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Abstract 

A collection of over 500 lines of zebrafish (Danio rerio), each heterozygous for a 
recessive embryonic lethal mutation caused by a retroviral insertion, was screened for lines that 
displayed early mortality and externally visible tumors. Among such tumor-prone lines 
identified was one in which the known human tumor suppressor gene, neurofibromatosis type 2 
(NF2), was mutated. This validated the screening approach, as well as confirmed the human 
relevance of the zebrafish system in the study of cancer. Surprisingly, all of the remaining 
tumor-prone lines identified in the screen were ones in which a ribosomal protein (rp) gene was 
mutated. In total, 17 of 28 rp heterozygous lines were found to be predisposed to rare tumors, 
especially zebrafish malignant peripheral nerve sheath tumors (zMPNST). 

Though the precise molecular mechanism of tumorigenesis in rp heterozygous lines 
remains elusive, we have demonstrated that these rps are haploinsufficient tumor suppressors 
based on two lines of evidence: (1) The retroviral insertion causes a loss of function of the rp 
gene, as evidenced by a reduction in rnRNA encoding the rp and a disruption of ribosomal 
integrity in the homozygous rp mutants; and (2) the wild-type allele is not lost or mutated in the 
tumors arising in rp heterozygotes. Haploinsufficiency of certain rps could lead to tumorigenesis 
either because a key extraribosomal function of these ips is compromised or global protein 
synthesis is impaired due to insufficient production of ribosomal subunits. We have found 
evidence in support of the latter hypothesis: Heterozygotes from all tumor-prone rp lines are 
growth-impaired, suggesting that a primary defect in global protein translation predisposes these 
fish to the development of tumors. 

This work has succeeded in identifying a novel class of haploinsufficient tumor 
suppressors, the ribosomal proteins, whose role in human cancers is as yet unknown. This 
demonstrates the powerful utility of the zebrafish as an ideal organism for genetic screens as well 
as a model in which to study human diseases. 
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Chapter 1 

Introduction 



Preface 

The work of this thesis represents the first demonstration of the use of adult zebrafish to 

screen for genes involved in cancer. This screen has led to the novel finding that many 

ribosomal proteins (rps) act as haploinsufficient tumor suppressors in the zebrafish. In the 

following introduction, I will delineate the advantages of using zebrafish as a model organism 

for cancer as well as review the known cellular roles of ribosomal proteins and their involvement 

in disease. 

1. The Zebrafish: An Ideal Model Organism for Genetic Screening 

la. The Development of a Vertebrate Model System 

The zebrafish has recently shown tremendous potential as a model for human disease 

(Penberthy et al., 2002) and continues to grow in stature among the standard model organisms of 

biology. In addition to the benefit of genetic tractability shared by lower model organisms such 

as Drosophila and C. elegans, the ~ e b r ~ s h ,  Danio rerio, has a significant relevance to humans 

claimed by other model vertebrates, such as the mouse. The rise of this small fish into this elite 

class was initiated by the seminal work of George Streisinger in the late 1970's, which laid the 

groundwork for genetic manipulation in the fish (Streisinger et al., 1981). The zebrafish was 

selected as an ideal model organism in which to study the embryonic development of a 

vertebrate, since the optical clarity of the embryos and the external fertilization of the eggs allow 

for easy observation of developing organs and body structures (Wixon, 2000). Development is 

relatively rapid, with embryos becoming free-swimming larvae only five days after fertilization 

(Kimmel et al., 1995). These characteristics, along with the ability of adult females to lay 



several hundred eggs per mating, have made the zebrafish an ideal system in which to conduct 

large-scale phenotype-based mutagenesis screens. 

Following the demonstration that ethyl nitrosourea (ENU) could be used to induce 

mutations (primarily point mutations) at specific loci in zebrafish (Gnmwald and Streisinger, 

1992), two large-scale chemical mutagenesis screens were performed in Boston, USA and 

Tiibingen, Germany (Driever et al., 1996; Haffter et al., 1996). In these screens, males were 

mutagenized with ENU, and the mutations were transmitted to F1 fish. From these 

heterozygous F1 fish, F2 families were raised. F2 fish were intercrossed to bring mutations to 

homozygosity in the F3 progeny, which were visually screened for a multitude of phenotypic 

effects up to 6 days post-fertilization (dpf). The screens were extremely successful in identifying 

a large number of mutants with defects in the development of internal organs, such as the brain, 

heart, and gut; externally visible structures, such as the fins, eyes, and jaw; as well as behaviors, 

such as motility and touch responsiveness (Haffter et al., 1996). 

Identification of the genes disrupted in a number of these mutants was achieved primarily 

by positional cloning. This has led to a growing catalog of genes that are essential for vertebrate 

development. Importantly, many of the same genes have been found to be mutated in human 

disease. For example, the sauternes mutation, which causes hypochromic anemia in zebrafish 

embryos, was mapped to a gene encoding a form of Garninolewlinate synthase (ALAS-2), 

which is also mutated in human patients with congenital sideroblastic anemia (Brownlie et al., 

1998). Another human blood disease, hepatoerythropoietic porphyria, is well-modeled by the 

yquem mutant in zebrafish, in which a mutation in the gene encoding uroporphyrinogen 

decarboxylase (UROD) leads to a photosensitive porphyria syndrome in the embryos (Wang et 

al., 1998). More recently, it has been demonstrated that the heartstrings gene encodes the 



transcription factor Tbx5, mutation of which causes cardiac and fin defects in zebrafish embryos, 

and Holt-Oram syndrome, a "heart-hand disorder, in humans (Garrity et al., 2002). 

1 b. The Hopkins Insertional Mutagenesis Screen in Zebrafish 

The laboratory of Nancy Hopkins has developed an alternative approach to the chemical 

mutagenesis strategy that uses pseudo-typed retroviruses as the mutagenic agent in zebrafish 

embryos (Gaiano et al., 1996). Blastula-stage embryos were injected with retroviruses, which 

integrate into generally random sites in the genome, creating founder fish. These founders were 

mated with one another to create F1 pools. To increase the number of insertions screened, F l s  

with multiple insertions were mated to produce F2 pools. Then, pairs of F2s from each pool 

were mated to homozygose the insertions, and it is these F3 embryos that were screened for 

mutant phenotypes up to day 5 of development (Amsterdam et al., 1999). Similar to the 

chemical mutagenesis screens, insertional mutagenesis led to a wide variety of phenotypes, 

including defects in specific organs, body shape, and swimming behavior (Golling et al., 2002). 

In addition, a large proportion of the mutants displayed "non-specific" phenotypes, such as 

widespread necrosis and other pleiotropic defects. Such mutants were systematically discarded 

in the chemical mutagenesis screens due to the difficulty of cloning the mutated genes, and the 

expectation that such genes would likely be "uninteresting" housekeeping genes. In the Hopkins 

screen, however, since the retrovirus acted both as a mutagen and as a molecular tag allowing 

relatively easy identification of the mutated gene by inverse PCR, many such non-specific 

mutants were retained. 

To date, the Hopkins laboratory has generated a collection of 525 insertional mutants, 

nearly all of which are homozygous recessive lethal. The disrupted gene has been cloned for 463 



of these, representing 335 distinct genes (Amsterdam et al., 2004 and A. Amsterdam, 

unpublished results). At the time of their identification in the screen, 20% of these genes were 

novel or poorly characterized; thus, this collection of mutants represented an ideal starting point 

for identifying novel components of known pathways or completely new pathways in the 

development of specific organs or structures of the zebrafish. To this end, members of the 

Hopkins laboratory as well as external collaborators have conducted "shelf screens" of the 

collection, using specific assays to re-screen for selected phenotypes of interest. One such shelf 

screen by Zhaoxia Sun identified a class of genes that, when mutated, are associated with the 

development of kidney cysts; many of the same genes are mutated in human patients with 

polycystic kidney disease (PKD) (Sun et al., 2004). Significantly, among this class of genes 

were a number of novel genes involved in cilia production; thus, the results of this shelf screen 

have contributed not only to our understanding of this biosynthetic pathway, but have also 

yielded clues as to the etiology of PKD. 

Another shelf screen performed by Kirsten Sadler also yielded insights into human liver 

disorders that manifest as hepatomegaly (Sadler et al., 2005). Seven out of 297 lines screened 

had large livers by 5 dpf. Among these, the phenotype of a mutant in the vpsl8 gene, encoding a 

class C vacuolar sorting protein, includes a large liver filled with vesicles. This resembles the 

human disease arthrogryposis-renal dysfunction-cholestasis (ARC), in which another class C vps 

gene is mutated (Gissen et al., 2004). Zebrafish mutants in the n .  gene were also found to have 

liver abnormalities, suggesting a previously unknown role for this tumor suppressor gene in liver 

disease (Sadler et al., 2005). Finally, a mutant in a novel gene, foie gras, developed fatty liver, 

in a manner similar to human patients with fatty liver disease (Sadler et al., 2005). 



These examples from the Hopkins insertional mutagenesis screen and others from the 

chemical mutagenesis screens clearly demonstrate the utility of the zebrafish in identifying novel 

genes and pathways with relevance to human disease. 

2. The Zebrafish as a Cancer Model System 

2a. History 

Prior to its emergence as a model organism for genetic screens, the zebrafish had already 

had a long history in cancer research. The first demonstration of experimental carcinogenesis in 

zebrafish was published in 1965 by Mearl Stanton, who showed that treatment of fish with 

diethylnitrosamine induced hepatic neoplasia (S tanton, 1 965). Even prior to this, other fishes, 

most prominently those of the Xiphophorus genus, were used to study cancer (Schartl, 1995). In 

the late 1920's, certain hybrids of these fish were found to develop malignant melanomas, 

predisposition to which was determined to be heritable (Gordon, 1931). To this day, 

Xiphophorus remains an effective model in the elucidation of the molecular mechanisms of UV- 

induced melanoma formation (Wood et al., 2006). 

The use of the zebrafish itself, formerly known as Brachydanio rerio, was documented in 

experimental studies in the 1950's. Embryos were used to test the developmental toxicity of 

compounds and identify environmental pollutants (Battle and Hisaoka, 1952; Hisaoka, 1958a; 

Hisaoka, 1958b; Hisaoka and Hopper, 1957). These studies have been extended further over the 

past several decades (Baumann and Sander, 1984; Ensenbach and Nagel, 1995). The fact that 

the embryos are permeable to many compounds that are simply added to the water in which they 

grow has proven to be useful not only in carcinogenesis studies but in performing small molecule 

screens as well (Hertog, 2005; Peterson et al., 2000). 



2b. Emergence of a New Cancer Model 

The long-known fact that zebrafish are susceptible to chemical carcinogens, coupled with 

the more recent advances in zebrafish genetics and genomics, make the zebrafish an attractive 

model for cancer. The work of this thesis and the growing body of literature in the past several 

years suggest that the zebrafish will be an informative tool, alongside the mouse, in discovering 

the underlying molecular mechanisms of tumorigenesis. Compared to the mouse, the relatively 

small size of the mature fish allows for large-scale screens for cancer and other adult phenotypes. 

The ability to generate and maintain large numbers of adults simultaneously with the same 

genotype allows for studies of tumor incidence and onset with great statistical power. Most 

importantly, the zebrafish cancer model has human relevance since the fish develop a wide 

variety of tumors that closely resemble their human counterparts, even at the histological level 

(Amatruda et al., 2002; Spitsbergen et al., 2000a; Spitsbergen et al., 2000b). Even more 

significant is the recent demonstration that the gene expression signature of zebrafish tumors 

resembles that of human tumors. Lam et al. showed that carcinogen-induced zebrafish liver 

tumors exhibited a gene expression pattern similar to that of human liver tumors. Moreover, the 

histologically most anaplastic zebrafish tumors had expression profiles most similar to the 

highest-grade human tumors (Lam et al., 2006). 

Several zebrafish models of various cancers have been described since the work in this 

thesis was initiated. Langenau and colleagues showed that transgenes can be used to induce 

cancer in the zebrafish (Langenau et al., 2003). Specifically, murine c-myc was expressed under 

the control of the zebrafish Rag2 promoter, inducing T-cell acute lymphoblastic leukemias with a 

very short latency of less than two months after germline transmission. Furthermore, the 

leukemic cells were demonstrated to be transplantable into sublethally irradiated hosts, thus 



allowing for the possibility of studying cancer in adult zebrafish with this model. In a related 

study, targeted expression of the human MYCN gene under the control of the zebrafish myod 

promoter induced neuroendocrine tumors at 3 to 6 months of age (Yang et al., 2004). Patton et 

al. also recently described a model in which a human oncogene was introduced into zebrafish. 

The V600E mutation of BRAF is an activating mutation found in many human melanomas; 

when expressed under the control of the zebrafish mirfa promoter, the fish developed nevi 

(Patton and Zon, 2005). In a p53 mutant background, integration of the transgene led to the 

development of malignant melanoma in the fish (Patton et al., 2005). 

In addition to experimental demonstrations that transgenic zebrafish with human 

oncogenes develop the expected tumor types, there is reason to believe that the function of 

human tumor suppressor genes is also conserved in the zebrafish. For example, truncation of the 

tumor suppressor adenomatous polyposis coli (APC) leads to neoplasias of the digestive tract in 

15 month-old zebrafish, similar to the effects of the same mutation in mice and humans (Haramis 

et al., 2006). Many other known tumor suppressor genes have been characterized in zebrafish in 

a developmental context (Bertrand et al., 2004; Bollig et al., 2006; Croushore et al., 2005; 

Imamura and Kishi, 2005). Likewise, a number of genes involved in the epithelial-mesenchymal 

transition (EMT) of cancer cells have also been studied in zebrafish embryos (Taylor et al., 2004; 

Wallace et al., 2005). The process of EMT in cancer has been shown to parallel key events in 

development (Thiery, 2003); that is, the process of epithelial cell migration in zebrafish embryos 

may involve the same genes as those important for tumor progression. It is unknown, however, 

whether activating oncogenic mutation of any of these EMT genes also leads to increased tumor 

susceptibility in adult zebrafish. Likewise, very little is currently known about the tumor 

phenotype of zebrafish with mutations in orthologs of many known human tumor suppressor 



genes. The conservation of function among the cancer genes characterized in zebrafish thus far 

(Stern and Zon, 2003) suggests that these others may also be playing the same role as in 

mammals. As the BRAF melanoma model suggests (Patton et al., 2005), additional mutations, 

such as that of p53, may be required for tumorigenesis in fish. 

The utility of the zebrafish as a cancer model system is enhanced by the ability to 

transplant tumor cells among fish, as described above and in other studies (Langenau et al., 2003; 

Mizgireuv and Revskoy, 2006). However, the zebrafish seems not to be as useful a model as the 

mouse with respect to performing direct transplants of human tumor cells. In at least one 

published case, human cancer cells transplanted into fish do not form tumors (Lee et al., 2005). 

However, in this study, the malignant human melanoma cells managed to survive and migrate in 

the fish, often to the skin, suggesting at least that homing cues may be conserved in the fish. 

While it is clear that many aspects of human cancer are conserved in zebrafish, the true 

power of the zebrafish as a cancer model, and its prime advantage over the mouse, is its utility as 

a gene-finding tool. The forward genetic screen is an unbiased approach that can identify novel 

cancer genes or known genes with a previously uncharacterized role in cancer. Shepard et al. 

conducted an ENU-based screen in zebrafish embryos for mutants in cell proliferation (Shepard 

et al., 2005). Among these mutants, one was found to have a mutation in bmyb, a putative proto- 

oncogene in humans. Whereas homozygous mutant embryos display an increase in mitotic cells 

due to an inability to exit from mitosis, heterozygous adults have an enhanced susceptibility to 

chemical carcinogenesis compared to their wild-type siblings. 

Since the Hopkins screen was not biased towards discarding mutants with non-specific 

phenotypes, the final collection contains mutants in genes, such as housekeeping genes, which, 

when mutated, lead to pleiotropic effects. In fact, many known cell-essential genes such as cell 



cycle regulators, components of the DNA synthesis machinery, and translation factors are 

represented in the collection (Amsterdam et al., 2004). Since, with the exception of p53, the 

majority of known tumor suppressors are homozygous recessive lethal (Jacks, 1996), we 

reasoned that a re-screen of our collection of mainly embryonic lethal mutants would yield some 

previously uncharacterized tumor suppressors. As I will describe in Chapter 2, this hypothesis 

proved to be correct. A major finding of this thesis is that many ribosomal proteins comprise a 

novel class of haploinsufficient tumor suppressors in the zebrafish. 

3. Ribosomal Proteins 

3a. The Translation Machinery: Structure and Function 

The ribosome is a macromolecular complex responsible for protein synthesis in the cell. 

It is composed of one large subunit (60s in Eukarya; 50s  in Bacteria and Archaea) and one small 

subunit (40s in Eukarya; 30s in Bacteria and Archaea). Each subunit consists of one to three 

ribosomal RNAs (rRNAs) and numerous ribosomal proteins (rps). In eukaryotes, protein 

translation begins when the small subunit, along with associated initiation factors, binds to the 5' 

cap of mRNAs (cap-dependent translation) or to internal ribosome entry sites (IRES) on the 

mRNA (cap-independent translation) (Merrick, 2004). This complex scans the rnRNA for an 

AUG start codon, upon which the large subunit binds, forming the complete, active ribosome. A 

tRNA bearing methionine enters the A (aminoacyl) site, and translocates into the P (peptidyl) 

site, allowing the subsequent arninoacyl-tRNA to bind in the A site. A peptide bond is formed 

between the amino acids, and the ribosome moves processively along the mRNA, with the 

nascent polypeptide chain emerging from the exit pore (Kapp and Lorsch, 2004). Ribosomes can 



load and initiate translation before the previous ribosome reaches the end of the message, thereby 

forming polysomes. 

While the basic mechanics of translation have been known since the 1960's (Watson, 

1964), the structural basis for these actions has only been recently elucidated. The crystal 

structures of ribosomal subunits from several prokaryotic species, including Haloarcula 

marismortui, Deinococcus radiodurans, and Thermus thermophilus (Ban et al., 2000; Harms et 

al., 2001; Wimberly et al., 2000), have been solved at high resolution, thus revealing the spatial 

locations of the rps, as well their interactions with the rRNA and with one another. 

In eukaryotes, ribosomal subunit assembly begins in the nucleolus, the site of most rRNA 

transcription. The genes encoding rRNAs occur as tandem repeats in the genome, often in 

stretches of hundreds of copies (RaSka et al., 2004). The major rRNA is transcribed as a single 

unit by RNA polymerase I11 and undergoes extensive processing to become the individual 

rRNAs in both the small and large subunit. This process has been studied extensively, and many 

of the participating exonucleases, snoRNAs, and chaperone proteins have been characterized in 

detail (Fromont-Racine et al., 2003). Less is known about the role of the ribosomal proteins in 

this process. Since rps are produced in the cytoplasm, they must be transported into the nucleus. 

While interactions among the rps have been demonstrated by the crystal structures (Brodersen et 

al., 2002; Klein et al., 2004), the order of their loading onto the complex is only beginning to be 

understood (Talkington et al., 2005). The precise interactions of the rps with the non-ribosomal 

proteins that also participate in the assembly process (Alix, 1993) are also poorly characterized 

(Fromont-Racine et al., 2003). 



3b. Properties of Ribosomal Proteins 

There are approximately 79 ribosomal proteins in the mammalian ribosome, 68 in the 

archaeal ribosome, and 57 in the E. coli ribosome (Wilson and Nierhaus, 2005; Wool et al., 

1995). Rps from E. coli were first purified biochemically in late 1960's (Kaltschmidt et al., 

1967), and were named according to their position on two-dimensional gels, with the prefix S or 

L indicating whether they belong to the small or large ribosomal subunit, respectively 

(Kaltschmidt and Wittmann, 1970). Since they are so numerous and generally quite similar in 

size and other properties, several rps have been mistakenly labeled as distinct proteins when in 

fact they were identical to other previously identified rps; the names of such proteins have thus 

been dropped from the sequence. For example, L30 is L25; S22 is L32; L16 is L12; and L33 is 

L24 (Wool et al., 1995). In E. coli, L7 is actually the acetylated form of L12. In at least one 

case, a multimer of rps was mistaken as a single rp: The protein initially identified as L8 in E. 

coli is now known to consist of a tetramer of L7/L12 in complex with a single copy of L10 

(Wilson and Nierhaus, 2005). 

