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Abstract
Implicit, explicit and spectral algorithms were used to create Allen-Cahn and Cahn-
Hilliard phase field models. Individual terms of the conservation equations were
approached by different methods using operator splitting techniques found in pre-
vious literature. In addition, dewetting of gold films due to surface diffusion was
modeled to present the extendability and efficiency of the spectral methods derived.
The simulations developed are relevant to many real systems and are relatively light
in computational load because they take large time steps to drive the model into
equilibrium. Results were analyzed by their relevancy to real world applications and
further work in this field is outlined.
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Chapter 1

Introduction

Phase field modeling is an emergent crucial topic for the advancement of material

science research through computer simulations [1, 4, 19, 15, 13, 16, 8, 23]. The nature

of the model itself allows for the simulation of a broad range of binary phase systems

such as spinodal decomposition, solid-solid phase transformations, grain boundary

motion, martensitic transformations, etc [21, 1, 4, 19, 15, 13, 16, 8, 231. When the

proper phase equations are coupled with an efficient differencing scheme, the phase

field model presents an expansive set of results which can stimulate deeper compre-

hension of the system at hand.

The choice of a differencing scheme that compliments the evolution equations and

can give accurate results within a reasonable time frame is of utmost importance.

What we look for is a way to treat separate terms of the phase field equations with

separate numerical algorithms to produce results in the most efficient way possible.

Operator splitting (sometimes called time splitting) is the method of treating indi-

vidual terms of a PDE with separate differencing schemes and is commonly used

especially when working with an equation that has both linear and nonlinear terms

[9, 14, 12].

It is our initiative to model the Allen-Cahn and Cahn-Hilliard equations (see

2.1) by treating the terms separately and combining effective differencing algorithms.

Ad(litionallv we would like to investigate the methods bv which specific algorithms

ob)tain their stability properties when combined and present a friamework for which

11



these met hods could be replicated.

Section II covers the theoretical background of the Allen-Cahn and Ca.hn-Hilliard

equations. The case of modeling the these equations separately is then developed and

presellted with relevant data. This is followed by a further investigation of the fourth

order spectral methods derived and its application to modeling metallic films evolving

under surface diffusion. We conclude with an overall critique of each algorithm and

an analysis of their combined effectiveness in our simulations.
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Chapter 2

Theoretical Background

2.1 Conservative and Nonconservative Fields

There are two main types of phase field models which are differentiated by the fun-

damental way in which the system is driven into equilibrium. These are considered

to be conservative and nonconservative fields [21].

The difference between the two is that a conservative field approaches equilibrium

by diffusing material' into local energy minimums, and as such must maintain a

constant overall composition at all times [5, 21, 2]. This means that long range

interactions are eventually considered by the model before it reaches equilibrium. On

the other hand, a nonconservative field drives toward equilibrium by processes that

don't consider the overall spatial interactions, and can result in varying total phase

fractions as time progresses [21, 5].

In the discrete model created, an image2 was iterated through time based on

generalized forms of the Allen-Cahn and Cahn-Hilliard equations

1The use of the word material is understood to mean the net amount of a material parameter in
the system. In some cases this can refer to a short range order parameter or another similar ideal
measurement

2We define an image as a two dimensional matrix of values Cj ranging from 0 to 1 where i and
j are the indices and n is the index in time. It is convenient to think of the data set in our model as
being an image because the results presented in Chapters 3. 4 and 5 are all visual representations
of the data as evolved by the algorithms introduced. Additionally, results will be represented as
grayscale images where illstal)le comll)ositions are rel)resellte( l)y levels of grey, and black and white
represent separate phases.
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c F + V2C (2.1)
at OC'

and
DC = 2 OF
at= v Oc - v 4C (2.2)

with a double welled energy curve

F(C) = 16C2(C - 1)2 (2.3)

where C represents a composition field. In our simulations, the initial composition

fields were all taken to be .5 with random thermal fluctuations on the order of 10-8.

The equations were idealized to avoid modeling any one specific system and to show

the applicability of the methods derived.

