An Accurate Analytical Framework for Computing
Fault-tolerance Thresholds Using the [[7,1,3]]

Quantum Code [MASSACHUSETTS NGTTUTE]
OF TECHNOLOGY
b
Y JAN 3 0 2006
Andrew J. Morten

LIBRARIES

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Physicsv
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2005

(© Massachusetts Institute of Technology 2005. All rights reserved.

Author

epartment of Physics
0 August 26, 2005

Certified by........................ 5. . T N

Isaac Chuang
Associate Professor, Department of Physics
Thesis Supervisor

¢ -0 yi

Accepted by e . 2P

David E. Prltchard
Senior Thesis Coordinator, Department of Physics

&_ (‘HNEQé

An Accurate Analytical Framework for Computing
Fault-tolerance Thresholds Using the [[7,1,3]] Quantum Code
by
Andrew J. Morten

Submitted to the Department of Physics
on August 26, 2005, in partial fulfillment of the
requirements for the degree of
Bachelor of Science in Physics

Abstract

In studies of the threshold for fault-tolerant quantum error-correction, it is generally
assumed that the noise channel at all levels of error-correction is the depolarizing
channel. The effects of this assumption on the threshold result are unknown. We
address this problem by calculating the effective noise channel at all levels of error-
correction specifically for the Steane [[7,1,3]] code, and we recalculate the threshold
using the new noise channels. We present a detailed analytical framework for these
calculations and run numerical simulations for comparison. We find that only X and
7 failures occur with significant probability in the effective noise channel at higher
levels of error-correction. We calculate that when changes in the noise channel are
accounted for, the value of the threshold for the Steane [[7,1,3]] code increases by
about 30 percent, from .00030 to .00039, when memory failures occur with one tenth
the probability of all other failures. Furthermore, our analytical model provides a
framework for calculating thresholds for systems where the initial noise channel is
very different from the depolarizing channel, such as is the case for ion trap quantum
computation.

Thesis Supervisor: Isaac Chuang
Title: Associate Professor, Department of Physics

Acknowledgments

The length of my acknowledgements list is in indirect proportion to my gratitude to-
ward those acknowledged. I would not have completed this work without the support
of Prof. Isaac Chuang and Andrew Cross. I would like to thank Prof. Isaac Chuang
for introducing me to the problem and for providing me an opportunity to work with
his group at the Media Lab. I learned a great deal from interactions with his research
group, especially with Andrew Cross. [cannot thank Andrew Cross enough - for
providing my with a chunk of code that eventually became my QEC simulator, for
many useful and eye-opening conversations about quantum error-correction whenever
and wherever I needed them, for letting me use what would otherwise have been his

computing cycles, and for his support during the final writing of this thesis.

Contents

1 Introduction

1.1 Outline.

2 Background

2.1 Quantum Computation
2.1.1 Network Model
2.1.2 Stabilizer Formalism

2.2 Quantum Error Correction
2.2.1 Quantum Noise Model
2.2.2 Classical Error Correction
2.2.3 CSS Codes and the [[7,1,3]] Code
2.2.4 Circuit Construction
2.2.5 Fault Tolerant Thresholds

3 The Model

3.1 Replacement Rule L

3.2 Error Correction Circuit

3.3 Modeling Choices

4 Analytical Approximation

4.1 Analysis Overview
4.2 Notation
4.2.1 The Error Correction Network

17
18

19
20
20
21
23
23
25
27
29
34

37
37
39
41

4.2.2 Failure Rates
4.2.3 Probabilities
4.3 Alpha
4.4 Incoming Errorson Data
4.5 Noise Channels
451 Single Qubit Gate. L
452 Two Qubit Gate
4.5.3 Measurement
4.5.4 Preparation
4.6 Threshold
Results
5.1 Numerical Simulations
52 Alpha
5.3 Incoming Errorson Data
54 Noise Channels
5.5 Threshold L

Conclusions and Further Directions

Probabilities

Counting Tables for Failure Rate Estimates
Error Correction Circuits

ARQ Code Generator for [[7,1,3]] Quantum Code

Sample ARQ Code

60

69
69
70
73
74
74

83

85

87

91

95

117

List of Figures

2-1

2-2

2-3

3-1

3-2

This is the circuit for the preparation network, G. It prepares the
logical zero state, [0);. It is used in the error-correction circuit (see

Section 3.2) to prepare ancilla qubits in the state [0),.

This circuit measures the operator Z on the qubit |g4) and projects |gq)

into an eigenstate of Z with the measured eigenvalue.

The verification network V' checks for X errors on the state |0), and

gives four zero measurement results if no X errors are detected.

The syndrome extraction network S consists of three time steps. The
above network is the syndrome extraction for Z error correction. The
syndrome extraction network for X error correction is the same, except

with each cnot replaced by cz.

(a) The replacement rule for a single qubit gate. (b) The replacement

rule for a two qubit gate.

The error correction routine finds and corrects errors on the seven data
qubits in the logical state |qd), with the aid of multiple copies of ancilla
qubits in the logical zero state |0),. The second half of the circuit is on
of two possibilities, depending on whether the first syndrome extraction
S} was zero or non-zero. If the syndrome is non-zero, then two more

syndromes are collected (middle circuit), but if the syndrome is zero,

no more syndromes are collected and the data qubits wait (righmost

circuit) during the syndrome extraction circuit acting on other qubits.

9

30

31

32

33

38

39

5-1

9-2

5-3

5-4

This is a graph for «a, the probability that the verification network
passes, versus the failure rate vy = v = 72 = vm = 7p = 107,. It is
plotted twice: once assuming the depolarizing channel (solid line), and
once assuming the effective channel that we calculate in Section 5.4 to

be the higher level noise channel (“adjusted” dashed line).

This is a graph of the probabilities of incoming errors on the ancilla
coming into S? versus the failure rate v = 71 = y2 = ym = 7, = 107,
The probabilities are plotted twice: once assuming the depolarizing
channel (solid lines), and once assuming the effective channel that we
calculate in Section 5.4 to be the higher level noise channel (“adjusted”
dashed lines). The legend indicates the the order of the plotted prob-

abilities as they appear in the graph from top to bottom.

This is a graph of the probabilities of incoming X, Y, and Z errors

into Z error-correction: PX PY and PZ. They are plotted against

the failure rate v = v1 = 72 = vm = 7, = 107, The probabilities are
plotted twice: once assuming the depolarizing channel (solid lines), and
once assuming the effective channel that we calculate in Section 5.4 to
be the higher level noise channel (dashed lines). The legend indicates
the the order of the plotted probabilities as they appear in the graph

from top to bottom.

The is a graph the effective noise channel (the separate probabilities of
X, Y, and Z errors) at level £+ 1 versus the failure rate vy = y1 = 42 =
Ym = Yp = 107, at level £. The probabilities are plotted twice: once
assuming the depolarizing channel, and once assuming the effective
channel that we calculate in Section 5.4 to be the higher level noise
channel. We also plot the probability of an X or Y error (denoted X,Y
error) and compare to numerical simulation. The legend indicates the
the order of the plotted probabilities as they appear in the graph from
top tobottom.o

71

72

78

9-6

C-1

C-2

This is a graph of the threshold for the Steane [[7,1,3]] code. The
horizontal axis is Yeise = 71 = 72 = ¥p = Ym and the vertical axis is 7,
The solid line is the threshold result assuming depolarizing noise at all
levels of error-correction. The dashed line is the threshold result when
the noise channel changes according to our analytical model. Along the
line Y,;ee = 107y, the threshold increases from 3.0 x 107 t0 3.9 x 10~*

when we take into consideration the changing noise channel.

This is a graph of the failure rates at level £ 4+ 1 in terms of the failure
rate v = y1 = v2 = v, = ¥, = 107, at level £. The probabilities
are plotted twice: once assuming the depolarizing channel, and once
assuming the effective channel that we calculate in Section 5.4 to be
the higher level noise channel. The legend indicates the the order of the

plotted probabilities as they appear in the graph from top to bottom.

The error correction routine finds and corrects errors on the seven data
qubits in the logical state |gd), with the aid of multiple copies of ancilla
qubits in the logical zero state |0),. The second half of the circuit is on
of two possibilities, depending on whether the first syndrome extraction
S! was zero or non-zero. If the syndrome is non-zero, then two more
syndromes are collected (middle circuit), but if the syndrome is zero,

no more syndromes are collected and the data qubits wait (righmost

circuit) during the syndrome extraction circuit acting on other qubits.

This is the circuit for the preparation network, G. It prepares the
logical zero state, [0),. It is used in the error-correction circuit (see

Section 3.2) to prepare ancilla qubits in the state |0),.

The verification network V' checks for X errors on the state |0), and

gives four zero measurement results if no X errors are detected.

11

80

81

92

92

93

C-4 The syndrome extraction network S consists of three time steps. The
above network is the syndrome extraction for Z error correction. The
syndrome extraction network for X error correction is the same, except

with each cnot replaced by cz. L.

12

List of Tables

4.1

4.2

4.3

4.4

4.5

This table lists the failures in the G network that lead to good outcomes
for the probabilities P(pass and no inc X,Y on S! anc) and P(pass and
no inc Z,Y on S! anc). The bot. prep. gates are the preparation gates
followed by Hadamards, and the top prep. gates are the ones that are
not followed by Hadamards. The early cnot gates are the three in the

second time step, the mid. cnot gate is the cnot gate in the third time

step that still acts on a |0), while the late cnot gates include all others.

This table lists the failures in the V! network that lead to good out-
comes for the probability P(pass and no inc X,Y on S! anc) and P(pass

and no inc Z,Y on S! anc). ms is short for measurement gate.

This table lists the failures in the G and V! networks that lead to good
outcomes for the probabilities P(pass and no inc X,Y,Z on S* anc). The
last cZ gates are the cZ gates that are the last to act on each verification

qubit. . . .

This table lists all pairs of errors that cause a logical X or Y error. The
columns indicate the location of the first error and the rows indicate

the location of the second error. The column and row labeled “inc’

correspond to incoming errors on S! ancilla.

This table lists all errors that cause a logical X or Y failure, given
either an incoming X error (first row) or an incoming Y error (second

row). See Appendix B for an explanation of the designation “s”. . . .

13

52

52

64

5.1

5.2

Al

B.1

B.2

B3

B4

B.5

This table shows the behavior of the noise channels just below thresh-
old. Rows 1-4 give the noise channels for successive levels of error-
correction in our model. Rows 5-8 give the noise channels for successive
levels of error-correction assuming that the noise channel is depolariz-
ingat each level. Lo
This table is the same as Table 5.1, except only the full failure rate for

each type of gate is presented.

All probabilities needed for the calculation of PX, PY, PZ PX PY
and PZ given in Section 4.4 and the calculations of the failure rates
in Section 4.5 can bee looked up in this table. In the top section, the
label W can be replaced by either X or Z. The gate Us is taken to be

aczgate. ..o e e

This table lists all pairs of errors that cause a logical X or Y error. The
columns indicate the location of the first error and the rows indicate
the location of the second error. The column and row labeled “inc”
correspond to incoming errors on the S! ancilla.
This table lists all errors that cause a logical X or Y failure, given
either an incoming X error (first row) or an incoming Y erfor (second
row). The column labeled “inc” corresponds to an incoming error on
the Slancilla.
This table lists all pairs of errors that cause a logical Z or Y error. The
columns indicate the location of the first error and the rows indicate
the location of the second error. The column and row labeled “inc”
correspond to incoming errors on the S} ancilla.
This table lists all errors that cause a logical Z or Y failure, given either
an incoming Z error (first row) or an incoming Y error (second row).

This table lists all pairs of errors that cause a logical Y error. The
columns indicate the location of the first error and the rows indicate

the location of the second error.

14

88

88

89

89

B.6

E.1
E.2
E.3

This table lists all errors that cause a logical Y failure given an incoming

Yoerror. 90
The classical instructions defined in ARQ. 118
The quantum instructions defined in ARQ. 119
More quantum instructions defined in ARQ. 120

15

16

Chapter 1

Introduction

Quantum fault-tolerance is the key to a successful physical realization of a large-
scale quantum computation. Using concatenated quantum error-correcting codes [17,
18, 10], it has been shown that as long as the noise in a system is below a certain
threshold, arbitrarily long fault-tolerant quantum computations can be performed[2,
9, 11, 13, 8, 3]. The Steane [[7,1,3]] is the most promising among the small quantum
error-correction codes. Many studies of the threshold for the Steane [[7,1,3]] code
have been carried out[22, 14, 2, 19, 16, 21].

Previous estimates of the threshold for the Steane [[7,1,3]] code have assumed
that the noise channel is the depolarizing noise channel at all levels of concatenation.
In the depolarizing channel, the three types of errors X, Y, and Z occur with equal
probability. In a concatenated code error-correction procedure, every level of con-
catenation has its own effective noise channel, which can be very different from the
depolarizing channel. No detailed study of the effects of changes in the noise channel
on the threshold has been done.

In this thesis we answer the following two questions: What is the effective noise
channel at different levels of concatenation of the Steane [[7,1,3]] code? More im-
portantly, how does the estimate of the threshold change when the different noise
channels are taken into account?

We answer these two questions using an analytical model. Additionally, we con-

duct simulations to verify the accuracy of our model. Because our analytical model

17

must distinguish between X, Y, and Z errors, it is necessarily more detailed than the
models used for previous estimates of the threshold for the Steane [[7,1,3]] code. We
contribute to the ongoing study of the Steane [[7,1,3]] code by providing this new,

richer analytical model.

1.1 Outline

In the next Chapter of this thesis, we present some background in quantum computa-
tion and quantum error correction that will be used in later sections. We present only
what is needed for an understanding of the later sections, and we introduce concepts
in a way that assumes only some familiarity with quantum mechanics and classical
computation.

In Chapter 3 we describe the model we use to calculate the threshold for the Steane
[[7,1,3]] code. Modeling choices include the quantum circuit used for error-correction,
the replacement rule that prescribes how to construct circuits for concatenated codes,
and the noise model.

The main achievement of this thesis is the analytical model which we present in
Chapter 4, along with the tables in Appendices A and B. This very detailed model
is used to determine the noise channel at all levels of concatenation and the resulting
threshold.

We then make predictions using our analytical model and compare a subset of
the predictions to numerical simulation results in Chapter 5. We wrote code that
generates quantum computer assembly code instructions for the Steane [[7,1,3]] code
that were input to a program called ARQ), a quantum computer simulator. The ARQ
code generator and some sample output ARQ code are given in Appendices D and E.

In the last Chapter we review our results and discuss limitations of and possible

improvements to our analytical model.

18

Chapter 2

Background

In Section 2.1 we introduce the network model of quantum computation and the
stabilizer formalism. The network model is the quantum mechanical generalization
of the theory of classical circuits. In the network model, the classical bits 0 and 1
get replaced by the quantum states |0) and |1), and classical logic gates get replaced
by unitary transformations. We use the network model to represent our quantum
error-correction routine. The stabilizer formalism of quantum mechanics has to do
with representing the state of a system with a complete set of commuting observ-
ables. Stabilizer circuits and the propagation of errors through them have an efficient
mathematical description. We will use the stabilizer formalism in describing how to
construct our error-correction circuits, why they work, and how we can simulate them
efficiently on a classical computer.

In Section 2.2 we introduce quantum error correction. Because of the properties
of quantum measurement, quantum errors can by “digitized,” so they appear as bit
or phase flips on a subset of qubits. Cleverly used classical error-correcting codes
can then be applied to correct these errors. First we introduce quantum noise and
the noise model used throughout the analysis. Next we explain the theory behind
the Steane [[7,1,3]] error-correcting code by discussing classical error correction and a
group of quantum error-correction codes, called CSS codes. After that we explain how
to use the stabilizer formalism to construct and understand the quantum circuits for

the {[7,1,3]] code. Finally, we explain the threshold result for quantum computation

19

and summarize previous work on the Steane [[7,1,3]] code.

2.1 Quantum Computation

We give a general overview of the network model of quantum computation and the

stabilizer formalism. See [12] for much of the material we present here.

2.1.1 Network Model

In this thesis we restrict ourselves to the network model of quantum computation.
Other models for quantum computation exist, such as cluster states [15] and adia-
batic evolution [7], but the network model is suitable for our present study of the
concatenation of the Steane [[7,1,3]] code. These other models have been shown to
be equivalent to the network model.

The theory of quantum computation in the network model [6] is the quantum
mechanical generalization of the theory of classical circuits. In the classical circuit
model, a circuit of logical gates acts on input bits to produce output bits. If the set
of logical gates is universal, then any possible classical computation can be achieved
in the classical circuit model (more precisely, any function f : ZJ' — Z can be
evaluated). In the quantum network model, a “circuit” of unitary transformations
(gates) acts on input quantum states to produce output quantum states. If the set of
unitary gates is universal, then any possible quantum computation can be achieved
in the quantum network model (more precisely, any specified state can be created
with arbitrary precision).

The inputs and outputs in the quantum network model are quantum states. The
Hilbert space of these states is a tensor product of two-level systems, and the eigen-
states of each two-level system are written as |0) and |1). The states in these two-level
systems are called quantum bits, or qubits, in reference to their classical analogue. A
physical example of a qubit would be a spin 1/2 particle with [0) = ||) and |1) = |T).

The gates in a quantum circuit are all unitary transformations, as required by

the postulates of quantum mechanics. In our quantum error correction circuit, we

20

assune that a few elementary quantum gates are available to the quantum computer:
the identity I; the Pauli gates X, Y, and Z; the Hadamard gate H; cnot (control-X),
cz (control-Z), and the Toffoli gate. We list the definitions of the identity gate, Pauli

gates, and the Hadamard gate here in matrix representation in the {|0), [1)} basis:

; 10 1 (1 1 o
01/ V211 -1 '
01 0 — 1 0
X = Y = 7= , (2.2)
10 i 0 0 —1

The cnot and cz gates act on two qubits: a control qubit and a target qubit. They
apply the X and Z gates, respectively, to the target qubit when the control qubit is
|1}, and do nothing when the control qubit is |0). This defines their behavior on the
basis states {|00),|10),]01),]|11)}, so their behavior has been fully specified on all
input two qubit states.

The Toffoli gate is a three qubit gate that acts as a cnot with two control qubits
that must both be |1) for the X to be applied to the target.

A set of universal quantum gates is for quantum computation in the network model
is {X,Y,Z,H,cnot,cz, Toffoli}. This is not a minimal set; these are the six fundamental

gates that we assume can be carried out by the quantum computer in our model.

2.1.2 Stabilizer Formalism

We use the stabilizer formalism because it offers a compact representation of a cer-
tain subspace of quantum states. It allows us to simulate quantum error correction
networks efficiently on a classical computer.

A stabilizer circuit is a circuit that consists only of gates that are in the normalizer
of the Pauli group, and single qubit measurements. Included in this list of gates are
the X, Y, Z, cnot, and cz gates. The only gate in our universal family of gates not

included in this list is the Toffoli gate. The Gottesmann-Knill Theorem [8] states

21

that any stabilizer circuit can be simulated efficiently on a classical computer, as long
as the initial state is a stabilizer state.. The error-correction circuit we use for the
Steane [[7,1,3]] code is a stabilizer circuit.

If the quantum state |¢) satisfies U |1)) = |¢) for some unitary gate U, we say
that U stabilizes |¢). For example, the state |0) is stabilized by the Pauli operator
7, and the state H |0) = (|0) +|1))/V/2 is stabilized by the Pauli operator X. In fact,
the states in these two examples are the unique states (up to a global phase) that are
stabilized by their respective gates.

The Pauli group G on one qubit is defined to consist of the identity (I), the three
Pauli operators (X,Y,Z), and all operators created by multiplying the above operators
by +1 or +i. The Pauli group G, on n qubits is defined to consist of all n-fold tensor
products of elements of Gj.

A vector space V of quantum states is stabilized by a subgroup S of the Pauli
group G, on n qubits if every state in V is stabilized by every operator in S. Any
subset of S that generates S is called a set of stabilizer generators for V. If V
contains a single quantum state with m qubits, then a set of m independent stabilizer
generators uniquely defines the state (up to phase).

In our numerical simulations, we keep track of the stabilizer generators of the
quantum system, rather than the state itself. We always keep track of the minimum
number of stabilizer generators such that the state is uniquely specified (up to a
phase). The stabilizer of the quantum system evolves as follows. If the current state
is [1) with stabilizer g, then after a unitary gate, the state becomes U [¢)) = Ug |¢) =
UgU'U |9), so the new stabilizer is UgU'. Because all of the gates we use in our
simulations (X, Y, Z, H, cnot, cz) are in the normalizer of the Pauli group G,, we
always have UgU' € G,. As long as the input state is stabilized by a subset of the
Pauli group, the evolving state is always stabilized by a subset of the Pauli group.

Measurements also affect the stabilizer, but as long as the measurements are in
the computational basis (that is, measurements of the operators X or Z), then the
stabilizer remains a subset of the Pauli group after measurement. We only use single

qubit measurements in the computational basis in our circuits. So, we conclude that

22

we can efficiently simulate our error correction networks on a classical computer.

2.2 Quantum Error Correction

Quantum fault-tolerance is an essential ingredient for the physical realization of a
quantum computer. Quantum fault-tolerance has three requirements: (1) we must
be able to prepare encoded states, (2) we must correct errors on those states, and (3)

we must control the spread of errors through our circuits.

In this section we present some background in quantum error correction. The
purpose of this section is to provide the background in error correction needed by the

rest of this thesis, so we limit the discussion to topics that will later be used.

In Section 2.2.1 we describe the quantum noise model, and how it can be inter-
preted using a set of discrete errors. Then in Sections 2.2.2, and 2.2.3. we explain how
these errors can be corrected using circuits that are themselves noisy. In Section 2.2.4
we explain how to construct the circuits for the Steane [[7,1,3]] error-correction code.
We end with Section 2.2.5 explaining the threshold result and summarizing previous

work on the Steane [[7,1,3]] code.

2.2.1 Quantum Noise Model

Noise in a quantum network is not as simple as in the classical network, where the
only possible error is a bit flip. In a noisy quantum network, there is a continuous
spectrum of errors that can occur on a quantum state, because the quantum states are
specified by two complex numbers (subject to normalization). Despite the continuous
spectrum of errors, quantum error correction can be achieved by correcting only a
small set of discrete errors [17, 18].

To represent quantum noise, we use the density operator formulation of quantum

mechanics. In the density operator formulation, the state

) is represented by the
outer product [1)1|. If the state is unknown, but known to be |¢1), |¥2), ... or |i,)

23

with probabilities py, po, ... pn, respectively, then the associated density operator is
pP= Zpi |iX¥il . (2.3)
i=1

Such an operator is called a mized state.

The application of the gate U to a mixed state p transforms the density operator
into UpU*

The quantum noise model we use is called the depolarizing channel. In a depo-
larizing channel, a single qubit is replaced by the completely mixed state /2 with
probability p, and left unchanged with probability 1 — p. If the density operator of
the single qubit state before the depolarizing channel is p, then the density operator
after the depolarizing channel is

D(p) = (1-plp+ p—é—

/

= (1 —p’)p+%(XpX+YpY+ZpZ), (2.4)

where we used the fact that for arbitrary p, I = (p+ XpX +YpY + ZpZ)/2, and we
defined p' = 3p/4.

Equation 2.4 can be interpreted (density operators can have multiple valid inter-
pretations) as is the identity gate being applied with probability p’ and each Pauli
gate being applied with probability p’/3. In this interpretation we call the application
of the Pauli gate X an X error, the application of the Pauli gate Y a Y error, and
the application of the Pauli gate Z a Z error.

From now on, whenever we talk about quantum noise, we simply refer to the
probability of X, Y, and Z errors.

Before we continue on to discuss error-correction, we explain how noise errors
propagate through a circuit. This is very important to understanding how error
correction works (and also why we need it).

When there is an X error on a single qubit state state |¢), then after the application

of a Hadamard gate the new state is H(X |¢0)) = Z(H |4)). This is interpreted as a Z

24

error on the expected (without noise) state H). So, Hadamard gates propagate X

errors to Z errors. They also propagate Z errors to X errors and Y errors to Y errors.

We can similarly determine that cz gates propagate X errors on the control qubit
to Z errors on the target qubit and propagate X errors on the target qubit to Z errors
on the control qubit. Cnot gates propagate X errors on the control qubit to X errors
on the target qubit but propagate Z errors on the target qubit to Z errors on the
control qubit. These facts are used in the construction of the syndrome extraction

networks designed in Section 2.2.4.

2.2.2 Classical Error Correction

Quantum noise must be corrected in order for quantum computations to be fault-
tolerant. Quantum error correcting codes have been designed for this purpose. The
Steane [[7,1,3]] quantum error-correcting code belongs to the collection of Calderbank-
Shor-Steane (CSS) codes [4], which are based on classical linear codes. In this section
we discuss classical linear codes, using the codes that lead to the [[7,1,3]] quantum
code as ongoing examples. Much of the theory in this section and the next is borrowed

from [12].

The noise in classical error correction consists of bit flip errors: 0 becomes 1 with
some probability, and 1 becomes 0 with some probability. A simple code for protecting
against single bit flip errors is to represent the bit 0 by three bits 000 and the bit 1

by three bits 111. Then, if a single bit flip occurs, majority voting corrects the error.

In general, classical linear codes use n bits to store k bits of information. A linear
code is specified by an n by k£ generator matrix G’ with entries in Z, (zeros and ones
with addition modulo 2, i.e. binary numbers). The n bit codewords are created from

the k bit words by the operation Gz, where z is the k£ bit word represented as a

column vector. For example, the generator matrix for the [[7,4,3]] Hamming code Ch,

G(Ch) =

_= OO O O =
—_O = OO = O
(e R T o B A oo Y e
e e = T e N e

I |

creates 7 bit codewords out of 4 bit words.

The [[7,4,3]] code is an [[n,k,d]] linear code, where d is the Hamming distance of
the code. The distance of a code is the minimum distance between codewords, where
the distance between two codewords is defined to be the number of bits at which the
codewords differ. For example, the codewords generated by G are 0000000, 1010101,
0110011, 1100110, 0001111, 1011010, 0111100, 1101001, 1111111, 0101010, 1001100,
0011001, 1110000, 0100101, 1000011, and 0010110, where every pair of codewords
differs at at least three locations. Because the Hamming distance is three, if only
one bit of a codeword of [[7,4,3]] is flipped, we can determine which was the original

codeword. Codes can correct t = (d — 1)/2 errors and detect d — 1 errors.

To determine which was the original codeword and how to correct for it, we use
the parity check matrix H associated with G. The parity check matrix is an n — k
by n matrix with linearly independent rows such that Hx = 0 for every codeword
x, and it can be found directly from G. If a single error occurs on the jth bit of
any codeword z, then parity check matrix reveals the error that occurred on the new
codeword z’ = z + e;, using Hz' = H(z + ¢;) = 0+ He; = He;, where e; is column
vector of zeros with a one on the jth bit. The vectors He; are called syndromes. The
syndromes reveal the location of the bit flip errors and are unique because H has

linearly independent rows.

26

The parity check matrix for the [[7,4,3]] code is

0001111
HC)=|l0110011]-: (2.6)
1010101

An interesting property of this code is that if an error occurs on the jth qubit, then

Hej is the binary representation of j.

Lastly, we describe an important classical linear code that can be constructed from
any given classical linear code C: the dual of C, denoted C*, is defined to consist of
all codewords orthogonal to C. Equivalently, C* is defined by having the generator
matrix HT. Dual codes are used in the creation of CSS codes, of which the Steane

[[7,1,3]] is a specific example.

2.2.3 CSS Codes and the [[7,1,3]] Code

A wuseful class of quantum error-correcting codes is the Calderbank-Shor-Steane [4]
codes. CSS codes are based on classical linear codes and their duals. Given two
classical linear codes C; and C, of the type [n,ki] and [n,ks] such that Cy C C and
such that C; and Cj correct ¢ errors, we can construct an [[n,k; — ko] quantum code
that corrects ¢ errors. As part of our ongoing example of the Steane [[7,1,3]] code, we
choose C as defined in the previous section, and Cy = Cj. These codes are [7,4,3]
and [7,3,4] codes, respectively, so they combine to form a [[7,1,3]] quantum error-
correction code, the Steane code. We describe what this quantum error-correction

code is and how it works.

For every codeword = € C; we define a quantum state

lz + Cs) = Z |z +), (2.7)

yeCo

27

up to a normalization constant. Explicitly, the state (2.7) is either

1
10), = ——(]0000000) + |1010101) + [0110011) + |1100110)
V8 (2.8)
4 10001111) + [1011010) + [0111100) + |1101001)),
or
1
1), = —(|1111111) + [0101010) + [1001100) + [0011001)

=

8 (2.9)
+]1110000) 4 |0100101) + |1000011) + |0010110)),

depending on the value of z € C).

