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Abstract

Organizations strive continuously to become efficient. Over the years many of them have
tried to attain this through streamlining or reengineering their product development
practices. While some of them succeed others are less successful. Product development
organizations within automotive enterprises are not different in this regard.

Most reengineering efforts seem to concentrate on tasks and schedule. Detailed schedules
are cascaded while the identification of enablers on delivering to the new schedule is left
to individual teams in the organization. At the working level, the reengineering process is
misunderstood as abandonment of things gone right from past practices. This sometimes
results in teams reinventing solutions to similar problems from the past. The purpose of
this thesis is to demonstrate that a key enabler for success in any reengineering effort is to
understand existing knowledge management practices and reuse them in the context of
proposed changes. To do so, existing practices would have to be captured in usable
formats.

Proposed changes to existing product development process within an automotive product
development organization are studied. Comparisons are made between existing and
proposed product development process. To focus this comparison and understand the
changes better, the development tasks undertaken by a safety attribute team within the
product development group is studied in detail. An analysis of the development process
undertaken by the safety team to existing schedule is performed through case studies.
Based on this analysis scenarios are developed for the proposed changes.

From the case studies it is apparent that formalized knowledge management practices in
formats usable by development teams will help in reducing iteration time through cascade
of robust targets. Recommendations are made to build upon and sustain recently
implemented knowledge management practices within the safety attribute team. An
implementation roadmap for the new knowledge management frame work is provided.

Thesis Supervisor: Daniel Whitney
Title: Senior Research Scientist, Center for Technology, Policy and Industrial
Development
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Chapter 1

1. Introduction

1.1 Motivation and Problem Statement

The author has lived through process reengineering efforts before in product

development organizations. The reengineering efforts addressed the product

development schedule while the process knowledge was not addressed.

Moreover, existing knowledge and practices on how the tasks were executed were

not given importance. The reengineering efforts merely appeared to be

rearrangement of existing tasks. Motivated by these past experiences, the author

undertakes an effort through this thesis to study the changes instituted to

streamline existing product development practices at Ford Motor Company.

Through this study it is hoped that an understanding may be gained towards the

challenges facing the product development process in a large enterprise as it

strives for continuous improvement.

Automotive product design and development is iterative and time consuming.

When faced with demands to reduce the product design and development cycle

time, it is imperative to increase the chance of success from individual iterations.

So, how can past process knowledge and its reuse help reduce waste by making

design and development iterations effective? How can engineers and their

managers avoid reinventing the solutions to similar problems across several

vehicle lines? Can the find and fix process to design be changed through

incorporating robustness in design? Can formalized knowledge management

practices aid knowledge reuse among product development teams? Can specific

design practices derived from years of expertise be drawn into formats usable

within program timing? Is this a reasonable framework that could be adopted
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within existing culture and help teams transition to a new process? This thesis

hopes to address these questions.

1.2 Scope

The scope of this thesis is limited to the study of knowledge management

practices existing in safety attribute engineering at Ford's North American

product development organization. The need for knowledge management

practices within this attribute team to deliver program tasks is analyzed. A

knowledge management framework is proposed for adoption within safety

attribute program team structure. The aim is to aid this attribute team in its

transition from current product development process to the new process. It

should also be noted that vehicle safety includes a broad range of requirements

dictated by market and regulatory bodies. The safety attribute referred in this

thesis corresponds to impact safety or passive safety requirements for passenger

cars, light trucks and sports utility vehicles.

The organizational issues pertaining to staffing, experience, incentive structure for

workers and existing culture are important issues whenever a big change is

undertaken. But this thesis will not address their effect on proposed product

development process transformation. Safety attribute team member reactions in

adapting to proposed changes are reported. Team communications within safety

attribute in creating their best practices are also discussed. Since this study relates

to the safety attribute which is only a small part of the North American product

development organization, the team behavior reported need not be indicative of

the overall organization.

1.3 Roadmap and Thesis Structure

Early chapters will help the reader understand general product development

terminologies. The evolution of product development practices will be discussed
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along with the design paradigms that exist within product development. Since this

study is on knowledge management practices within a product development

team, the context and definition for knowledge with respect to this study will be

provided.

Following the introductory discussion on product development practices,

background details on existing product development practices at Ford will be

provided in chapter 3. This section will detail the safety development practices at

Ford and an introduction to some of the requirements for safety development.

This section will also clarify the context for subsequent safety team related

discussions. Knowledge management practices used within safety under the

existing process at Ford will also be described.

Chapter 4 will discuss proposed product development changes. This section will

then analyze the gaps in existing product development practices. Initial formal

knowledge management practices, its evolution and modifications made to it are

also discussed in this section. The gaps that existed in the initial knowledge

practices will be described.

To understand the past development practices and proposed product

development changes, case studies relating to safety development will be

presented. Through this case study in chapter 5, it will be explained how past

practices on knowledge management have to change to accommodate the

proposed product development process. There is a shift in the design paradigm

due to the proposed changes to the overall product development process. While

the first chapter introduces these paradigms, the merits of this shift are analyzed

further within the context of safety attribute development using this case study.

Offsite seminars with safety attribute engineering team members, interviews and

program team experiences were used in building this case study.
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Since proposals in the new product development process encourages

commonality and reuse, it is important to understand the challenges facing this

issue. Brief discussions on the advantages of commonality to an automotive

company and in particular to safety attribute engineering is undertaken in chapter

6. How a commonality strategy may affect the development process is studied.

The importance of knowledge management to attain the efficiency expected

through the new product development process, to adopt any shifting design

paradigms and to ensure commonality will be addressed. Finally

recommendations are made to the safety attribute engineering team and also to

interfacing groups with this attribute that would help in the transition to the new

product development process.
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Chapter 2

2. Product Development Practices

2.1 Chapter Introduction

This chapter introduces the reader to a general background on product

development process and the design paradigm that exists within this process.

Later in this chapter the reader is introduced to knowledge management and the

context in which this terminology will be used for the rest of this study. Research

related to the design paradigms existing in the development process is provided.

2.2 Concurrent Engineering

In today's business world corporations must react to the changing market needs

rapidly, effectively, and responsively. They should be able to reduce their time to

market and adapt to the changing environments. Decisions have to be made

quickly and they must be correct the first time out. Corporations can no longer

waste time repeating tasks, thereby prolonging the time it takes to bring new

products to market. Concurrent engineering has emerged as a way for these

corporations to bring rapid solutions to the challenges faced during their product

design and development process'.

Concurrent Engineering 2 maybe defined as a "systematic approach to the

integrated concurrent design of products and their related processes, including

manufacturing and support". In enterprises following a concurrent engineering

process, tasks required to develop a product are usually done in parallel, to save

time taken for the product to reach market. In an engineering setting this

development process would include activities from several engineering disciplines

working concurrently along with key cross-functional stakeholders from

marketing, product management, purchasing, manufacturing engineering,
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production, quality etc. In this regard concurrent engineering maybe regarded as

opposite to Taylor's assembly line method which is sequential and an evolving

process for a product. Design and development engineers as well as academics

who have studied concurrent engineering believe that this simultaneous design

process can improve product quality, reduce overall development cost and shrink

development time'. Though concurrent engineering may not be suited for some

industries, especially those involved in a "made to order" business, it seemed to

suite well for the automotive sector given its market strategy of planned product

obsolescence, short product development and delivery lead times.

The early part of 20th century saw the automotive industry attain tremendous

efficiency and effectiveness in the manufacturing of automobiles. To attain this

efficiency the automotive industry resorted to rigidly defined work processes and

specialized technologies to manufacture their products4 . This standardized

production strategy epitomized at Ford Motor Company in the 1920's was even

termed as the "Fordis/' system. As competition grew in the later part of the

century, auto companies had to incorporate flexibility in to the system to address

the various needs of its consumer. Also, the existing PD practices did not address

the need for flexibility in manufacturing. Additionally traditional product

development processes in use did not address the auto companies' needs for

reducing their long lead times in their design and development process for new

automobiles. These reductions in lead times were not only necessary for keeping

their existing customers but also in adding new ones. It was also needed to

answer the challenges faced at the market place especially from Japanese

automakers. Customers began experiencing superior product quality from

Japanese automakers in the seventies. They were implementing several practices

in their product development processes which later would be termed as

concurrent development or engineering.
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The decades of the eighties and nineties saw many American auto companies

embrace concurrent engineering practices as a way to gain the efficiencies needed

in their product development processes to address their market challenges.

Concurrent engineering turned out to be the way for attaining reducing time-to

market, improving product quality and lowering product development costs'.

Automakers, especially in North America, restructured themselves through the

eighties to operationalize the concept of concurrent engineering'. Case studies

showed that a particular company was successful in shortening concept-to market

time by over one year on a newly designed vehicle, primarily through the use of

product-focused, cross-functional platform teams which permitted the early

integration of manufacturing personnel into product and process development.

While technology played an important role in this transformation to concurrent

engineering, organizational and human resource changes were also found to be

the great enablers.

Before concurrent engineering practices were implemented in the auto industry,

engineering was carried out in vertical "chimneys" which were organized by

functional specialization. Engineers were grouped according to the component

they specialized in. This made the product development process entirely

sequential, with designers throwing concepts "over the wall" to engineering, and

engineering tossing the product and process out to the manufacturing plants.

What was needed was an organizational system that permitted parallel

development of product and process, and that encouraged interaction and

feedback among product designers and engineers, manufacturing engineers, and

production and trades employees in the manufacturing facilities.

Organizational changes made to implement concurrent engineering established a

"reciprocal interdependence" between the designers and the builders of vehicles.

This cross functional blending and communication assured that issues of
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manufacturing feasibility are considered at the earliest possible stage of the

product development process. This made it easier to change a problematic design

further upstream, before significant resources have been spent.

2.3 Design Paradigms in Concurrent Engineering

The need for communication and sharing of design information among all

participants early in a product's development process is an essential part of

concurrent engineering. Participants in the design process are from both within

and outside the company. Those from within the company would to belong to

various functional groups like marketing, finance, quality, manufacturing etc.

Those from outside the company would be suppliers, dealers and sometimes

even end customers. Thus communicating across all these layers early in the

product development process becomes crucial. While many management

researches into concurrent engineering has studied and shown ways to enhance

this communication through social and organizational means, equally important

are the underlying design paradigms' in concurrent engineering. Liker etal

describe one of these design paradigms in concurrent engineering as Point based

concurrent engineering and the other as Set based concurrent engineering. Chapter

5 will discuss the merits and challenges of set based practices in an automotive

product development process while the next few sections will attempt to describe

briefly what point based and set based concurrent engineering are.

2.3.1 Point Based Concurrent Engineering

A point based concurrent engineering may be summarized as a process in which

a single solution is synthesized, analyzed and changed to provide a solution to a

given design problem. In point based concurrent engineering, design activity

begins with the definition of the problem and then followed by many possible

solutions to the problem. After preliminary analysis an engineer may select a

solution with the greatest potential to resolve the problem and further analyze,
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evaluate and modify it until a satisfactory solution emerges. If this solution proves

infeasible engineers then embark on a new solution all over again.

Stying

Marketing * * System
Design

Serviceability S Component
Design

Manufacturing

Design Solution
Styling 0 Analyze and

Critique

MWdify

Marketing

System Design

Component Design

Manufacturing

Serviceability

Figure 1: Comparison between point
based serial engineering and point based
concurrent engineering

In a point based CE environment all activities involved in the development

process provide their feedback based on available information. The chosen best

alternative proceeds from one part of the organization to another. The design

gets analyzed and modified as trade-offs occur between several functional groups
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in the organization until an optimal solution is reached. If changes occur in design

then there is a risk of prior design actions being invalidated. Much care should be

taken to communicate agreements and decisions on designs between the

functional groups involved.

2.3.2 Set Based Concurrent Engineering

In Set Based Concurrent Engineering (SBCE), as in point based concurrent

engineering designs also begin with problem definition and idea generation. But

rather than choosing an early winner designers consider a broad set of possible

solution and gradually narrow down the set of possibilities. The set of possibilities

include both a set of discrete designs and/or parameter values.

The narrowing of design sets occurs in a systematic way. Based on information

currently available elimination of a possible set occurs when the option is either

infeasible or clearly inferior. Information is gathered on a continuous basis based

on further development and interaction with all functional groups in the design

process. This process continues until the designers converge on a final solution.

A simplified sketch of set based iteration is shown in figure 2. Given that

designers in a SBCE environment consider several design options, there is explicit

communications between participants about reasons for the sets of design

alternatives both at the conceptual and parametric levels.

The real difference between these two design paradigms is in the fact that in

SBCE more options are analyzed and decisions are left open for a longer period

of time. This way when design freeze occurs it is ultimately done so based on

development information available from the functional group opposed to "best

guesses" from that functional group. Early design freeze based on imperfect

information carries the risk of late change. While SBCE may take more time to

converge and define a solution it however could move very quickly upon

10



convergence and onto production without any issues as the set narrowing phase

would have considered several possible error states that usually occur late in

design.

Figure 2: Representation of Set Based
Concurrent Engineering

While set based concurrent engineering has clear advantages in an automotive

setting, it need not be the best suited concurrent process for all industries. Some

examples where point based concurrent engineering is used include Microsoft's

"Synch and stabilize" approach, where several iterations and possibly releases of

code happens on a weekly basis'. Point based process may be successful when

product architecture is highly modular. It may also be beneficial to adopt if

11
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iterations are fast and cheap, rework cycle is short and quality of first iteration or

starting point is high.

In an automotive setting while some set based CE is practiced, the degree to

which individual auto companies follow SBCE will surely vary. Again there is no

precise measure to this degree of practice. But Liker etal through their studies

argue that Toyota and its suppliers are more Set Based than other automotive

companies. The success of Toyota's PDP as well as its manufacturing process is

well documented and there is no dispute that they along with Honda are the

industry leaders, taking the shortest amount of time it takes to launch a new

product. This thesis will not dwell into a comparison of the exact nature of set

based practices within Ford and how precisely it differs from Toyota's PDP as

seen in literature. However the benefits and need for set based practices at Ford

will be discussed in later chapters.

2.4 Knowledge Management

Most dictionaries define knowledge as the accumulation of truths or facts over

time. What this thesis hopes to develop is a "contextual" reference with respect

to safety attribute engineering in Fords North American Engineering

organization. An attempt is made in this thesis to explain as to how this

knowledge is created and managed in this organization.

Knowledge is often confused with information'. Information usually relates to

description or definition and is more perspective in nature answering questions

like what, who, when, or where. Knowledge on the other hand comprises

strategy, practice, method, or approach to answer questions related to how.

Nonaka and Takeuchi" classify human knowledge into two kinds, explicit and

tacit. Explicit knowledge involves formal language including grammatical

statements, mathematical expressions, specifications, manuals etc. On the other
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hand tacit knowledge is informal and hard to articulate with formal language.

Tacit knowledge relates to the personal knowledge embedded in individual

experience and involves intangible factors such as personal belief, perspective and

the value system.