2.2 Operator Splitting

Operator splitting is the method by which an equation of the form

Ou
= Lu (2.4)

at

where L is a linear sum of operators, can be solved by independent differencing

schemes for each operator in L [20, 14]. In other words, if your initial value equation

has multiple terms, each one can be modeled by a separate method. The main benefit

of this is that the stability criterion becomes that of whichever method is least stable

rather than the stability of both terms combined together.

For each term in L = L1 + L2 + ... + Lm the respective differencing algorithm

only acts on the image for A. In this respect. the simulation iterates through time

alternating between competing processes. It has been previously shown that this

approach to modeling multi-term equations is stable for any t as long as At is the

minimum of stable time steps that work for any of the schemes [14].
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Chapter 3

Modeling The Allen-Cahn

Equation

The two terms in equation (2.1) are treated separately and subsequently the entire

model presented is accurate on first order time scales. This is due to the ability to

model the second term via spectral methods which are unconditionally stable [14].

This condition makes the stability solely dependant on the method used for the first

term.

3.1 The Interfacial Term

The interfacial energy term in the case of Allen-Cahn depends only on the equation

for a. Looking at equation (2.1), it is apparent that the differencing of composition

in time changes based on where the composition lies along the double welled energy

curve in equation (2.3). It is clear then that the algorithm used to forward difference

this part of the equation does not need to be complex as the energy F for any

composition is already known.

With this knowledge, a first order implicit technique was chosen that involves only

the clclation of OF and 2 F Moreover the (lifferelncinlg algorithlln is

15



cn+l n +i. = Cj +
AtF'(C"j)

1 + XtF"(C7ij)
(3.1)

and is stable at time steps on the order of 10-1.

3.2 The Diffusive Term

It has been shown that one of the most efficient methods to model an equation of the

form

= -V 2 C (3.2)
ot

is by the use of Fourier transforms[9, 7]. Discrete Fourier Cosine Transforms

(DFCT) were chosen because they only deal with real values, they impose periodic

boundary conditions, and they lead to less overall calculations and memory usage

to get an equivalent solution[22]. Essentially the benefit of solving this problem

in frequency space is that you convert a spatial derivative into multiplication by a

coefficient [3]. In Fourier space, equation (3.2) is transformed into

= DCat (3.3)

where D is a linear coefficient, and the solution takes the form

C = Cexp DAt (3.4)

To understand better why this method works so well, it is vital to understand how

the Fourier transform works. The DFCT

N-I
N-1 H)CC, I(2n + 1)k

:k = X(k)ZCicos 2N 1)k =0,1.N-1
i--0

where

16
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for = ()0,
X(k) = (3.6){ for k= 1,2 ..... .. N- 1

such that k is the index in Fourier space and i is the index in time space from 0

to N - 1. Equation (3.5) reorganizes the information contained in an original image

[22]. Looking at equation (3.5) we can see that each discrete point C(k) in k space

is dependant upon the overlap of a cosine wave with every point C(n) in time space.

Essentially the DFCT rearranges the information such that the data describing sharp

features is placed further away from the index k = 0. That being said, it is the fact

that equation (3.2) tends to drive small perturbations to zero that we can see the

convenience of transforming the data [5].

The discrete form of the Laplacian operator

1
V2F ~ x(Fi+ - 2F + Fi_1) (3.7)

can be combined with equation (3.5) to find the coefficient D in equation (3.4).

Simplifying the result gives

D(k) = -2 1-cos (- 1) ) (3.8)

where k is the index in frequency space. It has been shown that this method is

unconditionally stable and thus it is an ideal method for the Allen-Cahn equation [9].

Additionally it is important to note that because the DFCT is separable, it is

applied to an image first on its rows and then on its columns[22]. Due to the fact

that it is applied twice, the algorithm that forward differences the composition field

must multiply by the solution twice in Fourier space in the following manner

-k''+2' = Cklnk2 exp (D(ki)At) exp (D(kJ)At) (3.9)

where Ak alldl 2 are arbitrarily the indices of the row and colutlrlml.

17



(a) (b) (c)

Figure 3-1: Images displaying the progress of a composition field evolving via the
Allen-Cahn equation. The grey field (a) shows the initial conditions at t = 0 in an
unstable state. (b) Shows the evolution at t = 1.25 and (c) is at t = 4 where the
composition has clearly decomposed into separate phases.