The eight states in the expression for |0), are the codewords of the classical linear
code Cy C C;. The eight states in the expression for |1), are the codewords in C}
that are not in C,.

If X errors are represented by the vector ey with bits set to one where X errors
occur, and Z errors are represented by the vector ez with bits set to one where Z

errors occur, then the quantum state in Equation 2.7 becomes

D ()E oy ex). (210)
yECz
Because Y = iX Z, Y errors are automatically corrected when X and Z errors are
corrected.
The X error syndrome can be determined by using reversible quantum computa-

tion and ancilla to create the state

ST (=1)E [z 4y 4 ex) [H(Ch)ex), (2.11)
yECQ .
ancilla

followed by measurement of the ancilla. The quantum circuit that achieves this is
designed in Section 3.2. The syndrome is used to correct the bit flip errors by applying
X gates on the appropriate qubits.

The Z error syndrome can be determined by first applying Hadamards to all of

28

the data qubits, producing the state

Y (=1 |z +ez), (2.12)

ZGCZJ“

after some mathematical manipulations and using the definition of dual space Cj-.
The syndrome (using H(C3) instead of H(C})) is transferred to the ancilla and
measured as in the X error correction. Note that by applying the Hadamard gates,
we turned Z errors into X errors. Since C; = Cj in the case of the Steane [[7,1,3]] code,
we can use the same circuit for Z error correction as we did with X error correction,

except Hadamards are applied to the data before and after Z the syndrome extraction.

2.2.4 Circuit Construction

In this section we use the theory of CSS codes to construct three circuits used in the
Steane [[7,1,3]] error-correction code: G, the preparation network, which prepares the
state [0),; V', the verification network, which verifies that there are no X errors on
the qubits that make up |0),; and S, the syndrome extraction network, which uses
ancilla qubits to extract the classical error syndrome from the data qubits. The gates
we use are the same as in [21].

First, we construct the preparation network G, given in Figure 2-1. The prepa-
ration network constructs the state |0),, which is a superposition of all codewords

defined by the generator matrix for Cl,

(o110
1011
110/ 2
GC)=1{111]| 3, (2.13)
100/ 4
010]5
00 1]6

29

where we have labeled the columns 0 through 6 to correspond to qubits |gag) through

|gag) in Figure 2-1.

Figure 2-1: This is the circuit for the preparation network, G. It prepares the logical
zero state, |0),. It is used in the error-correction circuit (see Section 3.2) to prepare
ancilla qubits in the state |0); .

First we apply Hadamard gates to qubits 4, 5, and 6. This puts these three states
into a superposition of all possible three bit words. Because rows 4, 5, and 6 in
G(C,) form a 3x3 identity matrix, the last three qubits in each seven qubit codeword
correspond to the three bits from which the codeword was derived using G(C3). This
makes determining what state to put the other qubits in quite easy. Reading off
from the three columns of G(Cs): if qubit 4 is |1) then qubits 1, 2, and 3 need to be
flipped; if qubit 5 is |1) then qubits 0, 2, and 3 need to be flipped; and if qubit 6 is
|1) then qubits 0, 1, and 3 need to be flipped. We apply nine cnot gates according
to the above three rules. Because G(C5) is a linear code and {001, 010, 100} forms a
basis for the input bits to G(C2), this circuit correctly constructs a superposition of
all codewords generated by G(C5).

Next, using H(C5) we construct the verification network shown in Figure 2-3. The
verification network verifies that that there are no X errors on the logical qubit |0);.
This is accomplished by measuring all stabilizer generators of |0), that anti-commute
with X errors. There are four such (independent) stabilizers, and a measurement
result of 0 (meaning that the measured operator stabilizes the state) for all of them

means that there is no X error. As can determined by reading off the rows of the

30

parity matrix H(Cj),

1000011
0100101
H(Cz) = , (2.14)
00101T1OQO0
i 0001111
the stabilizer generators that anti-commute with X errors are
ZIINZZ, 1Z11Z1Z, 11Z1ZZ1, and 111ZZ77Z (2.15)

(the other three stabilizer generators are XIIIIXX, IXIIXIX, and IIXIXXI, which
commute with X errors).

In general, to measure a single qubit (unitary, hermitian) operator M, you apply a
Hadamard on the ancilla prepared in the state |0), followed by a control-M gate with
control on the ancilla, followed by a Hadamard and measurement on the ancilla. This
also projects the the measured qubits into the eigenspace of the measured eigenvalue.

For example, the measurement of the operator Z is depicted in Figure 2-2.

lqd) 7]
) = 10 @i@%}

Figure 2-2: This circuit measures the operator Z on the qubit |g¢z) and projects |gq)
into an eigenstate of Z with the measured eigenvalue.

The circuit V in Figure 2-3 measures the four stabilizer generators that anti-
commute with X errors. Each of the four verification qubits is used to measure on of
the generators.

The matrix H(C}) is not the only parity check matrix for C;. Indeed, any matrix
formed by adding together rows of H(Cj) would be equally valid. However, as ex-
plained in [20], putting H(C}) in the form (I,A) ensures that the derived verification

network does not leave correlated errors on the qubits of |0), .

31

lqao)

B
&

]

lga1)

lqaz) 2]

lqas

1]

|gaq

N
N
]

lqas

)
)
)
lqas)

Z14]
lqvo) = 10) < H} jJ

lqu1) = 10) {H]
lqua) = 10) —{H]}
lqus) = |0) [H |

o

=

0 01 B B

=] [=

Figure 2-3: The verification network V' checks for X errors on the state |0), and gives
four zero measurement results if no X errors are detected.

The third and last circuit we construct is the syndrome extraction network. There
are two syndrome extraction networks: one that detects X errors, and one that detects
Z errors. We explain how to construct the Z error syndrome extraction network, shown

in Figure 2-4. The construction of the X error syndrome extraction is very similar.

First, a logical cnot gate is performed with the ancilla in the state |0), as control
and the logical data qubit as target. A logical cnot gate is just seven cnot gates acting
transversally on the data and ancilla. Because the ancilla is in the state |0),, the
logical cnot gate does affect the logical data qubit. However, X errors on the ancilla
propagate to X error on the qubits , and Z errors on the data qubits propagate to Z

errors on the ancilla qubits.

Next, seven Hadamard gates are applied to the ancilla qubits, transforming Z
errors into X errors. This is followed by Pauli Z measurements of all the ancilla. If
there is no error, the result of the measurement will be in the code C;. The reason
for this is because the Hadamard gates are actually a logical Hadamard gate that
transforms the state |0), into the state (|0}, +|1);)/+/2, which is a superposition of all

of the codewords in C. A classical syndrome extraction is done on the measurement

32

lgdo)

lqdy) >

lad2)

lgds)

lgds) q

lqds) q

lqds) -

lgao) ﬁ"(H /ﬁ
|qa1) H /—L\
lqaz) H /T\
lgas) H
lgas) HH A
lgas) —HHAF
i) —————— T

H/J\

Figure 2-4: The syndrome extraction network S consists of three time steps. The
above network is the syndrome extraction for Z error correction. The syndrome
extraction network for X error correction is the same, except with each cnot replaced
by cz.

results to determine if any of the ancilla were flipped. If there is exactly one Z
error on the data qubits coming into the the syndrome extraction network, and no
other failures occur, it will be detected by the classical syndrome extraction on the

measurement results.

The syndrome extraction for X error-correction is the same, except that the seven
transversal cnot gates get replaced by seven transversal cz gates which propagate X

errors on the data to Z errors on the ancilla.

Note that in Section 2.2.3 we explained how to perform Z error-correction by first

applying Hadamards to the data, then correcting X errors, and then reversing the

33

Hadamards on the data. On the surface this would appear to be different from our
our present construction of the 7Z syndrome extraction network, but it is not: the
sequence of gates (Hadamard on data)(cnot)(Hadamard on data) is equivalent to the
gate cz.

This concludes our construction of the gates G, V', and S. We explain how these
gates are used together in a full error-correcting circuit when we describe our model

in Chapter 3.

2.2.5 Fault Tolerant Thresholds

A particularly effective method for quantum error correction is to take a quantum
error correction code and concatenate it. That is, the code is applied to the code itself,
ad infinitum, or (more physically) until a desired success probability is achieved. The
process of concatenation is explained in further detail in Section 3.1.

One of the most important achievements of the theory of quantum fault-tolerance
is the proof of various threshold theorems, originally proved by Aharonov and Ben-
Or [2], Kitaev [9], and Knill, Laflamme, and Zurek [11], and improved by Preskill [13],
Gottesman [8], and Aliferis, Gottesman, and Preskill [3]. The basic idea of each
threshold theorem is that as long as the noise level of a quantum computation is
below a certain constant threshold that is independent of the computation size, then
arbitrarily long quantum computations can be performed using concatenated codes.

The value of the threshold for the [[7,1,3]] code has been estimated by several
authors, with estimates varying between 107% and 3 x 1072. Zalka [22] estimated
the threshold to be about 107 and argued that it might still be larger. Preskill [14]
estimated a threshold of about 3 x 107*. Aharonov and Ben-Or [2] estimated the
threshold to be 107% using a quantum circuit that did not require classical computa-
tion.

The above estimates were calculated before Steane found improved ancilla prepa-
ration circuits [19, 20] that eliminate the need for repeated measurements during
ancilla preparation. With the new circuits, Steane estimated the threshold to be on

the order of 1073.

34

Reichardt [16] used a modified version of Steane’s ancilla preparation network
(using error detection as well as error correction) to increase the threshold estimate
to about 1072, at the cost of creation of more ancilla.

Svore, Terhal, and DiVincenzo [21] used the same circuits as Steane, but performed
a more detailed analysis of the threshold by separating the types of noise according
to types of gates and analytically approximating the new level of each type of noise
upon code concatenation. They estimated the threshold to be about 3 x 10~* when
all error rates are the same and the memory error rate is a factor of 10 smaller. Some
of our work, especially Section 4.3, was based on their analysis.

In the above estimates, it was assumed (implicitly or explicitly) that the noise
could be modeled as depolarizing noise at all levels of the concatenated code. Little
work has been published regarding the change in the distribution of errors and the
possible effects on the threshold. The threshold that we present in this thesis (see
Section 5.5) is the first to consider the effects of changing noise channels on the

threshold.

35

36

Chapter 3

The Model

A detailed analysis of the effective noise channel of fault-tolerant quantum compu-
tation is difficult to carry out in general due to the many parameters of that noise
channel and the numerous classes of codes and circuit constructions. For this rea-
son, we have chosen to focus on the smallest CSS code correcting one quantum error
(the [[7,1,3]] code), the generalized depolarizing channel, and the most efficient known
fault-tolerance constructions for CSS codes. Both the code and its constructions were
introduced in Chapter 2. As we will see in Chapter 4, this choice leads to a tractable
analysis that is prototypical of all CSS fault-tolerance analyses.

In this chapter, we lay out the model we have chosen for recursively simulating
fault-tolerant gates, correcting errors on logical qubits, and modeling faults in circuits.
Section 3.1 describes so-called replacement rules, recursive rules for inserting fault-
tolerant gates in place of basic gates. Section 3.2 details the fault-tolerant error-
correction subroutine that appears in each fault-tolerant gate. Finally, Section 3.3
enumerates the modeling decisions that abstract the quantum computer hardware

and its environment-induced noise.

3.1 Replacement Rule

To obtain an encoded circuit, we replace every gate U by a circuit that encodes U via

a replacement rule. Figure 3-1 shows the replacement rule for single qubit and two

37

U

TEEEEY

[} EC
(a)
4 F H EC
— U - — A‘_EC U -

Figure 3-1: (a) The replacement rule for a single qubit gate. (b) The replacement
rule for a two qubit gate.

qubit gates. In the replacement rule for a qubit gate U;, each qubit gets replaced by
seven qubits followed by an error-correction subroutine, and the gate U; gets replaced
by a new gate Uj that acts transversally on all the qubits. EC represents the error-
correction circuit, which we describe in the next Section 3.2. The replacement rule is
applied L times to construct a level L concatenated code.

The replacement rule is applied to every location. A location for our purposes is
either a one qubit gate, a two qubit gate, a preparation (creation of the zero state),
a measurement of the Pauli Z operator, or a wait gate. We list the replacement rule

for each type of location:

1. one qubit gate: see Figure 3-1(a)

2. two qubit gate: see Figure 3-1(b)

38

3. preparation: a preparation of the state |0) gets replaced by a circuit that pre-
pares the logical zero state |0),. We do not concern ourselves with the con-
struction of this circuit, because we will later just assume that a preparation

fails with about the same probability as a single qubit gate.

4. measurement: a measurement of the Z operator on a single qubit gets replaced
by a measurement of the ZZ7Z7777 operator on a logical qubit and classical
processing involving the parity check matrix. The seven qubit measurement is

accomplished by using seven transversal Z measurements.

5. wait gate: A wait gate is a single qubit gate, so Figure 3-1(a) gives its replace-

ment rule.

3.2 Error Correction Circuit

The general layout of the X or Z error-correction circuit is shown in Figure 3-2. The

gates S7 in the figure mean either SJ for X error-correction or S? for Z error-correction.

et =
e~
o0, —] s .
L \ F S3 |
100 — [

Lo 0, — __J

- 7 T — — -1

qd), — L— Sw RY
] L 1 | z z

S

0y, —_ "L 4

Figure 3-2: The error correction routine finds and corrects errors on the seven data
qubits in the logical state |gd); with the aid of multiple copies of ancilla qubits in
the logical zero state [0);. The second half of the circuit is on of two possibilities,
depending on whether the first syndrome extraction S was zero or non-zero. If the
syndrome is non-zero, then two more syndromes are collected (middle circuit), but
if the syndrome is zero, no more syndromes are collected and the data qubits wait
(righmost circuit) during the syndrome extraction circuit acting on other qubits.

We explain the error-correction routine step-by-step. In the following explanation,

S7 is to be replaced by either S or S? depending on whether the error-correction

39

routine is X or Z, respectively.

1. The ancilla qubits are prepared via the preparation network G, and verified by
the verification network V. The number of ancilla prepared is usually referred to
as N,ep. We assume that n,, is large enough so that enough ancilla consistently
pass the verification network for the successful completion of the rest of the

error correction.

2. The (X or Z)-error syndrome is extracted by S*. Classical processing is done

on the measurement results to determine the syndrome.

3. If the syndrome is non-zero, then two more syndromes are extracted via second
and third applications of the S network: S? and S3. The ancilla qubits that
come into S? wait during the network S!, and the ancilla qubits that come into

S3 wait during S! and S?.

4. If a majority of the syndrome extractions agree, then an X or Z gate is applied
to the agreed upon qubit while the other six data qubits wait. This is the
recovery gate R. If there is no majority agreement, no further steps are taken

(as in [21] but not as in [19]).

5. If the syndrome is zero, then the data waits for an amount of time equal to the
total length of S? and S®. The gate for these six time steps of waiting is called
Sv.

6. Also if the syndrome is zero, all data qubits wait during the possible recovery
of data qubits in other blocks. The gate for waiting during recovery is called

RY.

The circuits for G, V, and S were designed in Section 2.2.4 and are listed in
Appendix C.
The full error-correction circuit, EC, consists of two copies of the circuit in Fig-

ure 3-2, one for X error-correction (S7) and one for Z error-correction (57).

40

Some error-correction circuits will have Z error-correction followed by X error-
correction. Other error-correction circuits will have X error-correction followed by
Z error-correction. The rule that determines the appropriate order is that the first
error correction corrects the error that is more likely to be on the qubits. Thus, the
order of error-corrections remains the same after every gate except the Hadamard
gate, after which the error-corrections are swapped, because Hadamard gates swap X
and Z errors.

A few error-correction circuits will actually need to have three error-correction
steps: S,, followed by S,, followed by S,; or S,, followed by S, followed by S,.
The rule that determines when this happens is that before every cz gate, the last
error-correction must be S, on both qubits, and before every cnot gate, the last
error-correction on the control qubit must be S, and the last error-correction on the
target qubit must be S,. The reason for prescribing the last error-correction before a
two qubit gate is to minimize the probability of an error propagating from one logical
qubit to the other. Qubits being error-corrected elsewhere need to wait during the
third error-correction.

The order of error-corrections for each gate can be chosen to minimize the number
of places where three consecutive error-correction steps are required. When the error-
correction routine is itself error-corrected, three consecutive error-correction steps are
required only when a cnot follows a cz or a cz follows a cnot and only on the data
qubits. This happens infrequently enough that we approximate the failure rate of the

error-correction gate by assuming that it consists of only two error-correction steps.

3.3 Modeling Choices

Somewhat following [21], a noise error can occur at any of five types of locations in
the circuit: a single qubit gate with failure rate v;; a two qubit gate, 7,; a single qubit
wait (or memory) gate, ,; a preparation gate, v,; and a single qubit measurement
of the Pauli Z operator, v,,.

We model noisy locations as follows. At a location i, the corresponding gate (or

41

procedure in the case of preparation or measurement) is performed perfectly with
probability (1 — +;), and a failure occurs with probability ~;

As in [19] we distinguish between failures and errors. A failure is an imperfection
caused by a single gate, while an error is an imperfection on a single qubit as a result
of a failure. A single failure may cause multiple errors when the failure is on a two
qubit gate.

The noise model we adopt assumes that failures are uncorrelated and stochastic.

The single qubit failures are X, Y, and Z, which occur with equal probability in
the depolarizing channel. They are labeled by the failures they cause and are defined
to occur before the erroneous gate. For example, an X failure on a Hadamard gate
causes an X error to occur before the gate, which becomes a Z error after propagating
through the Hadamard gate.

The two qubit failures are IX 1Y IZ XTI, XX, XY ,XZ,YLYX,YY,YZ,Z1,ZX,ZY ,ZZ,
which occur with equal probability in the depolarizing channel. They are labeled by
the pair of errors they cause, and are defined to occur before the erroneous two qubit
gate. The two qubit gates that appear in the error-correction circuit always have as
inputs one data qubit and one ancilla qubit, with the ancilla as control. We define
the order of the single qubit errors in each pair to be control-target (or ancilla-data).

We need to define failures as coming before their corresponding gates. The reason
we make this seemingly arbitrary decision will be made apparent in the Analysis
Chapter 4.

In addition to our choice of noise model, we make the following modeling choices:

e We assume that the time it takes to do a measurement followed by any necessary

classical processing on the result takes one time step.

e We do not concern ourselves with the method of preparation of the single state
|0). We call the preparation of the state |0) a preparation gate, which fails with
probability v, (the error occurring after the preparation). We discover that
magnitude of v, has very little affect on the threshold, so we just set v, = v, at

all levels error-correction as an approximation.

42

e Fach type of location can have a different noise channel, though the noise chan-

nel for every type of location is depolarizing at level zero of the error-correction.

e At each level of error-correction, we assume that the noise channel for a given
type of location is the same for every instance of that type of location. This
is not true in general (for example, when the initial noise channel is heavily
weighted toward X or Z failures, then the effective noise channel of a given
instance of a location depends on whether that location immediately follows
a Hadamard gate, which swaps X and Z errors). However, the assumption is
fairly accurate when the initial noise channel is depolarizing, as will be shown

in Section 5.4.

43

44

Chapter 4

Analytical Approximation

In this Chapter we provide an analytical model for studying higher level noise channels
and the threshold for the Steane [[7,1,3]] code. A novel feature of our model is that its
input noise channel is not necessarily depolarizing, and it predicts the noise channel at
the next level of error-correction. Also, our model meticulously accounts for incoming
errors, calculating separately the probabilities of X, Y, and Z errors coming into the X
error-correction subroutine and into the Z error-correction subroutine. Furthermore,
our model ezxactly counts all pairs of errors that could lead to a logical error when
estimating the threshold.

We begin the chapter with a section explaining the overall structure of our analysis.
Then, after we set up some notation in Section 4.2, we proceed to calculate the prob-
ability that the verification network passes with and without errors (Section 4.3), the
probabilities of incoming errors on the data (Section 4.4), the effective nose channel
at all of levels of error-correction (Section 4.5), and finally the threshold (Section 4.6).
The results of our analytical model with some comparisons to simulations are given

in the following Chapter 5.

4.1 Analysis Overview

We calculate the threshold for the Steane [[7,1,3]] code step-by-step, using the results

of each section in each of the following sections, calculating the higher level noise

45

channels along the way and eventually deriving a method for calculating the threshold
in the last section. We believe it is instructive to give an overview of the analytical
model in reverse order, explaining first how to calculate the threshold, and then
explaining how to calculate the quantities used to calculate the threshold.

To calculate the threshold in Section 4.6 we only need to know the noise channel
for each type of gate for every level of error-correction

We calculate the noise channel for each type of gate at every level of concatenation
in Section 4.5. The noise channel is determined by calculating the probabilities of
logical X, Y, and Z failures (in the case of a single qubit gate). The probability of a
logical failure in an error-correction circuit EC depends on whether or not there is an
incoming error on the data into EC. With knowledge of the probabilities of incoming
errors on the data, the probabilities of logical failures can be determined by counting
the number of ways one or two more failures in addition to the incoming errors can
cause a logical failure.

We calculate the probabilities of incoming errors on the data into FC in Sec-
tion 4.4. We do so by solving six linear equations in six unknowns. Each probability
of an incoming error on the data is calculated in terms of the probabilities of the
other incoming errors on the data along with the probabilities of incoming errors on
the ancilla. We calculate the probabilities of incoming errors on the ancilla into £C

in Section 4.3, the first section in our determination of the threshold.

4.2 Notation

This section sets up the mathematical notation used in the following analysis.

4.2.1 The Error Correction Network

We take the order of error correction to be Z error correction followed by X error
correction for notational purposes. There is no loss of generality here as long as Z

failures and X errors always occur with equal probability.

46

The Z error correction gates are

Slos2 5% SY R, and RY, (4.1)

where S}, 52, and S? are the three syndrome extraction circuits; S¥ is the collection
of wait gates if there are no second and third syndrome extractions; R, is the recovery
if there is a detected error; and RY is the collection of wait gates that take the place

of recovery if there is no detected error.

In addition, the gates V!, V2, and V? are the verification networks that precede
S1, 52 and S3. We define V2 and V? to be the concatenation of the V! network with
the additional wait gates on the ancilla that occur during the first syndrome, and the

first two syndromes, respectively.

Any gate can be divided into its individual time steps by adding an extra super-
script specifying the time step. For example, the gate during the first time step of S!

is S and the gate during last two time steps is S},

Similarly, the X error correction gates are
Sl 82 53 SY R,, and RY, (4.2)

with V!, V.2, and V? defined analogously.

4.2.2 Failure Rates

The failure rates for single qubit gates, two qubit gates, wait gates, preparation
gates, and measurements, at level ¢ of concatenation are vi(€), Y2(¢), Yw(€), Vp(€),
and 7y, (¢), respectively. Note that the case ¢ = 0 corresponds to the failure rates for

the depolarizing channel defined in Section 3.3.

We denote the probability of a specific failure by adding that failure as a super-

script. Then each failure rate is the sum of the probabilities over all specific failures:

47

Nn=1+7 +1
Yo = Yo + Y + Voo
Yo =7+ +Z,
Y = Yoy & Vo + Yo (4.3)
o = X XD 12y 2
{,YIY_I_,YYI

+,YXX+7XY+,YXZ+,)/YX+,YYY+,YYZ_+_,YZX+,YZY _+_/YZZ’

where we left out the dependence on ¢, since the above equations hold at all levels of
concatenation.
The list of possible two qubit errors is long, so we divide the list into three kinds

of failures:

AW = AIX — XT AZ = 21
,yéY =AY = YT (4.4)
NAB = (XX XY NXZ WYX LYY YZ X ZY 2D

We chose these three categories based on the expectation that each will occur with
a very different probability at higher levels of error correction. For level one error
correction, we expect v2" to be approximately one order of magnitude greater than
74Y and approximately two orders of magnitude greater than v4'Z, which we will treat

as zero when we calculate the threshold.

4.2.3 Probabilities

In the coming analysis, we write out many probabilities. To write each one out in
rigorous mathematical notation would take up a lot of space and would make the
longer equations difficult to interpret. For this reason, we have developed a well-

defined shorthand for nearly all of the probabilities that occur in our analysis.

48

We write nearly all probabilities of the form

P([no] [inc] errors [caused] on Aj, Ao, ... qubits), (4.5)

The [no] and the [inc] are optional; errors is a list of errors; A;, A, ... is a list of
gates; and qubits is either “data” or “anc.” To save space, qubits is “data” when not
specified.

The above shorthand is intended to have a rather intuitive meaning, so do not get
bogged down by the following definitions. We provide the following four definitions

for the purpose of mathematical rigor and to avoid ambiguity:

P(no errors [caused] on A A, ...1 qubits) = (4.6)

“the probability that no errors in errors occur on the qubits during the gates 4,, A,”

P(no inc errors on Ay, As, ... qubits) = (4.7)

“the probability that there are no errors in the list errors on the qubits incoming into

each of the gates Ay, A,”

P(errors [caused] on Ay, Ag, ... qubits) = (4.8)

“the probability that at least one error in errors occurs on the qubits during at least

one of the gates Ay, Ay,7

P(inc errors on Ay, Asg, ... qubits) = (4.9)

“the probability that there is at least one error in errors on the qubits incoming into
at least one of the gates A,, A,,....7

Sometimes we will find it useful to refer to the probability that a certain error is
left on a qubit after a gate due to the gate. When we want to refer to errors left on
qubits, we insert the word caused into the statement of the probability. For example,

a Z error caused on a Hadamard gate is the same as an X failure on a Hadamard

49

gate and occurs with probability ¥;¥, because Hadamard gates propagate X errors to
Z errors. Similarly, an XZ error caused by a cz gate is the same as an XI failure on a
cz gate and occurs with probability 42X rather than 74'Z.

For example, P(no X,Y on S}, 5% S3) means that no X or Y failure occurs during
the gates S!, S2, and S2.

The comma separated list of gates exists to save space, and can be eliminated

using the following rule:

P(no [inc] errors on Ay, Ag, ... qubits) ~ H P(no [inc] errors on A; qubits). (4.10)
i

Equation 4.10 is an equality when the failures on each gate are independent. The
equality holds for level zero of the error-correction, since we assumed that intial fail-
ures were uncorrelated and stochastic. However, at higher levels of error-correction,
failure rates need not be independent. A logical failure during one error-correction
routine can inrease the probabilitiy of a logical failure on the next error-correction
routine via an incoming error on the data. We assume that this scenario has little
affect on the threshold and take Equation 4.10 to be an equality. We do so only to

simplify our analysis.
When there is just one gate in the list of gates, the probability can be looked up
in Appendix A. The rule 4.10 is useful because it can reduce most probabilities in
the following sections to a product or sum of probabilities that can be looked up in

Appendix A.

4.3 Alpha

We calculate alpha, the probability that the verification network passes. Along with
alpha, we calculate the probabilities that the verification network passes with various
errors (X or Y; Z or Y; X,Y, or Z). Errors on passed ancilla can propagate to the data

and can cause incorrect syndrome extractions, affecting the crash probability.

o0

Our approximation follows [21], except that more attention is paid to the details
of the verification network. Similar to [21], but treating X, Y, and Z as distinct

errors, alpha can be expressed exactly as

a = P(pass and no inc X,Y on S' anc) + P(pass and inc X,Y on S* anc)
= P(pass and no inc X,Y on S' anc) + P(pass and no inc Z,Y on S* anc)
~P(pass and no inc X,Y,Z on S' anc) + P(pass and inc Y on S anc)
+P(pass and inc X and Z on S* anc)
~P(pass and inc X and Y and Z on S' anc),
(4.11)

where S is either S! or Sl

The last two terms of Equation 4.11 are set to zero in our approximation. They
require at least two errors to occur in V1, whereas the other four terms require only
one or zero. We keep the first four terms.

To approximate the first three terms analytically, we determine which single gate
failures in G and V! lead to “good” outcomes for the corresponding probability. For
a simple example, a Z failure on the ancilla during the last time step of V! is a single
gate failure that leads to a good outcome for P(pass and no inc X,Y on S! anc) but
a bad outcome for P(pass and no inc Z,Y on S! anc). Tables 4.1, 4.2, and 4.3 list the
failures in G and V! that cause “good” outcomes.

Usually, there is a “bad” outcome exactly when one of the following happens: an
X,Y error is left on the ancilla by G; an X,Y error is caused on the ancilla in V! and
propagates to the verification qubits; a failure on a verification qubit leads to an XY
error left on the verification qubits just before measurement in V'!; or a failure in G
or V! leaves an undesired error on the ancilla at the end of V'!.

