
An Accurate Analytical Framework for Computing
Fault-tolerance Thresholds Using the [[7,1,3]]

Quantum Code

by

Andrew J. Morten

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

(© Massachusetts Institute of Technology 2005 All rights reserved.

Author -

(7

Certified by..............

epartment of Physics
August 26, 2005

. _-. .Is....ac Chuang
Isaac Chuang

Associate Professor, Department of Physics
Thesis Supervisor

Accepted by......... C......-
David E. Pritchard

Senior Thesis Coordinator, Department of Physics

. vsE A4..n, s. IV
.$v!.F-

MASSACHUSETTS INSTtTE
OF TECHNOLOGY

JAN 3 0 2006

LIBRARIES

An Accurate Analytical Framework for Computing

Fault-tolerance Thresholds Using the [[7,1,3]] Quantum Code

by

Andrew J. Morten

Submitted to the Department of Physics
on August 26, 2005, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Physics

Abstract
In studies of the threshold for fault-tolerant quantum error-correction, it is generally
assumed that the noise channel at all levels of error-correction is the depolarizing
channel. The effects of this assumption on the threshold result are unknown. We
address this problem by calculating the effective noise channel at all levels of error-
correction specifically for the Steane [[7,1,3]] code, and we recalculate the threshold
using the new noise channels. We present a detailed analytical framework for these
calculations and run numerical simulations for comparison. We find that only X and
Z failures occur with significant probability in the effective noise channel at higher
levels of error-correction. We calculate that when changes in the noise channel are
accounted for, the value of the threshold for the Steane [[7,1,3]] code increases by
about 30 percent, from .00030 to .00039, when memory failures occur with one tenth
the probability of all other failures. Furthermore, our analytical model provides a
framework for calculating thresholds for systems where the initial noise channel is
very different from the depolarizing channel, such as is the case for ion trap quantum
computation.

Thesis Supervisor: Isaac Chuang
Title: Associate Professor, Department of Physics

3

4

Acknowledgments

The length of my acknowledgements list is in indirect proportion to my gratitude to-

ward those acknowledged. I would not have completed this work without the support

of Prof. Isaac Chuang and Andrew Cross. I would like to thank Prof. Isaac Chuang

for introducing me to the problem and for providing me an opportunity to work with

his group at the Media Lab. I learned a great deal from interactions with his research

group, especially with Andrew Cross. I cannot thank Andrew Cross enough - for

providing my with a chunk of code that eventually became my QEC simulator, for

many useful and eye-opening conversations about quantum error-correction whenever

and wherever I needed them, for letting me use what would otherwise have been his

computing cycles, and for his support during the final writing of this thesis.

5

6

Contents

1 Introduction

1.1 Outline .

2 Background

2.1 Quantum Computation .

2.1.1 Network Model.

2.1.2 Stabilizer Formalism

2.2 Quantum Error Correction

2.2.1 Quantum Noise Model

2.2.2 Classical Error Correction .

2.2.3 CSS Codes and the [[7,1,3]] Code

2.2.4 Circuit Construction

2.2.5 Fault Tolerant Thresholds

3 The Model

3.1 Replacement Rule

3.2 Error Correction Circuit

3.3 Modeling Choices

4 Analytical Approximation

4.1 Analysis Overview

4.2 Notation

4.2.1 The Error Correction Network

7

17

18

19

20

20

21

23

23

25

27

29

34

37

37

39

41

45

45

46

46

................................

........... I

................

................

................

................

................

................

................

................

4.2.2 Failure Rates

4.2.3 Probabilities .

4.3 Alpha

4.4 Incoming Errors on Data

4.5 Noise Channels

4.5.1 Single Qubit Gate.

4.5.2 Two Qubit Gate

4.5.3 Measurement

4.5.4 Preparation .

4.6 Threshold

5 Results

5.1 Numerical Simulations

5.2 Alpha

5.3 Incoming Errors on Data

5.4 Noise Channels

5.5 Threshold.

6 Conclusions and Further Directions

A Probabilities

B Counting Tables for Failure Rate Estimates

C Error Correction Circuits

D ARQ Code Generator for [[7,1,3]] Quantum Code

E Sample ARQ Code

47

48

50

54

60

60

64

65

66

66

69

69

70

73

74

74

83

85

87

91

95

117

8

..

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

List of Figures

2-1 This is the circuit for the preparation network, G. It prepares the

logical zero state, 0)L. It is used in the error-correction circuit (see

Section 3.2) to prepare ancilla qubits in the state 0I)L£ 30

2-2 This circuit measures the operator Z on the qubit Iqd) and projects Iqd)

into an eigenstate of Z with the measured eigenvalue. 31

2-3 The verification network V checks for X errors on the state 0I)L and

gives four zero measurement results if no X errors are detected. 32

2-4 The syndrome extraction network S consists of three time steps. The

above network is the syndrome extraction for Z error correction. The

syndrome extraction network for X error correction is the same, except

with each cnot replaced by cz. 33

3-1 (a) The replacement rule for a single qubit gate. (b) The replacement

rule for a two qubit gate. 38

3-2 The error correction routine finds and corrects errors on the seven data

qubits in the logical state qd)L with the aid of multiple copies of ancilla

qubits in the logical zero state 0)L. The second half of the circuit is on

of two possibilities, depending on whether the first syndrome extraction

SJ was zero or non-zero. If the syndrome is non-zero, then two more

syndromes are collected (middle circuit), but if the syndrome is zero,

no more syndromes are collected and the data qubits wait (righmost

circuit) during the syndrome extraction circuit acting on other qubits. 39

9

5-1 This is a graph for , the probability that the verification network

passes, versus the failure rate y Y1 = /2 m = p = 1 0 yw. It is

plotted twice: once assuming the depolarizing channel (solid line), and

once assuming the effective channel that we calculate in Section 5.4 to

be the higher level noise channel ("adjusted" dashed line). 71

5-2 This is a graph of the probabilities of incoming errors on the ancilla

coming into S1 versus the failure rate -y1 = -y2 = /m = Yp = 10"/w

The probabilities are plotted twice: once assuming the depolarizing

channel (solid lines), and once assuming the effective channel that we

calculate in Section 5.4 to be the higher level noise channel ("adjusted"

dashed lines). The legend indicates the the order of the plotted prob-

abilities as they appear in the graph from top to bottom. 72

5-3 This is a graph of the probabilities of incoming X, Y, and Z errors

into Z error-correction: P, pY, and Pz. They are plotted against

the failure rate y - 1 = /2 = m, % = 10yw The probabilities are

plotted twice: once assuming the depolarizing channel (solid lines), and

once assuming the effective channel that we calculate in Section 5.4 to

be the higher level noise channel (dashed lines). The legend indicates

the the order of the plotted probabilities as they appear in the graph

from top to bottom. 78

5-4 The is a graph the effective noise channel (the separate probabilities of

X, Y, and Z errors) at level + 1 versus the failure rate y -yl = y2 =

y, = p = 10oy at level . The probabilities are plotted twice: once

assuming the depolarizing channel, and once assuming the effective

channel that we calculate in Section 5.4 to be the higher level noise

channel. We also plot the probability of an X or Y error (denoted X,Y

error) and compare to numerical simulation. The legend indicates the

the order of the plotted probabilities as they appear in the graph from

top to bottom. 79

10

5-5 This is a graph of the threshold for the Steane [[7,1,3]] code. The

horizontal axis is Yelse -= 1 = % = = /ym and the vertical axis is U,.

The solid line is the threshold result assuming depolarizing noise at all

levels of error-correction. The dashed line is the threshold result when

the noise channel changes according to our analytical model. Along the

line yelse = 10 -yw, the threshold increases from 3.0 x 10 - 4 to 3.9 x 10- 4

when we take into consideration the changing noise channel. 80

5-6 This is a graph of the failure rates at level + 1 in terms of the failure

rate - 1 = 2 = am = yp = 10Yvw at level e. The probabilities

are plotted twice: once assuming the depolarizing channel, and once

assuming the effective channel that we calculate in Section 5.4 to be

the higher level noise channel. The legend indicates the the order of the

plotted probabilities as they appear in the graph from top to bottom. 81

C-1 The error correction routine finds and corrects errors on the seven data

qubits in the logical state qd)L with the aid of multiple copies of ancilla

qubits in the logical zero state 0)L. The second half of the circuit is on

of two possibilities, depending on whether the first syndrome extraction

Sz was zero or non-zero. If the syndrome is non-zero, then two more

syndromes are collected (middle circuit), but if the syndrome is zero,

no more syndromes are collected and the data qubits wait (righmost

circuit) during the syndrome extraction circuit acting on other qubits. 92

C-2 This is the circuit for the preparation network, G. It prepares the

logical zero state, 0)L. It is used in the error-correction circuit (see

Section 3.2) to prepare ancilla qubits in the state I0)L. 92

C-3 The verification network V checks for X errors on the state 0)L and

gives four zero measurement results if no X errors are detected. ... 93

11

C-4 The syndrome extraction network S consists of three time steps. The

above network is the syndrome extraction for Z error correction. The

syndrome extraction network for X error correction is the same, except

with each cnot replaced by cz 94

12

List of Tables

4.1 This table lists the failures in the G network that lead to good outcomes

for the probabilities P(pass and no inc X,Y on S1 anc) and IP(pass and

no inc Z,Y on S1 anc). The bot. prep. gates are the preparation gates

followed by Hadamards, and the top prep. gates are the ones that are

not followed by Hadamards. The early cnot gates are the three in the

second time step, the mid. cnot gate is the cnot gate in the third time

step that still acts on a 10), while the late cnot gates include all others. 52

4.2 This table lists the failures in the V' network that lead to good out-

comes for the probability IP(pass and no inc X,Y on S1 anc) and IP(pass

and no inc Z,Y on S1 anc). ms is short for measurement gate. 52

4.3 This table lists the failures in the G and V1 networks that lead to good

outcomes for the probabilities P(pass and no inc X,Y,Z on S1 anc). The

last cZ gates are the cZ gates that are the last to act on each verification

qubit 53

4.4 This table lists all pairs of errors that cause a logical X or Y error. The

columns indicate the location of the first error and the rows indicate

the location of the second error. The column and row labeled "inc"

correspond to incoming errors on S1 ancilla. 63

4.5 This table lists all errors that cause a logical X or Y failure, given

either an incoming X error (first row) or an incoming Y error (second

row). See Appendix B for an explanation of the designation "s". 64

13

5.1 This table shows the behavior of the noise channels just below thresh-

old. Rows 1-4 give the noise channels for successive levels of error-

correction in our model. Rows 5-8 give the noise channels for successive

levels of error-correction assuming that the noise channel is depolariz-

ing at each level. 76

5.2 This table is the same as Table 5.1, except only the full failure rate for

each type of gate is presented. 76

A.1 All probabilities needed for the calculation of Pz z, YPZZPX, pY

and PZ given in Section 4.4 and the calculations of the failure rates

in Section 4.5 can bee looked up in this table. In the top section, the

label W can be replaced by either X or Z. The gate U2 is taken to be

a cz gate. 86

B.1 This table lists all pairs of errors that cause a logical X or Y error. The

columns indicate the location of the first error and the rows indicate

the location of the second error. The column and row labeled "inc"

correspond to incoming errors on the S~ ancilla. 88

B.2 This table lists all errors that cause a logical X or Y failure, given

either an incoming X error (first row) or an incoming Y error (second

row). The column labeled "inc" corresponds to an incoming error on

the S1 ancilla. 88

B.3 This table lists all pairs of errors that cause a logical Z or Y error. The

columns indicate the location of the first error and the rows indicate

the location of the second error. The column and row labeled "inc"

correspond to incoming errors on the S' ancilla. 89

B.4 This table lists all errors that cause a logical Z or Y failure, given either

an incoming Z error (first row) or an incoming Y error (second row). 89

B.5 This table lists all pairs of errors that cause a logical Y error. The

columns indicate the location of the first error and the rows indicate

the location of the second error. 90

14

B.6 This table lists all errors that cause a logical Y failure given an incoming

Y error. 90

E.1 The classical instructions defined in ARQ. 118

E.2 The quantum instructions defined in ARQ. 119

E.3 More quantum instructions defined in ARQ. 120

15

16

Chapter 1

Introduction

Quantum fault-tolerance is the key to a successful physical realization of a large-

scale quantum computation. Using concatenated quantum error-correcting codes [17,

18, 10], it has been shown that as long as the noise in a system is below a certain

threshold, arbitrarily long fault-tolerant quantum computations can be performed[2,

9, 11, 13. 8, 3]. The Steane [[7,1,3]] is the most promising among the small quantum

error-correction codes. Many studies of the threshold for the Steane [[7,1,3]] code

have been carried out[22, 14, 2, 19, 16, 21].

Previous estimates of the threshold for the Steane [[7,1,3]] code have assumed

that the noise channel is the depolarizing noise channel at all levels of concatenation.

In the depolarizing channel, the three types of errors X, Y, and Z occur with equal

probability. In a concatenated code error-correction procedure, every level of con-

catenation has its own effective noise channel, which can be very different from the

depolarizing channel. No detailed study of the effects of changes in the noise channel

on the threshold has been done.

In this thesis we answer the following two questions: What is the effective noise

channel at different levels of concatenation of the Steane [[7,1,3]] code? More im-

portantly, how does the estimate of the threshold change when the different noise

channels are taken into account?

We answer these two questions using an analytical model. Additionally, we con-

duct simulations to verify the accuracy of our model. Because our analytical model

17

must distinguish between X, Y, and Z errors, it is necessarily more detailed than the

models used for previous estimates of the threshold for the Steane [[7,1,3]] code. We

contribute to the ongoing study of the Steane [[7,1,3]] code by providing this new,

richer analytical model.

1.1 Outline

In the next Chapter of this thesis, we present some background in quantum computa-

tion and quantum error correction that will be used in later sections. We present only

what is needed for an understanding of the later sections, and we introduce concepts

in a way that assumes only some familiarity with quantum mechanics and classical

computation.

In Chapter 3 we describe the model we use to calculate the threshold for the Steane

[[7,1,3]] code. Modeling choices include the quantum circuit used for error-correction,

the replacement rule that prescribes how to construct circuits for concatenated codes,

and the noise model.

The main achievement of this thesis is the analytical model which we present in

Chapter 4, along with the tables in Appendices A and B. This very detailed model

is used to determine the noise channel at all levels of concatenation and the resulting

threshold.

We then make predictions using our analytical model and compare a subset of

the predictions to numerical simulation results in Chapter 5. We wrote code that

generates quantum computer assembly code instructions for the Steane [[7,1,3]] code

that were input to a program called ARQ, a quantum computer simulator. The ARQ

code generator and some sample output ARQ code are given in Appendices D and E.

In the last Chapter we review our results and discuss limitations of and possible

improvements to our analytical model.

18

Chapter 2

Background

In Section 2.1 we introduce the network model of quantum computation and the

stabilizer formalism. The network model is the quantum mechanical generalization

of the theory of classical circuits. In the network model, the classical bits 0 and 1

get replaced by the quantum states 10) and 1), and classical logic gates get replaced

by unitary transformations. We use the network model to represent our quantum

error-correction routine. The stabilizer formalism of quantum mechanics has to do

with representing the state of a system with a complete set of commuting observ-

ables. Stabilizer circuits and the propagation of errors through them have an efficient

mathematical description. We will use the stabilizer formalism in describing how to

construct our error-correction circuits, why they work, and how we can simulate them

efficiently on a classical computer.

In Section 2.2 we introduce quantum error correction. Because of the properties

of quantum measurement, quantum errors can by "digitized," so they appear as bit

or phase flips on a subset of qubits. Cleverly used classical error-correcting codes

can then be applied to correct these errors. First we introduce quantum noise and

the noise model used throughout the analysis. Next we explain the theory behind

the Steane [[7,1,3]] error-correcting code by discussing classical error correction and a

group of quantum error-correction codes, called CSS codes. After that we explain how

to use the stabilizer formalism to construct and understand the quantum circuits for

the [[7,1,3]] code. Finally, we explain the threshold result for quantum computation

19

and summarize previous work on the Steane [[7,1,3]] code.

2.1 Quantum Computation

We give a general overview of the network model of quantum computation and the

stabilizer formalism. See [12] for much of the material we present here.

2.1.1 Network Model

In this thesis we restrict ourselves to the network model of quantum computation.

Other models for quantum computation exist, such as cluster states [15] and adia-

batic evolution [7], but the network model is suitable for our present study of the

concatenation of the Steane [[7,1,3]] code. These other models have been shown to

be equivalent to the network model.

The theory of quantum computation in the network model [6] is the quantum

mechanical generalization of the theory of classical circuits. In the classical circuit

model, a circuit of logical gates acts on input bits to produce output bits. If the set

of logical gates is universal, then any possible classical computation can be achieved

in the classical circuit model (more precisely, any function f Zm -, Z can be

evaluated). In the quantum network model, a "circuit" of unitary transformations

(gates) acts on input quantum states to produce output quantum states. If the set of

unitary gates is universal, then any possible quantum computation can be achieved

in the quantum network model (more precisely, any specified state can be created

with arbitrary precision).

The inputs and outputs in the quantum network model are quantum states. The

Hilbert space of these states is a tensor product of two-level systems, and the eigen-

states of each two-level system are written as 10) and I1). The states in these two-level

systems are called quantum bits, or qubits, in reference to their classical analogue. A

physical example of a qubit would be a spin 1/2 particle with 10) = I) and I) -= IT).

The gates in a quantum circuit are all unitary transformations, as required by

the postulates of quantum mechanics. In our quantum error correction circuit, we

20

assume that a few elementary quantum gates are available to the quantum computer:

the identity I; the Pauli gates X, Y, and Z; the Hadamard gate H; cnot (control-X),

cz (control-Z), and the Toffoli gate. We list the definitions of the identity gate, Pauli

gates, and the Hadamard gate here in matrix representation in the {10), II)} basis:

I = , H= (2.1)
I 1 H V2_ I (2.1)

X 1i = , (2.2)

10 i 0 0 -1

The cnot and cz gates act on two qubits: a control qubit and a target qubit. They

apply the X and Z gates, respectively, to the target qubit when the control qubit is

11), and do nothing when the control qubit is 10). This defines their behavior on the

basis states {100), 10) , 01) , 11)}, so their behavior has been fully specified on all

input two qubit states.

The Toffoli gate is a three qubit gate that acts as a cnot with two control qubits

that must both be I1) for the X to be applied to the target.

A set of universal quantum gates is for quantum computation in the network model

is {X,Y,Z,H,cnot,cz,Toffoli}. This is not a minimal set; these are the six fundamental

gates that we assume can be carried out by the quantum computer in our model.

2.1.2 Stabilizer Formalism

We use the stabilizer formalism because it offers a compact representation of a cer-

tain subspace of quantum states. It allows us to simulate quantum error correction

networks efficiently on a classical computer.

A stabilizer circuit is a circuit that consists only of gates that are in the normalizer

of the Pauli group, and single qubit measurements. Included in this list of gates are

the X, Y, Z, cnot, and cz gates. The only gate in our universal family of gates not

included in this list is the Toffoli gate. The Gottesmann-Knill Theorem [8] states

21

that any stabilizer circuit can be simulated efficiently on a classical computer, as long

as the initial state is a stabilizer state.. The error-correction circuit we use for the

Steane [[7,1,3]] code is a stabilizer circuit.

If the quantum state) satisfies U IV) = 4) for some unitary gate U, we say

that U stabilizes I). For example, the state 10) is stabilized by the Pauli operator

Z, and the state H 10) = (10) + 1))/I 2 is stabilized by the Pauli operator X. In fact,

the states in these two examples are the unique states (up to a global phase) that are

stabilized by their respective gates.

The Pauli group G1 on one qubit is defined to consist of the identity (I), the three

Pauli operators (X,Y,Z), and all operators created by multiplying the above operators

by ±1 or i. The Pauli group G, on n qubits is defined to consist of all n-fold tensor

products of elements of G1.

A vector space V of quantum states is stabilized by a subgroup S of the Pauli

group G, on n qubits if every state in V is stabilized by every operator in S. Any

subset of S that generates S is called a set of stabilizer generators for V. If V

contains a single quantum state with m qubits, then a set of m independent stabilizer

generators uniquely defines the state (up to phase).

In our numerical simulations, we keep track of the stabilizer generators of the

quantum system, rather than the state itself. We always keep track of the minimum

number of stabilizer generators such that the state is uniquely specified (up to a

phase). The stabilizer of the quantum system evolves as follows. If the current state

is 41) with stabilizer g, then after a unitary gate, the state becomes U) = Ug I)) =

UgUt U i), so the new stabilizer is UgUt. Because all of the gates we use in our

simulations (X, Y, Z, H, cnot, cz) are in the normalizer of the Pauli group Gn, we

always have UgU t E Gn. As long as the input state is stabilized by a subset of the

Pauli group, the evolving state is always stabilized by a subset of the Pauli group.

Measurements also affect the stabilizer, but as long as the measurements are in

the computational basis (that is, measurements of the operators X or Z), then the

stabilizer remains a subset of the Pauli group after measurement. We only use single

qubit measurements in the computational basis in our circuits. So, we conclude that

22

we can efficiently simulate our error correction networks on a classical computer.

2.2 Quantum Error Correction

Quantum fault-tolerance is an essential ingredient for the physical realization of a

quantum computer. Quantum fault-tolerance has three requirements: (1) we must

be able to prepare encoded states, (2) we must correct errors on those states, and (3)

we must control the spread of errors through our circuits.

In this section we present some background in quantum error correction. The

purpose of this section is to provide the background in error correction needed by the

rest of this thesis, so we limit the discussion to topics that will later be used.

In Section 2.2.1 we describe the quantum noise model, and how it can be inter-

preted using a set of discrete errors. Then in Sections 2.2.2, and 2.2.3. we explain how

these errors can be corrected using circuits that are themselves noisy. In Section 2.2.4

we explain how to construct the circuits for the Steane [[7,1,3]] error-correction code.

We end with Section 2.2.5 explaining the threshold result and summarizing previous

work on the Steane [[7,1,3]] code.

2.2.1 Quantum Noise Model

Noise in a quantum network is not as simple as in the classical network, where the

only possible error is a bit flip. In a noisy quantum network, there is a continuous

spectrum of errors that can occur on a quantum state, because the quantum states are

specified by two complex numbers (subject to normalization). Despite the continuous

spectrum of errors, quantum error correction can be achieved by correcting only a

small set of discrete errors [17, 18].

To represent quantum noise, we use the density operator formulation of quantum

mechanics. In the density operator formulation, the state fiV) is represented by the

outer product [¢)(¢[. If the state is unknown, but known to be 1i), 2), ... or I n)

23

with probabilities Pi, P2, .. P2n, respectively, then the associated density operator is

n

P= AP i)(Ki kI (2.3)
i=l

Such an operator is called a mixed state.

The application of the gate U to a mixed state p transforms the density operator

into UpUt

The quantum noise model we use is called the depolarizing channel. In a depo-

larizing channel, a single qubit is replaced by the completely mixed state 1/2 with

probability p, and left unchanged with probability 1 - p. If the density operator of

the single qubit state before the depolarizing channel is p, then the density operator

after the depolarizing channel is

I
D(p) = (1-p)p +

2

p1

= (1 - p')p + -(XpX + YpY + ZpZ), (2.4)
3

where we used the fact that for arbitrary p, I = (p + XpX + YpY + ZpZ)/2, and we

defined p' 3p/4.

Equation 2.4 can be interpreted (density operators can have multiple valid inter-

pretations) as is the identity gate being applied with probability p' and each Pauli

gate being applied with probability p'/3. In this interpretation we call the application

of the Pauli gate X an X error, the application of the Pauli gate Y a Y error, and

the application of the Pauli gate Z a Z error.

From now on, whenever we talk about quantum noise, we simply refer to the

probability of X, Y, and Z errors.

Before we continue on to discuss error-correction, we explain how noise errors

propagate through a circuit. This is very important to understanding how error

correction works (and also why we need it).

When there is an X error on a single qubit state state 4V)), then after the application

of a Hadamard gate the new state is H(X [')) = Z(H 4I)). This is interpreted as a Z

24

error on the expected (without noise) state H Io). So, Hadamard gates propagate X

errors to Z errors. They also propagate Z errors to X errors and Y errors to Y errors.

We can similarly determine that cz gates propagate X errors on the control qubit

to Z errors on the target qubit and propagate X errors on the target qubit to Z errors

on the control qubit. Cnot gates propagate X errors on the control qubit to X errors

on the target qubit but propagate Z errors on the target qubit to Z errors on the

control qubit. These facts are used in the construction of the syndrome extraction

networks designed in Section 2.2.4.

2.2.2 Classical Error Correction

Quantum noise must be corrected in order for quantum computations to be fault-

tolerant. Quantum error correcting codes have been designed for this purpose. The

Steane [[7,1,3]] quantum error-correcting code belongs to the collection of Calderbank-

Shor-Steane (CSS) codes [4], which are based on classical linear codes. In this section

we discuss classical linear codes, using the codes that lead to the [[7,1,3]] quantum

code as ongoing examples. Much of the theory in this section and the next is borrowed

from [12].

The noise in classical error correction consists of bit flip errors: 0 becomes 1 with

some probability, and 1 becomes 0 with some probability. A simple code for protecting

against single bit flip errors is to represent the bit 0 by three bits 000 and the bit 1

by three bits 111. Then, if a single bit flip occurs, majority voting corrects the error.

In general, classical linear codes use n bits to store k bits of information. A linear

code is specified by an n by k generator matrix G with entries in 72 (zeros and ones

with addition modulo 2, i.e. binary numbers). The n bit codewords are created from

the k bit words by the operation Gx, where x is the k bit word represented as a

25

column vector. For example, the generator matrix for the [[7,4,3]] Hamming code C1,

G(C1) =

0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1101

(2.5)

creates 7 bit codewords out of 4 bit words.

The [[7,4,3]] code is an [[n,k,d]] linear code, where d is the Hamming distance of

the code. The distance of a code is the minimum distance between codewords, where

the distance between two codewords is defined to be the number of bits at which the

codewords differ. For example, the codewords generated by G are 0000000, 1010101,

0110011, 1100110, 0001111, 1011010, 0111100, 1101001, 1111111, 0101010, 1001100,

0011001, 1110000, 0100101, 1000011, and 0010110, where every pair of codewords

differs at at least three locations. Because the Hamming distance is three, if only

one bit of a codeword of [[7,4,3]] is flipped, we can determine which was the original

codeword. Codes can correct t (d - 1)/2 errors and detect d - 1 errors.

To determine which was the original codeword and how to correct for it, we use

the parity check matrix H associated with G. The parity check matrix is an n - k

by n matrix with linearly independent rows such that Hx = 0 for every codeword

x, and it can be found directly from G. If a single error occurs on the jth bit of

any codeword x, then parity check matrix reveals the error that occurred on the new

codeword x' = x + ej, using Hx' = H(x + ej) = 0 + Hej = Hey, where ej is column

vector of zeros with a one on the jth bit. The vectors Hej are called syndromes. The

syndromes reveal the location of the bit flip errors and are unique because H has

linearly independent rows.

26

The parity check matrix for the [[7,4,3]] code is

00011111
H(C) = 1 1 0 0 1 (2.6)

1 0 1 0 1 0 1

An interesting property of this code is that if an error occurs on the jth qubit, then

Hej is the binary representation of j.

Lastly, we describe an important classical linear code that can be constructed from

any given classical linear code C: the dual of C, denoted C', is defined to consist of

all codewords orthogonal to C. Equivalently, C' is defined by having the generator

matrix HT. Dual codes are used in the creation of CSS codes, of which the Steane

[[7,1,3]] is a specific example.

2.2.3 CSS Codes and the [[7,1,3]] Code

A useful class of quantum error-correcting codes is the Calderbank-Shor-Steane [4]

codes. CSS codes are based on classical linear codes and their duals. Given two

classical linear codes C1 and C2 of the type [n,kl] and [n,k 2] such that C2 C C1 and

such that C1 and C2 correct t errors, we can construct an [[n,kl- k2]] quantum code

that corrects t errors. As part of our ongoing example of the Steane [[7,1,3]] code, we

choose C1 as defined in the previous section, and C2 = C1. These codes are [7,4,3]

and [7,3,4] codes, respectively, so they combine to form a [[7,1,3]] quantum error-

correction code, the Steane code. We describe what this quantum error-correction

code is and how it works.