The ribosomal proteins are generally small, averaging about 164 amino acids in length 

(ranging from 25 to 421 amino acids) (Wool et al., 1995). They are nearly all very basic, as one 

might expect, due to the fact that most of them interact extensively with the phosphate backbone 

of rRNA. The notable exceptions are the PO, PI, and P2 proteins in the mammalian large 

subunit, the so-called acidic P-type rps whose name is derived from the fact that they are 

phosphorylated (Tsurugi et al., 1978). They form a complex with a stoichiometry of P12-P22-P0 

and seem to be functionally analogous to the L10-(L7/L12)4 complex of E. coli in that they both 

bind to initiation, elongation, and release factors (Brot and Weissbach, 198 1 ; MacConnell and 

Kaplan, 1982). 



There are a few structural domains common among ribosomal proteins that were deduced 

from the primary sequence of amino acids. Several rps have zinc finger domains, and a few 

others have leucine zipper motifs (Chan et al., 1993; Neumann et al., 1995; Soultanas et al., 

1998; Wool et al., 1995). In addition, since the eukaryotic rps are transported into the nucleus, 

the rps generally have a nuclear localization signal. The sequence of this signal, however, is not 

conserved, and seems only to rely on certain stretches of basic residues that are common in rps 

(Wool et al., 1995). The recent crystal structures of the rps have revealed similarities among the 

three-dimensional topology of some rps. In the H. marismortui large subunit, 20 of the 27 rps 

can be placed into five groups by their topological similarities (Klein et al., 2004). Among these 

are a group of four rps (L24e, L37ae, L37e, and L44e) that have been found to bind zinc, thus 

confirming the predictions based on their amino acid sequence (Klein et al., 2004). 

3c. Normal Roles of Ribosomal Proteins in Translation 

The early efforts to purify and catalogue the individual rps were undertaken since it was 

assumed that the activity of the protein synthesis machinery depended upon the enzymatic 

activity of these proteins. In the 1980's, the discovery of catalytic RNAs (Cech et al., 1981 ; 

Guemer-Takada et al., 1983) shifted the focus of the protein translation field away from the rps 

and towards the rRNA. Yet, it is clear that the ribosomal proteins are key components of the 

ribosome that are required for both its assembly and its function (Wilson and Nierhaus, 2005). 

Since it has now been accepted that the first ribosome consisted solely of RNA, the question of 

the origin of the ribosomal proteins remains unanswered. It is unknown whether the rps evolved 

to be part of the ribosome, or whether they were recruited there after having evolved to serve 

some other function in the cell. It has been proposed that the rps were added to improve the 



fidelity of translation, or perhaps to aid in the folding and structural maintenance of the rRNA, 

which has evolved to be longer and more complex (Stem et al., 1989). Another proposed initial 

role for rps was to protect the rRNA from degradation upon the evolutionary development of 

nucleases (Wool et al., 1995). 

It is currently clear that the ribosomal proteins act cooperatively within the ribosome; 

thus, it has been difficult to assign particular roles to individual rps. Among the known specific 

functions, as revealed by studies in H. marismortui and T. thermophilus, are the following 

(Wilson and Nierhaus, 2005): In the large subunit, L161L27 are involved in tRNA binding 

whereas L1 is involved in tRNA release; L9 stabilizes tRNA at the P site; L22 interacts with 

particular nascent polypeptide chains; and L23 and L29 are located at the tunnel exit site, binding 

the chaperone trigger factor and the signal recognition particle, respectively. In the small 

subunit, S l  binds rnRNA during initiation; S3, S4, and S5 form the entry pore for mRNA; and 

S4, S5, and S 12 are involved in decoding and error checking. 

3d. Evolutionary Conservation of Ribosomal Proteins 

The mechanisms of translation are highly conserved among species (Ganoza et al., 2002). 

Although, to date, the crystal structures of the eukaryotic ribosomal subunits have not been 

reported, much can be inferred from the prokaryotic structures. A low-resolution analysis by 

cryo-electron microscopy revealed a great deal of similarity in three-dimensional morphology 

between the eukaryotic 80s and the E. coli 70s ribosomes (Verschoor et al., 1996). This is in 

spite of the fact that eukaryotic ribosomes are significantly larger than their E. coli counterparts 

(approximately 4 million Daltons versus 2.8 million Daltons, respectively) (Verschoor et al., 

1996). At the level of the ribosomal proteins, the eukaryotic rps are also generally larger than 



those in E. coli, but clear homologies exist in their amino acid sequences (Ramakrishnan and 

White, 1998). The most well-conserved rps are, not surprisingly, the ones found to have an 

important functional role (Muller and Wittmann-Liebold, 1997). For example, E. coli S 12, a 

protein involved in maintaining accuracy of translation, is highly similar to the human and rat 

S23 (Muller and Wittmann-Liebold, 1997). Other E. coli rps with close homologs in mammals 

include S7, S l  1, S19, and L12 (Muller and Wittmann-Liebold, 1997). In total, of the -79,68, 

and 57 rps in the eukaryotic, archaeal, and bacterial ribosomes, respectively, 34 are common to 

all three, 15 of these in the large subunit and 19 in the small subunit (Lecompte et al., 2002). 

This leads to the question: what is the function of the rps that are unique to eukaryotes? As 

noted above, it has been proposed that many rps have been added to aid in the folding of the 

more complex rRNA (Wool et at., 1995). However, many of these additional rps have also been 

demonstrated to have functions in translation similar to the conserved rps, such as substrate 

binding, error checking, and translocation of the nascent polypeptide chain (Dresios et al., 2006). 

3e. Extraribosomal Functions of Ribosomal Proteins 

While the ribosomal proteins are considered key elements of the translation machinery, 

many of the individual proteins have also been demonstrated to have distinct functions outside of 

the ribosome (Wool, 1996). As noted above, it is unclear whether the rps already possessed 

these functions before their evolutionary incorporation into the ribosome, or whether they 

evolved these functions as a consequence of being part of the ribosome. The presence of leucine 

zipper motifs in some rps suggests that these rps may have had a former role as DNA binding 

proteins (Chan et al., 1993; Wool et al., 1995). The quality of experimental evidence for the 

existence of any particular one of these extraribosomal functions varies. In many cases, 



investigators purified a protein possessing an activity of interest, and when the protein was 

sequenced, it was discovered to be a ribosomal protein. It is generally unclear whether each 

extraribosomal activity is a role that the rp plays in all normal cells, or whether it exhibits this 

activity only in response to some spatially- or temporally-dependent cue. Furthermore, it is 

unclear whether any of the extraribosomal roles assigned to the rps are independent of their role 

in translation; Le., these various functions may be activated as a consequence of a disruption of 

normal translation. Regardless, it is of interest to review some of these reports here, as they need 

to be taken into consideration in our analysis of the mechanism of tumorigenesis in rp mutant 

zebrafish. 

In E. coli, S 1 is required for initiation of replication of RNA phages as a subunit of the 

viral replicase (Kamen, 1975). Both L3 and L14 are also required in the replication of some 

bacteriophages as an activator of a DNA helicase (Soultanas et al., 1998; Yancey and Matson, 

1991). In addition, lambda phage transcription is affected by the activity of S 10, which 

stimulates antitermination via its interaction with NusB (Friedman et al., 1981; Mason et al., 

1992). This latter activity seems to have been conserved in yeast, as the homologue, S20, 

participates in antitermination by RNA polymerase I11 (Denmat et al., 1994). Another E. coli rp, 

S9, seems to have a role in DNA repair, a process in which some mammalian rps also seem to be 

involved. E. coli S9 binds UmuC, which is induced in SOS repair (Woodgate et al., 1989); 

human S3 is the same as apurinic/apyramidinic endonuclease I11 (Kim et al., 1995), and human 

PO has also been found to have apuriniclapyramidinic endonuclease activity (Grabowski et al., 

1991). Furthermore, human L7a was found to be induced upon DNA damage by UV irradiation 

(Ben-Ishai et al., 1990), though a direct role for this rp in DNA repair remains to be found. 

Intriguingly, however, levels of L7a have been found to be upregulated in human colorectal 



carcinomas and prostate cancers (Vaarala et al., 1998; Wang et al., 2000), and it is thought to 

activate the trk oncoprotein (Zhu et al., 2001). 

Another function of various rps with implications for cancer is in the regulation of 

apoptosis and cell proliferation. For example, overexpression of human L13a has been 

demonstrated to arrest cells in G2/M phase of the cell cycle, leading to subsequent apoptosis. 

Knockdown of L13a also appears to sensitize cells to apoptosis induced by treatment with 

camptothecin, presumably because the inhibition of cell proliferation by L13a normally delays 

this effect (Chen and Ioannou, 1999). Human L7 is a homologous protein that also induces 

apoptosis, presumably by arresting cells in G1 (Neumann and Krawinkel, 1997). In addition, 

human L35a has been shown to be an inhibitor of apoptosis (Lopez et al., 2002). 

Among the largest classes of rps with identified extraribosomal functions are, not 

surprisingly, those that are involved in the regulation of translation itself. This is accomplished 

by a variety of mechanisms including: (1) inhibiting the transcription of its own message, [e.g., 

human S14 (Tasheva and Roufa, 1995)l or inhibiting the transcription of another rp gene [e.g., E. 

coli LA inhibits transcription of the S10 operon (Zengel and Lindahl, 1991)l; (2) inhibiting the 

splicing of its own message [e.g., yeast L32 (Vilardell and Warner, 1994) and Xenopus L1 

(Bozzoni et al., 1984)l; and (3) inhibiting the translation of its own message and other messages 

[e.g., 23. coli S4, S7, S8, L1, LA, and L10 (Nomura et al., 1984); yeast L32 (Vilardell and Warner, 

1994); and human L7 (Neumann et al., 1995)l. 

In addition, S6 has recently been of interest in the context of the mammalian target of 

rapamycin (mTOR) pathway, a key regulatory pathway that controls cell growth (Inoki et al., 

2005). mTOR has been shown to phosphorylate and activate S6 kinase (S6K), which in turn 

phosphorylates S6, among other substrates (Proud, 2002). The precise role of S6 and its 



phosphorylation, however, remains unclear. This signaling is usually correlated with an 

upregulation of translation, especially of messages containing the 5'-terminal oligopyrimidine 

(TOP) motif, a sequence of 4 to 14 pyrimidines following a cytosine in the 5' untranslated region 

(Meyuhas, 2000). Since TOP messages often encode rps and other abundant translation factors 

(Meyuhas, 2000), the result is an increase in the translational capacity of the cell. Some 

researchers have found that the phosphorylation of S6 is unnecessary for the translation of TOP 

messages (Ruvinsky et al., 2005; Stolovich et al., 2002), yet this does not rule out the existence 

of a redundant mechanism. Thus, S6 might still be involved in recruiting specific messages for 

translation. 

The misregulation of growth control has some obvious implications for the development 

of cancer. There is further evidence that some rps may be even more directly involved in 

malignant transformation. The mammalian ribosomal proteins L5, L11, and L23 have all been 

found to interact with MDM2 (or HDM2 in humans), the oncoprotein which targets the p53 

tumor suppressor for destruction. The current model suggests that these rps prevent the 

interaction of MDM2 with p53, thus increasing the stability of p53 and inducing cell cycle arrest 

(Zhang and Zhang, 2005). The implications of these findings with respect to tumorigenesis in 

zebrafish rp mutants will be discussed in Chapter 4. 

A number of other extraribosomal functions have not been mentioned here (Wool, 1996), 

though it seems likely that many of these are indirect consequences of their roles in translation. 

For example, many Drosophila rps have been found to play a role in the regulation of 

development, but these effects are probably a result of a general defect in translation, as 

discussed below. 



35 Ribosomal Protein Mutations in Model Organisms 

Among the model organisms, rp mutations have been studied most extensively in 

Drosophila. The Minute phenotype of flies is a characteristic set of pleiotropic defects including 

delayed development, short thin bristles, and recessive lethality (Lambertsson, 1998). In all 

cases to date, Minutes have been mapped to ribosomal protein genes (Kongsuwan et al., 1985; 

Lambertsson, 1998). It is important to note, however, that not all rp mutations in Drosophila are 

associated with Minutes (Larnbertsson, 1998). This may indicate that the gene dosage of each rp 

is an important factor in the phenotypic output of the mutation. Evidence in support of this idea 

was presented by Szbge-Larssen et al., who showed that among an allelic series of S3 mutations, 

the stronger ones resulted in more pronounced morphological defects (Szbge-Larssen et al., 

1998). Mutations in several specific rp genes in Drosophila have also been implicated in 

improper regulation of growth control, supporting the possibility that rps may be playing a role 

in tumorigenesis in higher organisms. For example, a P element insertion in the gene encoding 

the homolog of human S6 leads to an overgrowth of the hematopoietic organs and formation of 

melanotic tumors (Watson et al., 1992). Similarly, down-regulation of the S21 gene leads to 

hyperplasia of the hematopoietic organs and overgrowth of the imaginal discs (Torok et al., 

1999). 

Although the consequences of rp mutations in mammals have not been extensively 

characterized, there are several documented cases of rp mutations in the mouse. For example, 

Belly spot and tail (Bst) is a spontaneous semidominant mouse mutation that was recently found 

to be a deletion in the L24 gene that impairs the splicing of the message (Oliver et al., 2004). 

The mutation is homozygous lethal, and heterozygotes have multiple defects, including a white 

ventral midline spot, white hind feet, a reduction in retinal ganglion cells of the eye, a kinked 



tail, and other skeletal abnormalities. Significantly, the Bst/+ mice were also found to be 20% 

smaller than their wild-type littermates, leading the authors to conclude that Bst is a mouse 

Minute. 

There are very few published reports of targeted knockouts of rp genes in the mouse, 

likely due to the dearth of data linking mutations of particular rp genes to disease states in 

humans. S 19 is one exception: heterozygous mutation of the gene encoding this rp has been 

found in 25% of human patients with Diamond-Blackfan anemia (DBA) (Draptchinskaia et al., 

1999) (See below). The S19 mouse knockout is early embryonic lethal, as expected (Matsson et 

al., 2004). Unfortunately, the ~19"' mouse did not display any of the defects in the 

hematopoietic system that are characteristic of the human disease. The heterozygotes also 

appeared to develop normally otherwise, with no detectable difference in growth rate or weight, 

compared to littermate controls. The same group recently showed, however, that loss of one 

allele of S19 appears to be compensated for completely at the transcriptional level (Matsson et 

al., 2006). 

The only other published knockout of a ribosomal protein in the mouse is that of S6, the 

rp that has been implicated in control of cell growth, as described above. VolareviC et al. 

generated a conditional S6 knockout in which the gene was deleted in liver cells of adult mice 

(VolareviC et al., 2000). Surprisingly, although the cells were impaired in 40s ribosome 

biogenesis, they were able to grow in size in response to nutrients. After partial hepatectomy, 

however, the %-deficient liver cells displayed a defect in cell proliferation. The authors propose 

the existence of a checkpoint that arrests the cell cycle upon an acute impairment of ribosome 

biogenesis. 



There is one additional study of rp mutations in mice that deserves mention, as it may be 

relevant in a discussion of the link between rps and tumorigenesis. Beck-Engeser et al. 

demonstrated that aggressively growing variants of two independent tumor cell lines expressed 

tumor antigens that were found to be rps (Beck-Engeser et al., 2001). In one line, one allele of 

L9 had a point mutation and the other allele was lost; in another line, both copies of L26 were 

mutant, suggesting that oncogenic activation can occur in rp genes. In the case of L9, 

reintroduction of a wild-type allele suppressed this putative oncogenic effect, as the tumor cells 

reverted to a slower-growing phenotype. 

3g. Translation and Cancer 

It has generally been accepted that cell growth and cell proliferation are intimately linked, 

but the direct causal links between protein translation and cancer are only beginning to be 

elucidated (Clemens, 2004). The aberrant activity of several translation factors has recently been 

associated with tumorigenesis. For example, levels of the initiation factor eIF2 have been found 

to be elevated in tumor cells (Lobo et al., 2000; Rosenwald, 1996). eIF2 normally forms a 

ternary complex with Met-tRNAf and GTP, and is important for binding to the 40s ribosomal 

subunit. eIF2 is regulated by phosphorylation of its smallest (a) subunit, the phosphorylated 

form being an inhibitor of the guanine nucleotide exchange factor eIF2B (Clemens, 2001). Since 

the unphosphorylated form of eIF2 is required for translation initiation, rnisregulation of its 

phosphorylation can lead to cancer. For example, a non-phosphorylatable form of eIF2a has 

been shown to induce malignant transformation of NIH 3T3 cells (Donz6 et al., 1995). 

Two other translation initiation factors, eIF4E and eIF4G have been implicated in 

tumorigenesis. Both factors have been found to be overexpressed in tumors (Bauer et al., 2001; 



Zimrner et al., 2000). Moreover, experimental overexpression of both can induce cell 

transformation (Fukuchi-Shimogori et al., 1997; Lazaris-Karatzas et al., 1990). eIF4E normally 

binds to the 5' cap of rnRNAs and also binds eIF4G, forming a complex along with eIF4A. 

Formation of this complex, which brings the mRNA to the ribosome, is a key step in translation 

initiation. The binding of eIF4E to eIF4G is inhibited by the eIF4E-binding proteins (4E-BPS). 

Phosphorylation of the 4E-BPS by mTOR has been shown to release them from eIF4E, thereby 

stimulating cap-dependent translation (Gingras et al., 1999). 

At the level of the ribosome proper, there is limited data linking the rps to tumorigenesis. 

As hinted at above in the case of L7a (Vaarala et al., 1998; Wang et al., 2000), rps are generally 

overexpressed in cancer (Grabowski et al., 1992; Henry et al., 1993; Nadano et al., 2002). Of 

course, an increase in cell proliferation necessitates an increase in protein translation, so the 

elevated level of rps is likely to be an effect, rather than a cause, of cancer. Consistent with this 

notion is the finding that the transcription of some rps decreases upon apoptosis (Chen et al., 

1998; Goldstone and Lavin, 1993; Lin et al., 1994). In contrast, a recent report has shown that 

L14 expression is reduced in some esophageal squamous cell carcinomas (Huang et al., 2006), 

though the functional significance of this is unknown. 

There is some intriguing evidence to suggest that misregulation or mutation of some rps 

could lead to cancer. As mentioned above, some molecular data suggest that L5, L11, and L23 

may be playing a role in the key p53 tumor suppressor pathway (Zhang and Zhang, 2005), 

though misregulation of these rps has not been demonstrated in human tumors in vivo. L10 has 

also been linked to cancer in that it was found to be identical to a putative Wilms' tumor 

suppressor protein (Chan et al., 1996), though any tumor suppressive activity of this protein has 

not been shown. In addition, as mentioned above, Diamond-Blackfan anemia is linked to a 



mutation in S19 in 25% of patients. In addition to displaying the characteristic anemia caused by 

a deficiency of erythroid precursors, DBA patients are prone to the development of leukemias 

(Janov et al., 1996) and, at lower frequencies, solid tumors (Lipton et al., 2001). It is not known 

whether tumorigenesis is an indirect result of the anemia or whether S 19 dosage plays a direct 

role. Furthermore, it is not clear whether there is a direct correlation between DBA patients who 

have an S 19 mutation and those that develop leukemias. In short, causative links between rp 

mutations and cancer in humans are to date very weak, though a careful analysis has yet to be 

done. 