Some of the entries in the tables are not obvious. For example, an XI error on
the first cnot in G does not lead to any errors coming out of GG, even though one

would expect the X error to propagate to several ancilla qubits. In general we need

to consider the stabilizer of the state that a error occurs on, because in this case the

stabilizer of the control qubit is X, so the X “error” has no effect.

Table 4.1 lists the failures in G that lead to good outcomes for P(pass and no inc

X,Y on S'anc) and P(pass and no inc Z,Y on S! anc).

top | bot. early mid. late early | late

prep | prep | had cnot cnot cnot wait | wait
Pass no XY Z XYZ | XYZ | 12,21,27 | V2,21,27 | 12,721,277 7 Z
Pass no Z,Y Z Z Z | XILYZ,IZ 77 - 7 -
of gates 4 3 3 3 1 5 5 2

Table 4.1: This table lists the failures in the G network that lead to good outcomes
for the probabilities P(pass and no inc X,Y on S! anc) and P(pass and no inc Z,Y
on S! anc). The bot. prep. gates are the preparation gates followed by Hadamards,
and the top prep. gates are the ones that are not followed by Hadamards. The early
cnot gates are the three in the second time step, the mid. cnot gate is the cnot gate
in the third time step that still acts on a |0), while the late cnot gates include all
others.

prep/ early | late | early | late
early | late | early mid late anc. | anc. | ver. | ver.
had | had | cZ cZ cZ ms | wait | wait | wait | wait
Pass / X | XZ,JZ | XZ,1Z, | XZ,1Z, | Z Z Z X X
no X XI XI X1
Pass Z X ZX - X7,7ZX, | Z - X - X
no ZY YY
of 4/4 4 4 6 3 4 3 26 2 1
gates

Table 4.2: This table lists the failures in the V! network that lead to good outcomes
for the probability P(pass and no inc X,Y on S! anc) and P(pass and no inc Z,Y
on S' anc). ms is short for measurement gate.

Table 4.2 does the same for V!. Using these two tables we calculate that

52

P(pass and no inc X,Y on S' anc) =
(1= =) (1= 29" — 290 — 83B) (1 — 7% —32) (1 = F = 7))’
x (1= =) (1= =) (1 - 20% — 290Y — 8358) (1 =)"
x (1= =) (A= =) (1 =92 =)’
(4.12)

and

P(pass and no inc Z,Y on S' anc) =
(L= =) (1= =) (1= 2" — 20f" — 83'7)°
x (1= 473" = 290" = 83) (1=)" (1 = ¥ = 40)° (1 =)’
x (1= =) (1= =) (1= =) (1= 0" — 290" — 894B)"

(
(1 =) (1= 4" =298 = 6547)° (1 = 7% =) " (1 =)’
(

X
27
x (1 - 7 - /Yw)
(4.13)
other last
early | last | last | cZ, early | ver. | other
prep | had | had | c¢Z | cnots | meas | waits | wait | waits |
Pass no X,Y,Z Z Z X | XZ - Z Z X -
of gates 11 7 4 4 18 4 5 1 33

Table 4.3: This table lists the failures in the G and V! networks that lead to good
outcomes for the probabilities P(pass and no inc X,Y,Z on S! anc). The last cZ gates
are the cZ gates that are the last to act on each verification qubit.

Table 4.3 lists the failures in G’ and V! that lead to good outcomes for P(pass and
no inc X,Y,Z on S! anc). Using Table 4.3 we calculate that

93

P(pass and no inc X,Y,Z on S! anc) =
(1= =) = =) (1= =)'
x (1- A L 87543)4(1 - 72)18(1 —- 1= %}7/1)4

x (1= =) (1 =42 =) (1 =)™

(4.14)

Finally, we approximate P(pass and inc Y on S! anc). The ancilla pass with a
Y error only when an ZY failure (causes IY error) occurs on the first four control-Z
gates, when a ZY or YX failure (causes IY or XY error) occurs on the last three
control-Z gates, or when a Y failure occurs on the waiting ancilla after the control-Z

gates. Thus,

P(pass and inc Y on S! anc) ~ 10v5'Z + 2677 . (4.15)

4.4 Incoming Errors on Data

In this section we derive a set of linear equations for the probabilities of incoming
errors into S! and S! in the steady state. We calculate separately the probabilities
of X, Y, and Z errors on the data coming into S! and S}. The probabilities to be

derived are

PX =P(inc X on S}),

PY =P(inc Y on S}),

PZ = P(inc Z on S}),
(4.16)

PX = P(inc X on S}),

PY =P(inc Y on S}),

and P? = P(inc Z on S.).

o4

We could have chosen to make the approximations PX = PZ, PY = PY and

PZ = PX but we did not because (1) it is simply not true because of the gate U;, (2)
it is interesting to discover by how much they differ, and (3) the approximation is not
needed to simplify the theory, since either way we need only to write two equations

to represent all of them.

First, we find PX, the probability that there is an X error on the data coming
into S!. The same equation is used to find PY, by replacing the letter X by Y where
indicated by the symbol [Y].

P(no inc X[Y] on S!) =1 — PXIV =
[P(no inc X,Y on S})x
[P(no inc Z,Y on S} anc)x
[P(no Z,Y caused on S,' anc)x
[P(no X,Y caused on S;*>! anc)
x P(no X[Y] caused on S}, S¥, R¥, U;|no Z,Y caused on S.' anc)
+ (1 — P(no XY caused on S;*>! anc))
x P(no X[Y] caused on S>>! S3 R, U;)|
+ (1 —P(no Z,Y caused on S anc))P(no X[Y] caused on S>**', 53, R,, U;)]
+ (1 —P(no inc Z,Y on S} anc))P(no X[Y] caused on S2*>! S3 R, U;)]
+ (1 = P(no inc X,Y on S2))P(no X[Y] caused on S;, Sz, S2, Ry, Us)]
(4.17)

For there to be no incoming X[Y] error on S}, the following must occur: (1) If
there is an incoming X or Y error on the preceding S, (we assume this causes a
non-zero syndrome), then there must be no X[Y] error caused on the data before S}.
(2) If there is not an incoming X or Y error on the preceding S}, then either (a)
there is no error on the ancilla (so the syndrome is zero) and there is no X[Y] error

caused before S! or (b) an error on the ancilla causes a non-zero syndrome and there

o5

is no uncorrectable X[Y] error caused before S!. Equation 4.17 expresses the above

reasoning in the precise mathematical notation set up in Section 4.2.

Note that X[Y] errors cannot be caused on the data in S via the propagation of
errors from the ancilla, so X[Y] errors on the data must be caused by failures on the

(Y]

data only. This makes the equation for P! somewhat simpler than the equation

we will later write for PZ.
To obtain the equation for PZY from Equation 4.17, swap the labels z and z
everywhere they occur, swap the errors X and Z whenever they refer to errors on the

data (but not when they refer to errors on the ancilla), and remove every instance of
the gate U;.

Now we have four equations after writing only one, but we have introduced the
unknown quantity, P(no inc X,Y on S!) (along with P(no inc Z,Y on S}) in the cor-
responding equation for p? [Y]). Before proceeding to write the equation for PZ, we

find this quantity in terms of the original six.

P(no inc X,Y on S}) =1 — P(inc X on S} or inc Y on S})
=1~ Pf — PY 4+ P(inc X on Sllinc Y on S!)P(inc Y on S})
~1-P¥ - PY 4 pPXpY
~1-Pf - P
(4.18)

The last approximation in Equation 4.23 allows the system of equations to be
linear and only causes an error of about .5 percent on P [Y]7 which is itself only
about .5 percent near threshold. The second to last approximation assumes that
the events of an incoming X error and an incoming Y error are independent, which
they are not, but we expect the intersection of the two events to be relatively small
(because an incoming X and Y error requires two independent failures instead of just

one).

Similarly, we approximate

56

P(noinc Z,Y on S}) ~ 1 - P? - PY. (4.19)

Second, we find PZ, the probability that there is a Z error on the data coming

into S}.

P(no inc Zon S}) =1~ P? =
P(no inc X,Y on S} anc)P(no inc Z,Y on S})x
[P(no inc X,Y on S:|no inc Z,Y on S})x
[P(no inc Z on S} anc)x
[P(no Z,Y caused on S, anc)x
[P(no X,Y caused on Si*" anc)
x P(no Z caused on S}, S, RY, U;Jno Z,Y caused on Sp* anc)
+ (1 = P(no X,Y caused on S+**! anc))
x P(no Z,Y caused on S}no Z,Y caused on S, anc)
x P(no Z caused on S2, S%, R”, U;)P(no inc X,Y on SZ, 52 anc)]
+ (1 —P(no Z,Y caused on Si' anc))
x P(no Z,Y caused on S}|Z,Y caused on S} anc)
x P(no Z caused on S2,5% RY U;)P(no inc X,Y on 52, S? anc)]
+ (1 = P(no inc Z on S} anc))P(no Z,Y caused on S;)
x P(no Z caused on S%,53 RY, U;)P(no inc X,Y on S2, S2 anc)]
+ (1 = P(no inc X,Y on S}|no inc Z,Y on S}))P(no Z,Y caused on S,)
x P(no Z caused on S2, S2, R,, U;)P(no inc X,Y on S2, 52 anc)]

x Zz

(4.20)

For there to be no incoming Z error on S}, the following must occur: There

must be no incoming Z or Y error on the data preceding S! and no incoming X or

o7

Y errors on the ancilla coming into S.. Also, (1) If there is an incoming X or Y
error on the preceding S, (we assume this causes a non-zero syndrome), then there
must be no Z error caused on the data before S}. (2) If there is not an incoming X
or Y error on the preceding S., then either (a) there is no error on the ancilla (so
the syndrome is zero) and there is no Z error caused before S! or (b) an error on
the ancilla causes a non-zero syndrome and there is no uncorrectable Z error caused
before S!. Equation 4.20 expresses the above reasoning in the precise mathematical

notation set up in section 4.2.

Note that Z errors can be caused on the data in S} via the propagation of errors
from the ancilla, so this is included in the calculation of PZ. Also, note that the events
of various errors caused on the ancilla are not independent of the events various errors
caused on on the data, due to the two qubit gates, so conditional probabilities must
sometimes be used.

J

To obtain the equation for P’ ¥ from Equation 4.20, swap the labels z and 2

everywhere they occur, swap the errors X and Z whenever they refer to errors on the
data (but not when they refer to errors on the ancilla), and remove every instance of

the gate U;.

We now have six equations, but again we have introduced some new probabilities,

which we now approximate:

P(no inc Z,Y on S.) ~1— PZ — PY, (4.21)

and

P(no inc Z,Y on S2) x [P(no inc X,Y on Sl|no inc Z,Y on S,)
= P(no inc X,Y,Z on S}) (4.22)

~1-Pf - P/ - P~

Similarly, we approximate

o8

P(no inc X,Y on S}) ~1— PX — PY, (4.23)

and

P(no inc X,Y on S}) x [P(no inc Z,Y on S}|no inc X,Y on S})
= P(no inc X,Y,Z on S}) (4.24)

~1- P} -P -F7,

By substituting in Equations 4.18, 4.19, 4.21, 4.22) 4.23 and 4.24 into the six
equations represented by 4.17 and 4.20, we obtain six linear equations in PX, PY,
PZ, PX, PY and PZ, as desired. All of the other terms in Equations 4.17 and 4.20
can be simplified using the rule 4.10 and/or looked up in Table A.1 in Appendix A.

Though we do not pursue it in this paper, our theory can give the values of PX,
PY, PZ PX, PY, and PZ in the non-steady state. In the non-steady state, the

T

quantities PX| etc. would be labeled in temporal order: | PX, 3P, 3P, etc. The

quantities , PX, ,PY, and ,PZ would be linear in (,_1) Py, (i-1yPY, and (,_1)P7Z,
which would be linear in (.n_l)PZX , (,,v,l)PZY , and (n__l)PZZ , and so on until we reach
\PX = | PY = | PZ = 0 (if there were initially no errors on the data). This would
give an easily solvable system of 6n linear equations.

Our analysis of incoming errors assumed that the order of error-corrections was
always 7 error-correction followed by X error-correction, but when the gate being
error corrected is a Hadamard gate, the order of error-corrections gets reversed. This
would suggest that our analysis breaks down whenever a Hadamard gate is error-
corrected, but our analysis does still hold — as long as X and Z failures occur with
equal probability. When X and Z failures occur with equal probability, we are free
to relabel the errors so that the first error-correction needed is Z error-correction, so
our analysis holds.

The assumption that X and Z errors occur with equal probability puts a limit on

the type of initial noise channel we can model (one of the reasons we restrict ourselves

59

to depolarizing noise). However, if we lifted this assumption we would have other
problems such as (1) the effective noise channel for a logical gate would depend on
whether the preceding logical gate swaps errors, so the noise channel of a gate would
depend on the circuit it belongs to, and (2) there might be better error-correction
procedures that take into account the different noise channel, such as correcting the
more likely error more often. These problems would make the analysis less tractable,

so we keep the assumption that the initial noise channel is depolarizing.

4.5 Noise Channels

In this section we calculate the probabilities of logical X, Y, and Z failures on single
qubit gates and measurements; and logical IX, 1Y, and IZ failures on two qubit gates.

That is, we find the level (£ + 1) noise channel in terms of the level £ noise channel.

4.5.1 Single Qubit Gate

In a [[7,1,3]] code error-correction routine, two X errors or one X and one Y error
causes a logical X failure when S, detects the two errors and misinterprets them as a
single error, correcting the wrong qubit. Similarly, two Z errors or one Z and one Y
error gets misinterpreted by S, and cause a logical Z failure. Two Y errors cause a
logical Y failure.

A logical failure is defined to occur whenever a failure occurs that puts the logical
qubit into an uncorrectable state (a state that would be misinterpreted and incorrectly
“corrected” by a noiseless error-correction circuit). At least two failures are needed
to cause a logical failure.

For each logical error we approximate its probability of occurring by counting the
ways in which exactly two failures (calling incoming errors on the data or ancilla
“failures” for our present purpose). For example, one way to cause a logical X error
is to have an incoming X or Y error before S! and an X error anytime before S22
Another way to have a logical X failure is to have two X errors occur after S;-!. In the

last example, the logical X failure by our definition occurs at the time of the second

60

error, not when the logical X state gets created by a misinterpreted syndrome in the

following error-correction.

We then sum over all of the possible pairs of locations the probability of both

errors occurring:

y(l+1) = >, Ya(E) (), (4.25)

a>b, pair causes logical error
where a and b sequentially label all of the gates in the error correction network that
act on the data, and also label the probabilities for incoming errors on the data or

ancilla.

This sum implicitly assumes that as long as the two failures under consideration
occur, there will be a logical failure regardless of what happens elsewhere in the

network. This is a small over-approximation.

When counting the pairs of errors that lead to a logical failure, a pair of errors
that act on the same qubit are not counted. Such pairs of errors cancel and do not
cause a logical failure. If we counted these pairs of errors, we would over-count by
about 1/7 ~ 14% and expect our calculated failure rates to be inaccurate by the same
percentage. So, the first order effect of the cancellation of errors is taken into account

in our calculation of the failure rates.

As one last detail, we approximate the probability that there are two incoming
X (or Y or Z) errors on the ancilla as (6/7)(vy)?, where +y is the probability of one
error coming in. This assumes the events are independent, which is almost but not

the case.

Here we do the counting for and calculate the probability of a logical X or Y error
on a single logical qubit. We count all pairs of failures that cause a logical failure.

The counting for all logical errors is done in Appendix B. The counting is ezact.

We calculate vX (€4 1) +~Y (£ + 1), the probability of a level (£ +1) X or Y error

as follows:

61

X (0 +1) + 47 (€ + 1) = P(logical X,Y failure|no inc X,Y,Z on S})(¢)
+ P(logical X,Y failure|inc X on S1)(¢)
(4.26)
+ P(logical X,Y failure|inc Y on S1)(¢)

+ P(logical X,Y failurel|inc Z on S})(¥)

We assume that no logical failure occurred in the previous error correction. For
this reason, we do not need to consider the case of two incoming errors.

First, we consider the case that there are no incoming X,Y or Z errors on S.. This
occurs with probability 1 — PX — PY — PZ. In this case, there must be a pair of errors
that cause a logical X or Y error.

Table 4.4 counts the pairs of errors that lead to a logical X or Y error. The errors
indicated in the table are the errors caused on the qubits. The columns indicate
the location of the first error and the rows indicate the location of the second error.
Usually filled in each cell is the error that must by caused by both gates (or list of
errors from which one must be caused by each gate). The errors in some cells are
followed by 1 or 2, meaning that the specified error(s) must be the first or second
error, respectively. In such a case, the other error is assumed to be in the list XY. The
additional designations “s” and “n” indicate that the error causes further syndromes
to be extracted (s) or must not cause further syndromes to be extracted (n). Such
a designation is needed when, for example, the first error is on S!'! and the second
error could be either on S2! or S%. The designation of “sn” indicates that both errors
must cause a non-zero syndrome or both errors must not cause a non-zero syndrome.

The probabilities of the errors in each cell can be looked up in Appendix A.

Each cell corresponds to a pair of errors that may occur on many distinct pairs
of qubits. The errors in the diagonal cells are errors that occur in the same gate, so

they should be counted

(;) T? = 2172 (4.27)

times for a gate with 7" time steps.

62

| e | s |st) e | Ry | s |se|sy Ry U

inc XY
ST XY | XY
SISTI XY | XY | XY
ST Y1 | XYsL| -
ST Y1 [XYsl | -
ST YL [Xysi | -
Se XY [X¥nl] XY | XY
RV | XY | XY | XY | XY | XY
S;"l XY XY XY XY XY | XYsn
S ; >1 XY XY XY XY XY XY XY
S2L I XYs2 | XYs2 | XYs2 || XYs2 | XYs2 | XYs -

Szﬁ>1 _ _ _ - - - -

Sw - - - - - [XYnl| XY || XY

RY - - - - - | XYnl| XY [[XY[XY

U; - - - - - XYnl | XY | XY | XY | XY |

Table 4.4: This table lists all pairs of errors that cause a logical X or Y error. The
columns indicate the location of the first error and the rows indicate the location of
the second error. The column and row labeled “inc” correspond to incoming errors
on S! ancilla.

Order of errors is already prescribed in the off-diagonal cells, so the errors in those

cells should be counted

(1) (6)T\Ty = 42T, T (4.28)

times, where 77 and T, are the number of time steps in the corresponding gates.

If one of the gates is “inc”, then the error in the cell should be counted 671" times.
If both gates are “inc”, then the error should be counted 6/7 times.

Second, we consider the case that there is an incoming X error on S}. This occurs
with probability PX. For a logical X or Y error to occur, there must be an X or Y
error before S%!. This fact is represented in Table 4.5.

Third, we consider the case that there is an incoming Y error on S;. This occurs
with probability PY. For a logical X or Y error to occur, there must be an X or Y
error before S%!, as represented in Table 4.5.

Finally, we consider the case that there is an incoming Z error on S!. This case

is negligible, since two X or Y errors would still be required to cause a logical X or Y

63

[inc | S| Sh>1| 82 | §3 | S¥ | RY | SM|Sh1| 82|
inc X || XY | XY | XY - - XY | XY | XY | XY | XYs
incY | XY | XY | XY | XY | XY | - [XY | XY | XY |XYs

Table 4.5: This table lists all errors that cause a logical X or Y failure, given either
an incoming X error (first row) or an incoming Y error (second row). See Appendix B

(198}

for an explanation of the designation “s”.

error. This concludes our determination of ¥ (¢ + 1) + ¥ (£ + 1).

In the same manner as above, we calculate vZ (£ + 1) + 7Y (¢ + 1) and Y (¢ + 1)
using the tables in Appendix B. From these three values we easily find v (¢ + 1),
¥ (€ + 1), and vZ(¢ + 1), giving the effective noise channel for a single qubit gate

(Hadamard or wait) at the next level of error-correction.

4.5.2 Two Qubit Gate

For two qubit gates, the event that there is a logical failure on one of the qubits is
almost independent of the event that there is a logical failure on the other qubit, since
the only gate that acts on both logical qubits is the logical U; gate. This makes the
failures XI, IX, ZI, 1Z, YI, and TY much more likely than any of the other possible

failures.

Only when one or two of the failures occur on the U; gate can a different failure
occur due to two failures. The probability of two failures on U; is negligible com-
pared with the probability of two failures before U; that cause a logical failure. The
probability of one failure on U; is less negligible, but it must occur on the same qubit
as a single error that propagates to both logical qubits. The probability of an error
propagating from one logical qubit to another is minimized by reordering the error-
correction. This makes the probability negligible compared with the probabilities for
XI, IX, ZI, 1Z, YI, and IY failures.

So the only non-negligible failure rates for a level one (or higher) two qubit gate

are viX, y&XT ALY X1 422 and 421, and their values are

64

X = 45T = 4 (with U, replaced by Us),
v = 4¥1 = ¥ (with U, replaced by Us), (4.29)

v4% = 4Z" = 4 (with U, replaced by Us),

where vi¥, 7Y, and 7Z are calculated the same way as in the above section, but with

U replaced by U, everywhere in the calculation.

Because the replacement of U; by U, can only have a small affect on the overall
failure rate, we expect that the failure rate of a level one (or higher) two qubit gate

to be very close to twice the failure rate of a single qubit gate:

1l > 0) = 2%;% (0) + 277 (€) + 2737 (€) = 2m(4). (4.30)

Equation 4.29 gives the effective noise channel for a two qubit gate at the next

level of error-correction.

4.5.3 Measurement

The probability of a logical measurement error is very simple, since the measurement

is done immediately:

P(logical X,Y failure) = P(no inc X,Y,Z on S})(6/7)P(X,Y on meas.)?
+ P(inc X,Y on S})(6/7)P(X,Y on meas.),
)

P(logical Z,Y failure) = P(no inc X,Y,Z on S})(6/7)P(Z,Y on meas.)?

z

(4.31)
+ P(inc Z,Y on S})(6/7)P(Z,Y on meas.),

P(logical Y failure) = P(no inc X,Y,Z on S!)(6/7)P(Y on meas.)?>

+ P(inc Y on S!)(6/7)P(Y on meas.).

65

Written out explicitly, Equation 4.31 becomes

T+ 1)+ +1) = (1= P = P = PE)(6/T)(vin + 1)’
+(PX+ B)Y6/T) (v +),

Y E 1)+ +1) = (1= PY = B = P2)(6/7) (9, +)
+(PZ+ PY)(6/7)(vm +)
(€ +1) = (1= PX — P = P2)(6/7) ()’

+(P)(6/7)(7m),

(4.32)

where every term on the right had side of Equation 4.32 is calculated at level £.

Equation 4.32 gives the effective noise channel for a measurement gate at the next

level of error-correction.

4.5.4 Preparation

As one of our modeling choices, we assume that

() = (),
T () = % (0), (433)
() =0 (0),

Y(0) = ~{ ().

We can make such an approximation, because even a factor of ten in the value

of 7y, has negligible effect on the other failure rates (the effect is typically less than

+5 x 1075 on the other failure rates).

4.6 Threshold

Using the failure rates calculated in Section 4.5 we can easily calculate the threshold.

Given the level zero failure rates (vf(7 fy}/, 71Z, ’yéw, 'yéy, ’yZAB, ”yf‘f, 'ylf, ’yg, 73,5, 7;’,/1,

66

Ve, s Yo and), we calculate the level one failure rates (same list), from which
we calculate the level two failure rates, and so on.

We determine whether the initial set of failure rates was above or below threshold
by repeating the above procedure until each failure rate is above its initial value or
each failure rate is below its initial value. This gives an eleven dimensional threshold
surface. We calculate a two-dimensional cross-section of this surface in Section 5.5.

We should note that the set of gets that we have analyzed to determine the
threshold is not universal. For universality, we would have to include a gate such as
the Toffoli gate. We assume that the existence of the Toffoli gate in an error-corrected
circuit has little affect the threshold. We think this amounts to assuming that the
Toffoli appears infrequently enough that the correlated errors it can cause are about
as likely as those for a cnot gate. As with the cnot gate, the X and Z error corrections

would be reordered to minimize the probability of correlated errors.

67

68

Chapter 5

Results

What is the effective noise channel at different levels of concatenation of the Steane
[[7,1,3]] code? How does the estimate of the threshold change when the different noise
channels are taken into account? Within the assumptions of our model, we answer
these two questions in this Chapter.

Whenever possible, we carry out numerical simulations to provide support for the
accuracy of our analytical model. In Section 5.1, we explain our method for numerical
simulation. In the following sections, we present our results in the same order as they
were predicted in the analysis: Section 5.2 compares our predictions for alpha and the
probabilities of incoming errors on the ancilla to numerical simulations; Section 5.3
does the same for the probabilities of incoming errors on the data; Section 5.4 predicts
the effective noise channels at all levels of code concatenation, answering our first
question; and Section 5.5 predicts the value of the threshold with and without changes

in the noise channel, answering our second question.

5.1 Numerical Simulations

We conduct numerical simulations to test the accuracy of our analytical model. We
do not simulate more than one level of error correction (that would require too many
computing cycles). However, in addition to simulating level one error-correction with

depolarizing noise, we simulate level one error-correction with the noise channel that

69

our analytical model predicts for higher level error-correction. In this way we effec-
tively simulate higher level error-correction, assuming that our analytical model is
sufficiently accurate.

We modified a quantum computer simulator called ARQ), created by A. Cross [5],
which uses stabilizer simulations given in [1]. The program ARQ takes as input a
sequence of commands that specifies qubits, the gates that act on them, and sim-
ple classical processing. ARQ language specifications are given at the beginning of
Appendix E. ARQ uses stabilizers to track the state of a quantum system, and can
efficiently simulate any stabilizer circuit.

We wrote Python code that generates ARQ code for simulating the quantum
error-correction circuits that we have chosen for our model. We have included the
ARQ code generator in Appendix D and included some sample output (ARQ code)
in Appendix E.

5.2 Alpha

In order to calculate the threshold and noise channels, we derived equations for the
probabilities of incoming errors on the ancilla in Section 4.3. In our notation, these
were the probabilities P(inc X on S* anc), P(inc Y on S! anc), and P(inc Z on S* anc).
In this Section we compare our analytical estimates of these probabilities to the results
of our numerical simulations. We find that they are in precise agreement.

We derived the probabilities of incoming errors on the ancilla by first deriving
the probability that the verification network passes with and without errors. The
probability that the verification network passes, which we called «, is plotted in
Figure 5-1 along with our numerical results.

In Figure 5-1 we plot alpha versus the gate failure rate -, where we define v =
Y = Y2 = Ym = Yp = 107,. We plotted a twice: once using the depolarizing channel,
and once using a channel with equally weighted X and Z errors (but no Y failures) on
single qubit gates and equally weighted IX, IZ, XI, and ZI failures (but no on other

failures) on two qubit gates. This second channel is approximately the effective noise

70

1 T L —T T T
N :
099} - o) S R
098¢+ - o Lo - \1\ \ ,,,,,,, A
097 > .; ROE
0.96 e e ,,,,,,,,,, R IR \I\ \
5 : : : ~
0.95F - N >~ ~ o
094 AAAAAAAAAAA N
0.93+ N
— — — o adjusted
o .
0.92} . numerical sim. ..
numerical sim. | : ; :
0.91 1 I i 1 L
0 0.5 1 15 2 2.5 3
Y x107°

Figure 5-1: This is a graph for «, the probability that the verification network passes,
versus the failure rate v = v1 = v2 = ¥ = 7 = 107,. It is plotted twice: once
assuming the depolarizing channel (solid line), and once assuming the effective channel
that we calculate in Section 5.4 to be the higher level noise channel (“adjusted” dashed
line).

channel at higher level error-correction that we calculate in Section 5.4. In Figure 5-1,
we call the value of a for the higher level noise channel “a adjusted.” We find that
the value of « is higher for the higher level noise channel. This is mainly because the
probability of an X or Y error changes from 2v/3 to y/2 for single qubit gates and
from 8/15 to 1/4 for two qubit gates.

The essential probabilities for determining the threshold and higher level noise
channels were the probabilities of incoming errors on the the ancilla, which are plotted
in Figure 5-2. Again, we plot two results, one set of results for depolarizing noise,

and one set of results for the higher level noise that we calculate in Section 5.4.

71

In Figure 5-2 we plot two probabilities: P(inc X,Y on S! anc) and P(inc Z,Y on S*
anc). The first, P(inc X,Y on S? anc), is important because X and Y errors on the an-
cilla propagate to errors on the data. The second, P(inc Z,Y on S! anc), is important

because Z and Y errors on the ancilla cause non-zero syndrome measurements.

