Static single assignment

form, a lightweight and incrementally modifiable implementation of reaching definition

information, results in appreciable compiler performance improvements.
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* Use static analysis. Lampson writes, "Use static analysis if you can ... ; when a

good static analysis is not possible, ... fall back on a dynamic scheme." As described

in Section 6.2.2, using runtime feedback to optimize code has various disadvantages,

and techniques for static branch prediction [43, 22] and other control flow analyses

are sufficiently good to make the overhead of collecting runtime feedback impractical.

When necessary, dynamic code generation [15, 26] can be profitably used to exploit

statically unknown runtime state.

In conclusion, the research community appears to be in need of a compiler system which

generates good code and is both efficient and flexible. Such a compiler would need to

be easily extensible with new optimization techniques and program representations, and

quickly retargetable to new architectures. In addition, it should not meet these conditions

at the expense of the quality and efficiency of emitted code. No system currently seems to

exist which effectively satisfies all these requirements.
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Chapter 7

Related Work

Replicating code, and hence increasing static instruction count, in order to decrease dynamic

instruction count is not a new idea. Function inlining, in which the body of a function is

substituted in place of a call to it in order to avoid function call overhead and trivially

enable inter-procedural optimizations, has been described in various papers [38, 24, 13].

Loop unrolling [5] is a well-known technique for potentially reducing loop overhead, im-

proving register and data cache locality, and increasing instruction-level parallelism. Code

replication is fundamental in producing the long instruction sequences useful for compiling

efficiently to VLIW architectures [2, 14, 16, 32].

Mueller and Whalley [34] describe the elimination of unconditional jumps by code repli-

cation. They present an algorithm for replacing unconditional jumps uniformly by repli-

cating a sequence of instructions from the jump destination. This sequence is selected by

following the shortest path from the destination to a suitable transfer of control (such as a

loop end or a return from the function).

An extension of these ideas, applied to conditional branches, appears in [35]. The key

idea of this work is to find paths through a loop on which the results of a conditional branch

will be known, and either removing the branch (if it is never taken) or replicating code as

with unconditional jumps so as to make the branch unnecessary and hence removable. Joins

are introduced in the control-flow graph of a program as a result of unconditional jumps and

when the fall-through and branch-taken successors of a conditional branch meet. In reading

this work we realized that systematic elimination of these constructs in the appropriate

places could be used to improve data-flow information following the joins.
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Knoop et al. [28] present partial dead code elimination, a technique by which code which

is dead along only some program paths is moved out of those paths and onto only those

paths along which it is used. The algorithm has interesting code-restructuring effects, and

decreases dynamic instruction count. Briggs and Cooper [8] illustrate partial redundancy

elimination, an extension and generalization of common subexpression elimination and loop-

invariant code motion. Granlund and Kenner [20] discuss eliminating conditional branches

through the use of a super-optimizer, a program which finds optimal instruction sequences

for small pieces of code through exhaustive search.

Warter et al. [45] describe enhanced modulo scheduling to improve software pipelining

in loops with conditional branches. The technique uses if-conversion and code replication to

transform loops with conditional branches into straight-line code before scheduling. After

scheduling is performed, however, if-conversion is "undone," and the software-pipelined

basic block representation is reconstructed by replacing the if-conversion predicates with

conditional branches.
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Chapter 8

Conclusion

This thesis has presented path splitting, a method for transforming the control flow graph

of a program in order to statically expose additional data flow information to the compiler.

In brief, code is replicated to remove joins which corrupt reaching definitions information in

the bodies of loops, and the resulting loop bodies are unrolled to further improve data flow

information in the unrolled portions. This loop restructuring increases the effectiveness

of "classical" code optimizations, such as copy propagation and common subexpression

elimination. In addition, it is expected to make the flow graph more amenable to trace

scheduling, an important technique for extracting instruction-level parallelism on super-

scalar machines.

Path splitting was implemented in the SUIF compiler, and measurements collected on

scalar MIPS workstations. Measurements still need to be performed on super-scalar DEC

Alpha machines employing a custom DEC compiler. For scalar machines, synthetic bench-

marks indicate that the algorithm very effectively restructures loops in which additional

data flow information is obtainable and useful in improving code quality. For large, real

applications written in C, the improved data flow information created by path splitting can

result in over 7% run time performance improvements.