For every codeword x C1 we define a quantum state

Ix + C2) E I + y) , (2.7)
EC2

27

up to a normalization constant. Explicitly, the state (2.7) is either

1
10)L = (10000000) +

8
11010101) + 10110011) + 11100110)

(2.8)

+ 0001111) + 11011010)+ 10111100) + 11101001)),

or

I1)L - (11111111) + 10101010) + 11001100)+ 10011001)

+ 1110000) + 0100101) + 1000011) + 0010110)),

(2.9)

depending on the value of x E C1.

The eight states in the expression for 10)L are the codewords of the classical linear

code C2 c C1. The eight states in the expression for 11)L are the codewords in C1

that are not in C2.

If X errors are represented by the vector ex with bits set to one where X errors

occur, and Z errors are represented by the vector ez with bits set to one where Z

errors occur, then the quantum state in Equation 2.7 becomes

(2.10)(_-)(x+ y)ez Ix + y + ex)
yGC2

Because Y = iXZ, Y errors are automatically corrected when X and Z errors are

corrected.

The X error syndrome can be determined by using reversible quantum computa-

tion and ancilla to create the state

(2.11)E (-1)(x+Y)ez IX + y + ex) H(Cl)ex),
Yt-U2 ancilla

followed by measurement of the ancilla. The quantum circuit that achieves this is

designed in Section 3.2. The syndrome is used to correct the bit flip errors by applying

X gates on the appropriate qubits.

The Z error syndrome can be determined by first applying Hadamards to all of

28

the data qubits, producing the state

E] (-1) ' Z z + ez), (2.12)

after some mathematical manipulations and using the definition of dual space C2 .

The syndrome (using H(C2) instead of H(C1)) is transferred to the ancilla and

measured as in the X error correction. Note that by applying the Hadamard gates,

we turned Z errors into X errors. Since C1 = C52 in the case of the Steane [[7,1,3]] code,

we can use the same circuit for Z error correction as we did with X error correction,

except Hadamards are applied to the data before and after Z the syndrome extraction.

2.2.4 Circuit Construction

In this section we use the theory of CSS codes to construct three circuits used in the

Steane [[7,1,3]] error-correction code: G, the preparation network, which prepares the

state 0I)L; V, the verification network, which verifies that there are no X errors on

the qubits that make up I0)L; and S, the syndrome extraction network, which uses

ancilla qubits to extract the classical error syndrome from the data qubits. The gates

we use are the same as in [21].

First, we construct the preparation network G, given in Figure 2-1. The prepa-

ration network constructs the state 10)L, which is a superposition of all codewords

defined by the generator matrix for C2,

G(C2) =

0 1 1

1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 1

0

1

2

3, (2.13)

4

5

6

29

where we have labeled the columns 0 through 6 to correspond to qubits qao) through

qa6) in Figure 2-1.

I _\ In\ i
Ilqao = Iu

Iqal) = 10)

lqa2) = 10)

lqa3) = 10)

[qa4) = 10)

qa5) = 10)

qa6) = 10)

------ f~~~

H

H_H{a
JO

I I
aU-

IB I,

-4

Figure 2-1: This is the circuit for the preparation network, G. It prepares the logical
zero state, 10)L. It is used in the error-correction circuit (see Section 3.2) to prepare
ancilla qubits in the state 10)L.

First we apply Hadamard gates to qubits 4, 5, and 6. This puts these three states

into a superposition of all possible three bit words. Because rows 4, 5, and 6 in

G(C2) form a 3x3 identity matrix, the last three qubits in each seven qubit codeword

correspond to the three bits from which the codeword was derived using G(C 2). This

makes determining what state to put the other qubits in quite easy. Reading off

from the three columns of G(C2): if qubit 4 is I1) then qubits 1, 2, and 3 need to be

flipped; if qubit 5 is 1) then qubits 0, 2, and 3 need to be flipped; and if qubit 6 is

II) then qubits 0, l1, and 3 need to be flipped. We apply nine cnot gates according

to the above three rules. Because G(C2) is a linear code and {001, 010, 100} forms a

basis for the input bits to G(C2), this circuit correctly constructs a superposition of

all codewords generated by G(C2).

Next, using H(C 2) we construct the verification network shown in Figure 2-3. The

verification network verifies that that there are no X errors on the logical qubit I0)L.
This is accomplished by measuring all stabilizer generators of IO)L that anti-commute

with X errors. There are four such (independent) stabilizers, and a measurement

result of 0 (meaning that the measured operator stabilizes the state) for all of them

means that there is no X error. As can determined by reading off the rows of the

30

I

11I

a)

: It

.111

r

a--

J

0 4
P i

b 1 :

. >

J1

parity matrix H(C2),

H(C2) =

1000011
0100101
0010110
0001111

(2.14)

the stabilizer generators that anti-commute with X errors are

ZIIIIZZ, IZIIZIZ, IIZIZZI, and IIIZZZZ (2.15)

(the other three stabilizer generators are XIIIIXX, IXIIXIX, and IIXIXXI, which

commute with X errors).

In general, to measure a single qubit (unitary, hermitian) operator M, you apply a

Hadamard on the ancilla prepared in the state 10), followed by a control-M gate with

control on the ancilla, followed by a Hadamard and measurement on the ancilla. This

also projects the the measured qubits into the eigenspace of the measured eigenvalue.

For example, the measurement of the operator Z is depicted in Figure 2-2.

Jqd)

Iqa)= 10) HF

Figure 2-2: This circuit measures the operator Z on the qubit qd) and projects qd)
into an eigenstate of Z with the measured eigenvalue.

The circuit V in Figure 2-3 measures the four stabilizer generators that anti-

commute with X errors. Each of the four verification qubits is used to measure on of

the generators.

The matrix H(C 1) is not the only parity check matrix for C1. Indeed, any matrix

formed by adding together rows of H(C 1) would be equally valid. However, as ex-

plained in [20], putting H(C 1) in the form (I,A) ensures that the derived verification

network does not leave correlated errors on the qubits of I0)L.

31

Iqao)

Iqal)

qa2)

Iqa3)

Iqa4)

lqa5)

I qa)

Iqvo) =

Iqvi) =

Iqv2) =

Jqv3) =

Figure 2-3: The verification network V checks for X errors on the state IO)L and gives
four zero measurement results if no X errors are detected.

The third and last circuit we construct is the syndrome extraction network. There

are two syndrome extraction networks: one that detects X errors, and one that detects

Z errors. We explain how to construct the Z error syndrome extraction network, shown

in Figure 2-4. The construction of the X error syndrome extraction is very similar.

First, a logical cnot gate is performed with the ancilla in the state 10)L as control

and the logical data qubit as target. A logical cnot gate is just seven cnot gates acting

transversally on the data and ancilla. Because the ancilla is in the state IO)L, the

logical cnot gate does affect the logical data qubit. However, X errors on the ancilla

propagate to X error on the qubits , and Z errors on the data qubits propagate to Z

errors on the ancilla qubits.

Next, seven Hadamard gates are applied to the ancilla qubits, transforming Z

errors into X errors. This is followed by Pauli Z measurements of all the ancilla. If

there is no error, the result of the measurement will be in the code C1. The reason

for this is because the Hadamard gates are actually a logical Hadamard gate that

transforms the state 10)L into the state (O) L + I1) L)/, which is a superposition of all

of the codewords in C1. A classical syndrome extraction is done on the measurement

32

Iqdo)

Jqdl)

Iqd 2)

I qd 3)

Iqd4)

Iqd5)

Innu6/

lon} I-

I

r1'"u/

I -I-"/
too, u

I fl.o')

-e

-_

I'1 '- /

I(JWn '

-J

- -J

1-

I (in"

UI'0UM

IaaM

I

UWT_
I I L1 I

rLW - 1L i J

UrTI L-iK]
W L2
U" /i 1

I L 1' 1 'I

E L
I i I (Nj

U -

U
I - LU
4/ {,~

Figure 2-4: The syndrome extraction network S consists of three time steps. The
above network is the syndrome extraction for Z error correction. The syndrome
extraction network for X error correction is the same, except with each cnot replaced
by cz.

results to determine if any of the ancilla were flipped. If there is exactly one Z

error on the data qubits coming into the the syndrome extraction network, and no

other failures occur, it will be detected by the classical syndrome extraction on the

measurement results.

The syndrome extraction for X error-correction is the same, except that the seven

transversal cnot gates get replaced by seven transversal cz gates which propagate X

errors on the data to Z errors on the ancilla.

Note that in Section 2.2.3 we explained how to perform Z error-correction by first

applying Hadamards to the data, then correcting X errors, and then reversing the

33

7 I

__E

-/ I

L_~I

t- I __
l _I u

L I -

to
III - I

I nn"~ c i-

Hadamards on the data. On the surface this would appear to be different from our

our present construction of the Z syndrome extraction network, but it is not: the

sequence of gates (Hadamard on data)(cnot) (Hadamard on data) is equivalent to the

gate cz.

This concludes our construction of the gates G, V, and S. We explain how these

gates are used together in a full error-correcting circuit when we describe our model

in Chapter 3.

2.2.5 Fault Tolerant Thresholds

A particularly effective method for quantum error correction is to take a quantum

error correction code and concatenate it. That is, the code is applied to the code itself,

ad infinitum, or (more physically) until a desired success probability is achieved. The

process of concatenation is explained in further detail in Section 3.1.

One of the most important achievements of the theory of quantum fault-tolerance

is the proof of various threshold theorems, originally proved by Aharonov and Ben-

Or [2], Kitaev [9], and Knill, Laflamme, and Zurek [11], and improved by Preskill [13],

Gottesman [8], and Aliferis, Gottesman, and Preskill [3]. The basic idea of each

threshold theorem is that as long as the noise level of a quantum computation is

below a certain constant threshold that is independent of the computation size, then

arbitrarily long quantum computations can be performed using concatenated codes.

The value of the threshold for the [[7,1,3]] code has been estimated by several

authors, with estimates varying between 10- 6 and 3 x 10-2. Zalka [22] estimated

the threshold to be about 10- 3 and argued that it might still be larger. Preskill [14]

estimated a threshold of about 3 x 10 - 4 . Aharonov and Ben-Or [2] estimated the

threshold to be 10- 6 using a quantum circuit that did not require classical computa-

tion.

The above estimates were calculated before Steane found improved ancilla prepa-

ration circuits [19, 20] that eliminate the need for repeated measurements during

ancilla preparation. With the new circuits, Steane estimated the threshold to be on

the order of 0- 3 .

34

Reichardt [16] used a modified version of Steane's ancilla preparation network

(using error detection as well as error correction) to increase the threshold estimate

to about 10-2, at the cost of creation of more ancilla.

Svore, Terhal, and DiVincenzo [21] used the same circuits as Steane, but performed

a more detailed analysis of the threshold by separating the types of noise according

to types of gates and analytically approximating the new level of each type of noise

upon code concatenation. They estimated the threshold to be about 3 x 10 - 4 when

all error rates are the same and the memory error rate is a factor of 10 smaller. Some

of our work, especially Section 4.3, was based on their analysis.

In the above estimates, it was assumed (implicitly or explicitly) that the noise

could be modeled as depolarizing noise at all levels of the concatenated code. Little

work has been published regarding the change in the distribution of errors and the

possible effects on the threshold. The threshold that we present in this thesis (see

Section 5.5) is the first to consider the effects of changing noise channels on the

threshold.

35

36

Chapter 3

The Model

A detailed analysis of the effective noise channel of fault-tolerant quantum compu-

tation is difficult to carry out in general due to the many parameters of that noise

channel and the numerous classes of codes and circuit constructions. For this rea-

son, we have chosen to focus on the smallest CSS code correcting one quantum error

(the [[7,1,3] code), the generalized depolarizing channel, and the most efficient known

fault-tolerance constructions for CSS codes. Both the code and its constructions were

introduced in Chapter 2. As we will see in Chapter 4, this choice leads to a tractable

analysis that is prototypical of all CSS fault-tolerance analyses.

In this chapter, we lay out the model we have chosen for recursively simulating

fault-tolerant gates, correcting errors on logical qubits, and modeling faults in circuits.

Section 3.1 describes so-called replacement rules, recursive rules for inserting fault-

tolerant gates in place of basic gates. Section 3.2 details the fault-tolerant error-

correction subroutine that appears in each fault-tolerant gate. Finally, Section 3.3

enumerates the modeling decisions that abstract the quantum computer hardware

and its environment-induced noise.

3.1 Replacement Rule

To obtain an encoded circuit, we replace every gate U by a circuit that encodes U via

a replacement rule. Figure 3-1 shows the replacement rule for single qubit and two

37

-U} EC

- - U

U

U _

{Ua
HU

U

(a)

-* EC

(b)

Figure 3-1: (a) The replacement rule for a single qubit gate. (b) The replacement
rule for a two qubit gate.

qubit gates. In the replacement rule for a qubit gate Ui, each qubit gets replaced by

seven qubits followed by an error-correction subroutine, and the gate U gets replaced

by a new gate Ui that acts transversally on all the qubits. EC represents the error-

correction circuit, which we describe in the next Section 3.2. The replacement rule is

applied L times to construct a level L concatenated code.

The replacement rule is applied to every location. A location for our purposes is

either a one qubit gate, a two qubit gate, a preparation (creation of the zero state),

a measurement of the Pauli Z operator, or a wait gate. We list the replacement rule

for each type of location:

1. one qubit gate: see Figure 3-1(a)

2. two qubit gate: see Figure 3-1(b)

38

3. preparation: a preparation of the state 1O) gets replaced by a circuit that pre-

pares the logical zero state 0)L. We do not concern ourselves with the con-

struction of this circuit, because we will later just assume that a preparation

fails with about the same probability as a single qubit gate.

4. measurement: a measurement of the Z operator on a single qubit gets replaced

by a measurement of the ZZZZZZZ operator on a logical qubit and classical

processing involving the parity check matrix. The seven qubit measurement is

accomplished by using seven transversal Z measurements.

5. wait gate: A wait gate is a single qubit gate, so Figure 3-1(a) gives its replace-

ment rule.

3.2 Error Correction Circuit

The general layout of the X or Z error-correction circuit is shown in Figure 3-2. The

gates S j ill the figure mean either S,1 for X error-correction or Sz1 for Z error-correction.
bl-U~V IL UII - - -- - ----- ----U~VL U~

I qd)L

lo)0)

L -o-

lo), -- - - - - - - - - - -T

Figure 3-2: The error correction routine finds and corrects errors on the seven data
qubits in the logical state Iqqd)L with the aid of multiple copies of ancilla ubits in
the logical zero state 1)L. The second half of the circuit is on of two possibilities,
depending on whethenfhr thne fst syndrome extavractio~n 1 was zero or non-zero. If the
syndrome is non-zero, then two more syndromes are collected (middle circuit), but
if the syndrome is zero, no more syndromes are collected and the data ubits wait
(righmost circuit) during the syndrome extraction circuit acting on other lubits.

We explain the error-correction routine step-by-step. In the following explanation,

S" is to be replaced by either S r depending on whether the error-correction

39

routine is X or Z, respectively.

1. The ancilla qubits are prepared via the preparation network G, and verified by

the verification network V. The number of ancilla prepared is usually referred to

as ,,ep. We assume that n,,ep is large enough so that enough ancilla consistently

pass the verification network for the successful completion of the rest of the

error correction.

2. The (X or Z)-error syndrome is extracted by S1 . Classical processing is done

on the measurement results to determine the syndrome.

3. If the syndrome is non-zero, then two more syndromes are extracted via second

and third applications of the S network: S2 and S3. The ancilla qubits that

come into S2 wait during the network S1, and the ancilla qubits that come into

S3 wait during S1 and S2.

4. If a majority of the syndrome extractions agree, then an X or Z gate is applied

to the agreed upon qubit while the other six data qubits wait. This is the

recovery gate R. If there is no majority agreement, no further steps are taken

(as in [21] but not as in [19]).

5. If the syndrome is zero, then the data waits for an amount of time equal to the

total length of S2 and S3. The gate for these six time steps of waiting is called

SW.

6. Also if the syndrome is zero, all data qubits wait during the possible recovery

of data qubits in other blocks. The gate for waiting during recovery is called

Rw.

The circuits for G, V, and S were designed in Section 2.2.4 and are listed in

Appendix C.

The full error-correction circuit, EC, consists of two copies of the circuit in Fig-

ure 3-2, one for X error-correction (Si) and one for Z error-correction (Si).

40

Some error-correction circuits will have Z error-correction followed by X error-

correction. Other error-correction circuits will have X error-correction followed by

Z error-correction. The rule that determines the appropriate order is that the first

error correction corrects the error that is more likely to be on the qubits. Thus, the

order of error-corrections remains the same after every gate except the Hadamard

gate, after which the error-corrections are swapped, because Hadamard gates swap X

and Z errors.

A few error-correction circuits will actually need to have three error-correction

steps: S, followed by S, followed by S; or Sz, followed by S, followed by S .

The rule that determines when this happens is that before every cz gate, the last

error-correction must be S on both qubits, and before every cnot gate, the last

error-correction on the control qubit must be S, and the last error-correction on the

target qubit must be Sz. The reason for prescribing the last error-correction before a

two qubit gate is to minimize the probability of an error propagating from one logical

qubit to the other. Qubits being error-corrected elsewhere need to wait during the

third error-correction.

The order of error-corrections for each gate can be chosen to minimize the number

of places where three consecutive error-correction steps are required. When the error-

correction routine is itself error-corrected, three consecutive error-correction steps are

required only when a cnot follows a cz or a cz follows a cnot and only on the data

qubits. This happens infrequently enough that we approximate the failure rate of the

error-correction gate by assuming that it consists of only two error-correction steps.

3.3 Modeling Choices

Somewhat following [21], a noise error can occur at any of five types of locations in

the circuit: a single qubit gate with failure rate %y1; a two qubit gate, 9y2; a single qubit

wait (or memory) gate, l,,,; a preparation gate, xp; and a single qubit measurement

of the Pauli Z operator, .ym

We model noisy locations as follows. At a location i, the corresponding gate (or

41

procedure in the case of preparation or measurement) is performed perfectly with

probability (1 - yi), and a failure occurs with probability yi

As in [19] we distinguish between failures and errors. A failure is an imperfection

caused by a single gate, while an error is an imperfection on a single qubit as a result

of a failure. A single failure may cause multiple errors when the failure is on a two

qubit gate.

The noise model we adopt assumes that failures are uncorrelated and stochastic.

The single qubit failures are X, Y, and Z, which occur with equal probability in

the depolarizing channel. They are labeled by the failures they cause and are defined

to occur before the erroneous gate. For example, an X failure on a Hadamard gate

causes an X error to occur before the gate, which becomes a Z error after propagating

through the Hadamard gate.

The two qubit failures are IX,IY,IZ,XI,XX,XY,XZ,YI,YX,YY,YZ,ZI,ZX,ZY,ZZ,

which occur with equal probability in the depolarizing channel. They are labeled by

the pair of errors they cause, and are defined to occur before the erroneous two qubit

gate. The two qubit gates that appear in the error-correction circuit always have as

inputs one data qubit and one ancilla qubit, with the ancilla as control. We define

the order of the single qubit errors in each pair to be control-target (or ancilla-data).

We need to define failures as coming before their corresponding gates. The reason

we make this seemingly arbitrary decision will be made apparent in the Analysis

Chapter 4.

In addition to our choice of noise model, we make the following modeling choices:

* We assume that the time it takes to do a measurement followed by any necessary

classical processing on the result takes one time step.

* We do not concern ourselves with the method of preparation of the single state

10). We call the preparation of the state 10) a preparation gate, which fails with

probability Pyp (the error occurring after the preparation). We discover that

magnitude of yp has very little affect on the threshold, so we just set -yp = 7y at

all levels error-correction as an approximation.

42

* Each type of location can have a different noise channel, though the noise chan-

nel for every type of location is depolarizing at level zero of the error-correction.

* At each level of error-correction, we assume that the noise channel for a given

type of location is the same for every instance of that type of location. This

is not true in general (for example, when the initial noise channel is heavily

weighted toward X or Z failures, then the effective noise channel of a given

instance of a location depends on whether that location immediately follows

a Hadamard gate, which swaps X and Z errors). However, the assumption is

fairly accurate when the initial noise channel is depolarizing, as will be shown

in Section 5.4.

43

44

Chapter 4

Analytical Approximation

In this Chapter we provide an analytical model for studying higher level noise channels

and the threshold for the Steane [[7,1,3]] code. A novel feature of our model is that its

input noise channel is not necessarily depolarizing, and it predicts the noise channel at

the next level of error-correction. Also, our model meticulously accounts for incoming

errors, calculating separately the probabilities of X, Y, and Z errors coming into the X

error-correction subroutine and into the Z error-correction subroutine. Furthermore,

our model exactly counts all pairs of errors that could lead to a logical error when

estimating the threshold.

We begin the chapter with a section explaining the overall structure of our analysis.

Then, after we set up some notation in Section 4.2, we proceed to calculate the prob-

ability that the verification network passes with and without errors (Section 4.3), the

probabilities of incoming errors on the data (Section 4.4), the effective nose channel

at all of levels of error-correction (Section 4.5), and finally the threshold (Section 4.6).

The results of our analytical model with some comparisons to simulations are given

in the following Chapter 5.

4.1 Analysis Overview

We calculate the threshold for the Steane [[7,1,3]] code step-by-step, using the results

of each section in each of the following sections, calculating the higher level noise

45

channels along the way and eventually deriving a method for calculating the threshold

in the last section. We believe it is instructive to give an overview of the analytical

model in reverse order, explaining first how to calculate the threshold, and then

explaining how to calculate the quantities used to calculate the threshold.

To calculate the threshold in Section 4.6 we only need to know the noise channel

for each type of gate for every level of error-correction

We calculate the noise channel for each type of gate at every level of concatenation

in Section 4.5. The noise channel is determined by calculating the probabilities of

logical X, Y, and Z failures (in the case of a single qubit gate). The probability of a

logical failure in an error-correction circuit EC depends on whether or not there is an

incoming error on the data into EC. With knowledge of the probabilities of incoming

errors on the data, the probabilities of logical failures can be determined by counting

the number of ways one or two more failures in addition to the incoming errors can

cause a logical failure.

We calculate the probabilities of incoming errors on the data into EC in Sec-

tion 4.4. We do so by solving six linear equations in six unknowns. Each probability

of an incoming error on the data is calculated in terms of the probabilities of the

other incoming errors on the data along with the probabilities of incoming errors on

the ancilla. We calculate the probabilities of incoming errors on the ancilla into EC

in Section 4.3, the first section in our determination of the threshold.

4.2 Notation

This section sets up the mathematical notation used in the following analysis.

4.2.1 The Error Correction Network

We take the order of error correction to be Z error correction followed by X error

correction for notational purposes. There is no loss of generality here as long as Z

failures and X errors always occur with equal probability.

46

The Z error correction gates are

S1 S, S3 S, Rz, and Rw (4.1)

where S z, S2, and S3 are the three syndrome extraction circuits; Sz' is the collection

of wait gates if there are no second and third syndrome extractions; Rz is the recovery

if there is a detected error; and Rw is the collection of wait gates that take the place

of recovery if there is no detected error.

In addition, the gates V a, V2 , and V3 are the verification networks that precede

SJ, S2 , and S3 . We define V2 and V3 to be the concatenation of the V1 network with

the additional wait gates on the ancilla that occur during the first syndrome, and the

first two syndromes, respectively.

Any gate can be divided into its individual time steps by adding an extra super-

script specifying the time step. For example, the gate during the first time step of S]1

is S 1l, and the gate during last two time steps is S1't> l.

Similarly, the X error correction gates are

S1, S2, S 3 , S~I, R, and Rw, (4.2)

with Vi', V.2, and V3 defined analogously.

4.2.2 Failure Rates

The failure rates for single qubit gates, two qubit gates, wait gates, preparation

gates, and measurements, at level of concatenation are yl (e), 2(), (), ,(f), Yp():

and r,(): respectively. Note that the case = 0 corresponds to the failure rates for

the depolarizing channel defined in Section 3.3.

We denote the probability of a specific failure by adding that failure as a super-

script. Then each failure rate is the sum of the probabilities over all specific failures:

47

Y1 =- 7 + 1 + 71 ,

a x + y z

Ym = /m + Ym + Am/

XY~n -Y~ + -YIY + -~ Z (43)

,'7 = 'IX + ,YXI + _ IZ + YZI

+ YIY + YI

+ - X X + X ' + AX Z + /YX + Y + ZX + Z Y + AZ Z,

where we left out the dependence on , since the above equations hold at all levels of

concatenation.

The list of possible two qubit errors is long, so we divide the list into three kinds

of failures:

IW - 7 I x = x i I= Z ZI

IY _ IY YI (4.4)

AB XX XY XZ YX YY YZ ZX ZY ZZ

We chose these three categories based on the expectation that each will occur with

a very different probability at higher levels of error correction. For level one error

correction, we expect yIw to be approximately one order of magnitude greater than
A/IY and approximately two orders of magnitude greater than AAB, which we will treat

as zero when we calculate the threshold.

4.2.3 Probabilities

In the coming analysis, we write out many probabilities. To write each one out in

rigorous mathematical notation would take up a lot of space and would make the

longer equations difficult to interpret. For this reason, we have developed a well-

defined shorthand for nearly all of the probabilities that occur in our analysis.

48

We write nearly all probabilities of the form

IP([no] [inc] errors [caused] on A 1, A2, ... qubits), (4.5)

The [no] and the [inc] are optional; errors is a list of errors; Al, A 2, ... is a list of

gates; and qubits is either "data" or "anc." To save space, qubits is "data" when not

specified.

The above shorthand is intended to have a rather intuitive meaning, so do not get

bogged down by the following definitions. We provide the following four definitions

for the purpose of mathematical rigor and to avoid ambiguity:

IP(no errors [caused] on A,A 2, ...1 qubits) _ (4.6)

"the probability that no errors in errors occur on the qubits during the gates A1, A2 '

IP(no inc errors on A 1,A 2, ... qubits) (4.7)

"the probability that there are no errors in the list errors on the qubits incoming into

each of the gates A 1 , A 2 , "

IP(errors [caused] on A, A 2, ... qubits) _ (4.8)

"the probability that at least one error in errors occurs on the qubits during at least

one of the gates Al, A2, "

IP(inc errors on Al, A 2, ... qubits) (4.9)

"the probability that there is at least one error in errors on the qubits incoming into

at least one of the gates A1 , A2, "

Sometimes we will find it useful to refer to the probability that a certain error is

left on a qubit after a gate due to the gate. When we want to refer to errors left on

qubits, we insert the word caused into the statement of the probability. For example,

a Z error caused on a Hadamard gate is the same as an X failure on a Hadamard

49

gate and occurs with probability 7X , because Hadamard gates propagate X errors to

Z errors. Similarly, an XZ error caused by a cz gate is the same as an XI failure on a

cz gate and occurs with probability 7yix rather than TAB

For example, P(no X,Y on S, S, S3) means that no X or Y failure occurs during

the gates Sl, S2, and S3.

The comma separated list of gates exists to save space, and can be eliminated

using the following rule:

P(no [inc] errors on Al, A2 , ... qubits) H IJP(no [inc] errors on Ai qubits). (4.10)

Equation 4.10 is an equality when the failures on each gate are independent. The

equality holds for level zero of the error-correction, since we assumed that intial fail-

ures were uncorrelated and stochastic. However, at higher levels of error-correction,

failure rates need not be independent. A logical failure during one error-correction

routine can inrease the probabilitiy of a logical failure on the next error-correction

routine via an incoming error on the data. We assume that this scenario has little

affect on the threshold and take Equation 4.10 to be an equality. We do so only to

simplify our analysis.

When there is just one gate in the list of gates, the probability can be looked up

in Appendix A. The rule 4.10 is useful because it can reduce most probabilities in

the following sections to a product or sum of probabilities that can be looked up in

Appendix A.

4.3 Alpha

We calculate alpha, the probability that the verification network passes. Along with

alpha, we calculate the probabilities that the verification network passes with various

errors (X or Y; Z or Y; X,Y, or Z). Errors on passed ancilla can propagate to the data

and can cause incorrect syndrome extractions, affecting the crash probability.

50

Our approximation follows [21], except that more attention is paid to the details

of the verification network. Similar to [21], but treating X, Y, and Z as distinct

errors, alpha can be expressed exactly as

aa = P(pass and no inc X,Y on S' anc) + I(pass and inc X,Y on S1 anc)

= P(pass and no inc X,Y on S1 anc) + IP(pass and no inc Z,Y on S1 anc)

-IP(pass and no inc X,Y,Z on S1 anc) + IP(pass and inc Y on S1 anc)

+IP(pass and inc X and Z on S1 anc)

-IP(pass and inc X and Y and Z on S1 anc),

(4.11)

where S1 is either S1 or S}.