0.045 T T T T T
— — —inc ZY adjusted : : :
0.04+ incZY L o [/‘j
’ numerical sim. f : : e
numerical sim. ; : L s
6\ 0035 - |nC X,Y N R R o P, a
% — — —inc X,Y adjusted : : P
— 003F| - numericalsim. | e B £
(dp) numencal sim. ‘ ’i/ |
C qoo5b SR U S T L i
o 0.025r- . : : Phel : :
: ; o : .
2 AU U S A0 I _ -
O 0.02 : LT e 4
= . ; - : ; ;
Q : s i : :
00_015F I// SRR
£ L : : ;
P ; : : ;
o 001F - A L P L
-
0.005F - ././.,j e SRR
Vs ; T T T
7 = e e k— — — T T
0 - — —r— - i i i 1
0 0.5 1 1.5 2 25 3
Y x107°

Figure 5-2: This is a graph of the probabilities of incoming errors on the ancilla coming
into S versus the failure rate v = v, = 72 = Y = v = 107,. The probabilities
are plotted twice: once assuming the depolarizing channel (solid lines), and once
assuming the effective channel that we calculate in Section 5.4 to be the higher level
noise channel (“adjusted” dashed lines). The legend indicates the the order of the
plotted probabilities as they appear in the graph from top to bottom.

We find that the probability of an incoming X or Y error on the ancilla is lower
for the higher level noise channel. This means that there is a lower probability of an
error propagating to the data than would be predicted using the depolarizing channel.

However, we find that the probability of an incoming Z or Y on the ancilla is actually

72

higher for the higher level noise channel. This means that there is a higher probability
of obtaining a wrong syndrome measurement during S.

We explain how we obtained the numerical results. For each probability, we ran
10° simulation trials of the preparation network (G and V1) for each data point. For
alpha, we merely counted the number of times verification succeeded. For the other
probabilities, we used stabilizer generators to detect the errors that occurred. For
P(inc X,Y on S! anc) we compared the set of stabilizer generators of the data qubits
at the end of V! to the set of stabilizer generators for the state |0), with one X error
(seven possibilities) and the set of stabilizer generators for the state |0), with one Y
error (also seven possibilities).

Similarly, for P(inc Z,Y on S! anc) we compared the set of stabilizer generators
of the data qubits at the end of V! to the set of stabilizer generators for the state
|0), with one Z error and the set of stabilizer generators for the state |0), with one

Y error.

5.3 Incoming Errors on Data

In Section 4.4 we solved a set of six linear equations to solve for the steady state
incoming error probabilities (PX, PY, PZ PX PY and P?). We plot our analytical
estimates and simulation results for the first three of these probabilities for the case
U; = I (single qubit identity gate) in Figure 5-3.

As in the preceding Section, we calculated each probability twice, once using the
depolarizing channel and once using a channel with equally weighted X and Z errors
but no Y errors. This second channel was approximately the effective channel for
higher level error-correction that we calculate in Section 5.4.

For each probability, we ran 10° simulation trials of a network consisting of six
error-corrected identity gates (for each data point). Six consecutive error-corrections
were used to ensure that the steady state distribution of incoming errors was achieved.
We found that five was large enough to ensure steady state.

As in the preceding Section 5.2, we determined the probabilities by comparing the

73

set of stabilizer generators for the data qubits to the set of stabilizer generators for
|0), with a single qubit error. We compared the stabilizer generators immediately

before either S! or S! during the sixth error-correction.

5.4 Noise Channels

In Section 4.5 we calculated the probabilities of logical X, Y, and Z errors. This gave
us the effective noise channel at any level of error-correction. We plot our analytical
estimates of these probabilities given depolarizing noise in Figure 5-4. The noise
channel is given by the relative probabilities of logical X, Y, and Z errors.

We find that after one level of concatenation, the probability of a Y error is an
order of magnitude less than the probability of an X or Z error. After two levels of
concatenation, the probability of a logical Y error is negligible: the effective noise
channel at all higher levels of concatenation is approximately one half X error and
one half Z error. Also n Figure 5-4 we plot the probabilities of logical X, Y, and Z
errors assuming that the noise channel is already this higher level noise channel.

We cannot easily compare the probabilities of the three logical errors to numerical
simulations, because no matter what single logical qubit state we create, the state
is always stabilized by one of the logical errors. That means that the logical Y
error is always indistinguishable from either the logical X or logical Z error, when
using stabilizers to distinguish them. However, we can conduct numerical simulations
to determine P(logical X,Y failure) and P(logical Z,Y failure), the first of which we

compare to our analytical model in Figure 5-4.

5.5 Threshold

As explained in Section 4.6, the threshold that our model predicts is an eleven di-
mensional surface in noise parameter space. It would be intractable to represent that
surface here, so we present a two dimensional cross-section in Figure 5-5.

We chose a cross-section where vese = 11 = 72 = Y = 7m and 7, are the

74

independent initial failure rates. We could have set 7, = 7;/10, obtaining a one-
dimensional cross-section of the threshold as other authors do, but wait gates appear
far more often than the other gates in our error-correction circuit, so the effect on the
threshold of changes in 7, is greater. For this reason, we thought it would be useful
to show how the threshold depends on 7,,.

Because our intent is to show how the value of the threshold changes when we take
into account the changes in the noise channel, we plot three thresholds under three
different assumptions: the noise channel is depolarizing at all levels of concatenation
(this gives the lowest threshold result); the noise channel is always one half X, one
half Z, and no Y at all levels of concatenation (this gives the highest threshold result);
and the noise channel is initially depolarizing but changes at each level according to
our analytical model (this gives the middle threshold result).

Our result is that the value of the threshold for the Steane [[7,1,3]] code changes
by ~ 30% from 3.0 x 107 to 3.9 x 107* when 107, = 71 = 72 = ¥, = Ym. Our result
for the case where we assume depolarizing noise every level is in excellent agreement
with [21].

We analyze our threshold result a little more. Figure 5-6 graphs the failure rates
of level £+ 1 gates in terms of the level ¢ failure rate v = v1 = y2 = v, = v, = 107,,.
The solid lines give the results when the level £ noise is depolarizing, while the dashed
lines give the results when the level ¢ noise is equally weighted X and Z errors only.
We find that level ¢ + 1 are much lower in the latter case (with the exception of
~Ym(€ + 1), which is so small we do not really care about it).

Tables 5.1 and 5.2 show in detail the behavior of the noise channels just below
threshold (the adjusted threshold, 3.9 x 107*). Rows 1-4 of each table show the error
rates assuming changing noise channels at each level of error correction. Rows 5-8

show the error rates assuming depolarizing noise at each level of error correction.

First we look at rows 1-4. The characteristic behavior is that the failure rates ~;*
and 3% initially jump down, while the failure rate vX jumps up to the same level

as v and £¥, since all three of these gates get replaced by approximately the same

75

L Lo L [[P v [e | o |
1.300 | 1.300 || .2600 | .2600 | .2600 || .1300 | .1300 || 1.300 | 1.300
5305 | 0688 || 5143 | .0657 | 0 | 4645 | .0571 | .0126 | .0025
5118 | 0028 | 5273 | .0028 | 0 | .5089 | .0027 | .0001 | .0001
4764 | 0000 || .4914 | .0000 | 0 | .4763 | .0000 || .0000 | .0000
1.300 | 1.300]| .2600 | .2600 | 2600 || 1300 | .1300 || 1.300 | 1.300
3766 | .3766 || .1459 | .1459 | .1459 || .3287 | .3287 || .0093 | .0093
5580 | 5580 || .2284 | 2284 | 5551 || .5551 | 55561 || .0001 | .0001
1.517 | 1.517 || .6216 | 6216 | .6216 || 1.517 | 1.517 || .0000 | .0000

Table 5.1: This table shows the behavior of the noise channels just below threshold.
Rows 1-4 give the noise channels for successive levels of error-correction in our model.
Rows 5-8 give the noise channels for successive levels of error-correction assuming
that the noise channel is depolarizing at each level.

Il 2 | % | |
3.900 | 3.900 | .3900 | 3.900
1.130 | 2.189 | .9861 | .0278
1.026 | 2.115 | 1.021 | .0002
19529 | 1.966 | .9526 | .0000
3.900 [3.900 | .3900 | 3.900
1.130 | 2.189 | .9861 | .0278
1.674 | 3.427 | 1.665 | .0003
4.551 | 9.325 | 4.550 | .0000

Table 5.2: This table is the same as Table 5.1, except only the full failure rate for
each type of gate is presented.

error-correction circuit. If 47 and 74X jumped down far enough, they will be below
threshold, as is barely the case in our example. The failure rates ¥, v&¥, v¥ and
7Y all jump down to about 1/9 to 1/8 of their corresponding X failure rates. The
jump of 47 and ¥ down between rows 2 and 3 is what causes viX and vX to start
decreasing again after a slightly increasing between rows 2 and 3. The measurement
failure rates become negligible rather quickly.

Now we look at rows 5-8 Rows 5 and 6 are the same as rows 1 and 2 because
both started with depolarizing noise. For each row in 5-8, each location failure rate
is spread out evenly among the possible failures. Logical X failures occur when there

are two X errors or one X error and one Y error. Similarly, logical Z failures occur

76

when there are two Z errors or one Z error and one Y error. Y errors contribute
to both logical failure rates, so when the failure rates are spread out among X, Y,
and Z errors, this increases the probability of logical failrates. Row 8 shows that

v =3.9 x 107 is above threshold when assuming depolarizing noise at all levels.

7

006r ST S e

— — —inc Z adjusted |

— — —inc X adjusted |- : } : :
005_ S S Co

inc X :
- numerical sim. |: : : , :
- numerical sim. | : : : e
0.04 L . numerical sim.| R REEE S G S SRR

numercial sim. |-

0.03

0.02

P(no inc errors on data)

0.01

Figure 5-3: This is a graph of the probabilities of incoming X, Y, and Z errors
into Z error-correction: PX, PY and PZ. They are plotted against the failure rate
Y=Y =792 = Ym = Yp = 107, The probabilities are plotted twice: once assuming
the depolarizing channel (solid lines), and once assuming the effective channel that
we calculate in Section 5.4 to be the higher level noise channel (dashed lines). The
legend indicates the the order of the plotted probabilities as they appear in the graph
from top to bottom.

78

—— X,Y failure rate
—— X (or Z) failure rate
| —— Y failure rate
numercial sim.

= o ,,,,,,,,,,,,, . S

R S — N

X, Y, Z and X,Y Failure Rates

Figure 5-4: The is a graph the effective noise channel (the separate probabilities of X,
Y, and Z errors) at level /+1 versus the failure rate y = y1 = y2 = y,,, = 7, = 107, at
level £. The probabilities are plotted twice: once assuming the depolarizing channel,
and once assuming the effective channel that we calculate in Section 5.4 to be the
higher level noise channel. We also plot the probability of an X or Y error (denoted
X,Y error) and compare to numerical simulation. The legend indicates the the order
of the plotted probabilities as they appear in the graph from top to bottom.

79

x 10
1.2 T T .

— — — adjusted threshold
previous threshold

Figure 5-5: This is a graph of the threshold for the Steane [[7,1,3]] code. The hori-
zontal axis is Yeise = 71 = Y2 = Yp = Ym and the vertical axis is 7,. The solid line is
the threshold result assuming depolarizing noise at all levels of error-correction. The
dashed line is the threshold result when the noise channel changes according to our
analytical model. Along the line 7.5 = 10, the threshold increases from 3.0 x 1074
to 3.9 x 107% when we take into consideration the changing noise channel.

80

6 ..
1o
_ Y Y, ,
5-'____yzadjusted EREEE
- Yp Y, adjusted
4+ Ym I T R
- - Yy adjusted
....... v(+1) =)

v at level (1+1)

N

y at level | x107°

Figure 5-6: This is a graph of the failure rates at level £ + 1 in terms of the failure
rate ¥y = vl = 92 = v, = ¥, = 10, at level £. The probabilities are plotted twice:
once assuming the depolarizing channel, and once assuming the effective channel that
we calculate in Section 5.4 to be the higher level noise channel. The legend indicates
the the order of the plotted probabilities as they appear in the graph from top to
bottom.

81

82

Chapter 6

Conclusions and Further Directions

We developed an analytical model that determines the effective noise channel for each
type of gate at each level of concatenation of the Steane [[7,1,3]] code. We used the
model to determine the effects of the changing noise channel on the threshold. We
found that Y errors quickly drop out of the effective noise channel for all types of gates
at levels of error-correction beyond level one. The effect this had on the threshold
was to increase it by 30%. We also found the threshold to be 3.9 x 1074, which is
an order of magnitude lower than the rough estimate in [19], but in good agreement
with the estimate in [21].

Our analytical model has the novel feature that it calculates separately the prob-
abilities of incoming X, Y, and Z errors into the X and Z error-correction routines.
It calculates each set of probabilities in terms of the same set of probabilities in the
previous error-correction, setting up an easily solvable system of linear equations.
The power if this method was not fully utilized in the current thesis, and we note
some possible extensions here.

The first extension is of practical interest. In a physical realization of a quantum
computer, the noise channel can be very different from the depolarizing channel (X, Y,
and Z failures can be weighted unequally). When this is the case, it may be possible to
design new or modify existing error-correction routines to increase the threshold. Any
analysis of the benefits of particular error-correction routine will necessarily involve a

detailed analysis of the change in the noise channel at higher levels of error-correction,

83

for which we set up a framework in our analysis.

In our thesis we limited the possible set of initial noise channels by assuming
that X and Z failures always occur with equal probability. If we did not make this
assumption, then the failure rate of any gate would depend on whether the preceding
gate was a Hadamard (which swaps X and Z errors). Then we would not be able
to assign a given threshold to an entire class of gates, since the failure rate of any
particular gate would depend on the circuit it belongs to. This circuit dependence
of the threshold can be calculated using the system of linear equations we set up in
Section 4.4.

The second extension would be to generalize our analysis to arbitrary CSS codes.
Construction of efficient error-correction networks using the generator matrices and
parity check matrices was already explained in [19]. The main difficulty would lie
in determining the incoming errors into each error-correction routine. The system of
linear equations derived would be much larger and more complicated, but tractable
if calculated by computer. It would be very interesting to find out how larger CSS

codes affect the noise channel and how the new noise channel affects the threshold.

84

Appendix A

Probabilities

Table A.1 in conjunction with rule A.1 lists all of the probabilities used in the analysis.

For a description of our notation, see Section 4.2.

P(no [inc| errors on Ay, Ag, ... qubits) = HIP’(no [inc] errors on A; qubits). (A.1)

1

85

P(expression)

ETPTESSIONn ” causes of error |
no WY on S74>! W,Y (1— —)"
no W[Y] on S>1 WIY] (1 -~)"
no W[Y] on S¥ WIY] (17 O™
no W[Y] on R, WY (1- WTY) @ — W[Y)
no W[Y] on R¥ WI[Y] (1-)
no W[Y] on U, W[Y] (1- 7¥V Mh
no Z,Y caused on S! anc XX, XY, YLYZ, (1 -2 — 293 — 475”3)7
21,27, IX. 1Y
no Z,Y caused on S7*>! anc ZY; XY (1—1% =) Ll)T
no X[Y] caused on 7! IX[IY],ZX[ZY], (1—y"T_3 ;B)
XY[XX],YY[YX]
no X[Y] caused on S7'!] (ZX[ZY],ZX[ZY]) | (1 —2+W — 27?/ - 67513)7/
no Z,Y caused on SJ! anc XX, XY,YLYZ, (1= 294" — 24Y 47‘43)7
Z1,27,1X, 1Y ~ (1—2948)"
no X[Y] caused on U, IX[IY],ZX[ZY] (1- ’yéWUY] — 374)7
XY[XX],YY[YX]
no Z caused on S7* XLYI,Z2Z,1Z (1= 293" — 1Y — 72“3)7
no Z,Y caused on 53! XI,XX,YL,YX (1—290% — 290Y — 494B)"
IANN/AN@V/
no Z caused on S7'| (XI,1Z) (1 — 4" —248Y 4’)/‘3) /
no Z,Y caused on S7! anc XX, XY, YIYZ, (1= 295" — 298Y — 43!)
Z1,22,1X,1Y ~ (1—2v")"
no 7,Y caused on 53| (XLIZ,YX,ZY) | (1— 49" —290Y — 6+44B8)"/
no Z,Y caused on S7' anc || XX XY,YLYZ, (1= 293" — 240Y — 47543)7
71,77 IX TY ~ (1= 29W — 294B)”
no Z,Y caused on S)| Y1,27,1Y,XX (27Y 4 2v41B)/
Z,Y caused on S}! anc XX, XY, YLYZ, 29V 4 2y8Y 4 4ytB
71.77.1X IY
no Z caused on Us XI11Z,Y1,2Z (1 —29W — Y — 4£B)’

Table A.1: All probabilities needed for the calculation of PX, PY PZ PX PY and
PZ given in Section 4.4 and the calculations of the failure rates in Section 4.5 can
bee looked up in this table. In the top section, the label W can be replaced by either
X or Z. The gate U, is taken to be a cz gate.

86

Appendix B

Counting Tables for Failure Rate

Estimates

Tables B.1, B.3, and B.5 list all pairs of errors that cause a logical X or Y error;
a logical Z or Y error; and a logical Y error, respectively. The columns indicate
the location of the first error and the rows indicate the location of the second error.
The column and row labeled “inc” correspond to incoming errors on S} ancilla. The
counting is exact.

Usually filled in each cell is the error that must occur on both gates (or list of
errors from which one must occur on each gate). The errors in some cells are followed
by 1 or 2, meaning that the specified error(s) must be the first or second error,
respectively. In such a case, the other error is assumed to be in the list XY (for
Table B.1), ZY (for Table B.3), or Y (for Table B.5). The additional designations
“s” and “n” indicate that the error causes further syndromes to be extracted (s) or
must not cause further syndromes to be extracted (n). Such a designation is needed
when, for example, the first error is on S}'! and the second error could be either on
S21 or S™. The designation of “sn” indicates that both errors must cause a non-zero
syndrome or both errors must not cause a non-zero syndrome.

Tables B.2, B.4, and B.6 list all single errors that cause a logical X or Y error; a
logical Z or Y error; and a logical Y error, respectively, given various single incoming

€ITors.

87

| ine | St [siet| sr | Rr | st skt sy | Ry U

x

Shi XY | XY
s>l Xy | XY | XY
S2:1 Y1 | XYsl -

S2>1 1 Y1 | XYsl -
S3 Y1 | XYsl -
Sv XY | XYnl| XY XY

S 1 i1 XY XY XY XY XY | XYsn
S 313 >1 XY XY XY XY XY XY XY
S21 1 XYs2 | XYs2 | XYs2 || XYs2 | XYs2 | XYs -

z
SZ,t>1 _ ~ _ _ ~ _ _

SH I

Sw - - - - - [XYnl | XY [XY

RY - - - - - XYnl | XY || XY | XY

U; - - - - - XYnl | XY || XY | XY | XY

Table B.1: This table lists all pairs of errors that cause a logical X or Y error. The
columns indicate the location of the first error and the rows indicate the location of
the second error. The column and row labeled “inc” correspond to incoming errors
on the S} ancilla.

| inc | S21 | 11| 82 | S8 | Sw | Rw | Sbt| Skt S|
inc X || XY | XY | XY - - XY | XY | XY | XY | XYs
incY || XY | XY | XY [XY | XY | - [XY | XY | XY |XYs

Table B.2: This table lists all errors that cause a logical X or Y failure, given either
an incoming X error (first row) or an incoming Y error (second row). The column
labeled “inc” corresponds to an incoming error on the S! ancilla.

88

| syt syt sy | RY | inc | Spt S| SE | RY | U

Sht il ZYsn
SIET 7y | 7Y
Sl ZYs -
Sgt>1 _ _
S3 -

z

SY ZYnl | ZY A%
RY ZYnl | 7Y Y | 7Y
inc ZYnl | XY2 || XY2 | XY2 | XY
XY?2
S W7ZYnl | ZY ZY | ZY | XY1 | ZY

T

S Zynl | ZY ZY | ZY | XY1]| ZY 7Y
St Ynl Y1 Y1 | Y1 | Y1 | Ysi -

x

Sz Yol | Y1 Y1 | Y1 | Y1 | Ysl -
Sl ynl | YL | YL | YL] Yl | Ysl -

T

S Znl Z1 Z1 71 X1 [ZYnl | ZY || ZY

T

RY || ZYnl | ZY ZY | Z2Y | XY1 | ZY ZY | ZY | ZY

X

U, ZYnl | 7Y ZY | ' Z2Y | XY1 | ZY ZY || ZY |ZY | ZY

Table B.3: This table lists all pairs of errors that cause a logical Z or Y error. The
columns indicate the location of the first error and the rows indicate the location of
the second error. The column and row labeled “inc” correspond to incoming errors
on the S} ancilla.

” gLl ' gLt>1 ' g2.1 ’
incZ | Z2Y | ZY |ZYs
incY || ZY | ZY | ZYs

Table B.4: This table lists all errors that cause a logical Z or Y failure, given either
an incoming Z error (first row) or an incoming Y error (second row).

89

[52 | siot| se | Ry | s[5t sy | Ry ||

S Ysn
Szl,t>1 Y Y
Sz Ys -
ST N
S3 - -
SvYsl| Y || Y
R [Ysl| Y | Y | Y
S Ysl] Y Y | Y | Ysn
SIETIYs1| Y | Y | Y | Y | Y
S2L 1 Ysl | Ys2 || Ys2 [Ys2| Ys
Ys2
S%’Dl R _ R _ _ _
S3 - - - - -
Sy - - - - |Ynl| Y Y
R | - | - T - Y | Y [Y|Y
U - - - - |Ynl| Y YiY|Y

Table B.5: This table lists all pairs of errors that cause a logical Y error. The columns
indicate the location of the first error and the rows indicate the location of the second
error.

ﬂs;,l i S;,t>1 lsz,lj
incY] Y] Y | Vs |

Table B.6: This table lists all errors that cause a logical Y failure given an incoming
Y error.

90

Appendix C

Error Correction Circuits

These are the circuits used to construct the error-correction routine for the Steane
[[7,1,3]] code. The use of these circuits in error-correction is explained in detail in

Section 3.2

91

'qd)L _—1 Sl T] - |
0, — 2] —fs !
| Sz |

| l0>L)

Lo 10, == __J

d B o1
Iq >L Sl *l_ z z [;
\O>L — Lo |

Figure C-1: The error correction routine finds and corrects errors on the seven data
qubits in the logical state |gd), with the aid of multiple copies of ancilla qubits in
the logical zero state |0),. The second half of the circuit is on of two possibilities,
depending on whether the first syndrome extraction S! was zero or non-zero. If the
syndrome is non-zero, then two more syndromes are collected (middle circuit), but
if the syndrome is zero, no more syndromes are collected and the data qubits wait
(righmost circuit) during the syndrome extraction circuit acting on other qubits.

an

A

Figure C-2: This is the circuit for the preparation network, G. It prepares the logical
zero state, [0);. It is used in the error-correction circuit (see Section 3.2) to prepare
ancilla qubits in the state |0),.

92

lgas) {;z} @

lqas) 121 [z—7]

lqas) M ’?
lquo) = 10) | H} Llf HA
o) = 0)] T
lqua) = [0) 4 H] {aH Ak
lgus) = 10) —[H]- {rHA=

Figure C-3: The verification network V' checks for X errors on the state |0), and gives
four zero measurement results if no X errors are detected.

93

A%

Q2
=
o
~
=

)
)
=
S~
AN

=y
Q
N
~
aw

=)
=
[N
~
an)

0
j=
(=4
~
T

S

aw
NN NG

lqae)

Figure C-4: The syndrome extraction network S consists of three time steps. The
above network is the syndrome extraction for Z error correction. The syndrome
extraction network for X error correction is the same, except with each cnot replaced
by cz.

94

Appendix D

ARQ Code Generator for [[7,1,3]]

Quantum Code

In this Appendix we present our code which generates ARQ code for an arbitrarily
concatenated error-correction circuit for the Steane [[7,1,3]] code. The inputs to our
code generator are g, the type of gate to be error-corrected; L, the level of code
concatenation; s, the number of syndromes to collect if the first is non-zero; §', the
number of syndromes that must agree for error-correction; and ¢, the number of
repetitions of gate ¢g. In our simulations, we only used the case L = 1, s = 3, and
s’ = 2, though our code generator allows for more generality.

The main program appears at the end of the code. It takes as inputs the above
mentioned quantities and then outputs the appropriate ARQ code via print state-
ments. The function recover, which writes code for the error-correction circuit EC,
is called first, followed by the transversal version of the gate being error-corrected.
recover calls the functions G, V', and S to print out the error-correction circuit.

At the end of our code (but before the main program) we provide a set of functions

that measure the stabilizer generators of the data to find errors on the data.

