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and Environmental Engineering

ABSTRACT

The Tohoku Shinkansen is a high-speed passenger train running along the eastern side of
Honshu, the largest of the Japanese islands. The line is about 496km long and links
Tokyo to the northern city of Morioka. A seismic early warning system (SEWS) has been
in operation since 1978 with the purpose of mitigating the consequences of large
destructive earthquakes. The SEWS includes two networks of accelerometers, one along
the line (wayside system) and the other dislocated along the eastern coast of Honshu
(coastal system), practically midway between the Tohoku line and the highly active
offshore seismic sources. By activating the emergency braking system, the SEWS can
reduce the distance traveled by trains on potentially damaged tracks, thus reducing the
risk of derailments. The current SEWS is however causing a large number of train delays
and the level of earthquake protection it provides is unclear. The present study quantifies
the current level of seismic risk and indicates ways in which the SEWS can be made more
efficient, reducing the rate of earthquake-induced derailments and at the same time
reducing the rate of false alarms, unnecessary delays, train cancellations, e.t.c.

The derailment risk is estimated at 2-3 derailments every 100 years over the entire line
with the current SEWS. This figure is however influenced greatly by the attenuation
model, the local soil conditions and the seismic fragility of the viaduct structure, all of
which are uncertain. Changing the way in which the current coastal system operates does
not improve the effectiveness of the SEWS by significant amounts. By contrast, changing
the seismic intensity parameter used to trigger various actions at the wayside system from
peak ground acceleration (used now) to response spectrum acceleration is quite effective.
The recommended new setting of the operational parameters for the wayside and coastal
systems is estimated to reduce the expected rate of derailment by a factor of 2 and the rate
of SEWS-induced delays by a factor of about 40.

Thesis Supervisor: Daniele Veneziano
Title: Professor of Civil and Environmental Engineering
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risk due to resumption of operation following short delays for
coastal systems A, B and C and (at, to , Ansp, Ainsp 2)=(40, 80, 120gals), if:
(a) relative displacement at yielding, by = (70%, 85%, 100%) of base-case value
(b) ductility ratio at failure, I. = 2, 3, 4(base-case value)
[Figure corresponds to cases illustrated in Figure 6.6]

Figure 1-7: Annual rates of derailments and various delays, including derailment 166
risk due to resumption of operation following short delays for
coastal systems A, B and C and (atloc, Ainspl Ainsp2)=(40, 80, 120gals), if:
(a) uncertainty on resistance, CInR = 0.3, 0.4(base-case value), 0.5.
(b) parameter controling damage clustering,c =0.015, 0.03(base-case value),0.06
[Figure corresponds to cases illustrated in Figure 6.7]

Figure I-8: Annual rates of derailments and various delays, including derailment 167
risk due to resumption of operation following short delays for
coastal systems A, B and C and (atoc, Ai AinspAinsp2) = (40, 80, 120gals), if:
(a) soil type is I, II, III (Table 4.2) all along the line
(b) maximum velocity, Vo = 210Okmh, 245kmh(base-case value), 300kmh
[Figure corresponds to cases illustrated in Figure 6.9]
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Figure I-9: Annual rates of derailments and various delays, including derailment 168
risk due to resumption of operation following short delays for
coastal systems A, B and C and (at oc Ainspl, Ainsp2)=(40, 80, 120gals), if:
(a) Mmax of each seismic source is 0.5 higher/lower relative to base-case value
(b) b-value of each seismic source is 0.9, 1.1 or base-case value
[Figure corresponds to cases illustrated in Figure 6.11]

Figure 1-10: Annual rates of derailments and various delays, including derailment 169
risk due to resumption of operation following short delays for
coastal systems A, B and C and (atO , Ainsp, Ainsp2) = (40, 80, 120gals) for:
the UrEDAS system accuracy of P-wave estimation of:
(a) earthquake magnitude M: aM,P = 0.5, 1.0(base-case value)
(b) epicentral distance A:caA,P = 25%A, 75%A(base-case value), 100%A
[Figure corresponds to cases illustrated in Figure 6.12]

Figure I-11: Conditional probability P[EIM, x, s, B] of event E along the line, 170
for (b, at,loc, Ainspi, Ainsp2) = (40, 40, 80, 120gals) and earthquake
magnitudes M = 5 - 9, [epicenter: 571 km from s= and 135km from s=26]
(a) E = derailment, (b) E = short delay,
(c) E = medium delay,(d) E = long delay.
[Figure similar to Figure 6.13, but for coastal system B]

Figure 1-12: Conditional probability P[EIM, x, s, C] of event E along the line, 171
for (c , tloc, Ainspl, Ainsp2) = (3.0, 40gals, 80gals, 120gals) and earthquake
magnitudes M = 5 - 9, [epicenter: 571km from s=l and 135km from s=26]
(a) E = derailment, (b) E = short delay,
(c) E = medium delay,(d) E = long delay.
[Figure similar to Figure 6.13, but for coastal system C]

Figure II-1: Model line, train and station locations and potential epicenters 178
of earthquakes used in the study of propagation of delay along the line
[Figure for train frequency of 1 train per segment]

Figure II-2: Assumed recorded values of peak ground acceleration 179
along the model line for M = 5-8, compared to track inspection levels:
Ainspl=80gals and Ainsp2= l20gals, for epicentral distances:
(a) D=60km, (b) D=lOOkm and (c) D=140km.

Figure 11-3: Train location versus time after resumption of service of trains 180
according to current track inspection levels: Ainspt=80gals and Ainsp2=120gals.
for earthquake of M=7 at D=60km.
[1. Figure presents half the total track and half the trains due to symmetry,
2. Figure for train frequency of 1 train per segment]
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Introduction and Objectives

The Tohoku Shinkansen is a high-speed passenger train running along the eastern side of

Honshu, the largest of the Japanese islands; see Figure 1.1. The line is about 496 km long

and links Tokyo to the northern city of Morioka, with 14 intermediate stations. The

Tohoku Shinkansen is operated by Japanese Railways East (JREast), one of the railway

companies that emerged from the privatization of the previously state-owned railways.

Although the Tohoku line does not cross any major known seismogenic area, it is

potentially vulnerable to moderate local seismicity and to the more frequent and more

intense earthquakes that originate in the subduction zone off the eastern coast of Japan.

Seismic risk has long been a concern, not just in the design but also in the operation of

the Tohoku Shinkansen. Regarding the latter, a seismic early warning system (SEWS)

has been in operation since 1978 with the purpose of mitigating the consequences of large

destructive earthquakes. The SEWS includes two networks of accelerometers, one along

the line, the other dislocated along the eastern coast of Honshu, roughly midway between

the Tohoku line and the more active offshore seismic sources. The purpose of the SEWS

is to provide early detection of arriving seismic waves, thus allowing early emergency

braking of the trains. The most feared accidents are those associated with derailments,

which under seismic conditions occur mainly when a running train encounters a damaged

section of the track. Through early braking, the SEWS reduces the distance travelled by

trains on potentially damaged tracks and therefore reduces the risk of severe accidents.

Several issues have been raised about the effectiveness of the SEWS system. Specifically,

questions have been posed on whether the effectiveness of the system could be improved:
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1. by modifying the way in which the system operates,

2. by modifying the earthquake intensity parameters used to trigger emergency

train stopping (the parameter currently used at both the coastal and

wayside accelerometers is peak ground acceleration, ama),

3. by changing the level of seismic intensity at which various actions are taken

(emergency braking, track inspection, resumption of operation).

The problem is not just to achieve the maximum possible level of earthquake protection,

but to balance safety with the monetary and non-monetary costs associated with false

alarms, long delays, train cancellations, e.t.c.

Studies on seismic early warning systems around the world include the following

Fujiwara et al.(1980), a study of a system which was at the time under development for

the Tohoku Shinkansen and performed a three-point estimation of earthquake magnitude

and epicentral location, Heaton (1985), a study of a system that performs an estimation of

location, time of origin and amplitude of ground shaking through information from a

dense array of broadband seismometers, Nakamura (1988 and 1989), studies of a system

named UrEDAS which performs a single-point estimation of earthquake magnitude and

epicentral location. These studies present technical characteristics and the triggering

philosophy of these early warning systems but they do not include estimates of

cost/benefit effectiveness of these systems in actual applications.

The objectives of the present study are to quantify the level of seismic safety of the

Tohoku line and to compare the effectiveness of alternative SEWS systems and SEWS

operational strategies. From the results of this study, we have derived a set of

recommendations on the most efficient way to operate the early warning system. In

essence, we have found that:

1. by changing the way in which the current system operates one can gain only

minor improvements in seismic effectiveness;
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2. changing the intensity parameters used to trigger various actions (we

specifically propose to replace ama to response spectrum acceleration Sa at

an appropriate frequency and damping ratio) produces significant

improvements in the sense of reducing both the rate of earthquake-induced

derailments and the rate of train delays and potential cancellations;

3. changing the levels of seismic intensity at which various actions take place

(emergency braking, track inspection, resumption of service) also

produces significant improvements over the current operation of the

system.

Another set of recommendations is reached in this study regarding the reduction of

uncertainty on the actual level of seismic risk. We have found that seismic safety of the

Tohoku Shinkansen is particularly sensitive to: (a) seismic attenuation and local

attenuation effects and (b) earthquake vulnerability of the viaduct structure that supports

most of the line. Both elements are at present time highly uncertain. We suggest that

JREast undertakes additional studies to reduce these uncertainties. Such studies could

also lead to the identification of segments of the line that are especially vulnerable to

earthquakes and that should be retrofitted on a priority basis. The Tohoku line is

primarily subjected to destructive earthquakes originating in the subduction zone off the

eastern coast of Honshu while the inland seismicity is comparatively less significant. This

is the reason that led us to consider only the offshore seismicity in this study.

Chapter 2 of this thesis describes the Tohoku Shinkansen as a transportation and

structural system and gives the main characteristics of the current SEWS system and its

historical performance. Alternative coastal and wayside SEWS systems are discussed in

Chapter 3. The seismic environment of the Tohoku Shinkansen is characterized in

Chapter 4 in terms of earthquake recurrence laws and seismic attenuation models,

including local amplification effects. Chapter 5 presents the general methodology used in

this study to evaluate earthquake risk. This includes a description of the seismic
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vulnerability of the viaduct structure which is an element of primary importance in

determining seismic risk. Numerical results are presented in Chapter 6, where the

performance of the SEWS is estimated, the main factors contributing to seismic risk are

identified and uncertainty on the actual level of risk is quantified. Chapter 7 presents a

detailed numerical comparison of the various seismic early warning systems under

different operational policies. Specific recommendations to JREast for the future

operation of the system and proposed areas of further study are included in Chapter 8.

Appendix I presents additional risk results that are complementary to results included in

Chapters 6 and 7. Appendix II addresses the issue of propagation of delay along the

Tohoku line.
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The Tohoku Shinkansen and the Present SEWS

2.1 The Tohoku Shinkansen

The Tohoku Shinkansen travels not on an embankment as most conventional lines in

Japan do, but on a continuous viaduct structure except, for tunnels in rocky parts of the

line. The viaduct is a reinforced concrete-continuous beam frame structure that carries a

double track. The typical span between piers is 7 meters and the height of the structure

ranges between 7 and 14 meters, with a typical value of 10 m; see Figure 2.1.

An important parameter for the seismic behavior of the structure is the natural period of

vibration of the viaduct, T, which has been estimated by JREast (personal

communication) as shown in Table 2.1. The values of T in the table correspond to

horizontal vibration in the direction perpendicular to the track. According to JREast

engineers, vibration in the vertical and horizontal directions may be considered harmless

to the viaduct; these components of motion are therefore ignored in the present study.

A second important parameter in the study of seismic vulnerability is the displacement of

the deck relative to the ground, d, at which the column pier or the upper beam yield.

JREast engineers have estimated these values of d as given in Table 2.2, for different

viaduct heights.

Earthquake loads on the viaduct structure are influenced significantly by the local

geologic/soil conditions along the line. Such local conditions may amplify or de-amplify

the ground motion relative to standard (e.g. bedrock). Table 2.3 presents a crude soil
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classification along the Tohoku Shinkansen line. In this table, N is the representative

SPT-value for the material above bedrock and t is the thickness of the soil layer. The soil

classes in Table 2.3 correspond to those used for seismic design of the viaduct structure

and are defined in Table 2.4. Specifically, the soil coefficient is the one used in the design

of the viaduct structure to scale the seismic design relative to "normal" conditions. It

should be kept in mind that, this soil coefficient is only a rough estimate of the local

amplification effects and that in reality amplification (or de-amplification) may vary

substantially along the line depending on specific local conditions.

Next we mention a few miscellaneous characteristics of the Tohoku line which will be

used later in the analysis of seismic safety:

* Location and extent of tunnels : The line includes a total of 115 tunnels, which range in

length from 20 to 11,705 meters. Most of the tunnels are shorter than 1,000 m and their

aggregate length is 116,450 m or 23% of the total length of the line. Table 2.5 gives the

total length and number of tunnels within each of 26 non-overlapping track segments into

which the line is divided. The segments correspond to operational track units and are

associated each to one of the 26 wayside accelerometers. A more detailed description of

this system will be given in section 2.2. The distance from Tokyo reported in Table 2.5 is

the distance along the track of the starting location of the track segment.

* Frequency of train passages : The frequency of train operation varies with track

segment and time of day, as reported in Table 2.6. Notice that Sendai station is

approximately 325 km from Tokyo. The Shinkansen trains are on average 250 m long

and their operational speed is at the moment set at 245 kmh. Assuming an average speed

of 200 kmh (including occasional stops at stations along the line) and using the frequency

data in Table 2.6, one concludes that, at a generic point in time, the expected number of

trains between Tokyo and Sendai is 11.47 and between Sendai and Morioka is 2.95.
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As was mentioned briefly above and as described in detail in Section 2.2, the track is

divided into 26 segments, which are relevant to the operational control of the wayside

earthquake detection system. The track section from Tokyo to Sendai (T-S) includes 16

segments while that from Sendai to Morioka (S-M) is divided into 10 segments.

Assigning a uniform train density in each of these two track sections, the expected

number of trains per segment is 0.72 from Tokyo to Sendai and 0.30 from Sendai to

Morioka. This change in train density will be found to be a factor in the variability of risk

along the Tohoku line.

The aforementioned characteristics provide a physical and technical picture of the

Tohoku Shinkansen as a transportation system. For the protection of this transportation

system against earthquakes, JREast is operating a Seismic Early Warning System

(SEWS) that automatically induces a train to stop when a potentially destructive

earthquake is detected at a wayside or coastal seismic station. The present study focuses

on the risk reduction capabilities of this system and the optimization of its future

operation. The next section gives a detailed description of the exact purpose,

configuration and operation of the present SEWS.

2.2 The Present Seismic Early Warning System (SEWS)

Before the Tohoku Shinkansen, other Shinkansen lines in Japan had been provided with a

seismic early warning system. The Tokaido Shinkansen had such a system as early as

1966. The concept of SEWS had been around also before that time, but it was the

disastrous Niigata earthquake of 1964 that promoted its development. Based on the

experience gained from the Tokaido and Sanyo Shinkansen, a new SEWS was developed

for the Tohoku Shinkansen, which became operational in 1978. This is the system

described here. Very recently, the effectiveness of the existing system has been

questioned and alternative schemes have been proposed. Possible changes will be

described in detail in Chapter 3.
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The earthquake activity in the region surrounding the Tohoku line may be broadly

divided into offshore Pacific Ocean seismicity and inland seismicity. This division can be

observed in the map of earthquake epicenters, shown in Figure 2.2. Offshore earthquakes

contribute 80% to 90% of the earthquake occurrence rate in the area and are often of

larger magnitude. However, these events occur at a distance of at least 80-100 km from

the line and therefore are subjected to higher attenuation. These characteristics of the

regional seismicity motivate the following philosophy of the seismic early warning

system for the Tohoku Shinkansen:

(1) Protect against offshore earthquakes is obtained through a coastal earthquake

detection;

(2) Protect against inland earthquakes through accelerometers installed along the

track.

The wayside accelerometers operate also as a second line of defense against offshore

earthquakes that might not be triggered by the coastal stations. Moreover, the intensity of

ground motion recorded at the wayside stations is the basis for operational decisions

about post-earthquake track inspection and resumption of service. The way in which the

coastal and wayside systems operate is described next in greater detail.

(1) Coastal System

Accelerometers are installed on rock at eight (8) coastal locations, chosen to provide the

longest lead time possible at the track for offshore earthquakes; see Figure 1.1. At

present, the accelerometers are set to trigger when a pre-specified level of peak ground

acceleration is exceeded. The eight locations are: Hachinoche, Miyako, Ofunato,

Kinkasan, Soma, Iwaki, Choshi and Miura peninsula. A ninth accelerometer is located

along the track at Shinnogi and is operated as part of the coastal system. This last location

was chosen to provide trains running in the central portion of the line with lead time

relative to inland earthquakes from the area south of Tokyo. As mentioned before, this
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analysis takes considers the risk from the offshore seismicity only, therefore this ninth

accelerometer is not taken into account.

In the current early warning system, each coastal accelerometer controls a preset track

segment, as shown in Figure 1.1. Therefore, as the horizontal ground acceleration at a

coastal station exceeds the chosen threshold level (currently, 40 gals), emergency braking

is automatically activated for all trains running in the corresponding track segment.

(2) Wayside Sstem

The wayside system consists of 26 accelerometers installed at nearly equal intervals

between Tokyo and Morioka. The locations correspond to substations (S.S), section

points (S.P) and subsection points (S.S.P), all of which have a dual role: (a) detect the

incoming earthquake strong motion and possibly cause trains in the adjacent segments to

stop, and (b) measure the intensity of the ground motion close to the line, to decide upon

post-earthquake actions. Because the average spacing between the accelerometers is 20

km, each wayside station controls trains over a track segment of about 40 km. In a

simplifying approximation, it is assumed in the present analysis that each location along

the line is controlled by only one wayside accelerometer. Therefore, the track is divided

into 26 non-overlapping segments. We refer to such non-overlapping segments as

operational track segments. The location of the starting point of these operational

segments is provided, with other information, in Table 2.5. At present, the wayside

instruments are set to trigger emergency train braking when the local peak ground

acceleration exceeds 40 gals.

Historical Operation of the SEWS

During the period from 1982 to the end of 1993, the seismic early warning system

triggered in 144 earthquakes: the coastal system alone issued 63 warnings, the wayside

system triggered alone 54 times, while the two systems triggered simultaneously in 27

cases. The 144 events in which the SEWS was triggered resulted in the following

consequences for the operation of Shinkansen trains:
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(a) There were 31 trains that did not resume regular operation after being stopped by

the SEWS. This was due to the fact that track inspection was considered

necessary. This number corresponds to a rate of 2.82 stopped trains/year.

(b) There were 796 trains that were delayed but were allowed to resume operation

after being stopped by the SEWS. This number corresponds to a rate of 72.36

delayed trains/year.

The temporal distribution of these stopped and delayed trains is far from uniform within

the 11 years of the record. Specifically, all 31 stopped trains were stopped during 1993.

Moreover, during 1983, 1987 and 1993 the SEWS caused 116, 112 and 186 train delays

respectively, while during 1982 and 1991 the numbers of delayed trains were 24 and 19

respectively.
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H (m) 7.0 8.5 10.0 12.0 14.0

T (sec) 0.30 0.33 0.32 0.32 0.36

Table 2.1: Natural period of horizontal vibration T of the viaduct structure, as a function

of viaduct height H.