In summary, path splitting should be considered a speculative optimization: it has

never caused significant decreases in performance, but it may not always provide large

performance benefits. However, in cases when it effectively improves the applicability of

traditional optimizations, path splitting can lead to significant performance improvements.
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Appendix A

Numerical Data

This appendix presents the actual numerical data from which the figures in Chapter 5 were

generated.

In the tables displaying real run times, the columns labeled "95% CI" are intended to

give an indication of the quality of the measurements in the presence of system noise. The

two numbers in each field of these columns are the lower and upper bound of the 95%

confidence interval for the mean of measured run times over the 300 times measured. For

example, given the measured mean and variance for the "Switch" synthetic benchmark,

there is only a 5% probability that the "actual" mean of run times (were one to continue

the experiment ad infinitum) would be lower than 0.01251s or higher than 0.01353s.
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A.1 Synthetic Benchmarks

Benchmark Cycles (SUIF -02) J Cycles (path splitting) % improvement
Switch 48812 45599 6.58
For-loops 26852 10892 59.43
Rep-loops 32849 14881 54.69
Simple 39720 13903 64.99

Table A.1. Dynamic instruction count
ure 5.6).

results for synthetic benchmarks (see also Fig-

(SUIF-02) Path Splitting
Benchmark Times 95% CI Times 95% CI % improvement
Switch 0.01302 0.01251 - 0.01353 0.01197 0.01135- 0.01259 8.06
For-loops 0.00857 0.00795 - 0.00919 0.00861 0.00810 - 0.00912 0.47
Rep-loops 0.00891 0.00840- 0.00942 0.00833 0.00782- 0.00884 6.51
Simple 0.01060 0.01009 - 0.01111 0.00913 0.00851 - 0.00975 13.87

Table A.2. Run times for synthetic benchmarks (seconds) (see also Figure 5.7).

Benchmark Size (SUIF -02) Size (path splitting) % growth
Switch 4309 7104 64.86
For-loops 4266 4410 3.37
Rep-loops 4265 4298 0.77
Simple 4296 5124 1 9.27

Table A.3. Static instruction count results for synthetic benchmarks (see also Figure 5.8).
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A.2 Real Benchmarks

Benchmark Cycles (SUIF -02) 1 Cycles (path splitting) | % improvement
008.espresso 1694662 1661668 1.95
023.eqntott 2676450 2677321 -0.03
026.compress 9390125 9342395 0.51
8queens 664007 640173 3.59
Stanford 66870245 66732245 0.21
Histogram 9904699 9263364 6.48
Wordstat _285008 285008 0.00

Table A.4. Dynamic instruction count results for "real" benchmarks (see also Figure 5.9).

(SUIF-02) Path Splitting 
Benchmark Times 95% CI Times 95% CI % improvement
008.espresso 3.62721 3.62005- 3.6343 3.57458 3.56663- 3.58253 1.45
023.eqntott 0.10798 0.10682 - 0.10914 0.10546 0.10505 - 0.10657 2.33
026.compress 0.57727 0.57350- 0.58104 0.57258 0.56902- 0.57614 0.81
8queens 0.02957 0.02921 - 0.02993 0.02859 0.02808- 0.02910 3.31
Stanford 12.49315 12.48791- 12.49839 12.46821 12.46323- 12.47319 0.20
Histogram 0.22930 0.22543- 0.23317 0.21220 0.20980- 0.21460 7.46
Wordstat 0.69185 0.68826 - 0.69544 0.69475 0.69188 - 0.69762 -0.42

Table A.5. Run times for "real" benchmarks (seconds) (see also Figure 5.10).

(SUIF-02) Path Splitting 
Benchmark Timesl 95% CI Times 95% CI % improvement
008.espresso 6.59717 6.59629- 6.59805 6.53431 6.53343- 6.53519 0.95
023.eqntott 0.19495 0.19444- 0.19546 0.19503 0.19441- 0.19565 -0.04
026.compress 0.81047 0.80895- 0.81199 0.80749 0.80601 - 0.80897 0.37
8queens 0.05019 0.04968- 0.05070 0.04935 0.04899- 0.04971 1.67
Stanford 20.30852 20.30634- 20.31070 20.24008 20.23481- 20.24535 0.34
Histogram 0.71822 0.71734- 0.71910 0.69102 0.69014- 0.69190 3.79
Wordstat 2.55045 2.54994- 2.55096 2.55071 2.55009- 2.55133 -0.01

Table A.6.
Figure 5.13).