Later chapters will also detail how Fords North American Engineering (NAE)

safety functional organization prepares itself for new process changes being

cascaded within the company. The explicit knowledge management that takes

place within this attribute and how this knowledge management framework aids

the transition to this new product development process will also be discussed in

later chapters. While this explicit knowledge may have had a tacit underpinning,

the study and dynamics of knowledge evolution from tacit to explicit within the

organization under consideration is beyond the scope of this thesis work.

Knowledge management is important as it enhances an organization's ability and

capacity to deal with and develop on the following dimensions:

> Mission: What it is trying to accomplish?

> Competition: How can it gain a competitive edge?

> Performance: How can it deliver the results?

> Change: How does it cope with change?

Knowledge management is even more important now at Ford Motor Company

as it embarks on a new product creation process GPDS (Global Product

Development System). The manner in which product development occurs in

different enterprises will differ even if they can be broadly grouped as different

versions of concurrent engineering. But how a particular enterprise practices

13



concurrent engineering and if successful how it can build on its own practices is

precisely related to the knowledge management activities within this firm.

Prior thesis work by Qi Dong12 have captured the fact that only 30% of a

companies system level knowledge was usually recorded in documents while the

rest was based on interviews with engineers. The need for this recorded

knowledge and how a team may record it is the knowledge management context

for this thesis. It is hoped that by recording the best practices in a usable format

will help future teams in their development effort. Hence an attempt is made in

this thesis to explain the framework in which knowledge management occurs

within the NAE safety attribute as it prepares to adopt the GPDS schedule and

processes. Through case studies in later chapters it will be shown how these

knowledge management practices helped in quicker problem solving and reduced

development time and cost.

2.5 Related research: Development funnel and Controlled convergence

Engineers pursuing a feasible design in a development process are usually

encouraged to try several options. The process of considering multiple

alternatives is fairly common place. Authors like Wheelwright and Clark, Ulrich

and Eppinger have discussed in detail how the "development funnel" is used to

narrow down feasible solutions as design matures from concept to

implementation stage.

Multiple alternatives provide "flexibility" during development process. This

flexibility is essential especially in an unpredictable and rapidly changing business

environment". Flexibility in development process should be such that it provides

for making design changes as late as possible in the overall development process

with little or no penalty at all. It may after all be this flexibility that makes set

based concurrent engineering attractive to automotive firms. For example when
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product styling becomes a "hit or miss" only after it reaches the end customer,

teams involved in styling would like to base their decision on best available data

from customers opposed to guesses and single styling themes. In such scenarios

carrying multiple styling themes or sets late into the development process is a

flexibility that affords for best decisions late in the development process with

little penalty.

The process by which the development funnel may be narrowed is provided by

Pugh through his concept on "controlled convergence"". Pugh Concept

Selection allows for alternating convergence (analytical) and divergence

(synthesis). This process improves upon the beginning concepts, usually creating

a final hybrid concept usually of higher value that was not one of the original

concepts. The following steps detail this concept:

> Pugh evaluates each system-level concept against a common baseline,

which is either the current product design, or a surrogate. This eliminates

conflicts in determining how much a concept is better than the

DATUM.

> Unlike a true set based concept where there is no limit to the number of

comparisons, Pugh minimizes the number of comparisons that must be

considered. The comparison is not to the product specifications. The

comparison should not be numbers based, as this tends to create a focus

on the numerical values instead of the possibility of innovation.

> Selection criteria should be chosen to differentiate between the concepts,

not show that all the concepts are the same for a given attribute. This

will allow for a more straight forward comparison that takes less time.

Pugh also stresses examining the negatives of a given concept to reverse
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them and strengthen the concept. This would not be evident if a

numerical approach was taken.

> Every participant in the design process should have a clear, consistent

understanding of each concept. And this understanding improves (along

with an understanding of the problems) as the process progresses. The

team's judgment is used to interpret the results of the comparison.

> The process works regardless of product or technology type. This is

because it minimizes constraints on creative thinking and provides a

stimulus for creative work.

Gnteria4_L cection +atr+

Selection -Referencel Alternatives
Criteria System A B C AB* AC*
criteia I D S + S s +
citeia U s + +
critefia 3 A+ I + -+ +
criteria 4 -S-++
criteria 5 T + s + + +

cdera ++ S +
critetia 7 U S + S
criteia 8 s - + s s
criteria 9 M s -+ s

E+ 3 3 4 4 6
- 4 4 2 1

I s 2 1 1 3 2

Figure 3: Example of Pugh selection
matrix
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2.6 Chapter Summary

This chapter provided definitions for concurrent engineering and the two

paradigms that exist in the concurrent engineering based product development

process, point based and set based concurrent engineering. Though concurrent

engineering involves several functional teams, the scope of this study is limited to

a few teams in the early stage of the product development process. Also defined

in this chapter was the knowledge management context. It was important to

provide this context as the word knowledge is very generic and broad. Next

chapter will describe the existing product development process at Ford's North

American operations. A broad description on product development tasks were

provided in this current chapter. This will help the reader to understand the

following chapter where a narrower focus on specific development tasks is

provided.
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Chapter 3

3. Current Practices

3.1 Chapter Introduction

This chapter introduces the reader to existing product development practices

within Ford's North American operations. The team structure within the product

development organization is described. The safety attribute team's interaction

with other product development team is described in detail. Also provided is a

general description of the roles and responsibilities of the product development

teams and in particular the safety team. Existing knowledge management

practices within safety attribute team is also discussed.

3.2 FPDS - Introduction

The Ford Product Development System (FPDS) documents the process tasks

and deliverables necessary to define, design, verify, and launch a vehicle. It

provides a logical sequence of processes and events which optimizes the use of

available skills, technologies, and facilities to produce a vehicle in a minimal

period of time. The FPDS Process consists of milestones and team events which

are timing points for FPDS deliverables. Milestones differ from team events in

that they require management reviews. Milestones are defined to communicate

progress at various points throughout the product development process. FPDS is

utilized by the following brands within Ford Motor Company: Ford, Lincoln,

Mercury, Jaguar, and Land Rover. Mazda and Volvo each utilize a unique product

development process.

The FPDS Process timing depends on the scalability of the vehicle program.

Scalability refers to the level of complexity of a vehicle program. It ranges from

S1 to S6. An S1 represents a vehicle program with very little change, such as new
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stripes, decals, badging, and body side moldings.

program with a new platform.

An S6 represents a vehicle

The generic FPDS Process starts at the Kick-Off <KO> milestone which is 50

Months Before Job 1 (MBJ1) for a large scale program and ends at the Job 1

<J1> milestone signifying vehicle launch. Three months after J1, the Final Status

<FS> milestone occurs. There are several milestones and team events in between

<KO> and <FS>.

Vehicle Leuel

DE E - - - .. - - ,. --- - --- -- - - - - -- ERY LAUCH

Sub jstein!LenI 7

DEIG
SX7P7

SxPy

x andy denote Structure and
Powertrain change levels
respectively. The programn
schedule would change depending
on these change levels.

Figure 4: Generic FPDS milestones and
system V representation

The tasks involved in executing the PDP to FPDS schedule give this system

engineering framework its name, the "system V". Simply put, the vehicle is

composed of systems which are composed of subsystems which are ultimately

composed of components! This denotes that the entire system is defined and

then designed starting from the whole vehicle down to its components. Once the
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definition and designing phases are done, the verification commences starting

from the component back to the vehicle level.

The entire vehicle development process is kicked off with the issuance of a

product definition letter (PDL) which denotes the "intent" and "content" of the

vehicle to be designed. Through the early "define" phases or milestones the

vehicle architecture is refined and made compatible with the PDL. Once the

vehicle level target compatibility is confirmed, targets are then cascaded from

vehicle level to the sub system and then to the component level. The

confirmation of component level target compatibility coincides with the program

approval milestone or stage gate. After this event design confirmation

commences starting at the sub system level and then reaching the full vehicle

level starting with the confirmation prototype (CP) team event. Once designs are

verified it is then released for production through the engineering sign off

milestone events. Finally formal production commences atJl.

What was discussed is only a high level synopsis to explain FPDS. Each

milestone has detailed deliverables and associated tasks. There are several

hundred tasks and deliverables across all the FPDS milestones that program

teams would have to complete the design and launch of any vehicle. It is beyond

the scope of this thesis to analyze and explain these tasks. It may also not be

appropriate given that these are company confidential and proprietary

information. But when the need arises, a particular task may be explained and

care would be taken not to violate proprietary information.

3.3 Historical background - The Need for FPDS

While concurrent engineering practices became prevalent through the 1970's in

the North American automotive industry, it soon became apparent that these

automotive enterprises needed a formalized process framework to integrate
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different functional groups within its enterprise. A systems engineering

framework was needed that would enable the integration of all concurrent

engineering activities. Ford in 1995, as part of its reengineering effort dubbed

Ford 2000, embarked on Ford Product Development System. This system

engineering framework had its roots in the aerospace industry. The aerospace

industry around this time was well underway in using system engineering tools

and framework to integrate its functional groups and processes.

From a business stand point FPDS was needed so that vehicles could be made

based on affordable business strategy'". This in turn would maximize the

company's investment efficiency. Before FPDS products were priced based on

classic product development equation where vehicles were priced on how much it

costs the company to design and build them. But with FPDS Ford began

following the affordable business equation which worked its way back. That is,

vehicles were priced based on how much the customer is willing to pay. Then

depending on this price target, it was then decided how much design change may

be made to the vehicle.

3.4 Program team structure in North American product development

At the center of Fords North American product development activities are the

Vehicle Program Teams. It is the responsibility of this team to undertake and

manage all the tasks required by FPDS for a given vehicle program from <KO>

to new vehicle launch at <JI> milestones. Vehicle program teams are further

divided into Program Steering Teams, Program Attribute Teams, Program

Module Teams and Program Action Teams. The responsibilities of these teams

are described briefly below:

> Program Steering Teams (PST's):
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o Provides program direction for product, investment, quality and

process

o Administers program timing and the targets process

o Monitors the status of team deliverables and milestones

o PST's are chaired by the Chief Program Engineer and the

participants are listed in the flow chart (figure 5)

Program Module Teams (PMT's):

o Broken down by few major systems; Body interior, body exterior,

chassis, power train and electrical

o Manages the design, release, and manufacturability of the

specified vehicle system, subsystems and component to meet the

quality, cost, functional, weight and timing targets (QCFWT)

o Discusses activity status, identifies issues, and discusses required

updates pertaining to design and release of the system.

Program Attribute Teams (PAT's):

o Around fifteen attributes are responsible to deliver the vehicle

performance. They are listed in the flow chart (figure 5).

o The role of the PAT is to manage the attribute development and

performance that affect multiple PMT's.
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o Cross attribute tradeoffs and optimization for a given vehicle

program is the responsibility of program specific vehicle

integration or vehicle engineering teams.

> Program Action Teams:

o The role of the program action team is to design and release

components belonging to the PMT's. For example the restraints

program action team is affiliated with the body interior PMT. Its

job is to design and release passive safety components like

airbags, seat belts and related components, steering wheels and

crash sensors.

Each individual PMT and PAT's has their own internal organizational structure

headed by dedicated functional chief engineers. Thus several PMT's or PAT's

performing the same function would be organized under one such chief engineer.

For example all body exterior PMT serving the truck platforms would have a

dedicated "truck" body exterior chief engineer. Similarly a functional group like

safety is headed by a dedicated safety chief engineer. There is however minor

modifications to this structure. Some attributes such as Noise, Vibration and

Harshness (NVH) or Durability would be organized under a chief engineer who

may have responsibility for both the attributes.

Engineers from these functional groups are assigned to dedicated vehicle

program teams. This collocation forms the basis of Fords matrix organizational

structure for North American product development activities. This generic matrix

organizational structure was created around 1995 during the Ford 2000

reengineering efforts. Over the past decade this matrix structure has undergone

several iterations to serve the needs of the PD process at any given time. For
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example resource or logistical issues may have created a sub organization. This

still would be at the working level opposed to the management level. Still with

these changes the underlying theme of a cross-functional matrix organization

dedicated to program teams remain the same. Even though manufacturing is an

equally integral component of the concurrent process its organization structure is

not discussed as part of this thesis.

In a vehicle program setting PAT's provide targets to the PMT's. Each PMT

receives targets and system level requirements. The PMT's are then decomposed

into various Design Verification Teams which receive requirements cascaded

from the PMT's and from other sources, depending on the scope of the design

verification team (also termed as DVP teams). An example requirement would be

safety PAT teams cascading steering column stroke requirements in the form of

load vs. deflection characteristics to Chassis PMT which then cascade it to the

steering column DVP team or program action team.

3.4.1 Safety team structure in North American Product Development

A brief description of the safety attribute in Fords North American Engineering

organization is provided in this section. Later chapters will deal with the

knowledge management and product development activities within this attribute.

Safety is one of the program attribute teams. Over the years Safety PAT formed a

strong working relationship with certain PMT's like Chassis and Body (interior

and exterior). This is due to the influence exhibited by the components and sub-

systems from these PMT's on the crash worthiness of a vehicle. Some of the

major chassis components and sub systems are frame, sub-frame, suspension,

fuel sub-system. Body structural members include component and sub-systems

like pillars, floor, dash, doors, roof etc. All of them play a crucial role in the

structural crash worthiness of a vehicle.
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While this at the PMT level, safety PAT's interact strongly with certain Program

Action Team's under the PMT umbrella like the Seat, Restraints, and Instrument

Panel. Safety teams additionally work with other attribute groups like Package

engineering, styling studio and other cross-functional attribute teams like NVH

and durability.

Vehicle Program Team Structure
| Program Steering Team (PST)

(Vehicde Line Director; Chief Program Engineer; Project Mngr; Body Mngr.,
Chassis Mngr, Electrical Mngr, PTSE Mngr.-; Vehicle Engineering Mngr.)

Program Attribute Team (PAT) Program Module Teams (PMT)
(Cost; Customer Life Cycle; Customer-Visible
Electrical Features; Emissions; Interior Climate (Body Interior; Body Exterior; Chassis;

Control; NVH; Package/Ergonomics; Electrical; P/T)
Performance, Fuel Economy & Drivability;

Product/Process Design Compatibility; Safety;
Security; Styling/Appearance;

Thermal/Aerodynamics; Vehicle Dynamics; Program Action Teams (PAT)
Weight) (example: EE, Body, CC, DI, Restraints, PIT)

Figure 5: Vehicle
structure1 6  showing
involved in PDP.

program team
the attributes

As with PMT's the interaction with certain Program Action Teams are stronger

than others mostly depending on the needs of the program and based on the

components that are changing for that particular vehicle line. Organizationally

Impact safety teams are coupled with the Restraints design teams, to signify the

close working relationship needed between these two teams (Figure 6). Strong
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working relationships between safety PAT's and related PMT or action teams are

denoted by solid lines in figure 6.