The last two terms of Equation 4.11 are set to zero in our approximation. They

require at least two errors to occur in V1, whereas the other four terms require only

one or zero. We keep the first four terms.

To approximate the first three terms analytically, we determine which single gate

failures in G and V1 lead to "good" outcomes for the corresponding probability. For

a simple example, a Z failure on the ancilla during the last time step of V1 is a single

gate failure that leads to a good outcome for PI(pass and no inc X,Y on S1 anc) but

a bad outcome for P(pass and no inc Z,Y on S1 anc). Tables 4.1, 4.2, and 4.3 list the

failures in G and V1 that cause "good" outcomes.

Usually, there is a "bad" outcome exactly when one of the following happens: an

X,Y error is left on the ancilla by G; an X,Y error is caused on the ancilla in V1 and

propagates to the verification qubits; a failure on a verification qubit leads to an X,Y

error left on the verification qubits just before measurement in V1; or a failure in G

or V' leaves an undesired error on the ancilla at the end of V1.

Some of the entries in the tables are not obvious. For example, an XI error on

the first cnot in G does not lead to any errors coming out of G, even though one

would expect the X error to propagate to several ancilla qubits. In general we need

51

to consider the stabilizer of the state that a error occurs on, because in this case the

stabilizer of the control qubit is X, so the X "error" has no effect.

Table 4.1 lists the failures in G that lead to good outcomes for IP(pass and no inc

X,Y on Slanc) and lP(pass and no inc Z,Y on S1 anc).

Pass no X,Y
Pass no Z,Y
of gates

top
prep

Z

Z

4

bot.
prep
XYZ

Z

3

had

XYZ
Z

3

early
cnot

IZ,ZI,ZZ
XI,YZ,IZ

3

mid.
cnot

IZ,ZI,ZZ
ZZ
1

late
cnot

IZ,ZI,ZZ

5

early
wait

Z

Z5l

late
wait

Z

2

Table 4.1: This table lists the failures in the G network that lead to good outcomes
for the probabilities P(pass and no inc X,Y on S1 anc) and IP(pass and no inc Z,Y
on S1 anc). The bot. prep. gates are the preparation gates followed by Hadamards,
and the top prep. gates are the ones that are not followed by Hadamards. The early
cnot gates are the three in the second time step, the mid. cnot gate is the cnot gate
in the third time step that still acts on a 10), while the late cnot gates include all
others.

Pass
no X
Pass

no ZY

of
gates

prep/
early
had

Z

Z

4/4

late
had
X

X

4

early
cZ

XZ,IZ
XI
ZX

4

mid
cZ

XZ,IZ,
XI

6

late
cZ

XZ,IZ,
XI

XZ,ZX,
YY

3

ms
Z

Z

4

early
anc.
wait

Z

3

late
anc.
wait

Z

X26

26

early
ver.
wait

X

2

late
ver.
wait

X

X

Table 4.2: This table lists the failures in the V1 network that lead to good outcomes
for the probability P(pass and no inc X,Y on S1 anc) and IP(pass and no inc Z,Y
on S1 anc). ms is short for measurement gate.

Table 4.2 does the same for V1 . Using these two tables we calculate that

52

PI(pass and no inc X,Y on S1 anc)=

(1- - W- 2Y - 8(1 - (1 p -)4

X (1 - - Y) (1 _ X _ /y) 29 (1 - Z - y) 3

(4.12)

and

IP(pass and no inc Z,Y on S' anc) =

- Y2) (1 - T -y) (

x (1 - -) (1 - 2 IY - 6 yA) 3 (1

x (1 -,Z - ,y) 27

-') 4 (1 -Y) 5

Pass no X,Y,Z
of gates

prep
early
had

last
had

Z Z X

11 7 4

Table 4.3: This table lists the failures in the G and V1 networks that lead to good
outcomes for the probabilities IP(pass and no inc X,Y,Z on S' anc). The last cZ gates
are the cZ gates that are the last to act on each verification qubit.

Table 4.3 lists the failures in G and V 1 that lead to good outcomes for IP(pass and

no inc X,Y,Z on S1 anc). Using Table 4.3 we calculate that

53

x (1 - 4y - 2' _ 87AB) (1

X (1 - -y) (1 -Y -)(1- , -Y1)(1 4 2 2

(4.13)

last
cZ

other
cZ,

cnots
XZ

4 18

meas
Z

4

early
waits

Z

5

last
ver.
wait

X
1

other
waits

33

,

W

.

:

i

(__?X __ y) 4(1 Z -)4(lrI -[W _ 8,YAB)7(7 (I
1 2 2 2

-2yIW - 2y - 8YAB 2 2 2

- 7iw)2

- 8AB 4

IP(pass and no inc X,Y,Z on S1 anc)=

(1- X 1 , (1 _ X ~)7(1 - -X _)y 7 _Y

(4.14)
x (1 - 47W - 2 IY _ 8AB)4(1 _ / 2)18(1 -_ X -_ Y)4

x (1 - x _ Y)5(1 _ ,Z _ I/Iy) (1)33

Finally, we approximate P(pass and inc Y on S1 anc). The ancilla pass with a

Y error only when an ZY failure (causes IY error) occurs on the first four control-Z

gates, when a ZY or YX failure (causes IY or XY error) occurs on the last three

control-Z gates, or when a Y failure occurs on the waiting ancilla after the control-Z

gates. Thus,

IP(pass and inc Y on S1 anc) 10YA B + 26-y. (4.15)

4.4 Incoming Errors on Data

In this section we derive a set of linear equations for the probabilities of incoming

errors into S,1 and S. in the steady state. We calculate separately the probabilities

of X, Y, and Z errors on the data coming into S and S . The probabilities to be

derived are

p - IP(inc X on S1),

P - P(inc Y on SI),

Pz = IP(inc Z on S,),
(4.16)

PX IP(inc X on S4),

PY - P(inc Y on SI),

and PZ _ P(inc Z on S1).

54

We could have chosen to make the approximations Pf = pZ Pf = P , and

Pz- = P, but we did not because (1) it is simply not true because of the gate U, (2)

it is interesting to discover by how much they differ, and (3) the approximation is not

needed to simplify the theory, since either way we need only to write two equations

to represent all of them.

First, we find Px, the probability that there is an X error on the data coming

into S1. The same equation is used to find Pf, by replacing the letter X by Y where

indicated by the symbol [Y].

Pl(no in X[Y] on S) = 1 - PX[] =

[P(no inc X,Y on Sl)x

[IP(no inc Z,Y on S1 anc)x

[P(no Z,Y caused on Sx'l anc)x

[P(no X,Y caused on S»1> anc)

x lP(no X[Y] caused on S1, Sx, Rx', U, no Z,Y caused on S1 l anc)

+ (1 - P(no X,Y caused on S' t>' anc))

x Pl(no X[Y] caused on S t>1, S3, R, U)]

+ (1 - PI(no Z,Y caused on S 1' anc))IP(no X[Y] caused on S2't>', S3, R, Ui)]

+ (1- IP(no inc Z,Y on S1 anc))lP(no X[Y] caused on S2't>1 , S3, Rx, UL)]

+ (1 - (no inc X,Y on S1))P(no X[Y] caused on S, S2, S3, Rx, Ui)]

(4.17)

For there to be no incoming X[Y] error on S1, the following must occur: (1) If

there is an incoming X or Y error on the preceding S1 (we assume this causes a

non-zero syndrome), then there must be no X[Y] error caused on the data before S1.

(2) If there is not an incoming X or Y error on the preceding SI, then either (a)

there is no error on the ancilla (so the syndrome is zero) and there is no X[Y] error

caused before S1 or (b) an error on the ancilla causes a non-zero syndrome and there

55

is no uncorrectable X[Y] error caused before Sz. Equation 4.17 expresses the above

reasoning in the precise mathematical notation set up in Section 4.2.

Note that X[Y] errors cannot be caused on the data in S1 via the propagation of

errors from the ancilla, so X[Y] errors on the data must be caused by failures on the

data only. This makes the equation for Px [Y] somewhat simpler than the equation

we will later write for PZ.

To obtain the equation for PZ[Y] from Equation 4.17, swap the labels x and z

everywhere they occur, swap the errors X and Z whenever they refer to errors on the

data (but not when they refer to errors on the ancilla), and remove every instance of

the gate Us.

Now we have four equations after writing only one, but we have introduced the

unknown quantity, IP(no inc X,Y on S1) (along with IP(no inc Z,Y on Sz) in the cor-

responding equation for PxZ[Y]). Before proceeding to write the equation for PZz, we

find this quantity in terms of the original six.

PI(no inc X,Y on S)= 1 - IP(inc X on S1 or inc Y on S1)

= 1- pPx _ pY + IP(inc X on S}linc Y on SI)IP(inc Y on S)

1- PX - PY + pXpY~lpX PY PxPY
~ 1-PX - pY

(4.18)

The last approximation in Equation 4.23 allows the system of equations to be

linear and only causes an error of about .5 percent on PX [Y], which is itself only

about .5 percent near threshold. The second to last approximation assumes that

the events of an incoming X error and an incoming Y error are independent, which

they are not, but we expect the intersection of the two events to be relatively small

(because an incoming X and Y error requires two independent failures instead of just

one).

Similarly, we approximate

56

IP(no inc Z,Y on S1) - 1 - PZ - P.
I Z

Second, we find PZ, the probability that there is az

into S,.

IP(no inc Z on S) = 1- P -P

Z error on the data coming

IP(no inc X,Y on SI anc)IP(no inc Z,Y on S)x

[I(no inc X,Y on SlIno inc Z,Y on S)x

[IP(no inc Z on S, anc) x

[P(no Z,Y caused on S,1 anc) x

[IP(no X,Y caused on S t>1 anc)

x I(no Z caused on S', Sx, Rh', Ulno Z,Y caused on S1 anc)

+ (1- IP(no X,Y caused on SIt>1 anc))

x (no Z,Y caused on SXlno Z,Y caused on SI anc)

x IP(no Z caused on S 2 , S 3 , RX, Ui)IP(no inc X,Y on Sx, S3 anc)]

+ (1 - IP(no Z,Y caused on S' l1 anc))

x IP(no Z,Y caused on SxIZ,Y caused on S' 1 anc)

x P?(no Z caused on S2, S 3 , R'X, Ui)I(no inc X,Y on S2, S3 anc)]

+ (1 - IP(no inc Z on SI anc))IP(no Z,Y caused on Sx)

x IP(no Z caused on S2, S3, R', Ui)IP(no inc X,Y on S2, S3 anc)]

+ (1 - IP(no inc X,Y on S Ino inc Z,Y on Sx))TP(no Z,Y caused on SI)

x IP(no Z caused on S2, s3, Rx, Ui)IP(no inc X,Y on S2, S3 anc)]

(4.20)

For there to be no incoming Z error on S1, the following must occur: There

must be no incoming Z or Y error on the data preceding S and no incoming X or

57

(4.19)

Y errors on the ancilla coming into S. Also, (1) If there is an incoming X or Y

error on the preceding S1 (we assume this causes a non-zero syndrome), then there

must be no Z error caused on the data before S1. (2) If there is not an incoming X

or Y error on the preceding S, then either (a) there is no error on the ancilla (so

the syndrome is zero) and there is no Z error caused before S or (b) an error on

the ancilla causes a non-zero syndrome and there is no uncorrectable Z error caused

before S1. Equation 4.20 expresses the above reasoning in the precise mathematical

notation set up in section 4.2.

Note that Z errors can be caused on the data in S} via the propagation of errors

from the ancilla, so this is included in the calculation of PZ. Also, note that the events

of various errors caused on the ancilla are not independent of the events various errors

caused on on the data, due to the two qubit gates, so conditional probabilities must

sometimes be used.

To obtain the equation for pZ[Y] from Equation 4.20, swap the labels x and z

everywhere they occur, swap the errors X and Z whenever they refer to errors on the

data (but not when they refer to errors on the ancilla), and remove every instance of

the gate Ui.

We now have six equations, but again we have introduced some new probabilities,

which we now approximate:

IP(no inc Z,Y on SI) 1 - PZ - ps, (4.21)

and

IP(no inc Z,Y on S1) x [IP(no inc X,Y on S11no inc Z,Y on SI)

= IP(no inc X,Y,Z on S1) (4.22)

1-pX - P - PZ

Similarly, we approximate

58

IP(no inc X,Y on S1) z 1- pX - pY, (4.23)

and

IP(no inc X,Y on Sl) x [IP(no inc Z,Y on Sllno inc X,Y on S1)

-- IP(no inc X,Y,Z on S) (4.24)

1- P x- pzY - Pz,

By substituting in Equations 4.18, 4.19, 4.21, 4.22, 4.23,and 4.24 into the six

equations represented by 4.17 and 4.20, we obtain six linear equations in Px, pT,

P,Z: P dx , and PZ, as desired. All of the other terms in Equations 4.17 and 4.20

can be simplified using the rule 4.10 and/or looked up in Table A.1 in Appendix A.

Though we do not pursue it in this paper, our theory can give the values of Px,

p: pz, px, PY, and PZ in the non-steady state. In the non-steady state, the

quantities Px, etc. would be labeled in temporal order: 1PX, 2Pz , 3PX, etc. The

quantities Px, Pz, and nPZ would be linear in (l)P, ()PY and (,_l)Pz,:

which would be linear in (l 1)Px , (l)P, and (_)Pz, and so on until we reach

1Px =]pZY = Pz = 0 (if there were initially no errors on the data). This would

give an easily solvable system of 6n linear equations.

Our analysis of incoming errors assumed that the order of error-corrections was

always Z error-correction followed by X error-correction, but when the gate being

error corrected is a Hadamard gate, the order of error-corrections gets reversed. This

would suggest that our analysis breaks down whenever a Hadamard gate is error-

corrected, but our analysis does still hold - as long as X and Z failures occur with

equal probability. When X and Z failures occur with equal probability, we are free

to relabel the errors so that the first error-correction needed is Z error-correction, so

our analysis holds.

The assumption that X and Z errors occur with equal probability puts a limit on

the type of initial noise channel we can model (one of the reasons we restrict ourselves

59

to depolarizing noise). However, if we lifted this assumption we would have other

problems such as (1) the effective noise channel for a logical gate would depend on

whether the preceding logical gate swaps errors, so the noise channel of a gate would

depend on the circuit it belongs to, and (2) there might be better error-correction

procedures that take into account the different noise channel, such as correcting the

more likely error more often. These problems would make the analysis less tractable,

so we keep the assumption that the initial noise channel is depolarizing.

4.5 Noise Channels

In this section we calculate the probabilities of logical X, Y, and Z failures on single

qubit gates and measurements; and logical IX, IY, and IZ failures on two qubit gates.

That is, we find the level (+ 1) noise channel in terms of the level noise channel.

4.5.1 Single Qubit Gate

In a [[7,1,3]] code error-correction routine, two X errors or one X and one Y error

causes a logical X failure when S. detects the two errors and misinterprets them as a

single error, correcting the wrong qubit. Similarly, two Z errors or one Z and one Y

error gets misinterpreted by Sz and cause a logical Z failure. Two Y errors cause a

logical Y failure.

A logical failure is defined to occur whenever a failure occurs that puts the logical

qubit into an uncorrectable state (a state that would be misinterpreted and incorrectly

"corrected" by a noiseless error-correction circuit). At least two failures are needed

to cause a logical failure.

For each logical error we approximate its probability of occurring by counting the

ways in which exactly two failures (calling incoming errors on the data or ancilla

"failures" for our present purpose). For example, one way to cause a logical X error

is to have an incoming X or Y error before S, and an X error anytime before S"'2 .

Another way to have a logical X failure is to have two X errors occur after S11 . In the

last example, the logical X failure by our definition occurs at the time of the second

60

error, not when the logical X state gets created by a misinterpreted syndrome in the

following error-correction.

We then sum over all of the possible pairs of locations the probability of both

errors occurring:

i(f + 1) = -Ya(f)Yb(t) (4.25)
a>b, pair causes logical error

where a and b sequentially label all of the gates in the error correction network that

act on the data, and also label the probabilities for incoming errors on the data or

ancilla.

This sum implicitly assumes that as long as the two failures under consideration

occur, there will be a logical failure regardless of what happens elsewhere in the

network. This is a small over-approximation.

When counting the pairs of errors that lead to a logical failure, a pair of errors

that act on the same qubit are not counted. Such pairs of errors cancel and do not

cause a logical failure. If we counted these pairs of errors, we would over-count by

about 1/7 ~ 14% and expect our calculated failure rates to be inaccurate by the same

percentage. So, the first order effect of the cancellation of errors is taken into account

in our calculation of the failure rates.

As one last detail, we approximate the probability that there are two incoming

X (or Y or Z) errors on the ancilla as (6/7)(y) 2 , where is the probability of one

error coming in. This assumes the events are independent, which is almost but not

the case.

Here we do the counting for and calculate the probability of a logical X or Y error

on a single logical qubit. We count all pairs of failures that cause a logical failure.

The counting for all logical errors is done in Appendix B. The counting is exact.

We calculate x(g (- + 1) + nyw (f + 1), the probability of a level (+ 1) X or Y error

as follows:

61

yx(~ + 1) + (f + 1) IP(logical X,Y failurelno inc X,Y,Z on S)(f)

+ I(logical X,Y failurelinc X on)(.26)
(4.26)

+ IP(logical X,Y failurelinc Y on S)(f)

+ IPD(logical X,Y failurelinc Z on S)()

We assume that no logical failure occurred in the previous error correction. For

this reason, we do not need to consider the case of two incoming errors.

First, we consider the case that there are no incoming X,Y or Z errors on S 1. This

occurs with probability 1 - pX - p_ - Pp. In this case, there must be a pair of errors

that cause a logical X or Y error.

Table 4.4 counts the pairs of errors that lead to a logical X or Y error. The errors

indicated in the table are the errors caused on the qubits. The columns indicate

the location of the first error and the rows indicate the location of the second error.

Usually filled in each cell is the error that must by caused by both gates (or list of

errors from which one must be caused by each gate). The errors in some cells are

followed by 1 or 2, meaning that the specified error(s) must be the first or second

error, respectively. In such a case, the other error is assumed to be in the list XY. The

additional designations "s" and "n" indicate that the error causes further syndromes

to be extracted (s) or must not cause further syndromes to be extracted (n). Such

a designation is needed when, for example, the first error is on S1 and the second

error could be either on S2 1 or S . The designation of "sn" indicates that both errors

must cause a non-zero syndrome or both errors must not cause a non-zero syndrome.

The probabilities of the errors in each cell can be looked up in Appendix A.

Each cell corresponds to a pair of errors that may occur on many distinct pairs

of qubits. The errors in the diagonal cells are errors that occur in the same gate, so

they should be counted

(T2 = 21T2 (4.27)

times for a gate with T time steps.

62

inc

S2t>l
S3l,

z

SW

z

S1l,t>1

2,1

S:3

SYWRW

Uix
Cli

inc

XY
XY
XY
Y1
Y1
Y1
XY
XY
XY
XY

XYs2

Sl ,la

XY
XY

XYsl

XYsl1
XYsl

XY
XY
XY

XYs2

Sl't>la:)

XY

XY
XY
XY
XY

XYs2

Sz

XY
XY
XY
XY

XYs2

--

--

XY
XY
XY

XYs2
--

I--

--

Sl,1
a:

I

XYsn
XY
XYs

XYn1
XYnl
XYnl

S1,t>la

XY

XY
XY
XY

SW

XY
XY
XY

Rw

XY
XY

Ui

XY

Table 4.4: This table lists all pairs of errors that cause a logical X or Y error. The
columns indicate the location of the first error and the rows indicate the location of
the second error. The column and row labeled "inc" correspond to incoming errors
on S1 ancilla.

Order of errors is already prescribed in the off-diagonal cells, so the errors in those

cells should be counted

(7)(6)TIT2 = 42T1 T2 (4.28)

times, where T1 and T2 are the number of time steps in the corresponding gates.

If one of the gates is "inc", then the error in the cell should be counted 6T times.

If both gates are "inc", then the error should be counted 6/7 times.

Second, we consider the case that there is an incoming X error on Sz1. This occurs

with probability P x . For a logical X or Y error to occur, there must be an X or Y

error before S2 '1. This fact is represented in Table 4.5.

Third, we consider the case that there is an incoming Y error on Sz. This occurs

with probability PY. For a logical X or Y error to occur, there must be an X or Y

error before S2 '1, as represented in Table 4.5.

Finally, we consider the case that there is an incoming Z error on S 1. This case

is negligible, since two X or Y errors would still be required to cause a logical X or Y

63

inc| Sll, Sit> I S2 S3 I SZ I R- S." I S.','> l S1 I

inc X XY XY XY - - XY XY XY XY XYs
inc Y XY XY XY XY XY - XY XY XY XYs

Table 4.5: This table lists all errors that cause a logical X or Y failure, given either
an incoming X error (first row) or an incoming Y error (second row). See Appendix B
for an explanation of the designation "s".

error. This concludes our determination of yx (+ 1) + yiY(e + 1).

In the same manner as above, we calculate yZ(f + 1) + y'Y(f + 1) and yY(f + 1)

using the tables in Appendix B. From these three values we easily find yx (f + 1),

'Y(f + 1), and yz(f + 1), giving the effective noise channel for a single qubit gate

(Hadamard or wait) at the next level of error-correction.

4.5.2 Two Qubit Gate

For two qubit gates, the event that there is a logical failure on one of the qubits is

almost independent of the event that there is a logical failure on the other qubit, since

the only gate that acts on both logical qubits is the logical U gate. This makes the

failures XI, IX, ZI, IZ, YI, and IY much more likely than any of the other possible

failures.

Only when one or two of the failures occur on the U gate can a different failure

occur due to two failures. The probability of two failures on U is negligible com-

pared with the probability of two failures before Ui that cause a logical failure. The

probability of one failure on Ui is less negligible, but it must occur on the same qubit

as a single error that propagates to both logical qubits. The probability of an error

propagating from one logical qubit to another is minimized by reordering the error-

correction. This makes the probability negligible compared with the probabilities for

XI, IX, ZI, IZ, YI, and IY failures.

So the only non-negligible failure rates for a level one (or higher) two qubit gate
are yIx ,yXI y2v YI IZnd ZIare -y2 , ,Y2 ,7'2 3'2 , 2 , and y2 and their values are

64

72Ix = xi X (with U1 replaced by U2),

I Y YI (with U1 replaced by U2),_Y "/ = Y (4.29)

72z =z 7z - 7f (with U1 replaced by U2),

where 71x , -Y, and -yz are calculated the same way as in the above section, but with

U1 replaced by U2 everywhere in the calculation.

Because the replacement of U1 by U2 can only have a small affect on the overall

failure rate, we expect that the failure rate of a level one (or higher) two qubit gate

to be very close to twice the failure rate of a single qubit gate:

'Y2(> 0) 2(e) + 2y ' () + 2 7 (e) 271()- (4.30)

Equation 4.29 gives the effective noise channel for a two qubit gate at the next

level of error-correction.

4.5.3 Measurement

The probability of a logical measurement error is very simple, since the measurement

is done immediately:

IP(logical X,Y failure) = P?(no inc X,Y,Z on S1)(6/7)IP(X,Y on meas.)2

+ IP(inc X,Y on S1)(6/7)IP(X,Y on meas.),

IP(logical Z,Y failure) = IP(no inc X,Y,Z on Sl)(6/7)IP(Z,Y on meas.)2

+ P(inc Z,Y on SJ)(6/7)P(Z,Y on
(4.31)

meas.),

IP(logical Y failure) = IP(no inc X,Y,Z on S1)(6/7)IP(Y on meas.) 2

+ IP(inc Y on S1)(6/7)P(Y on meas.).

65

Written out explicitly, Equation 4.31 becomes

i)X(£ + 1) + Y(+ 1) = (1 - P -_P - pz)(6/7)(mX + Y)

+ (X + +)(6/7)(?X + yY),

z(+ 1) + y+ 1) = (1 - P - P7 -P)(6/7)(7z Y +)2

+ (pZ + PY)(6/7)(z + +Y),
(4.32)

lyY'n(+ 1) = (1 pX PZY - pZz)(6/7)(_fY) 2

+ (PZ) (6/ 7) (fY),

where every term on the right had side of Equation 4.32 is calculated at level .

Equation 4.32 gives the effective noise channel for a measurement gate at the next

level of error-correction.

4.5.4 Preparation

As one of our modeling choices, we assume that

x() = 71(t),

-Y Mp M(4.33)

We can make such an approximation, because even a factor of ten in the value

of y, has negligible effect on the other failure rates (the effect is typically less than

±5 x 10 - 5 on the other failure rates).

4.6 Threshold

Using the failure rates calculated in Section 4.5 we can easily calculate the threshold.

Given the level zero failure rates (yx ,'i, ' YI W _2 IY 2 'AB X Y Z X Y, , , 32 , 'Y2 , Y ,Y %, %:, %,,, 3, 3~,

66

Z Y ZY: , , ey , and yrZ), we calculate the level one failure rates (same list), from which

we calculate the level two failure rates, and so on.

We determine whether the initial set of failure rates was above or below threshold

by repeating the above procedure until each failure rate is above its initial value or

each failure rate is below its initial value. This gives an eleven dimensional threshold

surface. We calculate a two-dimensional cross-section of this surface in Section 5.5.

We should note that the set of gets that we have analyzed to determine the

threshold is not universal. For universality, we would have to include a gate such as

the Toffoli gate. We assume that the existence of the Toffoli gate in an error-corrected

circuit has little affect the threshold. We think this amounts to assuming that the

Toffoli appears infrequently enough that the correlated errors it can cause are about

as likely as those for a cnot gate. As with the cnot gate, the X and Z error corrections

would be reordered to minimize the probability of correlated errors.

67

68

Chapter 5

Results

What is the effective noise channel at different levels of concatenation of the Steane

[[7,1,3]] code? How does the estimate of the threshold change when the different noise

channels are taken into account? Within the assumptions of our model, we answer

these two questions in this Chapter.

Whenever possible, we carry out numerical simulations to provide support for the

accuracy of our analytical model. In Section 5.1, we explain our method for numerical

simulation. In the following sections, we present our results in the same order as they

were predicted in the analysis: Section 5.2 compares our predictions for alpha and the

probabilities of incoming errors on the ancilla to numerical simulations; Section 5.3

does the same for the probabilities of incoming errors on the data; Section 5.4 predicts

the effective noise channels at all levels of code concatenation, answering our first

question; and Section 5.5 predicts the value of the threshold with and without changes

in the noise channel, answering our second question.

5.1 Numerical Simulations

We conduct numerical simulations to test the accuracy of our analytical model. We

do not simulate more than one level of error correction (that would require too many

computing cycles). However, in addition to simulating level one error-correction with

depolarizing noise, we simulate level one error-correction with the noise channel that

69

our analytical model predicts for higher level error-correction. In this way we effec-

tively simulate higher level error-correction, assuming that our analytical model is

sufficiently accurate.

We modified a quantum computer simulator called ARQ, created by A. Cross [5],

which uses stabilizer simulations given in [1]. The program ARQ takes as input a

sequence of commands that specifies qubits, the gates that act on them, and sim-

ple classical processing. ARQ language specifications are given at the beginning of

Appendix E. ARQ uses stabilizers to track the state of a quantum system, and can

efficiently simulate any stabilizer circuit.

We wrote Python code that generates ARQ code for simulating the quantum

error-correction circuits that we have chosen for our model. We have included the

ARQ code generator in Appendix D and included some sample output (ARQ code)

in Appendix E.

5.2 Alpha

In order to calculate the threshold and noise channels, we derived equations for the

probabilities of incoming errors on the ancilla in Section 4.3. In our notation, these

were the probabilities PI(inc X on S' anc), PI(inc Y on S1 anc), and IP(inc Z on S1 anc).

In this Section we compare our analytical estimates of these probabilities to the results

of our numerical simulations. We find that they are in precise agreement.

We derived the probabilities of incoming errors on the ancilla by first deriving

the probability that the verification network passes with and without errors. The

probability that the verification network passes, which we called , is plotted in

Figure 5-1 along with our numerical results.