4. Conclusion 

The zebrafish has proven to be a valuable tool in gene discovery. Forward genetic 

screens in embryos have led to the elucidation of numerous genes and pathways involved in 

vertebrate development. We are now capitalizing on the strengths of the zebrafish model system 

to study diseases of adult humans, including cancer. As I will present in this thesis, a screen for 

cancer genes in zebrafish has led to the surprising discovery that many ribosomal protein genes 

are haploinsufficient tumor suppressors. While data in the literature supporting a role for rp 

mutations in cancer are sparse, there is considerable evidence to suggest that misregulation of 

protein translation can be an initiating event in tumorigenesis. The work of this thesis provides 

evidence that rp mutations, likely through an effect on translation, can cause cancer in the 

zebrafish. Since the rps and the translation machinery are extremely well-conserved throughout 

evolution, it is likely that we will find rp mutations in human cancers. This represents a novel 

mechanism of tumorigenesis that may inspire the development of new cancer therapies. 
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Abstract 

We have generated several hundred lines of zebrafish, each heterozygous for a recessive 

embryonic lethal mutation. Since many tumor suppressor genes are recessive lethals, we 

screened our colony for lines that display early mortality and/or gross evidence of tumors. We 

identified 12 lines with elevated cancer incidence. Fish from these lines develop malignant 

peripheral nerve sheath tumors (zMPNSTs), and in some cases also other tumor types, with 

moderate to very high frequencies. Surprisingly, 11 of the 12 lines were each heterozygous for a 

mutation in a different ribosomal protein (rp) gene, while one line was heterozygous for a 

mutation in a zebrafish paralog of the human and mouse tumor suppressor gene, 

neurofibromatosis type 2 (NF2). Our findings suggest that many rp genes may act as 

haploinsufficient tumor suppressors in fish. Many rp genes might also be cancer genes in 

humans, where their role in tumorigenesis could easily have escaped detection up to now. 

Introduction 

The zebrafish has long been used as a model organism for the identification of genes 

required for early vertebrate development (Kimrnel, 1 989). There is reason to believe that the 

zebrafish can also be used in genetic screens to identify cancer genes. Zebrafish can live for 4-5 

years (Gerhard et al., 2002) and like other fish species (Schmale et al., 1986; Wittbrodt et al., 

1989) they develop tumors in a variety of tissues (Amatruda and Zon, 2002; Smolowitz et al., 

2002). They are also susceptible to chemical carcinogens and to well known oncogenes, in a 

manner similar to the conventional mouse models (Beckwith et al., 2000; Spitsbergen et al., 

2000a; Spitsbergen et al., 2000b; Langenau et al., 2003). Many of the spontaneous and 



chemically- or oncogene-induced tumor types are histologically similar to their mammalian 

counterparts (Amatruda and Zon, 2002; Langenau et al., 2003). 

The normal functions of many mammalian tumor suppressor genes are required for 

normal development (Jacks, 1996). In fact, non-essential tumor suppressors, such as p53 

(Donehower et al., 1992), appear to be the exception rather than the rule. These findings raised 

the possibility that one could discover genes with a role in tumorigenesis among zebrafish genes 

identified initially for having essential roles during embryonic development. We have used 

retroviral vectors as a mutagen in a large-scale insertional mutagenesis screen and have isolated 

many zebrafish mutants with lesions in genes essential for embryogenesis (Amsterdam et al., 

1999; Golling et al., 2002). We are maintaining approximately 500 lines, in most of which an 

embryonic lethal mutation is linked to a single proviral insert. We have identified the mutated 

genes in over 400 of the lines, and these include mutations in 300 distinct zebrafish genes. To 

maintain the lines, we identify approximately 15 heterozygous carriers and outcross these at 15- 

20 months of age to produce the subsequent generation. The maintenance of these mutations in 

adults provides a unique opportunity to ask whether heterozygosity in genes required for 

embryonic development predisposes the animals to cancer. Here we describe how such an 

analysis has identified genes that encode ribosomal proteins as cancer genes in zebrafish. 

Results 

Mutations in Many Ribosomal Protein Genes Predispose Zebrafish to Malignant Peripheral 

Nerve Sheath Tumors and Other Cancers 

In the course of establishing and maintaining heterozygous mutant lines of fish, we 

noticed several lines that displayed early mortality by 2 years of age, and this phenotype was 



seen in successive generations. Typically only about 10-15% of fish in a tank are lost by 2 years 

of age, but in these apparently high-mortality lines losses could exceed 50%. Furthermore, fish 

from these lines were often found to have gross lumps (Figures 2.1A and B). Histological 

analysis of step sections showed that the growths were predominantly large, malignant spindle 

cell tumors that were highly invasive, had a high mitotic index, and often exhibited focal 

necrosis (Figures 2.1C-H). The tumor cells were aligned into stacks and fascicles to form a 

whirling, storiform pattern (Figures 2.1E, F, H) that resembles malignant peripheral nerve sheath 

tumors (MPNSTs) seen in other species of fish (Schmale et al., 1983; Roberts, 2001) and in 

mammals (Woodruff, 1999; Cichowski et al., 1999; Jimenez-Heffernan et al., 1999). In keeping 

with the published work on fish tumors, while adhering to the caution suggested by the National 

Neurofibromatosis Foundation regarding animal models of MPNST (M. McLaughlin pers. 

cornm.), we have designated these tumors zMPNSTs (zebrafish MPNSTs). 

Although we had occasionally observed individual fish with lumps in our colony, it was 

unusual to find so many within a single line. Thus we reasoned that the lines with early 

mortality that also frequently displayed gross lumps by 2 years of age might be lines with 

elevated rates of lethal cancer. Surprisingly, we found that the several potentially high-tumor 

lines were all heterozygous for mutations in genes that encode different ribosomal proteins. This 

unexpected observation, combined with the knowledge that many tumor suppressors are 

recessive embryonic lethal genes, prompted us to survey our colony systematically to d e t e d n e  

the incidence and spectrum of tumors arising in the colony as a whole, and to ask specifically 

whether genes that encode many different ribosomal proteins predispose to cancer. 

To determine cancer incidence in the colony as a whole, we sectioned 152 "control" fish 

that were 20-26 months of age. Forty-nine of the control fish were non-transgenic while 103 



were selected at random from 54 lines heterozygous for mutations in genes other than rp genes. 

The latter fish had been generated and maintained in a comparable manner to our rp mutant lines 

and thus were appropriate controls. The incidence of tumors detected by step sectioning in this 

control population was 1 1% (Table 2. ID). Although we observed a variety of different tumor 

types (most frequently seminomas and pancreatic islet cell adenomas), most of the tumors 

(15117) were benign neoplasias and none were zMPNSTs. There was neither a significant 

difference in spectrum nor an increase in incidence of tumors in the non-rp heterozygous mutant 

fish relative to the wild-type fish, indicating that the presence of viral insertions, per se, does not 

have an obvious effect on tumorigenicity. 

To compare the frequency and types of tumors arising in rp mutant lines to those of the 

control population, we established the fate of all heterozygotes in a single generation of each of 

16 rp mutant lines. In each family, some fish were lost prior to any observation of external 

symptoms, precluding determination of the cause of death. The rest were sacrificed either when 

they developed visible masses or when they reached 18 to 26 months of age, and step sections 

were examined (Table 2.1). The 16 rp families fell into three groups with respect to tumor 

incidence: Six lines had high mortality (including both lost fish and those with external growths) 

and a high tumor incidence (260% including both fish with gross tumors and tumors detected 

only upon sectioning). Nearly all of the tumors observed by 22 months in these lines were 

zMPNSTs (Table 2.1A). These lines included those with mutations in rp genes S8 (GenBank 

Acc. AY561509), S15a (GenBank Acc. AY561512), L7 (GenBank Acc. AY561515), L35 

(GenBank Acc. AF506205), L36 (GenBank Acc. AY561518), and L36a (GenBank Acc. 

AY0995 11). Five rp mutant lines made up a second group. These lines had either a moderate 

incidence of cancer, or had a low incidence but were unusual in having an apparently elevated 



incidence of zMPNSTs. This group included lines with mutations in L13 (GenBank Acc. 

AY561516), L23a (GenBank Acc. AY561517), S7 (GenBank Acc. AY561508), S18 (GenBank 

Acc. AY099517), and S29 (GenBank Acc. AY561513). As in the high cancer lines, in most 

lines with moderate cancer incidence, most tumors observed in fish by 22-24 months of age were 

zMPNSTs (Table 2.1B). In one line, however (hi1026, with a mutation in S18), other tumor 

types predominated, suggesting that rp mutations can increase the frequency of tumor types 

besides zMPNSTs. The third group of rp mutant lines included 5 lines, none of which were 

tumor prone. These lines, with mutations in L3 (GenBank Acc. AY561514), L24 (GenBank 

Acc. AY099532), LPl (GenBank Acc. AY561519), S12 (GenBank Acc. AY561510), and S15 

(GenBank Acc. AY56 15 1 I), were indistinguishable from controls in tumor incidence and 

spectrum (Table 2.1 C versus D). In summary, 1 1 of 16 rp mutant lines had an elevated 

incidence of cancer, and most of these 11 lines are predisposed to develop zMPNSTs. 

Together these findings suggested that zMPNSTs are rare in our colony except in rp 

mutant lines. However, because the cancer incidence was low in the control fish, we observed 

only 17 tumors in this group of fish in the experiment described above. Furthermore, only 4 of 

these 17 tumors were grossly visible, with 13 being detected only after sectioning. To obtain 

more data on tumor spectrum in our colony, including the types of tumors that present as 

externally visible growths in non-rp mutant lines and wild-type, we sought out fish with 

externally visible tumors from throughout our colony, coded them to avoid bias, and identified 

the tumor types by histological analysis of step sections. In total, we analyzed gross tumors from 

41 control fish (wild-type or non-rp mutant lines, including the 4 tumors found above). We also 

analyzed a total of 65 rp heterozygotes with grossly visible tumors (including the fish 

represented in Table 2.1 A, B, and C). Figure 2.2 shows a comparison of the types of tumors in 



control versus rp mutant lines that present as externally visible growths. In the control fish, 

seminomas accounted for 57% of these tumors, while a wide variety of other tumor types, 

including ultimobranchial gland tumors, neuroblastomas, islet cell adenomas, and lymphomas, 

each arose at low frequency. Overall, 69% of the grossly visible tumors observed in non-rp fish 

were benign. Only 10% of these externally visible tumors were zMPNSTs (see below). In 

contrast to the control fish, and as apparent from the data in Table 2.1, the majority of grossly 

visible tumors in the rp mutants were zMPNSTs (81%), greatly exceeding the number of 

seminomas (4%) or other (15%) tumor types (Figure 2.2). Since fish with external growths were 

found far more often within rp families than the colony at large, the dramatic shift in the 

spectrum of tumors in rp relative to non-rp mutant lines reflects the profound increase in 

incidence of zMPNSTs rather than any obvious reduction in the incidence of seminomas and 

other tumor types. 

As noted above, we detected zMPNSTs in only 4 of 41 control fish with grossly visible 

tumors. Two of these fish, aged 15 and 24.5 months, were from the hi3332 line, the only non-rp 

line in which more than a single zMPNST has been observed to date. Significantly, the viral 

insertion that is linked to the embryonic lethal phenotype of this line lies within one of two 

distinct zebrafish genes (NFZa, GenBank Acc. AY561520) that are highly homologous to the 

mammalian neurofibromatosis type 2 gene (NF2). The insertion abrogates expression of this 

gene in homozygous mutant embryos (Figure 2. S 1 and data not shown). NF2 was originally 

identified as a tumor suppressor gene that predisposes individuals to develop tumors of the 

nervous system (Trofatter et al., 1993; Ruttledge et al., 1994). Given this finding, we screened 

the remaining 53 fish in this family for tumors between 17.5 and 23 months of age by sectioning. 

Seven of these 53 fish had small spindle cell tumors. These tumors were not identical to typical 



zMPNSTs found in rp families, but shared some key characteristics (data not shown). Given the 

elevated incidence of rare tumor types including zMPNSTs, we conclude that NF2a acts as a 

tumor suppressor gene in fish, as it does in mammals. 

Early Mortality in an rp Mutant Line Results from Multiple Types of Cancer 

The experiment described above identified 6 rp mutant lines with high mortality. While 

some of the mortality could be accounted for by fish that displayed gross tumors and therefore 

were removed from the tanks before they died, many fish simply disappeared or were found dead 

and were too deteriorated to be analyzed histologically. To determine whether early mortality in 

these lines was entirely due to lethal cancers, and if so, whether it was due to zMPNSTs or to 

other tumor types, we performed two experiments using fish from the early-mortality, high 

tumor hi1 0 line. In one experiment we screened hi10 heterozygotes and their wild-type siblings 

weekly for evidence of ill health or externally visible growths in an effort to catch all sick fish 

before they died or were lost. Sickly fish were sacrificed and subjected to histological 

examination, as were all of the fish that still appeared healthy at 22 months of age. The results 

are shown in Figure 2.3. Only the rp heterozygous carrier fish displayed early mortality, and, as 

anticipated, this was due to cancers. Strikingly, among tumors found by 15 months of age, while 

two were zMPNSTs, one was a retinoblastoma and three were lymphomas, tumor types that, like 

zMPNSTs, arise infrequently in our control populations. The tumors detected in the older fish 

were predominantly zMPNSTs. By the endpoint of the experiment (22 months) all of the non- 

carrier sibling controls appeared healthy, and step sectioning detected only one tumor-bearing 

fish among 13, a frequency comparable to the control population. These results support the 



conclusion that the early mortality observed in the hi10 line is the result of lethal tumors, and 

reveal that these include zMPNSTs but also other tumor types. 

Further evidence that fish from the hi lo  line are predisposed to multiple tumor types was 

obtained in the second experiment, in which we sectioned hi10 heterozygotes and their non- 

carrier sibling controls (specifically including any sick or growth-bearing fish along with 

apparently healthy fish) at approximately six-week intervals between 8 and 14 months of age. 

As shown in Table 2.2, we found both grossly visible and occult zMPNSTs and other tumor 

types in the hi lo  carrier fish. Thus the hi lo  line (and presumably other high mortality rp lines) is 

predisposed to multiple tumor types, though particularly strongly predisposed to develop 

zMPNSTs, especially at later time points. 

rp Genes May Be Haploimuficient Tumor Suppressors 

Dominant mutations that predispose vertebrates to cancer can be activated oncogenes, 

recessive tumor suppressors, or haploinsufficient tumor suppressors (Largaespada, 2001). 

Several lines of evidence suggest that rp mutant genes may be acting as haploinsufficient tumor 

suppressors in zebrafish. The mutagenic inserts in all of our rp mutant lines reduced or 

eliminated expression of the rp gene, as determined by RT-PCR and, in some cases, Northern 

blotting (Figure 2.4A and data not shown). Thus, most if not all of these viral insertions appear 

to be loss of function mutations. This suggests that the rp genes are not mutated to form 

activated oncogenes, but rather may act as tumor suppressors. In mammals, the most frequent 

mechanism of inactivation of recessive tumor suppressor genes is the acquisition of a mutation 

(either germline or somatic) in one allele and subsequent loss of the wild-type allele through loss 

of heterozygosity (LOH) (Haber and Harlow, 1997). Thus, we investigated whether the wild- 



type rp gene had been lost in the zebrafish tumors. We isolated both normal and tumor tissue 

from three rp heterozygous mutant lines, hilo, hi258, and hi1974, each of which shows a 

reduction in expression of its respective rp mutant gene of ?lo-fold (Figure 2.4A) and examined 

DNA from these samples for the presence of the mutant and wild-type rp alleles by PCR (Figure 

2.4B). In every case we detected the wild-type allele, arguing against loss of heterozygosity in 

these tumors. A concern is that tissue contamination can yield misleading LOH results, 

particularly because the red blood cells of fish are nucleated. Thus control PCR experiments 

were performed in which DNA samples from heterozygous and homozygous embryos were 

mixed at different ratios. The results show that our assay was sensitive to as small as a 3-fold 

decrease in the relative amount of the wild-type allele (data not shown). Thus, unless the tumor 

samples contained more than 33% non-tumor cells, we can conclude that the wild-type rp alleles 

were not lost in these tumors, and thus the rp genes are probably not recessive tumor 

suppressors. In one of the tumor samples shown in Figure 2.4, tumor hilo-1, the wild-type allele 

appears not only to be present but possibly at higher concentration than the mutant allele, and 

Southern analysis of this same DNA sample supported this observation (data not shown). Thus, 

in this particular tumor the mutant allele may have been lost and only the wild-type allele 

retained. 

In mice, a tumor cell line has been described in which one copy of an rp gene is deleted 

and the other copy has suffered a mutation that may contribute to tumorigenesis (Beck-Engeser 

et al., 2001). To rule out the acquisition of a point mutation in the wild-type allele in rp mutant 

tumors, all of the coding exons of the appropriate rp gene and at least 50 bp of intronic sequence 

flanking them were sequenced from each normal and tumor DNA sample. There was no 

indication of any point mutations in any of the tumors. The apparent retention of the wild-type 



allele in the tumor cells in these samples and the fact that no point mutations were observed in 

the wild-type rp genes in the tumor cell DNA suggests that it is not a second hit in these loci that 

leads to tumorigenesis. Rather, the data obtained suggest that these genes function as 

haploinsufficient tumor suppressors in zebrafish. 

rp Mutations Alter the Relative Amounts of 18s and 28s rRNAs 

In yeast, a decrease in the amount of at least some rp genes results in a reduction in the 

amount of the corresponding ribosomal subunit and a reduction in the number of assembled 

ribosomes (Moritz et al., 1990). To determine if this is also true in fish, we examined the relative 

amounts of 18s and 28s rRNA in homozygous mutant embryos compared to sibling controls. 

Embryos from heterozygote crosses of lines hilo, hi1974, and hi2649 were sorted by phenotype 

at three days post-fertilization, and total RNA was prepared from pools of mutant or 

phenotypically wild-type sibling embryos. Electrophoresis and ethidium bromide staining was 

used to determine the amounts of 18s and 28s RNA, which we assume reflect the amounts of 

40s and 60s ribosomal subunits, respectively (Figure 2.5). As a loading control, the same RNA 

samples were subjected to Northern analysis and probed for beta actin (Figure 2.5). In each case 

we observed a decrease in the overall amount of rRNA, and significantly, a preferential loss of 

the rRNA found in the ribosomal subunit with which the mutated rp was associated. Thus in 

hilo, where a component of the large ribosomal subunit was mutated, while both 18s and 28s 

RNA levels were decreased, the level of 28s RNA was affected more than the 18s. Conversely, 

in hi1974 and hi2649, where components of the small ribosomal subunit were mutated, the 28s 

RNA levels were mildly reduced, but 18s RNA was sharply decreased. In none of these cases 

was the actin level reduced, so the effect was not simply a result of a reduction of cell number, 



RNA degradation, or cell death. Thus, as in yeast, rp mutations in fish that result in reduced 

gene expression lead to a relative decrease in the amount of the subunit to which they belong as 

measured by a decrease in rRNA. 

Discussion 

In this study, we have found that heterozygous mutations in 11 different ribosomal 

protein genes predispose zebrafish to cancer, predominantly to zMPNSTs, but also to other rare 

tumor types. All of these mutations reduce rp gene expression, indicating that these 11 genes are 

not oncogenes. Moreover, in the tumors we examined, the wild-type allele appeared to be 

present and did not contain point mutations; thus these genes are not recessive tumor 

suppressors. Rather, our findings suggest that these 11 genes are haploinsufficient tumor 

suppressor genes; that is, reducing their activities by about a factor of two increases the 

likelihood of cancer. These findings raise two important, unanswered, questions: first, how do 

these mutations lead to cancer, and second, do similar mutations cause cancer in humans? 

How Do These Mutations Cause Cancer? 