Ch~ases
PMT

Electrical Body Exteriar

Safety PAT

PowerrainInterior
P

Interaction with other
PAT's and DVP teams

Interaction with PMTs

StLdOF

AST

rar
tE

eD

tires D

Steering
System DVP

team

. - -' -- Brakes DVP
team

Seats DVP

Pad~g PA

riterior trim
oft and har

She mtl

Figure 6: Interaction between safety PAT
and other activity teams represented
pictorially.

3.4.2 Impact safety requirements in United States

Automotive safety may be divided into impact and non-impact safety. All

references to safety in this thesis indicate to the impact safety attribute of an

automobile. References to non impact, if made, will be called out specifically. The

crash safety requirements for an automobile in the United States are regulated

through the National Highway Transport Safety Administration (NHTSA) which

falls under the Department of Transportation. These safety requirements are
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listed under the Federal Motor Vehicle Safety Standards (FMVSS). All

automobiles depending on their weight class would have to meet certain set of

FMVSS requirements. FMVSS standards regulate every aspect of an automobile

pertaining to impact and non impact safety. While impact safety deliverables is

the responsibility of the safety attribute team, non impact safety requirements are

the responsibility of the individual PMT to which the regulated component or

sub system belongs. The flow chart below shows this decomposition (figure 7).

Requirements exist for system, sub-system and component level of a vehicle.

Appendix 1 shows some of these examples.

Safety (FrvMSS) standards

ioa 'Cash Safety

I | 1
System SubSystem Componert

FntSe, Figar, En-ra~ Iocing
FiDII mier tests retractors (8R) ,

Inflator requirements

Fod crush, Sce door
strength, Out of
position occupant

Non ir at Safety

System SubSystem Carponert

Enissions, Ligting,

Rarrmability, Hbx
Vehide Dynamics 'J chroam, Nrcury
turn cortent

Figure 7: Roles and responsibilities of the
attribute teams divided based on
regulatory requirements

An example of impact safety requirements in FMVSS is a 30mph full frontal

impact of a passenger car (under 55001bs) into a rigid wall where occupant injury

numbers for a 5th percentile female and 50th percentile male Anthropomorphic
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Test Device (ATD or HYBRID III Crash dummy) shall be below a specified

values. An example of non impact safety requirement would relate to head lamp

standards. Another example would be brake standards which would dictate

minimum stopping distances.

3.5 Safety Attribute Knowledge Management Practices Followed in FPDS

Starting in 1995 when Ford adopted the FPDS process, several attribute teams

were also reorganized to better facilitate the goals of FPDS. For safety

engineering this brought the Computer Aided Engineering (CAE) simulation,

testing, development and restraints program action team's closer together under

one organization. It was also at this time that the power of CAE simulation to

quicken the product development cycle was being recognized by development

teams. Reciprocally, CAE engineers were now able to relate to development and

project management efforts happening in program teams and were able to

interact better with program teams.

However no formal knowledge management practices existed. In interviews with

technical specialists within the safety organization it was gathered that prior to

Ford 2000 development engineers usually stayed in their jobs longer and this was

one of main reasons for not having any explicit documents or formal knowledge

management practices. System knowledge was mostly tacit and given that

engineers stayed on their jobs longer no formal documentation was required.

Also, compared to today, crash safety standards were not many. Sub system and

component standards were being populated to ensure system robustness. While

the requirement "what's" were being documented, requirement "how's" were

not. Dividing up the vehicle into system, sub system and components was just

beginning in safety. Sub system design specifications and component design

specifications were being formulated and cascaded to the PMT's. But these

requirements did not tell engineers how to proceed with design.
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A few years prior to Ford 2000, Finite Element Methods17 and Rigid body codes"

were used for simulating sub system and full system crashes. CAE engineers were

beginning to discover how they may correlate their simulation models to actual

crash test. From these correlated models design iterations and changes were being

made. At this time confidence in CAE simulation was not high for CAE to "lead

design". But the knowledge gained by CAE engineers was being documented.

This knowledge related to how they were able to correlate models better to test

so that they may recommend design changes and the best assumptions to make

in simulation code to produce the right trends that can then be duplicated in

design. Best practices relating to recording of necessary parameters from test to

be incorporated in models later were all being documented formally. This

happened through published internal engineering reports, weekly design reviews

among CAE team members across different program teams, technology reviews

between advanced research CAE teams and program teams and best practices

design reports published by crash simulation CAE community.

3.6 Related research - FPDS, Team Structure and Safety Attribute Product

Development

Chatawanich and Rush" performed a detailed organizational study pertaining to

Ford's organizational culture. This study also details the evolution of Fords

organization over the past hundred years. It provides a good insight and

information on Ford's matrix structure, program teams and cross functional

organizations.

Khan0 performed a detailed study on safety product development and provided

a systematic approach to safety design and product development in FPDS. It uses

design structure matrices to study system level interactions specific to safety.

Based on this work teams can decide to develop for the worst case test mode

identified through the DSM analysis2 1, design sub systems for those specific tests
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modes and be assured that other test modes would easily conform to this design.

This study has a detailed background on how safety requirements came about in

United States as well.

Thomke22  describes "how crash simulation works" in his book on

experimentation. The success of many auto companies in using crash simulation

to come up with better design is also discussed.

The discussion in section 3.5, safety attribute knowledge management practices, is

based on the authors personal observations over several years working in the

safety attribute. Also, the practices described are specific to the NA safety

attribute engineering. Technical specialists and safety program supervisors were

interviewed to supplement personal knowledge on safety knowledge management

practices.

3.7 Chapter Summary

Team structure, their roles and responsibilities explained in this chapter will help

the reader understand the development process undertaken with in safety

attribute. This will also be pertinent to the case study undertaken in chapter 5.

The detailed description provided on tasks involved will help the reader

understand terminologies used in the discussion on knowledge management

practices in the next chapter. It will also help the reader understand the

differences between FPDS and changes proposed to the product development

process which follows in the next chapter.
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Chap te r4

4. New Practices

4.1 Chapter Introduction

In this chapter the reader is introduced to the proposed changes in Ford Motor

Company's product development process. Comparisons are made between

present and future product development practices. Early knowledge management

practices undertaken by the safety attribute team in FPDS and its evolution as

Ford transitions to the new product development process is also described. To

make these comparisons effective gaps in existing practices are identified.

4.2 GPDS - Introduction

GPDS or Global Product Development System is a product development

process that Ford will transition to for programs commencing 2005. While most

brands in Ford Motor Company use FPDS, Volvo and Mazda use their own

unique PDP. GPDS will integrate all these three existing processes. The roots of

GPDS lies in Mazda's development process which is considered to be among the

fastest in the auto industry. The time taken by some automakers in their product

development process to move from "design Freeze" milestone to launch is

shown below (figure 8). Toyota is considered the industry leader and

comparisons are normalized to their number. Overall time to market data from

program kick-off to start of production may not by itself provide an objective

measure as the OEM's may have different definitions for program kick off.

The system "V" concept of cascading targets from system down to the

component level seen in FPDS may not exist on paper with GPDS. This does

not mean that Ford is moving away from this powerful system engineering frame

work. Instead for the system to work now, solutions will not only be cascaded
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top down but also from bottom up based on available sets of components and

subsystem. Figure 9 attempts to clarify this concept.

Toyota Industry leader - 1 .0

Honda 1.2

Mazda 1.2

Nissan 1.26

Ford 1.66

Renault 1.73

DaimlerChrysler 1.86

General Motors 2.0

Figure 8: Time to market benchmark -
normalized values 23

GPDS has been mapped out to be more set based than FPDS. GPDS is geared

around the parallel exploration of sets of alternatives. A prime alternative is

identified after each alternative is thoroughly assessed in a variance-based manner.

In GPDS development process can be represented as a funnel starting with early

consideration of a wide set of alternatives. Later sets of alternatives are

progressively narrower. Decisions are cadenced based on development lead times

(e.g., platform, wheel size must be decided very early; Seat Design, Interior Trim,

etc. can wait until later). The core principles governing GPDS are structured and

repeatable process leading to timely and binding decisions. Another repeated

theme in GPDS is that product and processes will be executed with a high level

of reuse and commonality. A concept diagram of GPDS milestones showing the

funnel narrowing leading to design stability is shown in figure 10.
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Figure 9: The menu concept where teams
are expected to choose from sets of
available solutions

4.3 The Need for GPDS

Companies have always tried to provide value to their customers. One way was to

reduce product related investments by streamlining their product development

processes and pass the savings to customers. This streamlining may take the form

of commonality of parts between different product lines and creating product

platforms which then can launch multiple products or designing components that

use existing manufacturing facility.

33

IIESLN-w- 1---- -1-11 1! - 1, "I'll



Time - T=O T=-0.5 T=1.0

Milestone

Start Approval i7Start~ > 
Lanc

Design Covrec onaiiiySaylt
Maturation n ibty Sali

Figure 10: PDP time line indicator and set

narrowing phases

While these objectives are not new, the challenge has always been to balance the

PD effort that tries to maintain commonality and at the same time preserve the

differentiation required in the market place. We also saw the prior table where

Ford is at a competitive disadvantage with respect to its PD timing and time to

market. Additionally it is known that Ford's competitors are continuing to

improve on their own baseline, again through reuse and architecture

commonality. One of the major expectations from GPDS is that it should be

faster and more efficient than FPDS. Following sections will analyze how design

and development efforts may contribute to this.

4.3.1 Gaps in FPDS

Over the years there have been several reengineering processes at Ford. Some of

them would include Design Approval Process, Concept to Customer, World

Class Timing, World Class Process and the current process FPDS.
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In retrospect, each of these initiatives had its value. They were good engineering

ideas and at that time each one was a better way of structuring work than its

predecessor. But they did fall short as time progressed. It is important to

understand why they fell short and address the gaps with the next one. It may not

be possible to compare all the different process listed above with one another.

However based on interviews with both suppliers and resident experts some of

the shortcomings in FPDS have been summarized below:

> Scope Creep - Lack of discipline to milestone deliverables; system

commitments were not required during <KO> milestone and changes

were allowed including late styling changes.

> Lack of prioritization - Lack of attribute funding; misaligned objectives

between attribute and program teams; Chief Nameplate Engineer not

empowered to prioritize; conflict between initiatives and customer

requirements.

> Lack of vehicle identity or clarity - cherry picking from segment

competitors and adding additional features to program.

> Ineffective benchmarking - No centralized source or activity for

benchmarking and its coordination; no consistency on the type of data

required by programs from benchmarking.

> Staffing and experience - On going resource constraints; waiting for prior

launches to ramp down; team experience, many first timers in the team;

> Target setting gaps - Target process "Not rooted in reality", teams

"Defending the indefensible"; process for developing targets is highly

variable between teams; lack of continuity in personnel eliminates or
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prevents developing fact based targets; targets are more program centric

and no focus on commodity;

> Lack of commodity focus - A Supplier commented that many OEM's

rely on being experts in their commodity strategies, and use the programs

as simply the tools for implementation of those strategies. But at Ford,

teams seemed more program focused. In his opinion, the balance

between commodity and program focus was missing at Ford.

The interview summary listed above has both organizational and structural issues

pertaining to FPDS. The organizational aspect pertaining to staffing, resources

and experience level is complex and beyond the analysis of this thesis. The study

undertaken by Chatawanich and Rush referenced earlier deals specifically with

these issues.

Scope creep, lack of prioritization and target setting gaps may be due to a lack of

adherence to process disciplines. There may be organizational issues involved

here as well where functional departments may not be aligned with program or

project teams. While the program chief engineer should help in resolution of such

issues, the chief engineer's lack of empowerment could have been the root cause

why this issue nersisted.

The term "commodity" is introduced in the prior section. In future sections, the

term commodity is interchanged with component. Both refer to a collection of

elemental parts brought together to deliver a function. When assembled with

other commodities or components, this collection of commodities forms a sub

system. A collection of sub systems forms the system. A few systems compose

the full vehicle. As an example, the driver airbag module is considered a

commodity or component. The driver airbag itself may be composed of several
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elemental parts, like airbag inflator, the airbag fabric material, the retainer or

housing, the molded plastic cover, the squibs needed to ignite the inflator etc.

The airbag, along with seat belts and crash event recognition sensors forms the

occupant restraints sub system. The occupant restraints sub system is part of the

interior system. Other sub systems that form the interior system would be seats,

instrument panel, trim etc. The interior system along with the exterior system,

power train and electrical system forms the full vehicle. A decomposition chart

shown in figure 11 provides details of this vehicle-system-sub system and

component break up.

The issue of commodity strategy or the lack of it arose in the interviews

conducted. The context in which it was used is that in FPDS to deliver system

targets, engineers in attribute and functional teams assumed that a new

commodity or component design would have to be undertaken. Teams did not

check to see if there were commodities available from other vehicle lines that

would be compatible in the new system. Several factors including sourcing

decisions made were cited as possible reasons for a lack of coherent commodity

strategy. Also cited were engineering reasons. It includes the lack of a centralized

benchmarking activity which could easily determine compatible solutions from

several available commodities. While a physical facility was available at Ford, the

need was for readily available commodity performance data that would help in

quick comparisons. Such performance data were not readily available.

In FPDS attribute and functional engineers were usually associated with a single

program or vehicle line. Even though many engineering groups operated under a

matrix organization involving both functional and program teams, intra attribute

team interaction in some functional groups was less. Being program focused did

not permit engineers to easily gather broad knowledge on similar commodities

available from their counterparts on other programs. While engineers and their
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teams understood their specific vehicle or system targets well, program focused

attribute teams shifted the balance away from acquiring broad commodity based

knowledge. This may also have prevented functional engineers to undertake

compatibility studies. A compatibility study would allow an engineer to investigate

commodities already available on another vehicle program to be used in the new

vehicle line without significant redesign. This allows for commonality and reuse

of components. The case discussions in later chapter will address the topic of

compatibility.

Comparisons will be made to GPDS and changes proposed through GPDS will

be analyzed to see if some of these concerns listed above can be answered.

4.3.2 Proposals in GPDS tofix the gapsfrom FPDS

Recurring themes in the interviews done to assess drawbacks in FPDS were late

changes to program assumptions, that design solutions were program specific and

unrealistic targets. But in GPDS teams would be moving from a focus on

development per program with limited re-use to an annual process that delivers

possible solutions to be used by the program and attain targets. Reuse will happen

on architectures, systems, parts, and CAE model fronts. To enable this from a

commodity level, Ford recently announced that it would be working with fewer,

more competent and efficient commodity suppliers.

Too often, given the current process by which programs are resourced for

staffing, design actions commence only after programs are kicked off. If the same

trend continues, teams would be unable to develop commodities that are

common across multiple programs. Hence commodity designs have to happen

and be "futured" outside of program process. GPDS explicitly calls for such an

annual process. This annual process will be a product planning process

incorporating technology and commodity plans, resulting in a more stable,
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compatible, and robust program at kick off. The annual process as part of its

charter will not allow book shelving of new technology or commodities unless

compatibility is assured between both cycle plans and all existing vehicle program

targets for which the commodity is intended. This will avoid commodity usage

conflicts between programs already in the product development pipeline and

those that are still in very early planning stages. The importance of "futuring" will

be analyzed through case study in chapter 5.

