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Abstract

The role of hydrogen in chemical vapor decomposition (CVD) of C2H4 for growth of
carbon nanotubes (CNTs) was investigated. Fe/A1203 (1/10 nm) catalyst layers were
used for growth on Si substrates and the times at which H2 was introduced during the 40
minute temperature ramp, 15 minute annealing (without C2H4), and 15 minute growth
(during which C2H4 was flowing) stages was varied. When H2 was introduced before
heating, CNTs grew to a length of -0.3 mm. However, CNT growth was severely
suppressed when H2 was introduced at different points during temperature ramp.
Recovery of CNT growth was observed when H2 was introduced during the annealing
and growth stages. Under optimum conditions, a -Imm-thick carpet of CNTs could be
obtained. The chemical state and morphology of the catalysts as a function of the time of
H2 introduction were examined using XPS and AFM, respectively. We found that the as-
deposited state of Fe was an iron oxide, due to reaction with 02 in the atmosphere, and
that the H2 reduced the iron oxide to different oxidation states, depending on the time of
H2 introduction. AFM inspection showed that surface roughness could also be correlated
with areas of vertical CNT growth. A preliminary model for CNT growth in which the
oxidation state of iron determines its catalytic activity is proposed, and it is argued that
the effects of H2 seen in this study are the result of the interplay of H2 reduction and
oxidation associated with a low partial of 02 in CVD gases.
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Chapter 1

Introduction

Carbon nanotubes (CNTs) are graphene sheets rolled into tubes ranging from 0.8

nm to 200 nm in diameter. Since their discovery in 1991 by Iijima, carbon nanotubes

have generated a large amount of interest [ 16]. They have been identified as ideal

components for use in biosensors, field emission displays, nanoelectronics, and hydrogen

storage devices. CNTs' unique properties account for this applicability: CNTs have high

electronic conductivity, thermal conductivity, and great mechanical strength along their

axis, which depend on their diameter, length, chirality, and twist. However, currently

major obstacles are present in the application of carbon nanotubes. Specifically, the

exact growth mechanism of CNTs and their resulting properties are not yet well

understood. Hence, there has been an ongoing effort to understand the growth of CNTs.

Our work especially focuses on CNTs directly grown from a catalyst on a substrate using

a method called thermal chemical vapor deposition (CVD). This method was utilized in

our study because CNTs directly attached to a substrate presents an additional advantage

for applicational use since these CNTs do not require additional adhering steps to a

substrate. Here we examine the chemical state and morphology of the catalyst, which

induces growth of CNTs, to propose a model for the growth of CNTs from a metal

catalyst.
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Chapter 2

Background Theory

2.1 Carbon Nanotube: Characterization

The defining characteristic of a carbon nanotube is its structure. A carbon

nanotube is crystalline graphite, which forms a cylindrical structure based on a hexagonal

lattice of carbon atoms. A two dimensional structure of a carbon nanotube is shown in

Figure 1. The properties of a carbon nanotube depend on its chiral angle and diameter.

Based on chirality, there are three types of carbon nanotubes: zigzag, armchair, and chiral

(Figure 2). These three types are described by their (n, m) values. Armchair nanotubes

are formed when n = m with a resulting chiral angle of 30°, and zigzag carbon nanotubes

are formed when either n or m is zero with a resulting chiral angle of 0°. All other

nanotubes are known as chiral nanotubes and have chiral angles between 0° and 30°. The

chiral angle can be calculated by Equation (1).

(1) Chiral Angle = tan'l(v3n/(2m + n))

Figure 1. Carbon nanotube formation. Two Dimensional [151
The chiral vector, Ch = nal + ma 2, is shown on this hexagonal lattice where al and a2 are unit vectors, and n
and m are integers. The chiral angle, q, is measured relative to the direction defined by il. To form the
nanotube, this cell is rolled up so that O meets A and B meets B', and the two ends are capped with half of a
fullerene molecule [15].
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Figure 2. Three different types of carbon nanotubes 1151.
A (5, 5) armchair nanotube, a (9, 0) zigzag nanotube, and a (10, 5) chiral nanotube are shown from top to
bottom, respectively. The n and m values determine the diameter of the tube [15].

Chirality also determines electrical conductivity. A metallic (n, m) carbon nanotube

forms when n - m = 3q, where q is an integer. Therefore, all armchair nanotubes are

metallic, and a third of zigzag nanotubes are metallic. The other remaining CNT types

are semi-metallic. In theory, a CNT can carry an electron current a thousand times

greater than silver or copper.

Another important characteristic of a carbon nanotube is its diameter. The diameter

is one fourth of the length of its chiral vector, and can be found by Equation (2),

(2) dt = (v/3/p)aC.c(m2 + mn + n2)1/2

where ac is the distance between neighboring carbon atoms in a flat sheet. As a result,

two types of carbon nanotubes may form: single walled carbon nanotubes (SWNTs) and

multi-walled nanotubes (MWNTs).

MWNTs are composed of multiple layers of graphene sheets rolled in on

themselves. Two model of structure have been proposed for MWNTs: the Russian Doll

and the Parchment. In the Russian Doll model, multiple graphene sheets are rolled in

concentric cylinders; in the Parchment model, a single graphene sheet is rolled in on
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itself. The other kind of CNT is a SWNT, which consists of one cylinder and has a

diameter of around 1 nm. They exhibit important electronic properties, which the

MWNTs do not possess. As a result, SWNTs are the most attractive candidates for

microscale and nanoscale electronics.

Other properties of carbon nanotubes include thermal conductivity and high tensile

strength and elasticity. Carbon nanotubes have very good thermal conductivity along its

axis known as "ballistic conduction." Ballistic conduction allows electrons to move

through materials without collisions. Finally, the sp2 covalent bonds of carbon nanotubes

render it one of the strongest materials known today. The tensile strength of carbon

nanotubes has been reported to be greater than 63 GPa, and the elastic modulus on the

order of 1 TPa.

2.2 Growth Systems

A number of methods have been developed to grow carbon nanotubes including

laser ablation, arc discharge, thermal chemical vapor deposition (CVD), and plasma

enhanced chemical vapor deposition (PECVD). Arc discharge, one of the easiest

methods for CNT production, utilizes arc vaporization of carbon rods at the two ends.