3.3 Results

Due to the relative stability of both numerical algorithms, results for a system that

starts at an average composition of .5 with small perturbations on the order of 10- s

can be driven into equilibrium on a timescale on the order of 10 minutes. The ac-

tual time it takes is highly dependant on the environment in which the algorithm is

running. The code representing the schemes described running in Mathematica 5.2,

a relatively slow environment, took about 3 minutes.

Figure 3-1 shows the evolution of the Allen-Cahn simulation. At the intermediate

step the phases are trying to separate due to the interfacial energy, while they are

also diffusing together. The final state is a binary phase system with a smooth

interface that compares with previous work [2]. It is important to note that though

our simulation is not meant to represent any one specific system, through changes in

the interfacial energy 9F it is possible to produce more realistic results.

18
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Chapter 4

Modeling The Cahn-Hilliard

Equation

The two terms in equation 2.2 are more complicated than in the Allen-Cahn equation.

As such, it was necessary to try multiple differencing algorithms to find the most

efficient one. Finding a stable method to model -V 4 C proved easy by following

similar steps to that of the second order case, however the first efforts to model 2 a__

proved to be highly unstable.

Both of the following two algorithms used to model V2 9F use operator splitting

as well. This is implemented because the Laplacian implies a spatial derivative, but

calculation time is saved if the system is differenced in one dimension at a time.

Accordingly, the following algorithms treat the Laplacian as if it only applies to rows

of the image, and then as if it only applies to columns of the image. The time step is

halved as described bv section 2.2. The next sections present the methods which did

not work as a reference followed by the final method chosen for the first termn.
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4.1 The Nonlinear Term

4.1.1 The LAX/Leapfrog Method

As mentioned previously, our first attempts to find a stable differencing algorithm to

model the first term of equation (2.2) were unsuccessful. The difficult part was that

_,9 itself is nonlinear and taking the Laplacian of it in space limits the stability. This

is generally due to the mathematical dependance on spatial information and the time

it takes before any point Ciljl "knows" about any other point Ci2,j2 where ii >> i2

and j >> j2[20].

The staggered leapfrog method has been shown to be second-order accurate in

space and time [20]. Essentially the algorithm involves centering the values at time t

by their respective neighbors at times t + At and t - At. This method proves to be

stable only for small gradients between data, which will be significant later to help

understand why the algorithm fails.

The LAX method is a way to fix the instabilities in the forward time centered

Euler scheme [20]. It involves replacing all occurrences of the value at time t position

i with an average of the points at positions i + 1 and i - 1. The reason this increases

stability is the reason the leapfrog scheme tends to fail; each point "knows" about

other points around it sooner than it would without the method.

For the first term in equation (2.2) the LAX/leapfrog scheme in one dimension

becomes Ct+1C/n-x-- - A2 (F'(Ci+2) -2F'(C) + F'(C _ 2 )) (4.1)

where Ax = 1 in our model. This method can be used with At = i- on all

the rows of the image and then subsequently on the columns. Section 4.3 details the

progress with this method and where it fails.

20



4.1.2 The Crank-Nicholson With Linearization Method

The Crallk-Nicholson algorithm is intendle(l to l)e second order stable in both space

an(l time while retaining stability and accuracy[20]. This is accomplished by taking

an average between a fully implicit solution and an explicit solution. For the first

term. this looks like

i = Dt F (C+1) -2F'(C"+') + F'( ) (4.2)
C"+1 - C = 2(Ax)2 [ +F'(Cnl) - 2F'(CI) + F'(Ci (4.2)

where D is an arbitrary coefficient and Ax = 1 in this model. Using the lineariza-

tion

F'(Cn+) F'(Cn) + F"(Cn) (Cn+1 - C) (4.3)

on equation (4.2) and rearranging the terms yields an easily solveable tridiagonal

matrix.

Technically this scheme should be stable for any size At[20]. The results of simu-

lations using this method turned out to be stable only up to At - 10- 4 however, and

the analysis of what went wrong is left to section 6.2.2.