Unlike FPDS, in GPDS early compatibility to targets is established through reuse

of available system solution alternatives. This will prevent incompatible targets

and late changes in both business case and content to compatible targets.

Another structural issue with FPDS was the unsynchronized prototype phases.

Several prototype phases existed serving the needs of individual attribute teams.

Based on prototype test results if a particular attribute made changes to its targets,

it was never captured by other attributes in their prototype phase and this

sometimes would lead to late changes in design as proper cross attribute trade off

optimizations were not conducted. In GPDS design and validation will be

developed discretely in a two-phased development process. This would lead to a

synchronized development process. Cross-functional verification (virtual and

physical) of countermeasures from prior development phase can now feed into

the next phase. This will also address some of the target setting gaps encountered

in FPDS.

To enable a single point release to signify design completion of all systems and

components a senior management design review event will be conducted. This

will ensure stability in design development and data release in GPDS. In FPDS

changes were accepted through out the process until very late in the PDP. This

will not be the case with GPDS. Stable engineering data following a single design
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release should also allow tool and manufacturing to commence later in the

process resulting in reduced lead time.

Overall, GPDS is being planned to be a manufacturing led process where the pre

program activities would define and design the product around manufacturing's

requirements to maximize reuse and minimize fixture and tooling investment.

While there are significant changes to the operations and organization of PD

"factory", given the nascent nature of GPDS it may not be suitable to discuss all

of them in detail. But the above details were necessary to understand how

commodities and the systems that incorporate them would be designed in such

an environment.

4.4 Knowledge Management Evolution in Safety Attribute

4.4.1 Background - Early Knowledge Management Practices

Through the nineties safety attribute teams in Fords NA product development

grew in size as more product lines were introduced. Additionally the impact safety

requirements increased over the years. Flow chart in Appendix 2 shows a

snapshot of the increase in requirement since 2004 in frontal impact alone. The

nineties also saw increased awareness in the market place to requirements

introduced by public agencies like the Insurance Institute for Highway Safety.24

The regulatory agencies were also planning to introduce new test modes in side

impact, rear impact and roll over protection.

From a safety project management perspective, teams had to ensure that no

critical tasks were missed in the development of vehicle. There were no formal

task lists existing within the teams. The work breakdown structure were known to

the experienced engineers but still not documented. As discussed in chapter 3,

most of the knowledge on how and when to conduct an analysis or development

project was still tacit. Additionally the ballooning of requirements and product
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line ushered in several new engineers into the attribute. Faced with these

challenges, safety management in NA product development decided to streamline

their development process around 2002. A working team was formed under the

leadership of a technical specialist. A detailed checklist was created based on work

breakdown structure. The team created this detailed checklist based on their

personal experience and interviews among the department members.

The structure of the checklist followed the FPDS schedule. Upper level tasks

were initially identified based on generic FPDS deliverables. A simple Gantt chart

was used to map the upper level deliverables. These deliverables were divided

into three major groups and color coded accordingly. They were Product and

process definition tasks, detailed design and optimization tasks and finally testing

and verification tasks.

The product and process definition tasks in this checklist mainly pertained to

safety planning, scheduling and developing a strategy to enable the vehicle to

meet market requirements. It also included tasks for team members to collect and

analyze legacy and benchmark information. Based on the information collected

safety strategy was provided to the program teams. The product definition letter,

a document that details the vehicle content, is then populated with the safety's

needs and wants. The second set of tasks that the upper level Gantt chart

identified were based on detailed design and cross attribute optimization work

that would have to be carried out. The time to start and end the tasks was

identified. These design and optimization works were mainly CAE in nature.

Finally, when design work was completed the high level schedule identified the

test and verification sequence.

These upper level generic tasks were then sub divided into lower level tasks and

binned according to the milestones in which they have to be completed. This
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format allowed for management reviews as well. In creating the tasks the team

realized that they were documenting mostly "what's" rather than "how's". As

such this initial checklist was mostly a schedule rather than a "process". The way

in which the tasks were arranged followed the system "V" breakdown from the

full system to the component level. The schedule for verification conducted starts

from the component back to the full system level culminating in system design

sign-off by crash safety attribute.

4.4.2 Lessons learntfrom early knowledge management exercises within safety attribute and

modifications made

The initial document created was extremely verbose and tried to accommodate

engineers of varying levels of experience. Even though the initial versions were

released for engineers use, the team was continuously challenged by the safety

manager to improve upon the checklist. The technical specialist in the team then

decided to simplify the verbose format and instead change the structure of the

checklist to a more direct short question and answer format which then could be

reviewed during the managers design review meetings. It still contained several

line item questions and was exhaustive (snapshot provided in appendix 3). The

feedback from engineers who were being asked to review this checklist in their

daily work was mostly positive. But there were also complaints that the checklist

was overwhelming. Experienced engineers felt that they did not require this level

of detail while the fresh engineers were left searching, clearly confused by the

detailed nature of the questions. However despite the complaints recognition was

that finally there was a database which now had all the tasks needed to be

undertaken by the safety engineer. It had never existed before in such an explicit

manner.

While creating the checklist the team members involved including the author

began reflecting on the safety development process and realized that the major
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shortcoming of a Gantt format was that it never provided a way to capture the

iterative nature of the development process. In essence what we drew up on

paper looked like a "home run" plan and not the iterative exercises carried out in

our daily work. Hence to overcome this situation team members decided based

on informal survey to include safety factors to the time required to perform

certain tasks. For example a sub-system cross attribute optimization may require a

week of analysis time. Based on team member's experiences, the number of

iterations that would be performed in a week was known. The total number of

new sub system design that a new program typically underwent was considered.

Total time for a task was then calculated based on the above factors for the entire

sub system optimization work. Then looking at the FPDS schedule, approximate

start and end times were determined so that design requirements may be cascaded

to other program teams and provide these teams outside of safety to react to our

proposals. The hope from our safety team working on documenting the tasks was

that the high level Gantt charts we created would then be used by safety PAT

leaders to create the attribute work plans which then could be cascaded to PMT's

or PST's and incorporated into the overall program timing plans.

To address the lack of "hows" in the checklist, our technical specialist" decided

to draw up a system decomposition chart (figurel 1). This decomposition of a

vehicle into system, subsystem and components was the attributes first attempt to

quantify the hows. While this decomposition was generic and used in practice

either to classify requirements and or determine organizational structure in the

auto industry for a very long time, it however was the first time for safety

attribute at Ford to use this format to collect, store and present our knowledge,

information and practices.
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The thought behind this decomposition was straightforward. The parameters and

targets needed by PMT and/or other attribute team members from the safety

PAT are usually engineering metrics. These are needed to design the parts for

safety or maybe to come up with design consensus through cross attribute

optimizations. Examples of these metrics may be material properties like yield or

fracture strength, geometric shapes of components so that they can be packaged

in a vehicle environment that it is not detrimental in crash etc. Lessons or
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knowledge existing in the company related to a component and the related

parameter was assigned to the intersecting cell between the component and

parameter.

For example the steering column sub system is an important component during

frontal crashes. As the occupant rides into the column during crash, the column

must stroke forward in vehicle and absorb energy imparted into it by the

occupant. This energy absorbing mechanism of a column is usually specific to a

vehicle. This energy needed to stroke a column is determined through a force-

deflection characteristic determined by the safety team through an analysis of the

vehicle structure in frontal impact condition. In using the VSSC chart, if the

safety team wishes to learn how they may proceed with a particular column

design, they would search for the steering sub system, cross reference it with the

engineering parameter (in this case force-deflection) and proceed to the

appropriate cell. Since this was a web based application, when engineers click on

the cell they would be able to access generic lessons on how to go about

designing for optimum stroke characteristics in a vehicle. So for the first time

instead of just a schedule, engineers now had a process to work with. But this was

just the beginning. In a program setting depending on the level of changes,

engineers would be accessing several such cells to secure information related to

their component how's.

4.4.3 Preparing for GPDS

When the VSSC document was mapped out it became apparent to team

members that we really did not have adequate "formal" system engineering

lessons documented that would aid in our daily work. There still was significant

resident knowledge with which safety design work was done but this knowledge

was mainly tacit. The mapping of the VSSC document highlighted the urgency

among safety team members for the need to put down in writing what they have
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been practicing in developing their system for years. There were more empty cells

in the VSSC document signifying a lack of lessons or safety practices. But this

was not the case as vehicles continued to be designed to meet regulatory

requirements and excel at the market place. The emphasis here is that some of

the lessons on how to approach design was not documented which in turn would

result in increased iteration time for development. The VSSC document also

brought about a change in the thinking of the engineers. Team members began

having discussions among themselves in terms of component and building it up

to the system. Before it was always the top down approach to system engineering

and development, i.e. what components need to be designed to deliver my system

requirements? Now the role of components in delivering system requirements

was being better understood as engineers began to "build up" to the system.

Awareness of component functionality increased as team members began

experimentation with components and sub systems instead of full vehicle crashes.

The results from component tests were studied and the transfer function needed

to apply these results to full system was also understood.

Prior to this mapping safety engineers complained about the lack of formal sub

system tests. They expected the results from different sub system tests to add up

to provide full system performance. But when the results didn't add up or when

the transfer functions were not clear, further studies at sub system levels were

abandoned. Iterations were then made at the full system level which was more

time consuming. When a component centric view imposed by the VSSC mapping

set in, engineers now looked for repeatability in the component characteristics

during the component rig tests. If variations were noticed the root causes were

understood. This was followed by team members examining the fact that if this

component exhibited such a performance variation in full system tests what

would the counter measures be? Instead of trying to understand the components

role in delivering system targets through summation of different component
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performance engineers began to study the hindrance or variations a component

may cause in delivering system performance. Then countermeasures were applied

for the elimination or containment of noises generated by components. This type

of thinking lead to the origination of "design disciplines" in safety attributes.

GPDS is structured such that there is a dedicated pre program phase which is

expected to deliver mature system architecture to program teams. This allows

program teams to adjust individual component performances and eliminate ways

by which some components may hinder overall performance. A basic design

group is set up organizationally to deliver mature upfront architecture. If a mature

architecture is not delivered then iterations would be similar to FPDS, which

would involve a more top-down approach.

In later sections it will be argued that this design discipline based knowledge

management framework will be the corner stone of "knowledge reuse" in GPDS.

Thus team members began to realize that at the lowest operational levels, formal

process may not be enough to address daily needs. They realized that attribute

and commodity knowledge that go beyond "years of experience" was needed.

The generation of component and sub system based design discipline was the

starting point in knowledge management within safety attribute which should

prepare us better for GPDS.

4.5 Chapter Summary

This chapter provided comparisons to present and future practices. High level

gaps in FPDS were identified. The proposals in GPDS were compared to existing

practices. This chapter also saw a detailed description on existing knowledge

management practices within safety attribute engineering and why the knowledge

management frame work is needed to capture the knowledge and also to help this

attribute as it transitions into GPDS.
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One of the questions posed under problem statement was that can knowledge

management framework aid in the reuse of past knowledge? This section

described what knowledge practices worked and most importantly those that did

not. While parameter based knowledge that helps in engineering hows were

welcome, checklist based engineering whats were not widely adopted. This may

be due to the fact that the engineers within the safety group may have felt that

they have a good handle on their tasks and schedule and decided the checklists

were cumbersome. This also gave some insights into the adoption of best

practices within a team structure. The creation and adoption of best practices has

to be "grass roots". Engineers prefer knowledge nuggets that will help them think

rather than binary commands that may be viewed as eliminating the thinking

process. The detailed question and answer checklist is a "checking" tool and not a

tool that will "assist" an engineer gain design knowledge. The next chapter will

describe how these knowledge nuggets or usable formats of best practices

originate through a case study. Readers will also understand the specific product

development tasks pertaining to safety better through this case study as it

involves the development of a component to meet safety requirements.
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Chap te r5

5. Safety Attribute Case Studies

5.1 Chapter Introduction

This section discusses details of commodity development in safety attribute as

part of the overall vehicle system development using the FPDS process. A

steering wheel is used as an example. The choice of this commodity as an

example was mainly due to data availability from recent vehicle program

experiences. Additionally the system requirement considerations for safety and

the importance of cascading it down to the component level could be better

explained using this example. The program in which this design and development

activity occurred will be referred as "program A" to maintain confidentiality.

While there are several attributes involved in the development of commodities,

the specific role of safety attribute in development is discussed. The aim of this

study is to highlight existing knowledge management practices under FPDS. The

high level requirements expected from other attributes are also discussed below

but mainly to clarify the context in which safety development occurs. This

example also highlights several concurrent engineering practices used in the

development of an automotive system. Using available information on GPDS a

hypothetical development exercise for a steering wheel for the same program A is

also undertaken in this chapter. This is done to highlight the differences between

FPDS and GPDS.

Later in this chapter an additional example for passenger airbag development

from program B is provided. This case is from a vehicle program which is an

early adopter of GPDS. This example will discuss how parallel exploration of

multiple themes at the sub system helps in design and development flexibility.

This example will provide a context to discuss set based engineering practices.
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5.2 Commodity development for safety attribute in FPDS

5.2. 1 Cross-functional requirements and teams involved in development

The steering wheel along with transferring the displacement input from the driver

to chassis sub-system is also considered an important "passive" safety

component. It should perform to its designed safety functions in a crash situation

such as providing a reaction surface to the deploying driver airbag and energy

absorption in a crash event when an occupant may load the steering wheel

indirectly through the airbag. Additionally during low speed collision when the

need for airbag deployment is minimum the steering wheel is required to prevent

any injury to the occupant, if the occupant were to impact the steering wheel

directly. This condition usually happens when the occupant is unbelted or sitting

too close to the steering wheel. While these are a few of the safety related

attributes that a steering wheel must possess, there are several other attributes

that a steering wheel must deliver. Some of them are listed below.

The styling of steering wheel is an important characteristic that a customer

considers during the purchase of a vehicle. The styling theme in a wheel conveys

the all important vehicle "image". For example, if the vehicle's overall theme is

"sporty", it usually has a three spoke steering wheel. If the vehicle belongs to the

family sedan category then the styling is usually conservative and these vehicles

tend to have four spoke wheels. Luxury segment vehicles usually have wood

(decal) finishes. Automakers also offer leather wrapped steering wheels to convey

an upscale image within a certain line itself. This allows for product variety in

styling within an existing vehicle line allowing marketing teams to offer multiple

options to customers. Given the importance of wheel styling to an automobile

the studio departments in charge of this attribute pays close attention to the

development of the styling theme in a vehicle. Several steering wheel themes or

sketches would be developed to gauge customer reaction by studio and marketing

teams during the early stages of a vehicle program.
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The customer comes in direct contact with the steering wheel. There are only a

few other interior components that the customer interacts with during normal

operation of a vehicle (e.g.) seats, switches, pedals and gauges. Since the customer

interaction is high with steering wheel, the Noise Vibration and Harshness

(NVH) characteristics of the wheel are also critical. Shake and rattle felt by the

customer during driving may arise from either the road conditions or from the

automobile itself.