95

#!1/wsr/bin/env python

nft.py
Andrew Morten <amorten@mit. edu>. Andrew Cross <awcross@mat. edu>
#

Generates ARQ code for the [[7.1.3]] nonlocal fault—tolerance model
given wn quant—ph /0410047 by Swvore, Terhal. DiVincenzo .

import sys
from math import *

import time

wersion information
global version.info

version.info = "nft.py version 1.1 amorten@mit.edu, last modified 26 Aug 2005”

global L # level of code concatenation, i.e. an M.L simulating circuit is created
global s # number of additional syndromes to collect 1f the first syndrome 1s nonzero

global s_prime # number of syndromes that must agree for error correction

counters for creating unique labels for jump targets
global counterPreparc

counterPrepare = 0

global countcrRecover

counterRecover = 0

global counterSyndrome

counterSyndrome = 0

global counterMeasurc

counterMeasure = 0

global lists of qubit and chit wvariables
global data,data_c,data_t.ancilla,verifyl,verify2,verify3,verifyd, vbits.\
xsyndrome0O , xsyndromel , xsyndrome2,\

zsyndromeO,zsyndromel ,zsyndrome2, meas, mecas_H

qubit and cbit declarations. setup instructions
#

Returns lists of physical qubrt and cbit names:
data — 1 logical qubzt @ L

datal — 1 logical qubit @ L

data2 — 1 logical qubit @ L

ancille — list of logecal qubits @ [L,L—1,...,1]
verifyl — 1 logical qubet @ L—~1

verify2 — 1 logical qubit @ L—1

verify3 — 1 logical qubit @ L—1

vbits — a list of werification chits

xsyndrome0 — list of s syndrome cbits

zsyndromel — list of s syndrome cbhits

zsyndrome2 — list of s syndrome cbhaits

zsyndromeO — list of s syndrome chits

zsyndromel — list of s syndrome chits

zsyndrome2 — list of s syndrome cbits

def declare_all_but_data():

ancilla = []
ancilla.temp = [}
verifyl = []
verify2 = []
verifyd = {]
verifyd = []
verifyl_-temp = [}

96

i

verify2_temp

[
verify3_.temp = |
[

verifyd_temp =
vbits = []

xsyndrome0 = []
xsyndromel = []
xsyndrome2 = {]
zsyndrome0 = []

zsyndromel = []

zsyndrome2 = []

meas-H = []

mecas = |[]

mcas.temp = []

print "# N
print "# declare (L=%d,s=%d)" %(L,s)

print "#”

print "# measurcment bits(44+%dx7 cbits)"%L
for i in rangec(4):
print “\tbit\tmeas_ B _%d”%(i)
mcas_-H.append (" meas_H %d" %(i))
for 1 in range(L):
for i in range(7):
print "\tbit\tmeas.%d -%d" %(1+1,i)
meas.temp .append(” meas_%d-%d” %(1+1,i))
meas . append (meas-temp [:])
print "# temporary cbits used in measurement (3 cbits)"
for i in rangc(4): print "\tbit\ttemp%d"%i
print "# temporary cbits used in syndrome extraction (7 cbits)"
for i in range(7): print "\tbit\tse%d"%i
print "# qubits and cbits that must be passed into G. V. S. ctc”
print "# verify chit”
print "\tbit\tv"
vbits.append("v")
print “# syndome bits. 2x3x%d of them"%s
for i in range(s):
print "\tbit\txs0%d"%i
print "\tbit\txs1%d" "%i
print "\tbit\txs2%d"%i
xsyndromecO . append (" xs0%d %1)
xsyndromel . append (" xs1%d”%i)
xsyndrome2 . append (" x52%d" %1)
print "\tbit\tzs0%d"%i
print "\tbit\tzs1%d"%i
print "\tbit\tzs2%d"%i
zsyndromeO.append (" zs0%d"%i)
zsyndromel .append (" zs1%d"%i)
zsyndrome?2.append (" zs2%d"%i)
print "#ancilla qubits (1 logical qubit @ L=%d)”"%L
for 1 in range(L):
for i in range(7*xx(1+1)):
print “\tqubit\tqa%d %d”"%(1+1,i)
ancilla_temp .append (” qa%d _%d" %(1+1,i))
ancilla.append(ancilla_temp {:])
print "# verification qubits (3 logical qubits @ L—-1=%d)"%(L—1)
for 1 in range(L):
for i in range(int (7**1)):
print "\tqubit\tv0.%d -%d" %(1+1.i)
print "\tqubit\tv1_%d.%d"%(1+1,i)
print “\tqubit\tv2_%d_%d"%(1+1,i)
print “\tqubit\tv3. %d_%d"%(1+1,i)

97

verifyl_temp.append (" v0_%d_%d” %(1 +1.i))
verify2.temp.append (" v1.-%d %d” %(1+1,1))
verify3_temp .append (" v2_%d _%d" %(1+1,1))
verifyd_temp .append (" v3_%d %d” %(1+1,i))
verifyl.append(verifyl_temp|[:])
verify2 .append(verify2_temp [:])
verify3 .append(verify3_temp [:])
verify4 .append(verifyd_temp [:])
print "# other initialization code”
full.add.init ()
find_best-syndrome.init ()
print "# other”
print "\tnoise\tdepolarize”

print "\ tbit\tmagic”
return ancilla,verifyl . .verify2,verify3,verify4,vbits,xsyndrome0,xsyndromel ,xsyndrome2,
zsyndromeO, zsyndromel,zsyndrome2, meas, mcas_H
def declare_data-qubit(label):
data = []
print "# data qubits and ancilla qubits (2 logical qubits @ L=%d)”%L
for i in range(7*=*L):
print "\tqubit\tqd -%s_-%d”%(label,i)

data.append (" qd-%s-%d” %(label .i))

return data

Y I ’ 4 7 4 Y y 2
i 7 7 7

Transversal gates

#
def h(q):
for x in q: print "\th\t%s"%x
def X(q):
#1f len(q)<7:
print "\th\t%s"%q
#else :
for x in q: print "\tx\t%s"%x
def Z(q):
#1f len(q)<7:
print "\ th\t%s"%q
#else :

for x in q: print "\tz\t%s"%x
def cnot(qc,qt):

for i in rangc{len{qc)):

print "\tcnot\t%s.%s"%(qc[i].qt[i])

def cz(qc,qt):

98

for i in rangec(len(qe)):

print "\tcz\t%s.%s" %(qc[i].qt[i])
def wait (q):
for x in q: print "\twl\t%s" %x
def identity (q):
for x in q: print "\tid\ t%s " %x
def measure(q,b):

if len(q) == 1:
print "\tmeasurc\t%s.%s"%(b.q[0])
else:
global counterMeasure
mynumberl = counterMcasure
counterMeasure = counterMeasure + 1
level=int (log(len(q))/log (7))
for i in range (7):
measure(q[i}.meas[level =1][i])
H = ([1.0.0.0.0.1,1},[0.1.0.0,1.0.1},(0.0,1.0.1,1,0],{0,0,0,1,1.1,1]]
for i in range (4):
print “\tsect\t%s.0" %(meas.H[i])
for j in range(7):
TR
print "\txor\t%s.%s,%s" %(mecas_.H[i],meas . H[i].meas[level

=10D
print "\tset\t%s.,0"%(b)

#First check 1f Hu=0 (tmplies outcome=0)
print "\tset\ttempO,1”
for i in range(4):
print "\txor\ttempl,%s.1"%(meas_H[i])
print “\tand\ttempO,tecmpO.templ”
print "\ tif\ttempO"
print "\tjump\tmeasurc.end_-%d" %(mynumberl)

#I1f mnot. then check 1f parity of Hv s zero (1mplies outcome=1)
print “\tset\ttempO.1"
for i in range(4):
print "\txor\ttempO,temp0.%s" %(mcas_H[i])
print "\ tif\ttempQO"

print “\tjump\tmcasurc_outcomel_%d"” %(mynumberl)

#If not., check of Hv s [1110] (implies outcome=1, otherwise 0)
print "\tset\ttcmpO,1"
for i in range(3):
print "\tand\ttempO,temp0.%s" %(meas_ H[i])
print "\txor\ttempl,%s,1"%(meas.H[3])
print "\tand\ttempO,tempO,templ”
print "\tif\ttempO”
print "\tjump\tmeasure_outcomel_%d” %(mynumberl)

print "\tjump\tmcasure_end.%d” %(mynumberl)
print "\tlabel\tmeasurc_outcomel _%d”%(mynumberl)

print "\tset\t%s.1" %(b)
print "\tlabel\tmcasurec_end_%d"” %(mynumberl)

99

’ 4 4 e Lt a4

i
P T 7771 7 77 77 7 77 7 777 AT

Logicaol qubit manipulations

#

Split a logical qubit q (a list of strings) wnto a list of lists of strings.
The wnner lists are (n—1)-blocks of the n—block gq.
def split_qubit(q):

out = []
if len(q) == 1: return g # just return single qubits
L = int(log(len(q))/log(7))
for i in range(7):
out .append(q{int (i*7**x(L—-1)):int ((i+1)*7*x*x(L~1))])

return out

FAAHH AW HHHHA A7 A A A A A A AANHHH A HAH i

Recovery network elements

#

Preparation (sans verification)

q is a list of 7 logical qubits (lists)

or a list of 1 physical qubit (string)

noiseType s one of "none”. "NFT”, 7 full”

none —> no norse at all

NFT ~—> subordinate preparation introduces errors like a single qubit gate
rule

full ~> all gate and wait failures

def G(q.noiseType):

print "#G ACTING ON" .q

print "# "

print "# G preparation nctwork, noiseType = %s"%noiseType

print "# acting on a %d—block of M%d"%(int (log(len(q))/log(7)),L)

if len(q) == 1:
if noiseType !'= "full”: print "\tnoise\toff”

print "\tmeasure\ttemp0,%s"%q [0}
print "\ tif\ttemp0”
print "\tx\t%s"%q{0]
if noiseType == "NFT":
print "\tidentity\t%s" " %q[0]
if noiseType != "full”: print "\tnoise\ton”
else:
timestep 0
for i in range(7):
if noiseType != "full”:
G(split-qubit(q[i]),"none”)

else:
G(split_qubit(q{i])." full™)

if noiseType == "NFT”: identity{(qli}l)
timestep 1
if noiscType == "none”: print "\tnoisc\toff”
if noiseType != "none”: recover(q[0],noiseType)
h(q[6])
if noiseType != "none”: recover(q|l],noiseType)
h{q[5])
if noiseType != "none”: recover(q{2],noiseType)
h(ql4])
if noiseType != "none”:

recover (q[3], noiscType)

100

replacement

wait (q[3])

if noiscType !'= "none™:
recover(q{4].noiseType)
wait (q[2])

if noiscType != "none”:
recover (q[5].noiseTypc)
wait (q[1])

if noiseType != "none”:
recover(q[6].noiscType)
wait (q[0])

timestep 2—4
interact = [[3,2,1],[2,0.3].[1,3,0]]
for x in interact:
if noiseTypc != "none”: recover(q[0], noiseType)
if noiseType != "none”: rccover(q[x[0]].noiscType)
cnot (q(4],alx[0]])
if noiseTypc != "none”: rccover(q|[l].noiseType)
if noiseType != "none”: recover(q[x[1]], noiscType)
cnot (q[5].q[x[1]])
if noiseType != "nonec”: recover(q[2].noiseType)
if noiseType != “none”: rccover(q{x[2]], noiseType)
cnot (q[6}.q[x[2]])
z = map(lambda y:y not in x+[4.5,6].range (7))
for y in range(7):
if z[y]:
if noiseType != “"none”:
recover (q|y],noiseType)
wait (q[y])

if noiseType == "none”: "\tnoise\ton”

Verification

q 15 a list of 7 logical qubits (lists)

w0, vl. and v2 are logical qubits (lists)

b 1s o cbit name

mnoiseType is one of "none”, "NFT", " full”

none —> no notse at all

NFT —> subordinate prepoeration wntroduces errvors like o swingle qubit gate replacement
rule

full —> all gate and wart farlures

def V(q.v0.v1l,v2.v3,b.noiseType):

print “#V ACTING ON",q.v0,vl,v2

print "# v

print "# V verification network, noiseType = %s"%noiseType

print "# acting on a %d-block of M%d”%(int (log(len(q))/log(7)).L)

these two cycles are not counted

if noiseType !'= "full”:
G(split-qubit (v0),"none”)
G(split.qubit(vl), " none")
G(split_qubit(v2)."none”)
G(split_qubit(v3), " none”)

else :
G(split_qubit(v0),” full™)
G(split_qubit(vl)."full™)
G(split_.qubit (v2).," full”
G(split_qubit(v3)," full”)
if noiscType == "NFT”:

if noiseType != "none”: rccover(v0,noiseType)
identity (vO0)

if noiseType != "none”: recover(vl,noiseType)

101

identity (v1)

if noiscType != "none”:

recover {v2,noiscType)
identity {(v2)
if noiseTypec != "none”: recover(v3,noiseType)

identity (v3)

if noiseType == "none”: print "\tnoise\toff”
if noiseType != "none”: recover(v0,noisecTypc)
h(v0)
if noiseType != "none”: recover(vl,noiseTypc)
h(vl)
if noiseTypec != "none”: recover(v2,noiseType)
h(v2)
if noiseTypec !'= "none”: recover(v3.noiseTypc)
h(v3)
timestep 0—3
interact = [[0,1,2,3],(5,4,7,6],{7.6,4,5].{6,7.5.4]]
for x in interact:
if x[0] == 7:
if noiseType != "none”:
recover (v0,noiseType)
wait (v0)
else:
if noiseType != "none”: rccover(v0,noiseType)
if noiseType != "none”: recover(q(x (0]}, noiseTypc)
cz(v0,q[x[0]])
if x[1] == 7:
if noiseType != "none”:
recover {vl,noiseType)
wait (v1)
else:
if noiseType != "none”: rccover(vl,noiseType)
if noiseType != "none”: recover(q[x[1]], noiseType)
cz(vi.q[x{1]}])
if x{2] == 7:
if noiseType != “none”:
recover (v2,noiseType)
wait (v2)
else:
if noiseType != "nonc”: recover(v2.noiseType)
if noiseType != "none”: recover(q[x[2]], noiseType)
cz(v2.q[x[2]])
if noiscType != "none”: recover(v3,noiseType)
if noiscType != "none”: rccover(q{x[3]].noiseType)
cz(v3.q[x{3]])
z = map(lambda y:y not in x,range (7))

for y in range(7):

if z[y}:
if noiseType != "nonec”:

recover(q(y], noiseType)

wait (qly])
if noiseType !'= "none”: recover(v0,noiseTypc)
h(v0)
if noiseTypc !'= "nonc”: recover(vl,noiseType)
h(vl)
if noiseType != "none”: recover(v2,noiseType)
h(v2)
if noiscType != "none”: recover(v2.noiseType)
h(v3)

for i in range(7):
if noiseType != "none”:

recover(q{i], noiseTypc)

102

wait(ali])
timestep 5
mcasure{split.qubit (v0),"temp0”): measure(split_qubit(vl), "templ”); mcasure(split_qubit (v2
). temp2”): measure(split_qubit(v3)."temp3”)
for i in range(7):
if noiseType !'= "nonec™:
rccover(q[i].noisecType)
wait (q[i])
classical decode (parity)
print "\tset\t%s, temp0"%b
print "\tor\t%s.%s .templ”%(b,b)
print "\tor\t%s.%s .temp2”"%(b.b)
print "\tor\t%s,%s.temp3"%(b,b)

Syndrome euxtraction

what = "x" or "z°7

q,s are lists of 7 logrcal qubits (lists)

b is « list of 3 chits for storing the syndrome

def S(what,q.s.b,noiseType):

print "#S ACTING ON” q.s

print “# ”

print "# S syndrome extraction network”

print “# acting on a %d—block of M%d”%(int (log(len(q))/log(7)),L)
timestep 0

if what == "x":
for i in range(7):
if noiseType != "none”: recover(q{i].noiseType)
if noiseType != "none”: recover(s[i].noiseType)
cz(s[i],q[i]) #order swapped from paper
else:
for i in range(7):
if noiseType != "nonc”: recover(q{i].noiseTypc)
if noiseTypc != "none”: rccover(s[i].noiseType)
cnot(s[i],qli]) #order swapped from paper
timestep 1

for i in range(7):

if noiseType != “none”: recover(s[i],noiseType)
h(s[i])
if noiseTypc != "none”:

recover(q[i], noiseType)
wait (q[i])
timestep 2
for i in range(7):
measure(split_qubit (s[i]) .”se%d”%i)
if noiseType != "none”:
recover (q[i].noiseType)
wait(q[i])
classical decode
print "\tset\t%s,hse0"%b[0]
print "\txor\t%s.%s,se2”%(b[0].b[0])
print "\txor\t%s,%s.sed”"%(b[0],b[0])
print “\txor\t%s,%s,se6 " %(b[0].b[0])
print "\tset\t%s.scl"%b|1]
print “\txor\t%s.%s,se2"%(b[1].b[1])
print "\txor\t%s.%s.se5 " %(b[1].b{1])
print “\txor\t%s.%s,se6"%(b{1].b[1])
print "\tset\t%s.se3"%b[2]
print “\txor\t%s . %s.sed4"%(b[2].b[2])
print "\txor\t%s . %s.se5 " %(b[2].b[2])
print "\txor\t%s.%s.se6"%(b[2].b[2])

103

#print "\ tif\t%s"%(b[2])
#print " halt”

7 e LU 9 y) L

7 7 T 7 7 s T 7

classical control support functions

RS

converts a number n to binary. with the final result
having k binary digits.
Returns o list | of binary digits with the most significant
bt in the lower winder location.
def toBinary (n,k=0):
m is number to convert

#m is number of binary digits (>= maz(digits(n)))

if n ==
I = {0}
else:
m = int(floor(log(n)/log(2)))
1 = (m+1)*[0}
I1[m] =1
n —= 2¥*xm
while n > 0:
m = int(floor (log(n)/log(2)))
1 [m] =1
n —= 2**m
curlen = len(1)

if k !'= 0: # only ertend if m != 0 (i.e. default=don’t)
if k—curlen < 0: raise “badNumbDigits”, {k,n,curlen]
l.cxtend ([0]*x(k—curlen)) # add the extra zeros
l.reverse() # msb in lowest index

return 1|
def counter_top(t,counter_label):
bt = toBinary (t)

print "#
print "# counter-head.-%s: do %d times”%(counter_label, t)

for i in range(len(bt)):
print "\tbit\tcount_%s_%d"%(counter.label,i)
print "\tsct\tcount_%s.%d,0"%(counter-label, i)

print ”"\tbit\tcountercondition_%s"%counter-label

print "\tbit\tcountertemp_%s"%counter_label

print "\tlabel\tcountertop.-%s”%counter.label

print "\tset\tcountercondition_%s,1"%counter_label

for x in range(len(bt)):

if bt(x] == 1:

print "\tand\tcountercondition_-%s,countercondition_-%s, count_-%s.%d” %(

counter_label,counter.label ,counter_label,x)

else:

print "\txor\tcountertemp_-%s,count-%s_%d,1”%(counter_.label,counter_label x

)

print "\tand\tcountercondition_%s,countercondition.%s,countertemp -%s” %(

counter_label.,counter_label ,counter_.label)
print "\ tif\tcountercondition_%s"%counter.label

print "\tjump\tcounterbottom_%s"%counter_label

call prior to wusing the full.add function
def full_add-init ():

print "# "

104

print “# full_add_init”

print "\tbit\tfull_add_xorab™

print "\tbit\tfull_add_andab™

print “\tbit\tfull_.add_andcxorab™
print "\tsect\tfull.add_xorab.0"
print "\tsct\tfull_.add_andab , 0"
print "\tset\tfull_add_-andcxorab .0"

compute a+b+c. where ¢ is the carry

place

the output in s and the output corry in cl

def full_add(a.b,c.s.cl):

print "\txor\tfull_add_xorab.%s.%s"%(a.b)
print "\tand\tfull_add.andab.%s,%s"%(a.b)
print "\tand\tfull_add_-andcxorab .full_add_xorab.%s"%c
print "\txor\t%s.%s, full.add_xorab”"%(s.c)
print “\tor\t%s, full_add_andab .full_add.andcxorab”%cl

def countcr_bottom (t,counter-label):

bt = toBinary (t)

print T#
print "# countcr_bottom %s"%counter_label
full_add ("1” ." count-%s-%d"%(counter_label,len(bt)—1),"0",\

“count-%s._%d" %(counter-label.len(bt)—1),” countertemp_-%s " %counter_label)
for x in range(len(bt)—2,-1.—-1):

full_.add ("0” ."count_%s_%d"%(counter.label ,x), " countertemp %s " %countcr_label,\
“count %s_%d” %(counter_label .x),"countertemp _%s" "%counter_label)

print "\tjump\tcountertop_%s " %countecr_label

print "\tlabel\tcounterbottom _%s %countcr_-label

def find_-best.syndrome.init () :

print "# find_best_syndrome_init”
for i in range(s):
print "\tbit\tnot_-guessed_-%d" %(i)
for i in range(3):
print "\tbit\tguess_.s%d " %(i)
for i in rangec (l.s.prime+1):
print "\tbit\tnumber.of_matches %d" %(i)
print "\tbit\tmatch”
print “\tbit\tmatch_temp”

def find_-best-syndrome(s0.s1,s2,label):

print "#FIND BEST SYNDROME”
print "#

for i in range(s):
print "\tsct\tnot_gucsscd_%d.1”%(i)
for i in range(s—s.prime+1):
print "#GUESSING SYNDROME %d™ %(i)
print “#
print "\tlabel\tguess_-%d_%s”"%(i,label)
print "\tset\tguess_s0.%s " %(s0[i])
print "\tsct\tgucss_.sl . %s " %(s1[i])
print "\tsct\tguess.s2.%s"%(s2[i}])
print "\tset\tnot_guessed_-%d.0" %(i)

print "\tset\tnumber.of_matches_.1.1"

for i in range(2.s_primc+1):

105

print "\tsct\tnumber_of_matches_%d.0"%(i)

print “\tjump\tcompare_with_all_syndromes_%s"%(label)

print "#COMPARE GUESS WITH ALL UNGUESSED SYNDROMES”
print "# "
print ”"\tlabel\tcompare_-with_all_.syndromes_%s"%(label)

for i in range(1l.s):
print "\tif\tnot_gucssed_-%d" %(i)
print "\tjump\tcompare_-to.%d-%s"%(i,label)
print "\tlabcl\tcompared-to-%d -%s”"%(i,label)
for i in rangec(1l.s—s_prime+1):
print "\tif\tnot_guesscd_%d"%(i)
print "\tjump\tguess.%d %s” %(i,label)
if s!l=1:

print "\tjump\terror_corrected . %s”%(label)

for i in range(1l,s):
print "#COMPARE GUESS TO SYNDROME %d” %(i)
print "\tlabel\tcompare_to.%d _%s"%(i,label)
print "\tset\tmatch.1”
print "\txor\tmatch.temp, guess_s0,%s"%(s0{i])
print "\txor\tmatch_temp,match_temp,1”
print “\tand\tmatch,match,match_temp"”
print "\txor\tmatch_temp,guess.s1,%s”%(s1[i])
print "\txor\tmatch_.temp,match_temp,1”
print "\tand\tmatch,match,match_temp”
print "\txor\tmatch_temp,guess.s2,%s"%(s2[i])
print "\txor\tmatch_temp, match.temp.,1”
print "\tand\tmatch,match, match_temp”
print "\txor\tmatch_.temp,match.1"
print "\tif\tmatch_temp"”
print "\tjump\tcompared_to_-%d_%s" %(i,label)
print "\tset\tnot_guessed _%d,0” %(i)
for j in range(s_prime,0,~1):
print "\tand\tmatch_temp,number_of-matches_-%d,1"%(j~1)
print "\tsct\tnumber_of_-matches_%d, match_temp”%(j)
print "\tif\tnumbecr_of_-matches_%d”%(s_-prime)
print "\tjump\tfound_best_syndrome_-%s”"%(label)
print "\tjump\tcompared.to_%d_-%s" %(i,label)

Recovery operation (error correction)

q 1s a list of 7 logical qubits (lists)

mnmoiseType is one of "none”, "NFT”, " full”

NFT —> subordinate preparation introduces errors like a single qubit gate replacement
rule

full => all gate and wart failures

def recover(q,noiseType):

#only recover q 1f q refers to more than one qubat

if len(q) > 1:

global counterRecover
mynumberl = counterRecover

counterRecover = counterRecover + 1

global ancilla.verifyl .verify2,verify3,verifyd4, vbits

106

global xsyndromecO,xsyndromel .xsyndrome2

global zsyndromeO.zsyndromel, zsyndrome2

take slices of the large registers to give us ancilla

that are the right size

myancilla = ancillafint(log(len(q))/log(7)—1)]{0:1len(q)]
myverifyl = verifyl[int(log(len(q))/log(7)—1)][0:1cn(q) /7]
myverify2 = verify2[int(log(len(q))/log(7)—1)][0:1len(q) /7]
myverify3 = verify3[int(log(len(q))/log(7)~1)][0:1en(q)/7)
myverifyd = verifyd[int(log(len(q))/log(7)—1)][0:1len(q)/7}

print "#RECOVER ACTING ON" .q.myancilla, myverifyl ,myverify2 ,myverify3
print "# "

q-split = split-qubit(q)

93 LA AL »

X error correction

global counterSyndrome
mynumber2 = counterSyndrome

counterSyndrome = counterSyndrome + 1

guather one syndrome
prepare-until_pass(myancilla, myverifyl ,myverify2 ,myverify3 .myverify4 .\
vbits ,noiseType)
S("z",split.qubit(q),split-qubit (myancilla),\
[zsyndromeO [0].zsyndromel [0], zsyndrome2[0]], noiseType)

print "\txor\ttemp0.1.% s " %zsyndromeO[0]
print "\tand\ttempl.tempO.1"

print "\txor\ttemp0.1.%s"%zsyndromel [0]
print "\tand\ttempl.templ.tempO”

print "\txor\ttemp0,1,%s " %zsyndrome2 (0]
print "\tand\ttempl, K templ.tempO”

print "\tif\ttempl”

print “\tjump\tno.cc.necdecd.%d”%mynumbecr2

for i in range(s-—1):
preparc.until_.pass(myancilla, myverifyl .myverify2 .myverifyd . myverifyd . vbits
,noiseType)
if noiseType != "nonec’:
for j in range(i):
wait (myancilla)
wait (myverifyl)
wait (myverify2)
wait (myverify3)
wait (myverifyd)
S("z",split_qubit(q),split.qubit(myancilla),\
[zsyndromeO[i+1],zsyndromel|i+1],zsyndrome2[i+1]},noiseType)

find_best_syndrome(zsyndrome0,zsyndromel,zsyndrome2,mynumber2)

print "\tlabel\tfound.best_syndrome_-%d” %(mynumber2)

#need to error correct

print "#ERROR CORRECTING Z"
print "#

107

print "\ tif\tguess.s2"

print "\tjump\tcorrect_-1xx_%d”%(mynumber2)
print "\tif\tguess_sl1"”

print "\tjump\tcorrect_01x_%d” %(mynumber2)
print "\tif\tguess_s0O"

print ”\tjump\tcorrect.001_%d” %(mynumbecr2)
#syndrome 000

print ”"\tjump\terror_corrected_%d” %(mynumber2)

print "\tlabel\tcorrect_1xx.%d" %(mynumber2)
print "\ tif\tguess.s1”
print "\tjump\tcorrect.11x.%d" %(mynumber2)
print "\ tif\tguess_s0”
print "\tjump\tcorrect-101_.%d" %(mynumber2)
#syndrome 100
Z(qg-split [3})
x = 3
if noiseType != "none”:
for i in range(0,x):
wait (q-split[i])
for i in range(x+1.7):
wait (q-split[i])
print "\tjump\terror_corrccted_%d"%(mynumber2)

print "\tlabel\tcorrect.01x_-%d” %(mynumber2)
print "\ tif\tguess_s0”
print "\tjump\tcorrect_011_%d” %{mynumber2)
#syndrome 010
Z(q-split {1])
x =1
if noiseType != "nonc”:
for i in range(0,x):
wait (q-split[i])
for i in range(x+1,7):
wait(q-split[i])
print “\tjump\terror.corrected _-%d” %(mynumber2)

print "\tlabel\tcorrect.001_%d" %(mynumber2)
#syndrome 001
Z(q-split [0])
x = 0
if noiseType != "none”:
for i in range(0,x):
wait (q-split[i])
for i in range(x+1,7):
wait (g-split|i])
print "\tjump\terror_corrected_%d” %(mynumber2)

print "\tlabel\tcorrect_.11x.%d" %(mynumber2)
print "\tif\tguess_s0”
print “\tjump\tcorrect_-111_%d" %(mynumber2)
#syndrome 110
Z(a-split [5])
x =5
if noiseType != "none”:
for i in range (0.x):
wait(q-split[i])
for i in range(x+1.,7):
wait (q-split|i])
print "\tjump\terror.correccted_-%d” %(mynumber2)

108

print "\tlabel\tcorrect_-101.%d" %(mynumber2)
#syndrome 101
Z(q_split (4])
x =4
if noiscType != "none™:
for i in range(0,x):
wait (q-split [i])
for i in range(x+1,7):
wait (q-split[i])
print "\tjump\terror_corrected.%d” %(mynumber2)

print "\tlabel\tcorrect_011_%d” %(mynumber2)
#syndrome 011
Z(q-split[2])
x = 2
if noiscTypc != "none”:
for i in range(0,x):
wait{(q-split[i])
for i in range(x+1,7):
wait (q-split[i])
print "\tjump\terror_corrected_%d"” %(mynumber2)

print "\tlabel\tcorrect.111_%d"” %(mynumber2)
#syndrome 111
Z(q-split [6])
x = 6
if noiseType != "none”:
for i in range(0,x):
wait (q-split[i])
for i in range(x+1.7):
wait (q-split[i])
print "\tjump\tcrror.corrected _%d”%(mynumbecr2)

print "\tlabel\tno.cc_necded_-%d”%mynumber2
if noiseType != "none”:
for i in range(s—1):
wait (q)

print "\tlabel\terror_.corrected . %d” %(mynumber2)

4 i i s 4 7
% 7 7 7

X error correction

mynumber2 = counterSyndrome

counterSyndrome = counterSyndrome + 1

prepare-until_pass(myancilla, myverifyl ,myverify2, myverify3 .myverify4 .\
vbits ,noiseType)
S("x” .split_-qubit(q),split_qubit(myancilla),\
[xsyndromeO [0}, xsyndromel {0}, xsyndrome2 [0}] . noiseType)
the date warts during 6 timesteps in X. Z

1f the syndome 18 nonzero. gather s total syndromes
print "\txor\ttemp0,1,%s"%xsyndrome0 [0]
print "\tand\ttcmpl,h tempO,1”

109

print “\txor\ttemp0.,1.%s”%xsyndromel [0]
print "\tand\ttempl.templ,tempO”

print "\txor\ttempO.1,%s”%xsyndrome2 [0]
print “\tand\ttempl.templ,tempO”

print "\ tif\ttempl”

print "\tjump\tno.ec_needcd_-%d”%mynumber2

for i in range(s—1):

preparc_until.pass(myancilla, myverifyl ,myverify2 ,myverify3 ,myverify4, vbits

.noiseType)
if noiseType != "none”:
for j in range(i):

wait (myancilla)
wait (myverifyl)
wait (myverify2)
wait (myverify3)
wait (myverify4)

S("x" .split.qubit(q),split_qubit{(myancilla).\

[xsyndromeO [i+1},xsyndromel {i+1},xsyndrome2{i+1]].noiseType)

find_best_syndrome(xsyndrome0 , xsyndromel ,xsyndrome2 ,mynumber2)

print "\tlabel\tfound_best_syndrome .%s” %(mynumber2)

#need to error correct

print "#ERROR CORRECTING X"

print # »

print "\tif\tguess_.s2"”

print “\tjump\tcorrect_1xx_-%d” %(mynumber2)
print "\tif\tguess.s1”

print "\tjump\tcorrect-01x.%d” %(mynumber2)
print "\tif\tguess_s0”

print “\tjump\tcorrect.001_%d"” %(mynumbcr2)
#syndrome 000

print “\tjump\terror_corrected_%d” %(mynumber2)

print "\tlabel\tcorrect-1xx.%d” %{(mynumber2)
print "\tif\tguess_.s1”
print “\tjump\tcorrect-11x_-%d” %(mynumber2)
print "\tif\tguess.s0"”
print “"\tjump\tcorrect-101_-%d” %(mynumber2)
#syndrome 100
X(q-split{3])
x = 3
if noiseType != "none”:
for i in range(0,x):
wait (q-split[i])
for i in range(x+1,7):
wait (q-split[i])
print ”"\tjump\terror_corrected-%d” %(mynumber2)

print "\tlabel\tcorrect-01x_%d" %(mynumber2)
print "\tif\tguess_s0O”

print "\tjump\tcorrect.011.%d"” %(mynumber2)
#syndrome 010

X(qg-split[1])

x =1

if noiseType != "none”:

for i in range (0,x):