Table 2.2: Estimated horizontal relative displacement d of the viaduct structure when the

piers or the upper beam of the viaduct yield or fail, as a function of height H.
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H(m) d(cm) failure mode

7.0 2.2 column pier failure

8.5 3.1 column pier yielding

8.5 5.2 upper beam yielding

10.0 3.1 upper beam yielding

10.0 3.4 column pier yielding

12.0 4.1 upper beam yielding

14.0 2.0 upper beam yielding



Table 2.3: Soil classification along the Tohoku Shinkansen line.
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Section ( km from Tokyo) Length (kmn) Soil Type (see Table 2.4)

3- 13 10 II

13 - 30 17 III

30 - 37 7 II

37 - 43 6 III

43 - 51 8II

51 - 61.5 10.5 III

61.5- 100 38.5 II

100- 181 81 

181 - 263 82 II

263 - 293 30 II

293 - 298 5 III

298 - 329 31 II

329 -335 6 III

335 - 356 21 II

356 - 367 11 III

367 - 498 131 II



Table 2.4: Soil classification used in the seismic design of the viaduct structure.
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Soil Type Soil Name Soil Description Ground Coefficient

I Rock Tertiary and 0.8

pretertiary rock

II Normal Dilluvium or 1.0

alluvium(except soft

alluvium)

II Soft N=0 and t > 2m 1.2

N<3 and t > 5m

N<5 and t > 1 im



Track Distance from Segment Length Soil Type Length in No. of

Segment Tokyo (km) (kin) (Table 2.4) Tunnel (kin) Tunnels

1 0.000 3.875 II 2.052 2

2 3.875 8.228 II 1.495 1

3 12.103 14.440 II 0.585 1

4 26.543 14.641 II 0.000 0

5 41.184 15.964 II 0.000 0

6 57.148 23.060 II 0.000 0

7 80.208 25.282 II 0.000 0

8 105.490 25.726 II 1.019 2

9 131.216 22.420 II 1.145 4

10 153.636 23.523 II 10.862 6

11 177.159 23.667 III 11.230 18

12 200.826 22.124 II 0.000 0

13 222.950 22.427 II 16.150 11

14 245.377 24.726 II 0.692 1

15 270.103 26.466 II 17.624 9

16 296.569 16.735 II 10.826 12

17 313.304 15.667 II 0.000 0

18 328.971 21.078 I 9.308 14

19 350.049 18.280 I 3.170 9
...... .. ... _ . ..

20 368.329 19.204 I 3.140 7

21 387.533 26.902 I 17.588 8

22 414.435 21.551 II 6.656 8

23 435.986 18.850 III 0.000 0

24 454.836 19.042 II 2.908 2

25 473.878 15.541 III 0.000 0

26 489.419 7.061 II 0.000 0

Table 2.5: Soil type, number and aggregate length of tunnels by track segment.
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Table 2.6: Frequency of train operation, per track section and time of day. The frequency

includes both southbound and northbound trains.
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Time Range Tokyo-Sendai (trains / hr) Sendai-Morioka (trains / hr)

06:00 - 12:00 10 4.5

12:00- 18:00 10 6

18:00- 24:00 8.2 3.3



Vt 

Figure 2.1: Sketch of Tohoku Shinkansen viaduct.

34



Chapter 3

Alternative SEWS systems

The performance of the current seismic early warning system appears sub-optimal in

several respects. First, the trigger levels of the system are causing on average six trains

every month to be delayed from schedule because they are stopped unnecessarily.

Furthermore, the system causes one train every four months not to resume immediately

regular operation to allow for track inspection; see section 2.2. This average rate of train

delays and stops is considered high for a system that has never experienced any

earthquake-induced accident. To remedy the current inefficiency of the seismic early

warning system we study the effect of changing three different aspects of the SEWS:

First, the scope of control of each of the coastal accelerometers, then the intensity

parameter used at the wayside detecting systems for issuing warnings and deciding post-

earthquake resumption of train operation, and finally the trigger levels of both detecting

systems. Regarding the first issue, we consider three different coastal systems A, B and

C. System A is the current system, while systems B and C implement the potential for

any of the coastal accelerometers to order emergency braking of trains anywhere along

the Tohoku line, if the level of ground shaking calls for such an action. This kind of

operational rules are hereafter referred to as continuous rules. The difference between

systems B and C is that the latter assumes that at the location of each of the coastal

accelerometers there will be the potential for issuing an earlier warning, i.e. upon the

arrival of the P waves. The system that is capable of performing such an early operation

is called UrEDAS; see Nakamura (1988 and 1989). Another important aspect that

controls the performance of the seismic early warning system is the intensity parameter

used at the wayside system. In this study we study the efficiency of the system by using

either peak ground acceleration, as is currently performed, or alternatively response
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spectrum acceleration at an appropriate frequency and damping ratio. Finally, we study

the effect of different trigger levels of both coastal and wayside systems in the overall

performance of the SEWS system.

In describing alternative system configurations, we use the following notations:

i = generic coastal accelerometer (any of eight accelerometers),

j = location along the track,

s = operational track segment (a subset of locations j that are simultaneously

controlled in terms of the operation of the SEWS; any of the twenty-six

operational segments),

M = earthquake magnitude (JMA),

x = epicentral location,

A = epicentral distance from x to the location of interest j along the track,

ax = peak ground acceleration.

Sa = maximum acceleration experienced by a 1-DOF structure with a given natural

period T and damping ratio P. Sa is referred to as response spectrum

acceleration.

General characteristics of all SEWS systems considered here are:

(1) The coastal system can cause a train in operational segment s to brake until complete

stop. The coastal system operates on S waves (systems A and B) or, for system C on

either P or S waves.

(2) The wayside system can order a train in segment s to stop upon the arrival of the S

waves at track segment s.
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(3) Braking orders are generated four seconds after the first arrival of the wave phase of

interest (P or S), at the site of the accelerometer. Indeed, four seconds into the motion is

typical of the time when the peak ground shaking intensity is reached; see for example

Murakami et al. (1975), Ejiri et al.(1988) and Der Kiureghian et al. (1989).

(4) Seismic waves are assumed to propagate isotropically and at constant and isotropic

velocity. The velocity of the S waves, Vs is assumed equal to 3.80 km/sec (JREast,

personal communication). Based on elastic wave theory (Gubbins, 1990), the velocity of

the P waves, Vp is related to Vs as

Vp= s (3.1)

where X, are the Lame constants. Since a reasonable assumption is that X = p in the

crust (Gubbins, 1990), equation (3.1) gives Vp = 6.58 km/sec.

3.1 Alternative Coastal Seismic Early Warning Systems

System A

This is the system that is currently in operation. It assigns a specific track segment to each

of the eight coastal accelerometers, as shown in Figure 1.1. These eight preset sections,

hereafter referred to as "shut-down" sections, cover the entire line with some overlap.

Each "shut-down" section is composed of neighboring operational segments; see Table

3.1. The principle underlying this system is that when the earthquake motion at a coastal

accelerometer exceeds a preset intensity, then the earthquake is considered potentially

dangerous for the corresponding "shut-down" section. A limitation of this system is that,

if one of the coastal accelerometers records high ground motion levels, it should be able

to trigger automatic braking also outside its designated proximal track section. Doing so
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could increase significantly the lead time of warning at locations along the line far away

from the coastal station.

System A operates on S waves and triggers automatic braking when peak ground

acceleration exceeds a threshold value a, which is currently set at 40gals. In analyzing

seismic risk under system A, we shall make the simplifying assumption that, if an

operational segment s can be controlled by more than one coastal station, in an

earthquake of given epicentral location it is actually controlled by the coastal station that

is closest to the epicenter.

System B

This system maintains the geographic configuration of the coastal accelerometers of

system A, but introduces a new operational philosophy. In this case there is no preset

"shut-down" section assigned to each coastal accelerometer. Rather, it is the intensity of

the earthquake motion recorded at the station and a roughly estimated epicentral location

area that determines the length of the "shut-down" section. Therefore, as the recorded

intensity increases the "shut-down" section of the track becomes larger. Compared to

system A, system B aims at gaining lead time for the braking of trains, as such action can

be caused at all locations along the track by the coastal accelerometer closest to the

epicenter, if the recorded ground motion intensity justifies such action.

Implementation of this system requires the definition of a set of trigger ground

acceleration levels at each coastal station i, which depend on track location s and on the

"sector of origin" of the earthquake R. The latter is defined as the subset seismogenic

regions that is closest to each coastal accelerometer; see Figure 3.1. These trigger

accelerations at have the form:

at(i,s,R)=b y (i,s,R) (3.2)
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where b* is a scaling factor with units of acceleration and y(i, s, R) is ideally the ratio

between the peak ground acceleration at coastal detector i and the spectral acceleration at

track segment s, for earthquakes that occur within "sector of origin" R. Because the above

ratio is uncertain and further depends on magnitude M and on the actual epicentral

location x within R, y is evaluated as follows:

Mmax amax(M,A(x,i)) 10 -bM d M
f d j Sa(M,A(x,s)) 0 dM

y(i,s,R) = R 6 (3.3)

Mmax 10bM df dx i dM
R 6

In equation (3.3), am,, and Sa are median attenuated values of peak ground acceleration

and of spectral acceleration at the period and damping of the viaduct structure. Also

notice that integration over M is limited to values from 6 to the maximum possible

magnitude from location x, as smaller magnitudes do not pose significant threat to the

Shinkansen system. Figure 3.2 presents the values of as functions of i and s for

earthquakes originating from different "sectors of origin". The estimated values of

y(i,s,R) for all coastal stations i and operational segments s for earthquakes originating

from all "sectors of origin" R are presented in Appendix I and more specifically in Tables

I-1 through I-8. Parameter b has the meaning of estimated spectral acceleration at track

location s above which emergency braking is considered appropriate. System B operates

on S waves. In evaluating the performance of system B, we make the simplifying

assumption that any automatic braking action is caused by the coastal accelerometer that

is closest to the epicenter.

System C

The idea behind system C is that more accurate warnings can be issued by estimating the

magnitude M and epicentral location x of the earthquake and then deciding about the
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action to take based on M and x. A system like this is the UrEDAS system; see Nakamura

(1988 and 1989). In the UrEDAS system, M and x are estimated from a single station

using P waves or S waves. The obvious advantage of using P waves is the increase in lead

time. Emergency braking may or may not be ordered depending on these first estimates

of M and x. The procedure is then repeated using S waves. The S-based estimates of M

and x have increased accuracy. The benefit of this system in added lead time is counter-

balanced to some degree by the limited estimation accuracy of M and x especially when

using P waves.

Following estimation of (M, x), the UrEDAS system evaluates the destructive potential at

all locations along the track. This is done using historical data on damage and non-

damage events, depending on magnitude and epicentral distance A(, s); see Figure 3.3.

The shaded area in that figure indicates (M, ) combinations that are considered

potentially damaging. For our analysis, only epicentral distances above about 80km are of

interest and the boundary between damage and non-damage conditions is linear in M and

logo 0.71M - log 0A = 3.20, as shown in Figure 3.3. Accordingly, we have considered

System C to trigger emergency braking if:

TRIG=(0.71M-logto[A(x,s)]-c )0 (3.4)

where c is a scaling parameter that controls the degree of conservatism in when using

System C.

The effectiveness of System C depends on the estimation accuracy of M and x. Figures

3.4a and 3.4b compare earthquake magnitudes estimated by the UrEDAS system using P

and S waves with actual magnitudes (JREast, personal communication). The plots show

that the S estimates are more accurate (all such estimates within + 0.5 of the actual

values) whereas for the P estimates the average is + 1.0. The latter value agrees with

Figure 3.4c, which includes larger earthquake magnitudes for which the reported
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accuracy is somewhat smaller (Nakamura, 1988). Based on these figures and indications

from JREast, we consider the following as reasonable values for the standard deviation of

the earthquake magnitude estimation error:

aMp = 1.0 (JMA) Magnitude estimation from P wave arrival

aM,s = 0.5 (JMA) Magnitude estimation from S wave arrival

Regarding the estimation accuracy of epicentral location, the information available is not

very conclusive. First, the azimuth and hypocentral distance are estimated from P and S

waves. Nakamura (1988) presents evidence that all estimates of the azimuth lie within a

range of + 20° of their actual values; see Figure 3.5a. This range is larger in Figure 3.5b

(JREast, personal communication). The estimation of hypocentral from P waves is not

very accurate (Nakamura, 1989), but accuracy increases (all estimates within + 20 km of

actual values) after the arrival of the S waves; see Figure 3.6a. Finally, Figure 3.6b

presents an illustration of the accuracy of the earthquake location estimation after the S

waves (Nakamura, 1989). This information, and personal communication with JREast,

lead us to estimate as follows the standard deviation of the estimation error for epicentral

distance of the earthquake:

ca p = 75% A Epicentral distance estimation from P wave arrival

as = 25 km Epicentral distance estimation from S wave arrival

where A is the epicentral distance in km. Due to the limited data available, these accuracy

values are highly uncertain. The sensitivity of seismic risk to such accuracy parameters

will be assessed in Chapter 6.

3.2 Alternative Wayside SEWS Systems
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Use of System to Reduce Seismic Risk

A wayside accelerometer may cause trains in the corresponding operational segment s to

stop if the intensity of ground motion exceeds a given threshold. At present, ground

motion intensity is measured in terms of peak ground acceleration ama. In this study, we

have considered as an alternative the use of spectral acceleration Sa at the period of the

viaduct (about 0.4sec) and for 5% of critical damping. The latter parameter is much better

related to structural damage than amax. The associated trigger levels are denoted by atloc

and SatloC. At present, atoc is set to 40gals.

Use of System to Determine Inspection Needs and to Resume Operation

After trains have been stopped by either the coastal or the wayside system, a decision

must be made regarding resumption of operation and possibly the need for track

inspection. Such decisions are based on the earthquake intensity at the wayside station

that is closest to the location of the stopped trains. Again, the intensity measure may be

amax or Sa.

The system currently operates with two threshold levels, Ainspi and Ainsp2 If amax<Ainspl,

the trains resume regular high-speed operation immediately after stopping, without

inspection of the tracks. We refer to these events as short delays. If Ainspl<amaxAinsp2,

the trains resume operation at a reduced speed (30-50 kmh) to perform on board

inspection of the tracks. We refer to these events as medium delays. Finally, if Ain'p2 is

lower or equal to amax, an on-foot inspection of the tracks is performed prior to

restoration of service (long delays). In the same manner, if the intensity parameter used is

Sa the associated track inspection levels are denoted by Sainspl and Sa,insp2

The current wayside system, operates in terms of a,,,, and the inspection levels are

Ajnspl= 8 0 gals and Ansp2= 120gals.
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Table 3.1: Stations of the coastal early warning system and track segments they control

(system A).
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No Location of From To Track Control

accelerometer location along track location along track section of

(km) segments

1 Hachinoche Shin-Kitakami Morioka Station 42.5 1 - 3

2 Miyako Shin-Kitakami Morioka Station 42.5 1 - 3

3 Ofunato Shin-Kozuruzawa Morioka Station 154.9 1 - 8

4 Kinkazan Shin-Shiraishi Shin-Kitakami 170.1 4 - 12

5 Soma Shin-Yabuki Shin-Kozuruzawa 151.5 9 - 16

6 Iwaki Shin-Ishibashi Shin-Nihonmastu 137.6 14- 20

7 Chosi Tokyo Station Shin-Ishibashi 95.4 20 - 26

8 Miura penins. Tokyo Station Shin-Nishinasuno 146.8 18 - 26



Figure 3.1: Map of "sectors of origin" of earthquakes, R.
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Chapter 4

Seismic Environment

In this Chapter, we consider models of earthquake recurrence in the offshore region that

may potentially affect the Tohoku Shinkansen line, as well as strong motion attenuation.

In each case, we briefly review the literature and then develop models for this study.

4.1 Seismicity

The literature on the seismicity of Japan is very extensive. Studies that cover the area of

interest include Takemura et al. (1989) for the area southwest of Tokyo, Kanda et al.

(1988) for the greater Tokyo region, Annaka et al. (1988) for the Kanto district, Utsu

(1974) for offshore northeastern Japan and Umino et al. (1993) for northeastern Japan in

general. Unfortunately, none of these studies covers completely the whole area of interest

to us. The model used in this study is based mainly on Utsu (1974) and is complemented

with information from Annaka et al. (1988).

Figure 4.1 shows the historical seismicity in the area of interest. As it is clear from this

figure, offshore seismicity, which is the focus of the present study, is far more intense

than inland seismicity. We have modeled offshore seismicity through fifteen seismogenic

regions ("sources"), within which earthquake activity is considered uniform. The sources

correspond for the most part to those of Utsu (1974), except for the fact that some of

Utsu's seismogenic regions have been split into several sources. The main reason for this

operation is computational expedience. Figure 4.2 shows the fifteen seismic regions of

the proposed model superimposed on historical seismicity. A statistical analysis of the

historical data produces estimates of the rate density X(M), where X(M)dM is the rate in
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events/year of earthquakes of magnitude between M and M+dM in a seismic source. We

assume that, X(M) has the following form:

X.(M)=lOa-b(M- 6 ) ; M < Mmax (4.1)

where a is a measure of the overall seismicity (10a is the rate density of earthquakes of

magnitude M around 6 )

b is a parameter that controls the relative frequency of events of different

magnitudes and

Mmax is the maximum earthquake magnitude that can possibly be generated by the

seismic source.

Table 4.1 gives for each of the fifteen seismic sources, estimates of the parameters (a, b,

Mma), the area, and the correspondence with the seismic sources of Utsu (1974).

Before discussing how the estimates of the seismicity parameters were obtained, we

observe that Utsu (1974) based his results on shallow earthquakes (focal depth 80km)

with magnitude M 6 during the period 1926 - 1973. On the other hand, the analysis of

Annaka et al. (1988) is based on shallow earthquakes (focal depth < 70 km) with

magnitude M > 6 during the period 1885 - 1986.

Seismic Sources 1.2. 4 5. 6. 8. 9: The rate density parameters a, b and Mmax were

directly derived from these of Utsu (1974), considering that the parameters a in that study

refer to 47 years of data.

Seismic Sources 10. 11. 12: These sources are parts of source L of Utsu. Their annual

rate density has been obtained by distributing the total rate proportionally to source areas.

Mmax is the same as for Utsu's source L.
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Seismic Source 3: This source corresponds to a part of Utsu's source H. Utsu gives no

clear information on the seismicity level of source H. Furthermore, this seismogenic

region is not studied in Annaka et al. (1988). Thus, the rate density per km2 of the

neighboring source E (Utsu, 1974) for M=6 is assigned to source H and adjusting for the

area of source 3. Because no large earthquake has occurred in source H during the period

1926 - 1973, we assumed Mmax = 8.0, which is a value somewhat smaller than that of

source E.

Seismic Source 7: We assign to this source a rate density per km2 equal to that of the

neighboring sources K and L, as no clear information on the a parameter given by Utsu

on the corresponding source J. We take Mmax= 8.5, mainly because of a series of large

earthquakes in 1938.

Seismic Source 13: According to Utsu, source M is tectonically similar to source L.

Therefore the b-value for the corresponding region 13 was assumed equal to the value for

source L. Also the rate density and the maximum magnitude for source 13 have been

taken from Utsu's source L.

Seismic Source 14: No clear information is provided in Utsu (1974) for this region. We

have based our estimate on information from the geographically close zones 16 and 20 in

Annaka et al. (1988), adjusting for the area of region 14. The value of Mmax is also taken

from the latter publication.

Seismic Source 15: As for region 14, we estimate the values of the seismicity parameters

from information on zone 27 in Annaka et al. (1988), adjusting for areas.

Clearly, the parameters in Table 4.1 are just point estimates. Sensitivity of the risk to the

values of b and Mma,, will be presented in Chapter 6.

4.2 Strong Motion Attenuation

Several studies of strong motion attenuation have been made using data from the region

of interest and from other seismically active areas of the world. For our analysis, we are
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interested in the attenuation of peak ground acceleration amx and response spectrum

acceleration Sa with 5% damping of critical. For amax pertinent studies include Yamabe et

al. (1988), Tomatsu et al. (1988), Kobayashi et al. (1988) and Kawashima et al. (1984)

based on earthquakes in Japan, Boore et al. (1993) based on western North American

earthquakes and Fukushima et al. (1988) based on worldwide earthquakes. Selected

recent studies on Sa attenuation are those of Annaka et al.(1988), Kawashima et al. (1984)

based on earthquakes in Japan and Boore et al. (1993) based on western North American

earthquakes.

Most of these studies refer to specific subsoil conditions (usually "firm ground" or

"rock"). Only the last two studies take into account the amplification effect from different

local soil conditions. As local amplification may have a significant effect on damage, we

have included the influence of soil conditions in our analysis although in a simplified

categorical manner. Kawashima et al. (1984), has derived different attenuation relations

for different soil types. The latter are defined as in Table 4.2, based on geological

characteristics of the site and on the natural period of the soil layer above bedrock, TG.