The finding that mutations in so many different rp genes, including S7, S8, S15a, S18, 

S29, L7, LI3, L23a, L35, L36, and L36a, predispose to cancer suggests that a function shared by 

ribosomal proteins underlies their role in this phenotype. However, not all rp genes were cancer 

genes: S12, S15, L3, L24, and LPl heterozygotes appeared normal. This raises the possibility 

that the oncogenic rp genes could conceivably share some novel biological function independent 

of their role in the ribosome and that inhibition of this function leads to tumor formation. 

Individual ribosomal proteins have been implicated in a wide variety of biological functions, 



including cell cycle progression, apoptosis, and DNA damage responses (Ben-Ishai et al., 1990; 

Sonenberg, 1993; Chen et al., 1998; Chen and Ioannou, 1999; Hershey and Miyamoto, 2000; 

VolareviC et al., 2000; VolareviC and Thomas, 2001; Lohmm et al., 2003), and it has been 

suggested that their role in these processes may arise independently of their role in the ribosome 

itself (Wool, 1996; Wool et al., 1996; Soulet et al., 2001). However, it seems somewhat unlikely 

to us that there could be such an important, yet still undetected function involving so many 

different ribosomal proteins. Thus we favor the possibility that it is a shared, ribosome- 

associated function that allows them to be tumor suppressors. If so, then why were not all rp 

genes cancer genes in this study? At present we can only speculate. We have not found any 

correlation that distinguishes the rp genes that predispose to cancer from those that do not. Both 

can belong to either the large or the small ribosomal subunit, and all the mutants show reduced 

gene expression. Possibly some rp genes are normally expressed at higher levels than others, so 

that a 50% reduction in their expression does not reduce their protein level below some critical, 

hypothetical threshold required for tumor suppression. 

The best-known function shared by ribosomal proteins is their role in the assembly of 

ribosomal subunits, and as a result, their role in translation. In homozygous mutant fish 

embryos, the rp mutations reduce the amount of the rRNA of the subunit to which they belong, 

and hence almost certainly reduce the amount of the corresponding ribosomal subunit relative to 

the remaining subunit. In yeast this is known to reduce the number of ribosomes, and thus also 

to reduce the amount of protein synthesis. How might this predispose to cancer? In truth, we do 

not know, and suspect that understanding the mechanism that explains these findings will lead to 

new insights into growth control. At present we can only list our speculations and several 

relevant observations. 



Reduced protein synthesis could lead to a reduction in the level of a critical tumor 

suppressor protein, or of a positive regulator of apoptosis or differentiation, either of which could 

favor growth. A reduction in ribosome number might signal the cell to try to overcome the 

deficit by making more of the components required for ribosome biogenesis, and this in turn 

might promote cell growth. Alternatively, a reduction in the number of ribosomes might alter 

the identity of the messages recruited to ribosomes, similar to the way that modulation of the 

translational capacity of mammalian cells by oncogenes such as Ras or Akt is known to alter the 

identity of rnRNAs recruited to polysomes, changing the translation rate of growth-promoting 

genes (Raj asekhar et al., 2003). Finally, and most speculative of these possibilities, reduced 

ability of a ribosomal subunit to assemble properly might generate a signal that cells interpret as 

growth-promoting. For example, degradation of excess rRNA, a molecule with many hairpins, 

might generate such a signal in the form of RNAi. 

Are rp Genes Cancer Genes in Other Vertebrates? 

Given that so many different rp genes can be cancer genes in fish, it seems surprising that 

they are not already a well-known class of cancer genes in vertebrates. Only two examples are 

known that suggest a role for rp mutations in mammalian tumor susceptibility, one in mice and 

one in humans. In the mouse study, two independent murine tumor cell lines were found to 

express tumor antigens which were mutated ribosomal proteins (Beck-Engeser et al., 2001). In 

both cases, the tumors were found to become more aggressive upon either loss or mutation of the 

wild-type allele of the rp gene. It was postulated that the mutant ribosomal proteins might have 

an oncogenic activity that was suppressed by the wild-type protein. Such a mechanism does not 



seem to be involved in the tumors that develop in the rp mutant fish described here, since we 

failed to detect evidence of oncogenic activation of rp genes. 

In humans, there is a possible association of mutations in one particular rp gene with 

cancer: approximately 25% of both sporadic and familial cases of Diamond-Blackfan anemia 

(DBA) are associated with a mutation of rpSl9 (Draptchinskaia et al., 1999), and this syndrome 

includes an increased risk of developing leukemia (Wassler et al., 1978). It has been 

demonstrated that the anemia is likely due to a block in erythroid differentiation (Hamaguchi et 

al., 2002), but it is currently unclear if the leukemia is an indirect result of the anemia, caused by 

a stimulation in the production of hematopoietic precursors, or whether the rpSl9 gene dosage 

plays a direct role in tumorigenesis. It is important to note that DBA is a multigenic disease with 

very heterogeneous clinical presentation. While DBA patients in general have an increased 

predisposition to certain cancers, it is not yet clear whether this is true of the subset whose DBA 

is caused by rpSI9 mutation. 

While these examples from mouse and human are consistent with the idea that mutations 

in individual rp genes might contribute to tumorigenesis in mammals, they have seemed to be 

unusual examples, rather than suggesting that rp genes in general might be potential cancer 

genes. Our study suggests for the first time, we believe, that this is a general property of many 

rp genes. The possibility that a reduction in ribosome levels might be oncogenic in mammals is 

further supported by the fact that mutations in DKC1, a pseudouridine synthase that is required 

for rRNA processing and for properly functioning ribosomes, cause dyskeratosis congenita, a 

disease characterized by both premature aging and increased tumor susceptibility (Ruggero et al., 

2003). 



If rp genes frequently cause human cancers it is not at all certain that their role would 

have been detected. Even a deliberate search for their involvement in human cancers would be 

difficult because there are so many (80) rp genes. This plethora of genes, the fact that it is hard 

to know which tumor type(s) to examine for rp mutations, and the fact that the mutations might 

lie in regulatory elements rather than protein coding regions of the genes, would make such a 

search difficult. Nonetheless, given the high degree of conservation of biological mechanisms 

among vertebrates, it seems likely that rp mutations will prove to increase the incidence of 

tumors in humans as they do in zebrafish. If so, it may be advantageous to devise diagnostic 

strategies based on ribosomal protein levels or on a function that these proteins share; for 

example, in translation, rather than on the analysis of such a large number of individual genes. 

In summary, by examining aging populations of mutant lines of fish with defects in 

embryonic essential genes, we identified a novel group of cancer genes. The ability to identify 

cancer genes by screening populations of fish heterozyogous for recessive embryonic mutations 

and the reassuring finding that NF2a is a tumor suppressor gene in this system demonstrate the 

power of large-scale, forward-genetic screens in the zebrafish to identify new disease 

susceptibility genes. 

Materials and Methods 

Mutagenesis and Maintenance of Mutants Lines 

The insertional mutagenesis screen was carried out as previously described (Amsterdam 

et al., 1999). Stocks of all lines were maintained by outcrossing heterozygotes to non-transgenic 

fish, preparing DNA from tail fin biopsies of 8- 1 8 week old fish, and performing PCR with 

insert-specific primers for each line to identify heterozygotes. 



Fixation and Histology 

Adult fish were euthanized in ice water and fixed within thirty minutes in Bouin's 

solution, embedded in paraffin, and sectioned as described (Moore et al., 2002). 

Loss of Heterozygosiv Analysis 

DNA was prepared from tumor tissue or tail tissue isolated from fish prior to fixation for 

histology. PCR was conducted with one primer complementary to proviral sequence and two 

primers complementary to sequences on either side of the insertion for the appropriate mutation. 

Primer sequences were as follows: 

NU3X (see above) 

RNA Analysis 

RNA was prepared from mutant and wild-type embryos using Trizol reagent (Invitrogen, 

Carlsbad, CA). For RT-PCR, serial dilutions of 1" strand cDNA were amplified for 30 (hi1974) 

or 35 (hi10 and hi258) cycles using the following primers for the genes indicated: 



rpL36a: 1 Ort5 (5'-CAACCATGGTAAACGTACCGAAG-3') 

* lORTR (5'-CACAAAAGAAGCAC'ITGGCCCAGC-3') 

rpL35: 258RTF2 (5'-GCTGCTTCCAAGCTCTCAAAAATCC-3') 

25 8RTR (5'-TGCCTTGACGGCGAACTTGCGAATG-3') 

rpS8: 1974RTF 1 (5'-TCTCAAGGGATAACTGGCACA-3') 

1974RTR1(5'-GAACTCCAGTI'CTTT'GCCCTC-3') 

beta-actin: actinF (5 ' -C ATC AGC ATGGC?TCTGCTCTGTATGG-3 ' ) 

actinR (5'-GACTTGTCAGTGTACAGAGACACCCT-3'). 

For visualization of 18s and 28s RNA, 2 embryo equivalents of RNA were 

electrophoresed through a non-denaturing agarose gel containing O.Spg/rnl ethidium bromide. 

For detection of beta-actin RNA, 4 embryo equivalents of RNA were electrophoresed through a 

7.5 % formaldeh yde/MOPS-buffered agarose gel, blotted to Hybond N+ (Amersham/Pharmacia, 

Piscataway, NJ), and hybridized with a random-primed beta-actin probe. 
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Figure 2.1: Spindle cell tumors resembling MPNSTs in zebrafish heterozygous for 

mutations in rp genes. 

(A and B) Fish with apparent masses, as indicated by the arrows, or other evident pathology, 

were selected for histological analysis: (A) a hi2582 fish, (B) a hi1034B fish. 

(C-H) Histopathology of representative tumors stained with hematoxylin and eosin reveals 

patterns consistent with the diagnosis of MPNST. (C and D) hi1 0 fish, (E-G) hi1974 fish, (H) 

hi1 807 fish. (C) Tumors typically filled the entire abdomen; sb-swim bladder, br-brain (80X). 

(D) A large tumor with central necrosis is seen emanating from the optic nerve (n); e-eye (20X). 

(E) Tumors consist of spindle cells that stack into short fascicles, typically organizing into 

whorls (400X). (F) Tumor is aggressively invading muscle (m) and gill (g); br-brain (100X). 

(G) Mitotic figures (arrows) are evident (1000X). (H) Areas of focal necrosis are frequently seen 

(arrows; 200X). 





Table 2.1: Tumor incidence in zebrafish ip heterozygous lines and in the colony. 
rp animals were collected as tumors became apparent, or as healthy animals at the maximum age 
specified (age range). # lost indicates those that either died before the appearance of external 
symptoms or were lost from their tanks. Control animals from the colony were selected without 
regard to gross appearance. Incidence rates are based on the number of fish examined histologically 
(i.e.. excluding lost fish). 

~lxa~~~lneu Examined 

A L35 hi258 up to 21.5 months 13 7 516 616 I uu% 

S15a hi2649 up to 18 months 9 2 417 6 *I7 86% 

S8 hi1974 up to 22 months 19 6 611 3 911 3 811 3 69% 

L36a hi10 up to 22 months 14 6 418 518 r in 63 % 

L36 hi1807 up to 21.5 months 14 6 418 518 63% 

L7 hi1061 up to 22 months 14 4 6110 6*/10 511 0 60% 

B S7 hi1034B up to 22 months 19 4 311 5 711 5 47% 

L13 hi1016 up to 23 months 15 4 211 1 511 1 45% 

S18 hi1026 up to 24 months 23 9 1/14 6/14 1/14 43% 

S29 hi2903 up to 22 months 18 3 411 5 4/15 27% 

L23a hi2582 up to 22 months 40 5 3/35 513 5 14% 

C S12 hi1227 all at 22 months 14 1 011 3 1/13 011 3 8% 

acidic 
LP1 hi1444 up to 22.5 months 18 0 111 8 111 6% 

L3 hi2437 all at 23 months 19 2 0117 111 1 6% 

1 L24 hi1284 all at 26 months 18 0 011 8 011 8 0% 

S15 hi2430 all at 23 months 16 0 011 6 0116 011 6 0% 

D NA Colony 20-26 months 152 ND 41152 171152 

*one individual had two tumors, each of which was malignant 



Figure 2.2: The tumor spectrum in fish heterozygous for mutations in p genes shows an 

increased proportion of MPNSTs. 

Fish with apparent masses were selected and processed for histological analysis. Numbers are 

shown as percent of the total number of diagnosed tumors from either population. The control 

group includes 42 tumors from 41 fish, including both wild-type and non-rp family transgenics. 

The rp group includes 68 tumors from 65 rp heterozygotes from 18 different lines representing 

mutations in 16 different genes. The "other" tumor category includes pancreatic islet adenomas, 

ultimobranchial gland tumors, neuroblastomas, retinoblastomas, lymphomas, ganglioneuromas, 

ductal carcinomas, gastrointestinal adenocarcinomas, hepatocellular carcinomas, leukemias, 

meningiomas, and histiocytic sarcomas. 



Tumor Spectrum 

Controls rp heterozygotes 



Figure 2.3: Rate of tumor appearance in hi10 heterozygotes. 

A cohort of 28 hi10 fish (red) and 13 of their non-camer siblings (blue) were observed over 22 

months for the appearance of ill health or externally visible tumors. Symptomatic individuals 

were sacrificed, fixed, and sectioned for histological analysis. The graph represents the 

percentage of fish remaining over time, with the diagnosis of each removed fish. Three fish 

labeled "dead" died before fixation and had too much tissue damage to establish a diagnosis. 

Also, seven of the carrier fish (though none of the non-carriers) were lost to unknown causes 

over the course of the experiment; while they most likely died, to be conservative these were 

removed from the total number of fish charted. At 22 months, the remaining externally healthy 

fish (4121 carriers, 13/13 non-carriers) were also histologically examined, and the status of these 

fish is indicated. 
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Table 2.2: Onset of tumor development in hi10 fish and non-carrier siblings 

Age 
(in 

months) 

7.4-8.3 

9.2 

10-10.6 

11.9-12.5 

14 

* Starting population was 70 fish; 7 fish were lost over the course of the experiment. 
** Starting population was 92 fish; 3 fish were lost over the course of the experiment, 32 externally healthy fish at the end 
of the study (14 months) were not histologically examined. 
*** One fish at each of these time points had two tumors. 

Non-carriers (92"") Carriers (70*) 
Fish with 
external 
&roM 
or sick 

1 

0 

0 

0 

0 

Fish 
collected 

for 
histology 

19 

10 

8 

10 

10 

Fish with 
external 
growth 
or sick 

2 

1 

4 

5 

4 

Total 
turnor- 
bearing 

fish 
4*** 

2 

5 

8*** 

8 

Fish 
collected 

for 
histology 

19 

10 

9 

12 

13 

Tumor types 

1 lymphoma, 
3 zMPNST (2 occult) 

1 occult histiocytic sarcoma 

1 zMPNST 
1 occult gut adenocarcinoma 

4 zMPNST 
1 occult renal cell carcinoma 

7 Z~~PNST (3 occult) 
1 occult gut adenocarcinoma 

1 uncertain origin 
1 lymphoma 

5 zMPNST (2 occult) 
1 occult pancreatic ductal carcinoma 

1 occult uncertain origin 

Total 
tumor- 
bearing 

fish 
1 

0 

0 

0 

0 

Tumor 
types 

Tumor 
of 

uncertain 
origin 



Figure 2.4: rp genes appear to be haploinsufldent tumor suppressors. 

(A) rp mutations decrease the amount of rp gene expression. RNA was prepared from 3 day old 

homozygous mutant embryos and their wild-type siblings, and serial dilutions of 1" strand cDNA 

were used as templates for PCR. The decrease in expression in the mutants can be determined 

by the difference in the dilution between wild-type and mutant where the PCR product amount 

diminishes. The actin control shows that the total amount of mRNA was the same between 

samples. 

(B) Loss of heterozygosity is not observed in rp mutant tumors. DNA was prepared from tumors 

(T) and norrnal tissue (N) from the same fish and PCR was conducted with three primers that 

will show the presence or absence of both the insert-bearing (mutant) and wild-type 

chromosomes. In each case, the upper band is the wild-type chromosome and the lower band is 

the insert-bearing one. hilo fish #1 normal (lane I), tumor (lane 2); hi10 fish #2 normal (lane 3), 

tumor (lane 4); hi258 fish normal (lane 5) ,  tumor (lane 6); hi1974 fish normal (lane 7), tumor 

(lane 8). 
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Figure 2.5: Ribosomal RNA levels are reduced in rp mutants. 

RNA was prepared from 3-day-old homozygous mutant embryos (M) or their wild-type siblings 

(W) from lines hi1 0 (L36a), hi1 974 (S8), and hi2649 (S15a), and RNA content was visualized by 

electrophoresis and ethidium bromide staining. The ratio of 2831  8s as determined by 

densitometry is shown below each lane. Note that L36a mutants show a preferential loss of the 

28s band by 1.5-fold, while S8 and S15a mutants show a preferential loss of the 18s band by 

1.9- and 1 .&fold, respectively. These RNAs were also northern blotted and probed for beta actin 

as an rnRNA content control. 





Figure 2.S1: Position of mutagenic insertions. 

The genomic sequence of part of each of these genes is represented as exonic (boxed) and 

promoter or intronic (line). White boxes represent 5' UTR while shaded boxes represent coding 

exons. Where no white boxes are shown, the location of the 5' UTR and beginning of the coding 

region has not been determined relative to the part of the locus shown here. In all cases, at least 

one coding exon (and all of the 3' UTR) is downstream of the region of the gene represented 

here. The position and orientation of the proviruses is shown above each genomic sequence. All 

drawings are to scale of the top scale bar, except the rp136 locus, which has its own scale bar. 
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Abstract 

We have characterized 28 zebrafish lines with heterozygous mutations in ribosomal 

protein (rp) genes, and found that 17 of these are prone to develop zebrafish malignant peripheral 

nerve sheath tumors (zMPNST) and other rare tumors. Heterozygotes from the most highly 

tumor-prone rp lines were found to be growth-impaired. In addition, heterozygous cells from 

one such line were also growth-impaired relative to wild-type cells in chimeric embryos. These 

findings suggest that the primary effect of heterozygosity for many rp genes is a global defect in 

protein translation, which leads to growth impairment. This raises the possibility that a 

deficiency of translational capacity can promote the development of cancer. 

Introduction 

Control of cell growth and cell proliferation are intimately linked. While it has long been 

known that protein translation is upregulated in many tumors, this has been assumed to be a 

consequence of increased cell proliferation. However, a direct causal role for aberrant 

translation in cancer is just beginning to be elucidated (Clemens, 2004). Recent evidence 

suggests that many translation factors may be proto-oncogenes, most notably eIF2, eIF4E, and 

eIF4G. Overactivity or overexpression of these proteins have been demonstrated to cause 

malignant transformation (DonzB et al., 1995; Fukuchi-Shimogori et al., 1997; Lazaris-Karatzas 

et al., 1990). It has also been shown that oncogenic signaling by Ras and Akt leads directly to a 

preferential recruitment of certain mRNAs to the ribosome (Rajasekhar et al., 2003), thus 

suggesting a possible role for translation in mediating tumorigenesis. Furthermore, we 

previously reported the surprising finding that numerous ribosomal proteins (rps) are 

haploinsufficient tumor suppressors in the zebrafish (Amsterdam et al., 2004). Although several 



rp mutant lines were not tumor prone, the large number of lines that were suggested that the 

mechanism of tumorigenesis involved the role of the rps in translation. 