An alternative process, laser ablation, also involves laser vaporization. The advantages

of these two systems are that they are fairly simple. In addition, the arc discharge method

can produce CNTs in bulk quantity. For nanoelectronic applications, however, the arc

discharge and laser ablation methods are not efficient for CNT growth; for devices such

as field emission and other templated electronics, controlled growth is needed, which is

much easier in CVD. CVD also provides high throughput, allows for direct growth on a

desired substrate unlike the first two methods, and results in uniform growth. Thus,

10



chemical vapor deposition is the preferred method and has been used mainly to grow a

variety of structures which can be patterned and manipulated frequently in design.

There are two types of chemical vapor deposition techniques, PECVD and

thermal CVD. PECVD uses a high temperature substrate and plasma, which is called

glow discharge, to facilitate decomposition of the precursors to enable growth of CNTs at

lower temperatures. Thermal CVD systems utilize only heat to decompose the precursors

so that higher temperatures are required than in PECVD. For the heat source, there are

two main options: a cold-wall CVD system, which has a cold wall and hot substrate, or a

hot-wall CVD. Also, in a thermal CVD system, catalysts, commonly metals such as Co,

Ni, or Fe, are deposited via thermal or e-beam evaporation or via spinning of a liquid

solution of particles, onto a substrate. Gases are then flown through a heated tube at 700

- 1000°C. A hydrocarbon gas or carbon monoxide is a requirement for induction of CNT

growth on the catalyst. In our system, we used thermal CVD with a resistively heated

furnace.

In CVD, CNT growth based on diffusion models involves gas molecules, which

decompose on the surface metal particles, and the resulting carbon diffuses into the

catalyst [17]. Upon catalyst carbon saturation, carbon solute precipitates on the particle

surface as crystalline graphite, forming a carbon nanotube.
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Figure 3. Assembly Methods 1201
Tip growth is seen with carbon from an acetylene hydrocarbon gas source (left). In tip growth, the catalyst
floats on top of the CNT and in base growth the catalyst remains at the bottom. Carbon nanotubes may be
grown separately and then place by chemical, field, or flow direction (right).

CNTs are generated through tip growth or base growth of the catalyst. During tip

growth, the catalyst particles are detached from the substrate and move to the top of the

growing CNTs, while in base growth, the catalyst stays at the base of the CNTs during

growth, as shown in Figure 3. Tip growth is mostly seen with PECVD and with thermal

CVD using catalyst-support powders. In contrast, base growth is seen with thermal CVD

using catalysts on plain substrates [17]. Also, certain metal catalysts are specifically

associated with either tip growth or base growth.

2.3 Hydrogen's Role in Pretreatment and During Growth

In the growth of carbon nanotubes, it is clear that hydrogen is an essential element

having been implicated in a number of surface morphology changes of the catalyst. Wen

et al. claimed that hydrogen treatment is a time dependent process, producing a number

of different surface morphologies using a Co-Si catalyst [2]. With a long period of H2

12
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pretreatment, they showed that nanoparticles tend to agglomerate to reduce surface

energy. However, initially the particles decrease in size before agglomerating into a

larger one. Hence, there is a relationship between the particles with H2 pretreatment and

carbon nanotube growth, as low density of CNT occurs with no H2 pretreatment. An

optimal amount of H2 pretreatment was also noted as too long a treatment started to

decrease the yield of CNTs.

Another strong reductive gas NH3 has been suggested to have a similar role as H2.

NH3 pre-treatment may be a precursor for the growth of vertically aligned carbon

nanotubes. Using a Co-Ni alloy catalyst, Lee et al. demonstrated that controlling the

domain density of the catalyst by HF dipping and dry etching with NH3 gas prior to

growth was crucial in the growth of CNTs during CVD [4]. This process caused the

carbon nanotubes to grow vertically due to steric hindrance of the CNTs. In the absence

of NH 3 pretreatment, a low density of CNTs resulted; thus they concluded that both HF

and NH3 were necessary for vertical growth of CNTs. Since the reductive role of H2 has

been shown to be extremely important in the formation of carbon nanotubes, we

evaluated this by time differences in H2 exposure during annealing phase for our

experiment.

The activity of hydrogen with the hydrocarbon gas has also been shown to be

important. An optimal ratio of a hydrocarbon gas such as methane to hydrogen has been

reported by Xiong et al [8]. They showed that methane molecules decompose during

interaction with the catalyst particle surface, resulting in the dissolving of carbon into the

catalyst. Then, the carbon has the option to diffuse onto the surface or through the

catalyst particle, Fe-Mo, when supersaturation is reached. The growth of the CNTs
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begins when precipitation of the carbon occurs on the surface, which is exposed to

reactant gases. Xiong speculated that when the concentration of the carbon source,

methane, is too high, there is an overabundance of decomposition and not enough

precipitation, resulting in amorphous carbon and crystalline formation. Therefore, H2 is

essential for growth because it maintains the activity of the Fe-Mo catalyst. When H2 is

not present, CNT growth is stemmed and few CNTs grow, but when H2 is supplied at an

optimal ratio, the catalyst activates decomposition, diffusion, and precipitation, which

optimize their growth rate. Hence, too much hydrogen tends to curb growth while too

little hydrogen may not activate sufficient growth.

Though much research views H2 favorably, not all literature points to H2 as a

beneficial gas in obtaining carbon nanotubes. Recently, Zhang et al. have shown that

hydrogen radicals can be detrimental in the growth of carbon nanotubes when introduced

with CH4. In PECVD, using a Fe catalyst on a Si/SiO2 layer, they showed that 02 can

spurt growth and align SWNT vertically. Not only does 02 affect CNT during the growth

stage, it plays an extremely important role in the initial nucleation stage. In this study, H

radicals may be etching the CNT, and a hydrogen rich environment may not favor SWNT

growth. A PECVD system was utilized for their main results because a PECVD system

can create many more hydrogen radicals. As a result, the differences in the effect of H2

were more visible in the PECVD system than in the thermal CVD system.

2.4 Chemical State of the Fe Catalyst

Although thermal CVD has been investigated to a great extent, there is still a lack

of knowledge on the exact chemical growth mechanism of CNTs. The catalyst chemical
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state is believed to be one of the critical parameters in growth. For instance, Park et al.

showed that Fe nanoparticles are easily oxidized to Fe20O3 after synthesis of CNTs, but

they suggested that pure and liquid Fe is the actual chemical state of the catalyst during

CNT growth [3]. Fe is reduced during growth due to the introduction of NH 3 but

oxidizes into Fe20 3 during the cooling stage. They also noted that pure Fe is oxidized in

normal atmospheric conditions, and the beginning state is almost always Fe203.