2005 Ford Mustang

Steering wheel styling form
sports car showing a common
theme - Three spoke steering
wheel

2004 Hyundai Tiburon

2005 Mitsubishi Eclipse

Figure 12: An example for steering wheel
styling theme

To isolate this noise steering wheel would have to meet certain component NVH

characteristics like normal mode natural frequency targets. Sometimes "dampers"

are incorporated into steering wheel to isolate shake and vibrations.
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The armature of a steering wheel is the metal insert or frame inside the urethane

foam covered surface of a steering wheel (figure 13). This insert or armature is

made from steel tubing, die cast aluminum or magnesium alloys. Along with the

attributes listed above, the steering wheel should also be designed for armature

durability over the useful life of the vehicle.

Class A - Urethane,
Wood or Leather

Steering Armature
wheel or Insert

Tear Seam

Spokes
Lower rim

Figure 13: Steering wheel part description

The steering wheel would have to withstand component durability requirements

like cyclic fatigue along multiple axis loading and "rim roll" tests during the wheel

development process. During the rim roll tests the armature is imparted through

a cyclic loading along the wheel rim by a loading device which rolls on the surface

of the armature. The armature is expected to maintain its integrity throughout the

entire loading cycle which may last several thousand cycles.

Steering wheel package inside a vehicle interior is also considered during the

program development stages. It should be ergonomically designed for the

customer such that there are no visual hindrance to the gauges (speedometer, fuel

gauge) located behind the wheel in the instrument cluster. It should be
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comfortable to feel. The diameter of the wheel cannot be too small or too large.

While small wheel may have issues with horn package or switch placements, large

wheels may hinder with the drivers upper thigh regions during the operation of

the vehicle. Large steering wheels may also hinder vehicle ingress or egress.

5.2.2 Team roles and responsibilities during development

From a vehicle decomposition view, steering wheel is the responsibility of the

Body Interior PNT. The list of high level requirements that a steering wheel

should meet gives an idea of the attribute teams involved in its development.

Under the body interior PMT, the Restraints DVP team leads the design and

release activity for steering wheels. The engineers belonging to the restraints

department coordinate the steering wheel design and release (D&R) functions

with all concerned attribute teams, suppliers, manufacturing, purchasing, quality

and serviceability representatives for a given program. Targets from different

attributes and activities are thus coordinated and balanced under the leadership of

this D&R engineer. Each functional group interfaces with the vehicle program

team directly to understand the program needs and system level targets. The

safety development engineer from the safety PAT would interface with this

steering wheel D&R engineer to design the steering wheel for safety related

features. The safety development engineer does not "own" the commodity but

"owns" the particular safety requirement. This example should also clarify the

roles and responsibilities of individual members of the organizational structure

explained in chapter 3 on FPDS. It can also be seen from this description the

cross functional nature of the development project for this commodity and the

need for concurrent or simultaneous engineering practices. Due to the aesthetics

and styling involved it is easy to see why the design of this commodity would be

subjective. But the importance of a steering wheels "form" to safety, ergonomics

and package attributes has made the need for several objective design parameters

in the communication between these attributes. In discussing the detailed
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development of the steering wheel some of these "form" parameters will be

elaborated.

5.2.3 Program specific development

Program A was considered a moderate "scale" freshening and timed accordingly

to the corresponding FPDS program schedule. Even though the overall program

scale was moderate, it is fairly typical for some attributes to face a much higher

degree of change than others. Changes were made to the vehicle interior and

especially to the restraints system requiring significant design and development.

The steering wheel for this vehicle line was all new. It was also unique and no

commonality or reusability for a wheel was identified from other vehicle

programs. While the steering wheel was all new, the interfacing components like

steering column were reused from earlier models (carry over). Figure 14 shows

the FPDS schedule in which some of the events related to design and

development of this steering wheel were set to occur.

Safety development tasks begin with understanding the market requirements.

These market requirements are usually dictated by the regulatory requirements

existing for a given class of vehicle. Safety requirements for a given market may

also be driven by non regulatory agencies who act in public interest. Program A

was intended for the US and Canadian markets thus requiring certification to

FMVSS and CMVSS 2
' requirements. Safety requirements for US markets were

well understood at the beginning of this vehicle program A. The US requirements

for Program A were the same as it was for the previous model year or version of

this vehicle. But the Canadian requirements were significantly different with

respect to certain occupant injury metrics.

Vehicles are certified based on several objective measures recorded during crash.

The objective standards (or limits) are listed under FMVSS (or CMVSSS) as the
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case may be. Some of the objective standards based on which a vehicle should be

certified are occupant injury metrics recorded through ATD's or HYBRID III

dummies. Injury metrics are assigned for each body region, the head, neck, chest,

leg etc. The Canadian standard for maximum chest or sternum deflection allowed

during crash27 was significantly lower than the US standard.

50 Months to J1

DEFINE - .-.-- -..-..-..-..-... .--.. -.. -.. -.. - VERIFy LAUNCH

DESIGN

Generale enginr desirg

Establish Establish
compatible compatible
vehicle level component
targets targets

Figure 14: Steering wheel development
schedule in FPDS

The safety teams are then expected to compile and understand legacy

information. Legacy information for this vehicle line existed from prior model

years. If all new vehicle line (FPDS scale level 5 or 6) were to be created, teams

would be at a disadvantage for such information and would have to rely on CAE

simulations or platforms that are close to the new platform for legacy

information. Legacy information for program A indicated that the safety team
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would not meet the new Canadian chest deflection standards set for this vehicle if

they were to carry existing target ranges from carry over vehicle line for the driver

side restraints system. Hence new target ranges for sub systems would have to be

established based on new requirements. The vehicle level system responses were

considered fairly stable as the chassis or the body exterior did not undergo

significant changes for program A compared to the carry over vehicle. The

vehicle or system responses were incorporated in Madymo simulations and target

ranges for restraints sub system were developed. Target ranges for airbags and

seatbelts were established and cascaded to restraints commodity supplier through

restraints D&R engineer. Given existing program assumptions, simulations

indicated that meeting Canadian chest deflection standards using carry over

steering column would be challenging.

FPDS mandates reusability to ensure that affordable business targets are met.

Program A did not consider the possibility of significant reuse of restraints

commodities as there was a change in commodity supplier from the carry over

vehicle line. The new supplier identified would not have any incentive to use parts

from the old supplier.

Meanwhile the steering wheel theme development was underway in the styling

studio. Initial themes were evaluated by different attributes and appropriate

responses were provided back to restraints D&R engineer. In the beginning the

role of steering wheel in meeting chest deflection targets were not well

understood by the safety team. No existing knowledge (knowledge database) on

steering wheel correlated chest deflection standard to the steering wheel. While a

tacit knowledge towards the role of steering wheel as a contributing factor to

chest deflection was known an explicit knowledge on wheel designs and counter

measures were not available. Existing steering wheel design practices helped meet

all existing regulatory or Ford internal safety requirement. Challenges arose as
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requirements set forth by Canada changed. Full vehicle system responses like

deceleration pulse, vehicle cab pitch and drop during crash influence chest

deflection characteristics. These characteristics are in turn driven by vehicle

architecture. Due to the architectural differences among vehicle lines, other

vehicle lines unlike program A did not have difficulty meeting new Canadian

standards. Safety team in Program A was also fortunate to have reliable legacy

information on full system responses which could be used in determining root

causes. The challenges faced were brought forth to the responsible safety

technical specialists who had access to cross platform information. Program

safety team along with technical specialist identified through fish bone type

diagrams different ways to counter the expected chest deflection requirements.

The program challenges for reusability, commonality, system response

characteristics from carry over sub systems, system complexity were all

considered.

The role of the steering system i.e. the steering column along with the steering

wheel was considered an important factor in the chest deflection responses.

Through simulation it was determined that the steering column or the steering

wheel would have to be redesigned to meet the challenging requirements.

Changing the steering column would entail significant changes to the chassis sub

system and would not meet program goals for reuse and commonality. However

as the steering wheel was a new commodity for this vehicle line, safety team

decided to investigate opportunities that existed through wheel redesign. Madymo

CAE simulations correlated to physical tests indicated that if the steering wheel

lower rim stiffness were designed appropriately, then the chest deflection

standards for Canada may be met. This is due to the direct interaction of the

sternum with the lower rim (through the airbag) in a full frontal collision. Based

on studies from ATD responses from various tests, the team developed target

range corridors inside which it expected the lower rim stiffness. The theory was
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that if the rim deflections were inside this corridor then the ATD sternum would

not compress inward thus resulting in lower chest deflection during full vehicle

tests

I *1

Fontal Impact - Stiffness contribution from Steering
column, steering wheel and airbag considered
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Figure 15: Schematic representation -
Steering wheel lower rim deflection
targets

The safety team devised a linear impact sub system test to establish and confirm

lower rim stiffness targets28 . Figure 15 explains schematically the test set up used

by the program team and a pictorial representation of the corridors which

provided target ranges for lower rim stiffness. These target ranges enabled a

steering wheel design that delivered full system performance for Program A. The

safety targets had to be met along with other component requirements listed
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earlier like, rim roll fatigue requirements, component NVH targets, ergonomics

targets etc.

To determine feasible solutions, extensive benchmark tests were conducted on

competitive steering wheel. The lessons learnt from benchmark exercises were

mainly parameter based. The parameter lessons from tests shed light on key

design characteristics and enable the accumulation of tremendous steering wheel

sub system knowledge. Considerable time was spent by both program safety

development team and technical specialists29 in the development of this

knowledge. The solution needed was program specific, i.e. to identify a counter

measure to the expected chest deflection standards. However there were no

formal knowledge management methods in place to cascade and communicate

these lessons across vehicle programs. The ability to reuse knowledge was not in

place in a formal manner at this time.

5.2.4 The needfor explicit knowledge management

The steps listed as part of the steering wheel development or cross attribute

optimizations were known to the safety teams. As discussed in chapter 4, the

existing checklist itemized these development tasks. The teams knew "what" to

do but not "how". Part of this was due to the fact that the specific system

requirement for safety concerning Canadian standards was new and no prior

knowledge existed on the contributing factors or design counter measures that

would alleviate these system challenges. Also absent was a formal process to

quantify the lessons learnt. A lack of formal process could prevent knowledge

reuse.

During the safety development for program A it was found that several

parameters relating to overall vehicle architecture influenced chest deflection

requirements. These parameters include allowable package space for components
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inside engine compartment to avoid intrusion against the vehicle cab or green

house and the structural energy management during crash as measured by the

longitudinal crush distance near the occupant. Fixing these architectural details

was not a feasible solution as other major functional targets would have to be

compromised. The team also determined that if there was another vehicle line

with similar architectural constraints as program A, it would also face similar

challenges to meeting Canadian standards. The lower rim standards allow teams

to have additional flexibility or range towards parameters listed earlier.

If we were to use this example to study practices in FPDS, the teams knew what

steps were needed from a work task list to meet chest deflection standards. These

were to conduct full system simulations, gather legacy information, conduct

brainstorming exercises, cascade full system requirements to component, develop

components to validate full system performance, work with other attributes on

cross attribute optimizations, perform full system verification tests and iterate

until designs are complete. How the safety team went about doing these tasks was

still tacit. The how's, for example formal knowledge relating to the best lower rim

sections or rim designs that would enable all attribute targets were known but not

documented. Formal documentation on best practices was minimal during FPDS.

If a new team from another vehicle line brought a similar concern regarding

lower rim stiffness to a technical specialist, the technical specialists through

design reviews from program A may know the development details and would

ask the new team approaching them to consult with program A. This however is

not a formal process that could be sustained over a period of time. It does not

allow for easy target cascade or additional improvements to targets. It is not

structured for proper communication and cascade in a program team setting. If a

scenario arose where the concerned technical specialist changed jobs, it was

possible that a new program team would be at the risk of "reinventing" the whole

lower rim stiffness development process thus not able to reuse knowledge. The
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need for safety teams was a usable format in which this knowledge could be

captured and cascaded to design and release engineers or suppliers. The

importance of documenting this knowledge will be apparent in the discussions on

steering wheel development in a hypothetical GPDS context.

5.3 Commodity Development for Safety Attribute in GPDS

Prior section 4.3.2 detailed some aspects of GPDS and how it will help fill gaps in

FPDS. In this section we will compare the product development of a steering

wheel in GPDS setting and how it contrasts to FPDS. The need for a knowledge

management framework as a launching pad for knowledge reuse will also be

discussed.

5.3.1 Development tasks in GPDS

In this hypothetical case study a similar vehicle program like Program A

mentioned in section 5.1 is considered. However in this section it is set to the

GPDS milestone deliverables and schedule. The tasks involved in delivering

attribute requirements for a commodity remains the same. The steering wheel has

to still perform all the functions listed in earlier sections for NVH, Safety,

Ergonomics, Durability, etc. But when and how are completely different even if

what remains the same. First let's have a brief look at the when's.

There is a substantial timing compression from program KO (or Start) to the

program approval milestones. This is expected as one of the main aims for

GPDS is to shrink the development timing for new programs. Additionally in

order to streamline development the timeline is synchronized into two

verification phases. Also commodities are binned either belonging to under body

or upper body. Underbody commodities would be long lead items as many of

them would require platform synergy. The upper body items usually are of trim

and ornamentation types where decision need not be frozen early. The
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synchronized development phases allows for underbody verification earlier.

Results from underbody verification phase will feed into the next verification

phase.

In FPDS there was no such synchronization. Attributes would decide the content

of their respective prototype phases with surrogate parts that were attribute

intended and need not be end design intended. Therefore if safety decided to

change the wheel based on its development tests, the actions by safety teams

would negate the design actions that would have been in place by the NVH or

ergonomics team.

The high level tasks for design and development teams are summarized below;

> Team defines a set of solutions at the system level rather than a single

solution.

> Similar sets of solutions are defined at the sub-system level as well.

> Sub-systems are explored in parallel through analysis, design rules and

experiments to characterize compatibility and determine a possible set of

solutions.

> Analysis gradually narrows the sets to a single solution.

> Once a single solution is established system stability is attained. Solution

is not changed and taken to completion.

The important themes in GPDS will be compatibility and completeness. Through

this example we will see the difference between compatibility and completeness.

Figure 16 below explains the development of a wheel to a GPDS schedule.
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One of the key aspects in GPDS is the pre program phase. In this stage multiple

themes for steering wheel would be chosen depending on the vehicle segment

(family sedan, sporty, truck etc). Each steering wheel will be analyzed in a

variance based manner for compatibility. For this each wheel would have to meet

individual component performance targets. For example in order for any one the

wheels to make it into program A, every individual steering wheel chosen would

have to conform to the lower rim target for safety discussed earlier. The design

maturation process initially undergoes convergence and then through the

compatibility phase. Once compatible designs are identified then the designs are

taken to completion.
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peross Program Milestone

process
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Figure 16: Expected schedule for steering
wheel development in GPDS
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5.3.2 Compatibility studies

It is important for development engineers to understand and conduct proper

design compatibility studies to determine the best design alternative for a vehicle

program to use from an existing menu of commodities. Note that earlier section

on GPDS described the need for this menu. The process of designing a

commodity to deliver system performance will be different from FPDS. In FPDS

the target cascade process from system to component level many times resulted

in unique vehicle specific components being designed to meet targets. Teams did

not undertake extensive commonality and compatibility studies to investigate if

parts from other vehicle lines could be reused in a new environment. It would be

interesting to understand if this was due to multiple suppliers being used for same

commodity? Program experience in safety has been that in most instances

commodities could be reused on multiple platforms. Another reason for less

commonality could be the fact that engineers may have confused compatibility

with completeness.