Ribosomal protein mutations have been studied in other metazoan species, most 

extensively in Drosophila where a number of Minute mutants have been mapped to ribosomal 

protein genes (Lambertsson, 1 998). The Minutes have characteristic pleiotropic defects, 

including recessive lethality, short thin bristles, and often a developmental delay, resulting in 

smaller flies. Heterozygous mutation of rpS6 and rpS21 also causes an overgrowth of the 

hematopoietic organs (Torok et al., 1999; Watson et al., 1992), suggesting that at least some rps 

may play a role in suppressing a tumor-like phenotype in flies. Similar to the Drosophila 

Minutes, a mouse heterozygous for rpL24 displays a growth impairment, among other 

developmental abnormalities (Oliver et al., 2004); however, an increased predisposition to cancer 

has not yet been demonstrated. In humans, heterozygous mutation of rpSl9 is found in 25% of 

cases of Diamond-Blackfan anemia (DBA) (Draptchinskaia et al., 1999). DBA patients suffer 

not only from anemia caused by a deficiency of erythroid precursors, but are also prone to the 

development of leukemias (Wasser et al., 1978). It is currently unknown whether rpS19 plays a 

direct role in leukemogenesis. 

Here, we present evidence that many rp mutations in zebrafish lead to a growth 

impairment, i. e., that we have identified the first examples of fish Minutes. While these fish 

have no other detectable developmental abnormalities, they are prone to tumor development later 

in life. Furthermore, we show that the growth defect is manifested at the level of rp 

heterozygous cells. Since growth defects are often associated with defects in translation in other 

species, the correlation between growth impairment and cancer suggests that an impairment in 

translation may play a role in driving tumorigenesis in rp heterozygous fish. 



Results 

Heterozygous Mutation of Many rp Genes Predisposes Zebrafish to Malignant Peripheral Nerve 

Sheath Tumors and Other Rare Tumor Types 

We previously reported that 11 of 16 lines bearing mutations in rp genes are predisposed 

to zebrafish malignant peripheral nerve sheath tumors (zMPNST) (Amsterdam et al., 2004). We 

have since extended this analysis and found that, in total, 17 of 28 rp mutant lines are tumor- 

prone (Table 3.1). The previous data have also been re-evaluated with more stringent criteria for 

the diagnosis of tumors. For example, many of the tumors that we had previously identified as 

pancreatic islet adenomas have been re-classified as non-cancerous due to their common 

occurrence in the control population. Moreover, removing some of these "tumors" from the 

original analysis is appropriate since, even though the islets appear large upon sectioning, they 

are otherwise well-differentiated and therefore not indicative of true dysplastic disease. 

Additionally, in the course of evaluating more control fish, i.e., heterozygous mutant fish 

from non-rp and other non-tumor-prone transgenic lines, we found that the basal tumor incidence 

is at most 5%, which is less than the 11% we originally reported (Table 3.1C and data not 

shown). In large part, the discrepancy is accounted for by the re-classification of many 

"pancreatic islet adenomas" as non-cancerous. Among the new set of over 5800 control fish 

from 265 transgenic lines analyzed, 2% had seminomas, 1.4% had bile duct adenomas I 

adenocarcinomas, 0.5% had lymphomas, 0.3% had pancreatic duct hyperplasias I carcinomas, 

and 0.3% had true pancreatic islet adenomas I adenocarcinomas. In addition, 0.4% or 22 of the 

5800 fish had other rare tumor types that were each observed in at most 4 fish. Among these 22 

fish were 4 with zMPNSTs; thus the new data reinforce the notion that zMPNSTs are extremely 

rare within the control population (less than 1 in 1000). 



With this new analysis of controls, the tumor susceptibility of the rp lines now appears 

even more significant. Since the incidence of zMPNSTs among the control population is so rare, 

the finding that in some rp lines, such as hi1987, only 3 of 39 fish develop zMPNSTs (1 in 13) is 

still highly significant (Table 3.1A). Thus, we have now classified the rp lines in our collection 

into only two categories: (1) "tumor-prone" lines, which develop zMPNSTs and other rare tumor 

types (these include lines heterozygous for S3a, S5, S7, S8, S l l ,  S15a, S18, S28, S29, L7, L13, 

L14, L19, L23a, L35, L36, and L36a) (Table 3.1A); and (2) "non-tumor-prone" lines, which have 

a tumor incidence and spectrum that is indistinguishable from the controls (these include lines 

heterozygous for Sa, S12, S15, L3, L6, L9, L l  1, L12, L24, L28, and LPl) (Table 3.1 B). Based on 

this distinction, the lines hi2582 (rpL23a) and hi1 987 (rpL19) with only 1 1 % and 10% tumor 

incidence, respectively, are classified as tumor-prone due to the appearance of zMPNSTs (Table 

3.1A). On the other hand, the hi3076 (L12) line is considered non-tumor-prone because, even 

though it had a higher tumor incidence of 14%, only one of the three tumors detected was 

malignant (a lymphoma) and the other two were more common benign seminomas (Table 3.1 B 

and data not shown). As reported previously, there are some rp lines that are extremely tumor- 

prone, in which the incidence of zMPNSTs and other tumor types is greater than 60%. The 

previous distinction between "high-tumor" and "medium-tumor" lines, however, is somewhat 

arbitrary since the tumor incidence among the rp lines spans the full spectrum between 100% 

and control incidence (Table 3.1). 

Degree of rp Message Knockdown in rp Homozygous Mutant Embryos Does Not Correlate with 

Tumor Incidence in rp Heterozygous Adults 



Upon finding that some rp mutant lines are tumor-prone and some are not, we wanted to 

determine the molecular basis for this difference in tumor susceptibility. One possible 

explanation is that the retroviral insertion in the tumor-prone lines causes a severe reduction of 

the rp message level, leading to a greater loss of function of the rp in these lines than in the non- 

tumor-prone lines. Many of the mutations are predicted to be hypomorphs since, in most cases, 

the retrovirus has inserted into an intron, which can be spliced out (Figure 2.S 1 and data not 

shown). We previously determined that the rp message level is knocked down to varying extents 

in homozygous rp mutant embryos from three tumor-prone lines (Figure 2.4). Analysis of 

additional lines, including non-tumor-prone lines, revealed that while the degree of rp message 

knockdown generally correlated with the severity of the homozygous mutant phenotype, as 

expected, it did not correlate with the tumor incidence in the adult heterozygotes (Table 3.S 1). 

Thus, it appears that merely a reduction in expression of any rp does not account for the cancer 

phenotype. 

Homozygous Mutant rp Embryos Have Severe Defects in Ribosome Integrity 

While it is formally possible that some extraribosomal function of many of the rps is 

disrupted in the cancer-prone lines, a more likely explanation is that the mechanism of 

tumorigenesis involves the role of these proteins in their known common function, translation. 

In order to test whether certain rp lines have a defect in translation, we examined homozygous 

mutant rp embryos, in which the defect, if present, was expected to be most severe. Polysome 

fractionation analysis was performed to determine the proportion of ribosomal subunits that are 

free or bound in monosomes (80s) or polysomes. In wild-type embryos, distinct small and large 

ribosomal subunit peaks (40s and 60S, respectively) are detected (Figure 3.1 A). In addition to 



the predominant monosome peak, the presence of higher-order polysome peaks indicates a high 

rate of translation. In embryos that are homozygous mutant for a small subunit rp, rpS8 

(hi1974), there appears to be a reduction in the amount of the 40s subunit and a relative increase 

in the 60s subunit, as though the 60s subunit were in excess and accumulating (Figure 3.1B). 

Accordingly, there is a relative reduction in the monosome and polysome peaks. In contrast, 

mutants for a large subunit rp, rpL35 (hi258), appear to have a reduction in both the 40s and 60s 

peaks, as well as a reduction in the number of monosomes and polysomes (Figure 3.1C). But, as 

one might expect, the reduction in the 60s peak is relatively more severe. The ribosome integrity 

defects observed in the homozygous rp mutants are specific and not merely a consequence of the 

general necrotic phenotype of these embryos, since mutants in a DNA polymerase subunit 

(hi1 703) with a similar morphological phenotype have a polysome profile that is very similar to 

that of wild-type embryos (Figure 3. ID). The ribosome integrity defect was detected among 

homozygous mutant embryos from all rp lines analyzed (data not shown), including lines in 

which the heteroz ygous adults are not tumor prone. There was not a strong correlation between 

the severity of the defect and the tumor susceptibility of the adult heterozygotes (data not 

shown). 

Heterozygous Embryos from a Tumor-Prone rp Line Are Developmentally Delayed, but Are Not 

Overtly Impaired in Translation 

In the course of sorting out the homozygous rp mutant embryos for polysome analysis 

from a mating of heterozygous carriers, we noticed a variation in size among the phenotypically 

wild-type siblings, which was expected to consist of a mixture of two-thirds rp heterozygous and 

one-third non-transgenic embryos. This raised the possibility that a heterozygous effect was 



causing a developmental delay. In order to test this possibility in a controlled manner, embryos 

produced from an outcross of a hi258 (rpW5) heterozygote and a T-AB wild type fish were 

sorted at 4 days post-fertilization (dpf) for the presence of a swim bladder. This structure is a 

suitable reporter for a developmental delay since it appears suddenly on day 4 and is highly 

visible. Therefore, it allowed for easy sorting of the embryos into two groups. These groups 

were then subsequently sorted on the basis of the size of the embryos, by lining up the embryos 

and visually inspecting them. Among the swim bladder-containing embryos, the largest fish 

were predicted to be non-transgenic and the smallest of embryos lacking a swim bladder were 

predicted to be hi258 heterozygotes. Genotyping of individual embryos revealed that the correct 

assignment was made in 88% of the cases (Figure 3.2A). Since these embryos were the 

offspring of an outcross of an rp heterozygote, a random assignment of genotypes would have 

been correct only about 50% of the time. In a similar experiment, embryos from a hi258 

outcross were sorted as above, but the embryos in each of the two groups, labeled "predicted 

heterozygotes" and "predicted wild-type," were pooled and genotyped. By performing PCR on 

serial dilutions of DNA from each pooled sample, the hi258 transgenic band was found to be 

approximately 10 times more abundant in the predicted heterozygote sample than in the 

predicted wild-type sample (Figure 3.2B), suggesting that the mixtures were nearly 90% pure, 

which is consistent with the previous result. Thus, the heterozygous embryos have a 

developmental delay that can be detected visually. 

Since the heterozygous embryos are otherwise phenotypically wild-type, this 

developmental delay may be indicative of a general impairment in growth. Since a decrease in 

global protein synthesis can lead to growth impairment, we analyzed polysome profiles to assess 

the level of translational capacity in the rp heterozygous embryos. Due to the difficulty of 



keeping polysomes intact during the course of their isolation, time could not be taken to 

genotype individual embryos before performing the polysome fractionation. Since at least 100 

embryos were required to generate an adequate polysome profile, we decided to sort the embryos 

into wild-type-enriched and hi258 heterozygote-enriched samples as in the experiment above. 

When the mixtures were analyzed by polysome fractionation, the shapes of the profiles of the 

wild-type- and heterozygote-enriched samples were very similar, including the number of 

higher-order polysomes observed (See Appendix A, Figure A. 1). While this result shows no 

overt translation defect in the hi258 heterozygous embryos, it does not rule out the possibility 

that it may be too subtle to be detected by this method, especially since the sample populations 

were likely not completely pure. 

Tumor-Prone rp Lines Are Growth-Impaired 

In the absence of conclusive evidence of a translation defect in the hi258 heterozygous 

embryos, it was still important to determine whether the growth impairment phenotype persisted 

to adulthood, which might hint at a causal link to tumorigenesis. We found that 28-day-old 

offspring generated from an outcross mating of a hi258 heterozygote to a wild-type fish still 

varied greatly in size (Figure 3.3A), with the largest fish being over 10 times more massive than 

the smallest fish (Figure 3.3B). Again, upon genotyping the fish individually, the rp 

heterozygotes were found to be generally smaller than their wild-type siblings (Figure 3.3B). 

We then conducted a carefully controlled experiment with the hi258 line, in which the offspring 

of a hi258 outcross, i. e., both heterozygous and wild-type siblings, were housed together in the 

same tank. After weighing the fish blindly at selected time points, then genotyping the fish, it 

was clear that the hi258 heterozygous fish were smaller than their wild-type siblings at every 



time point (Figure 3.3C). The hi258 heterozygous fish are growth-impaired early on and never 

seem to catch up in size to their wild-type siblings. The growth rate of the heterozygotes, 

however, does appear to be comparable to that of the wild-type siblings after 67 days of age. 

Next, we wanted to determine whether all of our rp mutant lines displayed a growth 

impairment. Since the growth defect was evident by day 25 in the hi258 line, we repeated the 

experiment at this time point for a number of rp lines, both tumor-prone and non-tumor-prone. 

Strikingly, when the rp lines are ordered by tumor incidence, it is evident that the most tumor- 

prone lines (>33% tumor incidence) are all significantly growth-impaired (Figure 3.4A). 

Normalizing the data with respect to the average weight of each corresponding set of wild-type 

siblings makes this point even clearer (Figure 3.4B). Most of the non-tumor-prone lines show no 

significant growth impairment, similar to the control non-rp line, hi1 703, a mutant for a DNA 

polymerase subunit. There were, however, several exceptions: hi1 479, (rpSa), hi2430, (rpS1 S), 

and hi3893 (rpL28) were growth-impaired, but not tumor-prone. 

rp Mutants Are Growth-Impaired at  the Cellular Level 

The finding that tumor susceptibility is generally correlated with growth impairment 

suggests that the growth defect may play a role in tumorigenesis. There are two possible models 

to explain how this might occur: the formation of tumors could either be cell-autonomous or 

non-cell autonomous; that is, the tumors could arise as a result of an intrinsic defect of the rp 

heterozygous cells, or they could arise from cells that gain a proliferative advantage in the 

background of a growth-impaired rp heterozygous fish. To begin to address these models, we 

wanted to determine whether rp heterozygosity leads to a growth defect at the cellular level. We 

generated chimeric fish and analyzed the ability of rp heterozygous or wild-type cells to compete 



in hosts of each genotype. Real-time quantitative PCR was used to measure the relative 

contribution of cells of each genotype. In order to track the wild-type cells, a line bearing a non- 

mutagenic insertion, termed hiX, was identified. Heterozygotes from a high-tumor line (and 

therefore a line that displays a growth defect at the organismal level), hi1 0 (rpL36a), were used 

for the chimera analysis. 

In the first experiment, cells were harvested from embryos upon a cross of a hi10 

heterozygote and a hiX heterozygote. The expected ratio of genotypes amongst the cells was 

25% hi1 0 only, 25% hi1 0 and hiX, 25% hiX only, and 25% non-transgenic. This mixture of cells 

was injected into wild-type host embryos, which were allowed to grow until the fish were 

homogenized for quantitative PCR analysis. Five days after injection, the contribution of cells 

bearing the hilo insertion was significantly less than that of cells bearing the non-mutagenic hiX 

insertion (Figure 3.5A). At 4 to 6 weeks after injection, the relative contribution of hi10 cells is 

still significantly less than that of hiX cells (Figure 3.5A). 

In order to determine whether wild-type cells can compete better in an rp heterozygous 

background than in a wild-type background, the converse experiment was performed. Cells were 

harvested from embryos upon a mating of a hiX heterozygote and a non-transgenic fish. Thus, 

all of the cells were expected to be phenotypically wild-type, and 50% of them should have 

carried the hiX insertion that was being tracked. At five days after injection, the contribution of 

wild-type (hiX) cells was significantly higher in hi1 0 heterozygous hosts than in wild-type hosts 

(Figure 3.5B). This held true when the fish were analyzed at 2 to 3 weeks post injection (Figure 

3.5B). The data presented thus strongly suggest that the rp mutations cause a defect in growth, 

both at the cellular and organismal levels. 



Discussion 

In this study, we have completely characterized the tumor phenotype of 28 zebrafish lines 

with heterozygous mutations in ribosomal protein genes and found that 17 of these are tumor- 

prone. As noted previously (Amsterdam et al., 2004), these tumor-prone lines include mutants 

for proteins in both the large and small ribosomal subunits. We did not find a correlation 

between the severity of the rp message reduction in the homozygous rp mutants and the tumor 

incidence of the adult heterozygotes, which suggests that it is not simply a drastic reduction in 

the level of any ribosomal protein that leads to cancer. Intriguingly, we did find that the most 

highly tumor-prone lines have a significant impairment of growth that is detected as early as the 

embryonic stages. Furtherrnore, this growth impairment is detected at the cellular level, as rp 

heterozygous cells are out-competed by wild-type cells in chimeric embryos. The observed 

defect in growth, coupled with the fact that a ribosomal protein gene is mutated, strongly 

suggests that the underlying defect is an impairment in protein translation. Though a dramatic 

defect in ribosome integrity was detected in the polysome profiles of homozygous rp mutants, a 

mixture of embryos enriched for rp heterozygotes showed no apparent defect. 

The lack of a detectable abnormality in the polysome profile does not rule out the 

possibility that a translation defect exists in the rp heterozygotes. Published evidence for defects 

in global translation demonstrates that the effect on the polysome profile is often quite subtle, but 

such minor shifts can have tremendous consequences. For example, tumor cells treated with the 

rapamycin analog RADOOl are impaired slightly in global translation, but this is enough to 

reduce the translation of p21 such that its induction is inhibited after DNA damage (Beuvink et 

al., 2005). In addition, it is possible that a translation defect could be manifested in the rp 

heterozygotes by a selective translation of rnRNAs; i.e., under conditions of impaired 



translational capacity, certain messages may be translated at the expense of others that would 

normally also be translated (Rajasekhar et al., 2003). This possibility is currently being explored 

with the use of polysome microarrays (See Appendix A). Furthermore, certain cell types, for 

example, the nerve sheath cells that give rise to zMPNSTs may be more susceptible to a 

translation defect than other cell types. It is important to note that many of the tumor-prone lines 

also develop other rare tumors, which supports the notion that a translation defect could 

predispose all of the cells of the rp heterozygous fish to transformation, but certain cell types are 

especially vulnerable. This may account for the observed tumor spectrum among the rp 

heterozygotes. 

Cell-type specific sensitivity to a translation defect may also account for the observation 

that the correlation between growth impairment and tumor susceptibility is not absolute. As 

noted, three lines displayed a growth impairment, but were not tumor-prone. In addition, there 

were several other lines that were prone to develop zMPNSTs and had relatively low overall 

tumor incidence between 10% and 26% [hi1 987 (rpLl9), hi2582 (rpL23a), and hi1 026 (rpS18)], 

but were not significantly growth-impaired (Figure 3.4). This again supports a model in which a 

general growth impairment predisposes to tumor development, but tumorigenesis also depends 

on some unknown modifying factors that may be cell-type specific. For example, in non-tumor- 

prone lines with a growth impairment, it is possible that reduced levels of the ribosomal protein 

can lead to a growth defect of the organism, but nerve sheath cells can withstand such a 

challenge of reduced translational capacity to remain untransformed. It is important to note that 

the severity of the growth defect is greatest among the extremely tumor-prone lines (SO% tumor 

incidence), which suggests that if the reduction in translational capacity is sufficiently severe, 

tumorigenesis is highly favored. That is, that there may be a threshold of translational capacity 



below which cells become susceptible to transformation. This is consistent with the observation 

that some lines that were not significantly growth-impaired had a few fish with tumors because, 

here, it is important to realize that the average weight of a population of rp heterozygotes was 

used to determine whether the line had an overall growth impairment. There may be stochastic 

variation in the severity of the translation defect among individual fish. As shown for the hi258 

line, there certainly exists a large variation in size among the heterozygotes (Figure 3.3B). It is 

currently not known, and will be important to determine, if the fish that are smallest at a young 

age are the ones that will eventually develop tumors. It will also be interesting to determine 

whether the size of the fish correlates with the time to onset of cancer. Thus, there may exist an 

even finer correlation between growth and tumorigenicity than we have discovered thus far. 