In Figure 5-1 we plot alpha versus the gate failure rate y, where we define y

Y1 = 7Y2 = Ym = y = 10',. We plotted a twice: once using the depolarizing channel,

and once using a channel with equally weighted X and Z errors (but no Y failures) on

single qubit gates and equally weighted IX, IZ, XI, and ZI failures (but no on other

failures) on two qubit gates. This second channel is approximately the effective noise

70

1

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

n aQ

0 0.5 1 1.5 2 2.5 3

Y x10 - 3

Figure 5-1: This is a graph for a, the probability that the verification network passes,
versus the failure rate y -- il = '2 = Ym = Yp = 10lOy. It is plotted twice: once
assuming the depolarizing channel (solid line), and once assuming the effective channel
that we calculate in Section 5.4 to be the higher level noise channel ("adjusted" dashed
line).

channel at higher level error-correction that we calculate in Section 5.4. In Figure 5-1,

we call the value of a for the higher level noise channel "a adjusted." We find that

the value of a is higher for the higher level noise channel. This is mainly because the

probability of an X or Y error changes from 2y/3 to y/2 for single qubit gates and

from 8/15 to 1/4 for two qubit gates.

The essential probabilities for determining the threshold and higher level noise

channels were the probabilities of incoming errors on the the ancilla, which are plotted

in Figure 5-2. Again, we plot two results, one set of results for depolarizing noise,

and one set of results for the higher level noise that we calculate in Section 5.4.

71

In Figure 5-2 we plot two probabilities: IP(inc X,Y on S1 anc) and IP(inc Z,Y on S1

anc). The first, IP(inc X,Y on S1 anc), is important because X and Y errors on the an-

cilla propagate to errors on the data. The second, IP(inc Z,Y on S1 anc), is important

because Z and Y errors on the ancilla cause non-zero syndrome measurements.

0.045

0.04

<) 0.035

0.03
cn

0 0.025

I 0.02

(a
0 0.015

. o.ol

0.005

0
0 0.5 1 1.5 2 2.5 3

Y x10 - 3

Figure 5-2: This is a graph of the probabilities of incoming errors on the ancilla coming
into S1 versus the failure rate y-Y = Y2 = = m p = 1 0 y,. The probabilities
are plotted twice: once assuming the depolarizing channel (solid lines), and once
assuming the effective channel that we calculate in Section 5.4 to be the higher level
noise channel ("adjusted" dashed lines). The legend indicates the the order of the
plotted probabilities as they appear in the graph from top to bottom.

We find that the probability of an incoming X or Y error on the ancilla is lower

for the higher level noise channel. This means that there is a lower probability of an

error propagating to the data than would be predicted using the depolarizing channel.

However, we find that the probability of an incoming Z or Y on the ancilla is actually

72

higher for the higher level noise channel. This means that there is a higher probability

of obtaining a wrong syndrome measurement during S.

We explain how we obtained the numerical results. For each probability, we ran

105 simulation trials of the preparation network (G and V1) for each data point. For

alpha, we merely counted the number of times verification succeeded. For the other

probabilities, we used stabilizer generators to detect the errors that occurred. For

lP(inc X,Y on S1 anc) we compared the set of stabilizer generators of the data qubits

at the end of V1 to the set of stabilizer generators for the state 10)L with one X error

(seven possibilities) and the set of stabilizer generators for the state 0)L with one Y

error (also seven possibilities).

Similarly, for lP(inc Z,Y on S1 anc) we compared the set of stabilizer generators

of the data qubits at the end of V' to the set of stabilizer generators for the state

O) with one Z error and the set of stabilizer generators for the state O)L with one

Y error.

5.3 Incoming Errors on Data

In Section 4.4 we solved a set of six linear equations to solve for the steady state

incoming error probabilities (P, P', p ,z, PX, Pf, and PZ). We plot our analytical

estimates and simulation results for the first three of these probabilities for the case

Ui = I (single qubit identity gate) in Figure 5-3.

As in the preceding Section, we calculated each probability twice, once using the

depolarizing channel and once using a channel with equally weighted X and Z errors

but no Y errors. This second channel was approximately the effective channel for

higher level error-correction that we calculate in Section 5.4.

For each probability, we ran 105 simulation trials of a network consisting of six

error-corrected identity gates (for each data point). Six consecutive error-corrections

were used to ensure that the steady state distribution of incoming errors was achieved.

We found that five was large enough to ensure steady state.

As in the preceding Section 5.2, we determined the probabilities by comparing the

73

set of stabilizer generators for the data qubits to the set of stabilizer generators for

10)L with a single qubit error. We compared the stabilizer generators immediately

before either SI or S 1 during the sixth error-correction.

5.4 Noise Channels

In Section 4.5 we calculated the probabilities of logical X, Y, and Z errors. This gave

us the effective noise channel at any level of error-correction. We plot our analytical

estimates of these probabilities given depolarizing noise in Figure 5-4. The noise

channel is given by the relative probabilities of logical X, Y, and Z errors.

We find that after one level of concatenation, the probability of a Y error is an

order of magnitude less than the probability of an X or Z error. After two levels of

concatenation, the probability of a logical Y error is negligible: the effective noise

channel at all higher levels of concatenation is approximately one half X error and

one half Z error. Also n Figure 5-4 we plot the probabilities of logical X, Y, and Z

errors assuming that the noise channel is already this higher level noise channel.

We cannot easily compare the probabilities of the three logical errors to numerical

simulations, because no matter what single logical qubit state we create, the state

is always stabilized by one of the logical errors. That means that the logical Y

error is always indistinguishable from either the logical X or logical Z error, when

using stabilizers to distinguish them. However, we can conduct numerical simulations

to determine IP(logical X,Y failure) and IP(logical Z,Y failure), the first of which we

compare to our analytical model in Figure 5-4.

5.5 Threshold

As explained in Section 4.6, the threshold that our model predicts is an eleven di-

mensional surface in noise parameter space. It would be intractable to represent that

surface here, so we present a two dimensional cross-section in Figure 5-5.

We chose a cross-section where 'Yelse 'Y1 =-- 2 = yp - Ym and -y are the

74

independent initial failure rates. We could have set w = 1yi/10, obtaining a one-

dimensional cross-section of the threshold as other authors do, but wait gates appear

far more often than the other gates in our error-correction circuit, so the effect on the

threshold of changes in yw is greater. For this reason, we thought it would be useful

to show how the threshold depends on y7w

Because our intent is to show how the value of the threshold changes when we take

into account the changes in the noise channel, we plot three thresholds under three

different assumptions: the noise channel is depolarizing at all levels of concatenation

(this gives the lowest threshold result); the noise channel is always one half X, one

half Z, and no Y at all levels of concatenation (this gives the highest threshold result);

and the noise channel is initially depolarizing but changes at each level according to

our analytical model (this gives the middle threshold result).

Our result is that the value of the threshold for the Steane [[7,1,3]] code changes

by 30% from 3.0 x 10 - 4 to 3.9 x 10 - 4 when 10 7w = y1 = '72 = p = 7a. Our result

for the case where we assume depolarizing noise every level is in excellent agreement

with [21].

We analyze our threshold result a little more. Figure 5-6 graphs the failure rates

of level f + 1 gates in terms of the level f failure ratey = y1 = y72 = 7y = p = 107w.

The solid lines give the results when the level f noise is depolarizing, while the dashed

lines give the results when the level f noise is equally weighted X and Z errors only.

We find that level f + 1 are much lower in the latter case (with the exception of

%7m(f + 1), which is so small we do not really care about it).

Tables 5.1 and 5.2 show in detail the behavior of the noise channels just below

threshold (the adjusted threshold, 3.9 x 10-4). Rows 1-4 of each table show the error

rates assuming changing noise channels at each level of error correction. Rows 5-8

show the error rates assuming depolarizing noise at each level of error correction.

First we look at rows 1-4. The characteristic behavior is that the failure rates y x7

and 7yX initially jump down, while the failure rate ywx jumps up to the same level

as ilx and 'NX, since all three of these gates get replaced by approximately the same

75

Y

1.300
.0688
.0028
.0000

1.300
.3766
.5580
1.517

Ix
'-2

.2600
.5143
.5273
.4914

.2600

.1459

.2284
.6216

IY2
"1/

.2600

.0657

.0028

.0000

.2600

.1459

.2284

.6216

AB
'72

.2600
0

0

0

.2600

.1459

.5551

.6216

.1300

.4645

.5089

.4763

.1300

.3287

.5551
1.517

Y
'_Yl

.1300

.0571

.0027

.0000

.1300

.3287

.5551
1.517

x
'Ym

1.300
.0126
.0001
.0000

1.300
.0093
.0001
.0000

Y
71m

1.300
.0025
.0001
.0000

1.300
.0093
.0001
.0000

Table 5.1: This table shows the behavior of the noise channels just below threshold.
Rows 1-4 give the noise channels for successive levels of error-correction in our model.
Rows 5-8 give the noise channels for successive levels of error-correction assuming
that the noise channel is depolarizing at each level.

'1

3.900
1.130
1.026
.9529

3.900
1.130
1.674
4.551

Table 5.2: This table is the same
each type of gate is presented.

72

3.900
2.189
2.115
1.966

3.900
2.189
3.427
9.325

Yw

.3900

.9861
1.021
.9526

Ym

3.900

.0278
.0002
.0000

.3900 3.900

.9861 .0278
1.665 .0003
4.550 .0000

as Table 5.1, except only the full failure rate for

error-correction circuit. If yx and -7rx jumped down far enough, they will be below

threshold, as is barely the case in our example. The failure rates yY, 7 Y , -yy, and

'Y all jump down to about 1/9 to 1/8 of their corresponding X failure rates. The

jump of -yY and y'Y down between rows 2 and 3 is what causes 7yIx and yx to start

decreasing again after a slightly increasing between rows 2 and 3. The measurement

failure rates become negligible rather quickly.

Now we look at rows 5-8. Rows 5 and 6 are the same as rows 1 and 2 because

both started with depolarizing noise. For each row in 5-8, each location failure rate

is spread out evenly among the possible failures. Logical X failures occur when there

are two X errors or one X error and one Y error. Similarly, logical Z failures occur

76

x
'-x

1.300
.5305
.5118
.4764

1.300
.3766
.5580
1.517

when there are two Z errors or one Z error and one Y error. Y errors contribute

to both logical failure rates, so when the failure rates are spread out among X, Y,

and Z errors, this increases the probability of logical failrates. Row 8 shows that

= 3.9 x 10 - 4 is above threshold when assuming depolarizing noise at all levels.

77

u.uO

0.05I-'

Qa4

. 0.04
O0

2 0.03

a,
0
C

0.020

Q_
0.01

fv
0 0.5 1 1.5 2 2.5 3

Y X 10
- 3

Figure 5-3: This is a graph of the probabilities of incoming X, Y, and Z errors
into Z error-correction: PX pY, and pZ. They are plotted against the failure rate

- 'Y1 = Y2 = Ym = p = 10 -yw The probabilities are plotted twice: once assuming
the depolarizing channel (solid lines), and once assuming the effective channel that
we calculate in Section 5.4 to be the higher level noise channel (dashed lines). The
legend indicates the the order of the plotted probabilities as they appear in the graph
from top to bottom.

78

^ 11 f,

I

I

1 1.5 2 2.5

7

Figure 5-4: The is a graph the effective noise channel (the separate probabilities of X,
Y, and Z errors) at level £+ 1 versus the failure rate y - yl = 2 = m = p = 1Oy,, at
level e. The probabilities are plotted twice: once assuming the depolarizing channel,
and once assuming the effective channel that we calculate in Section 5.4 to be the
higher level noise channel. We also plot the probability of an X or Y error (denoted
X,Y error) and compare to numerical simulation. The legend indicates the the order
of the plotted probabilities as they appear in the graph from top to bottom.

79

x 10-3

4

I X,Y failure rate I
X(c
Y f;

nur
a)

I-

N
>:

3.5

3

2.5

2

1.5

1

0.5

n
0 0.5 3

x10 -3

I-

..................................

.-

. . - - .

. . .. I...
.......... .

V

1.2

1

0.8

,. 0.6

0.4

0.2

(n

I

X 10 - 4

- - - adjusted threshold

: -- previous threshold
....... 10 w ' = else

N ...

N

-~ ~ ~~~~~~~~~~. ..

... :

..
-. N. ""' ', ,\~~~~

I

"I

i 'N1v
0 2 4

Yelse

6 8

x 10- 4

Figure 5-5: This is a graph of the threshold for the Steane [[7,1,3]1 code. The hori-
zontal axis is Yelse =-1Y = Y2 = p = Ym and the vertical axis is y. The solid line is
the threshold result assuming depolarizing noise at all levels of error-correction. The
dashed line is the threshold result when the noise channel changes according to our
analytical model. Along the line yise, = 10wy, the threshold increases from 3.0 x 10 - 4

to 3.9 x 10 - 4 when we take into consideration the changing noise channel.

80

III~~~

"I

)

4

+

a)> 3
aD

-2

1

n
0 1 2

y at level I x 10-3

Figure 5-6: This is a graph of the failure rates at level f + 1 in terms of the failure
rate y _ yly2 Y2 = y = p = 10-Yw at level T. The probabilities are plotted twice:
once assuming the depolarizing channel, and once assuming the effective channel that
we calculate in Section 5.4 to be the higher level noise channel. The legend indicates
the the order of the plotted probabilities as they appear in the graph from top to
bottom.

81

x 10 -3

82

Chapter 6

Conclusions and Further Directions

We developed an analytical model that determines the effective noise channel for each

type of gate at each level of concatenation of the Steane [[7,1,3]] code. We used the

model to determine the effects of the changing noise channel on the threshold. We

found that Y errors quickly drop out of the effective noise channel for all types of gates

at levels of error-correction beyond level one. The effect this had on the threshold

was to increase it by 30%. We also found the threshold to be 3.9 x 10- 4 , which is

an order of magnitude lower than the rough estimate in [19], but in good agreement

with the estimate in [21].

Our analytical model has the novel feature that it calculates separately the prob-

abilities of incoming X, Y, and Z errors into the X and Z error-correction routines.

It calculates each set of probabilities in terms of the same set of probabilities in the

previous error-correction, setting up an easily solvable system of linear equations.

The power if this method was not fully utilized in the current thesis, and we note

some possible extensions here.

The first extension is of practical interest. In a physical realization of a quantum

computer, the noise channel can be very different from the depolarizing channel (X, Y,

and Z failures can be weighted unequally). When this is the case, it may be possible to

design new or modify existing error-correction routines to increase the threshold. Any

analysis of the benefits of particular error-correction routine will necessarily involve a

detailed analysis of the change in the noise channel at higher levels of error-correction,

83

for which we set up a framework in our analysis.

In our thesis we limited the possible set of initial noise channels by assuming

that X and Z failures always occur with equal probability. If we did not make this

assumption, then the failure rate of any gate would depend on whether the preceding

gate was a Hadamard (which swaps X and Z errors). Then we would not be able

to assign a given threshold to an entire class of gates, since the failure rate of any

particular gate would depend on the circuit it belongs to. This circuit dependence

of the threshold can be calculated using the system of linear equations we set up in

Section 4.4.

The second extension would be to generalize our analysis to arbitrary CSS codes.

Construction of efficient error-correction networks using the generator matrices and

parity check matrices was already explained in [19]. The main difficulty would lie

in determining the incoming errors into each error-correction routine. The system of

linear equations derived would be much larger and more complicated, but tractable

if calculated by computer. It would be very interesting to find out how larger CSS

codes affect the noise channel and how the new noise channel affects the threshold.

84

Appendix A

Probabilities

Table A. 1 in conjunction with rule A. 1 lists all of the probabilities used in the analysis.

For a description of our notation, see Section 4.2.

]F(no [inc] errors on A1l, A 2, ... qubits) = I1 P(no [inc] errors on A i qubits).
i

(A.1)

85

expression causes
no W,Y on Sj,t>'""",` " ~2
no W[Y] on Sjt>l

no W[Y] on Sj

no W[Y] on R

no W[Y] on R'
no W[Y] on U1no W[Y] on U,

no Z,Y caused on S1' anc

no Z,Y caused on Sij,t>l anc

no X[YJ caused on S l

no X[Y] caused on S jl
no Z,Y caused on S1'l anc

no X[Y] caused on U2

no Z caused on S l

no Z,Y caused on S '

no Z caused on Sl
no Z,Y caused on S l anc

no Z,Y caused on Sjll
no Z,Y caused on Si '1 anc

no Z,Y caused on S
Z,Y caused on S '1 l anc

no Z caused on U2

W

W
W

W
W

XX,XY
ZI,ZZ

Z,Y; X,Y

IX[IY] ,ZX[Z
xY[xx],YY[Y

(ZX[ZY],ZX[ZY]) (1 - 2y w - 2 ,Y - 6 AB) 7

XX,XY,YI,YZ, (1- 2 I w - 2 I - 4AB 7

ZI,ZZ,IX,IY (1 - 2 AB) 7

IX[IY],ZX[ZY] (1 - wY2 3A)
XY[XX],YY[YX]

XI,YI,ZZ,IZ (1 - 2W y -72 -) 7

XI,XX,YI,YX (1 - 2W - 22Iy - 4AB)

ZY,ZZ,IY,IZ

(XI,IZ) (1 -42 2 - 42 B) /

XX,XY,YI,YZ, (1 2 - 2 Y - 4 AB) 7

ZI,ZZ,IX,IY (1 - 2 2) 7

(XI,IZ,YX,ZY) (1 - 4%w - 2/ - 67 B)7/
XX,XY,YI,YZ, (1 -2 - 2%I - 4AB) 7

ZI,ZZIX,IY w (1- 2 -y
IW - 2yAB) 7

YI,ZZ,IY,XX (2 7Y + 2 yAB)/
XX,XY,YI,YZ, 27yw + 22 + 4 2AB

ZI,ZZ,IX,IY

XI,IZ,YI,ZZ (1 - 27 - 2Y - ,B

Table A.1: All probabilities needed for the calculation of px, pzY, pz, px, pY, and
Pf given in Section 4.4 and the calculations of the failure rates in Section 4.5 can
bee looked up in this table. In the top section, the label W can be replaced by either
X or Z. The gate U2 is taken to be a cz gate.

86

L

l

expression causes

Appendix B

Counting Tables for Failure Rate

Estimates

Tables B.1, B.3, and B.5 list all pairs of errors that cause a logical X or Y error;

a logical Z or Y error; and a logical Y error, respectively. The columns indicate

the location of the first error and the rows indicate the location of the second error.

The column and row labeled "inc" correspond to incoming errors on S1 ancilla. The

counting is exact.

Usually filled in each cell is the error that must occur on both gates (or list of

errors from which one must occur on each gate). The errors in some cells are followed

by 1 or 2, meaning that the specified error(s) must be the first or second error,

respectively. In such a case, the other error is assumed to be in the list XY (for

Table B.1), ZY (for Table B.3), or Y (for Table B.5). The additional designations

"s" and "n" indicate that the error causes further syndromes to be extracted (s) or

must not cause further syndromes to be extracted (n). Such a designation is needed

when, for example, the first error is on S1 and the second error could be either on

S21 or S. The designation of "sn" indicates that both errors must cause a non-zero

syndrome or both errors must not cause a non-zero syndrome.

Tables B.2, B.4, and B.6 list all single errors that cause a logical X or Y error; a

logical Z or Y error; and a logical Y error, respectively, given various single incoming

errors.

87

inc
Sl1

z
Sl,t>l

z
S2,1

S2t>1
z

S3z2
SW

RW

Sll

Sl,t>1

S2 ,1
x

S2,t> 1

s3
SW

Rw

Ui

inc

XY
XY
XY
Y1
Y1
Y1
XY
XY
XY
XY

XYs2

Sl l5111a:

XY
XY

XYsl
XYsl
XYsl
XYnl
XY
XY
XY

XYs2

Sl,t>l
Z

XY

XY
XY
XY
XY

XYs2

SWa:

XY
XY
XY
XY

XYs2
--

--

Rz

XY
XY
XY

XYs2

--

IS'51

XYsn
XY
XYs

XYnl
XYnl

XY

XY
XY
XY

SWa

XY
XY
XY

XY
XY

Ui

XY

Table B.1: This table lists all pairs of errors that cause a logical X or Y error. The
columns indicate the location of the first error and the rows indicate the location of
the second error. The column and row labeled "inc" correspond to incoming errors
on the S ancilla.

inc S Szl' l Sl2 I S 3 S RzW S1,1 Sxt>l S x2 1 I
inc XIXY XY XY XY- - XY XY XY XY XYs
inc Y XYXY XY XY XY - XY - XY XY X XYs

Table B.2: This table lists all errors that cause a logical X or Y failure, given either
an incoming X error (first row) or an incoming Y error (second row). The column
labeled "inc" corresponds to an incoming error on the S' ancilla.

88

s1,t>1
S2,1

z

inc

S21,t>1

S2,1
2

Sx3

RW

inc

S1l1a

ZYsn
ZY
ZYs

ZYnl
ZYnl
ZYnl
XY2
ZYnl
ZYnl
Ynl
Ynl
Ynl
Znl

ZYnl
ZYnl

Sl t> J

ZY

ZY
ZY

XY2

ZY
ZY
Y1
Y1
Y1
Z1
ZY
ZY

Sz

ZY
ZY

XY2

ZY
ZY
Y1
Y1
Y1
Z1
ZY
ZY

RWRa

ZY
XY2

ZY
ZY
Y1
Y1
Y1

Z1
ZY
ZY

inc

XY

XY1

XY1
I Y1

Y1
Y1

xl

XY1

XY1

Sll

ZY
ZY
Ysl
Ysl
Ysl

ZYnI
ZY
ZY

Slt> 1

ZY

ZY
ZY
ZY

SWa

ZY
ZY
ZY

RW
x

ZY
ZY

l i

ZY

Table B.3: This table lists all pairs of errors that cause a logical Z or Y error. The
columns indicate
the second error.
on the S' ancilla.

the location of the first error and the rows indicate the location of
The column and row labeled "inc" correspond to incoming errors

11 SZll I Slt>l I S2,1 I

inc Z ZY ZY ZYs
inc Y ZY ZY ZYs

Table B.4: This table lists all errors that cause a logical Z or Y failure, given either
an incoming Z error (first row) or an incoming Y error (second row).

89

S1,1

Sl,t>
S2,1

5 2t> 1

z

RW

S2,1

S2,t>

S3

SW

RwSW

Ui

Sil
z

Ysn
Y
Ys

Ysl
Ysl
Ysl
Ysl
Ysl
Ys2

--

Sl,t>l
Z2

Y

Y
Y
Y
Y

Ys2

SW3

Y
Y
Y
Y
Ys2

-- l

Y
Y
Y

Ys2

I-

--

Spl1
3,

Ysn

Ynl
Y

Ynl

Sl,t>
X

Y

Y
Y
Y

Sx

Y
Y
Y

RX

Y
Y

Ui

I

I

I
I

Table B.5: This table lists all pairs of errors that cause a logical Y error. The columns
indicate the location of the first error and the rows indicate the location of the second
error.

i1 Sll I Slt>l I S2,1

inc Y Y Y Ys

Table B.6: This table lists all errors that cause a logical Y failure given an incoming
Y error.

90

Appendix C

Error Correction Circuits

These are the circuits used to construct the error-correction routine for the Steane

[[7,1,3]] code. The use of these circuits in error-correction is explained in detail in

Section 3.2

91

Iqd)L X

10)L

)LES1[

10)L {I L _ _ _ _ _ _ _ _ _

Figure C-1: The error correction routine finds and corrects errors on the seven data
qubits in the logical state Iqd)L with the aid of multiple copies of ancilla qubits in
the logical zero state O)L. The second half of the circuit is on of two possibilities,
depending on whether the first syndrome extraction S1 was zero or non-zero. If the
syndrome is non-zero, then two more syndromes are collected (middle circuit), but
if the syndrome is zero, no more syndromes are collected and the data qubits wait
(righmost circuit) during the syndrome extraction circuit acting on other qubits.

Iqao) = 10)

Iqal) = 10)

qa2) = 10)

qa3) = 10)

Iqa4) = 0) -i

jqas) = 10) H

Iqa6) = 10) {H

I
-

1-

_

) (

i.

Figure C-2: This is the circuit for the preparation network, G. It prepares the logical
zero state, 0)L. It is used in the error-correction circuit (see Section 3.2) to prepare
ancilla qubits in the state 0I)L.

92

f

II

�Z

)-

I

E (.A

j

a)

4

. , ,

P LLI
I

I I . i.

I - --- - - - -- -- _--

I

I

Iqao)

[qai)

Iqa2)

Iqa:3)

qa4)

I qa 5)

Iqa~)

]qvo) =

Iq'l) -

[qv2) =

Iqu3) =

Figure C-3: The verification network V checks for X errors on the state IO)L and gives
four zero measurement results if no X errors are detected.

93

Iqdo)

jqdl)

Iqd2)

[qd3)

[qd4)

Iqd5)

Iqd 6)

[qao)

jqal)

qa2)

jqa3)

Iqa4)

qa5)

fqa6)

Figure C-4: The syndrome extraction network S consists of three time steps. The

above network is the syndrome extraction for Z error correction. The syndrome

extraction network for X error correction is the same, except with each cnot replaced

by cz.

94

Appendix D

ARQ Code Generator for [[7,1,3]]

Quantum Code

In this Appendix we present our code which generates ARQ code for an arbitrarily

concatenated error-correction circuit for the Steane [[7,1,3]] code. The inputs to our

code generator are g, the type of gate to be error-corrected; L, the level of code

concatenation; s, the number of syndromes to collect if the first is non-zero; s', the

number of syndromes that must agree for error-correction; and t, the number of

repetitions of gate g. In our simulations, we only used the case L = 1, s = 3, and

s' = 2, though our code generator allows for more generality.

The main program appears at the end of the code. It takes as inputs the above

mentioned quantities and then outputs the appropriate ARQ code via print state-

ments. The function recover, which writes code for the error-correction circuit EC,

is called first, followed by the transversal version of the gate being error-corrected.

recover calls the functions G, V, and S to print out the error-correction circuit.

At the end of our code (but before the main program) we provide a set of functions

that measure the stabilizer generators of the data to find errors on the data.