Furthermore, the inert gas, nitrogen, flown during the cooling phase may not have been

inert and pure enough to prevent Fe oxidization after growth.

In another paper by de los Arcos et al. [5], they showed that one of the most

important parameters in the growth carbon nanotubes is the catalyst and the catalyst-

substrate interaction; therefore, the catalyst's chemical state becomes critical in the

formation of the CNT type. Specifically, they addressed the state of Fe, FeO, and Fe2 03

as catalyst for nucleation of CNTs. Using in-situ XPS, de los Arcos determined that the

chemical state of Fe in a Fe/A120 3 catalyst buffer system was Fe2 03 during annealing.

After the CVD process, the catalyst changed to FeO. For catalyst morphology, they

claimed that interaction between the substrate and the catalyst affected the morphology of

the particle. Since the oxidation process at the interface of catalyst and alumina substrate

was extremely strong, Fe mobility was severely curbed in the alumina buffer system.

Therefore, the fact that the particles remained oxidized even after acetylene, C2H2, was

present showed that oxidation was strong, and that the Fe was chemically bound to the

alumina substrate (A120 3). de los Arcos tested three different substrate interactions:

A120 3, TiN, and TiO2. Out of the three buffers examined, the original Fe catalyst

particles were the smallest on the A1203, resulting in a two times smaller diameter CNT

15



compared to the other two. On the TiO2 and TiN buffer layers, FeO and Fe were the

dominant catalyst states during annealing and after CVD. Hence, the oxidation state of

Fe might be related to the size of the catalyst particle and the nanotube grown. FeO

particles promoted a fast dense growth of thin CNTs, while Fe particles promoted

MWNT growth with higher quality but less vertically aligned tubes. In our study, to

monitor the chemical state of Fe, XPS was utilized to elucidate hydrogen's role in CNT

growth.

To further the study of catalyst state on the growth of CNTs, recently SWNTs

have been grown at temperatures as low as 350°C by CVD. Cantoro et al. showed that

using C2H2 and NH 3 or H2 facilitates the catalyst nanostructure of Fe and Al/Fe/A1 prior

to growth, allowing early nucleation of SWNT at a lower temperature. They concluded

that catalyst surface is the most important factor in the formation of carbon nanotubes.

The NH3 or H2 introduction "reduces initially oxidized Fe and facilitates surface mobility

of metal atoms and clusters" [10]. In addition, NH3pre-treated catalysts were shown to

have smaller catalyst diameters than vacuum annealed samples.

2.5 Chemical Morphology: Size

Finally, another parameter examined in our study that affects CNT formation was

the catalyst morphology, especially its size. According to Homma et al. [6], there were

noticeable differences in size when Fe catalysts and Fe20O3 catalysts of the same size were

employed in the growth of CNTs. The Fe catalysts generated a mix of thick and thin

CNTs, but the Fe203 catalysts generated thick carbon nanotubes. These differences were

attributed to the size of the particle. The Fe was observed to agglomerate when viewed

by AFM after CNT growth, but the Fe20 3 particles remained relatively small. They
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claimed that the Fe particles tended to melt and agglomerate, creating larger particles

than the original size of the catalyst. Hence, the non-agglomerating characteristic of

Fe20O3 facilitates growth of thin CNTs.

In our study, to further elucidate the role of the catalyst in the growth process of

carbon nanotubes, a thermal chemical vapor deposition (CVD) system was utilized to

study the growth of CNTs on a Fe/A120 3 catalyst substrate system. Two important

considerations in the characteristics and the abundance of carbon nanotubes generated are

catalyst and precursor gases utilized. Specifically, it has been shown that hydrogen

pretreatment, the chemical state of the catalyst, and the morphology of the catalyst are

extremely important. Hydrogen is utilized as a strong reductive gas in pre-treatment

before growth is initiated, but its exact role has yet to be determined. Also, its effects on

the catalyst chemical state and morphology are largely unknown.

As such, the goal of this experimental design is to demonstrate the effect of the

timing of hydrogen gas introduction on the catalyst chemical state and morphology. We

utilized a constant growth scheme of heating, annealing, and growing. By varying the

introduction of hydrogen, clear differences in the chemical state of the catalysts, the

morphology of the catalysts, and the type of CNTs, were produced. We found that

hydrogen led to a morphology change that was quite different when introduced during the

initial heating, the annealing, and the growth stages, leading to differences in nucleation

and growth of CNTs. Scanning Microscopy (SEM) was used to monitor the quantity of

CNTs by height of CNTs grown, Atomic Force Microscopy (AFM) to examine the

catalyst morphology, and X-ray Photoelectron Spectroscopy (XPS) to determine the

catalyst chemical state.
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Chapter 3

Experimental Procedure

To determine the effects of H2 on the growth of carbon nanotubes (CNTs), we

relied on a catalyst system, which consisted 1 nm Fe deposited on 10 nm of A10O3. These

samples were prepared by electron-beam evaporation, in which Fe and A1203 were

evaporated onto Si (100) substrate wafers. For the growth of carbon nanotubes, thermal

chemical vapor deposition (CVD) was the chosen growth method, using H2, C2H4, and Ar

gases. From our previous studies, this set of gases produced dense growth of CNTs on

this catalyst substrate system.

3.1 E-beam Evaporation

Using electron beam evaporation, a catalyst film with 10 nm of A1 2 0 3 and 1 nm Fe

was deposited using a Temescal VES-2550 with a FDC-8000 film deposition controller

in a single pump down system. The substrates were 6-inch (100) silicon wafers (p-type,

1-10 cm, Silicon Quest International), which were cleaned by a "piranha" consisting of

3:1 H2S0 4/H20 2 in solution. During the deposition, a quartz crystal monitor measured

the film thickness, and after deposition the thickness was confirmed by Rutherford

backscattering spectrometry (RBS). The A1203 was deposited by direct evaporation from

a crucible of high-purity crystals.

3.2 CVD Furnace Arrangement

In the CVD chamber, the substrates with the Fe/AI20 3 catalysts were loaded

18



horizontally on an inclined sample holder, which was slightly inclined from the direction

of the gas flow. The CVD chamber consisted of a quartz tube (3.5 cm in diameter) and a

smaller inner quartz tube (2.25 cm internal diameter and 100 cm long) connected to the

gas flows of Ar (99.9995%, Airgas), C2H4 (99.5%, Airgas), and H2 (99.999%, Airgas),

and was placed inside a high temperature furnace (Lindberg/Blue, model 59744-A,

maximum temperature 12000C, 31.5" length, 9" three temperature zones). The CVD

system was equipped with three mass flow controllers (MKS 1179A) as shown in Figure

4.