The preceding discussion of tumor susceptibility can also be framed in the context of the 

two models of tumorigenesis raised above: Tumor formation can be cell-autonomous, whereby 

an rp heterozygous cell has an intrinsic defect that predisposes it to transformation, or non-cell- 

autonomous, whereby the background of many growth-impaired cells in an rp heterozygous fish 

allows for the rapid growth of a cell that sustains a mutation imparting a growth advantage. The 

results presented clearly demonstrate that the rp heterozygous cells are growth-impaired 

compared to wild-type, which suggests that the cells have an intrinsic defect in translation. Yet, 

this does not preclude the possibility of the non-cell-autonomous model being correct, since a 

mutation that has the effect of increasing translation in a cell may give it a growth advantage in 

the background of an rp heterozygous fish that it would not normally have in an environment of 

wild-type cells. There is precedent to suggest that tumorigenesis can be highly context- 

dependent. In populations of hematopoietic progenitor cells of mice, an impairment in DNA 

replication allows certain cells that have acquired oncogenic mutations to out-compete other cells 



within the population, leading to the development of leukemias (Bilousova et al., 2005). Among 

a cell population with healthy DNA replication, however, the same mutations provide no 

proliferative advantage (Bilousova et al., 2005). Thus, we should consider that the analogous 

situation, in which a general impairment of protein translation allows for the growth of cells that 

have sustained an oncogenic mutation, might be possible. 

The cell-autonomou s versus non-cell-autonomou s debate should be resolved upon the 

demonstration of the origin of the tumors in the chimera models we have described. The 

chimera experiments have been repeated, and we are now aging the fish until they develop 

tumors. In the case where wild-type cells are injected into an rp heterozygous host, the fish 

should develop tumors since most of the cells of the fish are still rp heterozygous even if the 

small percentage of injected wild-type cells competes extremely well. If the tumor tissue is 

derived primarily from the wild-type cells, this would argue strongly in favor of the non-cell- 

autonomous model. If it is composed mainly of rp heterozygous cells, then we cannot conclude 

that the cell-autonomous model is true since the wild-type cells may not have contributed to the 

tissues that are most prone to tumor development (e.g., nerve sheath). The converse experiment, 

in which rp heterozygous cells are injected into a wild-type host, should provide a more 

definitive answer on this point: If tumors arise, and they are composed primarily of rp 

heteroz ygous cells, then this would strongly support the cell-autonomous model. 

In summary, we have identified a growth defect that is common to zebrafish lines that are 

heterozygous for mutations in ribosomal protein genes and prone to the development of rare 

cancers. The rp mutations impair translation in the homozygous state, though an overt 

translation defect has not been detected in the rp heterozygotes by the methods we have 

employed thus far. The observed con-elation between growth impairment and tumor 



susceptibility, however, raises the possibility that a defect in translation could promote 

tumorigenesis . 

Materials and Methods 

Fixation and Histology 

Adult fish were euthanized in ice water or 2501ngLL Tricaine and fixed in 10% neutral 

buffered formalin or Bouin's fixative. Embedding in paraffin and sectioning were performed as 

previously described (Amsterdam et al., 2004; Moore et al., 2002). 

Polysome Fractionation 

Fifty to 200 embryos at 3 or 4 dpf were washed in PBS and Dounce-homogenized in ice- 

cold lysis buffer containing 1 lOmM potassium acetate, 2mM magnesium acetate, lOmM HEPES 

pH 7.6, lOOmM potassium chloride, lOmM magnesium chloride, 0.1 % NP-40,2mM 

dithiothreitol, and 40UImL RNase inhibitor. The dithiothreitol and RNase inhibitor were added 

immediately prior to use. The lysate was spun down at lOOOxg for 10 min. at 4OC to pellet 

nuclei and cellular debris. The cytoplasmic extract was layered onto sucrose gradients prepared 

by layering 17% sucrose solution over 50% sucrose solution in a 13.2 mL Beckrnann 

ultracentrifuge tube (Cat. No. 344059) and laying the Parafllm-sealed tube on its side overnight. 

The sucrose solutions also contained 1 lOmM potassium acetate, 2mM magnesium acetate, and 

lOmM HEPES pH 7.6. The extract was fractionated by centrifuging at 40,000xg for 2 hrs. at 

4OC in an Sw41Ti rotor. Fractions were collected by injecting 60% sucrose into the bottom of 

the tube on an ISCO Model 640 Density Gradient Fractionator, and absorbance at 280nm was 



measured using a Pharmacia LKB Uvicord SII detector. Profiles were generated with a 

Pharrnacia LKB 19-8003-0 1 chart recorder. 

RNA Analysis 

Degree of rp message reduction in the rp homozygous mutants was determined by PCR 

on serial dilutions of cDNA prepared from rp homozygous mutant embryos and their wild-type 

siblings, as previously described (Amsterdam et al., 2004). 

Analysis of Growth of rp Heterozygous Mutants 

rp heterozygous mutant fish were outcrossed to T-AB wild-type fish. Randomly 

selected, un-genotyped fish were housed in tanks at an average density of 20 fish per tank. At 

selected time points, fish were euthanized in ice water, blotted dry, and weighed on a Mettler 

AE50 balance. Genotyping PCRs were performed on DNA isolated from tail clippings or the 

entire fish, with insert specific primers for each line to detect heterozygotes. Primers for Wnt 

were used concurrently to control for the efficiency of the PCR. 

Generation and Real-Time PCR Analysis of Chimeras 

Chimeras were generated basically as previously described (Lin et al., 1992). Briefly, a 

pool of 100-200 embryos was dissociated at the 1 000-cell stage with a Pasteur pipette in 1 rnL 

Holtfreter' s solution. Cells were spun down and washed in 1 OmL Holtfreter's solution followed 

by lOmL 1:1 (v:v) PBS:Holtfreter's solution. The final cell pellet was resuspended in 50-100pL 

2: 1 (v:v) PBS:Holtfreter's solution. Approximately 50 cells (range: 30-100 cells) were injected 

into 1000-stage embryo hosts. 



Real-time PCR analysis was performed as previously described (Amsterdam et al., 1999). 

In order to determine the percentage contribution of the hi10 and hiX alleles, a standard curve 

was generated by mixing known quantities of pure DNA samples from hi10 or hiX embryos, and 

analyzing the samples by real-time PCR. 
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Table 3.1: Tumor Incidence in zebrafish rp heterozygous lines and in the colony. 

rp animals were collected as tumors became apparent, or as healthy animals at the maximum age 
specified (Age Range). Number Lost indicates those that either died before the appearance of 
external symptoms or were lost from their tanks. Control animals from the colony were selected 
without regard to gross appearance. Incidence rates are based on the number of fish examined 
histologically (i.e., excluding lost fish). (A) Tumor-prone lines; (B) Non-tumor-prone lines; (C) 
Various lines from the colony. 
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Figure 3.1: Polysome profiles reveal a ribosome integrity defect in rp homozygous mutant 

embryos 

Cytoplasmic extracts from 3-day-old embryos were fractionated on sucrose gradients, and 

profiles were generated by measuring UV absorption at 280nm. 

(A) Wild-type embryos display distinct peaks representing the small ribosomal subunit (409,  the 

large ribosomal subunit (60S), the monosome (80s) and multiple polysomes. The presence of 

higher-order polysomes indicates a high rate of translation. 

(B) Homozygous mutants for hi1974 (rpS8) display a loss of the 40s peak, a relative increase in 

the 60s peak, and a reduction in the 80S and polysome peaks. 

(C) Homozygous mutants for hi258 (rpL35) display a general reduction in all peaks. The 

decrease of the 60s peak is relatively most severe. 

(D) Homozygous mutants for hi1 703 (DNA polymerase E, subunit B) have a polysome profile 

similar to that of wild-type embryos. 
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Figure 3.2: Heterozygous mutant embryos from the tumor-prone hi258 (rpWS) mutant line 

are growth-impaired. 

(A) 122 embryos from an outcross of a hi258 heterozygote were sorted into two groups by the 

presence or absence of a swim bladder at 4 days of age. The groups were further sorted into two 

groups on the basis of the size of the embryos. The embryos from the group of large, swim 

bladder-positive embryos were predicted to be wild-types ("W") and embryos from the group of 

small, swim bladder-negative embryos were predicted to be hi258 heterozygotes ("H"). 

Individual embryos were genotyped by PCR revealing the presence or absence of the hi258 

transgenic (258 Tg) band. Primers for Wnt were used concurrently to control for the efficiency 

of the PCR. Genotyping ("Actual") revealed that the correct prediction was made in 56 of 64 

cases (88%). 

(B) Embryos from an outcross of a hi258 heterozygote were sorted on the basis of swim bladder 

appearance and embryo size, as in (A), and pooled into groups of 100 embryos each. 

Genotyping PCR performed on a serial dilution of DNA from the predicted hi258 heterozygotes 

("Predicted HET") confirrned that this mixture of embryos was about 10 times more enriched for 

the hi258 transgenic (258 Tg) band than the embryo mixture predicted to be comprised of mostly 

wild-type embryos ("Predicted WT"). Primers for Wnt were used concurrently to control for the 

efficiency of the PCR. 
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Figure 3.3: Heterozygous fish from the tumor-prone hi258 (rpW5) mutant line are growth- 

impaired. 

(A) The offspring of an outcross of a hi258 (rpL35) heterozygote, expected to be 50% hi258 

heterzygous and 50% wild-type, are widely variable in size. 

(B) hi258 heterozygotes are generally smaller than their wild-type siblings. 

(C) hi258 heterozygotes were outcrossed to T-AB wild-type fish, and their progeny were housed 

in the same tank. At selected time points, fish were weighed and genotyped. hi258 

heterozygotes are significantly smaller than their wild-type siblings at every age examined. 

Error bars are 22 SEM. 
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Figure 3.4: Heterozygous fish from high-tumor rp mutant lines are growth-impaired 

(A) Outcrosses of each rp line were performed, and their progeny were weighed and genotyped 

at day 25. Lines are ordered by decreasing tumor incidence, as determined in Table 3.1. The 

most highly tumor-prone lines appear to be the most severely growth-impaired. Error bars are 

~2 SEM. 

(B) The same data as (A), plotted with the average weights of the heterozygotes normalized to 

the average weight of their corresponding wild-type siblings. * indicates a significant difference, 

as shown in (A). 







Figure 3.5: Heterozygous mutation of an rp gene impairs growth at the cellular level 

(A) Chimeric embryos were generated by injecting into wild-type hosts a mixture of cells 

isolated from the progeny of an intercross between hi10 (rpL36a) and hiX heterozgyotes. hi1 0 is 

a high-tumor rp line, and hiX is a line that bears a non-mutagenic insertion. The relative 

contribution of cells carrying each insertion was determined by real-time PCR at 5 days and 1 to 

1.5 months post injection. In both cases, the cells bearing the hiX insertion comprise a greater 

portion of the embryo than cells bearing the hi1 0 insertion. 

(B) Cells from the progeny of a hiX outcross were injected into hi10 (rpL36a) heterozygous or 

non-transgenic (ntg) host embryos. Contribution of cells carrying the hiX insertion was 

determined by real-time PCR at 5 days and 2 to 3 weeks post injection. The phenotypically 

wild-type hiX cells appear to be able to compete better in a hi10 heterozygous host than a wild- 

type host. 
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Table 351: Degree of rp message reduction in rp homozygous mutant embryos does not 

correlate with tumor incidence in adult rp heterozygotes. 

Tumor incidence of adult rp heterozygotes was determined in Table 3.1. RNA was isolated from 
homozygous rp mutant embryos and their wild-type siblings. PCR was performed using serial 
dilutions of cDNA to detect the rp message and estimate the level of knockdown in the 
homozygous mutants compared to their wild-type siblings. The severity of the homozygous 
mutant phenotype was rated on a scale as follows: 

+++ = severe defects, including very obvious brain necrosis on 1 dpf 
++ = moderate defects, including some brain necrosis on 1 dpf 
+ = mild defects: no visible necrosis on 1 dpf; mild necrosis and body curvature on 3 dpf 
ND = not determined 

Note that while the fold rp message reduction in rp homozygotes generally correlates with the 
severity of the homozygous mutant phenotype, it does not correlate with the tumor incidence of 
the adult rp heterozygotes. 
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Chapter 4 

Overview & Discussion 



1. Overview of Results 

The preceding work has demonstrated the power of the zebrafish system in identifying 

novel cancer genes. A collection of over 500 zebrafish insertional mutant lines displaying 

homozygous embryonic lethal phenotypes was screened for cancer predisposition by observing 

the adult heterozygous carriers for evidence of external lumps. We reasoned that since most 

mammalian tumor suppressors identified to date are homozygous lethal (Jacks, 1996), this screen 

would yield novel tumor suppressors. Indeed, a new class of tumor suppressors, the ribosomal 

proteins (rps) was identified. Furthermore, the human relevance of the screen was validated by 

the fact that an NF2 mutant line was also identified as tumor-prone. Mutation of this known 

tumor suppressor gene leads to tumors of the nervous system in human patients with 

neurofibromatosis type 11, and mutation of its paralog in zebrafish leads to spindle-cell 

neoplasms resembling nerve sheath tumors. Tumors arising in human carriers of an NF2 

mutation are often a consequence of loss of the remaining wild-type allele (Ruttledge et al., 

1994). This remains to be demonstrated in our zebrafish model. In contrast, we have 

definitively shown that loss of heterozygosity (LOH) does not occur in tumors arising in rp 

heterozygous lines. The rp mutations are loss-of-function mutations, as the homozygous mutants 

display a dramatic reduction in the mRNA encoding the rp. The consequence of this message 

reduction is a defect in ribosome integrity, as evidenced by aberrant polysome profiles and a 

reduction in abundance of the associated rRNA. Since loss-of-function mutations lead to cancer 

in the heterozygous adults, the rp genes are bonafide tumor suppressor genes. Loss of both 

copies of an rp gene, however, is expected to be cell lethal. Consistent with this, our finding that 

LOH does not occur in the tumors suggests that the ip genes are haploinsufficient. 



The finding that many, but not all, rp heterozygous lines are tumor-prone led us to ask 

whether the high-tumor lines could be distinguished phenotypically from the non-tumor-prone 

lines, thereby providing a hint as to the mechanism of tumorigenesis. We found that a severe 

growth impairment was common to the most highly tumor-prone lines, though this defect was 

not sufficient for tumorigenesis in some lines. The growth defect was also detected at the 

cellular level for at least one high-tumor line, hi10 (rpL36a). A likely explanation for this 

growth defect is a general impairment of protein translation, the cellular process common to all 

of the rps. While a translation defect was not detected at the level of the polysome profiles, we 

cannot rule out that a global defect in translation has more subtle effects, as discussed below. 

Even if a translation defect were demonstrated, we do not know whether this, in turn, directly 

causes tumors later in life. The correlation between growth impairment and tumor susceptibility, 

however, strongly suggests that there may be a novel mechanistic link between translation and 

cancer that has yet to be elucidated. 

2. Ribosomal Proteins as Haploinsufficient Tumor Suppressors 

The most significant and intriguing novel finding of this work has been the identification 

of many ribosomal proteins as haploinsufficient tumor suppressors in the zebrafish. The classic 

mechanism of loss of tumor suppression is based upon the "two-hit model" proposed by Alfred 

Knudsen in his analysis of the age of onset of hereditary and nonhereditary forms of human 

retinoblastoma (Knudsen, 1971). He postulated that both copies of a tumor suppressor gene 

must be mutated in order to initiate tumor formation. This was later demonstrated to be 

essentially true in the case of retinoblastoma upon the cloning and mutational analysis of RB, the 

gene mutated in the disease (Friend et al., 1986). Many other familial cancer syndromes also 



adhere to this model: one mutated copy of a tumor suppressor gene is inherited, thus sensitizing 

the somatic cells of the carrier to tumor formation upon the second hit (Russo et al., 2000). LOH 

can occur as a result of chromosomal loss, mitotic recombination, deletion, or point mutation 

(Wijnhoven et al., 2001). 

In recent years, there has been an abundance of evidence to suggest that loss of the 

second allele of many tumor suppressor genes is not necessary to promote tumorigenesis 

(Santarosa and Ashworth, 2004). For example, p27Kip1, a cyclin-dependent kinase inhibitor that 

blocks cell proliferation, has been demonstrated to be haploinsufficient insufficient for tumor 

suppression (Fero et al., 1998). Other haploinsufficient tumor suppressors have been found to 

have a variety of functions, which may or may not be directly tied to control of cell proliferation. 

For example, several genes involved in DNA repair, such as Blm and F e d ,  have been found to 

be haploinsufficient tumor suppressors, in that loss of one allele enhances intestinal tumor 

formation in Apc heterozygous mice (Goss et al., 2002; Kucherlapati et al., 2002). It is easy to 

imagine how an impairment of DNA repair might lead to a mutator phenotype that accelerates 

the progression of tumors initiated by the loss of other tumor suppressors. Several known tumor 

suppressors, such as p53 and ATM, have also been shown to be haploinsufficient (Spring et al., 

2002; Venkatachalarn et al., 1998). Although loss of heteroz ygosity of these genes, especially 

p53, is commonly associated with cancer, the reduced dosage in the presence of only one allele 

can also promote tumorigenesis. In these cases, an impaired induction of apoptosis in response 

to DNA damage may allow cells with mutations to survive and sustain further changes that 

promote their proliferation. 

The emerging theme seems to be that dosage is critical for the tumor suppressive 

functions of certain genes. Since the ribosomal proteins are extremely abundant in the cell, 



comprising 5 to 10% of cellular protein (Kenmochi et al., 1998), a reduction in the dosage of one 

rp is likely to have enormous repercussions that we are only beginning to understand. How this 

reduction of rp gene dosage leads to a loss of tumor suppression is unknown, but the answer may 

involve a control mechanism that integrates the signals for cell growth and cell proliferation. At 

this point, it is only possible to speculate on such a mechanism by analyzing our data in light of 

the published literature. 

3. Possible Molecular Mechanisms of Tumorigenesis in Ribosomal Protein Mutants 

There are two opposing hypotheses to explain the tumors arising from haploinsufficiency 

of certain rps, though it is possible that they are not mutually exclusive. First, because so many 

of our rp mutant lines are tumor-prone, one obvious possibility is that the tumorigenic effect is 

related to the role of these proteins in translation. For example, a general reduction in 

translational capacity might lead to the inefficient production of some key negative regulator of 

proliferation, or an alteration in the balance of positive and negative regulators that would lead to 

improper control of cell proliferation. At the other extreme is an alternative model that takes into 

account only the extraribosomal functions of the rps. As discussed in Chapter 1, these functions 

may include the regulation of cell growth and apoptosis (Wool, 1996); thus, reducing the gene 

dosage may disrupt these functions sufficiently to cause cancer. Since not all of our rp mutant 

lines are tumor-prone, it is possible that mutation of only the rps with such critical 

extraribosomal roles would lead to cancer. 

An example of an extraribosomal function that is particularly relevant to cancer may be 

that of L5, L11, and L23, all of which have been shown to bind MDM2 (or its human homolog 

HDM2) and inhibit its function (Zhang and Zhang, 2005). Since MDM2 normally targets the 



major tumor suppressor p53 for ubiquitination and destruction (Haupt et al., 1997; Honda et al., 

1997; Kubbutat et al., 1997), the involvement of some rps in potentially regulating this process 

may be a key to understanding the mechanism of tumorigenesis in the rp mutant zebrafish lines. 

The interaction of L5 with MDM2 has actually been known for well over a decade (Marechal et 

al., 1994), though hints as to the functional consequences of this interaction have only been 

revealed recently. Lohrum et al. were the first to report an interaction between L11 and HDM2 

(Lohrum et al., 2003). They showed that, similar to the tumor suppressor ARF, L11 could 

inhibit HDM2 function, and overexpression of L11 in ARF-null U20S cells could induce a p53- 

dependent cell cycle arrest. Furthermore, treatment of these cells with low levels of actinomycin 

D, an inhibitor of RNA polymerase I (and therefore ribosome biogenesis), enhanced the L11- 

HDM2 interaction and p53 stabilization (Lohrum et al., 2003). Thus, there may exist a p53- 

dependent checkpoint that results in cell cycle arrest in response to abnormalities in ribosome 

biogenesis. 