Run times for "real" benchmarks in single user mode (seconds) (see also
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Benchmark Size (SUIF -02) J Size (path splitting) % growth
008.espresso 49477 49712 0.47
023.eqntott 10575 10667 0.87
026.compress 5726 5962 4.21
Stanford 6529 6592 0.96
8queens 2829 2859 1.06

Histogram 5025 5260 4.68
Wordstat 5208 5311 1.98

Table A.7. Static instruction count results for "real" benchmarks (see also Figure 5.14).

82



Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, MA, 1986.

[2] A. Aiken and A. Nicolau. Optimal loop parallelization. In Proceedings of the A CM SIG-

PLAN '88 Conference on Programming Language Design and Implementation, pages

308-317, Atlanta, GA, June 1988.

[3] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and A. W. Lim. An overview of the

SUIF compiler for scalable parallel machines. In Proceedings of the 6th Workshop on

Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

[4] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The SUIF compiler

for scalable parallel machines. In Proceedings of the 7th SIAM Conference on Parallel

Processing for Scientific Computing, February 1995.

[5] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations

for high-performance computing. Technical report, Computer Science Division, U.C.

Berkeley, Berkeley, CA, 1992.

[6] T. Ball and J. R. Larus. Optimally profiling and tracing programs. In Conference

Record of the 19th Annual ACM Symposium on Principles of Programming Languages,

pages 59-70, Albuquerque, NM, January 1992.

[7] M. E. Benitez and Jack W. Davidson. A portable global optimizer and linker. In

Proceedings of the ACM SIGPLAN '88 Conference on Programming Language Design

and Implementation, pages 329-338, Atlanta, GA, June 1988.

[8] Presont Briggs and Keith D. Cooper. Effective partial redundancy elimination. SIG-

PLAN Notices, 29(6):159-169, June 1994.

83



[9] Craig Chambers and David Ungar. Customization: optimizing compiler technology

for SELF, a dynamically-typed object-oriented programming language. In Proceed-

ings of the ACM SIGPLAN '89 Conference on Programming Language Design and

Implementation, pages 146-160, Portland, OR, June 1989.

[10] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile information to assist classic

code optimizations. Software Practice &4 Experience, 21(12):1301-1321, December 1991.

[11] T. H. Cormen, C. E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT

Press, Cambridge, MA, 1990.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. An efficient method of computing static single assignment form. In Conference

Record of the 16th Annual ACM Symposium on Principles of Programming Languages,

pages 25-35, Austin, TX, January 1989.

[13] Jack W. Davidson and D. B. Whalley. Quick compilers using peephole optimization.

Software Practice & Experience, 19(1):79-97, January 1989.

[14] J. R. Ellis. Bulldog: a compiler for VLIW architectures. MIT Press, 1985.

[15] D.R. Engler and T.A. Proebsting. DCG: An efficient, retargetable dynamic code gen-

eration system. In 6th International Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 263-272, San Jose, CA, October 1994.

[16] J. A. Fisher. ITrace scheduling: a technique for global microcode compaction. IEEE

Transactions on Computers, 30:478-490, July 1981.

[17] J.A. Fisher and B.R. Rau. Instruction-level parallel processing. Science, (253):1233-

1241, September 1991.

[18] Joseph A. Fisher and Stefan M. Freudenberger. Predicting conditional branch direc-

tions from previous runs of a program. In 5th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 85-95, Boston, MA,

October 1992.

[19] Christoper W. Fraser and David R. Hanson. A retargetable compiler for ANSI C.

SIGPLAN Notices, 26(10):29-43, October 1991.

84



[20] Torbj6rn Granlund and Richard Kenner. Eliminating branches using a superoptimizer

and the GNU C compiler. In Proceedings of the ACM SIGPLAN '92 Conference on

Programming Language Design and Implementation, pages 341-352, San Francisco,

CA, June 1992.

[21] Stanford SUIF Compiler Group. SUIF: A parallelizing & optimizing research compiler.

CSL-TR-94-620, Computer Systems Laboratory, Stanford University, May 1994.