Mass Flow
Controllers

2.25 cm Q'uart Tube
Figure 4. Experimental Setup of CNT Furnace Chamber. Ar, H2, and C2H4 gas flows are controlled by
automatic mass flow controllers and sent directly into the sealed quartz tube. There are three sections in the
furnace, and the CNTs are grown in section C. All temperatures in the three sections are controlled by a
central automatic system. Finally, gas exits the furnace and tube into a bubbler and then into a safety air
flow hood. A low exit rate from the bubbler signals a leak in the system.

A thermocoupler was located in each of the furnace's three heating zones, called section

A, section B, and section C. The samples were placed in section C, the last segment

before gas flow exited the chamber. The placement of the sample in the chamber was to

provide heated gases to the samples. The airflow exited into a liquid system in which the

rate of flow could be calculated for consistency of all experiments.
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3.3 CNT Growth Conditions

The independent variable, H 2, was introduced at a flow rate of 400 sccm at various

time points throughout the temperature, annealing, and growth stages to compare the

effect of H2 on the catalysts of Fe/AI203. The catalysts on the Si wafer were cleaved into

0.5 cm x 0.5 cm samples for CNT growth. During the ramp stage Ar was flowed, and

depending on the time of H2 introduction, the combined total gas flow in the system was

brought to a constant 600 sccm with Ar. 600 sccm was maintained during the

temperature ramp for all experiments. After the temperature was ramped to 770°C,

which took 40 minutes, the 15-minute annealing stage was started.

During the annealing stage, if H2 was not introduced, the necessary gas flow

changes were made to maintain a constant 600 sccm flow of gas with Ar. Finally, a 15-

minute growth stage followed, when C2H4 was added to the chamber at a flow of 150

scm. The total gas flow in the growth phase was 750 sccm. Ar was again used to

maintain constant partial pressure. Then after completion of growth, the growth phase

was discontinued by stopping the flow of H2 and C2H4 and by cooling the furnace at room

temperature. The Ar was reduced to 20 sccm after two minutes in order to gradually cool

the system and remove the reactant gases. The different time points of H 2 introduction

were the following: at the beginning of ramp, 200°C (4.5 minutes), 4000C (11.5 minutes),

6000C (21 minutes), start of anneal, 5 minutes after anneal, 10 minutes after anneal, 12

minutes after anneal, start of growth, 5 minutes into growth, 10 minutes into growth, 14

minutes into growth, 14.5 minutes into growth, and no H2 introduction. A diagram of the

hydrogen is shown in Figure 5. Two sets of all the trials were performed, one with the

initiation of growth with C2H4 flow and one without exposure to C2H4 for morphology

20
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Figure 5. Experimental Design of Hydrogen Introduction
Hydrogen was introduced at the various points in separate experiments as indicated on the right. The flow
of gases totaled 600 sccm, 600 sccm, and 750 sccm during the temperature ramp, annealing, and growth,
respectively.

analysis of the catalyst by Atomic Force Microscopy (AFM). C2H4, the hydrocarbon, is

necessary to induce growth of CNTs.

3.4 CNTAnalysis by SEM and Catalyst Morphology Analysis by AFM

The nanotubes were analyzed using scanning electron microscopy (JEOL 5910 and

Phillips XL30 FEG-ESEM at around 5keV). The first SEM has a better resolution than

the second: the first has <1.25 nm resolution when operating at 15KV and the second has

a resolution of 3.5nm when operating at 30KV.

For analysis of the catalyst morphology, AFM (Digital Instruments Nanoscope IIIa

/ Dimension 3000 Scanning Probe Microscope) was used in tapping mode on the second
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set of samples prepared without C2H4 exposure. The spring constant was 40 N/m with a

resonance frequency of 300 kHz.

3.5 Catalyst Chemical State Analysis by X-ray Photoelectron Spectroscopy (XPS)

For analysis of the chemical state of the catalyst, the samples were prepared over a

course of two days and analyzed immediately in XPS. There were two sets of

experiments for XPS analysis. One set was used for analysis of the catalyst's surface

before induction of growth by C2H4 . Hence, this set was cooled rapidly by moving the

sample out of the furnace after the 40 minute temperature ramp stage and the 15 minute

annealing stage. The second set of samples was used to examine the chemical state of the

catalyst after the conclusion of the entire CNT growth process. However, C2H4 was not

introduced to any of samples for XPS during growth, as the presence of C2H4 would have

caused CNTs to cover the substrate. Ar was used to keep constant partial pressures in the

absence of C2H4.

The first set of samples prepared for XPS examination, which were cooled rapidly

at the beginning of the growth stage, included the following: Ar only, 400°C H2

introduction, and -15 minutes to growth H2. The second set, which were cooled slowly at

the end of the CNT growth process, included the following: Ar only, 400°C H2

introduction, -15 minutes to growth H2 introduction, and H2 introduction at growth. A

Fe/AI20 3 sample, untreated by heat or reactant gases, was used a control.

An Axis Ultra X-ray Photoelectron Spectrometer (Kratos Analytical) was used for

XPS. The energy position of each spectrum was calibrated with reference to the 1s level

of carbon with a binding energy of 285eV. A monochromatic Al K-alpha source with a
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spectral resolution of 160eV was used to examine the chemical state of the catalyst.
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Chapter 4

Results

4.1 Scanning Electron Microscopy Elucidates the Effect of H2

To determine the interaction of H2 with the catalyst, Fe/A120 3, for initiating

carbon nanotube growth, we examined the growth of CNTs using SEM. A sample with

no H2 during the entire ramp, anneal, and growth stages was used as a negative control.

A sample with H2 present during the entire process was used as a positive control. It was

observed that negative control grew a very thin layer of tangled CNTs, as shown in

Figure 6a and 6b, while the positive control acquired clear covered growth of -. 3mm

vertical CNTs on the substrate, as shown in Figure 6c and 6d.