Zhang et al. later reported similar results and mapped the interaction of L11 to the central 

domain of HDM2, a region of the protein that had not been previously assigned any functional 

significance (Zhang et al., 2003). The fact that ARF and L11 bind different regions of HDM2 

may explain the fact that ARF is able to inhibit the nuclear export of HDM2 (Zhang and Xiong, 

1999), whereas L11 is not. The same group later reported that L23 also binds the central region 

of HDM2, but to a site that is distinct from the L11 binding site (Jin et al., 2004). L23 was 

shown to have a role similar to that of L11 in regulating the stability of p53 via its binding of 

HDM2 (Jin et al., 2004). Interestingly, while inhibition of ribosome biogenesis with 

actinomycin D stabilizes the L23-HDM2 interaction, inhibition of general translation with 

pactarnycin or cycloheximide does not, again suggesting that this pathway may be activated in 



response to a defect in ribosome synthesis (Dai et al., 2004). Furthermore, the L23-HDM2 

interaction is not affected by gamma-irradiation, suggesting that this response is independent of 

the p53 response induced by DNA damage (Dai et al., 2004). Coming full circle, L5 was also 

shown to bind the central domain of HDM2 and have functions similar to L11 and L23 (Dai and 

Lu, 2004). Furthemore, L5, L11, and L23 can all bind simultaneously to HDM2. (Dai and Lu, 

2004; Dai et al., 2004). 

Among the rp interactors of HDM2 identified thus far, the Hopkins insertional mutant 

collection contains only L11. As shown in Chapter 3, the Lll heterozygous fish do not appear to 

be tumor-prone. At first glance, this appears to contradict the hypothesis that reduction of L11 

levels should lead to reduced p53 stability, and therefore cancer. But, there are several ways that 

this apparent contradiction can be reconciled. First, there may be compensation for the loss of 

the Lll allele at the transcriptional level in the Lll heterozygotes. As demonstrated in the case 

of the S19 heterozygous mouse, an increase in the mRNA encoding S 19 leads to an S 19 protein 

level that is similar to wild-type controls (Matsson et al., 2004; Matsson et al., 2006). The 

mechanism of this transcriptional regulation is as yet unknown. Thus, determining the levels of 

L11 message and protein in the Lll heterozygous fish is an important experiment that has yet to 

be done. Furthermore, if this type of transcriptional regulation occurs with other rp genes, it may 

provide an explanation as to why such rp heterozygous zebrafish lines are not tumor-prone. 

Another possible explanation that needs to be investigated is that there may exist another 

compensatory mechanism in the L11 heterozygous fish that boosts the levels of the other critical 

rps, L5 and L23. Since overexpression of each protein individually can stabilize p53, it is 

possible that upregulation of these rps is sufficient to compensate for the reduction in L11. 



Another connection between a ribosomal protein and the p53 pathway was recently 

described by Takagi et al., who found that p53 translation is directly regulated by L26 (Takagi et 

al., 2005). Upon DNA damage, L26 was found to bind the 5' untranslated region of the p53 

message and enhance its translation. Overexpression of L26 enhances p53 expression and 

siRNA knockdown of L26 blocks p53 induction after DNA damage (Takagi et al., 2005). The 

same study also found that nucleolin had the opposite effects. The authors propose that L26 may 

displace nucleolin from binding the stem loop structure in the p53 5' UTR, or may simply allow 

a bypass of this stem loop structure that normally impedes translation. The signal transduction 

pathway that leads to the preferential association of L26 has yet to be elucidated. 

While the role of L5, L11, L23, and L26 in the p53 pathway is intriguing, one may 

wonder why mutation of any other rps would lead to cancer in zebrafish. The answer may lie in 

the fact that synthesis of ribosomal proteins is coordinately regulated at the level of translation, 

since the messages all contain TOP sequences, as discussed in Chapter 1 (Meyuhas, 2000). It is 

possible that certain rps with critical extraribosomal functions are normally produced in excess 

with respect to the other rps. A reduced level of one rp might then lead to a reduced level of all 

the rps, forcing all available rps to assemble into ribosomes to maintain adequate translational 

capacity, and fewer free rps to perform the extraribosomal functions. To put it another way, 

there may exist a threshold level of each rp that must be met for the proper functioning of the 

translational machinery andlor the proper execution of extraribosomal functions. Reduction of 

the level of a particular rp by about half in the rp heterozygous fish (assuming no transcriptional 

compensation) may be enough in some, but not all, cases to be below this threshold. 

One piece of evidence that supports the involvement of p53 in the tumorigenesis of the rp 

mutant lines is that zebrafish p53 mutants develop predominantly the same tumor type as the rp 



heterozygotes, zMPNSTs (Berghmans et al., 2005). As demonstrated in Chapters 2 and 3, this 

tumor type is exceedingly rare in both the control population of adult zebrafish as well as in fish 

identified with external lumps. It is difficult to believe, then, that the predisposition of both rp 

and p53 mutant fish to zMPNSTs is a mere coincidence. Furthermore, preliminary data from our 

laboratory suggest that the zMPNSTs arising in the rp heterozygotes have no point mutations in 

the p53 gene (Alyson Wilbanks, unpublished results), suggesting that p53 need not be mutated in 

rp mutant fish to induce tumor formation. In addition, p53 protein cannot be detected in the 

tumors, even though p53 message is present (Alyson Wilbanks and Kevin Lai, unpublished 

results), suggesting that p53 translation may be impaired. The connection between rps and p53 

is currently being explored further by generating compound mutants in zebrafish and analyzing 

the time to tumor onset. If indeed the rps and p53 are acting in the same pathway, one might not 

expect to see an acceleration of tumorigenesis in the compound mutants. In addition, occupancy 

of the p53 message in polysomes should be analyzed more carefully in the rp heterozygotes and 

tumors, in order to investigate the status of p53 translation. 

The possibility that p53 translation may be impaired could be indicative of a general 

phenomenon that occurs as a result of impaired translational capacity. This brings us back to one 

of the original hypotheses stated above, that a general reduction in translation could lead to the 

inefficient production of some key regulator of cell proliferation or cell cycle progression. 

Precedent for this model comes from an analysis of p21 translation in tumor cells. Specifically, 

Beuvink et al. showed that the rapamycin derivative, RAD001, sensitized tumor cells to 

apoptosis following DNA damage by inhibiting the translation of p21 (Beuvink et al., 2005). 

Since RADOOl inhibits mTOR, a reduction in global translation can result, as described in 

Chapter 1. The actual effect of RADOOl on global translation demonstrated by Beuvink et al. 



was very subtle, but the p21 message was noticeably shifted into smaller polysomes upon 

RADOOl treatment. Coupled with the short half-life and low abundance of p21, this small shift 

was enough to reduce p21 protein levels significantly, thus inhibiting its induction upon 

treatment with the DNA-damaging agent cisplatin (Beuvink et al., 2005). There is at least one 

other published instance of translational control superseding control at the transcriptional level: 

Rajasekhar et al. found that, upon oncogenic signaling by Ras and Akt, the profile of messages 

associated with polysomes changes dramatically (Raj asekhar et al., 2003). That is, specific 

messages are recruited to the ribosome for translation. This effect happens much faster than any 

changes in the total cellular levels of the rnRNAs, suggesting that altered translation of particular 

messages might play a key role in driving cellular transformation (Rajasekhar et al., 2003). 

Thus, the mechanism of tumorigenesis in the rp heterozygous fish may involve both the 

role of the rps in translation and their extraribosomal functions. The finding that all high-tumor 

rp lines have a growth impairment suggests that a translation deficiency may be a primary defect 

of these fish that enables tumor formation later in life. However, since growth impairment is not 

sufficient for tumorigenesis in some rp mutant lines, other changes are likely to be involved. It 

is clear that the tumors are not impaired for translation, as abundant polysomes can be detected 

in the tumor tissue (Kevin Lai, unpublished results). Therefore, the general growth defect of the 

whole organism must have been "fixed" in a subset of cells that give rise to these tumors. In a 

background of impaired global translation, one can imagine that the cellular levels of a key 

regulator, such as p53, could be reduced. Since p53 itself is haploinsufficient, as discussed 

above, this could lead to an inability to induce apoptosis of cells that sustain mutations during the 

lifetime of the fish. 



It is important to note that, though many rps have been assigned extraribosomal 

functions, it is unclear whether these functions are active in physiologically normal situations or 

only active in response to some stress. For example, the function may be triggered by an acute 

defect in translation or ribosome biogenesis. In the case of L5, L11, and L23, for example, it 

appears to be the latter. An acute impairment of ribosomal assembly, perhaps due to a scarcity 

of nutrients, may result in a transient overabundance of free rps, which could then perform 

functions outside of their normal role in the ribosome. In the tumor-prone rp heterozygous fish, 

it is possible that these acute stresses are the initiating events in tumorigenesis. The rp 

heterozygous fish may have a translation defect that results in the slower growth of the organism, 

but the fish appear otherwise normal, morphologically and histologically, before they develop 

tumors. Upon an acute stress, they may not be able to activate the extraribosomal functions that 

arrest the cell cycle, thus starting down the road towards tumorigenesis. The signaling pathways 

that lead to the activation of these functions are currently poorly understood. Considering the 

known key role that mTOR plays in integrating nutrient availability signals with cell growth, this 

should be an area of focus in defining these pathways. 

4. The Future of the Zebwfish as a Gene Discovery Tool in Cancer Research 

The discovery of a tumor suppressive role for ribosomal proteins in the zebrafish 

highlights the utility of this model organism in elucidating the molecular basis of cancer. While 

the current preferred cancer model, the mouse, has greatly increased our understanding of the 

molecular actions of known human tumor suppressors and oncoproteins, it has not been as 

successful at identifying novel cancer genes. Forward genetic screens are beginning to be 

performed in the mouse (Clark et al., 2004; Shima et a]., 2003; Zohn et al., 2005), but such 



screens are inherently more expensive and require more laboratory space than zebrafish screens. 

Since we and others have shown that the functions of known cancer genes are conserved in the 

zebrafish, the fish will continue to be a useful tool in identifying novel pathways in the 

development of human cancer. 

The finding that many zebrafish insertional mutant lines with mutations in ribosomal 

protein genes are cancer prone was the result of a screen that identified adult fish with large 

external lumps. Although this finding confirmed the validity of our screening approach to 

identify novel cancer genes, it is possible that we missed a number of lines that are predisposed 

to tumor types that do not present as external lumps. The finding that the NF2 mutant line was 

tumor-prone was the result of a focused effort to look for the tumor phenotype at the histological 

level, as we had expected this line to be tumor-prone based on the known tumor suppressive 

function of NF2 in humans. Although two NF2 heterozygous fish had presented with lumps in 

our initial cancer screen, this was not an unusual number of tumor-bearing fish to find within one 

family, as it is not uncommon for two fish in the same family to each have a seminoma, for 

example. The NF2 tumors, however, turned out to be a much rarer tumor type resembling a 

nerve sheath tumor. 

Thus, we are extending our effort to screen the Hopkins collection of zebrafish insertional 

mutants for other cancer genes, mutation of which predispose the fish to tumor types that are 

only detected histologically. To this end, we have already fixed over 10,000 adult fish at 22 to 

26 months of age, similar to the age range in which the rp heterozygous lines were analyzed. 

This collection is comprised of approximately 15-30 fish from each of 465 lines, representing 

335 gene loci. Approximately 5800 of these fish have been analyzed histologically thus far. We 

have already found at least one additional line that appears to be tumor-prone. Specifically, 



heterogyzotes for a mutation in the hagoromo gene are predisposed to the development of 

neuroblastomas, a rare tumor type within our colony. The tumor phenotype has been confirmed 

to be present in fish bearing other alleles of this mutation in the Hopkins collection. hagoromo 

was one of the first mutants identified in the Hopkins screen and is one of the few lines in the 

collection with a dominant phenotype: heterozygous adults have aberrant stripe patterns. The 

cloned gene was found to encode an F-BoxIWD40-repeat containing protein, though still very 

little is known about its function. Its homologs in other vertebrates appear to be required for 

pattern formation of various distinct structures (Kawakami et al., 2000). A direct link to cancer 

has not been previously described. It is as yet unknown whether the homozygotes, which are 

viable, are predisposed to tumors as well. This exciting finding obviously demonstrates the 

value of continuing to screen the Hopkins collection for other tumor-prone lines. 

The utility of the zebrafish as a gene discovery tool can be further extended to screen for 

genes that modulate the cancer phenotype of mutants in known cancer genes. As demonstrated 

by Patton and colleagues, mutation of p53 enhances the tumorigenicity of oncogenic BRAF, 

inducing malignant melanoma, whereas expression of mutant BRAF alone induces only nevi 

formation (Patton et al., 2005). Similarly, in the mouse, mutation of p53 cooperates with NFI 

mutation in the development of MPNSTs (Cichowski et al., 1999; Vogel et al., 1999). As cancer 

is known to be a disease that results from successive mutations conferring a growth advantage 

upon a subset of cells (Hanahan and Weinberg, 2000), it will be important to understand the 

order of these molecular events and the various combinations of acquired mutations that can lead 

to cancer. As new cancer models are generated in the zebrafish, they can be used as the starting 

background for chemical or insertional mutagenesis to identify suppressors or enhancers of the 



cancer phenotype. For example, rps may impinge upon the p53 pathway in ways that are yet to 

be discovered, and performing screens in p53- or rp-mutant backgrounds may be enlightening. 
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Preface 

This appendix provides additional data not shown in Chapter 3. It also outlines an 

experiment in progress that follows logically from the results presented in Chapter 3. The 

proposed experiment is designed to determine definitively whether the tumor-prone 

heterozygous rp mutant fish have a defect in translation that underlies their growth impairment. 

Results & Discussion 

It is well-accepted that a decrease in global protein synthesis can lead to growth 

impairment, as in the case of the Drosophila Minute mutants that have lost one copy of a 

ribosomal protein (Lambertsson, 1998). We aimed to show that this is true in the case of rp 

heterozygous zebrafish, and reasoned that polysome profiling would yield a definitive answer. 

In the homozygous rp mutant embryos, the translation defect was very obvious from the 

polysome profiles (Figure 3.1). When we analyzed mixtures of embryos highly enriched for rp 

heterozygotes, however, the shape of the profile was very similar to that of a wild-typeenriched 

sample (Figure A. 1). The observed difference in the overall height of the peaks was likely due to 

the fact that the heterozygote-enriched sample had less starting material since the embryos were 

smaller (Figure A. 1). Importantly, there was no difference in the number of higher-order 

polysomes detected, which is a measure of translational capacity. As discussed in Chapter 3, a 

global translation defect can be manifested in a very subtle manner in a polysome profile, and it 

is possible that the translation phenotype in the fish cannot be detected by this method. 

One possibility may be that the translation defect in the rp heterozygotes only affects the 

selection of messages that are translated. There is precedent for this mechanism in the literature, 

as described previously (Beuvink et al., 2005; Rajasekhar et al., 2003). To test this hypothesis, 



we are performing microarray analysis of mRNAs isolated from polysome fractionated samples. 

The experimental plan is outlined in Figure A.2. We are again using wild-type-enriched and 

hi258 heterozygote-enriched embryo mixtures since we are able to isolate polysomes from them 

easily. We also tried using individual 34-day-old fish, the advantage of which was having a pure 

heterozygous or wild-type sample since we were able to take a tail biopsy for genotyping before 

performing the polysome fractionation. Unfortunately, since the overall rate of translation is 

much lower at this point than in 4-day-old embryos, the profiles were dominated by the 

monosome peak, and there were too few higher-order polysome peaks to be able to isolate a 

useful amount of RNA (data not shown). Thus, we proceeded with the wild-type-enriched and 

the hi258 heterozygote-enriched embryo mixtures, pooling the monosome fractions and 

polysome fractions separately. The associated mRNAs were then labeled and hybridized to a 

zebrafish genome array containing nearly 15,000 transcripts. 

While these experiments are in progress, it is useful to provide a brief analysis of the 

expected outcomes. It will be of interest to determine the identity of messages that are 

preferentially associated with either the monosome or the polysome fractions in the 

heterozygotes, and how this distribution is different from the wild-types. It is commonly 

accepted that, unless stalling of the ribosome on the mRNA occurs, messages associated with 

polysomes are translated at a higher rate than those associated with the monosome fraction. If 

there is a general defect in translation in the rp heterozygotes, we might expect to find a shift of 

messages that are normally polysome-bound in the wild-type to be in the monosome fraction of 

the heterozygotes. That is, the heterozygotes may be using most of the available translational 

capacity to synthesize proteins that are required in abundance. Perhaps, then, the messages that 

are normally in the monosome fraction of the wild-types would be absent completely from the 



ribosomes of the heterozygotes. The messages in the heterozygote polysomes would then 

encode only the most extremely abundant proteins in the cell. Obviously, if some key protein 

such as p53 were not made in sufficient quantities, this translation defect would predispose the 

fish to tumorigenesis. 

Alternatively, a more selective shift in polysome occupation of messages might be 

detected in the heterozygotes. Translation of certain messages is known to be regulated by 

sequence elements in the 5' untranslated region. For example, messages encoding all ribosomal 

proteins and many other factors involved in translation have a 5'-terminal oligopyrimidine motif 

that allows them to be preferentially translated under conditions favoring growth (Meyuhas, 

2000). In addition, the secondary structure of the 5' UTR of many messages is a strong 

determinant of the efficiency of their translation. For example, messages encoding growth- 

promoting proteins such as cyclin Dl, c-myc, and VEGF have 5' UTRs with complex secondary 

structures, making them less competitive for translation than other messages with simpler 5' 

UTR structures (Graff and Zirnmer, 2003; Koromilas et al., 1992). A defect in translation in the 

rp heterozygotes might make the cells less sensitive to the signals that cue the translation of 

particular subsets of messages, resulting in an abnormal balance of proteins that may, for 

example, regulate cell proliferation. 

The polysome mays may reveal a subset of proteins that are aberrantly translated in the 

rp heterozygotes, which may provide a clue as to which pathways are most affected in these fish. 

Meanwhile, a candidate approach can be taken to determine whether certain messages are 

impaired for translation in the heterozygotes by performing RT-PCR for the selected message on 

the same RNA samples that were isolated for the micromays. These experiments may therefore 



provide evidence of a translation impairment in the rp heterozygotes that only affects certain 

messages selectively. 

Materials & Methods 

Sorting of rp Heterozygous Embryos and Polysome Microarrays 

Adult fish heterozygous for the hi258 insertion were outcrossed to non-transgenic T-AB 

fish. Embryos were sorted at 4 dpf by the presence or absence of a swim bladder. These latter 

groups were subsequently sorted into two further groups based on the size of the embryos. 

Polysome fractionation was performed on the wild-type-enriched and heterozygote-enriched 

mixtures as described in Chapter 3. Monosome and polysome fractions were pooled separately, 

and RNA was extracted from the fractions with Trizol LS (Invitrogen, Cat. No. 10296-010) 

following the manufacturer's modified protocol for samples contaminated with polysaccharides. 

RNA was checked for integrity and concentration with an Agilent BioAnalyzer, and labeled and 

hybridized to Affyrnetrix GeneChip Zebrafish Genome Arrays containing oligonucleotide probe 

sets for over 14,900 zebrafish transcripts. 
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Figure A.l: Polysome profiles do not reveal an overt translation defect in hi258 ( r = )  

heterozygous embryos. 

(A)  A polysome profile was generated from an embryo mixture enriched in wild-type embryos 

with possible contamination of -10% hi258 (rpL35) heterozygotes. 

( B )  A polysome profile of an embryo mixture enriched in hi258 (rpL35) heterozygotes with 

possible contamination of -10% wild-type embryos appears very similar to the wild-type- 

enriched embryo mixture. 