This period is:

4H
TG= V (4.2)

Vs

where H is the thickness of the soil layer above bedrock,

Vs is a representative value of the shear wave velocity of the soil layer.

The soil classification presented in Table 4.2 is assumed to correspond to that included in

the standard design code of the Japanese National Railways (Table 2.4), that was used in

the design of the Tohoku viaduct structure. This assumption is reasonable for the

following reasons : (a) soil types I, II in Tables 2.4 and 4.2 have similar geologic

descriptions and (b) the very low SPT values for soil type III in Table 2.4 correspond, in

general, to soft alluvium and reclaimed land, that is soil type III in Table 4.2.
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Figure 4.3a compares median attenuated values of amax, for earthquake magnitude M = 5

and rock conditions, according to various studies. It appears from this and other

comparisons that the Kawashima et al. (1984) attenuation yields too high values of amax at

such low magnitudes, while the median values from Boore et al. (1993) are consistent

with those from other Japanese studies. Figure 4.3b makes a similar comparison for

earthquake magnitude M = 8 and rock conditions. In this case, the attenuated median

value of ama according to Kawashima et al. (1984) is a reasonable upper bound value,

while the value from Boore et al. (1993) appears unrealistically low for eastern Japan.

Based on comparisons of this type, we have specified attenuation relations for the area of

interest of the general type:

Y=a lObM(A+3 0 )-c (43)

where Y is the median attenuated value of the seismic intensity parameter of interest

(either peak ground acceleration amax or spectral acceleration Sa with 5%

damping in a random horizontal direction).,

A is epicentral distance in km and

(a, b, c) are parameters that depend on the soil conditions for amax and on

both soil conditions and the natural period T for Sa.

This relation is based on the attenuation of Kawashima et al. (1984), but the values of the

attenuation parameters are calibrated to account for what we believe is an overprediction

of Y at low magnitudes, as suggested by Figure 4.3. The calibration was performed for

different soil conditions and natural periods so as to produce values of Y similar to those

of Boore et al. (1993) at low magnitudes. More specifically, parameters a and b of

equation (4.3) were adjusted from the original values of Kawashima et al. (1984) to yield:

- The value of Y according to Boore et al. (1993) for M = 5 and A = 100 km.

- The value of Y according to Kawashima et al. (1984) for M = 8 and A = 100km.
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This modification resulted generally in smaller values of a and larger values of b. The

resulting law is referred to here as the "modified Kawashima" attenuation model. The

parameters of the original and modified Kawashima et al. (1984) attenuation relations for

ama and Sa (the latter, for periods T = 0.3 and 0.5 sec that are of greatest interest for this

study) are given in Table 4.3.

The values of amx and Sa given earthquake magnitude M and epicentral distance A are

typically found to follow a log-normal distribution. The dispersion of the distribution is

usually given in terms of the logarithmic standard deviation ainy, estimates of which from

Kawashima et al. (1984) are given in Table 4.4. These estimates have been retained also

in the "modified Kawashima" attenuation model.

In the study of seismic risk of the Tohoku Shinkansen, it is necessary to specify an

attenuation model of Sa for natural periods between T = 0.3 sec and T = 0.5 sec. As such

intermediate periods are not considered in the original study of Kawashima et al. (1984),

we have used a log-linear interpolation scheme of the attenuated parameter between

periods 0.3 and 0.5 sec.

Figures 4.4 and 4.5 compare median attenuated values of amax, and Sa per soil type,

according to Boore et al. (1993), Kawashima et al. (1984) and the modified Kawashima

model. Comparison of Sa is for T = 0.4 sec, which is a period of particular importance in

the seismic risk study of the Shinkansen viaduct.

The very large accelerations and velocities recorded during the January 17, 1995 Hyogo-

ken-Nambu Earthquake (the "Kobe earthquake") of January 17, 1995 has raised questions

regarding the accuracy of the attenuation model proposed in this study. Figure 4.6

compares recorded values of am,, and estimated values of Sa with 5% damping during this

earthquake of JMA magnitude 7.2 (Mw=6.8) at different epicentral distances (JREast,

personal communication), to the median attenuated values according to the modified
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Kawashima model. This comparison shows that the model underestimates the recorded

accelerations at small epicentral distances, whereas better agreement is found at larger

distances. This discrepancy is attributed for the most part to the combined effect of the

near-field radiation pattern and the amplification from local soil conditions. The latter

was especially large in the reclaimed land of the Kobe port and Awaji island (NCEER

Bulletin, 1995). A sensitivity analysis relative to the attenuation parameters will be

reported later in this study.
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Table 4.1: Gutenberg - Richter parameters for the annual earthquake rate density of the

fifteen seismic regions in Figure 4.2 and their correspondence to the seismic

sources of Utsu (1974).

Table 4.2: Soil classification used by Kawashima et al. (1984)
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Seismic Region a b Mmax AREA

( Sources: Utsu, 1974) (104 kinm2)

1 (D) - 0.05 0.87 7.5 2.25

2 (E) 0.16 0.82 8.5 1.86

3 (H) - 0.29 0.82 8.0 0.58

4 (F) 0.60 1.15 8.0 2.64

5 (G)- 0.18 1.01 7.5 1.47

6 (I) 0.10 0.90 8.0 1.00

7 (J)- 0.74 1.06 8.5 0.23

8 (J) 0.07 1.06 8.5 1.69

9 (K) - 0.07 1.06 7.5 0.95

10 (L) - 0.59 1.06 7.5 0.28

11 (L) - 1.14 1.06 7.5 0.09

12 (L) - 0.28 1.06 7.5 0.32

13 (M) - 0.33 1.06 7.5 0.33

14 (N) - 0.27 1.00 8.0 2.82

15 (O) - 0.33 1.00 8.0 2.03
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ii __ iiii__iiii

Soil Type Geological Description Definition by

Natural Period, TG

I Tertiary rock - Diluvium with H < 10 m TG < 0.2 sec

H Diluvium (H > lOm) - Alluvium (H <25m) 0.2 < TG < 0.6 sec

II Soft Alluvium - Reclaimed Land TG > 0.6 sec
rlii i iiii ii



Soil Type I III

(Table 4.2 )

Attenuation Original Modified Original Modified Original Modified

Model Kawashima Kawashima Kawashima Kawashima Kawashima Kawashima

et al.(1984) et al.(1984) et al.(1984) et al.(1984) et al.(1984) et al.(1984)
.~~~~~~~~~~~~~~

a (am) 987.4 90.0 232.5 138.1 403.8 412.5

b (a.) 0.216 0.346 0.313 0.341 0.265 0.264

c (amax) 1.218 1.218 1.218 1.218 1.218 1.218

a (Sa;T=0.3s) 574.8 22.1 266.8 37.9 1263 240.2

b(Sa;T=0.3s) 0.273 0.450 0.345 0.451 0.224 0.314

c (Sa;T=0.3s) 1.178 1.178 1.178 1.178 1.178 1.178

a(Sa;T=0.5s) 211.8 12.2 102.2 14.8 580.6 58.1

b(Sa;T=0.5s) 0.299 0.454 0.388 0.493 0.281 0.406

c (Sa;T=0.5s) 1.178 1.178 1.178 1.178 1.178 1.178

Table 4.3: Parameters of the original and modified Kawashima et al.(1984) attenuation

relations for aa and Sa (the latter, for T = 0.3 and 0.5 sec and 5% of critical

damping).

Soil Type (Table 4.2) 1 H m

ny (amax) 0.497 0.516 0.454

Cyny (Sa; T = 0.3sec) 0.555 0.622 0.500

alny (Sa; T = 0.Ssec) 0.640 0.573 0.553

Table 4.4: Logarithmic standard deviations of a,, and Sa, given earthquake magnitude

M and epicentral distance A (Kawashima et al., 1984).
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Figure 4.1: Historical seismicity in area of interest for the period 1885-1983
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Figure 4.2: Sources of the proposed earthquake recurrence model for offshore

seismicity superimposed on the historical seismicity (1885-1983).
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Figure 4.3: Peak ground acceleration at rock sites according to various studies:
(a) M = 5 and (b) M=8.
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Peak Ground Acceleration: Soil Type II
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Figure 4.4: Comparison of peak ground acceleration attenuation relations
for M = 5 - 8 and for:
(a) soil type I, (b) soil type II and (c) soil type III.
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Spectral Acceleration for T=0.4s: Soil Type I Spectral Acceleration for T=0.4s: Soil Type II

10 100 1000 10 100
Epicentral Distance (km) Epicentral Distance (km)

1000

Spectral Acceleration for T=0.4s: Soil Type IlIl
I----n 
1 UUUU

'I 1000
w

E(U
0)._(U

U 100

10

10 100
Epicentral Distance (kin)

1000

Figure 4.5: Comparison of spectral acceleration at T=0.4sec and 5% damping
of critical, for M = 5 - 8 and for:
(a) soil type I, (b) soil type II and (c) soil type III.
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Figure 4.6: (a) Recorded peak ground accelerations during the Kobe earthquake
and median values according to the "modified Kawashima" model
for soil types I, II, III and M=7.2.
(b) Estimated spectral accelerations at T=0.4sec and 5% damping of
critical compared to median values according to the "modified
Kawashima" model for soil types I, II, III and M=7.2.
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Chapter 5

Risk Analysis

In this chapter, we describe the method used to assess the rate of earthquake-induced

derailments and trains delays, as functions of the type of seismic early warning system

(System A, B or C) and of the operational parameters (choice of intensity parameter and

trigger and inspection levels). A seismic fragility model for the viaduct structure is

described first, followed by a discussion of the performance measures of the effectiveness

of the seismic early warning system and by the general procedure for their evaluation.

The last three sections of this Chapter address the specific problem of calculating the

conditional probabilities of SEWS trigger, train derailment and train delay.

5.1 Seismic Fragility of the Viaduct Structure

A key component of the seismic risk analysis is the evaluation of the probability of

viaduct damage in an operational segment s, given earthquake magnitude M and

epicentral location x. This probability is used in the calculation of the risk of earthquake-

induced derailments. First, we consider the probability of damage "at a point" (for a

single viaduct span) and then proceed to the estimation of damage anywhere along a line

segment, including the effect of damage clustering.

Probability of Damage of a Single Viaduct Span, Pl(Sa)

There is ample evidence from the literature that, for structures like the Shinkansen

viaduct, a good measure of the destructiveness of earthquake motion is spectral

acceleration at an appropriate period and for an appropriate damping ratio. We denote by
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Pi(Sa) the probability that a single viaduct span is damaged, given that it experiences a

spectral acceleration Sa. In calculating P(Sa), we assume that structural resistance in

terms of Sa follows a log-normal distribution (NIBS Technical Manual, 1994). This

resistance distribution has a median value Rm which depends on structural and

geotechnical parameters. In evaluating Rm, we proceed as follows:

(1) Assess the viaduct top relative displacement at yielding, by: According to JREast, for

a viaduct height of Om (this is the average as well as the most common height), designed

under normal soil conditions, this displacement is 8y = 3.1 - 3.4cm.

(2) Evaluate the median spectral acceleration at yielding S: For three values of the

natural period T of the structure and using the relationship: Sa = 2 Sdy these median

values are:

T = 0.3sec: S = 1.36g- 1.49g

T = 0.4sec: S,y = 0.76g - 0.84g

T= 0.5sec: S,y = 0.49g - 0.54g

(3) Take into account the effect of structural ductility A, to obtain the median spectral

acceleration S that causes the ductility capacity of the viaduct to be exceeded. We

assume that derailment due to track damage does not occur unless the viaduct structure

has accumulated permanent deformation in excess of its ductility capacity. Denoting by

R(~)= Su/Sy the factor by which the median resistance relative to first yielding is

increased to produce ultimate ductility conditions, we evaluate R(p) as:

R(g)=(cg-c+l) 1Ix (5.1)
0~~~~~~~~~~~~~~~~~~(.1)7

x=1.78+ 0T5 (5.2)
T

c=1.80- 0.0422 (5.3)
T
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The above expressions are taken from a study of elasto-plastic 1-DOF systems by

Osteraas et al. (1990). The function R(p) in equation (5.1) was also used by Takada et

al.(1988 and 1989). Values of x, c, and R(p.) for p. ranging from 1 to 4, and for T=0.3, 0.4

and 0.5sec are listed in Table 5.1.

(4) Consider the effect of local soil conditions: All previous values of Sa y refer to normal

soil conditions. Soil conditions were considered in the design of the Tohoku Shinkansen

by scaling the design strength of the structure by a coefficient that depends on soil type;

see Table 2.4. One can thus calculate the median resistance Rm of the structure depending

on soil conditions, ductility level and natural period. According to JREast, the expected

ductility of the structure is p.=4. This level of ductility means that the structure must

undergo considerable deformation and softening before failing, which leads us to increase

the effective natural period from T = 0.30 - 0.36 sec for the structure in the elastic range

to T = 0.4 - 0.5 sec for a heavily damaged structure. For T=0.4sec, which is the equivalent

period we have used in base-case calculations, and for p. = 4, Rn has the following values:

Rock: R. = 1.48g

Normal soil: R = 1.85g

Soft soil: R. = 2.22g

The above refers to the median resistance of the structure in terms of spectral acceleration

at the effective period T. In order to define the log-normal distribution of R, one needs in

addition the logarithmic standard deviation CrInR. Based on results from an extensive

statistical analysis for railway bridges in the Continental US (NIBS Technical Manual,

1994) and on literature on the seismic fragility of framed reinforced concrete structures,

we have set that InR = 0.40.

It should be noted that the train could derail also without track damage, due to excessive

vibratory motion. This cause of derailment might in fact become dominant over portions
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of the viaduct founded on soft soil, because of the higher structural resistance under such

conditions. Our estimates of the probability of local structural damage and JREast

estimates of the probability of derailment due to vibratory motion for Sa = 1.0, 1.5, 2.0g

are as follows:

For the epicentral distances of 80 km or larger in which we are interested in this study,

the values of Sa that are responsible for most of the derailment events are below 1.0g and

for these levels of vibration, the risk of derailment due to shaking is negligible relative to

that from structural damage. Therefore, we have decided to exclude vibratory motion as a

cause of derailment.

Spatial Dependence of Damage

The viaduct structure of the Tohoku Shinkansen is composed of a series of short spans

(with length SP=7m). In order to include clustering of the damaged/non-damaged spans

(as for example was observed in the recent Kobe earthquake) one may model the

alternation of undamaged-damaged spans as a Markov 0-1 model. According to the

model, the number of continuously damaged or continuously undamaged spans has a

geometric (essentially exponential) distribution. The parameters of the model are:

no(Sa) = mean number of continuously undamaged spans, given that the local

level of spectral acceleration is Sa

nl(Sa) = mean number of continuously damaged spans, given that the local level

of spectral acceleration is Sa.
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Conditional Probabilities (given Sa) Sa = L.Og Sa = 1.Sg Sa = 2.0g

Probability of local structural damage 0.095 0.261 0.436

Probability of derailment due to vibratory 0.010 0.100 0.250
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An equivalent parameterization of the Markov model is in terms of the marginal

probability of damage of the generic single span, Pi(Sa), and the conditional probability

P1ii(Sa), which is the probability that a span is damaged given that the previous span is

damaged and given the level Sa of ground motion. Hence, the latter is defined as,

PlllI(Sa) = P[span i+l is damaged, given that span i is damaged and Sa occurred]

The relation between the two parameterizations is as follows:

ni(Sa)= 1 (5.4)
1-PI(Sa)

no(Sa)=n(Sa) IPi(Sa) (5.5)
PqtSa)

Also, it is convenient to simplify the model by setting:

Plii(Sa)=l+cl logio[Pl(Sa)] ; 0 < cl < 0.1 (forPl(Sa)>10') (5.6)

Equation (5.6) formulates the physical phenomenon of clustering of earthquake damage.

This is why the value of the conditional probability is much higher than the value of the

corresponding marginal probability. Moreover, both marginal and conditional

probabilities increase with an increase of the level of the local spectral acceleration. The

value of parameter cl in equation (5.6) governs the extent of the conditionally damaged

track, given a specific value of P. We have found that reasonable estimate of cl is

cl=0.03. This choice of cl corresponds to the values of n and n in Table 5.2. Such

values of nl and no are consistent with the damage caused by the Kobe earthquake to local

Shinkansen viaduct: North of the exit of the tunnel through the Rokko Mountain, the

viaduct suffered damage over four major sections within a length of approximately 3 km

(NCEER Bulletin, 1995). Within this clustered damage region, there were approximately

30 - 35 collapsed spans. From Figure 4.6 one may estimate that the local Sa value may
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have been around lg. For normal soil conditions, this corresponds to PI of about 0.12 and

an expected number of continuously damaged spans of about 36.

Probability of Derailment

Suppose, for the moment, that the spectral acceleration Sa at the track reaches its

maximum value instantly. Assume that a train of length L travels a distance LE after the

arrival of the S waves. We define the probability of derailment Pd as the probability that

the train meets damaged track (see previous section for the less significant contribution

from vibratory motion). Under these simplifying assumptions, the event of no-derailment

occurs only if (a) the last point of the train, coming from undamaged conditions (before

the strong motion arrives at the track), encounters no damage in track length LE and stops

instantly, and if (b) the instant before stopping, the section of track of length L occupied

by the train is entirely undamaged given that it is undamaged at the location where the

train terminates; see Figure 5.1 for illustration of event of no-derailment. From the fact

that the distribution of undamaged and damaged sections is exponential and using

equation (5.5) we define the probabilities of the aforementioned events a, b as:

Pa(Sa) = e[LE/(SP) ] /n o(Sa) (5.7)

Pb(Sa) = e-[L/(SP)] /n o(Sa) (5.8)

where SP=7m, is the length of a single viaduct span. Based on equations (5.7) and (5.8)

and assuming independence of events a and b, the probability of no-derailment given Sa is

given by:

Pno d(Sa) = Pa(Sa) Pb(Sa) = e[(LE + L)/(SP)] /no(Sa) (5.9)

Based on equation (5.9) and given that the events of derailment and no-derailment are

complementary, we define the probability of derailment given Sa as follows:
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Pd(Sa) = 1- Pd(Sa) = 1- e[(LE + L)/(SP)]/no(Sa)

According to equation (5.10), the probability of derailment, Pd(M, x, s) of a train running

in operational segment s, given the occurrence of an earthquake of magnitude M at

epicentral location x, is given by:

Pd(M,x,s) = 1- Esal M,x,s[e -[(LE+L) / (SP)]/no(Sa)] (5.11)

Because tunnels protect trains from derailing (e.g. see the good performance of the Rokko

Mountain tunnel during the Kobe earthquake), we incorporate this in the analysis by a

risk reduction factor, trf(s) of the probability of derailment reflecting the assumption that

tunnels are considered safe havens for running trains in segment s. When the S waves

arrive at operational segment s, we assume that trains can be anywhere along that

segment with equal probability. Thus, the actual location of trains and tunnels within an

operational segment is not important in this analysis. In this perspective, risk reduction

due to the fact that a train may be in a tunnel when the S waves arrive at the track is

analogous to the fraction of the segment length in tunnels. Hence, this parameter is

considered through trf(s) which is defined as follows:

trf(s)=-1 tun(s) (5.12)
seg(s)

where tun(s) is the total tunnel length in segment s and seg(s) is the length of segment s

(see Table 2.5). According to equations (5.11) and (5.12), the probability of derailment

Pd(M, x, s) is as in equation (5.13):

tu(s)) (5.13)Pd(M,x,s) = (1- ESaIM, x,s[e'[(LE+L)/(SP)]/no(Sa)])( - (5.13)
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Equation (5.13) provides the general fragility model used in this study. However, the

early warning system may cause the train to start braking before the intense phase of

ground motion arrives at the track. One might envision cases when, at the time of arrival

of the strong motion, the train has completely stopped or is decelerating, cases when

braking takes place after the strong motion has reached its peak at the track, and cases

when no braking takes place because the early warning system did not trigger. Moreover,

the site intensity Sa is varying and the train speed is not constant. How these various

conditions affect the conditional probability of derailment in a general form in equation

(5.13), will be shown in Section 5.4.