4.2 The Fourth Order Term

For the fourth order term in equation (2.2) we take a similar approach as that in

section 3.2. We start with the discrete form of the fourth order derivative

V4F Ax2(Fi+2 - 4Fi+l + 6F - 4Fi_1 + Fi-2) (4.4)

and then apply equation (3.5) to it. In this case, the resulting coefficient is

D(k) =-16 sin (( 1) (4.5)

2( i.g is forward diffre via. t1)t as that in section 3.2 and
The image is forward differenced via, the same method as that i section 3.2 and

21



(a) (b)

Figure 4-1: Images displaying the progress of a composition field evolving via the
Cahn-Hilliard equation combined with the LAX/leapfrog differencing scheme. The
grey field (a) shows the initial conditions at t = 0 in an unstable state. (b) Shows the
evolution at t = 1.4 and (c) is at t = 4 where the scheme has clearly become unstable.

is again unconditionally stable. This method worked so well in fact, that Chapter 5

goes on to show its application in other fields.

4.3 Results

The LAX/leapfrog method was able to drive the system into its first meta-state1

with relative ease, but quickly became unstable when the gradients became larger as

predicted.

Figure 4-1 illustrates the known nature of the leapfrog method [20]. It is able

to quickly drive the system accurately, but eventually it becomes unstable and the

result is useless. Starting from an initial state and using the Crank-Nicholson scheme

generates a similar initial result as shown in Figure 4-2, however the method turned

out to be unstable as well. There are several reasons that could cause the errors in

the Crank-Nicholson simulations, and they are examined in section 6.2.2.

Figure 4-3 displays the only result that compares to known images of spinodal

decomposition. This image was produced by taking the data from the LAX/leapfrog

mletho(l before it becomes unstable, and then switching to the Crank-Nicholson algo-

rithli. Though it appears to be an indication of a valid method, section 6.2.2 explains

I\Ve tlake "Ileta-state' o illly a notable configurationl along the colllositioll field's path toward
e(luilil riIn ras sshown in previous literature[2].

22
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(a) (b)

Figure 4-2: Images displaying the progress of a composition field evolving via the
Cahn-Hilliard equation combined with the Crank-Nicholson differencing scheme. The
grey field (a) shows the initial conditions at t = 0 in an unstable state. (b) Shows
the evolution at t = 1.8 and (c) is at t = 6.0002 where the scheme has clearly become
unstable. The errors along the edges are explained further in 6.2.2.

Figure 4-3: Image displaying the progress of a composition field evolving via the
Cahn-Hilliard equation. The data was first evolved using the LAX/leapfrog method
until t = 1.4 and then the Crank-Nicholson method was used until t = 6.2

further.

23
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Chapter 5

Modeling Dewetting Due to

Surface Diffusion

5.1 Theoretical Background

To show the validity of the spectral method proposed in section 4.2 a model was con-

structed to simulate the surface diffusion dewetting of a metallic film on a substrate.

The problem is currently being studied as a means to create an array of monodisperse

nanoparticles [10, 11]. It has been shown that when a substrate such as in Figure 5-

1(a) is coated with an ideal thickness of metallic film and subject to the right heating

conditions, surface diffusion will drive material to form a single nanoparticle in each

pit. The results vary as the initial thickness ho diverges from the ideal however, and

the consequent equilibrium states are displayed in Figures 5-1(b-d).

Depending on the boundary conditions and initial geometry of the system chosen

the film evolves into exceedingly dissimilar equilibrium states. It is theorized that

the cause of this might be due to the point (in both time and space) at which tile

substrate ruptures the surface of the film [10]. When this occurs, the dynamics are

no longer defined by surface diffusion alone, but an additional interfacial energy is

created. The equation for slfacce diffusion as it applies to this system is

25



(a) Initial Substrate

(b) Film too thick (c) Film too thin (d) Film just right

Figure 5-1: Images displaying the initial substrate (a) and the varying morphologies
reached by the dewetting process due to initial film thickness (b),(c), and (d) (Images
courtesy of Amanda L. Giermann.

Oh At _V 4h (5.1)at

where h is the height above the substrate.