95

#!/Issr/b7/enLv ythLon
nft pg
Andrew Morten < amortenr)mit. edu>. Andrewt Cross < avcross@mnrt. edn>

Generates ARQ code for the [7.1.3/]] nonlocal fault-tolerance miodel
given 7r quant-ph/0410047 by Svore, Terhal. DiVincenzo

import sys
from math import *
import time

versio n infor'mation

global version-info
versioninfo = "nft.py version 1.1 amorten@mit.edu, last modified 26 Aug 2005"

global L # level of code concatenation, i.e. an ML simvulatng csrcust is created
global s # number of' addStional syndr-ores to collect f' the fir-st syndrome Ss nonzero
global s_prime # nubrrLer of syndro'mes that must agree for err-or correction

counters for creating ,lnsque labels for jump targets
global counterPrepare
counterPrepare = 0
global counterRecovcr
counterRecover = 0
global counterSyndrome
counterSyndrome = 0
global counterMeasure
countcrMeasure = 0

global Ists of qubit and chit variables
global data, data_e, data_t , ancilla, verifyifl, verify2, verify3, verify4, vbits .\

xsyndromc0, xsyndromel, xsyndrome2 ,\
zsyndrom, zsyndromcl , zsyndromec2 ias , meas_H

qubst and cbt declarations, setup inst-ructsons

Ret'arns 1Rsts of physscnl qbst anrd cbst nanes:
data - 1 logscal qubt (L
datl - 1 logical qubst @ L
data2 - I1 logscal qubst L
ancilla - list of logscal qubts @ /L,L-1,..., 1]
verifyl - I logscal qubst @ L-1
verify2 - I logscal qbit @ L-1
verify3 - I logical qubit @ L-1
vbits - a list of verifscation chits
zsyndroreO - Is t of s syndrome cbits
csyndrore1 - list of s syrndr-one cbits
Zsyndrone2 - list of s syn dr-orne cb ts
zsyndroreO - 1st of s syndrore chits
zsyndromel - Ist of s syndrome cbits
* zsyndro-me2 - list of sy sndr-one chits

def declare_allbutdata ():

ancilla = []
ancillatemp = []
verifyl = []
verify2 = []
verify3 = []
verify4 = []
vcrifyl_temp = []

96

verify2_temp = []
verify3_temp = []
verify4_temp = [|
vbits = []
xsyndromeO = []
xsyndromel = [1]
xsyndrome2 = []
zsyndromeO = []
zsyndromel = [1
zsyndrome2 = []
meas-H = []
meas = []

meas-temp = []

print "-------------

print "# declare(L = -d,s=i'd)"%(L,s)
print "'#'

print "# mcasurement bits(4+%dx7 cbits)"%L
for i in rangc(4):

print "\tbit\tmeas_H_%dd"%(i)
meas_H .append("' measH%d"%(i))

for I in range(L):
for i in range(7):

print "\ tbit\tmeas_%d_d"%(1+1, i)
meastemp . append("meas_%d%d" %(+1, i))

meas .append (meastemp [:])
print '# temporary cbits used in measurement (3 cbits)"
for i in range(4): print "\tbit\ttemp%d"%i
print "!# temporary cbits used in syndrome extraction (7 cbits)"
for i in range(7): print "\tbit\ tse%d"%i
print "# qubits and cbits that must be passed into G. V. S. etc
print "# verify cbit '
print \ tbit \tv"
vbits. append("v")
print "# syndome bits 2x3x%d of them"%s
for i in range (s):

print "\tbit\txsO%d"%i
print "\tbit\txsl%d"%i
print "\tbit\txs2%d"%i
xsyndromce . append (" xsO0%%d"%i
xsyndromel .append (" xsl%d"%i
xsyndrome2 .append (' xs2%d"%i)
print "\tbit\tzsO0d"%i
print "\tbit\tzsld"%i
print " \tbit\tzs20d"%i
zsyndromeO . append (" zsO%d"%i)
zsyndromcl .append(" zsl%d"%i)
zsyndrome2 .append (" zs2%d"%i)

print "#ancilla qubits (1 logical qubit @ L=%d)"%L
for 1 in range(L):

for i in range(7**(lI +)):
print \tqubit\tqa%d_%d"%(1+1, i)
ancillatemp .append("qa%d_%'d"%(l+1, i))

ancilla .append(ancilla_temp [:])
print "# verification qubits (3 logical qubits L-1=%d)'%(L-1)
for I in range(L):

for i in range(int(7**l)):
print '\tqubit\tv0_%dS d"%(+1l. i)
print "\tqubit\tvli%d_''d"%(1+1 i)
print "\tqubit\tv2_%d'_%d"%(l+1, i)
print "\tqubit\tv3_%d_%7d"%(1 +1, i)

97

verifyl_temp. append(" vO_%d_%d"%(1 +1, i))
verify2_temp .append(" v 1 %d%d" %(l +1, i))
verify3_temp .append(" v2_%d_%d" %(l +1,i))
vcrify4_temp .append (" v3_%d-%d" %(l +1, i))

verify 1. append(vcrifyltemp [:])
vcrify2 .append(vcrify2_tcmp [:])
vcrify3 .append(verify3temp :])
verify4 .append(verify4_temp [:])

print "# other initialization code"
full_addinit ()
findbestsyndrome-init ()
print '# other"
print "\tnoise\tdepolarizc"
print " \ tbit \tmagic"

return ancilla, verifyl, vcrify2, verify3, verify4, vbits ,xsyndromeO ,xsyndromel ,xsyndrome2
zsyndromeO, zsyndromel, zsyndrome2 , meas , meas_H

def declare-dataqubit (label):

data = [I

print "# data qubits and ancilla qubits (2 logical qubits @ L7Ao)"%L
for i in range(7**L):

print "\tqubit\tqd_%s_%d"%(label , i)
data. append(" qd_%s d" %(I abe I . i))

return data

Transversl gates

def h(q):

for x in q: print "\th\t%s"%x

def X(q):
#zf len(q)<7:
#/ print "\ th\ t%s "q
#else:
for x in q: print "\tx\t%s"%x

def Z(q):
#/f len (q) <7:
/# print "\ th\ ts"%q
#else:
for x in q: print "\tz\t%s"%x

def cnot (qc, qt):

for i in range (len (qc)):
print " \tcnot t%s.%s"%(qc [i . qt [i)

def cz (qc,qt):

98

for i in rangc(len(qc)):
print "\tcz\t%Vs.%s"%(qc [i , qt [i)

def wait (q):

for x in q: print "\twl\t%'s"%x

def identity (q):

for x in q: print "\tid\t%s"%x

def measure(q,b):

if len (q) == 1:
print "\tmeasurc\t%s,% s" %(b,q [O])

else:
global countecrmeasure
mynumberl = countermcasure
countermeasurce = countcrMeasure + 1
level=int(log(len(q))/log(7))
for i in range (7):

measure (q [i] . mcas [Icvel -1]i])
H = [[1,0.0,0.0.,1J1,[0.1.0.0,1.0.1],[0.0,1.0.1,1,0],[0,0,0,1,1.1,1]]
for i in range (4):

print "\tset\t%s 0"%(measH[i])
for j in range(7)

if H[i j]:
print "\txor\t%s .%s,%s"%(meas_H [i , measH [i] meas [Icvel

- l][j])

print "\tset\t%s ,0 "%(b)

#First chec/k 2f H=O (mpl-le, outcom=e=0)
print "\tset\ttempO ,1'
for i in rangc(4):

print " \txor \ ttempl ,%s 1, " %(meas_H i])
print '"\tand\ttempO, tcmpO. templ"

print " \ tif\ttcmpO"
print " \tjump\ tmeasu rc_cn d_%d'' %(mynumberl)

#If wot. then check: f parity of H s2 zero (pzess outcome=l)
print "\tset\ttcmpO,1"
for i in range (4):

print "\ txor\ttempO, tempO,%s"%(meas_H i])
print "\ t i f\ttempO"
print "\tjump\ tmcasure_outcomel _%d"%(mynumberl)

#If iot, check tf Hv s [1110] (implies outcome=1, otherwzse 0)
print "\tset\ttmpO, 1'
for i in range(3):

print "\tand\ttempO,tempO,%s'"%(meas-H [i)
print "\txor\ttempl ,%s ,1 "%(measH [3])
print ' \ tand\ttcmpO,tmpO, temp, templ"
print "\ tif\ttcmpO"
print ' \tjump\ tmeasure_outcomcl _.%d"%(mynumberl)
print " \tjump\ tmeasure_end_ed"%(mynumberl)

print "\tlabel\tmeasurc_outcomcl_%d"%(mynumberl)
print "\tset\t\,s,1"%(b)
print "\ t a b I \ tmcasure_cnd_%d" %(mynumberl)

99

Logical quhit rmanltputlations

Split a logical qbrt q (list of strings) I'Lto a list of lsts of strings.
The nner lists are (-I1)-blocks of the n-block q.
def split_qubit (q):

out = [1
if len(q) == 1: return q # just return sgle qubzts
L = int(log(len(q))/log(7))
for i in range(7):

out .append(q[int (i*7*(L-1)): int ((i+1)*7**(L-1))])
return out

/ Recoverj ret,wo rk elemLents

ft
ft

ft

Preparation (sarns verification)
q is a list of 7 logical qubits (lists)
or a ltst of I physical qubit (string)
noiseType is one of "none ". "NFT", "full"

'lone -> no ose at all
NFT -> subordnate preparation introduces errors like a single qubit gate replacement

-tI e

full -> all gate and uwait failures
def G(q. noiseType):

print " #G ACTING ON" .q
print "#---------------------------
print '# G preparation network, noiseType = %s"%noiseType
print '# acting on a %d-block of M-Yd"%(int(log(len(q))/log(7)),L)
if lcn(q) == 1:

if noiseType != "full": print "\tnoise\toff"

print ' \tmeasure\ttemp0,%s"%q [01
print ' t i f \ttemp0"
print " \tx\t%s"%oq [0]
if noiseType == "NFT":

print "\tidentity\t%os"%q [0]
if noiseType != "full": print "\tnoise\ton"

else:
tirnestep 0
for i in range (7):

if noiseType != "full":
G(splitqubit(q[i]) ,"none")

else:
G(splitqubit (q[i) ," full")

if noiseType == "NFT": identity(q[i])
tirmestep 1
if noiscType == "none": print "\tnoise\toff"
if noiseType != "none": recover(q[0], noiseType)
h(q[6])
if noiseType != "none": recover(q [1], noiseType)
h(q[5])
if noiseType != "none": recover(q [2, noiseType)
h(q[4])
if noiseType != "none":

recover (q [3], noiseType)

100

wait (q [3])
if noiscType != "none":

recover (q [4], noiseType)
wait (q [2])

if noiseType != "none":
recover (q [5] noiseType)
wait(q[l])

if noiseType ! = "none"
recover (q[6]. noiseType)
wait(q[0])

tmestep 2-4
interact = [[3,2,1],[2,0,3],[1,3,0]]
for x in interact:

if noiseType = "none" recover(q[0], noiseType)
if noiseType != "none" recover(q[x[0]], noiseType)
cnot (q[4], q [x [0]])
if noiseType != "none" recover(q[1], noiseType)
if noiseType != "none" recover(q x[[1], noiscType)
cnot(q[5] ,q[x[l]])
if noiseType != "none" recover(q[2], noiseType)
if noiseType != "none": recover (q[x[2]], noiseType)
cnot (q [6],q[x [2]])
z = map(lambda y:y not in x+[4,5,6],range(7))
for y in range(7):

if z[y]:
if noiseTypc != "none":

recover(q[y], noiseType)
wait (q[y])

if noiseType == "none": "\tnoise\ton"

Verf.'cation
q 7s (1 list o. 7 logical qbits (lists)
vO, , .and 2 are logical qblhzts (lists)
*b i s a chit narme
iioiseType is one of "none", "NFT", "' l11"
nonre --> rio lnoise at all
/# NFT -> slhordinate preparation zntroduces err-ors like a sngle qubit gate replacement

rt l e

tf1ll --> all gate ad wait failures
def V(q ,v0 .vl, v2,v3, b ,noiscType):

print "#V ACTING ON" , q, v0, vl, v2
print "#---------------------
print "# V verification network, noiseType = %s"%noiseType
print "# acting on a %d-block of MYd"%(int(log(len(q))/log(7)),L)
these two cycles are not counted
if noiseType != "full":

G(splitqubit (v0) ,"none")
G(splitqubit (vl) ," none")
G(split_qubit (v2) ,"none")
G(splitqubit (v3)," none")

else:
G(split_qubit (vO) "full")
G(split_qubit (vl) ." full")
G(split_qubit (v2) "full ")
G(split_qubit (v3) " full ")

if noiseType == "NFT":
if noiseType != "none": recover (vO, noiseType)
identity (v0)
if noiseType != "none": recover(vl,noiseType)

101

identity (vl)
if noiseTypc != "none": recovcr (v2, noiscType)
identity (v2)
if noiseTyp != "none": recover (v3, noiscType)
identity (v3)

if noiseType == "none" print "\tnoisc\toff"
if noiseType != "none" recover(vO, noiscTypc)
h(vO)
if noiseType !"= none" recover(vl, noiseTypc)
h(v 1)
if noiseType != "none" recover(v2, noiseType)
h(v2)
if noiseType != "none": recover(v3.noiseTypc)
h(v3)
timestep 0-3
interact = [[O,1,2,3],[5,4,7,6],17,6,4,5] .[67.5.4]]
for x in interact:

if x[O] == 7:

if noiseType != "none":
recover (vO, noiseType)
wait (vO)

else:
if noiseType != "none": recover (vO, noiseType)
if noiseType != "none": recover(q[x[0], noiseType)
cz (vO ,q[x [])

if x[1] == 7:
if noiseType != "none":

recover (vl, noiseType)
wait (vl)

else:
if noiseType !- "none": recover (vl, noiseType)
if noiseType != "none": recover (q [x [1], noiseType)
cz (v q [x []])

if x[2] == 7:
if noiseType != "none":

recover (v2, noiseType)
wait (v2)

else:
if noiseType != "none": recover(v2,noiseType)
if noiseType != "none": recover(q[x[2]], noiseType)
cz(v2,q[x[2[1)

if noiseType != "none": recover(v3, noiseType)
if noiseType != "none": recover(q[x [3]]. noiseType)
cz(v3.q[x[3]1)
z = map(lambda y:y not in x,range(7))
for y in range(7):

if z[y]:
if noiseType != "none":

recover (q[y], noiseType)
wait (q[y])

if noiseType != "none": recover(vO, noiseType)
h(vO)
if noiseType != "nonc": recover(vl, noiseType)
h(vl)
if noiseType != "none" : recover(v2,noiseType)
h(v2)
if noiseType != "none" : recover(v2, noiseType)
h(v3)
for i in range(7):

if noiseType != "none":
recover(q[i],noiseType)

102

wait (q[i])
t r estep 5
measure(splitqubit(vO),"temp0"); measurc(split_qubit(vl), tecmpl"); mcasure(split_qubit(v2

),"temp2"): measure(split_qubit (v3) . 'temp3")
for i in range(7):

if noiseType != "none"
recover (q [i] . noiscTypc)
wait (q [i)

classzcal decode (parity)

print "\tset\ts,temp0%b
print "\tor\t%s.'s , templ "%(b, b)
print "\tor\t%ss,%s, temp2"'%(b, b)
print "\t or\ts,%stemp3"%(b, b)

Syndrome e:t'ract7o n
1h at = r" or ' z
q,s are lists of 7 logical qbits (sts)
#b is a lzst of 3 chits for sto7ring the syndrome
def S(what,q.s .b,noiseType):

print "#S ACTING ON", q. s
print '#--- --

print "# S syndrome extraction network"
print "# acting on a %d-block of NM d"%(int(log(len(q))/log(7) ,L)
tirne.step

if what == "x":
for i in range (7):

if noiseType != "none": recover(q[i]noiseType)
if noiseType != "none": recover(s[i],noiseType)
cz (s [i], q [i]) #order spped from paper

else
for i in range (7):

if noiseType ! = "none": recover (q[i], noiseType
if noiseType != "none": recover (s [i]. noiseType)
cnot(s[i ,q[i]) #or-der swapped from paper

timestep 1
for i in range(7):

i f noiseType ! "none": recover (s [i ,noiseType)
h(s [i])
if noiseType != "none"

recover (q[i], noiseType)
wait (q [i])

tznestep 2
for i in range(7):

measure(split_qubit (s [i]) ,"sc%d"%i)
if noiseType != "none":

recover (q[i . noiseType)
wait (q[il)

classzcal decode
print " \ tset \ ts sc"%b [0]
print "\txor\t%s .%s, se2"%(b[0], b [O])
print "\txor\t%s,%s,se4"%(b[0],b[0O)
print "\txor\t%s,%s,se6"%(b [O]. b[0])
print " \ tset \t%s , sel 1 "%b [1
print "\t xor\t,s .%s, se2"%(b[1], b[1]
print " \txor\tcs . se5"%(b [1] b[1]
print "\txor\tcs.%s, se6"%(b[1] b[1]
print "\tset\t%s .se3"%b[2]
print "\txor\t%s,%s se4"%(b [2], b[2]
print \txor\ts%s se5 "%(b [2] b[2]
print "\ txor \ t%s .%s, se6' %(b 2]. b[2])

103

#prin t '\ t if\ t%s "%(b 21)
#print '"halt '

classical control support f un ctions

converts a number n to binary, with the fznal result
having k binary digits.
Returns a list I of binar y d2g2ts with the rmost signLfzcant
bst in the lower znder location.
def toBinary(n,k=0):

n is number to convert
#m is number of bnary digits (>= nma(dig2ts (n)))
if n == 0:

I = [01l
else:

m = int(floor(log(n)/log(2)))
= (m+I) * [0]

1 [m] = 1
n -= 2**m

while n > 0:
m= int(floor(log(n) /log(2)))
I [m] = 1

n -= 2**m
curlen = len(l)
if k != 0: # only etend if n != 0 (i.e. default=don 't)

if k-curlen < 0: raise "badNumDigits", [k,n, curlen]
.cxtend ([0] (k-curlen)) # add the etra, zeros

I . reverse () # Isb in lowest nde.
return I

def counter_top (t , counter-label

bt = toBinary(t)
print "#----------------- -------------------

print "# counter_head_%s: do %d times"%(counter_label ,t)
for i in range (len (bt)):

print "\tbit \tcount_%s-%od"%(counterlabel , i)
print ''\tst\tcount_%s-%d ,O"%(counter_label, i

print "\ tbit \ tcountercondition%s"%count erlabel
print "\ tbit \tcountcrtemp%s"%countcr_label
print "\ tlabel \tcountcrtop_%s"%counterlabel
print "\ tset \ tcountercondition_%s ,1 "%counterlabel
for x in range (len (bt)):

if bt[x] == 1:
print "\tand\tcountercondition_%s, countercondition_%s , count_%s %d"%(

counterlabel, counterlabel , counterlabel ,x)
else:

print " \txor\tcountertemp_%s , count%s%d, 1 "%(counterlabel, counter_label , x

print "\tand\ tcountercondition_%s , countercondition%s , countertemp%s"%(
counter_label , counterlabel, counter_label)

print "\ t if\ tcountercondition_%s"%counterlabel
print "\tjump\tcounterbottom_%s "%counter_label

call prior to using the flladd function
def fulladdinit():

print "#---------

104

print "# full_add_init'
print "\tbit\tfull_add_xorab"
print "\tbit\tfull_add_andab"
print " \tbit\t full_add_andcxorab"
print \ tset\tfull_add_xorab .0"
print "\tset\tfulladd_andab ,0"
print " \ tset \ tfull_add_andcxorab .0 "

cormpuLte +bc . here c is the crry

place the output i s and the outpLt carcry in C

def full-add (a b , c s cl):

print "\txor\tfull_add_xorab .%s.%s"%(a b)
print "\tand\tfulladdandab.%s,%s"%(a,b)
print "\tand\tfull_add_andcxorab , full_add_xorab,%s"%c
print "\txor\t%s,%s, full_add_xor ab"%(s .c)
print "\tor\t%s, full_add_andab . full_add_andcxorab"%cl

def countcr_bottom (t , counter_label

bt = toBinary (t)

print "#-----------------------------------

print "# countcr_bottom_%s"%countcr_label
full_-add (" ," count_.%s%d"%(c ounter_labcl, Icn (bt)-1) ,"0" ,\

"count_%s_%d"%(cou nter_labcl . len (bt)-1) ," countrtemp%s"%co u n t erabel)
for x in rangc(len(bt)-2,-1.-1):

full_add (" 0" ." count_%s_%d"%(counterlabel ,x) ," countcrtemp-%s"%countcr_label ,\
" count_.%s_7d"%(counter_label .x) ," countertcmp_%s"%countr_label)

print " \tjump\ tcountertop_%s"%co u n t c r-label
print "\ tlabel \tcountcrbottom_%s"%counter_labcl

def find_best syndrome_init ():

print "# find_best_syndromcinit"
for i in rangc(s):

print "\ tbit \ tot_guesscd_%d"%(i)
for i in rangc(3):

print "\ tbit \tguess_s%d"%(i)
for i in rangc(1. sprime+l):

print "\ t b i t\tnumber_of_matchcs_d"%(i)
print "\tbit \tmatch"
print ''\ tbit \tmatch_temp"

def find_bestsyndrome (sO. sl , s2 , label

print "#FIND BEST SYNDROME"
print "#--------- -----

for i in range (s):
print "\tsct\tnot_gucssed_%dl .1 d"%(i)

for i in rangc(s-sprime+1):
print "#GUESSING SYNDROME %d"%(i)
print " ----------------------

print "\tlabel\tguess_%d_%s"%(i label)
print "'' \ tset \ tguesssO .%s"%(sO [i j)
print "\tset\tguesss 1 .s"%(sl [i])
print "\ tset \ tgucsss2 .%s"%(s2 [i })
print "\tset\tnotgucssed%7d .0"%(i)
print " \ tset \tnumber_of_matchcs_l .1"
for i in range (2, s_primc+1):

105

print " \ t set \tnumber_ofmatches%d .0"%(i)
print "\tjump\tcompare_with_all_syndromes_%s"%(label)

print "CONIPARE GUESS WITH ALL UNGUESSED SYNDROMES"

print "# ----------------------------- -----

print " \ tlabel\tcompare_withallsyndromes_%s"%(label)
for i in range(l,s):

print " \ t i f \ tnot guessed%d" %(i)
print "' \tjump\tcomparec_to%d_%s"%(i, label)
print " \tlabel\tcompared-to-%d-%s"%(i, label)

for i in range (l. s-sprime+l):
print "\tif\tnot_guesscd_%d"%(i)
print "\tjump\tguess_%d%s" %(i, label)

if s!=l:
print "\tjump\terror-corrected_%s"%(label)

for i in range(l,s):
print "COMIPARE GUESS TO SYNDROME %d"%(i)
print " \ tlabel \tcompare-to%d_%s"%(i, label)
print " \tset\tmatch,1"
print " \txor\tmatchtemp, guesssO ,%s"%(sO [i)
print "\ txor \tmatch_temp, matchtemp, 1"
print "\tand\tmatch, match, matchtemp"
print "\txor\tmatch_temp, guess_sl ,%s"%(sl [i])
print " \txor\tmatchtemp , match_temp , 1"
print "\tand\tmatch, match , match_temp"
print "\txor\tmatch_temp , guesss2 ,%s"%(s2 i])
print "\txor\tmatch_temp, matchtemp, l"
print " \tand\tmatch , match , matchtemp"
print "\ txor\tmatchtemp, match, 1"
print \ t if\tmatchtemp'
print "\tjump\tcomparedto_%d_%s"%(i , label)
print " \ tset \tnot_guessed_%d ,0"%(i)
for j in range(s_primc,0,-1):

print " \tand\tmatch_temp , number-ofmatchesd , l " %(j -1)
print " \ tsct \tnumber_ofmatches_%d, match_temp"%(j)

print " \ ti f\tnumbcrof_matchcs_%d"%(s_prime)
print "\tjump\tfoundbest_syndrome_%s"%(label)
print "\tjump\tcomparedto%d-%s" %(i , label)

Recovery operation (error correction)
q is a lst of 7 logtcal qubsts (lsts)
oiseType is one of "none ', "NFT', " full

NFT -> subordinte preparation introduces errors like a single qubit gate replacement
rule

full -> all gate and watt failures
def recover (q, noiseType):

#//only recover q f q refers to ore than one qubt
if len(q) > 1:

global counterRecover
mynumberl = counterRecover
counterRecover = counterRecover + 1

global ancilla. verifyl . verify2, verify3 ,verify4, vbits

106

global xsyndromeO, xsyndromcl xsyndrome2
global zsyndromeO. zsyndromel zsyndromc2

take sltces of the large registers to give s ancilla
that are the right .size
myancilla = ancilla [int(log(lcn(q))/log(7)-)] [0: Icn(q)
myverifyl = verifyl [int(log(len(q))/log(7)-1)][0: lcn(q)/7]
myverify2 = verify2 [int(log(len(q))/log (7)-1)][0: Icn(q)/7]
myverify3 = verify3 [int(log(len(q))/log(7)--1)][0: ln(q)/7]
myverify4 = verify4 lint (log(len (q))/log (7)-1)1 [0: len (q) /7]

print "#RECOVER ACTING ON" q myancilla, myvcrifyl, myverify2 myverify3
print "#------------------
qsplit = splitqubit (q)

.\ error correction

global counterSyndrome
mynumber2 = counterSyndrome
counterSyndrome = counterSyndrome + 1

gather one syndrome
prepare_until_pass (myancilla yvrify,myverifyl ,myerify2 , myverify3 , myverify4 .\

vbits, noiseType)
S(" , splitqubit (q) , split_qubit (myancilla) ,\

[zsyndromeO [0], zsyndromel [0], zsyndrome2 [0]], noiseType)

print " \txor \ttempO.1. % s"%zsyndromeO [O]
print "\tand\ttempl. temp0.1"
print "\txor\ttemp.1,% s"%zsyndromel [0]
print "\tand\ttempl, templ temp0"
print "\txor\ttempO,l,% s"%zsyndrome2 [0]
print ' \tand\ttempl templ ,tempO"

print "\tif\ttempl"
print "\tjump\ tno_c-n eeded d"%mynumbcr2

for i in range (s-1):
prepareuntil_pass (myancilla , myverifyl .myverify2 .myverify3 .myverify4 .vbits

, noiseType)
if noiseType != " none":

for j in range (i):
wait (myancilla)
wait (myverifyl)
wait (myverify2)
wait (myverify3)
wait (myverify4)

S("z" , split_qubit (q), split_qubit (myancilla),\
[zsyndrome0 i +1],zsyndromel [i +1],zsyndrome2[i 1+], noiseType)

find_best_synd rome (zsyndrome0, zsyndromel , zsyndrome2 mynumber2)

print '"\tlab el\tfound_bestsyndrome_%d"%(mynumber2)
#need to error correct

print '#ERROR CORRECTING Z"

print "#----- ------------

107

print "\ tif\tguesss2"
print "\tjump\tcorrect_lxx -%d"%(mynumber2)
print "\ tif\tguesssl "
print " \tjump\ tcorrect _01 x %d"%(mynumber2)
print "\tif\tguess_sO"
print " \tjump\ t co r rect _-00 1 %d" %(mynumbcr2)
#synd'rome 000

print "\tjump\terror_co rected _%d"%(mynumber2)

print "\ tlabel \ tcorrec t x x d"%(mynumber2)
print "\tif\tguesssl"
print "\tjump\tcorrect-llx _%d"%(mynumber2)
print "\tif\tgucss_sO"
print "\tjump\tco r rect101%d"%(mynumber2)
#//sydrome 100
Z(qsplit [3])
x = 3

if noiseType != "none":
for i in range (O,x):

wait (qsplit [i])
for i in range(x+1l7):

wait (q-split [i])
print " \tjump\ terrorcor r ected -%d"%(mynumber2)

print ' \tlabel\ tcorrect01 x_%d" %(mynumber2)
print "\tif\tguess-sO"
print "\tjump\tcorrect-011 %d"%(mynumbr2)
#sydrore 010
Z(qsplit [1])
x = 1

if noiseType != "nonc":
for i in range(O,x):

wait(q_split [i])
for i in range(x+1,7):

wait(qsplit[i])
print "' \tjump\tcrror_co rcctcd_%d"%(mynumber2)

print "\tlabel\tcor rect001-%d" %(mynumber2)
#syJndrome 001

Z(qsplit [0])
x = O
if noiseType != "none":

for i in range (0,x):
wait (q_split [i])

for i in range(x+1,7):
wait(qsplit i)

print "\tjump\terrorcorrected_%od"%(mynumber2)

print "?\tlabel\tcorrect_ Ilx_d"%(mynumber2)
print "\tif\tguesssO"
print "\tjump\tcorrect-111_%d" %(mynumber2)
#syndrore 1 1 0

Z(qsplit [5])
= 5

if noiseType != "none":
for i in range(O,x):

wait(q_split [i])
for i in range(x+1,7):

wait (qsplit i])
print "\tjump\terror_corre cted-d" %(mynumber2)

108

print "\tlabel\tcorrect_l 01-%d"%(mynumber2)
#siinrdrore 101
Z(q_split [4])
x = 4
if noiseType != "none":

for i in range(O,x):
wait(qsplit [i])

for i in range(x+1.,7):
wait(q_split i])

print "\tjump\terrorcorrected-%d"%(mynumber2)

print "\tlabel\tcorrect-Ol ld"%(mynumber2)
#sydrorrle 011
Z(qsplit [2])
x = 2
if noiseType != "none'':

for i in range(O,x):
wait (q_split [i])

for i in range(x+1,7):
wait(q_split [i])

print " \tjump\terror-corrected -%d"%(mynumber2)

print "\tlabel\tcorrect_1 _1% d"%(mynumber2)
#syrdrole 1 1 1

Z(q_split [6])
x = 6
if noiscType != "none":

for i in range(O,x):
wait(q_split [i])

for i in range(x+1,7):
wait(q_split [i])

print "\tjump\tcrror-corrected-%d"%(mynumber2)

print "\ tl a b cl\t n occnecded_%d"omynumbcr2

if noiscType != "none":
for i in range(s-1):

wait (q)

print "\tlabel\terrorcor reccted_7%d"%(mynumbr2)

X error coTrect7zo n

mynumbcr2 = counterSyndrome
counterSyndrome = counterSyndrome + 1

prepare_until_pass (myancilla, myverifyl , myverify2, myverify3 myverify4 ,\
vbits noiseType)

S("x" . split qubit (q) , split_qubit (myancilla) ,\
[xsyndromcO [0]. xsyndromel [0], xsyndromc2 [0]]. noiseType)

the data iwats during 6 te.steps ir X, Z

z. the .snlrdorle is norlzero. gather .s total syndromes
print "\txor\ttempO,1,%s"%xsyndromeO [0]
print "\tand\ttcmpl temp0,1i"

109

print "\txor \ttcmpO,1.%s"%xsyndromel 1[0
print "\tand\ttempl templ, tempO"
print "\txor\ttcmpO.1,%s"%xsyndrome2 [0]
print ' \tand\ttcmpl .templ, tempO"
print "\tif\ttcmpl"
print "\tjump\t noecneedcd_od"%mynumber2

for i in range(s-1):
prepare_untilpass (myancilla, myverifyl, myverify2 , myverify3 , myverify4 , vbits