5.2 General Procedure of SEWS Performance Evaluation

In order to avoid derailments, the present early warning system tends to stop trains at a

high rate. In a few cases such actions may turn out to be justified (they indeed result in

derailment avoidance), but in most cases they produce "false alarms" and unnecessary

delays of various durations. Hence, a reasonable way to characterize the performance of

the early warning system is to calculate the rate of derailments that were not prevented

and the rate of delays of various magnitudes. More specifically, we define four rates:

* DE = annual rate of earthquake-induced derailments. This is the expected number of

trains per year that derail due to earthquakes, anywhere along the line.

* XSD = annual rate of earthquake-induced short delays. This is the expected number of

trains per year that, after being stopped by the SEWS system, are immediately allowed to

resume operation without any inspection of the tracks.
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* kMD = annual rate of earthquake-induced medium delays. This is the expected number

of trains per year that, after being stopped by the SEWS system, resume operation at low

speed (30 - 50 kmh) to perform on board inspection of the tracks.

* LD = annual rate of earthquake-induced long delays. This is the expected number of

trains per year that, after being stopped by the SEWS system, are not allowed to resume

operation until on-foot inspection of the tracks has been completed.

Whether a stopped train experiences a short, medium or long delay depends on the

intensity of ground motion recorded along the track and on the threshold levels AinspI and

Ainsp2 for track inspection; see Chapter 3. Trains that experience short delays face the

possibility of derailing after resuming operation since no track inspection is performed in

that case. This is not true for trains experiencing medium and long delays, as the track

inspection procedure is assumed to identify any track damage and eliminate any

possibility of derailment. The added derailment risk following short delays is taken into

account in the present analysis and has led to two definitions of XDE, one before and the

other after the resumption of service following short delays.

Considerable simplification in the evaluation of the delay rates follows from considering

each train in isolation, thus neglecting train interaction in the form of propagation of

delays, train cancellations, e.t.c. In this and the following chapters we use this simplifying

assumption. The effect of interactions can be estimated through corrective factors, as

discussed in Appendix II.

Mathematical Formulation

The general procedure to calculate the rates DE, XSD, XMD, LD for a given early warning

system is as follows: Let E be the event of interest (E can be DE, SD, MD, or LD, where

the symbols stand for derailment, short delay, medium delay and long delay events).

Then the annual rate XE is given by:
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XEISEWS = f (X(M,x)E[NsP[EIM,x,s,SEWS]) dxdM (5.14)
Mx s

where (M, x) is the rate density per year of earthquakes of magnitude M at epicentral

location x. This rate density is given by

10 a-b(M-6).(M,x)= I 'abM6 , M < Mmax (5.15)
AREA

where a and b are the Gutenberg-Richter parameters for the seismic source

to which x belongs (see Chapter 4) and AREA is the area of that seismic

source.

E[Ns] is the expected number of trains running at a random point in time in

operational segment s. Values of E[N] for the 26 operational segments of

the Tohoku Shinkansen line are given in Section 2.1.

P[EIM, x, s, SEWS] is the probability of event E occurring under the given early

warning system for a train running in operational segment s, an earthquake

of magnitude M and epicentral location x. This probability may in turn be

written as:

P[EIM,x,s,SEWS]=XT P[TIM,x,s,SEWS] P[EIM,x,s,T] (5.16)

where T is the generic trigger/no-trigger status of the early warning system . T has the

following logical values: T=Tc for automatic braking triggered by the coastal system,

T=T10oc for automatic braking triggered by the local (wayside) system, and T="No T" in

the case of no triggering. In the remainder of this chapter, we show how the probabilities

in the right hand side of equation (5.16) are evaluated for different E, T and SEWS

systems.
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5.3 Conditional Probability of Trigger, PITIM. x. s. SEWS]

Here we consider how one can evaluate the probability of various triggering events T, for

a train running in segment s, when an earthquake of magnitude M occurs at epicentral

location x. Automatic braking may be caused by first triggering the coastal or the wayside

system. We denote such events by Tc and T1oc, respectively. "No T" means that neither Tc

nor Tloc occurs, hence that automatic braking is not activated.

For P[TCIM, x, s, SEWS] we must differentiate among the different coastal systems, for

which we use the symbols A (current system), B (modification of current system) and C

(UrEDAS system); see Chapter 3 for details on such systems. Systems A and B trigger on

horizontal acceleration a, whereas for the wayside system we consider either horizontal

(perpendicular to track) acceleration a or response spectrum acceleration Sa at the natural

period of the viaduct. Due to the location of the earthquake sources relative to the coastal

and wayside accelerometers, it is safe to assume that, if both the coastal and the wayside

systems trigger, then the coastal system is the one that triggers first (To occurs). A second

simplifying assumption is that, if systems B and C cause trains in segment s to stop, then

the event occurs due to triggering of the coastal station that is closest to the epicenter.

Under these conditions, P[TCIM, x, s, SEWS] for coastal systems A and B is obtained as

follows:

For System A operating with trigger horizontal acceleration a*,

P[TclM,x,s,A]=P[amax(M,A(x,i))>a ] (5.17)

where A(x, i) is the distance between x and the coastal accelerometer i that controls

operational segment s and amx(M, A(, i)) is the attenuated peak ground acceleration at

the i-th coastal station. The correspondence between coastal detectors and operational
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track segments was shown earlier in Chapter 2. At present, JREast is operating the coastal

system using policy A with a*=40gals.

For System B operating with trigger horizontal accelerations at(i, s, R),

P[TclM,x,s,B]=P[amax(M,A(x,i))>at(i,s,(xeRi))] (5.18)

where i is now the coastal station that is closest to the epicenter and Ri is the

corresponding sector of origin. The trigger accelerations at for system B are calculated

from equations (3.2) and (3.3) and therefore depend on a single operational parameter b*,

which corresponds to a given predicted value of Sa along the track.

System C may trigger upon the arrival of either P or S waves. For given estimates of M

and A, the system causes trains to stop if the parameter TRIG defined in equation (3.4) is

positive. Considering uncertainty on the estimates of (M, x), given the corresponding true

values, TRIG may be modelled as a random variable with normal distribution, mean

value given by equation (3.4) and variance

anmG2=(0.71cM)2 +( aA)2 (5.19)
A ln1O

The formulation of the variance of parameter TRIG in equation (5.19) is consistent with

the definition of that parameter in equation (3.4). Denoting by TRIGps the values of

TRIG obtained using the estimates of (M, ) from P and S waves and assuming that

(TRIGp M, x) and (TRIGs M, x) are independent, the conditional probability of trigger

under system C is found as:

P[TIM,x,s,C]=P[TRIGP>O]+(l-P[TRIGP>0]) P[TRIGs>0] (5.20)
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Note that the mean values of (TRIGp IM, ) and (TRIGS IM, x) depend on a single

operational parameter c.

The probability of triggering by the wayside system is given by the following equations:

P[TIoclM,x,s,SEWS]=P[amax(M,A(x,s))>at.ioc](1-P[TclM,x,s,SEWS]) (5.21)

P[TioclM,x,s,SEWS]=P[Sa(M,A(x,s))Sat,loc](l-P[TcIM,x,s,SEWS]) (5.22)

respectively for the cases when the system operates with peak ground acceleration amax or

spectral acceleration Sa. Here, A(x, s) is the distance between the epicentral location xi and

the operational segment s, and at,,c and Sat,loc are the preset trigger levels of the wayside

system.

Under the assumption of independence, the probability of no-trigger by either the coastal

or the wayside system is as given by the following equation:

P[noTIM,x,s, SEWS] = (1- P[TclM,x,s,SEWS])( - P[TiocIM, x, s, SEWS]) (5.23)

5.4 Conditional Probability of Derailment. P[DEIM, x. s, T]

Next we consider the probabilities of derailment given (M, x) and given different

trigger/no trigger events, i.e. for T=T, Tc or "no T". These specific expressions are all

based on equation (5.12), which gives the probability of derailment in general.

If emergency braking of the train is caused by the coastal system. then the probability of

derailment is given by the following equation (5.24):
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P[DEIM,x,s,Tc] =

= (1- ESalM,x,s[(e-[(L/(SP)]/no(Sastop)])(e-[D/(SP)]/no (Sa))]) (1 tun(s)
seg(s)

where D is the distance traveled from the time of strong motion arrival at the train

location until complete stop.

Sastop is the maximum horizontal spectral acceleration normal to the track, prior to

complete stopping of the train. Because we are conditioning on coastal

triggering (To), there is some lead time of train braking before strong

motion arrives at the track. This is why potentially, Sastop could be smaller

than Sa.

no'(S) is a single representative value of the mean number of undamaged viaduct

spans, no, from the time when the strong motion arrives at the train

location until complete train stopping. This representative value is

calculated as:

no'(Sa)= V(t) (5.25)
f dt
f no(Sa(t))

where V(t) is the train speed at time t since emergency braking started.

The function V(t) has been obtained from the braking curve in Figure 5.2,

which has the following analytical expression:

V(t)[km/sec]= Vmax[kmh]-2.85t[sec] (5.26)
3600 (5.26)

where Vm, is the speed of the train when braking starts.

The formulation of no'(Sa) in equation (5.25) considers the concurrent time-

variability of the speed of the train and of the level of Sa. Through time-
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integration, the denominator takes into account the distance traveled by the train

from the time of strong motion arrival at the train location until complete stop

(distance D). In order for no'(Sa) to represent continuous undamaged viaduct

spans, we formulate equation (5.25) with distance D in the numerator.

If emergency braking of the train is caused by the wayside system. then the probability of

derailment, based again on equation (5.13), is given by the following equation:

P[DEIM,x,s,Tloc)=(-ESalM,x,s[e - [(L+Dtot)/(SP)]/no

where Dtot is the track length traveled by the train

stoppage. Dtot is obtained by an integration of

approximately:

(Sa) ])(1_ tun(s)
seg(s)

(5.27)

from full speed until complete

equation (5.26), which gives

Dtot [km] = 0.1754 Vmax[kmh]2
3600

(5.28)

Equation (5.27) sets simply length LE of equation (5.13) equal to Dtot. This is because in

this case braking begins after the maximum level of Sa has been reached and therefore the

total distance traveled is equal to Dtot. The track section of length Dtot is potentially

damaged from the maximum level of local intensity Sa, since emergency braking starts

after this level has been reached.

If no braking of the train occurs. then based on equation (5.13) the conditional probability

of derailment is given by the following equation:

P[DEIMsxssnoT)=(-ESaIMxs[C[ {L+SEC(s)})/(SP)]/no(Sa) ])(l tun(s)
seg(s) (5.29)
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where SEC(s) is the length of track that a train in operational segment s covers, if it is

not ordered to stop from either detection system. SEC(s) is evaluated as

half the distance between trains travelling in s in the same direction, and is

a function of the expected number of trains in that segment. Notice that,

after the train has travelled a distance SEC(s), the track ahead has already

been covered by other trains and, if such trains have not derailed, is safe.

Equation (5.29) sets simply length LE of equation (5.13) equal to SEC(s).This is because

we assume that, according to the aforementioned reasoning, that the train travels this

distance under risk of derailment after the maximum level of seismic intensity Sa has

been reached.

5.4.1 Conditional Probability of Derailment following Resumption of Service

following a Short Delay, P[DEIM, x, s, SD]

After a train has been stopped, if the first track inspection level Ainspi has not been

exceeded, the train is allowed to resume immediately normal operation. Because, with a

small probability, the track ahead may have been damaged (especially if the first

inspection level is set high), it is necessary to evaluate the probability of derailment

following a short delay event. For the cases when the wayside system operates with peak

ground acceleration or peak spectral acceleration, this probability of derailment is given

by the following equations (5.30a) and (5.30b):

P[DEIM,x,s,SD]=(1-ESaIM,x,s[e-[(L+SEC(s)-Dtot}/(SP)]/no(Sa)]) (1- tun(s)
seg(s)

P[DEIM,x,s,SD]=(1- [e-[{L+SEC(s)Dtot}l/(SP)]/no(Sa)]) (1 tim(s)
Sa•Sa,inspI

where we have assumed that the length of potentially damaged tracks travelled after

resumption of service is (SEC(s)-Dto), i.e. is the potentially damaged length travelled if
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the train was not ordered to brake (see equation 5.29) minus the distance already covered

during braking (see equation 5.27).

Equation (5.30a) is obtained under the assumption that, Sa and amax, are conditionally

independent, given M, x, s. More specifically, the fact that it was a short delay, i.e. amax

was below the first track inspection level, does not yield any information regarding the

value of Sa; therefore we take the expected value of the exponential term as the best

estimate. This is not the case for equation (5.30b) where we consider only the values of Sa

below the first inspection level. The assumption of conditional independence of Sa and

a,, leads probably to a slight overestimation of the derailment probability in equation

(5.30a) but there is no conclusive evidence of their correlation.

5.5 Conditional Probability of Various Delays, P[EIM. x, s, T; E=SD. MD. LD

Delays can be caused by either the coastal or the wayside system; these events are

denoted by T and To, as indicated earlier in Section 5.3. The wayside system can

operate on either ama, or Sa, but here we give formulas just for the former, for reasons of

brevity. For an Sa-based operation of the wayside system, the equations are completely

analogous.

Short Delays

P[SDIM,x,s,Tc] = P[amax(M, A(x, s)) < Ainspi] (5.31)

P[SDI M,x,s,Tloc] = P[at, ioc < amax(M, A(x,s)) < Ainspl] (5.32)

P[SDIM, x,s, noT]= 0 (5.33)

Medium Delays

P[MDIM,x,s,Tc] = P[Ainspl < amax(M, A(x,s)) < Ainsp2] (5.34)

P[MDIM,x,s, Tic] = P[Ainspl < amax(M,A(x,s)) < Ainsp2] (5.35)

P[MDIM,x,s,noT]= 0 (5.36)
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Long Delays

P[LDIM,x,s,Tc] = P[Ainsp2 < amax(M,A(x,s))] (5.37)

P[LDIM,x,s, Tioc] P[Ainsp2 < amax(M, A(x,s))] (5.38)

P[LDIM,x,s, noT] 0 (5.39)

5.6 Conditional Total Probability of Derailment

Equations (5.14) and (5.16) provide the means to calculate the annual rate of derailments

for any given seismic early warning system, DEISEWS. This is the annual rate of

derailments excluding derailments during resumption of operation following short delays.

Similar expressions give the total annual rate of derailments, including this additional risk

of derailment. This is introduced by the following equation (5.40):

Pi[DEI M, x, s, SEWS] = Pe[DEI M, x, s, SEWS] + P[DEI M, x, s, SD]P[SDI M, x, s, SEWS]

where Pi[DEIM,x,s,SEWS] is the conditional probability of derailment including

resumption of operation following short delays, and

Pc[DEIM, x, s, SEWS] is the conditional probability of derailment before

resumption of operation, as calculated from equations (5.16) through

(5.24), and (5.27), (5.29).
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Parameter T = 0.3 sec T = 0.4 sec T = 0.5 sec

x 2.303 2.173 2.094

c 1.659 1.695 1.716

R(p), g = 1 1.000 1.000 1.000

R(ji), t = 2 1.529 1.578 1.611

~R(I, = 3 1.887 1.975 2.036

R(gt), ; = 4 2.174 2.296 2.381

Table 5.1: Values of x, c and the ductility modification factor R(pt) for T = 0.3, 0.4,

0.5secand = 1,2,3,4.

Pt Pll no l1

0.00001 0.85 666660 6.67

0.00010 0.88 83325 8.33

0.00100 0.91 11100 11.11

0.01000 0.94 1650 16.67

0.10000 0.97 300 33.33
i * *** *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table 5.2: Expected number of continuously damaged (nl) and undamaged (no) viaduct s

pans for given values of the probability of damage of a single viaduct span Pl and

cl=0.03.
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Figure 5.1: Illustration of a no-derailment event.
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Chapter 6

Risk Results

In this chapter we obtain numerical results, primarily in the form of the annual rate of

derailments and the rates of various delay events for different SEWS systems. These

results are presented in section 6.1 and they are for different coastal systems, while the

wayside system is operating as at present. To aid interpretation, the total rates are

decomposed by earthquake magnitude M, track location s, seismic source, and epicentral

distance. The sensitivity of the total rates to various physical and modeling parameters is

displayed at the end of this section. A scenario-based approach to the risk is presented in

section 6.2. In this case, the results are in terms of the expected number of various events

(derailments and delays) along the track, given that an earthquake of given magnitude

occurs at a specific location.

The effects of different modes of operation of the wayside system are described in

Chapter 7, where the issue of the optimization of the SEWS is addressed.

6.1 Annual Risk

Annual Rates of Derailments and Delays and their Decomposition

This section shows in some detail the performance characteristics of different SEWS

systems while the wayside system is operated as at present, with parameters (a 10,c, Ainspl,

Ainsp2) = (40, 80, 120 gals). The trigger parameters of the coastal system, a (System A),

b (System B), and c (System C) are varied. For derailments (rate XDE), we present

results including or excluding the contribution from resumption of service after short
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delays. The rates are plotted in Figure 6.1 a and the corresponding parameters a*, b* and c*

are shown in Figure 6. lb. Notice that the rates XMD and XLD do not depend on either the

type of coastal system or its operational parameters (they depend only on the operation of

the wayside system). These rates are therefore just listed. The two sets of plots in Figure

6.2a correspond to including (upper plots) or excluding (lower plots) derailments

following short delays. For the current coastal system (System A, with a* = 40gals), the

rates are:

- XDE = 0.017 / 0.033 trains/year (for exclusion/inclusion of derailments

following short delays)

- XSD = 82.6 trains/year

- MD= 3.38 trains/year

- XLD = 1.20 trains/year

The performance of the system during the past eleven years shows an annual average of

2.8 stopped and 72.4 delayed trains; see Chapter 2. These "delayed trains" correspond to

the sum of short and medium delays when trains resume regular or low-speed operation

respectively. "Stopped trains" correspond to long delays when trains stop to allow for on-

foot track inspection. Therefore, we conclude that our theoretical results for the various

delays are consistent with the historical record. The annual rate of derailments cannot be

verified historically because such events are rare. Other observations on the results of

Figure 6.1 are as follows:

Effect of Coastal System

Coastal system A (the present system) is consistently outperformed by systems B and C.

This is due to the fact that, allowing any coastal station to stop trains (as systems B and C

do) increases the lead time relative to the arrival of the strong phase of ground motion at

the track. The lead time of system A is short and the reduction in the rate of derailments

relative to operating only the wayside system (leftmost points in the plots) is small. At the
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same time, the low threshold value (a* = 40gals) produces many short delays. In general,

System C (UrEDAS) performs best, because of the added lead time when triggering

occurs upon the arrival of P waves. This is actually true for values of the threshold

parameter c < 3.1. For less conservative values of c* (when the coastal system is not

expected to issue frequent warnings), the large uncertainty in the estimation of earthquake

magnitude and location makes the UrEDAS system somewhat less efficient than System

B.

Quantitatively, the differences noted above are hardly significant, especially if the

systems are operated with higher trigger levels. At most, system B reduces the derailment

risk by 50% compared to system A and system C may potentially add a further 10%

reduction to this risk. These are, however, upper limits and correspond to very

conservative operation of the systems (rightmost points in the plots). More realistic

settings of the trigger parameters make the benefits smaller. Even smaller percentile

differences are found if the risk of derailment after resumption of service following short

delays is included (top plots in Figure 6.1 a). This is because the added risk is independent

of the type of coastal system.

The small gains from changing the type of coastal system are attributed to the fact that, in

spite of the lead time from operation of the coastal system (up to approximately 30 sec for

the UrEDAS), the braking trains cover a large part of their braking distance course after

the arrival of the strong motion phase at the track (for a speed of 245kmh, the total

braking time is approximately 85 sec).

Effect of Wayside Policy

The wayside system can potentially cause the trains to brake after the arrival of the strong

phase of ground motion at the track. Even such action, without lead time, is effective as it

causes trains to cover approximately 3 km while braking as opposed to half the distance

between trains running in the same direction when trains are not stopped. For example,
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the distance between consecutive trains traveling in the same direction between Tokyo

and Sendai is approximately 28 km. Thus, the trigger level of the wayside system, if set

conservatively, as it now is, largely controls the risk of derailment. The coastal policy

may reduce that risk, but not by a large amount.