110

wait(q-split[i])
for i in range(x+1.7):
wait (q-split[i])
print "\tjump\terror_corrccted _%d” %(mynumber2)

print "\tlabel\tcorrect.001_%d” %(mynumber2)
#syndrome 001
X(q-split [0])
x =0
if noiscType != "none™:
for i in range(0.x):
wait (q-split{i])
for i in range(x+1.,7):
wait(q-split[i])
print "\tjump\terror_corrected . %d” %(mynumber2)

print "\tlabel\tcorrect.11x.%d" %(mynumber2)
print "\tif\tguess_s0"
print “\tjump\tcorrect-111_%d" %(mynumber2)
#syndrome 110
X(q-split [5])
x =5
if noiscType != "none”:
for i in range(0,x):
wait (q-split[i])
for i in range(x+1,7):
wait (qg-split[i])
print “"\tjump\terror_corrected _-%d” %(mynumber2)

print "\tlabel\tcorrect.101_-%d”%(mynumber2)
#syndrome 101
X(q-split [4])
x = 4
if noiseType != “nonc”:
for i in range (0,x):
wait (q-split [i])
for i in range(x+1,7):
wait (qg-split{i])
print “\tjump\terror_corrected_%d"%(mynumber2)

print "\tlabecl\tcorrect-011_%d" %(mynumber2)
#syndrome 011
X(q-split[2])
x = 2
if noiseType != "none”:
for i in range(0,x):
wait (q-split[i])
for i in range(x+1,7):
wait (qg-split[i])
print "\tjump\terror.corrected -%d” %(mynumber2)

print "\tlabel\tcorrect-111.%d" %(mynumber2)
#syndrome 111
X(q-split (6])
x = 6
if noiseType != "none":
for i in range (0.x):
wait (q-split[i])
for i in range(x+1.7):
wait (g-split[i])
print "\tjump\terror_corrected _%d” %(mynumber2)

111

print "\tlabel\tno.cc.nceded_%d”%mynumber2

)

if noiseType != "nonc”:
for i in range(s-—1):

wait (q)

print “"\tlabel\terror_corrected.%d” %(mynumber2)

def prepare_.until_pass(q,verifyl,verify2,verify3, 6 verifyd, 6 vbits,noiseType):

global counterPrepare
mynumber = counterPrcpare
counterPreparec = counterPrepare + 1

print “\tlabel\tprcpare_until_%d”"%mynumber

print "#PREPARE UNTIL PASS” .q,verifyl,verify2,verify3, verify4

G(split_qubit(q),noiseType)

V(split.qubit(q),verifyl verify2,verify3,verify4,\
vbits [0}, noiseType)

print "\ tif\t%s"%vbits [0]

print "\tjump\tprepare.until_%d”"%mynumber

i Y

HAHHHAAAAAAAFH G AHAHHH
#CODE FOR COMPARING STABILIZERS
#

def is_logical_.zero(q):
if len(q) == 1:

print "\tsubset\tmagic,1,q[0],2"
if len(q) == T7:

1112222 1221122 , Z1Z1Z1Z” %(q{0],q[1],q[2}.q[3].q[4],q[5].q[6])
print "\txor\tmagic,magic,1”
print "\ tif\tmagic”
print "\thalt”

def zero.has_no_x_crror(q):

if len(q) == 1:
print "\tsubset\tmagic,1,q[0],—-2”
print "\tif\tmagic”
print "\thalt”

if len(q) == 7:

1112227 1221122 ,-21Z1212Z" %{q [0} ,q[1],a{2],q(3].a{4],q[5],q[6}])
print "\tif\tmagic”
print "\thalt”

1122227 ,-12Z1122Z ,Z1Z1212Z”%(q (0] .a[1}.a[2].q9[3],q[4].q[5]).q[6])
print "\tif\tmagic”
print "\thalt”

1112227 ,-12Z1122,~Z1Z1Z1Z" %(q[0],a[1],q{2].q[3},q[4].q[5],a[6])
print "\tif\tmagic”

print "\thalt”

112

print "\tsubset\tmagic,7.%s.,%s.%s,%s,%s,%s,%s ,Z2222Z22 ,11IXXXX , IXXIIXX , XIXIXIX ,

print "\tsubset\tmagic,7,%s,%s,%s,%s,%s,%s,%s,—~222222Z,IIIXXXX , IXXIIXX , XIXIXIX,

print "\tsubset\tmagic,7.%s,%s,%s,%s,%s,%s,%s,—~2222227 , NIXXXX , IXXIIXX . XIXIXIX,

print "\tsubset\tmagic,7,%s,%s.%s,%s,%s,%s,%s,—22Z2222Z , 11IIXXXX , IXXIIXX , XIXIXIX,

print "\tsubsect\tmagic,7,%s ,%s,%s,%s.%s,%s %s.~22222Z2 , IIIXXXX ,IXXIIXX , XIXIXIX. -
1112227 ,12Z112Z . Z1Z1Z1Z"%(q[0].q[1].a[2].q(3].q[4].q[5],a[6])

print "\ tif\tmagic”

print "\thalt”

print “"\tsubset\tmagic.7.%s,%s,%s.%s,%s,%s . %s,—22222Z7 , INIXXXX . IXXIIXX , XIXIXIX, —
1112222 1221127 ,~ Z1Z1Z1Z° %(q[0] .qa[1].q[2] .a[3].qa[4].q[5].a[6])

print "\ tif\tmagic”

print “\thalt”

print "\tsubsct\tmagic.7,.%s,%s,%s.%s ,%s,%s.%s . —Z2Z222Z27 , IIIXXXX , IXXIIXX , XIXIXIX .-
1112222 ,- 1221122 . Z1Z1Z1Z" %(q [0],a[1].a[2].q[3].q[4].q[5].a[6])

print "\tif\tmagic”

print “\thalt”

print "\tsubsct\tmagic.7,%s.%s.%s,%s,%s.%s.,%s,—222Z2Z227 , IIIXXXX , IXXTIXX , XIXIXIX -
1112227 ,-12Z112Z .- Z1Z121Z" %(q [0] .q[1].q[2],q[3].q[4].q[5],q{6])

print "\tif\tmagic”

print “\thalt”

def zero-has_no.y_-error(q):

if

if

len(q) == 1:

print "\tsubset\tmagic,1.q[0],—2"
print "\ tif\tmagic"
print "\thalt”

len(q) == T7:

print “"\tsubsct\tmagic.7.%s ,%s,%s,%s,%s ,%s,%s,—-Z222222Z, [IIXXXX , IXXIIXX, - XIXIXIX ,
11122272 1221122 ,—-Z12121Z2"%(q (0], q{1).q{2].q[3].q[4],q([5],q([6])

print "\ tif\tmagic”

print "\thalt”

print "\tsubsct\tmagic,7,%s,%s.%s.%s,%s . %s.%s,~222ZZ227 , IIIXXXX,—-IXXIIXX XIXIXIX .
1112227 .-12Z1127 , 2Z1Z1Z1Z" %(q[0]).q[1]).q[2]).q[3].q[4].q[5].q[6])

print "\tif\tmagic”

print "\thalt”

print "\tsubsct\tmagic.7.%s,%s.%s,%s . %s,%s,%s,—222222Z . IINIXXXX,~-IXXIXX, - XIXIXIX,
11122722 ,-1Z2112Z . —Z1Z121Z2" %(q[0},q[1].qa[2].q[3]),a[4].q[5]).q[6])

print "\tif\tmagic”

print "\thalt”

print "\tsubsct\tmagic,7.%s,%s,%s.%s,%s,%s.%s,—222Z2222, - NIXXXX , IXXIIXX , XIXIXIX.—
1112222 , 1221122 ,Z1Z1Z1Z”%(q[0]),q[1],q[2].q[3].q9[4].q[5].q[6])

print "\tif\tmagic”

print "\thalt”

print “"\tsubsct\tmagic,7,%s.%s,%s.,%s,%s,%s,%s,—222Z22Z,—-IIIXXXX , IXXIIXX.-XIXIXIX .~
1112227 1221122 ,— Z1Z1Z12" %(q[0].q(1].a[2]).a[3].q(4].qa[5].q[6])

print "\ tif\tmagic”

print “"\thalt”

print "\tsubsct\tmagic,7,%s,%s,%s,%s,%s,%s,%s.~2222227, - IIIXXXX, - IXXIIXX , XIXIXIX,—
1112222 . — 1221122 | Z1Z1Z12”"%(q[0].q[1]),qa[2]}.qal3].q[4]).q[5].q[6])

print "\ tif\tmagic”

print "\thalt”

print "\tsubsct\tmagic,7.%s,%s,%s,%s,%s,%s.%s . —2222ZZZ,~1TIXXXX, - IXXIIXX, - XIXIXIX
,—1112222.—-1Z2Z1122 .- Z1Z1Z12" %(q (0) ,q[1).q[2].q[3],q[4]),q[5]) . q[6])

print "\ tif\tmagic”

print “\thalt”

def zecro_has.no_z_error(q):

if

len(q) == 7:

print “\tsubset\tmagic,7,%s,%s,%s,%s.%s,%s,%s 2222227 . IIIXXXX , IXXIIXX,-XIXIXIX .
1112227 1ZZ112Z . Z1Z121Z"%(q{0],q[1],q(2).q{3]).q[4].q[5}.q[6])

print "\ tif\tmagic”

print "\thalt”

print "\tsubsct\tmagic.7.%s,%s.%s.%s,%s,%s.%s 2222222, IIIXXXX,~IXXIIXX 6 XIXIXIX .
2222 1221122 . Z1Z1Z1Z"%(q{0] . q[1],q{2].q(3].a[4].a[5],q[6])

113

3) Yl P gt i 4
HAAAAAAHHAAAAA A HAAAAA HAAH 7 HHHH FHAAHH Ht

#MAIN PROGRAM

print "\tif\tmagic”

print "\thalt”

print “"\tsubsct\tmagic,7,%s.%s.%s,%s.%s.%s.%s ,222222Z,IIIXXXX,—-IXXIIXX,— XIXIXIX,
122272 ,1ZZ12Z , Z1Z1Z1Z"%(q[0].q[1].q[2].a[3]),qa(4],a[5].q[6])

print "\ tif\tmagic”

print "\thalt”

print "\tsubset\tmagic,7.%s.%s.%s ,%s.%s,%s,%s ,222Z222Z,-IIIXXXX , IXXIIXX , XIXIXIX .
12227 AZZ112% , Z1ZYZ1Z"%(q [0} . a[1].q[2].a[3].a[4],a(5].q[6])

print "\tif\tmagic”

print "\thalt”

print "\tsubset\tmagic,7.%s,%s.%s,%s.%s,%s,%s ,222222Z, - 1IIXXXX , IXXIIXX,-XIXIXIX,
1122227 ,12Z112%Z , Z1Z1Z1Z" %(q[0).q{1].qa(2].qa[3],q[4].q[5],q[6])

print "\tif\tmagic”

print "\thalt”

print "\tsubset\tmagic,7,%s,%s,%s,%s.%s,%s ,%s ,2222Z222,-1IIXXXX,-IXXIIXX . XIXIXIX ,
112227 1221127 , Z1Z1Z12"%(q [0],q[1).q[2],a(3).a(4]),q[5].q[6])

print "\tif\tmagic”

print "\thalt”

print "\tsubsct\tmagic,7.%s,%s.%s,%s.%s,%s . %s , 2222227, — IIIXXXX,~IXXIIXX, - XIXIXIX,
1112227 ,12Z112% . Z1Z1Z12"%(q[0].q[1],a[2],a[3].a[4].q[5].q[6])

print "\tif\tmagic”

print "\thalt”

3
&

if len(sys.argv) < 6:

print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print

"nft.py gate L s s_prime t [noisc]” .

" Generate an ARQ source file for an M.L simulated identity gate using’
"the Steane [[7,1.,3]] code. The preparation. verification, and recovery”
“mirrors the nonlocal model given in quant—ph/0410047 by Svore, Terhal,”
"and DiVincenzo."

"gate\t one of id, h, ¢x. hm (hadamards followed by a measure), or wl.”
"L\tcreates an M.L simulating circuit”

"s\tnumber of syndromes collected prior to recovery”
“s_prime\tnumber of syndromes that must agree”
"t\tnumber of identity gates to apply”

"

noise\tdefaults to preparation as a single qubit replacement rule”

nn

" Assume that enough ancilla are prepared in parallel before the beginning of”

“error correction. Assume these are preparcd during the previous error correction,

"so they do not contribute to the data wait time."”

sys.exit (1)

gate = sys.argv|[1]
L = int(sys.argv([2])
s = int(sys.argv [3])
s.prime = int(sys.argv[4])
t = int(sys.argv|[5])
if len(sys.argv) == 6:
nType = "NFTI”
else:
nType = sys.argv [6]
if L < 1:
print "Oops, L must be grecater than 0!"

114

sys.exit (1)

if t < 1:
print "Oops. t must be greater than 0O!"
sys.exit (1)

print “# %s"%vcrsion.info

print "# %s " %time.ctime ()

print "# L=%d . s=%d, s_prime=%d, t=%d"%(L.s,s_prime,t)
print "#"

if gate == "id":
data = decclarc.data-qubit("0")
ancilla, verifyl ,verify2,verify3 verifyd, vbits,xsyndromeO, xsyndromel ,xsyndrome2 , zsyndromeO,
zsyndromel .zsyndrome2.meas , meas.H = decclare_all_but_data ()
print "# preparc the data qubits”
G(split.qubit (data), " none”
print "# apply %d identity gatecs %t
counter-top{t,”identity_gate_count™)
print “# prepare up to %d ancilla states"%s
recover (data,nType)
identity (data)

»

counter-bottom (t.”"identity_gate.count™)
s = 1

s_prime = 1

recover (data, " none”

print "\tnoise\toff”
#is_logrcal_zero (data)

zero-has_no.x.error (data)

elif gate == "h":
data = declarc.data_.qubit(70")
ancilla,verifyl . verify2 . verify3, verify4.vbits xsyndromeO ,xsyndromel .xsyndrome?2,zsyndrome0,
zsyndromel ,zsyndrome2,meas, mecas.H = declare_all_but.data ()
print "# prepare the data qubits”
G(split_.qubit (data),”none”)
print "# apply %d hadamard gatcs %t
counter-top(t, " hadamard_gate_count™)
print "# prepare up to %d ancilla states”%s
rccover (data,nType)

h(data)
countcr_bottom (t,” hadamard_gate_count”)
s =1

s_prime = 1

recover (data,”’none”)
print "\tnoise\toff”
if (t%2==1):

h(data)

is-logical.zero (data)

elif gate == "c¢cx":
data.c = declare_data_qubit ("c")
data_t = declare_data_.qubit("t")

ancilla.verifyl verify2,verify3.verify4,vbits,xsyndromeO ,h xsyndromel ,xsyndrome2 ,zsyndromecO.
zsyndromel ,zsyndrome2.mecas . meas_.H = declare.all_.but_data ()

print “# prepare the data qubits”

G(split_.qubit(data.c),”none”)

G(split-qubit(data-t) . " none”)

print "# apply %d cx gates”%t

115

counter_-top(t,” " cx_.gatc_count”)
print “# preparc up to %d ancilla statcs"%s
rccover (data-c .nType)
recover(data_t ,nType)

cnot (data_c,data-t)
counter._bottom (t,"cx_gate_count”)
s =1

s.prime = 1

recover (data.c."none")

recover (data-t, none”)

print “\tnoise\toff”

cnot (data-c,data-t)
is.logical_zero(data_c)

is.logical-zcro(data_t)

elif gate == "hm”:

data = declare_data_-qubit(”0")

ancilla,verifyl.,verify2,verify3,verifyd,vbits xsyndrome0,xsyndromel , xsyndrome2,zsyndromeOQ.
zsyndromel ,zsyndrome2,meas, meas.H = declarc.all_but_data ()

print "# prepare the data qubits”

G(split_qubit(data),”none™)

print "# apply %d hm gates”%t

counter-top(t."hm_gate_count”)

print "# prepare up to %d ancilla states”%s

recover (data,nType)

h(data)

counter_bottom (t,” hm_gate_count”)

print "\tnoise\toff"

if (t%2==1):

h(data)

print "\tnoise\ton”

measure(split-qubit (data),” magic”)

print "\tif\tmagic”

print "\thalt”

elif gate == "wl”:

else:

print

data = declare_data_qubit("0")

ancilla,verifyl ,verify2,verify3,verify4,vbits . xsyndrome0,xsyndromel ,xsyndrome2,zsyndrome0,
zsyndromel .zsyndrome2,meas ,meas.H = declarc_all_but.data ()

print "# prepare the data qubits”

G(split_qubit(data)."none™)

print "# apply %d wait gates”%t

counter-top(t,” wait_gate_count”)

print "# prepare up to %d ancilla states”%s

recover (data.nType)

print "\tnoisc\ton”

wait (data)

counter-bottom (t,” wait_gate_count”)

s = 1

s-prime = 1

recover (data,”none”

print "\tnoise\toff”

is_-logical_zero (data)

print "Oops. Gate must be one of id,h,cx ,hm,wl.”

sys.exit (1)

v 4 EOF”

116

Appendix E

Sample ARQ Code

In this Appendix we present some sample ARQ code. The sample code simulates six
repetitions of the error-correction circuit and then checks whether there is a single Z
error on the data using stabilizers. The circuit is exactly the same as described in
Chapter 3. Note that wait gates have to be explicitly called.

The language specifications for ARQ are given in Tables E.1, E.2, and E.3. Ta-
ble E.1 lists the defined classical computer instructions and Tables E.2 and E.3 list

the defined quantum computer instructions.

117

| Opcode | ArgumentsJ Description

nop none No operation, do nothing
bit bit_name, | Create new named classical bits
bit_name
label | label name | Create a new jump target
jump | label name | Set the instruction pointer to the location of
label_name
and tgt_bit, | Store (left_bit & right_bit) in tgt_bit. Either or
left_bit, | both of left_bit, right_bit can be binary constants.
right _bit
XOr tgt_bit, | Store (left_bit fight_bit) in tgt_bit. Either or
left_bit, both of left_bit, right_bit can be binary constants.
right_bit
or tgt_bit, | Store (left_bit — right_bit) in tgt_bit. Either or
left _bit, both of left_bit, right_bit can be binary constants.
right_bit
if bit_ name, | Execute the next instruction only if each
ey argument bit is 1.
bit_name
set tgt_bit, Set tgt_bit to the value of src_bit. The src_bit
src_bit can be a binary constant.
halt none Causes the virtual machine to throw an exception.
The virtual machine will abort with a "FAIL”
result. Use this to signal that the program
state has become corrupted.

Table E.1: The classical instructions defined in ARQ.

118

| Opcode | Arguments | Description

qubit | qubit_name, | Create new named quantum bits
qubit_name
measure | bit_name, | Projectively measure the qubit
qubit_name | named qubit_name in the computational
basis. Store the result in the classical
bit named bit_name.
X qubit_name | Apply the Pauli X gate (bit-flip)
to the qubit named qubit_name
y qubit_name | Apply the Pauli Y gate (bit-phase-flip)
to the qubit named qubit_name
z qubit_-name | Apply the Pauli Z gate (phase-flip) to the
qubit named qubit_name
id qubit_.name | Apply the Pauli identity gate to the qubit
named qubit_name
wl qubit_name | Apply a single qubit wait gate

to the qubit named qubit_name

h

qubit_name

Apply the Hadamard gate to the qubit
named qubit_name. This gate maps |0) to
|0)+|1) and |1) to |0)-]1) (normalization
factor omitted).

qubit_name

Apply the pi/4 gate to the qubit named
qubit_name. This gate maps |0) to
|0) and |1) to i|1).

Table E.2: The quantum instructions defined in ARQ.

119

[Opcode | Arguments I Description

cnot | control_qubit, | Apply the controlled-NOT gate using
target_qubit | control_qubit as the control and
target_qubit as the target. The
controlled-NOT gate flips the target
qubit if the control qubit is 1.
cz control_qubit, | Apply the controlled-phase gate using
target_qubit | control_qubit as the control and
target_qubit as the target. The
controlled-phase gate flips the phase
of the target qubit if the control
qubit is 1.
subset bit_name, Compares the requested subset of N qubits
integer_N, to the given stabilizer state (specified
qubit_1, by N stabilizer generators).
qubit_N,
generator_1,
generator _N

Table E.3: More quantum instructions defined in ARQ.

120

bit xs12

nft.py version 1.1 amorten@mit.cdu, last bit xs22
modificd 25 August 2005 bit 2502
Thurs August 25 21:15:54 2005 bit 2512
L=1, s=3, s_.prime=2, t=6 bit 2522
#ancilla qubits (1 logical qubit @ L=1)

data qubits and ancilla qubits (2 logical
qubits @ L=1)
qubit qd-0-0
qubit qd-.0.1
qubit qd_0_2
qubit qd-.0.3
qubit qd.0.4
qubit qd_0_5

qubit qal-0
qubit qal-1
qubit qal_2
qubit qal_3
qubit qal_4
qubit qal.b
qubit qal_6
verification qubits (3 logical qubits @ L--1=0)

qubit qd-0_-6 qubit v0_.1.0
qubit v1i_1.0
declarc(L=1,s=3) qubit v2.1.0
qubit v3_1.0
mecasurcment bits(4+1x7 cbits) # other initialization code
bit meas.H.0
. #
bit meas_H_1 # full_add_init
bit meas_H_2 bit full.add_xorab
bit meas_H_3 bit full_add-andab
bit meas.1.0 i
bit full_add_-andcxorab
bit meas.1.1 set full_add_xorab ,0
bit meas.1.2 set full_.add_andab .0
bit meas-1.3 set full_add_-andcxorab ,0
bit mcas_1_4

find.best_syndrome_init

bit meas.1.5 bit not_guessed_0
bit meas_-1_6 bit not_guessed.1
tcmporary cbits used in measurement (3 cbits) bit not_gucssed-2
bit tempO bit guess_s0
bit templ bit guess._sl
bit temp?2 bit guess_s2
bit temp3 bit number_of_matches_1
temporary chits used in syndrome extraction bit number_of_matches_2
(7 cbits) bit match
bit scO bit match_temp
bit sel # other
bit sc2 noise depolarize
bit sed bit magic
bit scd # prepare the data qubits
b:u: seb #G ACTING ON [[’qd.0.0"), [’qd-0-1"], [qd-0.2
bit sc6 '], ["qd-0-3"], ['qd-0.4"]. ['qd-0.5"]., [°
qubits and cbits that must be passed into G, V qd-0_6"]]
S, ctc #
verify cbit # G preparation nctwork, noiseType = none

bit v # acting on a l1—block of M.1

syndome bits . 2x3x3 of them #G ACTING ON [’ qd.0.0"]

bit xs00

#

bit 510
! xs # G preparation network. noiseTypc = none
bit *s20 # acting on a O—block of M.l
bit 2s00 .

noise off
bit
' zs10 measure tempO,qd_0_0
bit zs20 .

if tempO
bit 01
! xs x qd_0.0
bit xsl1 .

noise on
bit 21
! xs #G ACTING ON ['qd_-0_1"]
bit zs01
b #
it 511
! 28 # G preparation network, noiseType = nonc
bit zs21 .

acting on a O—block of M_.1

bit xs02

121

noise off

measure tempO,qd-0-1

if tempO
x qd-0-1
noise on
#G ACTING ON [’ qd-0-2")
#
G preparation network, noiseType = none
acting on a O-—block of M.1
noise off
measure temp0,qd_0_2
if tempO
x qd-0-2
noise on
#G ACTING ON [’ qd-0-3"]
#
G preparation network, noiseTypc = none
acting on a O-~block of M.1
noise off
measure temp0.qd-.0-3
if tempO
x qd_ 0.3
noise on
#G ACTING ON [’ qd-0-4"]
#
G preparation network, noiseType = none
acting on a O-block of M.l
noise off
measure temp0O,qd_-0_4
if tempO
x qd_0.4
noise on
#G ACTING ON ['qd-0-5"]
#
G preparation network, noiseType = none
acting on a O—block of M.l
noise off
measurc tempO,qd.0.5
if tempO
X qd-.0.5
noise on
#G ACTING ON ['qd-0.6"}
#
G preparation network, noiseType = none

acting on a O—block of M.l
noise off

measure temp0O,qd_0.6

if tempO

x qd-0-6

noise on

noise off

h qd.0_6

h qd_0.5

h qd-0_-4

cnot qd-0.4,qd_0.3
cnot qd-0-5,9d-0_2
cnot qd_0_6,qd-0_1
cnot qd-0-4,qd.0_2
cnot qd.0.5,qd-0.0
cnot qd.0.6,qd_0_3
cnot qd-0_.4,qd_0_1

cnot qd-0.5,qd-0.3

cnot qd_0_.6,qd-0_-0
apply 6 identity gates
#

countecr_head.id_gate.count: do 6 times

bit count_id.gate_count_0

set count_id_gate_count_0,0

bit count_id_gate_count_1

set count_id_gate_count_1,0

bit count_id.gate.count.2

set count.-id_gate_count.2.0

bit countercondition_.id-gate.count
bit countertemp_id_gate_count

label countertop.id.gate_.count

set countercondition.id_gate_count,1
and countecrcondition_id_gate.count,

countercondition_id_gate_count,
count.id.gate.count_0

and countercondition_id_gate_count,
countercondition_.id_-gate_count,
count.id_gate_count_1

xor countertemp.id.gate_count,
count-id_-gate_count_2,1

and countercondition_id_gate_count,
countercondition.id_gate_count,

countertemp.id.gate_count

if countercondition.id.gate_count
jump counterbottom_id_gatc.count
prepare up to 3 ancilla states
#RECOVER ACTING ON [’ qd-0.0', 'qd_0_.1", "qd.0.2
', 7qd-0.3', 'qd.0.4’. >qd_0_5", 'qd-0_-6
'] ['qal.0’, "qal_1', 'qal-2", ’'qal.3’.
qal.4’, "qal5’, 'qal_6’] ["v0.1.0"] [’
vi_1.0'] ['v2.1.0")
#
label preparc.until_0
#PREPARE UNTIL PASS [’ qal-0’, 'qal-1', ’'qal-2
', 'qal.3'. 'qal.4', 'qal.5', "qal_6'] [’
vO_1.0'] ['v1-1.0'] [*v2.1.0"} [v3.1.0"]
#G ACTING ON [['qal.0'], [’qal-1’]. ['qal.2
‘1, ["aal37), ['qal-4’]. ['qal5’], [’
qal-_6']]
#
G preparation network, noiseType = NFT
acting on a 1-block of M.l
#G ACTING ON [’ qal-0'}
#
G preparation network, noiscType = nonc
acting on a O0-block of M.l
noise off
measure temp0O,qal_0
if tempO
x qal.0
noise on
id qal-0
#G ACTING ON {'qal.1’]
#
G preparation network, noiseType = none

acting on a O-block of M_1

noise off

mecasure tempO,qgal_l

122

if tempO
x gal-1
noisc on
id qal.l
#G ACTING ON ['qal_2"]
#
G preparation network, noiseType = none
acting on a O—block of M.1
noise off
mecasurce tempO,qal_2
if tempO
X qal_2
noise on
id qal.2
#G ACTING ON [’ gal.3’]
#
G preparation network, noiseType = none
acting on a O—block of M_1
noise off
mecasurc tempO.qal.3
if tempO
x qal_3
noise on
id qal.3
#G ACTING ON ['qal_4"7)
#
G preparation nctwork, noiseType = none
acting on a O—block of M_1
noise off
mecasure tempO.qal_-4
if tempO
x qal_4
noise on
id qal_.4
#G ACTING ON {['qal.5"]
#
G preparation nctwork, noiseType = none
acting on a O0—block of M_1
noisec off
measure temp0,qal.5
if tempO
x qal.5
noise on
id qal.5
#G ACTING ON [qal_6’]
#
G preparation network. noiseType = none

acting on a O0—block of M.1

noisc off
measure tempO.gal_6
if tempO
x qal.6
noisc on

id qal.6
h qal_6
h qal.5
h qal_4
wl qal_3
wl qal_2
wl qal._1
wl qal_0

123

cnot qal.4,qal.3
cnot qal.5,qal.2
cnot qal.6,qal_1
wl qal.0
cnot qal_.4,qal.2
cnot qal.5.qal.0
cnot qal.6.,qal.3
wl qal_1l
cnot qal.4 ,qal_1
cnot qal.5,qal.3
cnot qal_6,qal.0
wil qal_2
#V ACTING ON [[’qal_0'], ['qal-1"]., [qal_2
1. ["qal37]. ["qal 4], [Tqais5’], [7
qal_6 "]} ['v0_.1.0"] ['v1_.1.0"} ['v2_1.0"}
#
V verification network, noiseType = NFT
acting on a l1—block of M_1
#G ACTING ON ['v0_.1.0"]
#
G preparation network, noiseType = none
acting on a O—block of M_1
noisc off
measure temp0O.vO0_1_0
if tempO
x v0_1.0
noise on
#G ACTING ON [’'v1_1.0"}
#
G preparation network, noiseType = nonec
acting on a O—block of M1
noise off
mecasure tempO,v1.1.0
if tempO
x vi_.1.0
noise on
#G ACTING ON ['v2.1.0"]
#
G preparation network. noiseType = none
acting on a O—block of M.l
noise off
measure tempO,v2_.1.0
if tempO
x v2.1.0
noise on
#G ACTING ON [’'v3_.1.07]
#
G preparation network, noiseType = none
acting on a 0—block of M_1
noise off
measure tempO,v3_.1_.0
if tempO
x v3_1_0
noise on
id v0_1_0
id v1i_1_.0
id v2_.1.0
id v3.1.0
h vO_1_0
h v1.1.0
h v2.1.0

cz
cz
cz
cz

wl

wl
cz
cz
wil

cz

wl
wl
wl
wl
cz
cz
cz
wl
wl
wl
wl
cz
wl
cz

cz

wl
wl
wl
wil
wl
wl

wl

measure

measure

measure

measure

wl
wl
wl
wl
wl
wl

wl

v3_.1.0
v0-1.0,qal.0
v1i.1.0,qal_1
v2.1.0.qal.2
v3.1.0,qal_3
qal_4

qal.b

qal_6
v0.1.0,qal.b
v1_.1_0,qal.4
v2_1_0
v3-1.0,qal_6
qal.0

qal.l

qal_2

qal.3

v0.1.0
vl1_1.0,qal_6
v2_.1.0.qal_4
v3_.1_0,qal_5
qal_0

qal_1l

qal_2

qal.3
v0_1_.0.qal_6
v1.1.0
v2_.1.0.qal_5
v3.1.0,qal_4
qal.0

qal_1l

qal_2

qal.3

v0_-1.0
vli_1.0
v2.1.0
v3.1.0

qal_0

qal.1l

qal_2

qal.3

qal_4

qal_5

qal_6
tempO,v0.1.0
templ,v1.1.0
temp2,v2_1_0
temp3.,v3.1.0
qal.0

qal.l

qal_.2

qal.3

qal.4

qal.b

qal_.6

sct v,tempO

or v,v,templ

or v.v,temp2

or v.v,temp3

if

jump

#S ACTING ON ([qd-0-0'],

v

prepare_until_0

[*qd-0-1"],

[" qd-0.2

#

"], ["qd-0-3']. ['qd-0.4"], ['qd-0.5"].
ad-0.6 1] [[*qal-0°], ['aal-1']. [qal-2
], ["qal3"], ["qal_4’], [’ qal5’], [~
qal_6']]