Figure A.2: An experimental scheme to compare the identity of messages translated in rp 

heterozygous fish versus their wild-type siblings. 

Polysome fractionation is performed on mixtures enriched in wild-type or hi258 (rpL35) 

heterozygous embryos. The monosome fractions (Fractions 3 and 4) are collected and pooled. 

Likewise, the polysome fractions (Fractions 5 - 10) are collected and pooled separately. RNA is 

isolated from each pool, labeled, and hybridized on a zebrafish genome microarray. The 

absolute level of each message will be averaged from triplicate experiments. The ratio of 

message level in the monosome fractions ("M") to the level in the polysome fractions ("P) will 

be calculated, and this ratio will be compared between the wild-type and heterozygote samples 

for each gene. In this manner, we may determine whether certain messages are, for example, 

enriched in polysomes in the wild-types, but enriched in monosomes of the heterozygotes. 
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Introduction 

The Hopkins collection of insertional mutant zebrafish lines (Amsterdam et al., 2004) 

represents a unique resource that can be re-screened for genes involved in specific 

developmental pathways or cellular processes. This collection is distinct from those generated 

by chemical mutagenesis (Driever et al., 1996; Haffter et al., 1996) because approximately two- 

thirds of the insertional mutants have non-specific phenotypes, including widespread necrosis, 

smaller head and eyes, and malformed bodies. Mutants with such phenotypes were discarded 

from the chemical screens due to the assumption that many of the mutated genes would be 

"housekeeping" genes, and the effort required to positionally clone such genes was deemed too 

time-consuming, considering the expected result. The relative ease of cloning genes disrupted 

by viral insertions has allowed the Hopkins laboratory to maintain all such "non-specific" 

mutants. The assumption that these would generally be housekeeping genes turned out to be 

correct, with genes encoding DNA polymerases, translational machinery components, etc., 

among them. Amongst this set, however, were genes that were of particular interest to us: 

known cell cycle regulators, such as cyclin B1 and aurora B kinase (Amsterdam et al., 2004). 

Importantly, another feature of the Hopkins collection is that 20% of the genes were novel or 

poorly characterized at the time that they were cloned. Thus, there was a possibility that 

amongst these novel genes were novel regulators of the cell cycle. 

In order to screen for such cell cycle genes, assays commonly used in mouse and human 

cell culture studies were adapted for use in zebrafish embryos. We settled upon using an 

antibody against phosphorylated histone H3, which labels cells in G2M phase of the cell cycle. 

More specifically, histone H3 is phosphorylated on serine 10 during late G2 and becomes 

dephosphorylated at anaphase of mitosis (Crosio et al., 2002). The sensitivity of this screen was 



verified by staining known cell cycle mutants in the Hopkins collection, and a pilot screen was 

performed on several mutants, including some with insertions in novel genes. A postdoctoral 

fellow, Christopher Sansarn, has since taken the lead on this screen and also added a treatment 

with gamma radiation to screen in parallel for mutants with a cell cycle checkpoint defect. As 

this latter work will be the subject of an upcoming publication, only the efforts in setting up the 

initial screen will be described here. 

Results 

Assay Development: BrdU Incorporation 

The first goal of this cell cycle screen was to optimize specific and robust assays that 

could be used to screen a large number of mutant lines efficiently. Embryos were successfully 

stained with an antibody against proliferating cell nuclear antigen (PCNA) to label cells in S 

phase (data not shown). Similarly, bromodeoxyuridine (BrdU) incorporation was also successful 

in displaying the cells of the embryo that had gone through S phase (Figure B.l). The results of 

the BrdU incorporation assay in wild-type embryos are consistent with what is expected: At 24 

hpf, the level of staining is very high, especially in the head and central nervous system (Figures 

B.1A-C). As the embryo ages, a smaller proportion of the cells are proliferating (Figures B.1D- 

I). By 96 hpf (Figures B. 1 J-L), BrdU incorporation is relatively low, except in the region of the 

arches and internal organs, which are undergoing rapid development at this time (Kimmel et al., 

1995). These results indicate that the BrdU incorporation assay produces an accurate profile of 

the proliferation status of all cells within the whole wild-type embryo. 

When the BrdU incorporation assay was performed on mutants, however, the staining 

was generally poor (data not shown). The tested mutants were generally those that had non- 



specific defects such as general necrosis, since this subset of mutants would be of particular 

interest in an eventual cell cycle screen. Among the offspring of heterozygous intercrosses, the 

phenotypically wild-type embryos incorporated BrdU quite well, similar to the levels shown in 

Figure B. 1; however, BrdU-positive staining was barely detectable, if not completely absent, 

among the homozygous mutant embryos. This lack of BrdU incorporation was observed in most 

such non-specific mutants, regardless of whether the mutated gene encoded a known cell cycle 

regulator or a protein with a housekeeping function. Therefore, this assay was deemed too non- 

selective to be used in a cell cycle screen. 

An Antibody Stain for Phosphorylated Histone H3 Is Suitable for Use in Screening 

Another assay, whole-mount immunostaining for phosphorylated histone H3 (pH3), 

proved to be more selective. Since the anti-pH3 antibody specifically labels cells in G2lM phase 

of the cell cycle, a smaller proportion of the cells in the embryo is stained, compared to BrdU 

incorporation (Figures B.2A and B). The embryos were stained between 24 and 36 hpf since the 

number of pH3-positive cells in wild-type embryos is optimal during this time, allowing easy 

detection of both an increase or a decrease in staining. Similar to the BrdU incorporation assay, 

the number of pH3 positive cells decreases progressively at 48,72, and 96 hpf (data not shown). 

The pH3 staining assay was then tested on several known cell cycle mutants in the Hopkins 

collection, in order to demonstrate that the assay yields the expected results. For example, 

embryos that are homozygous mutant for cyclin B 1 have a markedly reduced level of pH3 

staining (Figures B.2C and D). This is to be expected, since this mitotic cyclin is required for 

entry into mitosis (Ohi and Gould, 1999). Similarly, mutants in aurora B kinase show a dramatic 

reduction in pH3 staining (Figures B.2E and F), again as expected since histone H3 is known to 



be a target of this kinase (Crosio et al., 2002). In contrast, embryos mutant for polo-like kinase 

display an increase of pH3-positive cells (Figures B.2G and H). Mutations of this kinase in other 

organisms lead to mitotic arrest (Descombes and Nigg, 1998; Llamazares et al., 1991), which is 

consistent with the observed increase in pH3 staining. 

A Pilot Cell Cycle Screen Using an Anti-Phosphorylated Histone H3 Antibody 

Since the pH3 staining assay proved robust and reasonably sensitive, a pilot screen was 

performed with selected mutants from the Hopkins collection. This initial set consisted of 49 

clutches of about 30-60 embryos, each generated from a mating of heterozygous adults. The 

clutches were coded and screened blindly for differences in pH3 staining in a quarter of the 

embryos in each clutch. Among the selected set of mutants were some known cell cycle genes as 

positive controls, other known genes with non-specific/necrosis phenotypes, and some novel or 

poorly characterized genes. In some cases, there were multiple clutches from the same family or 

from another allele of the same mutant. The screen was done in collaboration with James 

Amatruda and Kathleen Pfaff from the laboratory of Leonard Zon, who were performing a 

similar pH3 screen at the time. We screened each clutch independently, assigning a call of an 

increase, a decrease, or no difference in pH3 staining in the mutant embryos. As shown in Table 

B. 1, the calls were generally consistent among the three of us, and also consistent among 

clutches of the same mutant. The well-characterized cell cycle mutants tested earlier (Figure 

B.2) also yielded the same results, further demonstrating the reproducibility of this assay. In 

addition, survivin 1 mutants showed a decrease in pH3 staining as expected, since the protein 

functions in the passenger protein complex with aurora B (Vagnarelli and Earnshaw, 2004). 

Among the remainder of the mutants screened, most showed no difference in pH3 staining 



(Table B.1), indicating that the assay is quite selective; therefore, a screen of the entire Hopkins 

collection of mutants would likely yield a manageable number of true cell cycle mutants that 

could be characterized further. The few mutants that did display a difference in pH3 staining 

(NDC80/HEC, RNA polymerase 11 subunit B, and ribosomal protein S 15a) generally showed a 

slight decrease. 

Discussion 

This study has demonstrated that the zebrafish is amenable to screens for cell cycle 

genes. Zebrafish embryos incorporate BrdU and can be labeled with an antibody against 

phosphorylated histone H3 (pH3), to detect cells that have gone through S phase or are in G 2 M  

phase, respectively. Since most zebrafish mutants with general necrotic phenotypes were unable 

to incorporate BrdU, this assay does not selectively detect cell cycle mutants. On the other hand, 

pH3 staining was much more specific since we were able to identify known cell cycle mutants in 

a blind pilot screen by observing increases or decreases in pH3 staining relative to wild-type 

embryos. Since the pilot screen yielded specific and highly reproducible results, the pH3 assay 

is a viable method to screen the entire collection of Hopkins insertional mutants for novel cell 

cycle genes. 

Among the mutants identified in the pilot screen with defects in phosphorylation of H3 

and no previously known role in the cell cycle, all had a slight reduction in staining. One 

possibility is that this decrease in pH3-positive cells is a consequence of the non-specific cell 

death occumng in these embryos. This is a caveat of this assay that must be taken into account if 

upon screening the entire collection of Hopkins mutants, we find that many have reduced levels 

of pH3 staining. Further characterization of mutants with increases in pH3 staining would 



therefore deserve higher priority since these are much more likely to be specific cell cycle 

defects. 

On the other hand, decreases in pH3 staining might actually be specific defects as well, 

because not all of the necrotic mutants in the pilot screen displayed such a reduction. For 

example, mutants in a DNA polymerase subunit (hi1 703) already have necrosis in the head and 

eyes at the time the embryos were fixed for the pilot screen, yet they showed no difference in 

pH3 staining compared to wild-type (Table B.l). At the time that this pilot screen was 

performed, the Ndc80/HEC protein was thought to have a role in chromosome segregation 

(Zheng et al., 1999), but its mechanism of action was unknown. In recent years, it has been 

found to be a critical member of a complex that is involved in kinetochore assembly, 

chromosome congression, and the spindle checkpoint (McCleland et al., 2003). Furthermore, 

blocking the function of Ndc801HEC results in early mitotic exit (McCleland et al., 2003), which 

is consistent with the reduced pH3 phenotype in zebrafish mutants. Thus, this example 

demonstrates that the zebrafish pH3 phenotype may shed light on the function of poorly 

characterized genes that may be identified in a large-scale pH3 screen. 

In addition, the finding that mutants in two "housekeeping" genes (an RNA polymerase I1 

subunit and a ribosomal protein) displayed a reduction in pH3 staining should not be summarily 

dismissed based on the gene mutated. Since we now know that many ribosomal proteins are 

haploinsufficient tumor suppressors, it is feasible that they may play a role in the cell cycle, if 

perhaps indirectly. Many of the homozygous ribosomal protein mutants, in fact, generally have 

a reduction in pH3 staining (Kevin Lai, unpublished results), though the significance of this 

finding is not yet known. Therefore, there is utility to screening the entire collection of Hopkins 



mutants, not only the ones mutated in novel genes, since we might uncover a previously 

unknown cell cycle role for some known genes. 

In any case, any mutants identified in an eventual large-scale screen that have either 

decreases or increases in pH3 staining should be re-tested using an independent cell cycle assay. 

A straightforward assay that works reproducibly is fluorescence-activated cell sorting (FACS) 

after labeling cells from a dissociated embryo with propidium iodide as a marker for DNA 

content (Kevin Lai, unpublished results). In fact, this is another assay that could be used to 

screen the entire collection of Hopkins mutants, though it is slightly more time-consuming than 

the pH3 assay. An advantage of FACS, however, is that it reveals the full cell cycle profile of 

the cells in the embryo, i.e., the relative proportion of cells in GI, S, or G2/M phase. 

Christopher Sansam has now continued the pH3 screen and has used FACS analysis to 

confirm some of the cell cycle defects identified by pH3 staining. He has also adapted the pH3 

staining assay to screen for genes involved in the DNA damage checkpoint. Clutches of 

embryos from heterozygous intercrosses are treated with gamma radiation before fixation and 

pH3 staining. Since wild-type embryos undergo cell cycle arrest and display a reduction in pH3 

staining after irradiation (Christopher Sansam, unpublished results), the clutches are screened for 

the presence of homozygous mutants that maintain high levels of pH3 staining, suggesting that 

they have a defect in the DNA damage checkpoint. Eventually, the mutants identified in both the 

general mitosis screen and the checkpoint screen should be further characterized in other 

systems, such as cultured cells, in which the cell cycle is better understood and methods for 

experimental manipulation are well-developed. The zebrafish has proven to be a useful 

discovery tool for genes involved in vertebrate development, and now also has the potential to be 

a powerful system in which to identify novel cell cycle genes. 



Materials & Methods 

Brd U Incorporation and Immunostaining 

Adult T-AB wild-type fish were mated, and embryos were collected, staged within 4 hpf, 

and treated with 1-phenyl-Zthiourea, as described previously (Westerfield, 2000). Embryos 

were dechorionated by hand. At selected time points, they were treated for 15min with lOmM 

BrdU in 15% DMSOIfish water on ice, or for 3 to 8hrs with lOmM BrdU in fish water at 28.5"C. 

Embryos were washed several times with fish water and fixed with 4% paraformaldehyde for 

4hrs at room temperature. Embryos were washed 4 x 5min in PBS + 0.1% Tween 20 (PBST) 

and 5min in water. Embryos were permeabilized with acetone for 5 to 15min, then washed 5min 

each in water, PBST, and 2M hydrochloric acid. Embryos were incubated in 2M hydrochloric 

acid for lhr at room temperature, then washed 5min in PBST and 5min in PBSD'IT (PBS + 1% 

DMSO + 0.1% Tween 20 + 0.5% Triton X-100). Embryos were blocked in PBSD'M' + 10% 

normal goat serum for 2hrs at room temperature. Embryos were incubated overnight at 4°C with 

anti-BrdU antibody (Becton Dickinson Immunocytometry Systems, Cat. No. 347580) in 

PBSDTT with 3% normal goat serum. 

Embryos were washed 5min, then 6 x 15min in PBSD'IT + 3% normal goat serum + 

0.1M sodium chloride. Embryos were incubated for 4hrs at room temperature in a 1 :20 dilution 

of a biotinylated goat anti-mouse secondary antibody (Sigma, Cat. No. B7264) in PBSDTT + 3% 

normal goat serum. Embryos were washed 5min, then 6 x 15min in PBSD'IT + 0.1 % normal 

goat serum + 0.1M sodium chloride, followed by 2 x 15min in PBSDTT. The VectaStain ABC 

kit (Vector Laboratories, Cat. No. PK4002) and DAB substrate kit (Vector Laboratories, Cat. 

No. SK4100) were used according to the manufacturer's protocol to visualize the BrdU-positive 

cells. Embryos were cleared in 50% glycerol for 2hrs before photographing. 



Anti-Phosphorylated Histone H3 (pH3) Staining 

Homozygous mutant embryos were generated along with phenotypically wild-type 

sibling controls by intercrossing heterozygous carriers. Embryos were staged within 4 hpf and 

treated with 1-phenyl-2-thiourea, as described previously (Westerfield, 2000). They were 

dechorionated by hand before fixation at selected time points. Embryos were fixed in 4% 

paraformaldehyde for 4hrs at room temperature or at 4OC overnight. Embryos were washed 4 x 

5min in PBS with 0.1% Tween 20 (PBST), then 5min in water or stored in PBST at 4OC for up to 

2 weeks. 

Fixed embryos were permeabilized in acetone for 15min, then washed 5min with water 

and 5min with PBS containing 1% DMSO, 0.1% Tween 20, and 0.5% Triton X 100 (PBSDTT). 

Embryos were blocked in PBSDTT + 10% normal goat serum for 2hrs. Embryos were incubated 

with a 1:200 dilution of a rabbit polyclonal antibody against phosphorylated histone H3 (Santa 

Cruz Biotechnology, Inc., Cat. No. sc-8656-R) in PBSDTT + 3% normal goat serum at 4OC 

overnight on a rotating platform shaker. Embryos were washed 2 x lmin and 6 x 15min in 

PBSDTI' with 3% normal goat serum and 0.1M sodium chloride. Embryos were incubated for 

4hrs at room temperature with a goat anti-rabbit secondary antibody (Sigma, Cat. No. B7389) 

diluted 1:20 in PBSDTI' with 3% normal goat serum. Embryos were washed 2 x lmin and 6 x 

15min in PBSDTI' with 0.1 % normal goat serum and 0.1M sodium chloride, then 2 x 30min in 

PBSDTT. The VectaStain ABC kit (Vector Laboratories, Cat. No. PK4002) and DAB substrate 

kit (Vector Laboratories, Cat. No. SK4100) were used according to the manufacturer's protocol 

to visualize the pH3-positive cells. Embryos were cleared in 50% glycerol for 2hrs before 

photographing. 



Pilot pH3 Screen 

Heterozygotes from selected lines were mated to generate clutches of 30 to 60 embryos 

containing -25% homozygous mutants. Clutches of embryos were coded to conceal the identity 

of the mutated gene. Embryos were fixed and stained with an antibody against pH3, as described 

above. Clutches of stained embryos were visualized with a dissecting microscope and screened 

for the presence of embryos among each clutch that had increased or decreased pH3 staining 

relative to the remaining embryos in the clutch. Three independent observers made assessments 

which were considered in making a consensus pH3 call. 
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Figure B.l: BrdU incorporation in T-AB wild-type embryos at selected time points. 

T-AB wild-type embryos were treated with BrdU at selected time points, then fixed and 

immunostained for BrdU-positive cells. Note that BrdU-positive staining decreases globally 

over the course of development and becomes localized to specific developing structures. 

(A-C) 24 hpf, lateral (A and B) and dorsal (C) views. 

(D-F) 48 hpf, lateral (D and E) and dorsal (F) views. 

(G-I) 72 hpf, lateral (G and H) and dorsal (I) views. 

(J-L) 96 hpf, lateral (J and K) and dorsal (L) views. 







Figure B.2: Anti-phosphorylated histone H3 (pH3) staining in wild-type embryos and 

selected cell cycle mutants. 

Lateral views of embryos stained with an antibody against phosphorylated histone H3 are shown. 

(A and B) pH3-positive cells are distributed throughout a wild-type embryo at 32 hpf. 

(C and D) pH3 staining is markedly decreased at 32 hpf compared to wild-type in an embryo 

homozygous mutant for cyclin B 1 (hi2734). 

(E and F) pH3 staining is even more severely reduced at 32 hpf in an embryo homozygous 

mutant for aurora B (hi1045), a kinase that phosphorylates histone H3. 

(G and H) pH3 staining is increased compared to wild-type at 28 hpf in an embryo homozygous 

for polo-like kinase (hi1856). 





Table B.1: Pilot cell cycle screen of mutants from the Hopkins zebrafish insertional mutant 

collection using an antibody against phosphorylated histone H3 (pH3). 

Heterozygous carriers of mutations in the indicated genes were intercrossed to yield clutches of 

embryos that were expected to consist of 25% homozygous mutants. The clutches were fixed 

between 24 and 36 hpf and stained with a pH3 antibody. The clutches were coded to allow for 

screening without knowledge of the mutated gene. Kevin Lai, James Amatruda, and Kathleen 

Pfaff independently scored the clutches for the presence of homozygous mutant embryos that 

displayed an increase or decrease in pH3 staining. A final consensus pH3 call was made after a 

discussion amongst the three participants, before the mutants were decoded. The mutants in 

known cell cycle genes served as positive controls, and yielded the expected results. Several 

other mutants showed slight decreases in pH3 staining. 



*weel embryos displayed early morphological defects and were too necrotic to be reliably scored for pH3 staining at 24 to 36 hpf. 
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