H2 Introduction during Temperature Ramp

As the temperature ramp process was continued for different samples, H2 was

introduced at 2000 C, 400°C, and 6000 C, as shown in Figure 7. These temperatures were

reached at 4.5, 11.5, and 21 minutes into heating, respectively. When H2was introduced

at 200°C, very little growth was achieved and the substrate was bare to the naked eye. As

the H2 was introduced at 4000 C and 600°C, the growth was curbed with very little CNTs

resulting on these samples. When H2 was introduced at 6000C, CNTs were seen only on

the edges of the substrate.

H2 Introduction during Annealing

For H2 introduction analysis during annealing, the different samples were

introduced to H2 at -15, -10, and -5 minutes prior to growth as shown in Figure 8. The
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6in

6d

Figure 6. SEM Images of CNTs Resulting from Control Conditions.
a-b) A extremely thin layer of tangled CNTs were present when H2 was not introduced. c-d) Carbon
nanotubes were present in a dense "forest" formation when H2 (150 sccm) was present from initial heating
and during whole the ramp, anneal, and growth stages.
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7d17c

7e 7f

Figure 7. SEM of CNTs when H 2 was introduced during temperature ramp.
a-b) Carbon nanotubes were sparsely seen when H2 was introduced at 200°C (4.5 minutes) during
temperature ramp. c-d) When H2 was introduced at 4000 C, the original Si wafer was still clearly visible as
minimal CNT growth occurred. d-f) When H2 was introduced at 6000 C, the center of the substrate did not
show much CNT growth while the edges showed vertical growth of CNTs.
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resulting growth of CNTs at -15 minutes H2 introduction was similar to the CNTs grown

when H2 was introduced at 6000 C during temperature ramp with growth predominantly

on the edges of the substrate, but with CNTs on the edges and "islands" of CNTs in the

center. For H2 introduction at -10 minutes prior to growth (5 minutes into anneal), a

clear change: was observed as the CNTs grew to longer lengths and covered the substrate.

H2 introduction at -5 minutes prior to growth (10 minutes into annealing) showed a clear

carpet of uniform CNTs at a height of- 0.3mm.

H2 Introduction during Growth

With the introduction of H2 at the beginning of growth, initiated by C2H4

introduction, a "dense carpet" of CNTs formed as shown in Figure 9. To summarize thus

far, the growth pattern has gone from covered growth of CNTs to sparse growth to

recovery of covered CNT growth on the substrate with delayed H2 introduction. H2

introduction at -10 minutes prior to growth was the time point at which growth of CNTs

recovered. Hlowever, when H2 was introduced 5 minutes into growth (the catalyst had

been exposed to C2H4 for 5 minutes), the substrates showed remarkable growth as the

height of the: CNTs was -0.5mm and almost completely covered the substrate. In

addition, two types of CNTs were observed. On the outer edges of the sample, the CNTs

were similar to CNTs grown with no H2 as in Figure 6a and 6b. In the center, much

longer vertical CNTs were visible. Also, at the top of the CNTs in the center of the

substrate, a two-layer system developed with a different layer of CNTs analogous in

length and characteristics to those on the outer edges, implicating that the growth at the

top of this two-layer system occurred when only C2H4 was present. 10 minutes after

C2H4 was introduced, H2 flow caused vertical growth of CNTs to lengths of -0.9mm.

27



Rh

Rd

8e 8f

Figure 8. SEM Images of CNTs when H2 was introduced during the 15 minutes of annealing.
a-b) When H2 was introduced at the beginning of annealing (-15 minutes from growth initiation), similar
results were seen as with Fig. 3e and 3f. Growth of CNTs was seen on the outer edges but was minimal in
the center of the sample. c-d) When H 2was introduced -10 minutes from growth initiation, the outer edges
had the same degree of CNT growth, but the center began to show the some "denser" growth. e-f) H2
introduction 5 minutes prior to growth showed a recovery of growth as a the substrate was almost clearly
covered with CNTs.
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9c

9e 9f

Figure 9. SEM of CNTs when H2 was introduced during the growth stage.
a-b) H2 introduced at growth with C2H4 showed clear growth of CNTs. c-d) When H2 was introduced 5
minutes into growth, longer CNTs were observed and the CNTs were more vertically aligned than when H2
was introduced at the beginning of growth. e-f) H2 introduced 10 minutes into growth showed extremely
vertically aligned CNTs and the longest CNTs grown in this study were observed.
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Figure 10. SEM CNTs exposed to 1 minute and 30 seconds of H2.
a-b) At 14 min into growth, H2 was introduced, and a similar carpet was seen as in Figure 2a and 2b.
However, in this Figure, there were bundles of CNTs, which had rapid growth. Even within the 1 minute
of H2 exposure, remarkable height differences occurred. c-d) At 14.5 minutes, H2 was introduced for 30
seconds and similarly as seen in Figure 6a, CNTs started to grow at extremely fast rate as evidenced by the
longer bundles of CNTs dispersed throughout the substrate.
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Compared to the samples exposed to H2 5 minutes into the growth stage, the samples

introduced to H2 10 minutes into the growth stage did not have an outer layer of very thin

CNT growth.

In order to further analyze the effects of the H2 during growth, H2 was introduced

for 1 minute and 30 seconds in separate experiments prior to the completion of growth, as

shown in Figure 10. Even with only 1 minute of H2 exposure, CNTs with lengths of

-0.2mm in certain areas were seen, distributed almost evenly throughout the substrate.

The 30 seconds of H2 flow showed that even 30 seconds of H2 can have remarkable

catalytic type of an effect. "Pillars" of CNTs were seen growing from a very thin layer of

CNTs.

We found two effects of H2: when H2 was not introduced at the beginning of

heating but was introduced during temperature ramp or annealing, the CNTs growth was

not optimal. When H2 was introduced close to the growth phase, then there was recovery

in the growth of CNTs. The complete results are summarized in Figure 11. In order to

correlate these results with catalyst morphology, we examined the catalysts at the same

time points without introduction of C2H4, which induces growth of CNTs.
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Figure 11. Experimental Conditions and CNT Growth Results
Growth was extremely dense when H2 was introduced at the very beginning and was in a period of sparse
growth with H2 introduction during temperature ramp and annealing. When H2 was introduced at growth
with C2H4 or later during growth, long vertically aligned CNTs were observed.