S syndrome extraction network

acting on a l1—block of M.1

cnot qal.0,qd-0.0
cnot qal_1l,qd-0_1
cnot qal_.2,qd-0.2
cnot qal_3.qd.0.3
cnot qal_4.qd-0_4
cnot qal_5.qd_0_5
cnot qal.6.qd-0-6
h qal.0

wl qd_0.0

h qal_1

wil qd_0_1

h qal_2

wl qd_0_2

h qal_3

wi qd.0.3

h qal_4

wl qd-0_4

h qal.5

wl qd_-0_.5

h qal.6

wi qd_0_6
measure se0,qal_0

wl qd-0.0
measure secl,qal.l

wl qd-0-.1
measure se2,qal.2

wl qd-0-2
measure se3,qal.3

wl qd-0.3
measure sed4,qgal_4

wl qd_0_4
measure se5,qal.b

wl qd-.0.5
measure se6,qal_.6

wl qd-0.6

set zs00,sc0

xor zs00,2s500,se2
xor zs00,2s00,se4
Xor zs00,2s00, se6
sct zs10,sel

xor zs10,2510,se2
xor zs10,2s10,sed
xor zs10,2s10,se6
set 2520, se3

xor 2520 ,2s20,sc4
xor 2520 ,2z520 ,se5
xor 2520 ,2s520,s¢6
xor tempO,1,2s00
and templ . tempO,1
xXor temp0.,1,2s10
and templ,templ,tempO
xor tempO.1,2zs20
and templ .templ, tempO
if templ

124

[s

no.cc.nccded_0

jump
label preparc_until_1
#PREPARE UNTIL PASS [qal_0'. "qal-1", 'qal.2
', "qal.3'. 'qal_-4', 'qal.5', 'qal.6’] [’
v0_1.0 "] [v1.1.0")] ["v2.1.0°]) [’v3_.1.0"]
#G ACTING ON [['qal_0']. ['qal_-1"]., ['qal.2
‘1. ["qa13°]. ['qala’}. ["qal5’]. [
qal.6 ']]
#
G preparation network. noisecType = NFT
acting on a l1—block of M_1
#G ACTING ON ['qal_0’]
#
G preparation network. noiseTypc = none
acting on a O—block of M1
noise off
measure tempO,qal_0
if tempO
x qal_0
noise on
id gqal_0
#G ACTING ON ["qal-1"]
#
G prcparation network, noiseType = none
acting on a O—block of M_1
noise off
measurce tempO.qal_l
if temp0
x qal_1
noisc on
id qal.l
#G ACTING ON {'qal_2"]
#
G preparation network. noiseType = nonec
acting on a O—block of M_1
noise off
mecasurc tempO,qal-2
if tempO
x qal.2
noise on
id qal.2
#G ACTING ON ["qal.3’}
#
G preparation network. noiseType = nonc
acting on a O—block of M.l
noise off
mecasure tempO,qal_3
if tempO
x qal.3
noise on
id qal.3
#G ACTING ON ['qal-4"]
#
G preparation network. noiseType = none
acting on a O—-block of M.l
noise off
measurc temp0,qal_4
if tempO
x qal_4
noise on
id qal_4

#G ACTING ON [qal.5 "]
#
G preparation network, noiseType = none
acting on a O—block of M1
noise off
mcasurc temp0,qal.d
if tempO
b3 qal.5
noise on
id qal.b
#G ACTING ON ['qal_6"'}
#
G preparation network. noiseType = none
acting on a 0—block of M._.1
noise off
measure tempO,qal_6
if temp0
x qal_6
noise on
id qal.6
h qal_6
h qal.b
h qal.4
wl qal.3
wi qal_2
wil qal_1
wl qal.0
cnot qal_4,qal_3
cnot qal_.5,qal_2
cnot qal_6.qal_l
wl qal.0
cnot qal_4,qal.2
cnot qal.5,qal_0
cnot qal_6.qal.3
wl qal-1l
cnot qal_4,qal_1
cnot qal_5.qal.3
cnot qal_6,qal_0
wl qal_2
#V ACTING ON [['qal-0']. ['qal_-1’], ['qal-2
"1, [7qal37]. [qal4’], ['qal-5’]. [°
qal-6’]] ["v0_-1.0"] ['v1.1.0"} ['v2.1.0"}
#
#V verification network, noiseType = NFT
acting on a l—block of M.l
#G ACTING ON ['v0_.1.0"]
#
G preparation network, noiseType = none
acting on a O—block of M.l
noise off
measurc tempO,vO0_1.0
if tempO
x v0_.1.0
noisc on
#G ACTING ON ['v1.1.0"]
#
G preparation network. noiseTypec = none
acting on a 0—block of M_1
noisc off
mcasure tempO,v1.1.0
if tempO

125

x v1i_1.0
noisc on
#G ACTING ON ['v2.1.0"]
#
G preparation network, noiseType = nonc

acting on a O0—block of M_1

noise off
measurc tempO,v2.1.0
if tempO
x v2_.1.0
noise on
#G ACTING ON ['v3_.1.0"]
#
G preparation network. noiseType = none

acting on a 0—block of M.1

noise
measure
if
x
noisc
id
id
id
id
h
h
h
h
cz
cz
cz
cz
wl
wl
wil
cz
cz
wl
cz
wl
wil
wl
wl
wl
cz
cz
cz
wl
wl
wl
wil
cz
wil
cz
cz
wl
wl
w1
wl
h
h

off
temp0.v3.1.0
tempO

v3_1.0
on

v0_.1_0
v1.1.0
v2_.1.0
v3_.1.0
v0_1.0
v1_1.0
v2.1.0
v3_1.0
v0.1.0,qal-0
v1.1.0,qal.1l
v2_1.0.qal.2
v3.1.0.qal.3
qal_4

qal.5

qal_6
v0_.1.0,qal_5
vl1.1.0,qal-4
v2_1.0
v3.1.0.qal_6
qal_0

qal_l

gal_-2

qal_3

v0.1.0
v1.1.0,qal_6
v2.1.0,qgal.4
v3_.1.0.qal.5
qal.0

qal-1

gal_.2

qal.3
vD_1.0.qal.6
vi_1_0
v2.1.0,qal_5
v3_1.0.qal_4
qal_0

gqal._l

qal.2

qal_3

v0_1_0
v1i_1_.0

h v2.1.0

h v3.1.0

wl qal_0

wl qal.l

wl qal.2

wl qal_3

wl qal_4

wl qal.b

wl qal_6
measure tempO,v0_1.0

measure templ,v1_.1_0

measure temp2,v2_1_0

measure tempd,v3_.1.0

wl qal.0
wl qal_1
wl qal_2
wl qal_3
wl qal_4
wl gqal_b
wl qal_6

set v,tempO
or v,v,templ
or v,v,temp2

or v,v,temp3

#
S syndrome extraction network

acting on a l—block of M.1

cnot qal_0,qd_0.0
cnot qal_1l,qd-0_1
cnot qal.2,qd.0.2
cnot qal_3,qd_0.3
cnot qal_4,qd-.0_4
cnot qal.5,qd.0.5

126

if v

jump prepare_until.1l

wil qal_0

wl qal_l

wl qal_2

wl qal-3

wl qal_4

wl qal_5

wl qal.6

wl qal_0

wl qal_1

wl qal.2

wl qal.3

wl qal_4

wl qal.s

wl qal.6

wl qal.0

wl qal.l

wl qal.2

wl qal.3

wl qal_4

wl qal.5

wl qal_6

#S ACTING ON [[’qd_0.0"], ['qd.0_1"], [’ qd.0.2

"1, ['qd-0.3"), ['qd-0-4"]. ["qd.0.5"], [
qd-0-6"]] [['qa1-0"], ['qal-1’], ['qal.2
"], ["qal3'], ['qala’], ['qal5’], [’
qal-6'}]

cnot qal_6.qd-0.6
h qal_0
wl qd.0-0
h qal_l
wl qd.0-1
h qal_2
wl qd.0-2
h qal.3
wl qd-0.3
h qal_4
wl qd_-0-4
h qal.5
wi qd_0.5
h qal_6
wl qd_0-6
measurc sc0.qal.0
wl qd.0_-0
measure scl,qal_l
wl qd-0.1
measurc se2.qal_2
wl qd_0-2
mcasure se3.qal_3
wil qd_0.3
mecasurc sed ,qal_4
wl qd-0_-4
measure seb,qal_5
wl qd.0.5
measurc sc6.,qal.6
wl qd_0-6
set zs01 ,se0
xor zs01 ,2zs01,se2
xor zs01,2s01 ,se4d
Xor zs01 .2s01 ,se6
set zsll ,scl
xor zs11.2s11 . se2
XOr zsll,2zs11,s¢eb
xor zs11l,2s11,se6
sct zs21 .s5€3
xor zs21 .2zs21 . sed
xor zs21 ,zs21 .se5
xor zs21,zs21,se6
label prepare_until_2
#PREPARE UNTIL PASS ['qal_0’', 'qgal-1’, 'qgal.2
'. "qal.3’. "qal.4', 'qal.5’. "qal.6’'] [’
vO_1.0°] ["v1.1.0°] ['v2.1.0°] ['v3.1.0"]
#G ACTING ON [['qal-.0']. ['qal.1’], [’ qal-2
"]. ["qal3°]. [qaloa‘]. [qals’], [0
qal.6’]]
#
G preparation network, noiseType = NFT
acting on a l1—block of M_1
#G ACTING ON [’ qal_0"]
#
G precparation nctwork. noiseType = none
acting on a O—block of M.1

noise off

measure tempO.qal_0

if tempO
x qal_0
noise on

id qal_0

#G ACTING ON ['qal-1']

noise off

measure tempO.qal.6

if tempO
x qgal_6
noise on

id qal.6
h qal_6

127

#
G preparation network. noiseType = nonc
acting on a O—block of M.1
noise off
mcasure tempO,qal-1
if temp0
X qal_1l
noisc on
id qal_1
#G ACTING ON [’ qal.-2’]
#
G preparation network, noiseType = nonc
acting on a O—block of M.l
noise off
mcasure tempO,qal-2
if tempO
3 qal.2
noise on
id qal_2
#G ACTING ON [’ qal-3’]
#
G preparation network, noiseType = none
acting on a O—block of M.l
noisc off
measure temp0O.qal-3
if tempO
X qal.3
noise on
id qal.3d
#G ACTING ON [’ qgal_4']
#
G preparation network, noisecType = none
acting on a O-—block of M_1
noise off
measure tempO,qal.4
if tempO
X qal_4
noise on
id qal.4
#G ACTING ON [’ qal-5"]
#
G preparation network . noiscType = nonc
acting on a O—block of M_1
noise off
mcasure tempO,qal.b
if tempO
x qal.5
noise on
id qal.5
#G ACTING ON [’ qal-6"]
#
G preparation network, noiseType = nonc
acting on a O0-block of M_1

h qal.5

h qal_4
wl qal.3
wil qal.2
wl qal_1
wl qal_0
cnot qal_4,qal.3
cnot qal_5,qal_.2
cnot qal.6,qal.l
wl qal.0
cnot qal_4,qal.2
cnot qal.5,qal-0
cnot qal.6,qal.3
wl qal_l
cnot qal_4.,qal_1
cnot qal.5,qal-3
cnot qal.6,qal.0
wl qal_2
#V ACTING ON [[’qal-0"], ['qal.1"]. ['qal.2
‘1. [qal.3’], ['qal47], ["qals']. [”
qal.6’']] ['v0.1.0"] ["v1.1.0"'] [’'v2.1.0"]

#

#V verification network,

noiscType = NFT

acting on a 1-block of M.l

#G ACTING ON ["v0.1.0"]

#

G preparation network.

noiscType = none

acting on a O—block of M.l

noise off
measure tempO,v0_-1.0
if tempO
x v0_1.0
noise on
#G ACTING ON ['v1.1.07]
#
G preparation nctwork. noiseType = none

acting on a 0—block of M.1

noise off
measure tempO,v1_.1_.0
if tempO
x v1l.1.0
noise on
#G ACTING ON [’v2.1.0")
#
G preparation network, noiseType = none

acting on a O—block of M.1

noise off
measure tempO,v2_.1.0
if tempO
X v2.1.0
noise on
#G ACTING ON [’'v3_.1.0"}
#

G preparation nctwork, noiseType = none
acting on a O—block of M.l
noisc off
measure tempO,v3_1.0

if tempO
x v3_1_0
noise on

id v0_.1.0

128

id v1.1.0

id v2.1.0

id v3_1.0

h v0_.1.0

h vi.1.0

h v2_1.0

h v3.1.0

cz v0_-1.0,qal-0
cz v1i.1.0.qal.l
cz v2.1.0,qal_2
cz v3.1.0.qal-3
wl qal_4

wl qal_5

wl qal_6

cz v0-1.0,qal1.5
cz vli_1.0.qal.4
wl v2_1.0

cz v3-1.0.qal_6
wl qal_0

wl qal-1

wl qal.2

wl qal_3

wl v0_.1.0

cz v1_.1.0,qal_6
cz v2_1.0.qal_4
cz v3_.1.0.,qal-5
wl qal.0

wl qal_1l

wl qal.2

wl qal.3

cz v0_-1.0,qal.6
wl v1.1.0

cz v2.1.0,qal_5
cz v3_-1.0,qal_4
wl qal_0

wl qal_l

wl qal_2

wl qal_3

h v0_1.0

h vli.1.0

h v2.1_.0

h v3-1.0

wl qal.0

wl qal_1l

wl qal_2

wil qal.3

wl qal_4

wl qal.5

wl qal-6

measure tempO,v0.1.0
measure templ,v1.1.0
measure temp2,v2_1_0

mcasure temp3,v3.1.0

wl qal.0
wil qal_-1l
wil qal_.2
wl qal_3
wl qal_4
wl qal_5
wl qal.6

set v,tempO

or v.v.templ
or v.v.,temp2
or v.v.temp3
if v
jump prepare_until_2
wl qal_0
wl qal-1l
wl qal_2
wil qal.3
wl qal_4
wil qal.5
wl qal_6
wl qal_0
wl qal_1l
wl qal.2
wl qal_3
wl qal_4
wl qal.5
wl qal.6
wl qal_0
wl qal_1l
wl qal.2
wl qal.3
wl qal_4
wil qal.5
wl qal_6
wl qal_0
wl qal.l
wil qal_2
wil qal_3
wl qal_4
wl qal.5
wl qal_6
wl qal_0
wl qal-1
wl qal_2
w1l gqal.3
wl qal_4
wil qal_5
wl qal_6
wl qal_0
w1l qal_1l
wl qal.2
w1l qal.3
wl qal-4
wl qal.b
wl qal_6
#S ACTING ON [[’qd-0-0"}. [’ qd-0-1"}, [’ qd-0_2
"J. [1qd-0-3"]. ['qd-0-47], ['qd-0-5°], ['
qd-0-6]] [[*qal-0"], ['qal-1'], [qal.2
1. ["aa13'), [qal-d’]. ['qals']. [’
qal.6"]]

#
S syndrome
acting on a
cnot
cnot
cnot
cnot
cnot

cnot

extraction nectwork

I-block of M.l
qal.0,qd.0_0
qal.l,qd-0_1
qal_2,qd_0.2
qal_-3.qd-0.3
qal_.4,qd-0_4
qal_5,qd.0_5

cnot

wl
measure
wl
measure
wl
measure
wil
measure
wl
measure
wl
measure
wl
measure

wl

set
xor
xor

xor

qal_-6,qd-0-6
qal.0

qd_0_0

qal_1l

qd-.0_1

qal.2

qd.0_2

qal.3

qd-0.3

qal_4

qd_0.4

qal.b

qd.0_5

qal_6

qd.0_6
se0,qal_0O
qd.0_.0
sel,qal_1l
qd-0_1
se2.qal_2
qd.0_2
se3,qal.3
qd_0.3

sed ,qal_4
qd_0_4
se5,qal.b
qd-0-5
se6,qal_6
qd_0_6
zs02,s¢0
z502,zs02 ,se2
zs02 .2s02, sed
zs02,2502,se6
zs12,sel

25812 ,zs12,s€e2
2512 ,2512,s€eb
zs12,zs12,seb
2522 ,se3

2522 ,2s822,se4
2822 ,zs22,sed
2522 ,2522 ,s€e6

#FIND BEST SYNDROME

#
set
set

set

not_guessed_0,1
not_guessed_1,1

not_guessed.2,1

#GUESSING SYNDROME 0

#
label
set
set
sct
set
sct
set

jump

guess_0_0
guess_s0,zs00
guess_sl .zs10
guess._s2,2zs20
not_guessed_0.0
number_of_matches_1.,1
number_of_-matches_2.0

comparc.with.all_syndromes_0

#GUESSING SYNDROME 1

#
label
set

set

129

guecss_1.0
guess.s0,zs01

guess_sl zsll

set
sct
set
set

jump

guess.s2,2zs21
not.guessed_1.0
number_of_matches_1,1
number_of_matches_2,0

comparc.with_all.syndromes.0

#COMPARE GUESS WITH ALL UNGUESSED SYNDROMES

#

label
if
jump
label
if
jump
label
if
jump

jump

compare.with.all_syndromes_0
not-guessed.1

comparc.to_1.0
comparcd.to_1_0
not_gucsscd .2

comparc-to_2_0
compared.to_2_0
not-guessed.1

guess_1.0

crror_corrected_0

#COMPARE GUESS TO SYNDROME 1

label
set
xor
xor
and
Xor
xor
and
xor
xor
and
Xor
if
jump
set
and
set
and
sct
if
jump

jump

comparc.to_1.0

match .1

match_temp . guess_s0,zs01
match_temp,match_temp,1

match , match. match_temp
match.temp, guess_sl, zsll
match_temp,match.temp,1

match .match , match_temp
match_temp . guess_s2,2s21
match_temp, match_temp .1

match . match.match_temp
match_temp,match,1

match_temp

compared_to_1_.0
not.guessed-1.0
match_temp.number.of_matches_1.1
number_of_matches_2 . match_temp
match_temp,number_of-matches-0.1
number.of_matches_1 , match_temp
number_.of_matches_2
found-best_syndrome_0

compared.to_1.0

#COMPARE GUESS TO SYNDROME 2

label
sct
xor
xor
and
xor
xor
and
xor
xor
and
xXor
if
jump
sct
and

set

sect

if

compare-to-2.0

match.1

match_temp.guess.s0,zs02
match_temp,match_temp,1

match , match, match.temp
match_temp, guess.sl,zs12
match_temp,match_temp,1

match ,match, match_temp
match.temp.guess.s2,zs22
match_temp,match_temp,1

match ,match, match_temp
match_temp,match.1

match_temp

comparcd_-to-2.0

not_guessed.2,0
match_temp.number_of_matches.1,1
number_of_matches.2 , match_.temp
match_temp.number.of_matches_ 0,1
number_of_matches-1.match_temp

number.of _matches_-2

jump
jump
label

found_-best.syndrome.0
compared-to_-2_0

found_best_syndrome.0

#ERROR CORRECTING Z

#

130

if
jump
if
jump
if
jump
jump
label
if
jump
if
jump
z
wl
wl
wl
wl
wl
wl
jump
label
if

jump

wl
wl
wl
wl
wl
wl
jump

label

wl

wl

wl

wl

wl

wl

jump
label
if

jump

wl
wl
wl

wl

wl
jump
label

wl
wl

wl

gucss_s2
correct.1xx.0
gucss.sl
correct.01x_.0
guess.sO
correct_001_.0
crror_corrected_0
correct.1xx.0
guess.sl
corrcct-11x.0
guess._s0
correct-101_0
qd-0.3

qd_0_0

qd-.0_1

qd-0.2

qd-0_4

qd-0.5

qd_0_6
crror.corrected_0
correct.01x_0
guess.s0
correct.011_0
qd_0_1

qd_0_.0

qd-0_2

qd.0.3

qd-0_4

qd.0.5

qd_0_.6
crror.corrccted.0
correct.001.0
qd.0_0

qd-0_1

qd_0_2

qd-0_3

qd_0_4

qd.-0_5

qd.0_86
error_corrected_0
correct-11x.0
guess._sO
correct.111.0
qd.0.5

qd-0_0

qd-0_1

qd_0_2

qd-0.3

qd-0_4

qd_0_6
crror.corrected_0
correct.101.0
qd-0_4

qd-0_0

qd-0-1

qd-0.2

wl qd_0-3 # acting on a O0—block of M.1
wl qd-0-5 noise off
wl qd-0-6 measure tempO.qal_1
jump crror-corrected_0 if tempO
label correct.011._0 X qal-1l
z qd_0-2 noise on
wl qd_0-0 id qal-1
wl qd.0-1 #G ACTING ON ['gqal.2']
wl qd.0.3 #
wl qd_0-4 # G preparation network. noiscType = none
wl qd-0.5 # acting on a O—block of M_1
wl qd_-0_-6 noisec off
jump error.corrected_0 measure tempO.qal_2
label correct-111_0 if tempO
z qd_0-6 x qal-2
wl qd-0.0 noise on
wi qd.0_-1 id qal-2
wl qd_0.2 #G ACTING ON [’ qal.3’]
wil qd_0.3 #
wil qd_0_-4 # G preparation network. noiseType = none
wl qd_0-5 # acting on a O-—block of M_1
jump error.corrected.0 noise off
label o.cc_needed.-0 measure tempO,qal_3
wl qd.0_0 if tempO
wil qd_0-1 x qal_3
wl qd-0_-2 noise on
wil qd_0.3 id qal_3
wl qd-0-4 #G ACTING ON ['qal-4']
wl qd-0.5 #
wl qd_-0-6 # G preparation network. noiseType = none
wl qd_0-0 # acting on a O0—block of M.l
wl qd-0-1 noise off
wl qd_0.2 measure tempO,qal_4
wl qd-0-3 if tempQ
wl qd_0_4 x qal-4
wl qd.0_.5 noisc on
wl qd-0-6 id qal_4
label error_corrected_0 #G ACTING ON [’ qal_5"]
label prepare.until.3 #
#PREPARE UNTIL PASS ['qal_0'. "qal_l1'. "qal.2 # G preparation network. noiseType = none
"qal.3’, 'qal_4', 'qal.5', “qal.6 '] [’ # acting on a O0—block of M_1
v0_1.0"] ['v1.1.0'] ['v2.1.0"] ['v3.1.0"] noise off
#G ACTING ON {{’qal.0’], ['qal_-1"], [’ qal.2 measurc temp0,qal_5
1. ["qal3’), ['qal.d’], ["qalb'}, [’ if tempQ
qal.6 ']] x qal.5
noise on
G prcparation network, noiseType = NFT id qal.5
acting on a 1—block of M1 #G ACTING ON ['qal.6"])
#G ACTING ON ['qal.0"] #
G preparation network. noiseType = none
G preparation network, noiseType = none # acting on a 0—block of M.l
acting on a O0—block of M_1 noise off
noise off measure tempO,.qal.6
measure temp0O,qal_0 if tempO
if temp0 X qal.6
x qal-0 noise on
noise on id qal.6
id qal.0 h qal.6
#G ACTING ON ['qal_-1"] h qal.5
h qal-4
G preparation nectwork, noiseType = none wl qal.3

131

wl qal_2 h v0_1_.0
wil qal_l h vi_ 1.0
wl qal.0 h v2_1_.0
cnot qal_4,qal_3 h v3.1.0
cnot qal.5,qal.2 cz v0.1.0,qal.0
cnot qal_6,qal_1 cz vl.1.0,qal_1
wl qal.0 cz v2.1.0,qal_2
cnot qal_4,qal_2 cz v3_-1.0,qal-3
cnot qal.5,qal.0 wil qal_4
cnot gal.6,qal.3 wl qal.5
wl qal-1 wil qal.6
cnot qal_4,qal_1 cz v0_.1.0,qal.5
cnot qal.5,qal.3 cz v1i-1.0,qal_4
cnot qal_6,qal.0 wl v2.1.0
wl qal.2 cz v3.1.0,qal.6
#V ACTING ON [['qal-0'], ['qal-1'], [’'qal-2 wl qal_0
"] ["qal3'}, |'qal_4'], ['qal_5"}, [' wl qal-1
qal-6'}]] ["v0_1.0"] [*v1_1.0"] [’v2_.1.0"] wl qal.2
wl qal_3
V verification network, noiseType = NFT wl v0-1.0
acting on a l1-block of M.1 cz v1.1.0,qal_6
#G ACTING ON ['v0_.1.0"] cz v2.1.0,qal_4
cz v3.1.0,qal.5
G preparation network, noiseType = none wl qal.0
acting on a O—block of M_1 wl qal_1
noise off wl qal_2
measure tempO,v0_.1_0 wl qal.3
if tempO cz v0_.1.0,qal.6
x v0_1.0 wl vi_1.0
noise on cz v2_1.0,qal-5
#G ACTING ON [’v1.1.0"] cz v3.1.0,qal_4
wl qal.0
G preparation nctwork, noiseType = none wl qal_l
acting on a 0—block of M.l wl qal_2
noise off wl qal.3
measure tempO,v1_1_0 h v0_1_.0
if tempO h v1_.1_.0
x v1i_1.0 h v2.1.0
noise on h v3_.1.0
#G ACTING ON ['v2.1.0"] wl qal.0
wl qal-1
G preparation network, noiseType = none wl qal-2
acting on a 0—block of M.l wl qal.3
noise off wl qal.4
measure tempO.v2_1.0 wl qal_.5
if tempO wl qal_6
x v2.1.0 measure tempO,vO0_1_0
noisc on mcasure templ,v1_1.0
#G ACTING ON ['v3.1.0"] mecasure temp2,v2.1.0
measure temp3,v3_.1.0
G preparation network, noiseType = none wl qal.0
acting on a 0—block of M-l wl qal_1
noise off wl qal_2
measure tempO,v3_1.0 wl qal.3
if tempO wl qal_.4
x v3.1.0 wl qal_5
noise on wl qal.6
id v0_1_0 sct v.,tempO
id v1i_.1.0 or v,v,templ
id v2.1.0 or v,v,temp?2
id v3.1.0 or v,v,temp3