The inspection levels at the track control completely the medium and long delays, while

the short delays are controlled by both the coastal and wayside systems.

The added risk due to the resumption of operation after short delays is a function of the

wayside system. Figure 6.1a shows that this added risk may be very significant. The

reason is that, given M and x, the quantities am. and Sa at the track are treated as

conditionally independent. Therefore, low recorded values of am. that produce short

delays do not necessarily imply that Sa (which is better related to damage) is also small. It

should be noted that, although conservative, the assumption of conditional independence

of amax and Sa is consistent with observations from strong ground motions. Later in this

study, we shall present results for the case in which the wayside system operates in terms

of Sa. In that case, the resumption of operation after short delays does not contribute

significant risk.

Next we analyze how the annual rates kE for various events E (derailments and various

delays) are contributed by earthquakes of different magnitudes and with different

distances from the track, how they are contributed by different earthquake sources, and

how they are distributed along the track. Illustrated in Figure 6.2 is the risk

decomposition for the current operation of the SEWS, i.e. (a', atloc, Ainspl, Ainsp2) = (40,

40, 80, 120 gals) excluding the added risk of derailments following short delays. More

specifically, we present the annual rates of each event type E decomposed according to

earthquake magnitude, track segment, seismic source and epicentral distance. For more

effective comparison, the rates are presented normalized.
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Decomposition by earthquake magnitude

Derailments are mostly caused by earthquakes magnitudes from 7 to 8.5, whereas, long,

medium and short delays are produced mainly by earthquakes of magnitudes 70.5,

6.5+±0.5 and 5.5+±0.5, respectively. There is no contribution to the risk from earthquakes

of magnitude M > 8.5, because it is believed that there are no seismic sources that can

produce such large magnitude earthquakes in the area of interest; see Table 4.1.

Furthermore, there are "jumps" in the contribution to the risk from earthquakes

immediately smaller and larger of 7.5 and 8, because these values correspond to our

estimates of maximum magnitude for several seismic sources. Therefore, as the

magnitude of the earthquake gets larger, there are fewer seismic sources that can

potentially produce earthquakes of that magnitude.

Distribution along the track

The area of operational segments 12-16 is the one where most derailments and delays are

expected to occur. Segments 18-21 are those where derailments and delays have the

lowest rate of occurrence.

The significant variability of the risk along the line is due to the following site-specific

parameters: (a) proximity to seismic sources, (b) traffic load, (c) length of tunnels, and

(d) local soil conditions. The effects of these parameters are studied via comparative

analysis of the following cases:

- case 1I: Same train frequency along the entire line (E[Ns] = 0.295)

Soil Type I everywhere.

No tunnels.

-case 2: Same as case 1, but actual train frequency considered.

- case 3: Same as case 2, but actual soil types along the Tohoku line considered.

- case 4: Same as case 3, but tunnels considered (most realistic or base-case)
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Figures 6.3 presents the distribution along the track of the rates of all events for the four

cases listed above. Case 1 shows that seismicity alone causes a relatively uniform

distribution of the risk along the track (at the most, the local rate of derailments varies by

a factor of 3). The density of train traffic induces variations by up to a factor of 2.5.

Inclusion of soil type alters significantly the spatial distribution of risk. Specifically, soil

type III reduces the rate of derailments by a factor of almost 10 while it increases

insignificantly the rates of all delays, whereas soil type II increases the risk of both

derailments and delays by a factor of at the most 4. These large differences are due to

local amplification effects; see Figures 4.4 and 4.5. The amplification by soil type II is

consistent at all magnitudes for both am, and Sa. Soil type III causes small amplifications

of am at the small magnitudes that generally cause delays. On the other hand, soil type

III does not amplify the value of Sa at the large magnitudes that cause derailments. In

addition, the viaduct has been constructed expecting an amplification of motion for soil

type III (soil coefficient 1.2; see Table 2.4). Therefore, the risk of derailment is reduced

significantly in operational segments where there is predominantly soil type III. Finally,

the tunnels along the line reduce locally the derailment risk by a factor up to 3, but have

no effect on the delay rates.

Decomposition by seismic source

Seismic sources 6 and 8 contribute by far the most to the annual rate of all events. This is

a combined effect of their relative proximity to the track and their high seismic activity;

see Figure 4.2 and Table 4.1. By contrast, seismic sources I and 15 contribute very little

to the risk mainly because of their large distance from the track, sources 7 and 11

contribute little because of their low seismicity and seismic source 5 contributes

insignificantly because of both low seismic activity and large distance.

Decomposition by epicentral distance

Derailments and long delays are mostly caused by earthquakes that originate about

130km from the track. Medium and short delays are predominantly produced by

earthquakes with epicentral distances around 150 and 160 k, respectively. In general,
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the range of crucial epicentral distances for all rates is from 100 to 170 km. Shorter

distances are not significant because there are no seismically active offshore sources that

are closer to the track. Larger distances are unimportant due to attenuation.

Sensitivity of Annual Risk

Uncertainty on the value of model parameters was discussed in detail in previous

chapters. In this section, we present the potential effect of the estimation errors on the

results in Figures 6.1 and 6.2. Sensitivity analyses are made relative to: (a) attenuation

parameters, (b) the seismic fragility of the viaduct structure, (c) the soil classification

along the Tohoku line, (d) the speed of Shinkansen, (e) seismicity parameters and (f) the

(M, x) estimation accuracy of the UrEDAS system.

This study shows that annual risk is very sensitive to parameters (a), (b) and (c) listed

above. In more detail, we have:

Sensitivity to attenuation coefficients

The attenuation model used in the previous analysis is a modification of the model of

Kawashima et al.(1984) to account for an apparent overestimation of the motion at small

magnitudes; see Figure 4.3a. Yet, the records from the recent Kobe earthquake suggest

that the model may underestimate grossly the strong motion at relatively high

magnitudes; see Figure 4.6. Therefore, in a sensitivity analysis we consider a calibration

of the median attenuated value of both ama and Sa, to the values recorded during the

Kobe earthquake: we maintain the form of the previous models (see equation 4.3) but the

parameters a and b of the equation are estimated so as to: (a) reproduce the median values

of the modified-Kawashima model for M = 5, and (b) increase by a factor of 1.8 the

values for M = 7.2 (the magnitude of the Kobe earthquake).

Figure 6.4 presents the sensitivity of the annual risk to the attenuation coefficients. Three

sets of coefficients are considered; coefficients corresponding to (1) the "modified

Kawashima" model (Table 4.3), (2) the original Kawashima model (Table 4.3) and, (3)
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the "modified Kawashima" model adjusted to account for accelerations recorded during

the Kobe earthquake, as discussed above. Figure 6.4a gives the rates excluding the added

risk of derailments following resumption of service after short delays, whereas in Figure

6.4b this risk in included. Figure 6.5 shows the sensitivity of the annual risk

decomposition by earthquake magnitude to the attenuation coefficients.

The value of the attenuation coefficients affects significantly the annual rate of

derailments (by a factor of 2 to 8) and long delays (by a factor of 1.5 to 3.6). However,

the sensitivity for medium and short delays is much lower (1.9 and 1.3 respectively). The

original Kawashima model estimates larger median accelerations at small magnitudes

(M=5 - 6) than any of the other two models. Therefore, it produces a higher annual rate of

short delays. The "adjusted to Kobe" model estimates larger median accelerations at high

magnitudes (M=7 - 8) than any of the other two models. Thus, it estimates that the annual

rates of derailments and long delays are higher than what assessed by the other two

models. For medium delays, both the original Kawashima and the "adjusted to Kobe"

model produce values higher than the modified Kawashima model, because of the higher

median accelerations predicted for intermediate magnitudes (M=6 - 7).

The added risk of derailments following the resumption of service after short delays does

not alter significantly the sensitivity to the attenuation coefficients. In general, sensitivity

analysis results are similar for cases that exclude or include this added risk. Therefore, for

the rest of this sensitivity analysis we present and comment only on results when this

added risk is excluded. Corresponding results including this risk are presented in

Appendix I.

Sensitivity to the seismic fragility of the viaduct structure

In this case, uncertainty lies in the values of the following parameters: (a) the relative

displacement of the top of the viaduct at yielding, by, which might be smaller than

originally estimated (values 15 and 30% smaller areconsidered), (b) the ductility ratio at
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failure, A., which again may be smaller than the base-case value of 4 (sensitivity values of

2 and 3 are considered), (c) the logarithmic standard deviation of the seismic resistance of

the structure, aftlnR, which is varied by + 0.1 relative to the base-case of 0.4 and, (d) the

parameter cl in equation (5.6), which controls the clustering of damage along the line; for

el, we consider a 2fold decrease and increase relative to the base-case value of 0.03. A

2fold increase in the value of c, corresponds to a 2fold decrease in the length of the

continuously damaged track sections.

Figures 6.6 and 6.7 show the sensitivity of the annual risk to the values of the relative

displacement at yielding by, the ductility p., the value of a~nR and finally the value of cl.

The rates of various delays are not influenced by the uncertainty in the fragility of the

viaduct structure of the Tohoku line. Therefore, Figure 6.8 gives only the sensitivity of

the decomposition by earthquake magnitude of the rate of derailments.

The derailment risk is mostly influenced by the values of 8y and alnR, as the uncertainty in

their value produces risks different by factors up to 4 and 3.5. The sensitivity to the

values of and cl may leads to values of risk different by factors up to 2.8 and 1.5

respectively. The sensitivity of the annual risk to the value of 6y and is attributed the

uncertainty in the values of these fragility parameters which influences accordingly the

value of the median resistance of the structure. In addition, the difference in the values of

the considered fragility parameters causes mainly a uniform scaling of the contribution of

all earthquake magnitudes. The caused change in the relative contribution of different

earthquake magnitudes is less important.

Sensitivity to soil classification along the Tohoku line

Tables 2.3, 2.4 introduce the soil classification along the line code used for the

construction of the Tohoku Shinkansen continuous viaduct structure. Table 2.5 gives the

approximate soil classification per operational segment used in this analysis. In Chapter

4, the soil types of the proposed attenuation model are presented; see Table 4.2. Based on
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information in these tables, there are three possible sources of uncertainty in the soil

classification along the line: (a) The three soil types of the JNR code (Table 2.4) do not

coincide exactly with the three soil types of the proposed attenuation model (Table 4.2),

(b) the seismic design recommendations of the JNR code (Table 2.4) imply a specific

expected influence of soil type on the acceleration, somewhat different than what the

attenuation model estimates (see Chapter 4), and least importantly (c) the soil

classification along the line, as provided from a personal communication with JREast

(Table 2.3), is rather crude and engineering judgment was necessary for the

implementation of this classification in the risk analysis as presented in Table 2.5.

In order to assess the sensitivity of the annual rates to the soil classification along the line,

we performed the following analyses that essentially bracket the possible effect: given

that the viaduct is constructed according to the soil classification and design

recommendations of the JNR seismic code, we assumed that the whole track is soil type I,

II or III according to the attenuation model; this effect is presented in Figure 6.9a. The

performance of the SEWS under these uniform soil conditions is compared to the

performance of the system presented in Figure 6.1, that corresponds to the soil

classification presented in Table 2.5, which is predominantly soil type II. To enhance our

understanding of the sensitivity of the annual rates to the soil classification, we present

Figure 6.10 that illustrates the decomposition by earthquake magnitude of all rates for the

studied uniform soil classifications. Important for gaining insight in these effects of soil

type are Figures 4.4 and 4.5, where the median attenuated values of am,, and Sa for all soil

types and earthquake magnitudes are presented.

Of all measures of performance of the early warning system, the annual rate of

derailments is the most sensitive to the soil classification along the line (up to a factor of

7). The various delays are less sensitive: long, medium and short delays have factors of

difference as large as 3, 2.8 and 2.5 respectively. All these large sensitivities correspond

to the case that, the soil classification is unifonrmely type I and lead to relatively lower

values for both rates of derailments and delays. This because the median values of both
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amax and Sa for soil type I are consistently lower than those for soil type II, i.e. the

predominant soil type along the line.

For soil type II the factors of influence for derailments, short, medium and long delays

are 1.75, 1.14, 1.09 and 1.01 respectively, i.e. smaller than those for soil type I. The

influence is smaller because the proposed soil classification is predominantly soil type II.

Moreover, for this soil type derailments, long, and medium delays are relatively larger

than the values for the proposed soil classification, while the effect is reversed for short

delays. This is due to the fact that the latter are mainly caused by small magnitudes (M <

6), as opposed to the rest that are primarily produced by larger magnitudes (M > 6) and

the influence of soil type on the median values of small magnitudes is different than that

for large earthquake magnitudes.

Finally, for soil type III the factors of influence for derailments, short, medium and long

delays are 1.3, 1.18, 1.20 and 1.1. In this case, the annual rate of long delays is estimated

larger than for the proposed soil classification. This is due to the relatively higher

attenuated values of am,, for large magnitudes and soil type III as opposed to those for

soil type II. This is not the case for Sa and large earthquake magnitudes that controls the

rate of derailments, nor for a and smaller magnitudes that control the other types of

delays. For these cases, soil type II is estimated to amplify the motion more than soil type

III.

In conclusion, sensitivity to the attenuation coefficients, the seismic fragility of the

viaduct structure and the soil classification along the Tohoku line is very significant

(factors of influnce up to 8, 4 and 7). Therefore, accurate estimations of the attenuation

law, the seismic fragility and the soil classification are considered much needed

endeavors, which are however beyond the scope of the present study.
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In contrast, it is found that annual risk is relatively insensitive to the Shinkansen

operating speed, to the seismicity parameters and the (M, x) estimation accuracy of the

UrEDAS system. More specifically:

Sensitivity to Shinkansen operating speed

In order to investigate the effect of the train operating speed on the performance of the

SEWS, we performed an analysis for the following cases: (a) VO = 210 kmh, to study

how much benefit in the risk would be introduced by a reduction of the current operating

speed (Vo=245kmh), and (b) Vo = 300 kmh, to study the effect on the seismic risk along

the line if JREast decided to increase the operational speed of the Shinkansen for more

efficient transportation of its passengers. Figure 6.9b displays the sensitivity of the annual

rates of derailment and various delays to the value of the operating speed. This analysis

assumes that a train derails if it meets damaged track, independent of the speed of the

train at the time when it reaches the damaged section of the track. In this perspective:

The operating speed has no effect on the delays produced by the operation of the early

warning system. This is because the system orders emergency braking based on the

recorded ground acceleration, that is not related to the speed of the Shinkansen. For the

rate of derailments, an increase of the operating speed to 300kmh would cause an increase

of 35%, whereas a decrease of the speed to 21 Okmh would produce a reduction of the risk

of approximately 25%. This is because a train running at 300kmh has a braking distance

of 4.4 km (see equation 5.28), as opposed to the braking distances of 2.9 km for

Vo=245kmh and 2.1 km for Vo=210 kmh. It is obvious that, the larger the braking

distance of the train, the larger the probability that it travels over a damaged portion of

the track and thus the larger the annual rate of derailments.

Sensitivity to seismicity parameters

The main uncertain parameters of the earthquake recurrence model are maximum

earthquake magnitudes Mmnax and the b-values of the Gutenberg-Richter relation. To

evaluate sensitivity to these parameters, analyses were performed assuming that, relative
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to the base-case values: (a) the maximum magnitude Mma of each seismic source is 0.5

(JMA units) higher/lower and (b) b = 0.9 or 1.1 for all seismic sources (as opposed to an

overall average of about 1.0).

Figure 6.1 la shows sensitivity of the annual rates to the value of Mmx. The rate of

derailments is the one most sensitive to Mmax, with increase/decrease factor of about 2.

This is because derailments are induced by large accelerations that originate from large

magnitude earthquakes. Short, medium and long delays are relatively insensitive to Mm.

Sensitivity of the annual rates to the b-parameter is shown in Figure 6.1 lb. Notice that,

according to equation (4.1), the earthquake rate density is independent of b for M = 6.

Therefore, an increase of b corresponds to both an increase in the rate of earthquakes with

M < 6 and a decrease in the rate of earthquakes with M > 6. Because of this "pivoting

effect", changing b affects significantly the rate of very large earthquakes and therefore

the rate of derailments.

Sensitivity to (M, A) estimation accuracy of the UrEDAS system

As presented in Chapter 4, the estimation accuracy of the UrEDAS system is an issue of

considerable uncertainty. In order to study the sensitivity of the annual risk to this

parameter, we consider the following cases for the P waves estimation (the S waves

estimation is not considered as this system provides relative benefit if it adds lead time

with respect to the arrival of the S waves):

- aMp = CtM,s = 0.5 (JMA units), assuming an improvement of the P waves

estimation of the earthquake magnitude to the levels of the current

estimation accuracy of the S wave.

- ca,p = 25% A or 100% A, assuming that the P waves epicentral distance

estimation is 3 times more or 1.3 times less accurate than

the base-case value.
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The sensitivity of the annual rates to the accuracy of the UrEDAS system is presented in

Figure 6.12a and 6.12b. The former plot gives the effect of the magnitude estimation

accuracy and the latter the effect of the epicentral distance estimation. More specifically,

The annual risk is sensitive to the UrEDAS estimation accuracy only for relatively non

conservative operation of the system, i.e. for c>2.2; see Figure 6.1. For smaller values of

the coastal parameter, the uncertainty on the prediction of (M, x) does not affect the

system, as the latter is set to trigger often enough that the estimation accuracy of the

system does not reduce the probability of triggering. Moreover, the sensitivity to the

magnitude estimation accuracy is relatively more important than that to the epicentral

location estimation. This is because the UrEDAS system triggers based on the estimated

values of M and logoA and thus the importance of the epicentral distance is smaller given

that it is logj0A and not A itself that causes the potential emergency braking.

The rate of medium and long delays are not influenced by the UrEDAS estimation

accuracy, because these measures of performance of the early warning system are

controlled completely by the wayside system; see initial discussion of section 6.1.

Moreover, derailments are practically insensitive to the estimation accuracy of the

UrEDAS, whereas for the rate of short delays an improvement in the M estimation upon

the arrival of the P waves, would reduce the short delays by 65%. The considered large

range of the accuracy of the epicentral distance estimation causes only a 25%

decrease/increase in the rate of short delays.

In conclusion, sensitivity to the Shinkansen operating speed, the seismicity parameters

and the (M, x) estimation accuracy of the UrEDAS system is relatively unimportant

(factors of influence up to 1.35, 2.0 and 1.65 respectively).
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6.2 Scenario-Based Risk Analysis

Probability of event occurring at a specific track segment s, given M, x and SEWS

Figure 6.13 presents the conditional probabilities P[EIM, x, s, A] for events E = DE

(derailment), SD (short delay), MD (medium delay) or LD (long delay). The location of

the earthquake x, is fixed at (E142°15', N40°12'), that is offshore North-East of Morioka.

Actually, the epicenter is located 571 km from Tokyo and just 135 km from Morioka.

Moreover earthquake magnitude M is varied between 5 and 9 (JMA units), and the

segment number from s =1 (Tokyo) to s =26 (Morioka). The case portrayed corresponds

to the current SEWS, the setting of which can be summarized by: (a, at loc, Ainspl, Ainsp2)

= (40, 40, 80, 120 gals), where a, at,,c are the coastal and wayside trigger parameters and

Ainspi Ainsp2 are the track inspection levels. The probability of derailment does not

include derailment events after resumption of service following short delays. The

following features of Figure 6.13 should be noted:

As earthquake magnitude increases, the probabilities of derailment and long delay

increase throughout the line. This is because such events require high ground

accelerations. On the other hand, the probabilities of short and medium delays, which

occur at lower accelerations, the effect of magnitude is not monotonic.

Although all probabilities show general trends along the line, there are sharp peaks and

valleys in these curves due mainly to (a) local soil conditions, (b) the fraction of segment

length in tunnels and, for the case of derailments and short delays, (c) the assignment of

track segments to coastal stations. For example, the decrease in the probability of

derailment in operational segment 11 is mainly due to the fact that in this segment the soil

is relatively soft (soil type III) as opposed to the neighboring segments where the soil is

normal (soil type II). This sensitivity to local soil conditions can be seen in Figure 4.5

which shows that, at large magnitudes, the median Sa for soil type II is higher than that

for soil type III.
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These qualitative features of P[EIM, x, s, SEWS] are common to all SEWS systems and

trigger level settings. Similar plots for all alternative coastal systems and equivalent, in

terms of risk, trigger levels are included in the Appendix I for further reference.