Table 1. Summary of the CNT Heights
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4.2 Catalyst Morphology by AFM

H2 Effect on Catalyst Morphology

The effects of H2 on catalyst morphology can be seen in Figure 12. When the catalysts

were introduced to H2 early during the temperature process at 2000 C, the catalyst

particles were seen at a high density as shown in Figure 12a and 12b. However, as H2

was introduced later, at -15 minutes prior to growth, fewer catalyst particles were seen

but were larger in general than those with early introduction to H2, as shown in Figure

12c and 12d. When H2 was introduced even later at the induction of growth, fewer

catalyst particles were seen but were larger in general, as visible in Figure 12e and 12f.

A summary of the results is shown in Figure 13. Hence, long exposure to H2 caused

reduction of the Fe catalyst, resulting in nucleation into smaller particles and a higher

density of such particles in AFM analysis. Also, when H2 treated catalysts were

compared to, those, which had not been treated to H2, a large difference was observed

(Not Shown). Without any introduction to H2, the catalysts on substrate were relatively

smooth and flat. In order to assess for A120 3 morphology changes, the bare A1203 (15nm

on Si) substrate was also viewed by AFM. These surfaces were relatively smooth, and

there was little variation in height, allowing us to conclude that Fe, not A120 3, particles

exhibit morphology change (Not Shown).
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12c (-15 Minutes - Phase)

12e (At Growth - Phase)

Figure 12. AFM of Fe/ A120 3. a) H2 introduction at 2000C - Phase b) H2 introduction at 2000 C - Height c)
H2 introduction at -15 minutes - Phase d) H2 introduction at -15 minutes - Height e) H2 introduction at
growth - Phase f) H2 introduction at growth - Height. As the exposure to H2 was longer, the samples had a
higher density of particles. In addition, the particles were smaller in diameter. Scan Size - 1 m x 1 [tm
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Figure 13. Summary of AFM of Fe/ A1203 . As the exposure to H2 was longer, the samples had a higher
density of particles, but the particles were smaller in diameter.
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CNT Growth Inducible by Catalyst Morphology

In order to establish a relationship between morphology and growth of CNTs, the

catalysts which were exposed to H2 at 6000C, were examined. On these samples, growth

was observed only on the edges of the sample, but not in the center. To confirm these

findings, AFM was used to examine the morphology at the edges and at the center. The

results showed that on the edges, the catalysts have a rough surface with visible

differences in height as shown in Figure 14c and 14d, while the center of the catalyst had

a much more periodic and smoother surface with heights ranging over a couple of

nanometers as shown in Figure 14e and 14f. Figure 14c and 14d were compared to

Figure 14a and 14b, which exhibited dense growth, as shown in Figure 9c and 9d.
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a-b) +5 minutes H2 introduction showed a morphology for CNT growth. c-d) At the edge of the samples,
where growth of CNTs was seen, there was a clear difference in the catalyst morphology. d-e) In the center,
the sample was smooth and roughness was minimal, but on the edges, there was surface roughness and
variation in height. Hence, growth was initiation on rough surfaces with variations in catalyst height.
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4.3 Chemical State of Catalyst by XPS

In Figure 15, a significant change in the chemical state of the Fe and A12 0 3 of the

catalyst can be followed. XPS analysis of the reference catalyst showed a binding energy

(BE) of 75.4eV at the Al 2p 3/2 peak and 711.2eV at the Fe 2p 3/2 peak, indicating that

Fe began the CNT growth process as an oxidized Fe due to atmospheric presence of

oxygen. The Fe corresponding to 711.2eV is primarily a mixture consisting of Fe203

alpha (71 leV) and Fe304 (711.1eV), or FeOOH (711.15eV). For the state of A120 3, the

initial binding energy was 75.4eV. This higher binding energy indicates that it may be a

combination of AlOx / A120 3.

Fe and A1203 after CNT Growth Cycle Completion

To examine the effects of H2 introduction on the catalyst's chemical state at the

end of the CNT growth cycle, the samples were cooled slowly analogous to protocols

used to grow CNTs but without C2H4. The results, in Figure 15, indicate that the

chemical state of A1203 changed according to the time of H2 introduction. With H2

introduction during temperature ramp, a large decrease in binding energy from 75.4eV to

74.5eV was observed. When H2 was introduced at -15 minutes prior to growth (at the

beginning of annealing), the binding energy of Al changed from 74.5eV (400°C) to

74.2eV, corresponding to A120 3. With later introduction of H2 at growth (74.3eV) and no

H2 introduction (74.4eV), there was only a slight change in binding energy when

examining the binding energies of the catalysts.

For the Fe particle, an increase in BE was seen as a result of reduction. Early

introduction of the H2 changed the catalyst chemical state. However, a decrease in
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binding energy was also seen when H2 was introduced later than -15 minutes to growth.

This could have been a result from limited exposure to H2.

Fe and A1203 after Annealing

For the catalysts which were fast cooled to examine the chemical state of the Fe

prior to initiation of growth, a similar trend was seen. There is an increase in binding

energy examined at Fe2p3/2 with decreasing exposure time to H2. The largest change

was detected between the temperature ramp and the annealing phase introduction of H2.

When H2 was introduced at -15 minutes to growth, the binding energy was 711.7eV at

the Fe2p3/2 peak, corresponding to FeOOH and when H2was introduced at 400°C, the

peak corresponded to Fe30 4 at 711.1 eV. The catalyst with no H2 exposure had a slightly

lower binding energy of 711.6eV than the sample exposed for 15 minutes. For

examination at Al2p3/2, the opposite change in binding energy was observed, compared

to Fe, as binding energy decreased when H2 was introduced during temperature ramp.

The binding energy examined at A12p3/2 when H2 was introduced at 4000 C was 75.2eV,

corresponding to AlOx, and when introduced -15 minutes prior to growth, the peak

corresponded to A12 03 at 74.3eV.

The catalyst state examined prior to growth (fast cooled) and after growth (slow

cooled) had the same binding energy of 74.3eV for Al. For Fe, the measured binding

energies were 711.6eV and 711.5eV for fast cooled and slow cooled, respectively (Figure

16). The similar binding energies of Fe at growth (fast cooled and slow cooled) showed

that the different types of cooling and the additional 15 minutes exposure to H2 for

catalysts, which had not been introduced to H2 before the growth period, did not affect

the catalyst chemical state significantly.