. noiseType)
if noiseType != "none":

for j in range(i):
wait (myancilla)
wait (myverifyl)
wait (myvcrify2)
wait (myverify3)
wait (myverify4)

S("x .split -qubit (q) , split_qu bit (myancilla) .\
[xsyndromeO [i +l].xsyndroel i ,xsyndromcl [i +,xsyndrom2 [i +1]]. noiscType)

fin d_best_syndrome (xsyndromeO , xsyndromel , xsyndromc2 , mynumber2)

print "\ tl abe l\ tfoundbest_syndrome -%s"%(mynumber2)
#need to error correct
print "#ERROR CORRECTING X"
print "# - --- --------------------
print \tif\tguess-s2"
print \tjump\tcorrectlxx%d"%(mynumber2)
print "\tif\tguess-sl"
print \tjump\tcorrectOlx_%d"%(mynumber2)
print \ t i f\ tgucss-s0"
print '\tjump\ tcorrectOl01 -%d"%(mynumber2)
#syndrome 000

print "\tjump\terror_-corrected _%d"%(mynumber2)

print "' \tlabel\tcorrect-lxx _cd" %(roynumber2)
print "\tif\tguesssl"
print " \tjump\ tcorrect _1 x_%d"%(mynumber2)
print "\tif\tguess.sO"
print '\tjump\tcorrect10 _%d"%(mynumber2)
#syndrorme 100
X(qsplit [3])
x = 3
if noiseType != "none":

for i in range(O,x):
wait (qsplit [i])

for i in range(x+1,7):
wait (qsplit [i])

print "\tjump\t e r ror_corrected %d"%(mynumber2)

print "\tlabel\tcor rec t -0 lx_%d" %(mynumber2)
print "\ti f \tguesssO"
print "\tjump\tcorrect_01 -%d"%(mynumber2)
#syrLdrome 010
X(q_split [1])
x = 1

if noiseType != "none":
for i in range(0,x):

110

wait(qsplit [i])
for i in range(x+l.7):

wait(q-split[i])
print " \tjump\ terrorc or re ctd %d" %(mynumber2)

print "\tlabel\tcorrect-001 -%d"%(mynumber2)
#sydrome 001
X(qsplit [O])
x = 0

if noiscType != "none"
for i in range(O.x):

wait(q_split [i])
for i in range(x+1,7):

wait(qsplit [i])
print' \tjump\terrorcorrected _%d" %(mynumber2)

print "\tlabel\tcorrectl lxod"%(mynumber2)
print "\tif\tguss-sO'
print '"\tjump\tcorrect- ll 1%d" %((mynumber2)
#syndroroe 1 10
X(q_split [5])
x = 5
if noiseType != "none":

for i in range(0,x):
wait (q_split [i])

for i in range(x+1,7):
wait(qsplit i])

print "\tjump\tcr ror_corrected_%d %(mynumber2)

print "\tlabel\tcorrect-101-O d"%(mynumber2)
#sy'n.drorte 101
X(qsplit [4])
x = 4

if noiseType != "none":
for i in range(O,x):

wait(qsplit [i])
for i in rangc(x+1,7):

wait (q_split [i])
print \tjump\terror_corrected_%d"%(mynumber2)

print "\tlabel\tcorrect-011 %d" %(mynumber2)
#sxyndrorte 011
X(qsplit [2])
x = 2
if noiseType != "none":

for i in range(O,x):
wait (qsplit [i])

for i in range(x+1,7):
wait (q_split [i])

print "\tjump\terror_corrected _od"%(mynumber2)

print "\tlabel\tcorrect- 111-%d"%(mynumber2)
#synrdrome 11 1

X(q_split [6])
x = 6

if noiseType != "none":
for i in range(0.x):

wait(q_split [i])
for i in rangc(x+l.7):

wait(q_split [i])
print "\tjump\tcrror_corrected _%d"%(mynumber2)

111

print "\tlabel\tn occnceded_%d"%omynumber2

if noiseType != "none":
for i in range(s-1):

wait (q)

print "\tlabel\tcr ro r _ orr rec ted _%d"%(mynumber2)

def prepareuntilpass (q, verifyl , verify2 , verify3 verify4 , vbits , noiseType):

global counterPrepare
mynumber = counterPrepare
counterPrepare = counterPrepare + 1
print "\tlabel\tpreprareuunt il_% d"%mynumber

print "#PREPARE UNTIL PASS" .,q, verifyl, verify2, verify3, verify4
G(split_qubit(q),noiseType)
V(splitqubit (q) , verifyl vcrify2 , verify3 , verify4 ,\

vbits [0], noiseType)
print "\tif\t%s"%vbits [O]
print " \tjump\tprep arc_u ntil %d"%mynumber

#CODE FOR COMPARING STABILIZERS

def is_logical_zero (q):
if lcn(q) == 1:

print " \tsubset\tmagic ,1, q [0 Z"
if len(q) == 7:

print " \ tsubset \ tmagic, 7.,% s ,%s,%s,%s,%s,%s,%s , ZZZZZZZ, IIIXXXX, IXXIIXX , XIXIXIX,
IIIZZZZ , IZZIIZZ, ZIZIZIZ"%(q [O], q [1], q[2] .q[3], q[4], q[5], q[6])

print "' \txor\ tmagic,magic, 1"
print "' \tif\tmagic"
print "\thalt"

def zerohas_nox_error (q):
if len(q) == 1:

print " \ tsubset \tmagic , 1 , q [0] , - Z"
print "\tif\tmagic"
print "\thalt"

if len (q) == 7:
print "\ t subset \ tmagic, 7,% s,%s,%s,%s,%s,% ,%s ,-ZZZZZZZ, IIIXXXX, IXXIIXX, XIXIXIX,

IIIZZZZ,IZZIIZZ,-ZIZIZIZ"%(q[O],q[1],q[2],q[3], q[4,q[5],q[6])
print "\tif\tmagic"
print "\thalt"
print "\ t subset \ tmagic ,7,% s ,%s,%s,% ,%s,%s,%s,-ZZZZZZZ, IIIXXXX, IXXIIXX .XIXIXIX,

IIIZZZZ,-IZZIIZZ, ZIZIZIZ"%(q [O] q [] ,q [2, q[3], q[4] q[5], q[6])
print "\tif\tmagic"
print " \thalt"
print "\tsubset\tmagic,7,% s ,%s,%s,%,%s,%s ,%s,-ZZZZZZZ,IIIXXXX ,IXXIIXX,XIXIXIX,

IIIZZZZ,-IZZIIZZ,-ZIZIZIZ" %(q [O], q [1], q[2], q[3, q[4] q[5], q[6])
print "\ t if \tmagic"
print "\thalt"

112

print "\ t s u bset \ t magic ,7,% s,%s,%s%s,%s,%s,%s.-ZZZZZZZ, IIIXXXX, IXXIIXX .XIXIXIX.-
IIIZZZZ IZZIIZZ , ZIZIZIZIZ"%(q [0] q [1], q [2] q [3] q [4] q [5], q[6])

print "\tif\tmagic"
print "\thalt"
print " \ tsubset\tmagic.7.% s,%s,%s,%s,%s,%s.%s.-ZZZZZZZ, IIIXXXX .IXXIIXX , XIXIXIX.-

IIIZZZZ , IZZIIZZ ,-ZIZIZIZ" %(q [, q [1 q [2 q [3 q 4]. q [5 q [6])
print " \ t if\ tmagic"
print "\thalt"
print "\tsu bst\t m agic.7, %o s,%s,%s,%s,%s,%s .%s .-ZZZZZZZ, IIIXXXX ,IXXIIXX ,XIXIXIX.-

IIIZZZZ,-IZZIIZZ ZIZIZIZ'%(q [O], q[l], q[2]. q[3],. q[4]. q[5], q[6])
print "\tif\tmagic"
print "\thalt"
print "\tsu bset\tmagic .7,% s %s,% ,%s,%s.s,%s ,-ZZZZZZZ, IIIXXXX ,IXXIIXX, XIXIXIX.-

IIIZZZZ,-IZZIIZZ.- ZIZIZIZ"%(q[O]. q [] .q[2],q[3] . q [4],q[5],q[6])
print "'' \tif\tmagic"
print "\thalt"

def zerohasno_y_error(q):
if Ien(q) == 1:

print "\ tsubset \ tmagic , 1 .q[O] ,-Z"
print "\tif\tmagic"
print "\thalt"

if len(q) == 7:
print "\tsubsct\tmagic,7,%s,%,%s,%s,%s,%s,%s,-ZZZZZZZ,IIIXXXX ,IXXIIXX,-XIXIXIX,

IIIZZZZ,IZZIIZZ,-ZIZIZIZ"%(q [0],q[l],q[2] q[3],q[4], q[5],q[6])

print " \tif\tmagic"
print "\thalt"
print "\tsubset\tmagic,7,%s,%s%,%s.%s,%s,%s.%s,-ZZZZZZZ,IIIXXXX,-IXXIIXX XIXIXIX.

IIIZZZZ.-IZZIIZZ,ZIZIZIZ"%(q [0],q[l],q[2], q[3.1 q[4].q[5],q[6])
print "\tif\tmagic'
print "\thalt"
print " \ t s u bse t \ tmagic. 7.% s ,%s .%s,% s,% s,%s,%s ,-ZZZZZZZ, IIIXXXX,-IXXIIXX,-XIXIXIX.

IIIZZZZ,-IZZIIZZ-ZIZIZIZ"%(q[01,, q[l], q[2]. q[3],q[4].q[5],q[6])
print "\tif\tmagic"
print "\thalt"
print "\t s u bsct t magic, 7, % s,%s,%ss,%s,%s .%s,-ZZZZZZZ,-IIIXXXX IXXIIXX .XIXIXIX.-

IIIZZZZ ,IZZIIZZ, ZIZIZIZ"%(q[O], q[1], q[2] q[3] q [4] q [5], q[6])
print "\ tif\tmagic"
print "\thalt"
print "\tsubsct\tmagic7,%os, ,%s,os.%s,% s,%s ,%s,-ZZZZZZZ,-IIIXXXX ,IXXIIXX.-XIXIXIX,-

IIIZZZZ,IZZIIZZ,-ZIZIZIZ"%(q[0],q[ll],q[2].q[3], q[4],q[5],q[6])

print "\tif\tmagic"
print "\thalt"
print "\t subsct\t magic,7,% s,%s,%s,%s,%s,% .-ZZZZZZZ,-IIIXXXX,-IXXIIXX ,XIXIXIX,-

IIIZZZZ.-IZZIIZZ, ZIZIZIZ"%(q [0],q[l], q[2], q[3], q[4],q[5], q[6])
print "\tif\tmagic"
print "\thalt"
print "\t tsub set \ tmagic, 7% s ,% s ,%s,%s,%s,%s.%s ,-ZZZZZZZ,--IIIXXXX,-IXXIIXX,-XIXIXIX

,-IIIZZZZ.-IZZIIZZ.-ZIZIZIZ"%(q [],q[l]. q[2]. q[3],q[4], q[5],q[6])

print " \tif\tmagic"
print "\thalt"

def zerohasnozerror(q):

if len(q) == 7:
print "\tsubset\tmagic,7,%s,%s,%s,%s,%s,%s,%s ,ZZZZZZZ.IIIXXXX ,IXXIIXX,-XIXIXIX

IIIZZZZ ,IZZIIZZ ZIZIZIZ"%(q [O] , q [1], q[2], q[3] q[4], q [5, q[6])
print "\tif\tmagic"
print "\thalt"
print "\tsubset\tmagic.7.%s,%s,%s,%s,%s,%s.%s .ZZZZZZZ,IIIXXXX,-IXXIIXX,XIXIXIX.

IIIZZZZ IZZIIZZ ,ZIZIZIZ"%(q[O]. q I,q[2], q3],q[4],q[5], q[6])

113

print "\tif\tmagic"
print "\thalt"
print " \ tsubset \tmagic ,7% s.%s.%s ,%s,%s.%s,%s , ZZZZZZZ, IIIXXXX,-IXXIIXX,-XIXIXIX,

IIIZZZZ, IZZIIZZ, ZIZIZIZ %(q [01 . q [] q [2], q [3], q [4], q [5] q [6])
print "\ t if\tmagic"
print "\thalt"
print " \ t subset \ tmagic,7.% s ,%s.%s,%s.% s ,%s,%s ,ZZZZZZZ,-IIIXXXX ,IXXIIXX ,XIXIXIX,

IIIZZZZ ,IZZIIZZ, ZIZIZIZ" %(q[0] . q [1] , q [2], q [3], q [4], q[5], q [6])
print "\ t if\tmagic"
print " \thalt"
print " \ tsubset \ tmagic,7,% s ,%s.%s ,%s.%s,%s ,%s , ZZZZZZZ,-IIIXXXX, IXXIIXX,-XIXIXIX,

IIIZZZZ,IZZIIZZ,ZIZIZIZ" '(q[0],q[1l], q[2],q[3],q[4], q[5],q[6])
print "\ tif\tmagic"
print "\thalt"
print " \ tsubset \tmagic ,7,% s ,%s ,%s,%s%s,%s ,%s , ZZZZZZZ,-IIIXXXX,-IXXIIXX , XIXIXIX,

IIIZZZZ ,IZZIIZZ, ZIZIZIZ" %([0], q 1 q [2] , q [3] , q [4], q [5], q[6])
print "\tif\tmagic"
print "\thalt"
print "\ t su bset \ tmagic, 7.% s,%s,% s,%s.% s,%s,%s ,ZZZZZZZ,-IIIXXXX,-IXXIIXX,-XIXIXIX,

IIIZZZZ ,IZZIIZZ , ZIZIZIZ"%(q [0] , q [1] , q [2] ,q [3] q [4], q [5] ,q [6])
print "\tif\tmagic"
print "\thalt"

#MAIN PROGRAM

if len(sys.argv) < 6:

print " nft .py gate L s s_prime t [noise]'
print ""
print "Generate an ARQ source file for an ML simulated identity gate using'
print "the Steane [[7,1,3]] code. The preparation, verification, and recovery"
print " mirrors the nonlocal model given in quant-ph/0410047 by Svore, Terhal ,"
print "and DiVincenzo."
print " '
print " gate\t one of id, h, cx, hm (hadamards followed by a measure), or wl."
print "L\tcreates an IM_L simulating circuit"
print "s\tnumber of syndromes collected prior to recovery"
print "s-prime\tnumber of syndromes that must agree"
print "t\tnumber of identity gates to apply"
print "noise\tdefaults to preparation as a single qubit replacement rule"
print ""
print "Assume that enough ancilla are prepared in parallel before the beginning of"
print " error correction. Assume these are prepared during the previous error correction,"
print "so they do not contribute to the data wait time."
sys .exit (1)

gate = sys .argv [1]
L = int(sys .argv[2])
s = int(sys .argv[3])
sprime = int(sys.argv[4])
t = int(sys . argv [5])
if len(sys.argv) == 6:

nType = "NFT"
else:

nType = sys . argv [6]

if L < 1:
print "Oops, L must be greater than 0!"

114

sys . exit (1)

if t < 1:
print "Oops. t must be greater than O!"
sys . exit (1)

print "# %s"%vxersioninfo
print "# %s"%timc.ctime()
print "'# L s=%d, s_prime=od, t=%d"%(L,s,_prime,t)
print "#"

if gate == "id"

data = declare-_dataqubit("0")
ancilla, verify 1, verify2 , verify3 , verify4, vbits ,xsyndromeO, xsyndromel , xsyndrome2, zsyndromeO,

zsyndromel, zsyndrome2 inmeas, measH = declare_all_but_data ()
print "# prepare the data qubits"
G(split-qubit (data) ,"none")
print "# apply %d identity gates"%t
countertop (t," identitygate-count")
print "# prepare up to %d ancilla states"%s
recover (data, nTTypc)
identity (data)
counter_bottom (t ." identity_gate-count")
s = 1

s_prirnc = 1
recover (data," none")
print "\tnoise\toff"
#islogzcal_zero (data)
zero_has_noxerror (data)

elif gate == "h":
data = declare_data_qubit ("0"
ancilla , verifyl . verify verify3 , verify4 vbits .xsyndromeO ,xsyndromel .xsyndrome2 ,zsyndromeO,

zsyndromel, zsyndromc2 ,meas, meas_H = declare_all_butdat a ()
print "# prepare the data qubits"
G(splitqubit (data) ,"none")
print "# apply %d hadamard gates"%t
counter_top (t, " hadamardgate-coun t ")
print "# prepare up to %d ancilla states"%s
recover (data,nType)
h(data)
counter_bottom (t " hadamard_gatecount")

s_prime =1
recover (data," none")
print " \ tnoise\ toff"
if (t2==1):

h(data)
is_logical_zero (data)

elif gate == "cx":
data_ = declare_data_qubit ("c")
datat = declare_dataqubit ("t")
ancilla . verify 1, verify2 , verify3. verify4 , vbits xsyndroe , xsyndromee , xsyndromel2 , syndrome2 , zsyndrom0,

zsyndromel, zsyndrome2 .mincas .meas_H = declareallbutdata ()
print "# prepare the data qubits"
G(split_qubit(datac) ,''none")
G(split_qubit (data-t) , "none")
print "# apply %d cx gates"ot

115

counter_top (t " cx_gatc_count")
print "# prepare up to %d ancilla states"%s
recover (datac .nType)
recover (datat, nType)
cnot (data-c,datac, data-t)
counter bottom (t ," cx_gatecount")
s 1
sprime = 1
recover (datac " none")
recover (datat, none")
print "\tnoise\toff"
cnot (datac, data-t)
islogical_zero (data-c)
is_logicalzero (data-t)

elif gate == "hm":
data = declaredataqubit ("0")
ancilla , verify 1 verify2 , verify3, verify4 , vbits, xsyndromeO ,xsyndromel ,xsyndrome2 ,zsyndromeO.,

zsyndromel, zsyndrome2 ,meas,meas_H = declareall_butdata ()
print "# prepare the data qubits"
G(split_qubit (data) " none")
print "# apply %d hm gates"%t
counter-top (t " hm_gate_count")
print '# prepare up to %d ancilla states"%s
recover (data, nType)
h(data)
counter-bottom (t, " hmgatecount")
print "\tnoise\toff"
if (t%2==1):

h(data)
print "\tnoise\ton"
measure(splitqubit (data) ,"magic")
print ' t if\tmagic'
print \thalt"

elif gate == "wl":
data = declare_dataqubit ("0")
ancilla, verifyl, verify2 , verify3 , verify4,

zsyndromel zsyndrome2, incmeas, measH =
print "# prepare the data qubits"
G(split_qubit (data) ," none")
print "# apply %d wait gates"%t
counter_top (t ," wait_gatecount")
print "# prepare up to %d ancilla states
recover (data .nType)
print "'\tnoise\ton"
wait (data)
counterbottom (t," wait-gatecount")
s = 1

sprime = 1
recover (data " none")
print "'\tnoise\toff"
islogical_zero (data)

vbits xsyndrome0 , xsyndromel , xsyndrome2 , zsyndrome0,
declare-all-butdata ()

)S

else:
print "Oops. Gate must be one of id ,h,cx ,hm,wl ."
sys.exit (1)

print "#EOF"

116

Appendix E

Sample ARQ Code

In this Appendix we present some sample ARQ code. The sample code simulates six

repetitions of the error-correction circuit and then checks whether there is a single Z

error on the data using stabilizers. The circuit is exactly the same as described in

Chapter 3. Note that wait gates have to be explicitly called.

The language specifications for ARQ are given in Tables E.1, E.2, and E.3. Ta-

ble E.1 lists the defined classical computer instructions and Tables E.2 and E.3 list

the defined quantum computer instructions.

117

| Arguments

none
bit name,

...

bitname
labelname
label-name

tgt bit,
left_bit,

right _bit
tgt bit,
left_bit,
rightbit
tgt bit,
left_bit,
right bit
bit name,

bitlname
tgt bit,
srcbit
none

No operation, do nothing
Create new named classical bits

Create a new jump target
Set the instruction pointer to the location of
labelname
Store (leftbit & rightbit) in tgtbit. Either or
both of leftbit, rightbit can be binary constants.

Store (leftbit iightbit) in tgtbit. Either or
both of leftbit, rightbit can be binary constants.

Store (leftbit- rightbit) in tgtbit. Either or
both of leftbit, rightbit can be binary constants.

Execute the next instruction only if each
argument bit is 1.

Set tgtbit to the value of srcbit. The srcbit
can be a binary constant.
Causes the virtual machine to throw an exception.
The virtual machine will abort with a "FAIL"
result. Use this to signal that the program
state has become corrupted.

Table E.1: The classical instructions defined in ARQ.

118

nop
bit

label
jump

and

xor

or

if

set

halt

Opcode Description

Description

qubit name,
..

qubit name
bit name,

qubitname

qubitname

qubitname

qubitname

qubitname

qubitname

qubit name

qubitname

Create new named quantum bits

Projectively measure the qubit
named qubitname in the computational
basis. Store the result in the classical
bit named bitname.
Apply the Pauli X gate (bit-flip)
to the qubit named qubitname
Apply the Pauli Y gate (bit-phase-flip)
to the qubit named qubitname
Apply the Pauli Z gate (phase-flip) to the
qubit named qubitname
Apply the Pauli identity gate to the qubit
named qubitname
Apply a single qubit wait gate
to the qubit named qubitname
Apply the Hadamard gate to the qubit
named qubitname. This gate maps 10) to
10)+11) and II) to 10)-11) (normalization
factor omitted).
Apply the pi/4 gate to the qubit named
qubitname. This gate maps 10) to
10) and 11) to ill).

Table E.2: The quantum instructions defined in ARQ.

119

qubit

measure

x

y

z

id

wl

h

s

Opcode Arguments

Arguments

controlqubit,
targetqubit

controlqubit,
targetqubit

bitname,
integerN,
qubitl,

....

qubitN,
generatorl,

.. a,

generatorN

Apply the controlled-NOT gate using
controlqubit as the control and
targetqubit as the target. The
controlled-NOT gate flips the target
qubit if the control qubit is 1.

Apply the controlled-phase gate using
controlqubit as the control and
targetqubit as the target. The
controlled-phase gate flips the phase
of the target qubit if the control
qubit is 1.
Compares the requested subset of N qubits
to the given stabilizer state (specified
by N stabilizer generators).

Table E.3: More quantum instructions defined in ARQ.

120

cnot

cz

subset

Opcode Description

nft.py version 1.1 amorten@mit.edu, last
modified 25 August 2005

Thurs August 25 21:15:54 2005
L=, s=3, sprime=2, t=6

data qubits
qubits

qubit
qubit
qubit
qubit
qubit
qubit
qubit

and ancilla
L=1)

qd_0_0
qd_0_1
qd 0_2
qd _0_3
qd _0-_4
qd_0_5
qd_0_6

declarce (L=1,s=3)

measurement bits(4+1x7 cbit
bit meas_H_0
bit meas_H_1
bhit meas_H_2
bit meas_H_3
bit measl_0
bit measl_l
bit meas-1-_2
bit meas_l_3
bit meas_l1_4
bit meas_l_5
bit meas_l_6

temporary cbits used in mea
bit tempO
bhit templ
bit temp2
bhit temp3

temporary chits used in syn,
(7 cits)

bit seO
bit sel
bit se2
bit se3
bit se4
bit se5
bit se6

qubits and cbits that must
S, etc

verify cbit
bit v

syndome bits. 2 x3x3 of them
bit xsO
bit xslO
bit xs20
bit zs0O
bit zslO
bit zs20
bit xsOl
bit xsll
bit xs21
bit zsOl
bit zsll
bit zs21
bit xs02

qubits (2 logical

s)

asurement (3 cbits)

drome extraction

be passed into G, V

bit xsl2
bit xs22
bit zs02
bit zs12
bit zs22

#ancilla qubits (1 logical qubit L=l)
qubit qal-O_0
qubit qall
qubit qal_2
qubit qal_3
qubit qal_4
qubit qal_5
qubit qal_6

verification qubits (3 logical qubits L-1=0)
qubit v0_1_0
qubit v1_1_0
qubit v2_1_0
qubit v3_1_0

other initialization code

full_add_init
bit fulladdxorab
bit full_add_andab
bit full_add_andcxorab
set full_add_xorab ,0
set full_add_andab .0
set full_add_andcxorab ,0

find_best_syndrome_init
bit not_guessed_0
bit not_guessed_l
bit not_guessed_2
bit guess-s0
bit guess_sl
bit guesss2
bit number_of_matches_1
bit number_of_matches_2
bit match
bit match_temp

other
noise depolarize
bit magic

prepare the data qubits
#G ACTING ON [d0 [' qd_0_0 ' , [' d_0_ ', [2' qd_0

, [' qd_0_3 '], 'qd_0_4 ']. [qd0_5' [
qd_0_6]

G preparation network , noiseType = none
acting on a 1-block of M1
#G ACTING ON ['qd_0_0 ']
#--------- ----------- ___________

#G preparation network noiseType = none
acting on a 0-block of MI

noise off
measure tempO, qd_0_0
i f tempO
x qd-0_0
noise on

#G ACTING ON [' qd_0_1']

#------------- ---- _ ------- _ _

G preparation network, noiseType = none
acting on a 0-block of MI

121

#------ -------------- __ ____ ______

noise off
measure tempO, qd_0_l
if tempO
x qd_0_l
noise on

#G ACTING ON [' qd-0_2']

G preparation network , noiseType = none
acting on a O-block of M_1

noise off
measure tempO, qd-0_2
if tempO
x qd_0_2
noise on

G ACTING ON ['qd-0-_3 ']

G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure tempO. qd-0_3
if tempo
x qd-0-_3
noise on

#G ACTING ON [' qd-0-4 ']

G preparation network, noiseType = none
acting on a -block of M1

noise off
measure tempO, qd-0_4
i f tempO
x qd_0_4
noise on

#G ACTING ON [' qd-0_5 ']

G preparation network , noiseType = none
acting on a O-block of M_1

noise off
measure tempO, qd-0_5
i f tempO
x qd-0-_5
noise on

#G ACTING ON [' qd-0_6 ']

#G preparation network , noiseType = none
acting on a O-block of M-1

noise off
measure tempO, qd_0_6
if tempO
x qd-0-_6
noise on
noise off
h qd-0-_6
h qd-0-_5
h qd-0_4
cnot qd_0_4, qd0_3
cnot qd-0-_5, qd-0_2
cnot qd-0_6, qd_0_
cnot qd-0-4, qd-0_2
cnot qd-0-_5, qd0_0
cnot qd_0_6, qd_0_3
cnot d_-0_4 .ad-0_

cnot qd_0_5, qd-0-3
cnot qd-0-6, qd_0-0

apply 6 identity gates
- ------- ________ ___
counter_headidgatecount: do 6 times

bit count-id.gatecount_O
set count-idgate-count_0 ,0
bit count_idgatccount_l
set count-idgatecount_l ,0
bit countidgate_count_2
set count_id_gate_count2 .0
bit counterconditionidgatecount
bit countertempidgate_count
label countertop_idgateccount
set countercondition_id_gate_count 1
and countercondition_id_gatecount

counterconditionid_gate_count,
count idgate-count_O0

and countercondition_idgate_count
counterconditionidgate_count,
count _id-gatecount_l

xor countertemp_id_gate_count,
count idgate_count2 ,1

and countercondition_idgate-count,
countercondition_idgate_count
counter tempidgate-count

if countercondition_id_gate_count
jump counterbottom_idgate_count

prepare up to 3 ancilla states
#RECOVER ACTING ON [' qd_O00', ' qd_0_l ', 'qd-0-_2

'qd-0_3 ', ' qd-0-_4 ' ' qd_0_5 ', ' qd-0-_6
'] ['qal_O ' 'qal_l ', ' qal_2 ', 'qal_3 '

qal_4 ' ' qal_5 ', ' qal6 '] [' v0_l_0 '] ['
v1_l_0 '] [' v2_1_0 ']

label prepare_until_0
#PREPARE UNTIL PASS [' qal_0 ', ' qall ', ' qal _2

', qa13'. ' qal4 ', ' qal5 ', ' qal_6 '] ['
v0_l_0 ' [' vll_ '] ' v2_10 '] [v31_0 ']

#G ACTING ON [[' qalO '], [' qal_1 '] [' qal_2
'], [' qa3 '], [' qal _4 '], [' qal_5 '], '
qal_6 '1]