It is clear then that using the algorithm presented in section 3.2, the construct

for this simulation is already complete. In this case the image is no longer composed

of values ranging from zero to one, but from values that represent the height of the

film. Defining the initial geometry as exhibited in experiments is relatively simple,

and an efficient model is created that can easily drive the system to determine both

how long it takes for the substrate to rupture the surface and where it does this

dleending on the initial conditions. The following section presents the approach to

varying the initial conditions followed by a analysis of the results and how they

re lite to experimental daltac seen in Figure 5-1.
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(a) Thick film (b) Thin film

Figure 5-2: Images showing the height above an individual pit from a top down view
where black is 0. It can be seen that for a thick film (a) the rupture points are the
four midpoint of each side of the outer box of the pit. For a thin film (b) however,
the rupture points are at the eight bulbous black spots closer to the corners of the
outer box of the pit.
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Figure 5-3: Image of a cross section of the center of a pit. Initial film height was thin
and the secondary rupture points can be seen in the lower sections of either side of
the pit.

5.2 Results

The model was efficient enough that results for a wide rangfe of initial geometries

could be determined in less than a minute. ost interesting was the fact that as the

film egan to get too thin, the rupture points moved as shown in Figure 5-2.

Tills implies in part an explanation of the reslts found in lab (Figure 5-1). Taking

the result of the thin film further in the simulation, Figure 5-3 shows that the next

polits to rpture the surface aside from the outer rim C aae the four dark spots around

the center of the ottom of the pit i Figure 5-2(). Tluis will be atnalyzed in section

6.3-.

I

-1
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Chapter 6

Analysis

6.1 Operator Splitting

As defined, operator splitting is a stable method when individual operator stability

conditions are met [14, 20]. What is unclear however is what sort of results arise when

separate operators are working against each other (such as those in Figure 4-2(c)).

The two terms in equation (2.2) are opposing processes. One tends to drive the

system into binary phases as the other pushes the system into a state of an average

composition. There must be some balance between the terms that is independent of

the method by which they are modeled, however this balance is dependant on the

relation between the fundamental processes and the math that describes them.

It is obvious from evolution of the Cahn-Hilliard model that at time t = 0 the

interfacial energy term drives the system quickly into separate meta phases. It appears

from the data however, that once the relative compositions are no longer in the

f"(C(xi,j)) < 0 range, they aren't changing fast enough to counteract the changes

made by the second term. 1 From here they are slowly smoothed out until an overall

ordered distribution of phases is formed. Though time was a limiting factor, the

approach to the final state can be seen in Figure 6-1. Note the formation of regions

of alternating phase and the distinct angular nature of what would otherwise be the

1Assulllilg ta.t. the imltroper behavior displayed is not cluse(l by) the decision to lineaize the
interfacvial energy or sonlle other unforseen error
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Figure 6-1: Image representing the instabilities of the Crank-Nicholson method used

spinodal. This appears to be the point at which the two terms will balance, and the

system will be at equilibrium once the full image is similar to the edges. This is not

a desired feature, yet it calls for some thought as it is fundamentally possible for a

real system to have a mobility large enough to compete with the interfacial energy.

The programming of the algorithm cannot be completely at fault however because

the image evolves properly early on. Therefor it is likely that there is some unknown

process governing the evolution of this system, and it requires further investigation.

Though it was unclear what caused the Crank-Nicholson method to fail in these

simulations, the result should not be treated as trivial. Additionally there must be

something wrong with the periodic boundary conditions as they appear to be causing

instabilities at the edges.

6.2 Phase Field Models

6.2.1 The Allen-Cahn Model

The proposed Allen-Cahn model works efficiently for simulating non-conservative

phase fields. Though it is not necessary to make the algorithm any more efficient, it

is important to note that the interfacial energy term is not always ideally modeled

by an implicit method. Should the interfacial energy be dependant upon some other

function, the scheme may have taken on a different approach. A Runge-Kuttah

method might be usefiul for particular systems, as well as a method of variable time

step. It has b}een shown that for modeling PDE's, an easily implementable time step
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alteration algorithm can boost a simulations performance greatly [20]. Our sinmulation

didl not require any such method, but if the image was on the order of 106 grid points

or larger, it would have been useful.

6.2.2 The Cahn-Hilliard Model

The Cahn-Hilliard model was overall unsuccessful, partially due to time constraints.