[22] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaal, and W. W. Hwu. Su-

perblock formation using static program analysis. Technical report, Center for Reliable

and High-Performance Computing, University of Illinois, Urbana-Champaign, 1993.

[23] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, Amsterdam, 1977.

[24] W. W. Hwu and P. P. Chang. Inline function expansion for compiling C programs. In

Proceedings of the ACM SIGPLAN '89 Conference on Programming Language Design

and Implementation, pages 246-258, Portland, OR, June 1989.

[25] J. B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks. Acta

Informatica, 7:305-317, 1977.

[26] D. Keppel, S.J. Eggers, and R.R. Henry. A case for runtime code generation. TR

91-11-04, Univ. of Washington, 1991.

[27] Gary A. Kildall. A unified approach to global program optimization. In Conference

Record of the ACM Symposium on Principles of Programming Languages, pages 194-

206, New York, NY, October 1973.

[28] J. Knoop, O. Ruething, and B. Steffen. Lazy code motion. In Proceedings of the

ACM SIGPLAN '94 Conference on Programming Language Design and Implementa-

tion, pages 147-158, Orlando, FL, June 1994.

[29] B. W. Lampson. Hints for computer system design. In Proceedings of the 9th ACM

Symposium on Operating Systems Principles, pages 33-48, Bretton Woods, NH USA,

December 1983. Published as ACM Operating Systems Review, SIGOPS, volume 17,

number 5.

[30] James R. Larus. Efficient program tracing. Computer, 26(5):52-60, May 1993.

85



[31] James R. Larus and Thomas Ball. Rewriting executable files to measure program

behavior. Software Practice & Experience, 24(2):197-218, February 1994.

[32] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein,

Robert P. Nix, John S. O'Donnell, and John C. Ruttenberg. The multiflow trace

scheduling compiler. In The Journal of Supercomputing, volume 7, pages 51-142, 1993.

[33] W. M. McKeeman. Peephole optimization. Communications of the ACM, 8(7):443-444,

July 1965.

[34] F. Mueller and D. B. Whalley. Avoiding unconditional jumps by code replication. In

Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design

and Implementation, pages 322-330, San Francisco, CA, June 1992.

[35] F. Mueller and D. B. Whalley. Avoiding conditional branches in loops by code replica-

tion. In Proceedings of the ACM SIGPLAN '95 Conference on Programming Language

Design and Implementation, La Jolla, CA, June 1995. (To appear).

[36] K. Pettis and R. C. Hansen. Profile guided code positioning. In Proceedings of the

ACM SIGPLAN '90 Conference on Programming Language Design and Implementa-

tion, pages 16-27, White Plains, NY, June 1990.

[37] Alan Dain Samples. Profile-driven Compilation. PhD thesis, U.C. Berkeley, April 1991.

U.C. Berkeley CSD-91-627.

[38] R. Scheifier. An analysis of inline substitution for a structured programming language.

Communications of the A CM, 20(9), September 1977.

[39] Michael D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Stanford

University, November 1991.

[40] Andrew S. Tanenbaum, M. F. Kaashoek, K. G. Langendoen, and C. J. H. Jacobs. The

design of very fast portable compilers. SIGPLAN Notices, 24(11):125-131, November

1989.

[41] S. W. K. Tjiang and J. L. Hennessy. Sharlit - a tool for building optimizers. In

Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design

and Implementation, pages 82-93, San Francisco, CA, June 1992.

86



[42] Steven W. K. Tjiang. Automatic Generation of Data-flow Analyzers: A tool for building

optimizers. PhD thesis, Stanford University, Computer Systems Laboratory, July 1993.

[43] Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A. Harrison. Accurate

static estimators for program optimization. In Proceedings of the ACM SIGPLAN

'94 Conference on Programming Language Design and Implementation, pages 85-96,

Orlando, Florida, June 1994.

[44] David W. Wall. Predicting program behavior using real or estimated profiles. In

Proceedings of the ACM SIGPLAN '91 Conference on Programming Language Design

and Implementation, pages 59-70, Toronto, Ontario, Canada, June 1991.

[45] Nancy J. Warter, Grant E. Haab, and Krishna Subramanian. Enhanced modulo

scheduling for loops with conditional branches. MICRO-25 Conference Proceedings,

December 1992.

87



88