#---------------------_-------____

G preparation network, noiseType = NFT
acting on a 1-block of M1
#G ACTING ON ['qal_ ']

#G preparation network, noiseType = none
acting on a O-block of M1

noise off
measure tempO. qal -0
if tempO
x qal_O
noise on
id qalO

#G ACTING ON [' qal _1 ']
4____________ _____ __
G preparation network , noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, qal _l

122

i f tempO
x qall
noise on
id qal_

#G ACTING ON [' qa1_2 ']

#G preparation network, noiseType = none
acting on a 0-block of MI_1

noise off
measure tempO, qal_2
i f tempO
x qal_2
noise on
id qal_2

#G ACTING ON [' qal_3 ']

G preparation network. noiseType = none
acting on a 0-block of M_1

noise off
measure tempO. qal_3
if tempO
x qal_3
noise on

id qal_3
#G ACTING ON [' qal_4 ']

G preparation network, noiseType = none
acting on a O-block of MI_1

noise off
measure tempO . qal _4
i f tempO
x qal_4
noise on
id qal_4

#G ACTING ON [' qa1_5 ']

G preparation network, noiseType = none
acting on a O-block of M_1

noise off
measure temp, qal _5
i f tempO
x qal_5
noise on
id qal_5

#G ACTING ON ['qal_6']

#G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure tempO. qal_6
if tempO
x qal_6
noise on
id qal_6
h qal_6
h qal_5
h qal_4
wl qal_3
wl qal_2
wl qal_l
wl qal_O

cnot qal4 , qal _3
cnot qal5 , qal-2 _
cnot qal6, qal _
wl qalO
cnot qal4, qal_2
cnot qal_5 qalO
cnot qal-6qal-3_6 qal_3
wl qal_l
cnot qal_4 .qal_l
cnot qal_5 qal_3
cnot qal_6, qal_0O
wl qal_2

#V ACTING ON [' qal_O ', [' qall ', [' qa_2
' , ' qal3'], [' qal _4 'j , ['qa1-5 '], ['
qal_6']] ['v01-0'] ['vl1__0'] ['v2_1-0']

V vcrification network, noiseType = NFT
acting on a 1-block of M_1
#G ACTING ON [' v0_l_0 ']

G preparation network, noiseType = none
acting on a 0-block of M_1

noisc off
measure tempO. v0_l_0
if tempO
x vl_0
noise on

#G ACTING ON [' v1__0 ']

G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, v-l_0
if tempO
x vl_l_0
noise on

#G ACTING ON [' v 2 1 _ 0 ']

G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, v2_1_0
if tempO
x v2_1_0
noise on

#G ACTING ON [' v3 _1_0]

#G preparation network , noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, v3_1 _0
if tempO
x v3_1_0
noise on
id v0_1-0
id v1_1_0
id v2_1_0
id v3_1_0
h vO_l_0
h vl_l-0
h v2_l_0

123

h v3_1-0

cz vOl_O, qal_0

cz vl_l-0, qal_l

cz v2_1_0. qal_2

cz v3_1_0 ,qal_3

wl qal_4

wl qal_5
wl qal_6
cz v0-_l_0, qal_5
cz v1__0 qa _4
wl v2_1_0
cz v3_1_0, qa1_6
wl qal O
wl qall
wl qal_2
wl qal_3
wl vOl_0
cz vl_lO, qal_6
cz v2_1O0 .qal_4
cz v31_0, qa1-5
wl qal_O
wl qal_l
wl qal_2
wl qal-3
cz vO_l_0 . qal_6
wl v 1 0

cz v2_1_0 qa_5
cz v3-1-_0, qal_4
wl qal-O
wl qall
wl qa _2
wl qal-3
h vOl_0
h vl_l-0
h v2-1_0
h v3_1_0
wl qal_O
wl qall
wl qal_2
wl qa1_3
wl qal_4
wl qal-5
wl qal_6
measure tempO, v0_l_0
measure templ , vl_l_0
measure temp2, v2_1 _0
measure temp3, v3-1 _0
wl qal-O_0
wl qall
wl qal_2
wl qal-_3
wl qal_4
wl qal_5
wl qal_6
set v, tempO
or v,v,templ
or v . v, temp2
or v ,v,temp3
if v
jump prepare_until-0

#S ACTING ON [['qdO '], [' qdl '], ' qd-0-_2

'] , [' qd-03 '] , [' qd-0__4 '], [' qd-0_5 '] . ['
qd-0__6 ']] [[' qalO '], [qal-l ', [qal_2

'], [' qa3 '], [' qa_4 '], [' qal5 '] ['
qal_6 ']

S syndrome extraction network
acting on a 1-block of IVIl

cnot qal-O, qd-0-0_OO
cnot qal_l, qd-_O_l
cnot qal_2, qd-0-_O_2
cnot qal_3 .qd-0-_O_3
cnot qal_4, qd0__4
cnot qa15 .qd_O_5
cnot qal_6 qd-0_6
h qal-O
wl qd_OO
h qal_l
wl qd_O_l
h qal_2
wl qd-0_2
h qal_3
wl qd-0-_O_3

h qal_4
wl qd_O_4
h qal_5
wl qdO_5
h qal-_6
wl qd-0-6
measure seO . qal -0
wl qd_OO
measure sel, qal _
wl qd_Ol
measure se2, qal-_2
wl qdO_2
measure se3, qa1_3
wl qd-0-_3
measure se4, qal _4
wl qd-0-_4
measure se5, qal_5
wl qd-0-_5
measure se6, qal_6
wl qd-0-_6
set zsOO, sO
xor zsOO, zs0, se2
xor zsOO00, zs0 , se4
xor zsOO, zsOO se6
set zslO, sel
xor zslO, zs10, se2
xor zsl0 ,zs10 ,se5
xor zs10, zs10, se6

set zs20, se3
xor zs20, zs20, se4
xor zs20 zs20 se5
xor zs20, zs20, se6
xor tempo , 1, zs00
and tempi templ , temp1
xor tempO, 1, zslO
and templ, templ, tempo
xor tempO 1, zs20
and templ templ , tempO
i f templ

124

jump no_.cneedcd_0
label prepare_until_l

#PREPARE UNTIL PASS [' qal_O ', ' qal ', ' qal_2
, ' qal_3'. ' qal_4'. 'qal_5 ', ' qal_6 '] '

v0_l_O '] [' vl__0 '] [' ·2__0 ' [' v3_1_0 '

#G ACTING ON ['qalO '. ['qal_l '] . ['qal_2
'] [' qal_3] . [qal_4 '] ['qal5']. ['
qal_6 ']]

#-------- -- ---------_____-_____
G preparation network. noiseType = NFT
acting on a 1-block of M_l
#G ACTING ON ['qal_O']

G preparation network . noiseType = none
acting on a 0-block of N_1

noise off
measure temp, qal_0
i f tempO
x qal_O
noise on
id qalO

#G ACTING ON ['qal _1 ']

#G preparation network, noiseType = none
acting on a O-block of M_l

noise off
measure tempO, qall
if tempO
x qal_l
noise on
id qal_1

#G ACTING ON [' qa 1_2 ']

#G preparation network , noiseType = none
acting on a 0-block of M_

noise off
measure tempO, qal_2
i f tempO
x qal_2
noise on
id qal_2

#G ACTING ON [' qal_3 ']

G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure tempO qal _3
if tempO
x qal_3
noise on
id qal_3

#G ACTING ON [' qal_4 ']

G preparation network. noiseType = none
acting on a 0-block of M_

noise off
measure temp , qal _4
i f tempO
x qal_4
noise on
id qal_4

#G ACTING ON ['qal5 ']
#------------------------ --------__
G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, qa _5
i f tempO
x qal_5
noise on
id qal_5

#G ACTING ON [' qa1 _6 ']

G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure temp, qal_6
i f tempO
x qa1_6
noise on

id qal_6
h qa1_6
h qa1_5
h qal_4
wl qa1_3
wl qal_2
wl qal_l
wl qalO
cnot qa_4, qal_3
cnot qal_5,qal_2
cnot qal_6 qal_
wl qalO
cnot qal_4, qal_2
cnot qal_5,qal_0
cnot qal_6 qal_3
wl qal_l
cnot qal_4,qal_l
cnot qal_5 qal_3
cnot qal_6,qal_0
wl qal_2

#V ACTING ON [[' qalO] [qall , [' qal_2
'], [' qa_3 '] . [qa' qal_5 '] ['
qal-6 '] ['v0 1_0'] [' vl-10 ' [' v2_1_0']

V verification network, noiseType = NFT
acting on a 1-block of M_1
#G ACTING ON [' v0_l_0 ']

G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, v_l _0
if tempO
x vO_1-0
noise on

#G ACTING ON [' vl_l_0 ']

G preparation network, noiseType = none
acting on a O-block of MI_l

noise off
measure tempO, vl_l_0
i f tempO

125

F-/T -------------------

F ---------------------- _______- _-

x vl_l-0
noise on

#G ACTING ON [' v2_1_0 ']

G preparation network, noiseType = none
acting on a O-block of M

noise off
measure tempO, v2 __0
if tempO
x v2_1_0
noise on

#G ACTING ON [' v3_1_0 ']

G preparation network, noiseType = none
acting on a O-block of M_1

noise off
measure tempO .v3-1_0
if tempO
x v3_1_0
noise on
id v0_l_0
id vl_1-0
id v2_1_0
id v3_1_0
h v0_l_0
h vl_1_0

h v2-1_0
h v3_1_0
cz v0_l_-0, qa-0
cz vl_l-0, qal_l
cz v2_1_0 qal_2
cz v3_1_0 .qal_3
wl qal_4
wl qal_5
wl qal_6
cz v_l _0, qal_5
cz vl _ 0, qal_4
wl v2_1_0
cz v3_1_0 . qa1_6
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl v0_l_0
cz vll_0, qa 1_6
cz v2_1_0, qal_4
cz v3_10 . qal _5
wl qal-O
wl qal_1
wl qal_2
wl qal_3
cz v_l0 .qal _6
wl vl_l_0
cz v2_10, qal-5
cz v3_1_0 . qal_4
wl qal_O
wl qal_1
wl qal_2
wl qal_3
h vO_l_0

h vl_l_O

h v2_1_0
h v3-1-_0
wl qalO
wl qal_
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qal_6
measure tempO, v0_l_0
measure templ , vl_l_0
measure temp2, v2_1_0
measure temp3, v3-1 _0
wl qal-O
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qal_6
set v ,tempO
or v,v,templ
or v,v,temp2
or v,v,temp3
if v
jump prepare_until_l
wl qalO
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qal-_6
wl qal_O0
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qa1_5
wl qal_6
wl qal-O
wl qall
wl qal_2
wl qal_3
wl qal_4
wl qal-_5
wl qal-6

#S ACTING ON [['qd00 '], [' qd0-1O '], ['qd-0-_2
'], [' qd-0_3 '], [' qd_04 '] , [' qd_0_5 '], ['

qd-0-6 ']] [[' qalO '], [' qal ' , [qal_2
'] , [' qa_3'], [qal , qal-5' , ['
qal_6 ']

S syndrome extraction network
acting on a 1-block of M_1

cnot qal_O, qd_0_0
cnot qal_l , qd-0_l
cnot qal_2,qd_0_2
cnot qal_3, qd_0_3
cnot qal_4, qd_O_4
cnot qal_5,qdO_5

126

cnot qal_6 . qd_0_6
h qal_O
wl qd_0O0
h qal_l
wl qdO_0
h qal_2
wl qd_0_2
h qal_3
wl qd_0-3
h qal_4
vwl qd_O_4

h qal_5
wl qd-0-_5
h qal_6
wl qd_0-6
measure se . qal _0
wl qd_O0
measure sel, qal_l
wl qd_0O_
measure se2, qal _2
wl qd-0-_2
measure se3 .qal_3
wl qd_0_3
measure se4, qal_4
wl qd_0_4
measure se5 qal_5
wl qd-0-_5
measure sc6 , qal-_6
wl qd_0_6
set zsl0 se0

xor zs0l zsOlse2
xor zs01 zs01 se4
xor zs01 zs01 se6
set zsll sel
xor zsll .zsl se2
xor zsll ,zsll,se5
xor zsl ,zsll ,se6
set zs2 1 se3
xor zs21 zs21 , se4
xor zs21,zs21 .se5
xor zs21 ,zs21, se6
label prepare_until_2

#PREPARE UNTIL PASS ['qal_O ', 'qall 'qal_2
qal_3', -4 qa ' qal_5 '. 'qal-6 '] ['

vO_l0'] ['vl_0] ['v2_1_0 '] ['v3_1_0']
#G ACTING ON [['qal_O '] ['qal_l '], [' qal_2

'] , [' qa-3 '. ['qal _4'] ['qal_5 ', [
qal_6']1

G preparation network, noiseType = NFT
acting on a 1-block of M_1
#G ACTING ON ['qal_0 ']
#----------- - --- __ _ ___ ___
G preparation network. noiseType = none
acting on a 0-block of M_1

noise off
measure tempO. qal_O
if tempO
x qal_O

noise on
id qal_

#G ACTING ON [' qa - ']

G preparation network. noiseType = none
acting on a 0-block of M_1

noise off
measure tempO. qal _ 1
i f tempO
x qal_l
noise on
id qal_l

#G ACTING ON [' qal_2 ']

G preparation network , noiseType = none
acting on a 0-block of M_

noise off
measure temp, qal _2
if tempo
x qal-_2
noise on
id qal_2

#G ACTING ON [' qal-3 ']

G preparation network, noiseType = none
acting on a O-block of M

noise off
measure tempO, qal_3
if tempO
x qa1_3
noise on
id qa1_3

#G ACTING ON [' qal _4 ']

#G preparation network, noiseType = none
acting on a 0-block of M_1

noise off
measure tempO. qal_4
if tempO
x qal_4
noise on
id qa1_4

#G ACTING ON ['qal_5 ']

G preparation network . noiseType = none
acting on a 0-block of I-_1

noise off
measure tempO, qal-5
if temp0
x qal_5
noise on
id qal_5

#G ACTING ON [' qal_6 ']

G preparation network, noiseType = none
acting on a O-block of M1

noise off
measure tempO, qal _6
if tempO
x qal_6
noise on

id qal-6
h qal_6

127

h qal_5
h qal_4
wl qal_3
wl qal_2
wl qal_l
wl qal_O
cnot qal4, qal_3
cnot qa15, qal_2
cnot qal6, qal _
wl qal-O
cnot qal4, qal_2
cnot qal5, qalO
cnot qal_6, qal_3
wl qall
cnot qal_4 qal_l
cnot qa1-5, qal-3
cnot qal6, qal_0
wl qal_2

#V ACTING ON [[' qalO '], ['qal ']. ' qal-2
'], [' qal 3 '], [' qal_4 '] [' qal_5 '] . ['
qal_6 '] [' v0_0l_ vl-1 0 '] [' v2_1_0 ']

#V verification network , noiseType = NFT
acting on a 1-block of M
#G ACTING ON ['v0_l_0 ']
#------------------------------ __
G preparation network, noiseType = none
acting on a O-block of M_1

noise off
measure tempO, v0_1_-0
if tempo
x v0_l-0
noise on

#G ACTING ON ['vl_l_0']

G preparation network. noiscType = none
acting on a O-block of M-1

noise off
measure tempO0, vl__0
if tempO
x vl1__0
noise on

#G ACTING ON [' v2_1_0 ']

G preparation network , noiseType = none
acting on a O-block of M-1

noise off
measure tempO, v2_1_0
if tempO
x v2_1_0

noise on
#G ACTING ON [' v3_1_0 ']

G preparation network noiseType = none
acting on a O-block of M_1

noise off
measure tempO, v3_1-0
if tempO
x v3_1_0
noise on
id vO_l_0

id
id
id
h

h
h

h
cz
cz
cz
cz
wl
wl
wl
cz
cz
wl
cz
wl
wl
wl
wl
wl
cz

cz

cz

wl
wl
wl

wl

cz

wl

cz

cz

wl

wl

wl
wl
h
h
h
h
wl
wl
wl
wl
wl
wl
wl
mea
mea
mea
mea
wl
wl
wl
wl
wl
wl
wl
set

v 1_1 _0

v2_1-0
v3 _1_0

vl _1_0
v2_1_0
v3_1_0
vO_l_0 , qal_0
vllO .qall
v2_1_0, qal_2
v3_1_0 . qal-3
qal _4

qal _5
qal_6
v0O_10 qal_5
vl _l 0 qal_4
v2_1 _0

v3_1_0 , qal_6
qai-0

qal-2
qal _3
v0_1_.0

vl_l_0, qal_6
v2_1_0 . qal_4
v3_1_0. qal-5
qal-0
qal 1-1

qa1 _2

qal-3
v0_l _0 qal_6
vl-1-__0
v2_1_0 qal_5
v3_1_0, qal_4
qal-O
qal _

qa1-2
qa 1 _3

v0_l _0

vl _1-_0
v2_1 _0

v3_1_0
qal-O

qal _2qal-2
qa1_3
qa-_4
qa1-5
qal-6

sure tempO, v0_1_0
sure templ .vl_l_0
sure temp2, v2_1_0
sure temp3, v3-1_0

qal -O

qal 1-1

qa 1_2
qal _3
qa1_4
qal _5
qa1_6

v, tempO

128

______----------------------

or v .v . templ
or v. v temp2
or v v temp3
if v
jump preparecuntil_2
wl qalO
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qa _5
wl qal_6
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qal_6
wl qalO
wl qall
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qal_6
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qa1_5
wl qal_6
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qa1_6
wl qal_O
wl qal_l
wl qal_2
wl qal _3
wl qal_4
wl qal-5
wl qal-6

#S ACTING ON [[' qdO_O] . ['qd_0_l'] [qd_0_2
'], [' qd-0-3 '], [' qd_0_4 ' [' qd_0_5 '] ['
qd-0-6 ']] ' qal_O ' , [' qal_l '], [qal_2

, ['qa_3 '], [' qal _4], ['qal_5'] . [
qal_6 ']

S syndrome extraction network
acting on a 1-block of M_1

cnot qal_ 0.qd_0_0
cnot qal_l ,qd_O_l
cnot qal_2 ,qd-0_2
cnot qal_3 ,qd-0_3
cnot qal_4 ,qd_0_4
cnot qa15 ,qd-0_5

cnot qal_6, qd_0_6
h qal-O
wl qdO_O0

h qal_l
wl qd_O_l
h qal_2
wl qd-0_2
h qal_3
wl qd-0_3
h qal_4
wl qd_0_4
h qal_5
wl qd-0_5
h qal_6
wl qd-_0_6
measure se0 qal_0
wl qd_O_O0

measure scl ,qal_1
wl qdOl
measure se2 qa1-_2
wl qd_0_2
measure se3 qal _3
wl qd_0_3
measure se4 qal_4
wl qd-0-_4
measure se5 qal-5
wl qd_0_5
measure se6, qal_6
wl qd_0_6
set zs02, sc0
xor zs02 zs02 se2
xor zs02. zs02 se4
xor zs02 zs02 se6
set zsl2 sel
xor zsl2 ,zs12, se2
xor zsl2 zsl2, se5
xor zsl2, zsl2 se6
set zs22 se3
xor zs22, zs22, se4
xor zs22, zs22 se5
xor zs22 zs22 se6

#FIND BEST SYNDROME
#---------- ---- ------------------

set not guesse d_O .1
set not_guessedl ,l1
set not_guessed_2 1

#GUESSING SYNDROME 0

#---- -----------___ __ ___ _
label guesso00
set guesssO , zs00
set guess_sl .zslO
set guess_s2, zs20
set not_guessed_0,0
set numberof_matches_l 1
set numberofmatches_2 .0
jump compare_withall_syndromes_0

#GUESSING SYNDROME 1

label guess_l-0
set guesssO ,zs01
set guess_s1 .zsl

129

set
set
set
set
jump

#COMIPARE GUESS

label
if
jump
label
if
jump
label
if
jump
jump

#COMPARE GUESS
label
set
xor
xor
and
xor
xor
and
xor
xor
and
xor
if
jump
set
and
set
and
set
if
jump
jump

#COIPARE GUESS
label
set
xor
xor
and
xor
xor
and
xor
xor
and
xor
if
jump
set
and
set
and
set
if

guess_s2 , zs21
not_guessed_l .0
numberof_matches_l, 1

number_of_matches_2 ,0
comparewithallsyndromes_0

WITH ALL UNGUESSED SYNDROMES

com parewit hall_synd romes-0
not -guessed _1
compare tol _0
compared to_l -0
not -guessed _2
compareto_2_0
compared to_2_0
notguessed _
guess_1 _0
errorcorrected_0

TO SYNDROME 1

comparetol _0
match .1
matchtemp. guess-sO sOl
matchtemp , matchtemp, 1
match , match , matchtemp
matchtemp, guesss1, zsl1
match_temp, matchtemp , 1
match .match match_temp
match_temp .guess_s2, zs21
match_temp matchtemp .1
match .match .matchtemp
matchtemp , match , 1
match_temp
compared_to_l -0
not_guessedl ,0
matchtemp , numberof_matches-l .1
number_of_matches_2 , match_temp
match_temp, number_ofmatches -0 , 1
numberofmatches-1 , matchtemp
number of_matches _2
found_best_syndrome _
compared_to_ -0

TO SYNDROME 2

compareto_2_0
match .1

match_temp. guesssO , zs02
matchtemp, matchtemp , 1
match, match, matchtemp
match_temp, guesss 1 zsl2
matchtemp, matchtemp, 1
match, match .match-temp
matchtemp, guesss2, zs22
match_temp, matchtemp , 1
match, match, match_temp
match_temp , match .1
match_temp
compared_to_2_0
not_guessed2 ,0
matchtemp . number_of_matchesl, 1
numberof_matches_2 , matchtemp
match_temp . number_of_matches_0 , 1
number_of_matches_l , matchtemp
number_of_matchcs -2

#ERROR

jump foundbest_syndromeO
jump comparedto_2_-0
label foundbest_syndromeO

CORRECTING Z

if
jump
if
jump
if
jump
jump
label
if
jump
if
jump

wl
wl
wl
wl
wl
wl

jump
label
if
jump

wl
wl
wl
wl
wl
wl
jump
label
z

wl
wl
wl
wl
wl
wl
jump
label
if
jump

wl
wl
wl
wl
wl
wl
jump
label

wl1

wl
wl

gucss_s2
correct_ xx_0
guesssl
correct-0x_0
guesssO
correct-001-0
errorcorrected_0
correct_lxx_0
guesssl
correctl 1 x_-0
guesssO
correct_101_0
qd_0_3

qd _0_0
qd_O_1
qd _0_2
qd_0_4
qd-0_5
qd _0_6
errorcorrectedO
correct-0_x_O
guesssO
correct_01 1_0
qd-0_1
qd_0_O

qd-0_2
qd _0_3
qd-0_4
qd_0_5
qd_0_6
errorcorrectedO
correct-001 _0
qd_0_0
qd_0_l
qd-0_2
qd _0_3
qd-0_4
qd _0_5
qd-0_6
errorcorrectedO
correctl lx-0
guesssO
correctl 11 _0
qd_0_5
qd_0_0
qd _0_

qd_0_2
qd _0_3
qd-0_4
qd _0_6
error_corrected-0
correct_101_0
qd-0_4

qd-0_0
qd_O_1
qd_0_2

130

wl qd_0_3
wl qd_0_5
wl qd-0-_6
jump crror_corrected_0
label correct_01 _0
z qd_0_2
wl qd_O0
wl qdOl
wl qd-0-_3
wl qd_0-4
wl qd_0_5
wl qd_0-6
jump error_corrected_0
label correctl 11_0
z qd_0-6
wl qd_0O0
wl qdOl
wl qd-0-_2
wl qd-0-_3
wl qd_0_4
wl qd_0_5
jump errorcorrected-0
label noc_needed_0
wl qdO0O
wl qd_Ol
wl qd_0_2
wl qd-0-_3
wl qd_0-4
wl qd_0-5
wl qd_0-6
wl qd_O0O

wl qd_Ol
wl qd_0-2
wl qd-0-_3
wl qd_0_4
wl qd-0-_5
wl qd_0_6
label error_corrected_0
label prepareuntil_3

#PREPARE UNTIL PASS [' qal_O ' . 'qal_l' . qa _2
qal3 ' , ' qal4 ' ' qa1-5 ' ' qa1_6 ['

v0__0'] [' vl_l-0 '] ['v2-1_0'] 'v3_1_0 ']
#G ACTING ON [' qal_O'], [' qal_l'], [' qal_2

'] ['qaL-_3', ['qal-4'], ['qal_5'], ['
qal_6 ']]

#-------___ -----------------_
G preparation network, noiseType = NFT
acting on a 1-block of M_1
#G ACTING ON ['qal_O']

#------------- ------- ----------___ _
G preparation network, noiseType = none
acting on a O-block of M_1

noise off
measure tempO, qal-0
if tempO
x qal_O

noise on
id qal_O

#G ACTING C)N [' qa 1_1 ']
#----------- preparation network,----------- noiseType = none-------
#G preparation network, noiseType = none

acting on a O-block of M_1
noise off
measure tempO, qal_l
if tempO
x qal_1
noise on
id qal-1

#G ACTING ON [' qal _2 ']

G preparation network , noiseType = none
acting on a 0-block of M_1

noise off
measure tem0. oal-_2
if
x
noise
id

#G ACTING ON ['

tempO
qa1 _2
on
qal _2

qal_3 ']

G preparation network. noiseType = none
acting on a 0-block of M1

noise off
measure tempO. al _3
if tempO
x qal-3
noise on
id qal-3

#G ACTING ON [' qalI4 ']

G preparation network. noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, qal _4
if tempO
x qal_4
noise on
id qal-4

#G ACTING ON [' qal_5 ']

G preparation network . noiseType = none
acting on a O-block of M_1

noise off
measure temp, qal _5
if tempO
x qal_5
noise on
id qal_5

#G ACTING ON [' qal_6 ']

G preparation network , noiseType = none
acting on a O-block of M

noise off
measure tempO, qal _6
i f tempO

x qal_6
noise on
id qal_6
h qal_6
h qal_5
h qal_4
wl qal_3

131

wl qa1-2
wl qal_l
wl qal-O
cnot qal4, qal_3
cnot qal5, qal_2
cnot qal6, qal-l
wl qalO
cnot qal_4, qal_2
cnot qal5, qal-0
cnot qal_6, qal_3
wl qal_l
cnot qal4, qal-l
cnot qal5, qal_3
cnot qal_6, qal_
wl qal_2

#V ACTING ON [['qal-O'], ['qal_l '], [' qal_2
' , [' qal_3 '], ['qal _4 '], [' qal _5 ' , ['
qal_6']] ['vO_l_O'] ['vl_l-0'] ['v2_1_0']

#V verification network, noiseType = NFT
acting on a 1-block of M-_1
#G ACTING ON [' v0-1_-0

G preparation network, noiseType = none
acting on a O-block of M-1

noise off
measure tempO,v0_l_0
if tempO
x v0_l-0
noise on

#G ACTING ON [' vl_l_0']

G preparation network , noiseType = none
acting on a O-block of M-I

noise off
measure temp, vl_l_0
if tempO
x vl_l_0
noise on

#G ACTING ON [' v2-1_0 ']

G preparation network , noiseType = none
acting on a O-block of MA1

noise off
measure tempO. v2_1-0
if tempO
x v2-1_0
noise on

#G ACTING ON [' v3_1_0 ']

G preparation network, noiseType = none
acting on a O-block of M1

noise off
measure tempO, v3_1-0
if tempO
x v3-1_0
noise on
id vO_l_0
id vl1_0
id v2_1_0
id v3_1_0

h vO_1-0
h vllO0
h v2_1_0
h v3_1-0
cz vOl-0,qal_0
cz vl-l_O , qal l
cz v21-0, qal_2
cz v3_10, qal-3
wl qal_4
wl qal_5
wl qal_6
cz vO_-0, qal_5
cz v ll-O , qal_4
wl v2_1-0
cz v31-0, qal_6
wl qal_O
wl qall
wl qal-2
wl qal_3
wl v0_1-0
cz vl_l_0 , qal_6
cz v2-1_0, qal_4
cz v31-0, qal_5
wl qal-O
wl qall
wl qal_2
wl qa1-3
cz v0_l-0, qal_6
wl v1_1_0
cz v2_1_0, qal_5
cz v3_1_0, qal_4
wl qal-O
wl qall
wl qal_2
wl qal-3
h vO_l_0
h vl_l_O
h v2_1-0
h v3-1_0
wl qalO
wl qal-l
wl qal_2
wl qal-3
wl qal-4
wl qal_5
wl qal_6
measure tempO, vOl_0
measure templ, v-1 -0
measure temp2, v2-1-_0
measure temp3, v3-1_0
wl qa1-O
wl qall
wl qa1_2
wl qal-3
wl qal_4
wl qa1_5
wl qal-_6
set v .tempo
or v, v,templ
or v, v, temp2
or v, v, temp3