It did however produce interesting results which need further investigation. Further-

more, the one method that did work (using LAX/leapfrog and then Crank-Nicholson)

suggests a different approach to modeling. Though operator splitting is a commonly

used practice, choosing an algorithm at different times throughout the evolution of

the system based on the morphology is just as useful. Especially with a scheme such

as LAX/leapfrog which is only stable for small gradients, more efficient approaches

to phase field modeling are still yet to be discovered.

As mentioned before, it is unlikely that the instabilities in the Crank-Nicholson

algorithm are due to a trivial error. Perhaps this result does in fact have some

potential as a useful reference. Further efforts to run this simulation at smaller time

steps may prove to generate a more valid result, yet the evolution does not appear

to change as the time step goes from 10-3 to 10-6. Whether or not the instabilities

arise from a mathematical error, the approach to modeling non-linear terms must

always be considered thoroughly. An additional effort was made to attempt to take

the DFCT of equation (2.3). For the interfacial energy used, this proved to be a non-

algebraic solution. When the interfacial energy was linearized and then used with the

DFCT, a proper solution was still not acquired as there was a ± term without any

way to determine which solution to use in Fourier Space. There are likely forms of

the interfacial energy however. that when transformed can be solved in Fourier space

to provide a spectral solution to a non-linear terml.
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6.3 Dewetting Model

The results of the dewetting model present extremely useful concepts. The result

of having the film too thick in the simulation does not present anything that could

explain what is seen in Figure 5-1(b). Rather, this process seems to be random

and could possibly be modeled if the simulation were adjusted to include thermal

fluctuations and the interfacial energy that occurs after the substrate breaks through.

Most interesting was the realization that at small initial film heights the substrate

does not break through at the centers of each pit face. Additionally, the next parts of

the surface to break through are the four spots shown in Figure 5-3 and comparing this

to Figure 5-2(b) it seems to explain the production of many polydisperse nanoparticles

in the pits. Even more convincing that this is what actually occurs is that in Figure

5-1(c) the average amount of particles in each pit is five. If the substrate ruptures

the surface of the film inside the pit evenly at the four points shown and the ruptures

and subsequent interfacial energies are what cause individual particles to form, then

the model appears to explain what is found in lab.

The dewetting simulation proved to be highly stable and through changes to the

initial conditions new insights were discovered. This is just one application of this

method to a very specific system, but further research will surely prove beneficial using

the spectral techniques derived. One caveat is that the integral of the surface through

time shows a slight increase in mass. Though this was not treated in these simulations,

there are specific measures to prevent mass fluctuations outlined by previous work

[17, 18, 6].
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Chapter 7

Conclusions and Further Research

This work was carried out to investigate the method of splitting operators in phase

field equations in order to model systems in an efficient and effective way. The

differencing schemes developed were used to generate data that compared well with

previous attempts. Though the Cahn-Hilliard model was not completely effective, it

gives rise to relevant questions about the nature in which competing processes work

in a binary phase system. The Allen-Cahn model outlined is highly applicable to

many phase field systems and could be employed in many future studies. Possibly

even more applicable is the fourth order spectral method developed which has shown

to be extremely effective in modeling surface diffusion.

More work must be done to determine the failure of the Cahn-Hilliard model

presented in Chapter 4. Clearly there is a problem with the periodic boundary con-

ditions as well as the fighting processes between the split operators. Furthermore,

the fundamentals of operator splitting has not been heavily studied, and it certainly

requires a mathematical analysis which is capable of describing the way that specific

operators will interact with each other. Doing this will provide great insight into the

nature of the phase field equations as well as many other systems. A formal basis

on which the terms in any equation can be conlpared as competing processes would

provide a starting point for approaching any simulation.

Further study of the usefulness of spectral methods is essential. Any system

that involves a second or fourth order gradielt term could )enefit fiom the schemes
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outlined in Chapters 3 and 4. Additionally, the dlewetting problem can be simulated

for nearly any initial geometry and thus presents a. method by which new uses of the

dewetting process can be derived.

An interesting study would be to use the Discrete Laplace Transform to impose

asymmetric boundary conditions on an evolving system. Via a similar method as

that in section 4.2, the DLT could use unit step functions to define a geometry and

forward difference a non-rectangular composition field. This could give rise to new

implications toward real lab work, and would be relatively computationally inexpen-

sive.
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