Expected number of events occurring throughout the line, given M, x and SEWS.

In this section, we estimate the expected number of derailments, short, medium and long

delays that would occur throughout the line for a specific setting of the SEWS, given an

earthquake of magnitude M that takes place at an epicentral location x. This is performed

by taking into account the conditional probabilities presented in the previous section, as

well as the expected number of trains per track segment (Table 2.6). The results of this

study are presented in the following format: Each point of a map of the region yields the

number of derailments and different kinds of delays caused along the line, if an

earthquake of magnitude M occurred at that given point. For ease of presentation, these

results are presented with the use of contours. Hence, Figures 6.14 through 6.17 present

the expected number of derailments, short, medium and long delays for the current SEWS

system, i.e. (a, atoc Anspl, Ansp2) = (40, 40, 80, 120gals), and for earthquakes of

magnitudes M 5 up to 8 respectively. There is a certain limitation to the accuracy of these

figures, because the area of seismic interest is offshore and thus we have ignored the

inland seismicity. This assumption results in no illustrated effects from potential inland

earthquakes, as well as in a series of"artificial" contours between the zero inland activity

and the maximum values estimated in the geographic areas closest to the line.

This approach may be misleading in the attempt to identify the most potentially

dangerous seismic areas, as it does not take into account the historical seismicity of each

area. Thus, the location of the most or least potentially dangerous seismic areas could

change if the latter parameter is taken into account. Nevertheless, it provides a more

tangible estimate of the risk than what is conveyed by the annual rates. At any generic

moment of time, there are approximately 14 trains all along the line. This number is the

maximum potential value of the sum of short, medium and long delays at any epicentral

location and for any earthquake magnitude. Hence,
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Regarding the expected number of derailments, the relatively most dangerous area for the

Tohoku line is south of Tokyo (around E140°, N35°). Somewhat smaller risk causes the

area south-east of Sendai (around E141°30', N37°). The expected number of derailments

decreases consistently with epicentral distance from the track.

For magnitudes between 5 and 7, the most short delays are produced by an area northeast

of Sendai (around E141°30', N38°). In this magnitude range, the expected number of

short delays decreases consistently with epicentral distance from the line. This trends

reverses for larger magnitudes (M = 8), because short delays occur for low peak ground

accelerations which for an earthquake of magnitude 8 can occur only for relatively larger

epicentral distances.

Similarly, the expected number of medium delays decreases with epicentral distance for

earthquakes of magnitudes between 5 and 7, while this tendency is inverted for

earthquakes of magnitude 8 for the reason mentioned above. For earthquakes in the range

between 5 and 7, most medium delays are caused by earthquakes in the areas described as

the most dangerous in terms of short delays. In contrast, for an earthquake of magnitude

8, it is the area around (E142° , N36°), almost 160km from the track that may cause a

maximum of 3 medium delays.

The area that produces the most long delays is the area south-east of Sendai, while the

area south of Tokyo produces fewer. In this case, the expected number of long delays

decreases consistently with epicentral distance from the line.

The qualitative features of the expected number of events, conditional to M and _x, are

common to all SEWS systems and trigger level settings.
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Figure 6.14: Expected number of events throughout the line, given
earthcquake of magnitude M = 5 occurring at map location,
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(a) derailments, (b) short delays, (c) medium delays, (d) long delays.
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Figure 6.15: Expected number of events throughout the line, given
earthquake of magnitude M = 6 occurring at map location,
for (a ,atloc, AinspI, Ainsp2) = (40, 40, 80, 120gals), where events are:
(a) derailments, (b) short delays, (c) medium delays, (d) long delays.
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Figure 6.16: Expected number of events throughout the line, given

earthquake of magnitude M = 7 occurring at map location,

for (a at,loc, Ainspli Ainsp2) = (40, 40, 80, 120gals), where events are:
(a) derailments, (b) short delays, (c) medium delays, (d) long delays.
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Figure 6.17: Expected number of events throughout the line, given
earthquake of magnitude M = 8 occurring at map location,
for (a atboc, AinspI, Ainsp2) = (40, 40, 80, 120gals), where events are:
(a) derailments, (b) short delays, (c) medium delays, (d) long delays.
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Chapter 7

Optimization of the Seismic Early Warning System

By choosing the most appropriate system and by modifying the operational parameters,

the performance of the SEWS can be improved in the sense of reducing the current rate of

delays, reducing the rate of derailments, or both. Optimization of the SEWS is pursued in

a stepwise fashion, considering at each step the effect of modifying one additional

parameter relative to the previous step. The parameters involved are: (a) the coastal

system (A, B and C) and its trigger level (respectively, a*, b* and c*), (b) the trigger and

inspection levels of the wayside system, and (c) the seismic intensity parameter used by

the wayside system (ground acceleration or spectral acceleration at the natural period of

the viaduct). For reference, the estimated derailment and delay rates of the current SEWS

systems (in trains/year) are:

- XDE = 0.017 (after resumption of service following short delays: 0.033)

- XSD = 82.6

- XMD = 3.38

- XLD = 1.20

As noted in Chapter 6, if the measure of seismic intensity used by the wayside system is

peak ground acceleration amax, the calculated value of XDE after resumption of operation

following short delays rests on conservative assumptions and should be regarded as an

upper bound. This is because we have assumed that amax and the spectral acceleration Sa

along the track are conditionally independent, given the earthquake magnitude and

epicentral location. Another reason why such rate is not very accurate is that its value is

sensitive to the fragility of the viaduct at low levels of ground motion, which is not well
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known. The estimated derailment rates when Sa is used as ground motion intensity by the

wayside system should be more accurate.

7.1 Optimization when the Wayside System Operates on amax

In order to reduce the current high rate of short delays, one might consider increasing the

trigger level of the present coastal system. All the rest remains the same. This action

might be justified, as the risk of derailment is insensitive to the trigger level at the coast,

a', whereas varying a can change the annual rate of short delays by orders of magnitude;

see Figure 7.1. Using the results for coastal system A, one can see from Figure 7.1 that by

raising the coastal parameter a above the current value of 40 gals, for example to 80gals,

the rate of short delays can be reduced by 50%, with small increases in the derailment

risk (about 5%). The benefits from this modification of the current SEWS system are

however small relative to other modifications discussed below. The choice of a does not

affect the rates of medium and long delays, which are determined entirely by the wayside

system.

A second possible modification would be to raise the triggering level of the wayside

system, a, to the first track inspection level, Ainspi. Setting at,,lo = Anspl would

eliminate what we believe is a misconception in the current setting of the wayside system

parameters, as there is no need for trains to be stopped if no track inspection is deemed

necessary. The time delay between the instants when a truly strong motion exceeds 40

and 80 gals is very short and has no appreciable effect on the rate of derailment. If at,, is

set to the current value of AinspI (80 gals), then only the coastal system would produce

short delays. These residual short delays are inevitable, given that ground motion

intensity at the coastal stations and at the track are not deterministically related. The rate

of short delays would become zero only if the coastal system was decommissioned.
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Figure 7.2 compares the performance of the three coastal systems for atloc=Ainspj=80 gals

with that under the current setting (at ,1o=40gals, Ainspl=80gals). Meaningful comparisons

in this case should be in terms of the rates following resumption of operation; see Figure

7.2b. If the coastal system is operated with a = 80gals, the rate of short delays drops to

11.7 trains/year, while the rate of derailments remains practically the same. Again, a

change of atloc does not affect the rates of medium and long delays. A modification in this

sense is considered definitely worthwhile. In all subsequent analyses, we have therefore

set avloc=Ainspl-.

The effect of changing the inspection levels Ainspl and Ainsp2 (currently set at 80gals and

120gals) is shown in Figure 7.3, where results are presented for three settings: (ao,

Ainspl, Ainsp2) (80, 80, 120 gals), (100, 100, 140 gals) and (120, 120, 160 gals). As one

would expect, raising these levels produces higher rates of derailment, for any given

value of SD. However, the tradeoff is in this case with the rates of medium and long

delays, which are reduced substantially. Moreover, after including the added risk due to

derailments following short delays, the differences between coastal systems are

insignificant; see the flat curves in Figure 7.3. This is attributed to the fact that, after

resumption of service following short delays, almost all trains (except the medium and

long delays) have covered the same track length (half the length between consecutive

trains heading in the same direction) irrespective of whether they were stopped initially

by the coastal system.

A more direct illustration of the tradeoff is provided in Figure 7.4 where, for System A

and a* = 80 gals, the values of the 4 annual rates after the resumption of operation of the

short delays are plotted against Ainsp, while always keeping Ainsp2 = Ainspt + 40 gals.

Plots for the other two coastal systems and for any other values of a* are qualitatively

similar. Table 7.1 indicates a possible alternative to the current setting of system A, as

well as alternatives using systems B and C. These alternatives show that the effect of the

coastal system and its trigger level, while nonzero, is not significant. More specifically,
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system B outperforms system A, and System B may be outperformed by system C, in

terms of the rates of derailments and short delays.

7.2 Optimization when the Wayside System Operates on Sa

A better measure of seismic intensity to use at the wayside is the response spectrum

acceleration for T = 0.4sec and 5% of critical damping. The performance of the SEWS

after this modification is quantified in Figure 7.5 for the case when the triggering levels at

the wayside are (Satjoc, Sinspl, Sinsp2)=(8 0, 160, 240gals). A noteworthy difference

relative to the use of amax,, is that the added risk from service resumption after short delays

is unnoticeable, at least for the relatively low value of Ainspj = 160gals used in this figure.

This is due to the fact that the low spectral accelerations that induce short delays produce

insignificant track damage. Therefore, resumption of service following a short delay does

not increase the risk of derailments by significant amounts. This effect of changing from

an ama-based to an Sa-based operation of the wayside system is a very significant step in

the optimization procedure of this system.

In order to draw conclusions from a direct comparison of the performance of the SEWS

with an amax-based versus an Sa-based operation of the wayside system, we need to

introduce comparable trigger and track inspection levels for amax and Sa. By comparing

the median attenuated values of aax and Sa for different magnitudes we conclude that the

levels of Sa are two times higher than those of aax on average, given earthquake

magnitude and epicentral distance; see Figures 4.4 and 4.5. Therefore, trigger and track

inspection levels in terms of Sa twice as high as those in terms of a,, are considered

comparable for the purpose of this study.

The general effect of this modification is presented in Figure 7.6. In this figure, we

compare the ama-based wayside system with (aloc, Ains, Ansp 2 )(80, 80, 120gals) to the

Sa-based system with (Satloc, Sainspl, Sainsp2)=( 1 6 0 , 160, 240gals). Regarding the rate of

124



derailments excluding the added risk from the resumption of service following short

delays, the proposed change in the wayside system is not important when the coastal

system triggers frequently but becomes significantly beneficial when the coastal system

triggers rarely. Using Sa rather than ama, can reduce the risk of derailments by as much as

50%. This decrease is due to the fact that Sa is a better parameter than amax to predict track

damage. Therefore, earthquakes with high damage potential tend to trigger the wayside

system when such systems operates on Sa. This is not the case when the wayside system

operates on ama,, given the low level of probabilistic dependence between am,,x and track

damage. The increased protection from a wayside system operating on Sa also reduces the

importance of the coastal system. This is shown in Figure 7.6, where the coastal trigger

level is seen to have smaller effect on the derailment risk, when Sa is used by the wayside

system.

Operating the wayside system on Sa is effective in reducing the derailment risk after the

resumption of service following short delays (reduction of the total risk by about 50%

relative to using amax). This condition is independent of the trigger level of the coastal

system. Essentially, the risk of derailment from resumption of service after short delays

has been eliminated.

The effect of changing the trigger and inspection levels of the wayside system is shown in

Figure 7.7, where results are presented for (Sailoc, S a,isnpl, S ainsp2)=(160, 160, 240 gals),

(240, 240, 320 gals) and (400, 400, 480 gals). The qualitative features of this figure are

similar to those of Figure 7.3 for the case of an a-based wayside system. There is,

however, a very significant decrease in the rates of delays.

In order to identify the best setting of the coastal and wayside trigger parameters for an

Sa-based wayside system, we observe that the value of the coastal parameter should be set

to produce an annual rate of short delays in the (approximate) range of 1 to 100; having

more than 100 expected short delays per year would probably result in inefficient

performance of the system, while having fewer than 1/year would lead to a virtual
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elimination of the coastal system. The latter action would probably be judged unwise in

the case of a very large damaging event. Also, the value of the wayside trigger level,

Sat,loc should be set between 250 and 400 gals: setting Sat,,oc < 250gals is suboptimal as

such conservative values do not appreciably reduce the risk of derailment, while Satoc >

400gals produces what we consider as excessively high derailment risk. Figures 7.8

through 7.10 show the values of the derailment and delay rates within the above ranges of

the coastal and local trigger parameters, for each of the three coastal systems. The

derailment rates plotted in these figures include the risk from resumption of service

following short delays. In all cases, the wayside parameters have the form: (Satjo, Sainspl

SaJinsp2)=(Satloc, S atoc, Stloc+ 8Ogals). The following conclusions can be reached from

examination of Figures 7.8 - 7.10:

The annual rate of derailment is mainly a function of Satloc. The coastal system becomes

influential only for low values of the coastal parameter. Coastal system C is somewhat

more influential on the overall performance of the SEWS than system B, which in turn is

more influential than system A.

The annual rate of short delays depends almost exclusively on the coastal trigger

parameter. This rate increases slightly as Sat,loc increases.

Medium and long delay rates are functions only of the wayside trigger levels. Their sum,

, + D, is governed by Ainspl, whereas the relative value of the two rates is affected by

Aijp2. Therefore, the setting of Ainsp2 should be based on the desirability of an on-train

inspection (resulting in medium delays) versus on-foot inspection of the tracks (resulting

in long delays). This decision should be based on the value of Sa recorded by the closest

wayside accelerometer. To aid making this choice, we have estimated the probability of a

train meeting damaged track in 35km (one half of the distance between trains traveling in

the same direction), given Sa at the track. This probability is plotted in Figure 7.11 for the
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range of the parameter ct that controls the spatial clustering of damage that we consider

reasonable; see Section 6.1 and Figure 6.8b.

Table 7.2 gives the rates of derailment and of various delays for three specific settings of

Systems A, B and C while the wayside system operates on Sa. These alternative systems,

use identical settings of the Sa trigger levels for the wayside accelerometers. The results

show that the effect of using different coastal systems, although not zero, is small.

By comparing Tables 7.1 and 7.2, one can see that using an Sa-based wayside system

reduces very significantly all delays, in addition to reducing the derailment risk after

resumption of operation following short delays by about 50%.
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Annual Current: Alternative Al: Alternative BI: Alternative Cl:

Rates System A System A System B System C

a* = 40gals a* = 60 gals b* - 60 gals c = 3.20

(40,80, 120 gals) (" (100,100,140gals)(1) (100,100,140gals) (1 ) (100,100,140gals)O

XDE 0.017 (0.033)"" 0.029 (0.038) ~ 0.023 (0.037) O 0.021 (0.036) ®

ISD 82.6 24.1 20.4 19.3

XMD 3.38 1.51 1.51 1.51

XLD 1.20 0.69 0.69 0.69

(1) The values in parentheses correspond to the setting of the wayside system (at, Ainspl Anp 2).

(2) The values in parentheses correspond to the rate of derailments including the deailment risk due to

resumption of service following short delays.

Table 7.1: Performance of alternative SEWS systems, using am,,, as the intensity

parameter at the wayside stations.

Annual Current: Alternative A2: Alternative B2: Alternative C2:

Rates System A System A System B System C

a = 40gals a = 80 gals b* = 120 gals c = 4.00

(40,80, 120 gals)' ) (280,280,360gals)( ) (280,280,360gals) (1 (280,280,360gas)(O

XDE 0.017 (0.033)` 0.015 (0.015) 0.015 (0.015) 0.015 (0.015)

XSD 82.6 12.4 1.2 1.7

MID 3.38 0.18 0.18 0.18

XLD 1.20 0.16 0.16 0.16

(1) The values in parentheses correspond to the setting of the wayside system (S,to Snp, Si..p2).

(2) The values in parentheses correspond to the rate of derailments including the derailment risk due to

resumption of service following short delays.

Table 7.2: Performance of alternative SEWS systems, using Sa as the intensity

parameter at the wayside stations.
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Figure 7.1: (a) Annual rates of derailments and various delays, excluding and
including derailment risk due to resumption of operation following short
delays, for coastal systems A, B and C and (atloc Ainspl Ainsp2)=(4 0, 80, 120gals)

(b) Coastal trigger parameter versus annual rate of short delays,
for coastal systems A, B and C and (atjo,, Ainspl Ainsp2)=(4 0, 80, 120gals).
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Figure 7.2: Annual rates of derailments and-various delays, for coastal systems
A, B,C and (at,,,o, Anspj, Ainsp 2)=(40, 80, 120gals) and (80, 80, 120gals)
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(b) including derailment risk due to resumption of service following short delays
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Figure 7.6:Annual rates of derailments and various delays, for coastal systems
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(Satoc, Sa,inspl, Sainsp2)=(60, 160, 240gals).
(a) excluding derailment risk due to resumption of service following short delays
(b) including derailment risk due to resumption of service following short delays
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Chapter 8

Conclusions

This study investigated the effectiveness of the current Seismic Early Warning System

(SEWS) for the Tohoku Shinkansen and proposed alternatives for its future operation.

The early warning system is composed of a set of accelerometers along the track

(wayside system) and a set of accelerometers along the eastern coast of Honshu (coastal

system), halfway between the track and the most dangerous offshore seismic sources.

Each accelerometer of the wayside network may cause emergency braking of all trains

within the track segment that it controls (total of 26 segments). In this way, trains do not

continue travelling along potentially damaged tracks and thus the risk of derailment is

reduced. The purpose of the coastal system is to further reduce the distance that trains

travel over potentially damaged tracks by ordering emergency braking before the strong

phase of ground motion arrives at the track. The current performance of the early warning

system has been found to be sub-optimal. To improve it we have studied the effect of

changing three characteristics of the early warning system: (1) the mode of operation of

the coastal system, (2) the intensity parameter used at the wayside to make decisions

about train stopping, inspection procedures and resumption of service and (3) the trigger

levels for both the wayside and the coastal systems. Regarding the first characteristic,

three alternative coastal systems (A, B and C) were considered. System A is the current

system for which each coastal accelerometer controls a prespecified track section.

Systems B and C allow any of the coastal accelerometers to cause emergency braking of

trains anywhere along the Tohoku line, if the level of ground shaking calls for such an

action. The difference between systems B and C is that the latter assumes that at the

location of each of the coastal accelerometers there is the potential for issuing an earlier

warning, i.e. upon the arrival of the P waves. A system that is capable of this early

operation is the UrEDAS system (Nakamura, 1988 and 1989), which is based on real-
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1) The estimated rate of derailments along the entire Tokyo-Morioka line under current

operation of the SEWS system is 0.017 events/year excluding the risk during the

resumption of service after short delays and about 0.033 if that additional risk is included.

These values correspond roughly to 2-3 derailments occurring every 100 years.

2) For the present low trigger horizontal acceleration of the wayside system (40gals), the

rate of derailments is insensitive to the type of coastal system. Under very conservative

settings of the coastal parameters, coastal system B could reduce the risk of derailment by

about 50% relative to system A, and system C could potentially reduce the risk by an

additional 10%. These benefits are smaller for realistic settings of the coastal system

parameters. Even smaller percentile differences among the three coastal systems are

found if the risk of derailment after short delays is included; see Figure 6.1.

3) The setting of the coastal system may influence by several orders of magnitude the

frequency of short delays. On the other hand, the coastal system does not affect the rate of

medium and long delays; see Figure 6.1.

4) The current low setting of the trigger acceleration for the wayside system is the

primary cause for the reduction of derailment risk by the present SEWS system. The track

inspection levels determine the rates of medium and long delays; see Figure 6.1.

Regarding the decomposition of the annual rates by earthquake magnitude seismic

source and epicentral distance and the distribution of these rates along the Tohoku line,

we have found that:

1) Derailments are caused for the most part by earthquake magnitudes from 7 to 8.5.