39



15a) Slow Cooled - Catalyst after Growth Period

75.4

S
0)
-

a)
w

:W._
._

m

75.2

75.0

74.8

74.6

74.4

74.2

74.0
Reference 400C -15 Min 0 Min Ar Only

712.0

711.8

711.6

711.4

711.2

711.0

710.8

710.6

15b) Fast Cooled - Catalyst before Growth Period

75.4

0.L_

m-
[JJ

C

.m

75.2

75.0

74.8

74.6

74.4

74.2

74.0
Reference 400 C -15 Min 0 Min

712.0

711.8

711.6

711.4

711.2

711.0

710.8

710.6

Figure 15. XPS of the Fe/AI203
a) Examination of the catalyst at the end of the CNT growth period, which was slow cooled. b) The
catalyst at the beginning of the growth time period. A clear change in BE is seen as Fe is reduced.
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H 2 Introduction during Temperature Ramp and Annealing

Differences were detected in the 400°C and -15 minute samples due to the

additional 15 minutes of heating and exposure to gases during the growth stage. For the

chemical state of Al, we saw that that samples which were fast cooled, did not decrease in

binding energy as rapidly as the samples which were slow cooled, as shown in Figure 12.

For Fe, though the general trend of increase in binding energy was similar for both fast

and slow cooled samples, when the samples were viewed before growth, they did not

have the same magnitude increase in binding energy. The binding energy at 400°C H2

introduction corresponded to Fe3+ / Fe20 3 before the growth phase, but at the end of

growth, the chemical state of the Fe was FeOOH, indicating that greater reduction had

occurred. In addition, analogous results were seen at -15 minutes, but the differences in

binding energies were smaller than at 400°C H2 introduction because fast cooling had a

BE of 711.9eV and slow cooling 711.7eV. These chemical states both corresponded to

FeOOH.

For the Al peak analysis, similar results were also seen. At 400°C H2

introduction, there was a large difference in the state of the sample before the 15 minute

growth period and afterwards. The difference in binding energies became much smaller

in the -15 minutes introduction samples and was minimal when H2 was introduced at

growth. At 400°C H2 introduction, the catalyst had a BE of 75.2eV (AlOx) before

growth (fast cooled) and a BE of 74.5eV (A1203) after growth (slow cooled). At -15

minutes introduction, the BE before growth and after growth was 74.3eV and 74.2eV,

respectively. Both binding energies corresponded to A120 3.
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Figure 12. XPS of the Fe/Al203. Comparison of catalyst before and after growth.
a) For Al, there was a decrease in BE as the Al on the surface was seen to change from a mixture of AlOx /
A12 03 to pure A12 03. b) For Fe, an increase in BE was seen with the reduction by H2. In addition, both
chemical states were the most different during H2introduction at 400 C and -15 minutes.
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The XPS data showed a significant reduction of Fe as H2 was introduced. The

differences became larger when H2 exposure was longer on the catalyst. Most

importantly, the large change in chemical state between 400°C and -15 minute exactly

correlated to time points when CNT growth was hindered. Hence, there is a clear

relationship between the catalyst morphology, the chemical state, and the resulting CNT

growth.
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Chapter 5

Discussion

By varying the time of hydrogen introduction, we have shown that the Fe

catalysts, which induce growth of CNTs, exhibit different morphologies and chemical

states. Therefore, we propose a preliminary model for the growth of carbon nanotubes on

a metal catalyst based on these results.

5.1 CNT Growth Examined by SEM

First, the state of the Fe catalyst is extremely important in achieving carbon

nanotube growth. With changes in the time of H 2 introduction, there were catalyst

differences in morphology and chemical state, which consequently resulted in lower

yields of CNTs with H2 introduction during temperature ramp and higher yields of CNTs

with H2 introduction during growth. When H2 was present from the beginning of growth,

AFM and XPS analysis confirmed that the Fe catalyst was morphologically and

chemically distinct than when H2 was introduced during each of the three stages of CNT

growth: temperature ramp, annealing, and growth initiated by C2H4.

SEM analysis of the CNTs when H2 was introduced for one minute and 30

seconds just before end of the growth cycle confirmed that H2 is a crucial element for

rapid growth of carbon nanotubes. Even with such short periods of exposure to H2,

"columns" of carbon nanotubes were observed as shown in Figure 10 Oa and 10b. The thin

layer of CNTs beneath the "columns" on these substrates exactly resembled the CNT

growth with no H2 exposure. Hence, we believe that H2 may play a role in optimizing the

rate of carbon decomposition, diffusion, and precipitation in the formation of a carbon
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nanotube. It has been reported by Xiong et al. that an optimal ratio of H2 to hydrocarbon

gas exists [8]. Hence, the presence of H2, even for such short periods, optimized the ratio

of H2:C2H4 resulting in rapid growth. This phenomenon could be addressed with future

experiments by changing the amount of H 2 introduced during these short periods.

5.2 Catalyst Morphology

In our study by AFM analysis, we observed that increasing the time of H2

exposure caused the catalyst particles to become smaller and more distinct so that the

particle densities per unit area were increasing. Changes in the height of the catalysts

were also observed when compared to catalysts without heat or gas treatment. If a one to

one correlation between a catalyst particle and a CNT were assumed in the context of a

diffusion based growth model suggested by Kanzow [19], these smaller particles should

have catalyze more CNTs, since the carbon simply would have had a shorter path length

for diffusion. However at 4000 C H2 introduction, the smaller particles were present in

high density but did not catalyze growth of many CNTs or very long CNTs (-.3mm for

H2 from the beginning). Based on these results, we can rule out particle size dependence

in the diffusion model. However, we did notice significant differences in the morphology

between catalysts that induced growth of CNTs and those that did not. Surface roughness

was present on catalysts with same H2 conditions, which results in dense vertical CNT

growth (+5 minutes). In addition, examination of the samples introduced to H2 at 600°C

revealed the same surface roughness on the edges of the substrate where vertical and long

CNTs were grown. However, in the center, where no carbon tubes were visible, showed

a smooth morphology. This morphology was similar to the samples that were not

exposed to heat or gases. From the difference in H2 introduction between samples, we
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conclude that H2 affected the surface morphology. In addition, the differences observed

on the edges and in the center of the samples could be a result of the flow pattern of gases,

boundary layer thickness, or diffusion of gases over the catalyst and substrate. Therefore,

an optimal flow rate of gases over the catalyst is extremely important in achieving carbon

nanotube growth, as shown by most experimental protocols for CNT growth. The edges

of the sample could have received a different amount of gas flow resulting in different

morphologies.