Completeness is the finalization of all elements of design and validation for a

given point. Compatibility is the resolution of interfaces with mating components

and subsystems. FPDS schedule emphasized task completion. This was

additionally tracked through several project management tools by program teams.

The emphasis on task completion could be a possible reason why engineers were

more intent on completing their assigned tasks before compatibility with other

attributes could be established. Early completion resulted in design

incompatibility with other attributes leading to rework and late design changes.

Let's now assume that in Program A, now set to GPDS, the team has to choose

between two steering wheels. As shown in figure 17, the safety team would study

in CAD the compatibility of the two wheels by overlaying them together. The

steering column is also a commodity chosen from commodity menu available to
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the program. Let's assume that the team knows which column to proceed with

for the program. The wheels are compared to one another for their physical

dimensions. Based on the section comparison (about the vehicle coordinate XZ

plane) it appears that the two wheels under consideration have comparable

diameter. Attribute teams may conclude from this information that both the

wheels have similar influence on rim block, ingress-egress and other package

features.
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Figure 17: Early compatibility studies
between two available steering wheel
options for the program

In previous section it was mentioned that steering wheel geometry is an

important parameter for safety. FMVSS regulatory requirements phased in after

2004 (Appendix 2) mandates that the deploying bag should cause no risk of injury
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to the occupant. This indirectly mandates that the force level of a deploying bag

should be controlled". This is verified through component level tests (Appendix

1 shows a picture of the component tests). A feature in the steering wheel that

may help this requirement is the airbag module recess from the steering wheel

rim plane. So teams when comparing two wheels for compatibility would then

take into account the wheel recesses as an advantage for one of the designs.

While the other design may not be recessed it may offer other design alternatives

like additional package room to incorporate features in module design that can

still help the test condition. In other words, there are several alternatives available

to teams through such compatibility analysis to meet system requirements. The

team may choose these alternatives depending on individual program constraints

through a selection matrix like Pugh concepts. Note that during these analyses

the team may discover that no matter what design is chosen, it still is not

complete. Interface component details such as clock springs to provide electrical

connection to airbag squibs, horn package, speed control switches, steering

column interface slots may still dictate a new tool for the steering wheel.

Including these details is part of the completeness exercise. One of the drawbacks

noticed in the FPDS process was that teams were more interested in completing

their design tasks opposed to checking for compatibility. When incompatibility in

designs arose changes were accepted in designs until very late in the program.

A new steering wheel tool for either urethane covering or the die cast insert if

needed in this particular example is still inexpensive compared to a totally new

design for the wheel. Reusing existing design in this manner reduces upfront

development effort and speeds up the development process. Any flaws or open

issues in design may be corrected during subsequent iterations. In interviews with

suppliers of steering wheels, it was noted that some of these tools will not result

in additional cost to OEM's if the OEM's are able to time their new designs as

part of the suppliers regular tool freshening schedule. If Program A were to
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investigate multiple themes individually without any formal knowledge of system

engineering requirements, it is doubtful if teams can meet their schedule deadlines

established under GPDS. Additionally if new requirements arose in the form of

new regulations in the market place, given the aggressive timing schedule under

GPDS teams may find it difficult to meet their design deadlines. Hence it is

important in GPDS that programs adhere to the pre program process where all

the requirements may be clarified and solution sets established.

Recommendations are provided in later section on how design sets may be

created for program teams to use in future.

5.4 Advantages of Multiple Sets - Passenger Airbag Mounting Example

This section describes recent examples from program B. It is one of the first

programs at Ford to transition from FPDS to GPDS. All elements of GPDS are

not practiced in this program given the transition phase. But there have been

significant differences in how attribute teams approach design in GPDS

compared to FPDS. This example relates to the passenger bag mounting scheme

in the Instrument Panel. In chapter 2 the benefits of carrying multiple options

were discussed. The parallel exploration of sets of alternatives at the system, sub

system and component levels is an important part of GPDS. Multiple themes at

sub system and component levels were not common in FPDS. In FPDS the

system theme was frozen early in design process and targets were cascaded down

to the sub system and component levels which prevented parallel exploration of

system, sub system or components.

5.4.1 Passenger airbag design background

Critical to an airbag design is determination of bag inflator output, to determine

volume of gas necessary to fill a bag and how quick an inflator should fill this bag.

Schematic shown in figure 17 below is a target inflator characteristic that would

be provided by OEM to supplier.
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An airbag inflator design requires 'long lead' time and extensive prove out both at

the component and full system level. Several component development tests are

performed by the inflator manufacturer to ensure propellant integrity and stability

in the full system environment. Extensive tests are also required for regulatory

compliance demonstration of the inflator. Therefore suppliers to OEM require

inflator 'targets' upfront during product development of a new vehicle program to

determine airbag design. Safety development engineers provide these targets

upfront while full system and sub system requirements are still evolving.

However development engineers' assumptions in providing target is based on

certain specific assumptions for the vehicle design. Assumptions in vehicle design

would include overall architecture (shape and style, body on frame, unitized

body), wheel base, Powertrain line up etc. Additionally sub-system assumptions

would include occupant seat location, airbag location in instrument panel, airbag

module mounting mechanism etc. If any of these assumptions were to change

during product development, it would lead to changes in airbag inflator

specification. If these changes happen later in program cycle it would result in

rework and delays.
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Figure 18: Target inflator characteristics
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5.4.2 Program speific passenger airbag development

In program B, the design team's original goal was a top mounted passenger airbag

system to maintain commonality with a surrogate vehicle (figure 19). However

safety team was informed that this mounting strategy could change. Safety team

was informed that a mid mount passenger airbag may be pursued. This new mid

mount strategy, if pursued, would serve as "futuring" for subsequent program

launching after program B.

The airbag inflator characteristics requirement for a top mounted system

compared to a mid mount system are quite different (Figure 20). Since teams

were given these possibilities upfront, directions were then provided to suppliers

to protect for possible changes.
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Figure 19: Passenger airbag mounting
themes
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Suppliers welcome such information and do not consider multiple options as

being indecisive on the part of program teams. Conveying multiple assumptions

provides suppliers the opportunity to prepare better engineering statement of

works. Thus the team ended up exploring multiple sets of alternatives, similar to

the set based paradigm explained in chapter one. While this involved additional

analysis and development work for the safety teams to analyze two sets of

designs, it also prepared them better for downstream design changes.

CL

Top mount inflator
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Figure 20: Passenger airbag inflator
characteristic comparison

5.4.3 The use of existing explicit knowledge managementpractices

During the development process in program B where multiple themes were

explored, design discipline documents or "how to" documents created for

passenger airbag system was put to use. Lessons were developed at the
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component level after studying the system and sub system performances. These

passenger airbag lessons are similar to the steering wheel lower rim lessons

discussed in the previous section. Best practices relating to inflator characteristics,

passenger airbag door design, bag shape etc were put to use. Best practices or

lessons from different programs are synthesized to finally provide a design

discipline.

Adherence to these design disciplines in program B helped in smooth transition

from a top mount theme to a mid mount theme. The design disciplines enabled

the cascade of targets accurately for both mid and top mount themes thus

providing program teams an ability to carry multiple sets of alternatives. Another

reason the safety team was able to do this was that many characteristics of the

airbag and inflator design was modular. Thus decisions for most parts could be

limited within this module and not allowed to propagate too far into other

systems or higher level systems. Thus even at an early stage where safety teams

knowledge management practices are still being formalized, their benefits are

already being noticed.

5.5 Case Summaries

The Steering wheel development and passenger airbag case studies come from

recent experiences in program A and program B respectively. These cases were

also discussed in a GPDS related offsite in which the entire North American

truck safety department participated in August 2005. Consensus was reached

among department engineers that to conduct commodity development in a

GPDS setting, safety commodity menus are needed from which engineers may

pick depending on program needs. Additionally the need for reuse of knowledge

along with commonality of components was recognized as an important enabler

for safety development in GPDS. To enable reuse of knowledge it was agreed

that working group setting started recently within the truck safety organization
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was ideal. Engineers also shared their individual program experiences and the

benefits of design disciplines applied to their particular case. The steering wheel

example highlights the "compatibility" aspect in GPDS. The passenger airbag

example highlights the "set based" aspect in GPDS. In comparing the set based

concurrent practices described in section 5.3 with what is described by Liker etal

as practiced in Toyota, it may be quiet different. This is set based to the extent

that there is a parallel exploration of multiple themes and critical system decisions

are delayed until compatibility is confirmed. The ideal state in set based

engineering practice is to prove out all feasibility before commitment to a

particular design which would include trying out multiple tools.

At Toyota set based design practices are based on more tacit knowledge prevalent

in that culture. Another key aspect in Toyota's set based design practice is the

expenditure of resources for hard tools. It is difficult to envision at Ford if

multiple hard tool commitments would be made and in the end some of these

tools are allowed to go unused. At Toyota such practices of developing multiple

tools to prove out feasibility are common. What is seen at Ford is the use of

virtual tools (like CAE simulations) to evaluate multiple concepts and themes

which is much quicker than securing hard tools.

5.6 Chapter Summary

One of the questions posed earlier was if knowledge reuse can help make design

iterations faster? Based on the case studies presented it is proven that this can

happen. Component robustness can also eliminate the find and fix cycle in

product development. Engineers need not reinvent prior solutions on new

vehicle lines. But to facilitate all of this an explicit process like the design

discipline process should exist. While design discipline addresses reuse of

knowledge, a study is undertaken to understand the reuse of commodities in a

vehicle in the next chapter. Chapter 6 will also discuss how knowledge reuse is
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established among safety teams. The working group forum that promotes new

knowledge creation and formalization is also discussed. System behaviors that

necessitate the need for design disciplines are discussed as well.
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Ch apter6

6. Managing the Transition

6.1 Chapter Introduction

In chapter 4 we saw GPDS proposals to address some of the gaps encountered in

FPDS. Commonality and reuse of parts and processes was part of those

proposals. While reuse of knowledge is the central theme of this thesis equally

important is the knowledge required to reuse parts. Hence this chapter will

address the part reuse aspect of GPDS. As an extension to the earlier case study

on steering wheel, comparisons of steering wheel from another OEM are

provided. This comparison will help shed further light on part commonality. Also

addressed in this chapter is an implementation roadmap for the knowledge

management framework proposed. The role of design disciplines in knowledge

management and reuse is also explained in this chapter. A brief discussion on

organizational structure used within the safety attribute to sustain this knowledge

creation process is also discussed.

6.1 Introduction - Transition Phase

Commonality and reuse strategy is not new to Ford. FPDS also advocated for

commonality and reuse. Early in FPDS many vehicle lines were launched from

few platforms in Ford's US market. Examples would include the Explorer,

Expedition and Navigator SUV's which used existing Pick Up truck platforms.

However in subsequent redesigns these same vehicle lines saw less commonality

with the platforms from which they originated.

The nineties saw a boom in SUV sales for Ford and other OEM's in their North

American market. The demand from the market place forced Ford to offer more

SUV specific features. For example independent rear suspension system was

introduced in Ford SUV's around the year 2000 to improve ride and handling
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features. To accommodate such features commonality was sacrificed with base

truck platforms. Unique wants were demanded for vehicle interior as well.

Customers expected car like quietness and comfort inside SUV's. This resulted in

interior parts like seat sub structure and instrument panel sub structures, which

are well hidden from the "A" surface, to become unique between similar vehicle

lines.

While customer demand was one of the reasons another possible reason could be

the use of multiple suppliers among different vehicle lines either to secure

competitive pricing or technology. While the sourcing decisions are not clear the

point that is being emphasized here is that these parts like the interior

components mentioned above in most instances need not be unique between

similar vehicle lines. The subject of commonality within a complex automotive

system is vast and cannot be addressed under one section here. However it does

offer an insight into the complexity of the development process and the inherent

problems that engineering teams would encounter when they try to iterate

between multiple themes in a set based environment. Also a benchmark study

from Toyota with respect to our earlier case, the steering wheel, is presented. This

will provide some insights into this OEM's strategy behind commonality.

Demands from the customer have to be satisfied. If styling differentiation is

important then it must be accommodated in design. Given this customer want, if

designs were to turn unique between vehicle lines it is only through knowledge

reuse that precise targets may be set and more success out of first iterations

achieved. Past lessons would help in implementing new technologies as well. If

the base architecture is well understood through an established knowledge base,

then more attention can be paid to iterations involving new technology. Let's

consider an example. An airbag and seat belt together perform the energy

management function during frontal collision. Let's now assume that a program
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team chooses to introduce a new seat belt technology in a vehicle line and the

technology used in airbags is same as before. If lessons learnt through the

knowledge reuse process related to Airbag component designs are followed, then

the team is assured that this airbag at its commodity level would function as

before despite it being new to the vehicle. There would be tuning involved to the

airbag design for proper functionality with the new system but this would be

minor and predictable. The team's efforts may now focus on the belts which is a

new technology to this vehicle line. At a minimum the teams would not be

surprised by any unexpected issues from the stable Airbag system thus focusing

their resources on developing and implementing the new belt system.

6.2 Commonality and Reuse

6.2.1 Dfficuly in maintaining commonalio

Product and brand differentiation is an important factor, especially with parts that

appear on "A" surface. For example, the customer sees the steering wheel and

would pay attention to its styling. At the same time engineering efficiencies can be

gained if steering wheels remain same or similar across several product lines.

Engineering attributes like safety would not have to undertake extensive design

and development work for a new wheel given the steering wheels importance to

meet regulatory requirements. This poses a tough challenge to engineering

managers at OEM's, balancing between commonality and product differentiation.

Part commonality and product differentiation are opposing forces when it comes

to body interior and exterior component styling. This is due to the fact that a

customer can see the surfaces on many of the components belonging to this

group easily and her decisions to purchase the product are greatly influenced by

their appearance and craftsmanship. Components such as seats, instrument panel

surface, steering wheel, door interior trim, door exterior have significant influence

on safety attribute as well as the styling theme. Significant safety development
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effort is required every time a modification is made to any one of them as the

occupant in a crash would interact with the "A" surface on these components

directly.