Long, medium and short delays are caused mainly be earthquakes of magnitudes 70.5,

6.5+0.5 and 5.5+0.5 respectively; see Figure 6.2.

2) Most undesired events (derailments and various delays) are expected to occur within

operational segments 12 through 16. Such events are most infrequent in operational

segments 18 through 21. The variability of the risk along the Tohoku line is influenced

mainly by the local soil conditions and by the fraction of track that runs in tunnels. An
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additional factor is the traffic load and the proximity of the line to the main seismic

sources; see Figures 6.2 and 6.3.

3) Seismic sources 6 and 8 contribute the most to the annual rate of all undesired events,

whereas sources 1, 5, 7, 11, 15 contribute the least. These contributions are the combined

effects of the proximity of the sources to the track and their seismic activity; see Figures

4.2 and 6.2.

4) Derailments and long delays are mostly caused by earthquakes with epicentral

locations about 130 km from the track. The corresponding predominant epicentral

distances for medium and short delays are around 150 and 160 km respectively; see

Figure 6.2.

Seismic risk was found to be very sensitive to the value of the attenuation coefficients,

the seismic fragility of the viaduct structure and the soil classification along the Tohoku

line. More precisely:

1) The annual rates of derailment and long delays are very sensitive (factor of influence

up to 8 and 3.6, respectively) to the form of the attenuation equation of earthquake

ground motion, while the attenuation law affects marginally the rates of medium and

short delays; see Figure 6.5.

2) The seismic fragility of the viaduct structure is very influential on the estimated rate of

derailment. The fragility model is composed of various parameters. The most influential

are the relative displacement of the viaduct deck at yielding, by, and the uncertainty on

the ultimate resistance in terms of spectral acceleration, CIlnR, (up to factors of 4 and 3.5,

respectively). The ductility ratio at failure, p., and the spatial clustering of damaged track

sections controlled by the parameter cl have moderate effects; see Figures 6.6 and 6.7.

3) The rates of derailment and long delays are very sensitive to the soil conditions along

the Tohoku line (up to factors of 7 and 3, respectively), whereas the rates of medium and

short delays are affected less by such conditions; see Figure 6.9a.
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In contrast, seismic risk is not significantly sensitive to the speed of Shinkansen trains, to

the seismicity parameters and the (M, x) estimation accuracy of the UrEDAS system.

More specifically, we have found that the speed of the trains has a small effect on the

derailment risk. This varies by a factor of 1.3 on average, for either an increase to

300kmh or a decrease to 210kmh of the current operational speed of 245kmh. Moreover,

a change in train speed was found not to affect any of the delay rates; see Figure 6.9b.

Furthermore, the rate of derailment changes by a factor of about 2 with reasonable

variations in the seismicity level, while the rates of various delays are even less sensitive

to seismicity; see Figure 6.11. Finally, only the annual rate of short delays is moderately

sensitive (potential reduction by 65%) to the magnitude estimation accuracy of the

UrEDAS system using P waves. The annual rate of short delays is much less sensitive to

the accuracy of estimation of the epicentral location x for P waves. The estimation

accuracy of the system has unimportant effects on the rate of derailment and does not

affect the rates of medium and long delays which are completely controlled by the

wayside system. The estimation accuracy of the UrEDAS system using S waves has no

notable effect on the values of any of the rates. See Figure 6.12 for an illustration of these

results.

Risk based on Scenario Analyses

For earthquakes of different magnitudes with fixed epicentral location, the probabilities

of derailment and long delays increase monotonically and considerably with increasing

earthquake magnitude. On the other hand, the probabilities of medium and short delays

are not monotonic. Although the probabilities of all undesired events (derailments and

various delays) show general trends along the line, there are abrupt increases and

decreases in their values due mainly to local soil conditions and to the fraction of segment

length in tunnels. For system A and for the case of derailments and short delays, these

peaks and valleys are also influenced by the fixed assignment of track segments to the

coastal stations; see Figure 6.13.
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For the expected number of undesired events. as a function of earthquake magnitude and

epicentral location, we find that the largest number of derailments would be expected

from an offshore earthquake with epicentral location south of Tokyo (around E140°,

N35°). A somewhat lower derailment risk is associated with events south-east of Sendai

(around E141°30', N38°). These are also the events that cause the largest expected

number of long delays; see Figures 6.14 - 6.17.

Optimization of the Seismic Early Warning System

The most beneficial changes to the current early warning systems in order of decreasing

importance are:

Operate the wayside system on spectral acceleration Sa rather than peak ground

acceleration am. Doing so reduces significantly the rates of derailments and of various

delays. The benefit from changing the intensity parameter of the wayside system from

am.,, to Sa, is especially large if risk from the resumption of service after short delays is

included. This is because Sa is a far better indicator of structural damage than am is; see

Figure 7.6.

Set the wayside trigger level equal to the first track inspection level. Doing so reduces

significantly the total number of short delays, which are then produced exclusively by the

coastal system. In addition, if the coastal system was put out of operation, all short delays

would be eliminated; see Figure 7.2.

Increase the wayside trigger and track inspection levels. This action reduces significantly

the rates of medium and short delays, increases moderately the rate of derailments, and

affects minimally the rate of short delays; see Figure 7.8. The value of the first track

inspection level governs the total rate of medium or long delays. The relative allocation

of this total rate to medium and long delays depends on the second track inspection level.

Therefore, the setting of the second track inspection level should be based on the

perceived necessity for on-train versus on-foot inspection of the track, as a function of the
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value of Sa recorded at nearby stations. Figure 7.11 should be of aid in making this

decision.

Increase the coastal trigger level, which reduces significantly the rate of short delays and

increases only moderately the rate of derailments; see Figure 7.8

This study showed that the coastal system is relatively ineffective in reducing earthquake

risk. Specifically, Systems B and C have comparable effectiveness and both outperform

System A, but the overall benefit of changing the present system to B or C is marginal.

Overall, the recommended changes in the early warning system may reduce the annual

rate of derailments by a factor of 2 and the total expected number of delayed trains by a

factor of 40 on average; see Table 7.2.

Propagation of Delay along the Tohoku Line

Second order delay time, which is the aggregated delay time from all trains along the line

due to the fact that trains are not able to proceed due to stopped or delayed trains ahead,

increases the first order delay time by about 30%. First order delay time is the aggregated

delay time from all trains along the line ignoring propagation of delay effects and

corresponds to the rate of delayed and stopped trains as obtained in Chapters 6 and 7.

Including third order delay, which corresponds to train cancellations, increases the first

order delay time by a factor of about 2.

Future Work

The sensitivity results presented in Chapter 6 and summarized above point at the need to

make a more detailed evaluation of several factors that affect the seismic risk of the

Tohoku Shinkansen line. Priority areas of investigation appear to be: (a) the form and
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coefficients of the attenuation law. (b) the seismic fragility of the viaduct structure, in

particular the relative displacement at yielding, 6,., the ductility ratio at yielding, g, and

the uncertainty on the seismic resistance. GIlnR, and (c) the soil conditions and their

potential seismic amplification along the line.

The present study is focused on offshore seismicity. Incorporation of inland seismicity

would produce more accurate estimates of the total seismic risk, especially in the Tokyo

region. A more detailed analysis of propagation of delays throughout the Tohoku

Shinkansen is advisable. Such a study could take into account actual trains schedules and

train and station locations.
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Appendix I

Additional Tables and Figures

Appendix I contains the following: (a) tables that give the point estimates of the trigger

parameter y(i,s,R) of System B (see Chapter 3) and, (b) figures that are qualitatively

similar to the ones presented in Chapters 6 and 7. These are presented for a more

complete interpretation of the performance of the early warning system for the Tohoku

Shinkansen. The figures convey the following main results: (a) Changing from the

current coastal system A to coastal systems B or C leads to a more uniform distribution of

short delays along the line; see Figures -1 and I-2, (b) Changing from peak ground

acceleration to response spectrum acceleration as the measure of seismic intensity at the

wayside system increases the contribution of higher earthquake magnitudes to the rates of

all undesired events (derailments and various delays); see Figures I-3, I-4 and -5, (c)

Including the risk of derailments after resumption of trains following short delays reduces

the differences in performance of different coastal systems; see Figures I-6 through 1-10

and (d) Changing from the current coastal system A to coastal systems B and C alleviates

most abrupt "jumps" in the conditional probability of short delays along the line, as this is

no longer a function of the scope of control of the coastal accelerometers; see Figures I-

11 and 1-12.
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i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

3.84 2.57 1.75 1.42 1.12 0.96 0.73 0.61
3.82 2.55 1.74 1.41 1.11 0.96 0.72 0.61
3.78 2.53 1.72 1.40 1.10 0.95 0.71 0.60
3.71 2.48 1.69 1.37 1.08 0.93 0.70 0.59
3.61 2.41 1.65 1.33 1.05 0.91 0.68 0.58
3.47 2.32 1.58 1.28 1.01 0.87 0.66 0.55
3.32 2.22 1.52 1.23 0.97 0.83 0.63 0.53
3.17 2.12 1.45 1.18 0.93 0.80 0.60 0.51
3.03 2.03 1.39 1.13 0.89 0.77 0.58 0.49
2.89 1.94 1.33 1.08 0.85 0.73 0.55 0.47
2.10 1.41 0.97 0.78 0.62 0.53 0.40 0.34
2.63 1.76 1.21 0.98 0.77 0.67 0.50 0.43
2.50 1.68 1.15 0.94 0.74 0.64 0.48 0.41
2.36 1.59 1.09 0.89 0.70 0.60 0.46 0.38
2.21 1.49 1.02 0.83 0.66 0.57 0.43 0.36
2.12 1.43 0.98 0.80 0.63 0.54 0.41 0.35
2.03 1.37 0.94 0.77 0.61 0.52 0.39 0.33
3.50 2.36 1.63 1.32 1.05 0.90 0.68 0.58
3.34 2.25 1.56 1.27 1.00 0.86 0.65 0.55
3.15 2.13 1.47 1.20 0.95 0.82 0.62 0.52
2.90 1.96 1.36 1.11 0.88 0.76 0.57 0.48
1.50 1.02 0.71 0.58 0.46 0.39 0.30 0.25
1.09 0.74 0.52 0.42 0.33 0.29 0.22 0.18
1.36 0.93 0.64 0.52 0.42 0.36 0.27 0.23
1.00 0.69 0.48 0.39 0.31 0.27 0.20 0.17
1.30 0.89 0.62 0.50 0.40 0.34 0.26 0.22

Table I-1: System B: values of y(i, s, R) for earthquakes originating from
"sector of origin" R= 1.
[Columns: coastal station, i=1-8; Rows: segment, s=1-26]
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i=l i=2 i=3 i=4 i=5 i=6 i=7 i=8

2.13 2.57 2.09 1.71 1.24 1.08 0.78 0.61
2.12 2.57 2.08 1.71 1.24 1.08 0.78 0.61
2.11 2.55 2.07 1.70 1.24 1.07 0.78 0.61
2.07 2.50 2.03 1.67 1.21 1.05 0.76 0.60
2.01 2.43 1.97 1.62 1.18 1.02 0.74 0.58
1.92 2.33 1.89 1.55 1.13 0.98 0.71 0.56
1.84 2.22 1.80 1.48 1.08 0.93 0.68 0.53
1.75 2.12 1.72 1.41 1.03 0.89 0.65 0.51
1.68 2.03 1.65 1.35 0.98 0.85 0.62 0.49
1.59 1.92 1.56 1.28 0.93 0.81 0.59 0.46
1.14 1.38 1.12 0.92 0.67 0.58 0.42 0.33
1.42 1.72 1.40 1.15 0.83 0.72 0.53 0.41
1.36 1.64 1.33 1.10 0.80 0.69 0.50 0.39
1.29 1.55 1.26 1.04 0.76 0.66 0.48 0.37
1.20 1.44 1.17 0.97 0.70 0.61 0.44 0.35
1.14 1.37 1.11 0.92 0.67 0.58 0.42 0.33
1.08 1.31 1.06 0.88 0.64 0.55 0.40 0.32
1.89 2.27 1.85 1.53 1.11 0.97 0.70 0.55
1.83 2.20 1.80 1.48 1.08 0.94 0.68 0.53
1.74 2.10 1.71 1.41 1.03 0.90 0.65 0.51
1.63 1.97 1.61 1.33 0.97 0.84 0.61 0.48
0.88 1.06 0.87 0.72 0.52 0.46 0.33 0.26
0.67 0.81 0.66 0.55 0.40 0.35 0.25 0.20
0.87 1.05 0.86 0.71 0.52 0.45 0.33 0.26
0.66 0.80 0.66 0.55 0.40 0.35 0.25 0.20
0.88 1.07 0.88 0.73 0.53 0.46 0.34 0.26

Table I-2: System B: values of y(i, s, R) for earthquakes originating from
"sector of origin" R=2.
[Columns: coastal station, i=l-8; Rows: segment, s=1-26]
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i=l i-=2 i=3 i=4 i=5 i=6 i=7 i=8

1.47 2.54 3.44 2.61 1.56 1.27 0.82 0.61
1.46 2.53 3.42 2.60 1.55 1.27 0.82 0.60
1.45 2.51 3.40 2.59 1.54 1.26 0.81 0.60
1.42 2.45 3.31 2.52 1.50 1.23 0.79 0.59
1.37 2.36 3.19 2.43 1.45 1.18 0.76 0.56
1.29 2.23 3.01 2.29 1.37 1.12 0.72 0.53
1.22 2.10 2.83 2.16 1.29 1.06 0.68 0.50
1.15 1.98 2.66 2.03 1.22 1.00 0.65 0.48
1.09 1.87 2.50 1.92 1.15 0.94 0.61 0.45
1.01 1.73 2.32 1.78 1.07 0.88 0.57 0.42
0.72 1.22 1.63 1.26 0.76 0.62 0.40 0.30
0.88 1.49 1.99 1.53 0.93 0.76 0.49 0.36
0.83 1.41 1.87 1.44 0.87 0.72 0.47 0.34
0.77 1.31 1.73 1.34 0.82 0.67 0.44 0.32
0.70 1.19 1.56 1.22 0.74 0.61 0.40 0.29
0.65 1.10 1.44 1.13 0.69 0.57 0.37 0.27
0.61 1.03 1.34 1.05 0.65 0.53 0.35 0.26
1.06 1.78 2.31 1.82 1.12 0.93 0.61 0.45
1.04 1.73 2.25 1.78 1.10 0.91 0.60 0.44
0.99 1.65 2.14 1.70 1.05 0.87 0.57 0.42
0.95 1.58 2.04 1.63 1.01 0.84 0.55 0.41
0.52 0.87 1.12 0.90 0.56 0.46 0.30 0.22
0.41 0.68 0.88 0.71 0.44 0.36 0.24 0.18
0.56 0.94 1.22 0.98 0.60 0.50 0.33 0.24
0.45 0.74 0.97 0.78 0.48 0.40 0.26 0.19
0.62 1.03 1.35 1.08 0.66 0.55 0.36 0.26

Table I-3: System B: values of y(i, s, R) for earthquakes originating from
"sector of origin" R=3.
[Columns: coastal station, i=1-8; Rows: segment, s=1-26]
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i-= i--2 i=3 i-=4 i=5 i=6 i=7 i=8

0.89 1.37 2.22 2.95 1.84 1.54 0.88 0.60
0.89 1.37 2.21 2.94 1.84 1.54 0.88 0.60
0.88 1.36 2.20 2.93 1.83 1.53 0.87 0.59
0.86 1.33 2.14 2.85 1.78 1.49 0.85 0.58
0.82 1.27 2.05 2.72 1.70 1.43 0.82 0.56
0.77 1.19 1.92 2.55 1.59 1.34 0.77 0.52
0.72 1.12 1.80 2.37 1.49 1.25 0.72 0.49
0.68 1.05 1.68 2.22 1.39 1.17 0.67 0.46
0.64 0.99 1.58 2.08 1.31 1.10 0.63 0.43
0.59 0.91 1.45 1.90 1.20 1.01 0.58 0.40
0.41 0.63 1.01 1.32 0.84 0.71 0.41 0.28
0.50 0.77 1.23 1.60 1.02 0.86 0.50 0.34
0.48 0.74 1.16 1.52 0.97 0.82 0.48 0.32
0.45 0.70 1.09 1.42 0.92 0.78 0.45 0.31
0.42 0.64 1.00 1.30 0.84 0.72 0.42 0.28
0.39 0.60 0.93 1.20 0.79 0.67 0.39 0.27
0.37 0.57 0.88 1.14 0.75 0.64 0.38 0.25
0.67 1.02 1.59 2.05 1.35 1.16 0.68 0.46
0.68 1.04 1.61 2.08 1.38 1.18 0.69 0.47
0.70 1.06 1.65 2.14 1.42 1.22 0.71 0.48
0.71 1.08 1.67 2.18 1.45 1.25 0.72 0.49
0.40 0.62 0.96 1.26 0.84 0.72 0.42 0.28
0.34 0.51 0.80 1.05 0.70 0.60 0.34 0.23
0.47 0.72 1.14 1.50 0.99 0.85 0.49 0.33
0.39 0.59 0.93 1.23 0.81 0.69 0.40 0.27
0.54 0.82 1.30 1.73 1.14 0.97 0.55 0.38

Table I-4: System B: values of y(i, s, R) for earthquakes originating from
"sector of origin" R=4.
[Columns: coastal station, i=1-8; Rows: segment, s=1-26]
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i=-1 i=--2 i=3 i=4 i=5 i=6 i=7 i=8

0.56 0.81 1.31 2.14 2.63 2.35 0.92 0.58
0.55 0.80 1.30 2.13 2.62 2.34 0.92 0.58
0.55 0.80 1.29 2.11 2.60 2.32 0.91 0.57
0.53 0.77 1.24 2.04 2.51 2.24 0.88 0.55
0.50 0.73 1.17 1.93 2.37 2.11 0.83 0.52
0.46 0.67 1.08 1.77 2.17 1.94 0.76 0.48
0.42 0.61 0.98 1.61 1.98 1.77 0.70 0.44
0.38 0.56 0.90 1.48 1.81 1.62 0.64 0.40
0.35 0.51 0.83 1.36 1.67 1.49 0.59 0.37
0.31 0.46 0.74 1.21 1.48 1.33 0.52 0.33
0.21 0.31 0.50 0.81 1.00 0.89 0.35 0.22
0.25 0.37 0.60 0.98 1.20 1.07 0.42 0.27
0.25 0.36 0.58 0.94 1.15 1.04 0.41 0.26
0.24 0.35 0.56 0.92 1.13 1.01 0.40 0.25
0.23 0.33 0.54 0.88 1.08 0.97 0.38 0.24
0.22 0.32 0.52 0.85 1.04 0.94 0.37 0.23
0.22 0.32 0.52 0.85 1.04 0.94 0.37 0.23
0.41 0.59 0.95 1.56 1.91 1.73 0.68 0.43
0.45 0.65 1.05 1.72 2.11 1.91 0.75 0.47
0.50 0.73 1.17 1.91 2.35 2.12 0.84 0.52
0.54 0.79 1.27 2.07 2.55 2.30 0.91 0.57
0.34 0.49 0.79 1.29 1.58 1.43 0.56 0.35
0.29 0.42 0.67 1.10 1.36 1.22 0.48 0.30
0.41 0.60 0.97 1.59 1.96 1.76 0.69 0.43
0.34 0.50 0.81 1.32 1.63 1.46 0.57 0.36
0.48 0.70 1.13 1.85 2.28 2.05 0.81 0.50