5.3 Catalyst Chemical State

The catalyst chemical state inspected by XPS confirmed that the Fe exposed to

ambient gases did not exist as pure Fe, but in oxidized form. The binding energy of pure

Fe (Fe 2p3/2) is 706.8eV, which was not seen in our XPS data. The oxidation of Fe in

atmospheric conditions has also separately been verified by Park et al. [3]. The Fe, in our

experiment, was present initially as a mixture of a-Fe20O3, FeO, and Fe304.

However, when these catalysts were exposed to H2 at different time points and the

high temperatures required for CNT growth, binding energy differences resulted

indicating that the Fe catalyst chemical state had changed. With the samples, which were

slowly cooled, increasing exposure to hydrogen showed higher binding energies for Fe

compared to the reference and Ar only treated samples. The corresponding chemical

states indicated that the H2 was reducing the initially oxidized iron catalyst. In theory, H2

exposure has been reported to facilitate surface mobility of metals atoms and clusters

[10]. As a result, pretreatment with H2 should have induced a high density of growth, but

in our experiment the yield of CNTs was extremely low when introduced during the

temperature ramp stage. A possible explanation is that the actual chemical state of the

46



catalyst hinders CNT growth when H2 is introduced early as in the temperature ramp

stage.

At time points where CNTs were present in low density (400°C and -15 minutes),

there was a large in change binding energy between the two samples. We conclude that

there may be multiple states of iron oxide, which catalyzes growth of CNTs; however,

CNT growth is not optimal during chemical transitions between these oxidation states.

Baker et al. reported that FeO, Fe20 3, and Fe all have catalytic activity, but FeO is the

most active [18]. Hence, in our experiment, we confirm that these states catalyze CNT

growth, but states in which they are transitioning between these different oxides may not.

Differences in binding energy were also observed in the samples, which were

slowly cooled and rapidly cooled. The largest binding energy differences were observed

in the samples, which had low yields of growth (400°C and -15 minutes). This change

may have been observed because of the cooling conditions. However, if this were the

case, then the samples introduced at 0 minutes (fast cooled and slow cooled) should have

seen a similar change due to cooling effects, but the binding energies for Fe and alumina

were exactly the same in both types of cooling. Hence, the change in binding energy

between slow cooled and fast cooled must be associated with the additional 15 minutes of

exposure to H2 at 770°C.

5.4 Proposed Model

The model, which we propose, is based on the fact that even in highly pure gases

such as Ar (99.9995%, <0.5 PPM of 02) used in this system, enough oxygen is always

present for oxidation of Fe. Therefore, exposure to hydrogen is essential in the rapid

catalyzation of carbon nanotubes. When H2 is present from the beginning, the Fe catalyst
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particles, which are already slightly oxidized, cannot be oxidized further. As a result, it

remains in a chemical state, which shows catalytic activity towards CNT growth.

However, when H2 is introduced during temperature ramp, further oxidation of Fe has

taken place because H2 was not initially present to react with the 02 molecules.

Therefore, the resulting chemical state of the catalyst and the long exposure to H2, which

reduces the oxidized iron, may curb CNT growth. In a study by Wen et al., an optimal

amount of H2 pretreatment was noted in which too much reduction decreased the yield of

CNTs while the too little also decreased the subsequent yield of CNTs. This may be the

phenomenon observed in our study.

When H2 was introduced later in the growth process, the Fe catalysts were

oxidized over a period of greater than 40 minutes at high temperatures and the oxidation

state change of Fe was verified by XPS. The introduction of H2 had an effect of reducing

these particles and as a consequence a rough surface morphology emerged, which was

clearly correlated to a high yield of CNT growth.

Surface morphology was shown as a possible factor in CNT growth. de los Arcos

et al. reported that differences in contact angles of Fe result in different contact areas with

the substrate [5]. Furthermore, Fe in different oxygen partial pressures gives different

contact angles on single crystalline alumina. So in a diffusion-based model proposed by

Kanzow, "the contact area of the particle with the substrate provides a cooler region

where precipitation of the carbon can take place. A reduced contact surface would

therefore result in a slower growth rate" [19]. As a result, the surface roughness where

CNTs were grown provides evidence that wettability of Fe particles may play an

important role.
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Chapter 6

Conclusion

Our results clearly demonstrate that there is a correlation between H2 exposure,

the catalyst oxidation state and morphology, and growth of CNTs. H2 was observed to

suppress the growth of CNTs when introduced during the temperature ramp, but was

essential for the growth of long carbon nanotubes when introduced during later points of

annealing and during the growth stage. In addition, H2 was observed to initiate fast

growth of C'NTs, as verified by SEM images of CNTs grown with only 1 minute and 30

seconds of H2.

For different time points of H2 introduction, we studied the catalyst chemical state

and morphology, and correlated them with the mode of growth of CNTs. These studies

revealed that even though 1 nm of pure Fe was deposited on the alumina / Si substrate,

the catalyst was oxidized due to atmospheric presence of 02. In addition, H2 was seen to

reduce the Fe catalyst, but to different chemical states, not including pure Fe. Different

oxidized states of Fe were shown to yield CNTs, but certain states, such as the FeOOH

state, yielded very few CNTs while more stable states resulted in a high yield of CNTs.

AFM inspection of the catalyst morphology also showed that there is a connection

between surface roughness and CNT growth.

Therefore, we were able to propose a model in which oxidation of Fe and the

reduction of the oxidize catalyst by H2 plays an important role in the initiation of carbon

nanotube growth. The interaction of the catalyst and H2 controls the chemistry and

morphology of the catalyst particles and as a result the yield of CNTs and their

characteristics.
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Chapter 7

Future Research

For future research we would like to further examine the role of oxygen in CNT

growth. To further probe oxygen's role, it would be optimal to develop a system in

which no oxygen is unintentionally present during the growth of CNTs. In addition, it

would be interesting to explore the effects of H2 and 02 on other catalysts, such as Ni,

and Co, or on other substrate, for CNT growth. This would shed light on the role of

oxygen and hydrogen with respect to oxidation and reduction and the chemical state of

the metal catalyst, which induces CNT growth. Another area of interest is the

determining of type of CNTs grown with various time points of hydrogen introduction.

Raman Spectroscopy can be utilized to examine the CNTs to determine their structure

and purity. 'We would also like to examine the catalyst particles in-situ to observe the

chemical states during the actual growth of CNTs. Others areas of research to further

clarify the mechanism of CNT growth would be examination of particle crystalline state,

orientation with respect to the substrate, and the contact angle.
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