There are other forces that impede commonality. Examples are lack of well

defined modular sub systems leading to multiple interfaces, lack of organizational

structure leading to less coordination among teams, lack of overall company

strategy and multiple suppliers for similar commodities. While these are

significant system level issues, the focus here is on appearance and its influence

on safety attribute engineering. If a vehicle line is successful in maintaining about

seventy percent commonality with related product lines in the company's

portfolio, it is considered a success. Toyota and Honda have successfully attained

such high levels of commonality in their product portfolio. Several OEM's have

maintained commonality successfully at the platform level using similar chassis,

suspension or body structural members. But Toyota and Honda have reused

components which have common "A" surfaces like instrument panel and steering

wheels.

6.2.2 Appearance and commonality benchmark

As a follow-up to the case study on steering wheels presented in chapter 5, an

extensive benchmark" exercise was conducted on steering wheels from Toyota's

product lines. This study was undertaken to understand qualitatively how Toyota

is able to attain such high levels of commodity commonality. Vehicles sold in the

U.S. markets were compared for their steering wheel "A" surface appearance and

airbag module design underneath the "A" surface. It was found that among the

2005 model year vehicles compared, Toyota basically uses two fundamental

themes in their steering wheel. One is a three spoke wheel and the other a four

spoke. The difference between different vehicle lines was only in the A surface. A

luxury line like Lexus uses a four spoke wheel similar to a Toyota "badge or
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model" vehicle. But the Lexus uses the wood decal on the "A" surface opposed

to Urethane in a Toyota badge vehicle. Similarly a sport version Lexus model and

a Toyota model would use the same three spoke steering wheel. But the

difference again is in the "A" surface appearance only. The Lexus model gets the

wood decal while the sporty Toyota badge vehicle would use a leather wrap

around the steering wheel. With minor character line differences on the surface,

the wheels are practically the same between several vehicle lines compared. So

when does Toyota change its wheel design?

A new wheel design was noticed with the 2005 model year Avalon vehicle which

is drastically different from the common themes noticed among several Toyota

vehicles. Samples of steering wheels used in Toyota are provided in figure 21

including the new Avalon wheel. The details for this new design direction in

Avalon's steering wheel may not be known outside of Toyota. However it is

known that the Avalon is a vehicle line designed and developed fully in North

America. Other Toyota vehicle lines were developed mostly in Japan. Could this

uniqueness in styling theme have come from organizational influence or lack of

it? Or is Toyota introducing a new family of wheels for the future by package

protecting for other components to be included as needed? We can only

speculate! However it is well known that Toyota does not change a product

design unless there are significant QCFWT improvements through redesign. If

the wheel designs are fundamentally sound and deliver attribute targets then

Toyota would not seek to change the design. This also brings up an interesting

strategy issue.
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Toyota brand four spoke steering
wheels (Trucks, SUV and passenger
car)

Toyota brand three spoke steering wheels
(Entry level SUV or cars and sports

coupes and sedans)

U Lexus brand four spoke SUV steering
wheels

Lexus brand three spoke steering wheels
(sports coupes and sedans)

Scion brand three spoke steering wheels

Unique wheel

Figure 21: 2005 Toyota, Lexus and Scion

steering wheel benchmark

While Ford believes in unique wheel styling theme among vehicle lines to

emphasize its image, Toyota is satisfied with making minor "A" surface changes

to their wheel design. Thus we see that to attain commonality more important

than engineering enablers is a company strategic vision governing the look or

styling themes. The engineering enablers here would deal with such aspects like

modularity and standardization of interfacing components. Given that there are

only limited sets of options in wheels for Toyota, the interfaces generated with

other mating components like switches, steering column or plastic shroud would

also be limited and easier to manage.

If commonality is high in Toyota products then how is set based engineering

practiced? Based on our study, for steering wheels there are two sets of designs -
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a three and four spoke version. This does seem a limited set if styling variation is

required. What is the implication for an attribute like safety? The development,

verification and certification for regulatory requirements concerning steering

wheel will be swift given the minor differences among them. When the

components and airbags inside Toyota's steering wheels were studied there were

differences between the vehicle lines. These differences were minor and would be

used as tuning parameters to obtain the desired occupant injury requirements

during crash. Changes like airbag vent size, airbag diameter, and inflator gas

output levels within a family of inflators are examples of tuning parameters that

were different from one vehicle line to another. Therefore for steering wheels, set

based practices would involve only limited sets of parallel explorations.

An interesting aspect of the Toyota steering wheel design was the "package

protection" concept. Package space and features were made available in the

steering wheels to accommodate certain components to aid in attribute

requirements. This space was available in all the wheels. However the component

was present in only a few vehicle lines. For example a NVH damper was in a

particular vehicle line. Several other vehicle lines using the same wheel could have

used the dampers, but did not. It could be that these vehicles did not experience

any vibration problems. But Toyota does seem to have an approach where they

have documented lessons on how certain commodities and features may help in

delivering attributes. Thus when commodities are designed there is a "futuring"

process which makes accommodations for all possible known scenarios. If a

vehicle lines sub system property emerges such that attribute may be delivered

without the need for a commodity, in this case a NVH damper, it is just not

included. By package protecting and keeping designs modular, even commodities

become tuning "knobs" in delivering required attributes.
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Let's compare two scenarios where futuring exercises are done. One involves

futuring as part of a vehicle program while the other is done through a centralized

process not dedicated to any particular program team. At Ford, when

commodities are designed for a particular vehicle line, given the short duration

available to teams for current program and lack of information on future

program that haven't yet attained concept status, the vehicle teams would find it

very difficult to package protect for subsequent products. Additionally the timing

and cost pressures during the program development process would invariably

result in teams working on current vehicles to sacrifice the futuring options.

Managers in early or lead vehicle teams may not have incentives to absorb costs

for future programs. A centralized futuring process would distribute the cost

equally among all programs. Liker etal has confirmed these centralized practices

within Toyota and Funk 2 has reported similar findings from other Japanese

industries. While a centralized process seems beneficial in alleviating timing and

cost pressures, there are still some commodities and attributes that need not be

futured outside a program as the same ensemble of scenarios may present itself in

other vehicle lines. A NVH damper may not be a difficult component for

package protection in a new steering wheel environment. Given past histories,

future programs may very likely need them as well. But introducing a damper into

a legacy steering wheel with very little package protection for it will be very

difficult. While protecting for a damper may be relatively easy inside a program,

there are other commodities and attributes that would need centralized guidance.

Thus it is important for program engineers to have good system knowledge so

that they may recognize the futuring ability for their commodities.

6.2.3 Commonali frame work

The "menu" system discussed in earlier chapter is expected to assist program

teams in creating commonality and speed up design at Ford. The menus are

expected to be created through continuous futuring or annual process exercise by
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the commodity teams. Specific details on menu creation are still being worked

out. However early program adopters of GPDS have seen flavors of

commonality by being required to choose from a restricted selection of sub

systems from either legacy or a few futured commodities. Benefits of

commonality include robust design of components, improved quality associated

with robustness, time to market and economies of scale. Care should be taken so

that sub standard commanization do not proliferate the system in the beginning.

If it does then commonality leads to increased cost of change and lack of

differentiation among product portfolio. It would also prevent the adoption of

better technology in future. New technology is a good area for futuring outside a

program. While cost savings are apparent from adopting commonality, it is also

inefficient if commonality in enforced at the expense of excess component

capability. The company in this case is providing services for which it is unable to

charge. As an example, if Toyota provides the NVH dampers inside steering

wheels to maintain commonality despite vehicle lines not needing it, then this is

clearly an excess. However we saw in our benchmark exercise features like

"package space" for NVH dampers but the actual components used only as

needed. This preserves the viable business strategy for the company.

Commonality should not inhibit innovation. It is easy for stakeholders in the

engineering process to shun commonality fearing it will impede innovation.

However the aim of commonality is to reduce unique parts across product line.

When viewed with this lens it is clear that to attain commonality you have to

innovate especially if it has to happen across a complex system.

The aspects of commonality relating to this study on knowledge management are

reduction in uncertainty or unknown issues during development, making product

development decisions easier. Since the role of a program attribute team like

safety is specific and limited to the attribute development for a commodity and
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not to the design and release function of that commodity, a frame work alone is

presented as to how commodity may be futured and interfaces handled.

6.2.4 Design for Variey

Ulrich" defines architecture of a product as the arrangement of physical

components, the mapping of functional elements to physical components and the

specification of interfaces among interacting elements. The design for variety

(DFV) method proposed by Martin and Ishii"provides an operational detail as to

how product architecture can be done. This method may suit well for a stable

product like many sub systems within an automobile where the customer wants

are well known. However it may not help in futuring a totally new technology or

when requirements are new and still evolving.

DFV method considers two types of variety when developing architecture, one

across current product lines termed spatial and another across future generation

of products termed generational. Design for Variety method develops two indices

to measure product architecture. One is generational variety index (GVI) that

measures the amount of redesign required for future design of products. The

other is the coupling index (CI) which measures the coupling among product

components, stronger the coupling then greater is chance that changes made to

one component would need changes to other interfacing components.

The GVI uses QFD35 type matrix to map customer wants to engineering metrics

and then the engineering metrics to the specific components. Then a number

rating system is used based on team expertise and judgment for the cost of

meeting the most stringent engineering metrics. The higher the GVI for a

component the greater is the chance for its redesign to meet future specifications.

The coupling index uses a matrix arrangement to map specification flows among

components. These specification flows are design information that must be
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passed between designers to design their respective components. Design teams

estimates the sensitivity of each component to a small change in a related

specification. If a small change in specification requires a change to the

component, then the component has a high sensitivity and given a higher number

rating.
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Figure 22: Schematic for DFV
methodology for computing GVI and CI

If a large change in specification is required to make a change to the component,

then the sensitivity is low and a low rating is given. The assumption in building

this matrix is that specification change is linear across all components. The ratings

are then summed and coupling index calculated. Based on the matrix, coupling
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index can be broken down to Cl-supplied and Cl-received. Higher CI-supplied

indicates that the component supplies a lot of information and change to that will

cause more changes to other components. High CI-received indicates higher

chances it will change as other components change.

Standardization and modularization strategies may be drawn based on CI and

GVI. A fully standardized product would have a GVI and CI-received equal to

zero. Fully modularized products where changes can be made to the module to

meet customer demand without causing changes to other components would

have its Cl-supplied zero. Based on these rankings appropriate attention can be

provided to the required components. While a mature commodity may be futured

using this process, one drawback noticed with this methodology when applied to

commodities affecting impact safety attribute is that teams would not know

which components have the greatest impact on a new requirement. There is an

emphasis on team judgment and past lessons with this frame work. This again

brings us back to our central theme which is the importance of knowledge

management.

6.3 Managing Emergence

Interactions among elements within a system bring out the system's behavior.

This behavior could be termed as "emergent property" of the system or just

"emergence". Many times this emergence is not apparent at the element level.

System characteristics may not be predictable from the individual characteristics

of the elements that make up the system. While several emergent properties are

desirable, system designers frequently encounter undesirable properties as well.

This is usually due to the fact that a designer would have expected a certain

behavior from the system after studying elemental characteristics and was hoping

to see some of it at the system level only to find later that it did not materialize.

Additionally, in design of systems like automobiles, system characteristics are
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defined much ahead of the sub system or components that make them. For

example during development of sub system or full vehicle system for

crashworthiness many of the unexpected system behavior comes from

unpredictable parameters like imprecise material rapture, unaccountable friction

characteristics, stack up among components during crash etc.

The engineering monograph published by ESD-MIT3 introduces the term

emergence management. The question is posed as to how we may get the good

emergence rather than the bad or how we may predict the bad? Analytical

models using finite elements are used to predict crash behavior during early stages

of product development. Models are accurate at predicting most of the system

behavior in crash provided the modeling methodology was accurate. These

models are still not sufficient to make critical product design related decisions.

Also, these decisions have to be made early in design schedule as flexibility to

make changes later during product development is lost. One factor responsible

for this reduced flexibility later is due to the fact that tooling commitments would

have to be made at the component and sub system level before full system

behavior is verified. Model correlation is necessary to improve predictability.

However to improve correlation you still need full system tests unless reliable

transfer functions are available that translate component and sub system

performance in bench tests to what may be seen in full system tests.

The first case study on steering wheel is an example of how an undesirable

emergent property was encountered during development. Despite crash CAE

modeling tools the system responses were not predictable. It wasn't until full

system evaluations that the stiff lower rim responses were noticed. While the

problem was "found and fixed", the increasing desire to reduce development

time will not afford the luxury to find and fix problems as part of future product

development iterations. Thus our team involved in the steering wheel project for
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program "A" decided to take the exercise further. Once a transfer function was

established between component performances in a "bench" environment versus

system response in a "full vehicle" environment, it became imperative to quantify

these behaviors in a design document. This formalization on how to conduct a

component design, in this case a steering wheel, led to the creation of the first

design discipline in safety attribute engineering in North America. By not

following design disciplines the team would have to pursue other system or sub

system level development to avoid the undesired emergent behavior. Without

embarking on similar experiments it is unlikely that teams would be aware of any

emergent behavior.

6.3.1 Design Discipinesf

It should be recognized that design disciplines discussed are different from

"standards" or "specification" documents. Standards or specification documents

are those specifically drawn to prevent undesired system behavior based on

known customer usage pattern. But design disciplines list parameters, features or

characteristics that a component must possess so that it has enough robustness to

counter any undesirable property that emerges when the system comes together.

These design disciplines are also supplemented with common best practices

documents which list different possible designs from past experiences, design

parameters and development methodology for a given component to meet safety

requirements.

Another question posed is that, is emergent management even possible? In

theory yes if all possible combinations of the element in the system are tested!

However this may be impractical. One way to counter is through knowledge

management. Lessons learnt to counter undesirable emergent property from one

system need not be revisited again elsewhere in similar systems. The knowledge

management framework proposed in this thesis discusses how the interactions
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when noticed in a system may be countered using certain design characteristics

proven by teams working on similar systems. Simply put, it proposes a formal

manner in which teams document and communicate their things gone right!

Many engineers and supervisors at Ford when interviewed agree to this notion.

The feeling is that more intensive means like additional iterations or analysis and

unique design or modifications would be needed when teams are unable to follow

design disciplines. Knowing that a team will not be following a certain design

discipline is also helpful. It would let engineers and their management knows that

extra resources should be allocated upfront during development to address gaps

that may arise.

Powerful system engineering tools and frame works such as Design Structure

Matrix and axiomatic design" helps in capturing possible system interaction. Qi

Dong (2002) proposes a frame work in which both these methods are used to

predict system interaction especially in the early stages of design when critical

decisions have to be made. When formal knowledge on how to design or lack of

understanding of how information transfer occurs in the system is an issue, such

powerful tools are useful. When knowledge is explicit and the system is mature,

then as interactions that occur over time are documented and if followed among

these systems designers, such a knowledge management framework is indeed

more powerful than any predictive tool.

6.3.2 Implementation Road Map

Technical specialists within safety attribute should lead knowledge creating

project teams or working groups. These teams play a key role in sharing their tacit

and explicit knowledge. This working group forum produces component or sub

system targets for other PMT's or teams to follow. This target setting process

may be considered the foundation for design disciplines. This forum also

produces "how to" documents or best common practices documents which list
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various ways of impacting and delivering designs documented from various

programs and benchmark projects. Looking back and comparing the current

organizational make up, it is much different from the early days of FPDS where

different program safety team's interaction amongst themselves was limited. The

core function of the working group should be the need for reusing knowledge,

collective learning, repetition of best common practices and preventing the

repetition of mistakes.