132

--- _______ _

if v
jump prepare-until-3

#S ACTING ON [[' qd_O_0 ' , ' qd-_0O '] . [' qd-0-_2
'] [' qd_0_3 '], [' qd-0-4 ' . [' qd__5 '], ['

qd-0-6 '] [[' qalO '], ' qal_l , [qai_2
'], [' qa1_3] . ['qal_4 '], [' qal_5 '] ['
qal-6 ']]

#S syndrome extraction network
acting on a 1-block of Ml_1

cz qal_0 .qd0_0
cz qal_l, qd_O_l
cz qal_2 qd-0-_2
cz qa13, qd_0_3
cz qa14 .qd_0_4
cz qal_5 .qd_0_5
cz qal_6 .qd_0_6
h qal_O
wl qd-_o0
h qal_l
wl qd-0_l
h qal_2
wl qd-0_2
h qal_3
wl qd-0_3
h qal_4
wl qd-0_4
h qal_5
wl qd-0_5

h qal_6
wl qd-0_6
measure se0. qal_0
wl qdO_0
measure sel , qall
wl qd _0_l
measure se2 ,qal-2
wl qd-0_2
measure se3 , qal_3
wl qd-0_3
measure sc4 , qal_4
wl qd-0_4
measure se5 . qal_5
wvl qd-0_5

measure se6 , qal_6
wl qd-0_6
set xs00 . se0
xor s00xs00 . xsOO ,se2

xor xs00, xs00, se4
xor xs00 , xs00, se6
set xsl0 .sel
xor xs10 .xs10 se2
xor xs10.xs10, se5
xor xs10.xs10,se6
set xs20 .se3
xor xs s20 ,se4
xor xs20 xs20, se5
xor xs20 xs20,se6
xor tempO. 1, xs00
and templ tempO, 1
xor temp 1 , xs10
and templ templ, tempO

xor tempo 1 , xs20
and templ templ tempo
i f templ
jump no_ec neededl
label prepare_until_4

#PREPARE UNTIL PASS [' qal_O '. ' qal_ ', 'qal_2
'. ' qal-3 ' qal_4 ' qal _5', ' qal_6 '] ['
vo_0 [' vl__ '] [' v2_1_0 '] [' v3-1_0 ']

#G ACTING ON [' qal_] . [qall '], [qa_2
] , [' qal_3 '. [qal_4 ' . [' qal_5 ' , [

qa1_6 ']

#G preparation network. noiseType = NFT
acting on a i-block of M_I
#G ACTING ON [' qalO]

G preparation network. noiseType = none
acting on a O-block of NI_1

noise off
measure tempO, qal_0
i f tempO
x qal_O
noise on
id qal_O

#G ACTING ON [' qal_l]

#--------------- -------------------
G preparation network, noiseType = none
acting on a 0-block of M_

noise off
measure temp, qal_l
if tempO
x qal_l
noise on
id qal_l

#G ACTING ON ['qal_2 ']

G preparation network. noiseType = none
acting on a O-block of M_l

noise off
measure tempO, qal _2
i f tempO
x qal_2
noise on
id qal_2

#G ACTING ON [' qa1_3 ']

G preparation network, noiseType = none
acting on a O-block of M_

noise off
measure tempO, qal_3
i f tempO
x qal_3
noise on

id qal_3
#G ACTING ON [' qal-4 ']

G preparation network, noiseType = none
acting on a 0-block of MI_1

noise off
measure tempO,qal_4
if tempO

133

x qal_4
noise on
id qal_4

#G ACTING ON ['qal_5 ']

#-------------- -------_ ------------
G preparation network , noiseType = none
acting on a O-block of M1

noise off
measure tempO, qal_5
if tempO
x qal_5
noise on
id qal-5

#G ACTING ON ['qal_6']

G preparation network , noiseType = none
acting on a O-block of Ml

noise off
measure temp0. qal _6
if tempo
x qal_6
noise on
id qal_6
h qal_6
h qal_5
h qal_4
wl qal_3
wl qal_2
wl qall
wl qal-O
cnot qa14, qal_3
cnot qal_5 qal_2
cnot qal-6, qal _
wl qalO
cnot qal-4, qal_2
cnot qal5, qal_0
cnot qal_6, qal_3
wl qall
cnot qal_4 . qal_l
cnot qal-5, qa1-3
cnot qal_6, qal_0
wl qal-2

#V ACTING ON [[' qal_-O ' ['qal_l '], [' qal_2
'] ['qa3 '], [' qal_4 ' , [' qal_5 '], ['
qal_6 ']] ['v00 '] [' vOvl-1-0 '] [' v2_1_0 ']

V verification network, noiseType = NFT
acting on a 1-block of M_1
#G ACTING ON [' v0__1-0 ']

G preparation network , noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, v0_l_0
i f tempO
x vlO_0
noise on

#G ACTING ON [' vl-1-0 ']

noise off
measure temp. vl _1 _0
i f tempO
x vl_l_0
noise on

#G ACTING ON ['v2_1_0 ']
#------- ----------------__ _ ___ __
G preparation network. noiseType = none
acting on a 0-block of M_1

noise off
measure tempO, v2_1_0
if tempO
x v2_1-0
noise on

#G ACTING ON ['v3_1_0 ']
_ _

G preparation network, noiseType = none
acting on a O-block of MI

noise off
measure temp, v3-1 _0
if tempO
x v3_1_0
noise on
id vO_1-0
id vl1_-0
id v2_1_0
id v3_1-0
h vO_1-0
h vl1_-0
h v2_1-0
h v3_1_0
cz vO_l_1-0 . qa0
cz vl_l-0, qall
cz v2-1-0 .qal_2
cz v3_1-0, qal_3
wl qal_4
wl qal_5
wl qal_6
cz v0_0 , q a l _5
cz vl_1 0 . qa1_4
wl v2_1-0
cz v3_1-0, qal_6
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl v0_1-0
cz vl l_0 , qal_6
cz v2_1_0, qal_4
cz v3_10, qal_5
wl qal_O
wl qal-1

wl qal-2
wl qal_3
cz v0_l0 , qal_6
wl vl-1_0
cz v2_1_0, qal_5
cz v31-0, qal_4
wl qal-O
wl qall
wl qal_2

134

G preparation network , noiseType = none
acting on a O-block of M1

#--------- ---- ------__________

:=rr

wl qal-_3
h vO_1-0
h vl_l_O
h v2_1_0
h v3_1_0
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qal_6
measure tempO. v0_1-0
measure templ .vl_l_0
measure temp2 v2 1_0
measure temp3 . v3_1 _0
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl qal-4
wl qal_5
wl qal_6
set v .tempo
or v, v templ
or v. v. temp2
or v . temp3
if v
jump preparepareuntil_4
wl qal_O
wl qal_l
wl qal_2
wl qal_3
w1 qal_4
wl qal_5
wI qal_6

wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qal_6
w1 qal_O

wl qal_l
wl qa1_2
wl qa1_3
wl qa-_4
wl qal_5
wl qal_6

#S ACTING ON [['qd_O_O ' [' qd_Ol '] [' qd-0_2
'] , [' qd-0_3 ' , [' qd_0_4 '] , [' qd_0_5 '] , ['
qd_0_6 ']] [[' qalO '] . [' qal_l I], [' qal_2
'], [' qal _3 '] . ['qal_4 '] [' qal_5 '], [
qal_6 ']]

#----------- --------_--___________
S syndrome extraction network
acting on a 1-block of M_

cz qal_0 . qd_0_0
cz qal_l , qd_0_l
cz qal_2 . qd_0_2

cz qal_3, qd-0-_3
cz qal_4 ,qd-0-_4
cz qal_5 ,qd-0-_5
cz qal_6, qd_0_6
h qal_O
wl qd_0O0
h qal_l
wl qd_0_l
h qal_2
wl qd-0_2
h qal_3
wl qd_0-3
h qal_4
wl qd-0-_4
h qal_5
wl qd_0_5
h qal_6
wl qd_0_6
measure seO, qal_0
wl qdO0_
measure sel qal_l
wl qd_Ol
measure se2, qal_2
wl qd_0-2
measure se3, qal_3
wl qd-0-_3
measure se4 ,qal_4
wl qd-0-_4
measure se5, qal _5
wl qd_O_5
measure se6, qa1-_6
wl qd_0-6

set xs1 , se0O
xor xs01, xs01, se2
xor xs01l, xs01l, se4
xor xs01, xs0Ol . se6
set xsll ,sel
xor xsll , xsll , se2
xor xsll ,xsll ,se5
xor xsll ,xsll,se6
set xs21, se3
xor xs21, xs21 se4
xor xs21, xs21, se5
xor xs21, xs21 se6
label preparepare_until_5

#PREPARE UNTIL PASS [' qal_O', 'qal_l ', ' qal_2
'qa13 ', 'qal_4 ', 'qal_5 ', 'qal-6 ' '
l0_l_0 '] [' vl_l '] [' v2_10] ['v3_1_0 '

#G ACTING ON [['qal_O ', ['qal_l'], [' qal_2
'], [' qal_3 '], [' qal4 ' , [' qal_5 '] ['
qal_6 ']]

G preparation network, noiseType = NFT
acting on a 1-block of MNI_
#G ACTING ON ['qal-O']

G preparation network, noiseType = none
acting on a 0-block of M1

noise off
measure tempO, qal_0
if tempO

135

x qalO
noise on
id qal_0

#G ACTING ON [' qal_l ']

G preparation network, noiseType = none
acting on a 0-block of I_1

noise off
measure tcmp0, qal_l
if tempO
x qa1-1
noise on
id qal_1

#G ACTING ON [' qa _2 ']
uL_ ____________

G preparation network. noiseType = none
acting on a O-block of M1

noise off
measure tempo, qal_2
if tempO
x qal_2
noise on
id qal_2

#G ACTING ON [' qa1_3 ']
:#------------------- ____
G preparation network, noiseType = none
acting on a O-block of M1

noise off
measure tempO, qal_3
if tempO
x qa1_3
noise on

id qal-3
#G ACTING ON ['qal_4']

G preparation network , noiseType = none
acting on a 0-block of M_1

noise off
measure temDO, qal_4
if tempO
x qal_4
noise on
id qal_4

#G ACTING ON ['qal_5 ']

G preparation network, noiseType = none
acting on a O-block of M1

noise off
measure tempO, qal _5
if tempO
x qal_5
noise on
id qal_5

#G ACTING ON [' qal 6 ']

G preparation network, noiseType = none
acting on a O-block of M_1

noise off
measure tempO, qal_6
if tempO
x qal_6

noise on
id qal_6
h qal_6
h qa1_5
h qal_4
wl qal_3
wl qal_2
wl qal_l
wl qal_O
cnot qal _4 qal_3
cnot qal_5,qal_2
cnot qal6, qall
wl qal_O
cnot qal_4, qal_2
cnot qal_5 ,qalO
cnot qal_6, qal_3
wl qal_l

cnot qal_4, qal_
cnot qal_5 .qal-3
cnot qal_6, qal-0
wl qal_2

#V ACTING ON [[' qal_O '], [' qall '], [' qal_2
'] . [' qal13 ']1, ' qal4 '], [' qal_5 ' , ['
qal_6 '] ['v-1_0'] ['vl-_l_0'] ['v2-1_0']

V verification network, noiseType = NFT
acting on a 1-block of M_1
#G ACTING ON [' v 0 _ 1 _ 0 ']

G preparation network, noiseType = none
acting on a O-block of vll

noise off
measure tempo, v0_l0
if tempO
x vO_l_0
noise on

#G ACTING ON [' v 1 _ 1 _ -0 ']#---------------------- __

G preparation network , noiseType = none
acting on a 0-block of M_1

noise off
measure temO. v 1 1 -0

if tempO
x vl_l_O
noise on

#G ACTING ON [' v2_1_0 ']

G preparation network , noiseType = none
acting on a O-block of M

noise off
measure tempO. v2_1_0
if tempO
x v2_1_0
noise on

G ACTING ON [' v3 1_0 ']

G preparation network, noiseType = none
acting on a O-block of MI

noise off
measure tempO. v3_1-0
if tempO

136

#--------- --------------

I
_

wl qal_5
wl qal_6
set v,tempO
or v,v,templ
or v, v, temp2
or .v, temp3
if v
jump prepareuntil_5
wl qalO
wl qall
wl qal-_2
wl qal_3

wl qal_4
wl qal-5
wl qal_6
wl qal-O
wl qall
vl qal_2
wl qal_3
vwl qal_4

wl qal_5
wl qal_6
wl qal-O
wl qall
wl qal-_2
wl qal_3
wl qal_4
wl qal_5
wl qal_6
wl qal_O
wl qal_l
wl qal_2
wl qal_3

wl qal_4
wl qal_5
wl qal_6
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl qal_4
vwl qal_5

wl qal_6
wl qal_O
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qal_5
wl qal_6

#S ACTING ON [[' qd0-0 '] [' qd_O-1 ', [' qd-0-_2
'] , ['qd_0-3 '] , ' qd-0-4 '], [' qd-0__5 '] , ['
qd_0_6 '] [[' qal-O ' , [qall ' . [' qal-_2

'] [' qal_3 '], [qal_4] . [' qal15 '] ['
qal_6 'II

S syndrome extraction network
acting on a 1-block of M\I_

cz qal_O , qd-_OO
cz qal_l , qd_O-1
cz qal_2 , qd-0-_O_2

x
noise
id
id
id
id
h

h

h

h

cz
cz

cz

cz
wl
wl

wl

cz

cz

wl

cz

wl

wl
wl

wl
wl
cz

cz

cz

wl

wl
wl

cz

wl
cz

cz

wl
wl
wl

h

wlI

wl

wl
wl

measure
measure
measure

wl
wl

wl

wl

wlwvl

wli

wli

v3_1 _0

on

v2_1 _0
v3_1 _0
v0_l _0

v 1_0
v2_1 _0
v3 1 _0

v _1-0, qal_0
vl_lO . qal_l
v2_10 .qal_2
v3_1_0, qal _3
qal _4
qal_5
qal _6
v _1-0, qal-_5
vl_l_0, qal_4
v2-1_0
v3_1_0, qal_6
qal _1

qal _

qal _2
qa 1 -3

vO_1 _0

vl_l_O qal_6
v2_1_0 qal_4
v3_1_0, qal_5

qal -0
qal _1
qal _2
qal _3
vOlO, qa1-6

v2_1-0 qa1-5
v31_0, qal_4
qalO
qal 1-1
qa1 _2
qal_3

v _1 _0

v2_1 _0

v3 _1 _0

qalO
qal _1

qal _2
qal-3
qal _4
qal_5
qal_6
tempO. vO 1_
templ, vl _ _0
temp2. v21_0
temp3. v3_1_0
qalO
qal l
qal _2
qal _3
qal_4

137

cz qal3, qd_0-3
cz qa1_4, qd_0-4
cz qal_5, qd_0_5
cz qal_6 qd_0_6
h qal-0
wl qd_0_0
h qal_
wl qd-0-1
h qal_2
wl qd 0_2
h qal_3
wl qd_0_3
h qal_4
wl qd_0_4
h qal_5
wl qd 0-5
h qal_6
wl qd-0-6
measure sc0 . qal_0
wl qd_0_0
measure sel qal_l
wl qd_0_1
measure se2 , qal _2
wl qd 0_2
measure se3 .qal-3
wl qd_0_3
measure se4 qal_4
wl qd_0-4
measure se5, qal _5
wl qd_0_5
measure se6 qal_6
wl qd 0_6
set xs02, sO
xor xs02, xs02,se2
xor xs02 xs02, se4
xor xs02, xs02 se6
set xsl2. scl
xor xs12, xs12, se2
xor xsl2,xs12,se5
xor xs12,xsl2.se6
set xs22 se3
xor xs22, xs22,se4
xor xs22, xs22, se5
xor xs22. xs22.se6

#FIND BEST SYNDROME

set notguessed_0 ,1
set notguessed_l ,1
set notguessed_2 ,1

#GUESSING SYNDROME 0

label guess_0_l
set guess_sO, xs00
set guess_sl ,xslO0
set guess_s2 , xs20
set not_guessed_0 ,0
set numberof_matches-l ,1
set number_of_matches_2 ,0
jump comparewithall_syndromes_l

#GUESSING SYNDROMIE 1

label
set
set
set
set
set
set
jump

#COMPARE GUESS

label
if
jump
label
if
jump
label
if
jump
jump

#COMPARE GUESS

label
set
xor
xor
and
xor
xor
and
xor
xor
and
xor
if
jump
set
and
set
and
set
if
jump
jump

#OOMPARE GUESS
label
set
xor
xor
and
xor
xor
and
xor
xor
and
xor
if
jump
set
and
set

guess_l _1
guesssO , xsOls01
guesssl ,xsll
guesss2, xs21
notguessedl .0
number-of_matches_l , 1
numberof_matches _2 .0
comparewith_allsyndromes_l

WITH ALL UNGUESSED SYNDROMES

comparewit h_all_syndromesl
not _guessed-l
compare-tol _1
compared-tol _1
not _guessed_2
compareto_2_1
comparedto_2_
not_guessedl
guess_l _1
error_corrected _

TO SYNDROME 1

comparetol _1
match,1
matchtemp , guess_sO , xsOl
matchtemp , match_temp , 1
match , match , match_temp
match_temp, guesssl, xsl l
matchtemp , matchtemp, 1
match, match , match_temp
match_temp, guesss2 , xs21
match_temp , match_temp, 1
match , match , matchtemp
match_temp , match , 1
matchtemp
comparedto_l _1
not_guessedl ,0
match_temp , numberof_matchesl ,1
numberofmatches_2 , match_temp
matchtemp , numberof_matches_0 , 1
number_ofmatchesl , match_temp
numberof_matches _2
foundbestsyndromel-1
comparedtol 1

TO SYNDROME 2

compare-to_2_A
match,

match_temp, guess_sO , xs02
matchtemp , match_temp, 1
match , match , match_temp
match_temp , guesss , xs12
matchtemp , match_temp, 1
match , match , matchtemp
matchtemp , guess_s2 , xs22
matchtemp, match_temp , 1
match , match , matchtemp
matchtemp , match, 1
match_temp
compared_to_2_l
notguessed-2 ,0
match_temp , numberofmatchesl , 1
number_of_matches_2 , matchtemp

138

and match_temp , numberof_matches_O , 1
set numberof_matchesl .match_temp
i f number_ofmatches _2
jump foundbest_syndrome_1
jump compared_to_2_1
label foundbest_syndrome-1

#ERROR CORRECTING X
#- ------------- --- --_ --

guess_s2
correct_lxx-l
guess-sl
correctOlx-l
guesssO
correct001_-1
error_correctedl
correct_lxxl
guesss 1

correct_1 1xl
guesssO
correct_101_1
qd_O-3
qd _0_0
qd_0_1
qd _0-2
qd--O_4
qd _0_5
qdO_6
error_corrected_l
correct_Olx_1
guess_sO
correct_01 1_1
qd_-0_1
qd _0_0
qd_0_2
qd _03
qd _0_4
qd_0_5
qd _0_6
errorcorrectedl
correct_001_-1
qd_O_O
qd _0_1
qd _0_2
qd-0-3
qd _04
qd_0_5
qd _0_6
error_correctedl
correct_llxl
gucsssO
correct_l 11-1
qd _0_5
qd _0_0
qd_0_l
qd _0_2
qd _-0-3
qd_0_4
qd_0_6
crrorcorrected _l

corrcct _10 1_l
qd _04

wl
wl
wl
wl
wl
wl

jump
labe
x
wl
wl
wl
wl
wl
wl
jump
labe
x
wl
wl
wl
wl
wl
wl
jump
labe
wl
wl
wl

wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl
wl

qd __0
qd_O_1
qd_O_2
qd-0_3
qd_0-5
qd 0-6
error_correccted-
correct_O 1 1_1
qd-0__2
qd _-0_O

qd_O_1
qd _-0_3
qd _0_4
qd-0-5
qd-O_6
error_corrccted
correct_1 1 1_
qd-0-6
qd _-0
qd_O_l

qd-0_2
qd-0 _ _3

qd _O4
qd_O_5
error_correctedA
no_ecneededl
qdO_O
qd-O_l1
qd _0_2
qd _O_3
qd _0_4
qd _0_5
qd0__6
qd __0
qd_O_l1
qd-0-2
qd_O_3
qd-0 _4
qd-0_5
qd _0_6
qdO_O
qd_O_
qd-0-2
qd _0_3
qd-0_4
qd _0- _5

qdO_6
qd _00
qdO_l0

qdO_2
qd _0- _3

qd __4
qd _0-_5
qd __6
qd_O_O
qd_0_1
qd 0_2
qd-0_3
qd-0 _4
qd-0_5
qd _ _6

139

if
jump
if
jump
if
jump
jump
label
if
jump
if
jump
x

wl
wl
wl
wl
wl
wl

jump
label
if
jump
x

w1

w1

wl

wl
wiw1

wl
jump
label

wl
wl
wl
wl
wl
wl
jump
label
if
jump
x

wl
wl
wl
w 1

wl
wl

jump
label

wl qd_0O0
wl qd_O_l
wl qd_0_2
wl
wl
wl
wl
label

qd_0-3
qd _0_4
qd-0-_5
qd _0_6
errorcorrected_l

id qd_O00
id qd_O_1
id qd-0-_2
id
id
id
id

qd-0-_3
qd _0_4
qd _0-5
qd _0_6

counter_bottom_id_gate_count
xor full_add_xorab 1,

count_id_gat c_count_2
and full_addandab, 1,

count_id_gate_count_2
and full_add_andcxorab,

full_addxorab ,0
xor count_id_gatc_count_2 .0,

full_addxorab
or countertempidgatecount,

full_add_andab , full_addandcxorab
xor full_addxorab ,0,

count_idgatecount _1

and full_addandab ,0,
count_id_gatc_count _1

and full_addandcxorab,
full_addxorab,
countertemp_id_gate_count

xor countid_gate_count1 ,
countertempidgat-ecount,
full_addxorab

or countertempidgatecount,
full_add_andab , full_addandcxorab

xor full_addxorab ,0,
count id_gate-count_0

and fulladd-andab ,0,
count _id _gate_count _0

and full_addandcxorab,
full_addxorab,
countertemp_id_gate_count

xor countid-gate_count-O ,
count ertemp_i d _gatecount,
full-addxorab

or countertempid_gate-count,
fulladdandab , full_add_andcxorab

jump countertop_id_gate_count
label counterbottom_idgatecount
noise off
subset magic 7, qd-O-0 , qd_O_l , qd-0_2,

qd-0_3 . qd_0_4 , qd_0_5 , qd0_6 ,-
ZZZZZZZ, IIIXXXX, IXXIIXX, XIXIXIX,
IIIZZZZ , IZZIIZZ,- ZIZIZIZ

if magic
halt
subset magic , 7, qd_O00 . qdO_l , qd-0-_2

qd-0-3 , qd-0_4 , qd-0-_5 , qd-0-_6.-
ZZZZZZZ, IIIXXXX, IXXIIXX, XIXIXIX,
IIIZZZZ,-IZZIIZZ ,ZIZIZIZ

i f magic
halt
subset magic , 7, qd_0O0 , qd_0_l , qd-0_2,

qd-0-3 , qd-0_4, qd-05 , qd_0-6,-
ZZZZZZZ, IIIXXXX , IXXIIXX. XIXIXIX,
IIIZZZZ ,- IZZIIZZ ,- ZIZIZIZ

i f magic
halt
subset magic, 7, qd_0 , qd _0 , qd-0_2 ,

qd-0-3 , qd-0_4 , qd-0-5 , qd-0-_6,-
ZZZZZZZ, IIIXXXX, IXXIIXX, XIXIXIX,--

IIIZZZZ , IZZIIZZ, ZIZIZIZ
i f magic
halt
subset magic .7, qdO_0 , qd_O_l , qd0_2,

qd-0-3 , qd-0_4 , qd-0-5 , qd_0_6,-
ZZZZZZZ, IIIXXXX IXXIIXX .XIXIXIX, -
IIIZZZZ, IZZIIZZ,-ZIZIZIZ

if magic
halt
subset magic 7, qd_0_0 , qd_0 , qd-0_2,

qd-0-3 , qd-0-4 , qd-0-5 , qd_0_6,-
ZZZZZZZ, IIIXXXX, IXXIIXX, XIXIXIX.-
IIIZZZZ,-IZZIIZZ , ZIZIZIZ

if magic
halt
subset magic, 7, qd-00 , qd_0_l, qd-0_2,

qd-0_3 , qd-0-_4 , qd-0-5 , qd_0_6,-
ZZZZZZZ, IIIXXXX, IXXIIXX .XIXIXIX ,-
IIIZZZZ,-IZZIIZZ,-ZIZIZIZ

if magic
halt

EOF

140

Bibliography

[1] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys.

Rev. A, 70:052328, 2004. arXive e-print quant-ph/0406196.

[2] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with con-

stant error. Proceedings of the 29th Annual ACM Symposium on the Theory of

Computation, pages 176-188, 1997. arXive e-print quant-ph/9906129.

[3] P. Aliferis, D. Gottesman, and J. Preskill. Quantum accuracy threshold for con-

catenated distance-3 codes. Unpublished, 2005. arXive e-print quant-ph/0504218.

[4] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist.

Phys. Rev. A, 54(2):1098-1106, 1996. arXive e-print quant-ph/9512032.

[5] A. Cross. Synthesis and evaluation of fault-tolerant quantum computer architec-

tures. Master's thesis, Massachusetts Institute of Technology, 2005.

[6] D. Deutsch. Quantum computational networks. Proceedings of the Royal Society

of London, 425:73-90, 1989.

[7] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by

adiabatic evolution. Unpublished, 2000. arXive e-print quant-ph/0001106.

[8] D. Gottesman. Stabilizer codes and quantum error correction. PhD dissertation,

Caltech, 1997. arXive e-print quant-ph/9705052.

[9] A. Kitaev. Quantum computations: algorithms and error correction. Russian

Math Surveys, 52:1191-1249, 1997.

141

[10] E. Knill and R. Laflamme. Concatenated quantum codes. report LAUR-96-2808,

LANL, 1996. arXive e-print quant-ph/9608012.

[11] E. Knill, R. Laflamme, and W. Zurek. Resilient quantum computation: Er-

ror models and thresholds. Science, 279(5349), 1998.

ph/9702058.

[12] M. Nielsen and I. Chuang.

arXive e-print quant-

Quantum computation and quantum information.

Cambridge University Press, Cambridge, England, 2000.

[13] J. Preskill. Reliable quantum computers. Proc. Roy. Soc. Lond. A, 454:385-410,

1998. arXive e-print quant-ph/9705031.

[14] J. Preskill. Fault-tolerant quantum computation. In H. Lo, S. Popescu, and

T. Spiller, editors, Introduction to quantum computation and information. World

Scientific Publishing Company, 2001. arXive e-print quant-ph/9712048.

[15] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum

computation on cluster states. Phys. Rev. A, 68:22312, 2003. arXive e-print

quant-ph/0301052.

[16] B. Reichardt. Improved ancilla preparation scheme increases fault-tolerant

threshold. 2004. preprint arXive e-print quant-ph/0406196.

[17] P. W. Shor. Scheme for reducing decoherence in quantum computer memory.

Physical Review A, 52(4):2493-2496, 1995.

[18] A. Steane.

1995.

Error-correcting codes in quantum theory. Phys. Rev. A, 52:2493,

[19] A. Steane. Overhead and noise threshold of fault-tolerant quantum error correc-

tion. Phys. Rev. A, 68(042322), 2003. arXive e-print quant-ph/0207119.

[20] A. Steane. Fast fault-tolerant filter for quantum codewords. 2004. arXive e-print

quant-ph/0202036.

142

[21] K. Svore, B. Terhal, and D. DiVincenzo. Local fault-tolerant quantum compu-

tation. To appear in Phys. Rev. A, 2005. arXive e-print quant-ph/0410047.

[22] C. Zalka. Threshold estimate for fault tolerant quantum computing. Unpublished,

1996. arXive e-print quant-ph/9612028.

143