Table I-5: System B: values of y(i, s, R) for earthquakes originating from
"sector of origin" R=5.
[Columns: coastal station, i=1-8; Rows: segment, s=1-26]
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i=l i=2 i=3 i=4 i=5 i-=6 i--7 i=8
0.41 0.55 0.78 1.06 1.31 1.87 1.10 0.59
0.40 0.55 0.78 1.06 1.31 1.86 1.10 0.59
0.41 0.55 0.78 1.06 1.31 1.87 1.10 0.59
0.40 0.55 0.77 1.04 1.29 1.84 1.09 0.58
0.38 0.52 0.73 0.99 1.22 1.74 1.03 0.55
0.36 0.49 0.69 0.93 1.14 1.61 0.96 0.52
0.34 0.46 0.64 0.87 1.07 1.51 0.91 0.49
0.32 0.44 0.62 0.83 1.02 1.44 0.87 0.47
0.31 0.42 0.59 0.80 0.98 1.38 0.84 0.45
0.29 0.39 0.55 0.75 0.91 1.29 0.79 0.42
0.21 0.28 0.40 0.53 0.65 0.92 0.57 0.30
0.27 0.36 0.51 0.68 0.83 1.19 0.74 0.39
0.27 0.36 0.51 0.69 0.84 1.20 0.75 0.40
0.28 0.38 0.53 0.71 0.87 1.25 0.78 0.41
0.29 0.39 0.54 0.73 0.90 1.31 0.82 0.43
0.29 0.39 0.55 0.74 0.92 1.34 0.84 0.44
0.29 0.40 0.56 0.75 0.93 1.36 0.85 0.45
0.55 0.74 1.04 1.40 1.74 2.56 1.60 0.83
0.59 0.80 1.12 1.51 1.89 2.78 1.73 0.90
0.63 0.86 1.20 1.62 2.04 3.01 1.86 0.97
0.67 0.91 1.27 1.72 2.17 3.21 1.98 1.03
0.40 0.54 0.76 1.03 1.30 1.93 1.19 0.62
0.33 0.45 0.63 0.85 1.08 1.61 0.98 0.51
0.46 0.63 0.89 1.20 1.52 2.26 1.38 0.72
0.38 0.51 0.72 0.98 1.24 1.84 1.12 0.58
0.52 0.71 1.00 1.35 1.71 2.54 1.55 0.80

Table -6: System B: values of y(i, s, R) for earthquakes originating from
"sector of origin" R=6.
[Columns: coastal station, i=1-8; Rows: segment, s=1-26]
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i=l i--2 i=3 i=4 i=5 i=6 i=7 i=8

0.20 0.25 0.31 0.38 0.47 0.64 1.30 0.69
0.20 0.25 0.32 0.38 0.47 0.65 1.31 0.69
0.21 0.26 0.33 0.40 0.49 0.67 1.36 0.72
0.22 0.27 0.34 0.42 0.51 0.70 1.44 0.76
0.23 0.28 0.35 0.42 0.52 0.71 1.47 0.78
0.23 0.28 0.35 0.42 0.52 0.71 1.47 0.79
0.23 0.28 0.35 0.43 0.52 0.72 1.49 0.81
0.24 0.29 0.37 0.44 0.54 0.74 1.56 0.85
0.25 0.31 0.39 0.47 0.57 0.78 1.66 0.90
0.26 0.32 0.40 0.48 0.59 0.81 1.74 0.95
0.20 0.25 0.31 0.38 0.46 0.63 1.37 0.74
0.27 0.34 0.42 0.51 0.63 0.85 1.86 1.01
0.29 0.35 0.44 0.53 0.66 0.89 1.96 1.07
0.31 0.38 0.47 0.57 0.70 0.96 2.11 1.14
0.33 0.40 0.50 0.61 0.75 1.02 2.27 1.22
0.35 0.43 0.53 0.64 0.79 1.08 2.40 1.29
0.35 0.44 0.54 0.66 0.81 1.11 2.47 1.33
0.67 0.82 1.02 1.23 1.53 2.08 4.66 2.50
0.71 0.87 1.09 1.31 1.62 2.21 4.95 2.65
0.74 0.91 1.14 1.38 1.71 2.33 5.23 2.79
0.78 0.96 1.20 1.44 1.79 2.44 5.49 2.92
0.46 0.56 0.70 0.85 1.05 1.43 3.22 1.71
0.37 0.45 0.57 0.68 0.85 1.16 2.60 1.38
0.50 0.62 0.78 0.94 1.16 1.59 3.57 1.89
0.40 0.49 0.62 0.75 0.93 1.27 2.85 1.51
0.55 0.67 0.84 1.01 1.26 1.72 3.87 2.04

Table I-7: System B: values of y(i, s, R) for earthquakes originating from
"sector of origin" R=7.
[Columns: coastal station, il-8; Rows: segment, s=1-26]
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i=l i=2 i=3 i=4 i=5 i=6 i=7 i=8

0.13 0.15 0.18 0.20 0.25 0.30 0.54 0.99
0.13 0.15 0.18 0.21 0.25 0.31 0.55 1.02
0.14 0.16 0.19 0.21 0.26 0.32 0.58 1.06
0.14 0.17 0.20 0.23 0.28 0.35 0.62 1.14
0.16 0.18 0.22 0.25 0.30 0.37 0.67 1.24
0.17 0.19 0.23 0.27 0.33 0.40 0.72 1.34
0.18 0.21 0.25 0.29 0.36 0.44 0.80 1.48
0.20 0.24 0.28 0.33 0.40 0.49 0.89 1.66
0.23 0.26 0.31 0.36 0.44 0.54 0.99 1.85
0.24 0.29 0.34 0.39 0.48 0.59 1.07 2.01
0.20 0.23 0.28 0.32 0.39 0.48 0.88 1.65
0.28 0.33 0.39 0.45 0.55 0.68 1.23 2.32
0.30 0.35 0.42 0.48 0.59 0.72 1.32 2.49
0.32 0.37 0.44 0.51 0.63 0.77 1.41 2.67
0.34 0.40 0.48 0.55 0.68 0.83 1.51 2.86
0.37 0.43 0.51 0.58 0.72 0.88 1.62 3.06
0.38 0.44 0.53 0.60 0.75 0.92 1.67 3.17
0.71 0.83 0.99 1.14 1.41 1.73 3.16 6.00
0.75 0.88 1.04 1.20 1.48 1.82 3.33 6.31
0.78 0.91 1.09 1.25 1.55 1.90 3.47 6.59
0.81 0.95 1.13 1.30 1.61 1.98 3.62 6.88
0.47 0.55 0.66 0.76 0.94 1.15 2.11 4.00
0.38 0.44 0.52 0.60 0.75 0.92 1.68 3.19
0.51 0.60 0.71 0.82 1.01 1.24 2.28 4.33
0.40 0.47 0.56 0.65 0.80 0.98 1.80 3.43
0.54 0.63 0.75 0.87 1.08 1.32 2.43 4.61

Table 1-8: System B: values of y(i, s, R) for earthquakes originating from
"sector of origin" R=8.
[Columns: coastal station, i=1-8; Rows: segment, s=1-26]
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Figure I-1: Normalized risk decomposition for (b ,a,-Ioc, Ainp, Ainsp2) =

(40, 40, 80, 120gals): (a) by earthquake magnitude, (b) along the track,
(c) by seismic source, and (d) by epicentral distance

[Figure similar to Figure 6.2]
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Figure I-2: Normalized risk decomposition for (c',alo, Aipl, Aisp2) =

(3.0, 40gals, 80gals, 120gals): (a) by earthquake magnitude,
(b) along the track, (c) by seismic source, and (d) by epicentral distance
[Figure similar to Figure 6.2]
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Figure I-3: Normalized risk decomposition-for (a, Sa,tloc, Sa,inspl, Sainsp2 ) =

(40, 80, 160, 240gals) : (a) by earthquake magnitude, (b) along the track,
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[Figure similar to Figure 6.2; notice the use of Sa at the wayside system]
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Figure I-4: Normalized risk decomposition for (b', Sa,tuo, Sainspl, Sa,insp2) =

(40, 80, 160, 240gals) : (a) by earthquake magnitude, (b) along the track,
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[Figure similar to Figure 6.2; notice the use of Sa at the wayside system]
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[Figure similar to Figure 6.2; notice the use of Sa at the wayside system]
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Figure 1-6: Annual rates of derailments and various delays, including derailment
risk due to resumption of operation following short delays for
coastal systems A, B and C and (ao.,-Aihp, Ap 2)=(40, 80, 120gals), if:
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[Figure corresponds to cases illustrated in Figure 6.6]
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[Figure corresponds to cases illustrated in Figure 6.7]

166

~~~~~~~~~~~''' '" ! 
·

' I · ·I . ·

A -. Annual Rate of Medium Delays =3.38
* B- Annual Rateof LongDelays =1.20

C --

, i ~~~I I i~ - i: i i L- i- i I I i- i-- !- i - I- -, -

-kb -. . _ . _ . _ . . _ . _ . _. . _ . _ . _ . . _ . _ . _

~~~~~. . . . . . . . . I . . . . I. . . . . -..... . ....



10-1

0
C
a)E

a)0* 102a)
c

c-Co

C

I 10
101

1U

u3
mCa)
E

a)0
a,
co

C

C
n'

IV
10

102

1

10l
Annual Rate of Short Delays

102
Annual Rate of Short Delays

104

10o3 104

Figure 1-8: Annual rates of derailments and various delays, including derailment
risk due to resumption of operation following short delays for
coastal systems A, B and C and (ao, A l, A4 2) = (40, 80, 120gals), if:
(a) soil type is I, II, III (Table 4.2) all along the line
(b) maximum velocity, V = 210kmh, 245kmh(base-case value), 300kmh
[Figure corresponds to cases illustrated in Figure 6.9]

167

A-.- ........ ..__.__. ._._. .........
-C -_-_ ----- _________C-- =

Annual Rate of Medium Delays =3.67

Annual Rate of Long Delays =1.37

Annual Rate of Medium Delays =4.06.

Annual Rate of MediuLong Delays =.0
Annual Rate of Long Delays =1.09

Annual Rate of Medium Delays =1.20

Annual Rate of Long Delays =0.40

A-.
B-
C

Annual Rate of Medium Delays =3.38

Annual Rate of Long Delays =1.20

, . . . , . . . . , . , . , . . . * . . . . . , 

. . ....... .. . . ....... ...............- - - - - -r . .. . . . S v . - - r S , . ..... . . . . ....
I

.. ,-�3 _III

en --

t r- 2



10 - 1

·1n-2

C O1

01

102 103 104

Annual Rate of Short Delays

102 10 3

Annual Rate of Short Delays

10 4

Figure 1-9: Annual rates of derailments and various delays, including derailment
risk due to resumption of operation following short delays for
coastal systems A, B and C and (alov, Ail, A,, 2 )=(40, 80, 120gals), if:
(a) M. of each seismic source is 0.5 higher/lower relative to base-case value
(b) b-value of each seismic source is 0.9, 1.1 or base-case value
[Figure corresponds to cases illustrated in Figure 6.11]
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[Figure corresponds to cases illustrated in Figure 6.12]
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Figure I-11: Conditional probability P[EIM, x, s, B] of event E along the line,
for (b, ao, A;p, A, 2 ) = (40, 40, 80, 120gals) and earthquake
magnitudes M = 5 - 9, [epicenter: 571Mm from s=1 and 135km from s=26]
(a) E = derailment, (b) E = short delay,
(c) E = medium delay, (d) E = long delay.
[Figure similar to Figure 6.13, but for coastal system B]
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[Figure similar to Figure 6.13, but for coastal system C]
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Appendix II

Propagation of Delay

Trains that have been cleared by the wayside system to resume regular operation after an

earthquake may not be able to do so if there are trains stopped by the SEWS further along

the line. This operational constraint increases the total number of delayed trains all along

the Tohoku line. The magnitude of the increase is analyzed in this section under some

simplifying assumptions, which however allow us to estimate the size of the effect and its

dependence on various parameters. In our model, we consider a track 320km long

composed of 16 operational segments of equal length, as a representation of the actual

line between Tokyo and Sendai. Stations are assumed to be located every 2 operational

segments. Traffic load is one of the most influential parameters in the propagation of

delays along the line; here we consider three possible train frequencies: (a) one train in

each operational segment (for a total of 16 trains, 8 in each direction of travel), (b) one

train every two operational segments (total of 8 trains, 4 in each direction of travel) and

(c) one train every three operational segments (total of 6 trains, 3 in each direction of

travel). All trains are assumed to be located midway within the operational segment they

occupy when they are stopped by the SEWS and are equally spaced in each direction; see

Figure II-1.

A scenario-based approach is used to study the propagation of delays. Thus, earthquakes

of different magnitudes (M=5, 6, 7 and 8) are considered to occur at different distances

(D=60, 100 and 140km) from the midpoint of the track; see Figure II-1. We further

assume that the accelerations measured by the wayside accelerometers are the median

values given by the attenuation relations (Table 4.3). Moreover. given the fact that along

this line we have predominantly soil type II (Table 4.2), we assume this to be true

uniformly along the model line. The values of peak ground acceleration for soil type II

172



along the track, given M and x, are presented in Figure II-2. Assuming that all trains

along the line have been stopped by either the coastal or the wayside system. the total

number of trains is subdivided into short. medium and short delay events, depending on

the value of the two track inspection levels AjnspI and Ainsp 2 and the median attenuated

peak ground accelerations for soil type II. In this analysis. we consider constant track

inspection levels, which correspond to the current settings, i.e. Aspl=80gals and

Ainsp2 =120gals; see Figure II-2.

In order to compare different delay patterns, we calculate the total duration in minutes of

each type of delay. We assume that on-foot inspection of the tracks (long delay) requires

30 minutes, during which the train remains stopped (JREast. personal communication).

Following a short delay, we assume that the train is able to catch up by increasing its

speed within the normal operational limits. After resumption of operation, such trains are

assumed to operate with an average speed of 200kmh. Finally, in the case of a medium

delay, trains continue operation at low speed (40kmh) until they reach the next vacant

station. During this 30 minute period, a train traveling at 40kmh accumulates 24 minutes

of delay compared to regular operation. In general, trains are being dispatched regularly

from Tokyo and Sendai during this inspection period. These trains continue their travel

until the furthest vacant station with a speed that depends on the level of acceleration

recorded in each segment, i.e. 40 or 200kmh corresponding to medium or short delays.

Trains are canceled if there are no vacant stations ahead or if the recorded accelerations

call for on-foot inspection of the track segment immediately neighboring the dispatching

stations. In order to account for train cancellations in the total delay time, we assign a

nominal value of delay per cancelled train equal to 96 minutes. This is the time that a

Shinkansen train needs to travel all the 320km of the line at a speed of 200kmh. Finally,

we assume that no more than one train traveling in the same direction can be in the same

10km track section at any one time.

An example of the resumption of operation of the model line after the operation of the

SEWS is presented in Figure II-3. This figure shows only half the total track (from 0 to
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160km and operational segments 1-8) and only half of the trains due to symmetry. For an

earthquake of M=7 and D=60km (see Figure II-1). the recorded values of amxa compared

to the two track inspection levels call for on-foot inspection in segments 7 and 8 (from

120 to 160km), for on-train inspection in segments 4 5 and 6 (from 60 to 120km) and

allow immediate resumption of regular operation of trains in segments 1. 2 and 3 (from 0

to 60km); see Figure II-2. Figure II-3 shows the locations of the 8 trains included in this

track section versus time after resumption of operation. Of these 8 trains, 2 trains remain

stopped for 30 minutes, 4 trains travel at low speed for some time, 1 train stops at a

station until the track is cleared as there is no vacant station to proceed to and only 1 train

resumes regular operation and reaches its destination without delay. Moreover, 2 trains

are cancelled (12 and 24 minutes after resumption of service), while 36 minutes after

resumption of service the first train is dispatched according to schedule. Scenarios of the

same type are studied for different earthquake magnitudes and epicentral distances.

Results are presented in terms of the following quantities:

* Firstorder delay, which is the aggregated delay time in minutes from all trains along the

line, ignoring propagation of delay effects. This corresponds to the delays

estimated in Chapters 6 and 7.

* Second order delay, which is the aggregated delay time in minutes from all trains along

the line, due to the fact that the trains are not able to proceed due to stopped or

delayed trains ahead. This second order delay does not include train cancellations.

* Third order delay, in number of trains as well as minutes, associated with train

cancellations.

Results are also presented in terms of correction factors of the first order delay if we

include second or both second and third order.
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Results in Terms of Minutes of Total Delay

Under the simplifying assumptions we have just described. we have found that

earthquakes of magnitudes 5 and 6 at distances 60, 100 and 140kmn from the track cause

only short delays (see Figure II-2), which can be compensated by increasing the speed of

trains after resumption of service. This is not the case for higher magnitudes. Table II-1

presents the delay results for distances D=60, 100 and 140km and earthquake magnitudes

7 and 8. Based on these results we conclude:

As the frequency of trains decreases, the total delay in terms of minutes along the line

decreases as well. This is true for all orders of delay, their aggregate sums and for the

number of cancelled trains. Moreover. total delays increase with earthquake magnitude.

This is consistently observed for the total delay time along the line, however the first and

second order delay times are sensitive to the location of trains along the line when they

are stopped by the SEWS. An interesting result is that the number of cancelled trains is

more sensitive to the frequency of trains than to earthquake magnitude and location.

Finally, the dispatching policy of trains which governs cancellations (3rd order delay), is

very significant in controlling the total delay time along the line.

Correction Factors of the First Order Delay

The correction factors of first order delay time to include second order or both second and

third order delays are presented in Table II-2. for various magnitudes and epicentral

distances. If one includes both types of delay propagation. there is at most a 4-fold

increase in the value of the first order delay while on average we observe a 2-fold

increase. If train cancellations are excluded, then the correction factor on the first order

delay is around 1.3 on average with a peak value of 1.6.
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Order of 1 train per 1 train per I trains per 1 train per I train per I train per

Delay segment 2 segments 3 segments segment 2 segments 3 segments

D=60km M=7 M=8

1st 216 108 84 480 240 180

2nd 86 63 48 0 0 0

3rd(cancel) A (4) 384 (2) 192 0 (4) 384 (2) 192 0

lst+2nd 302 171 132 480 240 180

lst+2nd+3rd 686 363 132 864 432 180
.ii

D=10Okm M=7 M=8

1st 156 78 48 420 210 120

2nd 68 46 18 30 15 15

3rd(cancel)' (4) 384 0 0 (4) 384 (2) 192 0

lst+2nd 224 124 66 450 225 150

lst+2nd+3rd 608 124 66 834 417 150

D=140km M=7 M=8

1st 0 0 0 432 216 156

2nd 0 0 0 0 0 0

3rd(cancel)' 0 0 0 (4) 384 (2) 192 0

lst+2nd 0 0 0 432 216 156

lst+2nd+3rd 0 0 0 816 408 156

(I) in parentheses, the number of cancelled trains

Table I-1: Aggregate delay in terms of minutes for first. second and third order delays

along the line, for earthquakes of magnitudes 7 and 8 occurring at 60, 100 and

140km from the center point of the model line.
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Order of 1 train per 1 train per I trains per I train per 1 train per 1 train per

Delay segment 2 segments 3 segments segment 2 segments 3 segments

D=60km M=7M=8
incl 2nd 1.4 1.6 1.6 1.0 1.0 1.0

incl. 2nd+3rd 3.2 3.4 1.6 1.8 1.8 1.0

D=10Okm M7 M8

incl. 2nd 1.4 1.6 1.4 1.1 1.1 1.2

incl. 2nd+3rd 3.9 1.6 1.4 2.0 2.0 1.2

D=1401km M=7 M=8

incl.2nd 1.0 1.0 1.0 1.0 1.0 1.0

incl.3rd 1.0 1.0 1.0 1.9 1.9 1.0

Table II-2: Factors of increase of the first order delay, after including second or both

second and third order delay, for earthquakes of magnitudes 7 and 8 occurring 60,

100 and 140kmn from the central point of the model line.
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POTENTIAL EPICENTERS OF EARTHQUAKES
with Respect to Model Line-1 train per segment
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Figure H-1: Model line, train and station locations and potential epicenters
of earthquakes used in the study of propagation of delay along the line
[Figure for train frequency of 1 train per segment]
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Figure II-2: Assumed recorded values of peak ground acceleration
along the model line for M = 5-8, compared to track inspection levels:
Ail=80gals and Ap 2=120gals, for epicentral distances:
(a) D=60km, (b) D=lOOkm and (c) D=l40km.
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Figure H-3: Train location versus time after resumption of service of trains

according to current track inspection levels: Ai.p-i=80gals and Aisp2 = 120gals.
for earthquake of M=7 at D=60km.
[1. Figure presents half the total track and half the trains due to symmetry,
2. Figure for train frequency of 1 train per segment]
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