132

if

v

jump prepare-until_3
#S ACTING ON [['qd_0_0"'], [’ qd-0.1"]. [’qd-0.2
], ["qd-0.3"], [*ad-0-4°]. [*qd-0.5°], [’
qd-0-6"]] [['qal-0"], ['qal_1'}. ['qal-2
], ["qal37]. [qal-d4’], ['qal.5'}. [7
qal-6']]

#

S syndrome extraction network

acting on a l—block of M.1

cz
cz
cz
cz
cz
cz
cz
h

wil
h

wl
h

wl
measure
wl
measure
wl
measure
wl
measure
wl
measure
wl
measurc
wl
measure
wl

sect

xor

xor

xor

set

xXor

xor

set

xor
xor
xor
and
xor

and

qal_0.qd.0_0
qal_1,qd_0_1
qal_2.qd.0.2
qal_3,qd-0_.3
qal_4.qd_0_-4
qal.5.qd_0.5
qal_6.qd-0_6
qal.0

qd.0_0

qal-l

qd-0_1

qal_2

qd.0.2

qal_3

qd.0_3

qal_4

qd_-0_-4

qal_5

qd-0_5

qal_6

qd.0_6
sc0.qal-0
qd-0_0

sel ,qal_-1
qd.0_1

se2 ,qal.2
qd-0.2

se3 ,qal.3
qd.0_.3

sc4d ,qal_4
qd-0_4
seb5.qal-b
qd.-0.5

se6 ,qal-6
qd_0_6

xs00 .,
xs00 .xs00.se2
xs00,xs00,sed
xs00,xs00,se6
xs10.sel
xs10 . xs10.s¢2
xs10.xs10,se5
xs10,xs510,se6
xs20
xs20.xs20,se4
xs20 . x520,se5
x$20,xs20,s¢c6

sel

sec3

tempO .1, xs00
templ.tempO,1
tempO0,1.xs10
templ templ,tempO

133

xor tempO.1,xs20
and templ.templ.tempO
if templ
jump no_ec.nceded-1
label prepare_until_4
#PREPARE UNTIL PASS ['qal_0'. 'qal.l’, "qal.2
', "qal.3", 'qal4’., "qal.5, ‘qal_6'] [’
v0_1.0"] ['v1.1.0"] ['v2.1.0"] ['v3-1.0"}
#G ACTING ON [['qal.0']. ['qal_1"], ['qal.2
‘]. ["qal.37]. ["qal.4"}]. ['qal.5"]. [’
qal_6"']]
#
G preparation network . noiseType = NFT
acting on a l—block of M_.1
#G ACTING ON [qal.0']
#
G preparation network. noiscType = none
acting on a O—block of M_1
noise off
measure tcmpO.qal_O
if tempO
x qal. 0
noise on
id qal_0
#G ACTING ON ['qal-1"']
#
G preparation network, noiseType = none
acting on a O-block of M_1
noisc off
measure tempO,qal_1
if temp0
X qal_l
noisc on
id qal_l
#G ACTING ON ['qal-2]
#
G preparation network. noiseType = none
acting on a O-block of M.1
noise off
measure temp0O.qal_.2
if temp0
X qal.2
noise on
id qal_-2
#G ACTING ON [’ qal_3"]
#
G preparation network., noiseType = none
acting on a O—block of M.l
noise off
measure tempO,qal.3
if tempO
x qal_3
noise on
id qal.3
#G ACTING ON ['qal-4 ')
#
G preparation network, noiseTypc = none
acting on a O0—block of M_1
noise off
measure tempO,qal_4
if tempO

X qal_4

noisc on

id qal-4
#G ACTING ON {'qal_5"}

#
G preparation network,
acting on a 0—block of M.1

noiseType = none

noise off
measure tempO,qal.b
if tempO
x qal.b
noise on
id qal_5
#G ACTING ON [’ qal.6']

#
G preparation network,
acting on a O—block of M.l

noiseType = none

noise off

mcasure tempO.qal_6

if tempO
x qal.6
noise on
id qal.6
h qal.6
h qal_5b
h qal.4
wl qal.3
wl qal_2
wl qal_-1
wl qal-0
cnot qal_4 ,qal.3
cnot qal.5,qal_2
cnot qal.6,qal_.1l
wl qal_0
cnot qal-4,qal_2
cnot qal.5,qal.0
cnot qal.6,qal.3
wl qal_l
cnot qal_4 .qal_l
cnot qal.5,qal_3
cnot qal_6,qal_0
wl qal.-2
#V ACTING ON [["qal.0'}. ['qal_1’], ['qal.2
1, [’9al 3], ['qal4’], ['qal5'], [°
qal_6']] [>v0-1.0'] [’v1.1.0"] ['v2.1.0"]
#
#V verification network, noiseType = NFT
acting on a l1—block of M.1
#G ACTING ON ["v0.1.0"]
#
G prcparation network, noiseType = nonc
acting on a O—block of M.1
noise off
measure tempO,v0_.1.0
if tempO
x v0O_1_0
noise on
#G ACTING ON [’v1.1.0"]
#
G preparation network, noiseType = none

acting on a O—block of M.l

noise off
measure tempO.v1.1.0
if tempO
x v1.1.0
noise on
#G ACTING ON [’v2.1.0"]
#

G preparation network. noiseType = none
acting on a O—block of M1
noise off

measure tempO,v2.1_0
if temp0
x v2.1.0
noise on
#G ACTING ON [’'v3_.1.0"}
#

G preparation network, noiseType = none
acting on a O—block of M_1
noisc off
measurc tempO,v3_1_0

if tempO

x v3.1.0

noise on

id v0_1_.0

id vi_1.0

id v2_1_.0

id v3_1.0

h v0.1.0

h vi.1.0

h v2_1.0

h v3-1.0

cz v0.1.0.qal_-0
cz v1.1.0,qal.1l
cz v2_1.0.qal_2
cz v3.1.0,qal.3
wl qal_4

wl qal_5

wl qal_6

cz v0_1.0,qal_b
cz vi.1.0,qal_4
wl v2.1.0

cz v3_-1.0,qal_6
wl qal.0

wl gqal_1

wl qal.2

wl qal_3

wl v0.1.0

cz v1_1.0,qal-6
cz v2.1.0,qal_4
cz v3.1.0,qal_b
wl qal_0

wil qal.l

wl qal_2

wl qal.3

cz v0_-1.0,qal-6
wl vli_.1.0

cz v2.1.0,qal.5
cz v3-1.0,qal_4
wil qal.0

wl qal.l

wl qal_2

134

wl qal.3

h v0_1.0

h v1_.1.0

h v2_.1.0

h v3_.1.0

wl qal_0

wl qal_1l

wil qal.2

wl qal_.3

wl qal_4

wl qal.d

wl qal_6
mcasure tempO.v0_1_0
measure templ.v1_1_.0
mcasure temp2,v2_.1.0
mecasure temp3d.v3.1.0
wil qal.0

wil qal_1

wl qal_2

wil qal_.3

wi qal_4

wl qal_5

wl qal_6

set v.tempO

or v,v,templ
or v.v.temp2
or v,v.temp3
if v
jump prepare_until_4
wl qal.0
wl qal-1
wil qal-2
wl qal_3
w1 qal_4
wl qal_5
wl qal_6
wl qal_0
wl qal.l
wl qal_.2
wl qal_3
wl qal_4
wl qal_5
wl qal_6
wl qal.0
wl qal_1
wl qal.2
wl qal.3
wil qal_4
wl qal.5
wl qal_6
#S ACTING ON [['qd-0.0"']. ['qd-0-1"]., ['qd-0-2
1. [*qd-0.3°], ["qd-0.4']. [*qd-0.5"]. [
qd.0_6 "]} [[' qal_0']. ['qal_1"], [’ qal_2
'J. [qal3°). [Tqal-d’]. ['qalsc], [
qal.6"]]
#
S syndrome cxtraction nctwork
acting on a l—block of M_.1
cz qal_0.qd_0.0
cz qal_1.qd_0_.1
cz qal_2.qd-0.2

2
[

135

cz qal_-3,qd.0.3
cz qal_4,qd-0-4
cz qal_5,qd.0.5
cz qal_6,qd_0.6
h qal-0
wl qd-0-0
h qal_1
wl qd-.0_1
h qal_2
wl qd_0.2
h qal_3
wl qd-0.3
h qal_4
wl qd-.0-4
h qal.b
wl qd_0.5
h qal_6
wil qd_0.6
measure se0,qal_0
wl qd_-0.0
measure sel,qal-1
wl qd_0_1
measure se2,qal_2
wl qd-0-2
measure se¢3,qal.3
wl qd-0-3
measure se4.qal_4
wl qd-.0_4
mecasure scb5,qal_d
wl qd-0-5
measurc se6,qal_6
wl qd_0-6
set xs01 ,s€e0
xor xs01,xs01,se2
xor xs01,xs01,sc4
xor xs01,xs01,seb
set xs1l,sel
xXor xs11,xs11,se2
xor xsll,xs11,seb
xor xs11,xs11,se6
sct xs21,se3
xor x$21,x821 sed
xor xs21,xs521,sed
xor xs21,xs21 . seb
label preparc_until_5
#PREPARE UNTIL PASS ['qal-0', 'qal-1’', 'qal.
'qal_3’, 'qal.4’, 'qal.5’, 'qal_6']
v0.1.0"] [7v1.1.0°] ['v2.1.0°] ['v3.1.0"]
#G ACTING ON [['qal_0'], [’qal-1"], [’ qal.2
"1, ["qal3’], ['qal-4’], ['qal5’]. [’
qal-6]]
#
G preparation network, noiseType = NFT
acting on a 1—block of M_1
#G ACTING ON ['qal-0’)
#
G preparation network. noiseType = none
acting on a O0-block of M.1
noise off
measurc tempO,qal-0
if temp0

x qal.0 noise on
noise on id qal.6
id qal.0 h qal_6
#G ACTING ON [’ qal_17] h qal_b
h qal_.4
G preparation network. noiseType = none wl qal_3
acting on a O—block of M_1 wl qal_2
noise off wl qal_1
mecasure tempO,qal_1 wl qal_0
if tempO cnot qal_4,qal.3
X qal.l cnot qal.5,qal_2
noise on cnot qal_.6,qal.l
id qal-.l wl qal_0
#G ACTING ON ['qal-2"] cnot qal_4,qal.2
cnot qal_5,qal.0
G preparation network. noiseType = none cnot qal_6,qal.3
acting on a O~block of M.l wil qal_1l
noise off cnot qal_4,qal_1
measure temp0O,qal_2 cnot qal_5.qal_3
if tempO cnot qal_6,qal_0
x qal.2 wl qal.2
noise on #V ACTING ON [[’'qal.0'}, ['qal.1'], [’qal-2
id qal.2 '}. ["qal3’], ['qal.4’], ['qal_5'}, [°
#G ACTING ON [’'qal-3’] qal.6"]] ['v0-1.0"] ['v1.1.0"} ['v2.1.0"]
#
G preparation nectwork, noisecType = none #V verification network, noiseType = NFT
acting on a 0—block of M1 # acting on a l—block of M.l
noise off #G ACTING ON ['v0_1.0"]
measurc tempO,qal_-3 #
if tempO # G preparation nectwork, noiseType = none
x qal.3 # acting on a O-block of M.l
noise on noise off
id qal.3 measure tempO,v0_.1.0
#G ACTING ON [’ qal-4’] if tempO
X v0_1_0
G preparation nectwork, noiseType = none noise on
acting on a O—block of M.l #G ACTING ON [’'v1_1.0"]
noise off #
mcasure temp0,qal_4 # G preparation network, noiseType = none
if tempO # acting on a O—block of M_1
x qal_4 noise off
noisc on measure tempO.,v1.1_.0
id qal_4 if tempO
#G ACTING ON [’ qal-5"] x vi_1_.0
noise on
G preparation network, noiseType = none #G ACTING ON ['v2.1.0"]
acting on a O0—block of M1
noise off # G preparation network, noiseType = none
measure temp0O,qal_5 # acting on a 0—block of M.1
if temp0 noise off
x qal.b measure tempO.v2_1.0
noise on if tempO
id qal.5 x v2_.1.0
#G ACTING ON [’ qal.6 "} noise on
#G ACTING ON ['v3.1.0")
G preparation network, noiseType = none
acting on a O—block of M.l # G preparation network, noiseType = none
noise off # acting on a O—block of M.l
measure tempO,qal_6 noise off
if tempO measurc tempO.v3.1_-0
x qal_.6 if tempO

136

noise
id
id
id
id

cz
cz
cz
cz
wl
wl
wl
cz

cz

wl
wl
wl
wl
wl
wl
mecasure
mecasure
measure
measure
wil
wl
wl
wl

wl

v3.1.0
on
v0.1.0
v1.1.0
v2.1.0
v3_.1.0
v0.1.0
v1.1.0
v2_.1.0
v3.1.0
v0.1.0
v1i_.1.0
v2.1.0
v3.1.0
qal-.4
qal.5
qal.6
v0_.1.0
v1.1.0
v2.1.0

v3.1.0,

qal-0
qal-1
qQal-2
qal.3
v0_.1.0
v1_1.0
v2_.1.0
v3_1.0
qal.0
qal.l
qal_2
qal.3
v0_1.0
v1_1.0
v2_.1.0
v3.1.0
qal-0
qal_1
qal_-2
qal-3
v0.1_0
v1.1.0
v2_1.0
v3_.1.0
qal_0
qal-1
qal_2
qal-3
qal_-4
qal_-5
qal.6
tempO .
templ,
temp2,
temp3 .
qal.0
qal.l
qal.2
qal.3
qal.4

,qal_0
.qal.l
.qal._2
,qal_3

,qal.5
.qal_4

qal_6

,qal_6
.qal_4
,qal_b

,qal_6

,qal_b
vqal._.4

v0_.1_0
v1l.1.0
v2_1.0
v3.1.0

137

2

(

wl qal-5
wl qal_-6
set v,tempO
or v,v,templ
or v,v.temp2
or v.v,temp3
if v
jump prepare.until_5
wl qal-0
wl qal.l
wl qal_.2
wl qal-3
wl qal_-4
wl qal.b
wil qal.6
wl qal.0
wl qal_l
wil qal.2
wil qal.3
wl qal.4
wl qal.d
wl qal.6
wl qal._0
wl qal_1l
wl qal_2
wl qal_.3
wl qal_4
wl qal._5
wl qal_6
wl qal_-0
wl qal_l
wl qal_2
wl qal_3
wl qal_4
wl qal_d
wl qal.6
wl qal_0
wl qal.l
wl qal_2
wl qal.3
wl qal_4
wl qal.d
wl qal_6
wl qal_0
wil qal_-1
wl qal_2
wl qal.3
wl qal_4
wl qal.b
wl qal_6
#S ACTING ON [{'qd.0.0"], ['qd-0-1"}, [qd-O.
"1, {7qd.0-37], ['qd-0-47], ['qd.0.5"],
qd-0-6 ']} [['qal-0"]. ['qal-1"]. [qal.2
‘1. ["qal87), ['qal 4], ["qals’]. [T
qal._6']]
#
S syndromec extraction network
acting on a l1—block of M.l
cz gqal.0,qd-0_0
cz qal_-1,qd-0_-1
cz qal_.2,qd_0.2

cz gqal.3,qd-0_3
cz qal_4,qd.0.4
cz qal.5,qd.0.5
cz qal_6.qd_0.6
h qal_.0
wl qd_0.0
h qal-1
wl qd-0_1
h qal.2
wl qd_0.2
h qal.3
wl qd-0_3
h qal_4
wl qd-0_4
h qal_5
wl qd-0.5
h qal_.6
wl qd-0_6
measure sec0.gal_0
wl qd-0.0
measure sel ,qal_1l
wl qd-0_1
measure se2,qal.2
wil qd_0.2
measure se3 .qal_3
wil qd_0.3
measurec sed ,qal-4
wl qd-0_4
measure scb,qal_b
wl qd-0.5
measure seb,qal_6
wil qd_0.6
set xs02,se0
Xor xs02, xs02 ,se2
Xor xs02,xs02, sed
Xor xs02,xs02,s¢e6
set xs12.scl
xXor xs512,xs12,s8€e2
Xor xs12,xs12,seb
Xor xs12,xs12,s¢e6
sct xs22 ,se3
xXor xs22,xs822,se4
xor xs22,xs22,seb
xor x522,xs22,s€6
#FIND BEST SYNDROME
#
set not_gucssed_0,1
set not-guessed_1,1
set not_guessed_2,1
#GUESSING SYNDROME 0
#
label guess_0_1
set guess_s0 ,xs00
set guess.sl,xs10
set guess_s2,xs20
set not_guessed_0,0
set number_of _matches_1,1
set number_of_matches_2,0
jump compare-with_.all_.syndromes.1
#GUESSING SYNDROME 1
#

#

138

label
sct
sect
sct
set
sct
set

jump

guess.1_1
guess.s0,xs01
guess.sl , xsll
guess.s2,xs21
not_guessed.1.0
number_of_matches_1,1
number_of _matches_2,0

compare-with_all_syndromes_1

#COMPARE GUESS WITH ALL UNGUESSED SYNDROMES

label
if
jump
label
if
jump
label
if
jump

jump

label
sct
xor
xor
and
xor
Xor
and
xor
Xor
and
xor
if
jump
sct
and
set
and
set
if
jump

jump

label
sct
xor
Xor
and
xor
xor
and
xXor
xor
and
xXor
if
jump
sct
and

sct

compare.with_all_syndromes_1
not_gucssed_1

compare-to_1.1
compared.to_1_1
not.guesscd.2

compare_to_2_1
compared.to.2_1
not_guessed-1

guess_.1_1

error_corrected_1

#COMPARE GUESS TO SYNDROME 1

compare-to.1.1

match,1

match_temp, guess_s0,xs01
match_.temp ,match_temp,1

match , match, match_temp
match_temp, guess_sl,xsll
match_temp,match_temp,1
match,match, match_temp
match_temp, guess_.s2 ,xs21
match_temp ,match_temp,1

match, match, match_temp
match_temp,match,1

match.temp

compared.to_1.1

not.guessed_1,0
match_temp,number.of_matches.1,1
number_of_matches.2 , match_temp
match_temp,number.of_matches_0.1
number_of_matches_-1 , match_temp
number_of_matches_.2
found_best_syndrome.1

compared_to-1_1

#COMPARE GUESS TO SYNDROME 2

compare-to.2.1

match,1

match_temp, guess_s0,xs02
match_temp, match_temp .1
match,match, match_temp
match_temp, guess.sl ,xs12
match_temp, match_temp.1
match, match, match_temp
match_temp,guess_s2 ,xs22
match_temp, match_temp,1
match . match, match_temp
match_temp,match,1
match_temp
compared_-to-2_1
not_gucssed-2.0
match_temp.number_of.matches_1,1

number_of_matches.2 ,match_temp

and
sct
if
jump
jump
label

match_temp, number_.of_matches_0,1
number_of_matches-1.match_temp
number_.of.matches.2
found_best_syndrome_1
compared_to-2_.1

found.best_syndrome.1

#ERROR CORRECTING X

#
if
jump
if
jump
if
jump
jump
label
if
jump
if

jump

wl

wl

wl

wl

wl

wl

jump
label
if

jump

wil

wl

wl

wl

wl

wl
jump
label

wl

wl

wl

wl

wl

wl

jump
label
if

jump

wil
wl
wl
wl
wl
wl
jump
label

guess_s2
correct_lxx-.1
guess-sl
correct.0lx_1
guess.sO
correct.001.1
error-.corrected.1
correct_lxx-1
guess_sl
correct_11x.1
guess.s0
correct_101.1
qd_0-3

qd-0_-0

qd-0-1

qd_0_-2

qd-0-4

qd_-0.5

qd.0_6
error_corrected_1
correct_0lx-1
guess_s0
corrcct_011.1
qd-0-1

qd-0-0

qd-0-2

qd-0-3

qd-0_-4

qd-0-5

qd_0-.6
error_corrected.1
correct_001_1
qd.0-0

qd-0-1

qd_0.2

qd-0-3

qd.0-4

qd-0-5

qd .0-6
error_corrected.1l
correct-11x-1
gucss_s0
correct_111.1
qd.0-5

qd_0.0

qd-0-1

qd._-0.2

qd.0.3

qd.0_4

qd_0.6
error_corrected_1
corrcct_101_1
qd.0_.4

139

wl
wl
wl
wl
wl
wl
jump
label

wil
wil
wl
wl
wl
wl
jump
label

wl

wl

wil
wl

wl
jump
label

qd-0-0
qd-0_1
qd_0_2
qd_0.3
qd-0_5
qd_0_6
error_correccted-1
correct_011.1
qd.0_2
qd-0-0
qd-.0-1
qd-0.3
qd-0-4
qd_0.5
qd_-0_.6
error_corrccted.l
correct_111.1
qd_0.6
qd_0_.0
qd-0.-1
qd-0_2
qd.0.3
qd-.0_4
qd_0_5
error.correccted-1
no-ec-nceded_1
qd-.0_0
qd.0-1
qd-0_2
qd_0_3
qd.0_4
qd_0.5
qd_0.6
qd_0.0
qd_0_1
qd_0.2
qd-0-3
qd_0_4
qd.0.5
qd-.0_6
qd-.0_0
qd-0_1
qd_0_.2
qd.0_3
qd.0_4
qd_0.5
qd_-0-6
qd-0.0
qd_0_1
qd.0.2
qd_0.3
qd-0_-4
qd.0.5
qd-0_6
qd-0_0
qd.0_1
qd-0.2
qd.0.3
qd.0_4
qd-0.5
qd.0.6

#

wil qd-0-.0

wl qd-0_1
wl qd-0_2
wl qd_0-3
wl qd.0_4
wl qd_0.5
wl qd-0_-6
label crror.corrected_1
id qd_0_.0
id qd-0_1
id qd.0-2
id qd_0.3
id qd-0-4
id qd_0_5
id qd_-0.6

counter_bottom.id_gate_.count

xor full_add_xorab ,1,
count_id.gatc.count_2

and full_add.andab 1,
count_id.gate.count.2

and full_add_-andcxorab ,
full_add_-xorab ,0

xor count_id.gatc.count.2 .0,
full_add_-xorab

or countertemp-id.gate_count,
full_add-andab . full_add_.andcxorab

xor full_add_xorab ,0,
count_id-gatc.count_1

and full_add.andab ,0,
count_id.gate.count.1l

and full_.add-.andcxorab ,
full_add_xorab .,
countertemp_id.gate.count

xor count_-id-.gate.count.1l,
countertemp_id_gatec.count,
full.add_-xorab

or countertemp_.id_-gate.count,
full_add_andab , full_add.andcxorab

xor full_add_.xorab ,0,
count.id_gate_count_0

and full_.add_-andab ,0,
count_id_gate.count.0

and full.add.andcxorab ,
full_add_xorab,
countertemp-id-gate_count

xor count.id.gate_count.0,
countertemp.id_gate_count,
full.add.xorab

or countcrtemp-id_gate.count,

full.add-.andab, full_.add-.andcxorab

jump countertop.id_gate_count
label counterbottom_id.gate_count
noise off

subset magic,7,qd-0.0,qd_0_1,qd-0_2,

qd-0_3.9d-0.4,9d.0.5,qd-0.6.—
2772272727, 1IIXXXX , IXXIIXX , XIXIXIX ,
11122227 , 1221122 .~ Z1Z121Z

if magic
halt
subset magic.7,qd-0.0.9d-0_.1,qd_0.2.

EOF

qd.0.3,qd-0.4,qd.0-5,qd_0-6.—-
7222227, MIIXXXX , IXXIIXX , XIXIXIX,
1112227 ,~1ZZ1122 ,Z1Z121Z

if magic
halt
subset magic,7,qd-0.0,qd-.0_-1,qd.0_2,

qd-0.3,9qd-0.4,qd-0.5,qd_0_-6,—
2727222727, HIXXXX , IXXIIXX . XIXIXIX ,
1112222 ,—12Z112Z ,~21Z121Z

if magic
halt
subset magic,7,qd-0.0,qd-0-1,qd.0.2,

qd-.0.3,qd.0.4,qd.0.5,qd_0.6,—~
27722277, IIXXXX , IXXIIXX , XIXIXIX,—
1112227 1221122 , Z1Z1Z12

if magic
halt
subset magic.7,qd-0.0,qd-0-1,qd-0.2,

qd.0.3,qd-0-4,qd-0-5,qd.0-6,—
27222777, IIIXXXX , IXXIIXX . XIXIXIX,—
1112222 ,1ZZ21122 ,— Z1Z1Z1Z

if magic
halt
subset magic,7,qd-0.0,qd-0-1,qd-0_2,

qd-0.3,qd-.0-4,q9d.0.5,qd_.0.-6,—
227272222, 1IIXXXX , IXXIIXX |, XIXIXIX .~
1112227 ,—12Z1122 ,Z1Z1212

if magic
halt
subset magic,7,qd-0.0,qd-0_-1,9d-0_2,

qd-0.3,qd.0-4,qd.0_5,qd.0_6,—
272277227, IIIXXXX , IXXIIXX . XIXIXIX,—
1112227 ,—-1Z22112Z2 ,- Z1Z1Z12

if magic

halt

140

Bibliography

1

[4]

[7]

S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys.

Rev. A, 70:052328, 2004. arXive e-print quant-ph/0406196.

D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with con-
stant error. Proceedings of the 29th Annual ACM Symposium on the Theory of
Computation, pages 176-188, 1997. arXive e-print quant-ph/9906129.

P. Aliferis, D. Gottesman, and J. Preskill. Quantum accuracy threshold for con-

catenated distance-3 codes. Unpublished, 2005. arXive e-print quant-ph/0504218.

A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist.
Phys. Rev. A, 54(2):1098-1106, 1996. arXive e-print quant-ph/9512032.

A. Cross. Synthesis and evaluation of fault-tolerant quantum computer architec-

tures. Master’s thesis, Massachusetts Institute of Technology, 2005.

D. Deutsch. Quantum computational networks. Proceedings of the Royal Society

of London, 425:73-90, 1989.

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by
adiabatic evolution. Unpublished, 2000. arXive e-print quant-ph/0001106.

D. Gottesman. Stabilizer codes and quantum error correction. PhD dissertation,

Caltech, 1997. arXive e-print quant-ph/9705052.

[9] A. Kitaev. Quantum computations: algorithms and error correction. Russian

Math Surveys, 52:1191-1249. 1997.

141

[10]

[15]

[17]

[20]

E. Knill and R. Laflamme. Concatenated quantum codes. report LAUR-96-2808,
LANL, 1996. arXive e-print quant-ph/9608012.

E. Knill, R. Laflamme, and W. Zurek. Resilient quantum computation: Er-
ror models and thresholds. Science, 279(5349), 1998. arXive e-print quant-
ph/9702058.

M. Nielsen and I. Chuang. Quantum computation and quantum information.

Cambridge University Press, Cambridge, England, 2000.

J. Preskill. Reliable quantum computers. Proc. Roy. Soc. Lond. A, 454:385-410,
1998. arXive e-print quant-ph/9705031.

J. Preskill. Fault-tolerant quantum computation. In H. Lo, S. Popescu, and
T. Spiller, editors, Introduction to quantum computation and information. World

Scientific Publishing Company, 2001. arXive e-print quant-ph/9712048.

R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum
computation on cluster states. Phys. Rev. A, 68:22312, 2003. arXive e-print
quant-ph/0301052.

B. Reichardt. Improved ancilla preparation scheme increases fault-tolerant

threshold. 2004. preprint arXive e-print quant-ph/0406196.

P. W. Shor. Scheme for reducing decoherence in quantum computer memory.

Physical Review A, 52(4):2493-2496, 1995.

A. Steane. Error-correcting codes in quantum theory. Phys. Rev. A, 52:2493,
1995.

A. Steane. Overhead and noise threshold of fault-tolerant quantum error correc-

tion. Phys. Rev. A, 68(042322), 2003. arXive e-print quant-ph/0207119.

A. Steane. Fast fault-tolerant filter for quantum codewords. 2004. arXive e-print

quant-ph/0202036.

142

[21] K. Svore, B. Terhal, and D. DiVincenzo. Local fault-tolerant quantum compu-

tation. To appear in Phys. Rev. A, 2005. arXive e-print quant-ph/0410047.

[22] C. Zalka. Threshold estimate for fault tolerant quantum computing. Unpublished,
1996. arXive e-print quant-ph/9612028.

143