To prevent any paralysis through analysis, specific projects or vehicle line based

experimentation provides a perfect platform for quick prove out. It has been seen

several times, even in Ford safety organization, that new vehicle product

development is the central location for creating attribute knowledge. To conduct

such experimentation companies must maintain a highly adaptive and flexible

approach to Product Development, both functionally and organizationally, as it is

an iterative, dynamic, continuous, trial and error process.

As there is no room in the product development schedule for excess dynamism

or iteration an offline process with similar importance to the actual program

schedule is essential. This may be regarded as the pre-program work where the

program targets and system level targets are clarified. From a project management

standpoint the pre-program and the annual process (section 4.2.2) would have to

be adhered for GPDS to succeed.

It is easy to create an attribute centric knowledge that does not account for cross

attribute considerations. The technical specialists leading the working groups

should help balance the requirements between attributes. Without cross attribute

considerations design disciplines will not provide benefit across many vehicle

lines.
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Finally design compatibility should not be confused with completeness. It is

important for safety attribute engineers to undertake broad compatibility

exercises along with design and release engineers to explore the design space

thoroughly. Coordination with preprogram and core engineering activities are

essential enablers for compatibility studies. Both internal and external benchmark

results should be included in best practice documents. Balancing compatibility

with product differentiation is by no means an easy challenge. Teams may

encounter challenges from different functional groups. Teams may have to over

design some commodities. Teams may encounter issues where a commodity may

just not quiet deliver unless targets are compromised or adjusted. These would

require a collaborative effort requiring significant understanding and

compromises among the stakeholders.

6.4 Chapter Summary

This chapter saw that part commonality and reuse is more than just an

engineering challenge and involves higher level system strategies. While Toyota

and Honda may allow common A surface appearance between products, Ford

may choose to keep them different. Some components with multiple interfaces

will definitely need a greater degree of coordination to attain commonality.

Techniques like design for variety methodology may help. If a component is

highly modular then maintaining commonality is much easier. No matter if a

component is integral or modular, knowledge reuse fits them both in speeding up

the design process.

Through cases and past practices the benefits of design disciplines have been

proven. An implementation road map for sustaining the design disciple process

was provided. Given the grass roots nature of this project it is up to the practicing

engineers to sustain it. There is no doubt that if sustained the development

process will be streamlined.
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Chapter7

7. Recommendations

"An engineer may not take the time to document her steps or put the results of a

simulation on the bookshelf and because of that she saved engineering time and did her

project more effidently. But in the long run it prevented us from being able to deploy the

reusabiligy concepts that we were lookingfor."

Repenning and Sterman" term the scenario described above as capability trap

which is a result of shortcuts. When immediate performance is needed, the team

may undertake shortcuts skipping improvements and maintenance. However

capability declines in the long run. Time must be allocated to reinvest and

improve process capability. If this reinvestment does not happen then the team

will always "run like crazy". Any gain made by the team is not efficient. Much

energy is expended to gain little. Repenning and Sterman also argue that the

ability to generate new improvements is not the barrier, but successfully

implementing them usually is.

Similarly sustaining the knowledge improvement process is the key. It is a

continuous process with no fixed time frame. The important aspect is the

discipline needed to document the knowledge attained, share it among working

group members and formalize them through the "design disciplines". The choice

of word discipline is in itself interesting. It is not a mandate or regulation nor is it

binding in nature. But it is one that has to be believed in and followed, to bring to

a state of order the past practices and knowledge. Implementing a new process is

not a "tool" problem. Instead it is a systemic one involving the interaction of

tools, workers and managers. The working teams within safety attribute at Ford

over the past year have created several design disciplines and common practices.

Implementing them through programs over the past year and a half have fetched
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great benefits as seen in the case presented earlier on steering wheels. The need is

several such design disciplines on a continuous basis. It is commendable that the

safety attribute management team is not falling into the capability trap mentioned

earlier. The strong push given to these actions by the management has helped in

sustaining the process. While there are early believers among the working level,

whole scale adoption is still essential and would require a fundamental change in

working culture.

The past chapters saw discussion on the gaps in the existing product

development process FPDS, the proposals from GPDS to fix these gaps, a case

study on commodity development for an attribute engineering, competitive

assessment on how commodity commonality is maintained and finally through

these exercises a case for knowledge management to streamline the commodity

development process. To sustain this knowledge creation process and improve

on it recommendations are listed below.

7.1 Recommendations for Safety Attribute Engineering

The working group format kicked off at the time of GPDS general cascade to

employees has helped to consolidate team experiences from past programs.

Sophisticated software tools do not control the knowledge and lessons within the

attribute. Instead simple shared disk drives on centralized servers and program

web pages are used among members to document and cascade lessons. These are

done under the leadership of technical specialists. This process has to continue.

The important lesson learned from initial exercises involving the creation of

FPDS checklist is that it cannot be just a rearrangement of tasks. It cannot be

exhaustive binary format questions. Several hundred questions constituted the

early exercise. A parameter based design document is more welcome. What

management needs is an assurance that past mistakes will not be repeated. To this
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extent documentation of package and performance details are necessary. These

then should have comparison to legacy information. Such simple checklists are

better than long questionnaires. The parameter checklists that came out of the

offsite meeting within safety attribute should be followed. Engineers should take

time in their daily work to document and share lessons. The pressure of daily

work relegates such documents to a later date and eventually it may never get

done. This should be avoided. The checklists while listing the best possible way

to accomplish a desired performance should also talk about challenges that may

be faced in attaining them. Though it is the responsibility of the program action

teams to coordinate this balancing among attributes, safety team members should

also be aware of limitations to design. This way challenges from past are well

understood as teams move forward. Finally, checklists are created based on

abstractions from experiences and product histories. As such, it will get modified

and refined with accumulation of experience. Teams should be prepared for this

continuous improvement.

These checklists and books should be shared with design and release engineers.

Their trust and concurrence is essential for safety team members to deliver a

design to target. Design and release engineers may also insist on similar details

from other interfacing attribute and commodity teams. This now enables a

wholesome way to understand how specifications flow.

Given earlier discussions, Set based design seems intuitively better. Set based

options also supplements existing knowledge base. Unsuccessful sets need not be

considered as useless. Unsuccessful sets would supplement existing best practices.

While there are already practices in the virtual world through CAD studies and

CAE simulations for set based practices, physical experiments should also be

encouraged. Through hardware experiments parameter trade off's may be more

accurate. The aim of multiple sets along with design disciple is to secure
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conceptual robustness. If one function or attribute can create a design that works

well with all the possibilities in another function's set, it can proceed with

development without waiting for other functions.

While exploring design space during early stages like pre-program, engineers

should understand that there are minimal constraints. Compatibility should not

be confused with completeness. Compatibility studies should be exhaustive. Also

completeness should be pursued only after all interfacing attributes determine the

design to be compatible. Once the studies are complete and designs are

committed, it is imperative to stay to this commitment. This is why parallel

explorations offer a chance to confirm feasibility before commitment. This

principle of confirming feasibility before commitment forms the essential core

for both set based iterations and design disciplines.

7.2 Recommendations to Interfacing Groups

Design actions should be carried out with downstream implications in mind. Too

often package protection for design is confused with implementation of design.

When downstream design verification indicates certain features may not be

needed for a particular vehicle line, these features are usually removed and

package protection negated. Such vehicle centric decisions do not help

commonality efforts. Corporate funding should be provided to incorporate future

capabilities not used in current programs but anticipated later. Centralized

benchmarking activities that allow information flow across all parts of the

product development organization should be carried out. Individual attribute

teams and commodity teams working on specific program teams or vehicle lines

should support these exercises.

The issue of commonality and reuse of commodity is broad. It is an important

strategic decision of a company even if the engineering and organizational
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challenges can be overcome. It can be done but the effort involved is enormous.

But reuse of knowledge is a "lower hanging fruit". It is a must if design and

development process has to be streamlined. For legacy commodities which would

need updates or freshening the frameworks presented through design for variety

may be pursued. The design for variety is a simple extension of system

engineering frameworks like QFD already followed with in Ford.

Consolidation of supplier base will help in commonality. A core supply base may

also assist in technology development and futuring exercises. However care

should be taken that Ford does not shut itself out of innovative ideas from

suppliers who are not part of its central group of suppliers. In this regard

purchasing strategy is also an important enabler if set based practices and

commonality are to succeed. While stability and commitment are required

towards a core group of supplier's to ensure commonality, flexibility with outside

suppliers is required to advance technology. The flexibility and stability proposed

cannot be opposing but should work in tandem to enable broad based parallel set

explorations. The purchasing group should assist engineering teams in

determining this balance between stability and flexibility. In this regard, proposals

in GPDS to include purchasing teams to assist functional engineering teams

during the early stages of program should be followed.

Pre program activity was an important part of early program teams in FPDS. As

FPDS evolved pre program teams faded away. It may have been due to the fact

that they were redeployed within program teams to resolve ongoing issues. Pre

program teams are essential to deliver the goals of GPDS. GPDS also emphasizes

team continuity from pre program to program phase. While the implementation

details are confidential given the nascent nature of GPDS, it is a good sign that

this is happening. A central process for futuring commodity is a must. This would

also ease the burden on program teams who would have to package protect for
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several vehicle lines along with the pressures of delivering a feasible solution to

existing program. This centralized process would also remove any organizational

conflicts that may arise. In conclusion, as Ford moves forward with its new

manufacturing led product development process, knowledge reuse is necessary to

launch future innovations and new products in a shorter time to market.

7.3 Future steps

While the recordings of this thesis work are fairly qualitative, quantitative work

supporting the design details are specific to vehicle program teams at Ford and

hence could not be shared. However the important message that was sought is

the reuse of knowledge which was addressed in prior sections. A future study

may be undertaken to ensure that knowledge framework process is sustained and

quantify the benefits through reduction in product cycle time. It would also be

interesting to study any changes in culture within the working groups, if they are

able to sustain the knowledge creation process. If working groups are successful

in sustaining this process then the evolution of knowledge from tacit to explicit

may also be observed. Incentive structure to reward employees may also be

studied within this context. Inter team dynamics is important to safety attribute if

knowledge management framework can be sustained. A study may also be

conducted to explore the extension of this framework to design and release

activities.
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Appendix I

Pictures of different types of safety development tests conducted by safety

attribute teams are shown below. Regulatory tests can be component, subsystem

or full system based. In order to conduct several design iterations, development

engineers may scale down full system tests to sub system level. Scaling down is

for experimentation purposes only and not for regulatory certification. This

increases the test turn around time.

Full system safety tests

Component level safety tests

Sub system level safety tests
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Appendix II

FMVSS requirements for frontal impact before and after 2004 Model Year

vehicles.

Until 2004

Since 2004
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Appendix III
Obtained latest PDL
Resource needs established v. EFT model
Saftey PAT established with the following m em bers (invited as needed):

TS
Safety m anager
CPE\Vehicle engineering manager
ASO
Restraints D&R
Sled
VEV
PMT Leaders
Suppliers
Packaging

Finished creating section website with pertinent posted inform ation\docum ents
Final preliminary safety workplan created considering safety pyramid
(regulations\SDG\Due care\PDG) and future regulations and PD tests:U CAE workplan

APO crash testing\development plan based on CAE capability
Qualitative compilation of competitive and legacy Information: Architecture (uni-body v. body on frame)
/ Restraint content (side airbags, curtain, crash sensing system, dual stage alrbags, column, STPS)I Competitive benchm ark vehicles assessed based on performance and safety content

Co mpiled Ford legacy inform ation
Com piled Public dom ain testing inform ation (weblink)
Have communicated acquired information to program and other crash program teams
Have updated PDL content list and containable targets based on acquired inform ation (if need be)
Have posted\archived acquired inform ation for future reference

Quantitative com pilation of competitive and legacy data: Architecture (uni-body v. body on frame) /
Restraint content (side alrbags, curtain, crash sensing system, dual stage airbags, column, STPS)

Continually co mpiling Ford legacy detailed data
Continually com piling Public domain testing data (weblink)
Currently testing competitive vehicle/system/sub-system/com ponent (VSSC tab)

All final\additional plans and test m atricies com pleted
Potential sub-contracted suppliers have provided quotes for unique com ponent testing
Everest\GPIRS orders initiated for sub-contracted suppier (weblink)

Have communicated acquired data to program and other crash program teams
Have updated PDL content list and containable targets based on acquired data (if need be)

Completed providing initial input to appearance theme concepts, which should now Include Initial CAE
analsis based on VSSC Item s studied at <KO>

Closed out tasks\analysis opened at <KO> based on VSSC items
ow lured generating revision proposals if theme is unacceptable

Have called proper meetings to start resolving unacceptable items
Have gained agreement upon major issues and design actions\changes are in progress

In ut to details and resolution towards single theme
Continue to attend studio AST meetings and provide input based on VSSC items (and request TS to attend)

Obtained more detailed scans, photographs, drawings and overall theme proposals from studio
Continue updating CAE models for assessing Structure\O ccupant performance of proposed
theme concepts
Based on more detailed inform ation, have proveded input to final preliminary safety workplan
above, and have adjusted it appropriately

SContinued to provide more detailed input at AST meetings as theme(s) is\are refined based on VSSC
items studied at <KO>
Continually generating revision proposals if theme is unacceptable

Have called proper meetings to start resolving unacceptable items
Have gained agreement upon major issues and design actions\changes are in progress
Have updated PDL content list and containable targets based on acquired data (if need be)

Com plated providing Initial Input to package and architecture concepts, which should now include
Initial CAE analysis based on VSSC Items studied at <KO>

Closed out tasks\analysis opened at <KO> based on VSSC items
Com leted generating revision proposals if package\architecture is unacceptable
m Have called proper meetings to start resolving unacceptable items (invited safety m anagement)

Have gained agreement upon major issues and design actions\changes are in progress
In put to package and achitecture concept details

Continue to attend packaging\architecture meetings and provide input (and request TS to attend)
Obtain latest inform ation on frame, powertrain, fuel and suspension package (VSSC tab)
Obtain latest inform ation on program weight swing
Obtain latest visor and A-pillar inform ation (including grab handles)
Obtain latest other VSSC item s
Obtain latest m anikin\seatback angle and H -point inform ation

Reassess competitive and benchm ark information on frame design and performance concepts
Reassess legacy data from surrogate platforms
Continue updating CAE models for assessing Structure\O ccupant performance of proposed
interior\package\architecture concepts
Start finalizing the following:

The required load carrying capacity of structural m em bers

Required clearances and allowable intrusion of various systems, sub systems, and components

Picture shows a gateway checklist, documenting tasks for a particular milestone in

FPDS, practiced by safety attribute engineering. This documented the tasks

conducted in an explicit manner. However it did not describe design details.
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