
Geometric, Topological & Semantic
Analysis of Multi-Building Floor Plan Data

by

Emily J. Whiting

B.A.Sc. Engineering Science

University of Toronto, 2004

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE IN ARCHITECTURE STUDIES
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2006

© 2006 Emily J. Whiting. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute publicly paper and electronic copies of this thesis
document in whole or in part in any medium now known or

hereafter created.

MASSACHUSETTS INSTITUTE
OFT EC

JUN 1 5 25

LIBRARI F

R'OTCH

Signature of Author:
Department of Architecture

May 25, 2006

Seth Teller
Associate Professor of Computer Science & Engineering

Thesis Supervisor

Takehiko Nagakura
Associate Professor of Architecture

Thesis Co-Supervisor

£AA JL'A 1-'.

Julian Beinart
Professor of Architecture

Chairman, Department Committee on Graduate Students

Certified by:

Certified by:

(
-i

Axel Kilian

Post-Doctoral Associate in Computation, Department of Architecture
Thesis Reader

Geometric, Topological & Semantic
Analysis of Multi-Building Floor Plan Data

by

Emily J. Whiting

Submitted to the Department of Architecture
on May 25, 2006 in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Architecture Studies.

ABSTRACT

Generating a comprehensive model of a university campus or other large urban space is a challenging

undertaking due to the size, geometric complexity, and levels of rich semantic information contained in

inhabited environments. This thesis presents a practical approach to constructing topological models of

large environments from labeled floor plan geometry. An exhaustive classification of adjacency types is

provided for a university infrastructure including roads, walkways, green-space, and the detailed interior

spaces of campus buildings. The system models geospatial features for over 160 buildings within the MIT

campus, consisting of more than 800 individual floors, and approximately 36,000 spaces spanning indoor

and outdoor terrain. The main motivation is to develop an intuitive, human-centered approach to

navigation systems. An application is presented for generating efficient routes between locations on MIT's

campus with coverage of both interior and exterior environments. A second application, the MIT

WikiMap, aims to generate a more expressive record of the environment by drawing from the knowledge of

its inhabitants. The WikiMap provides an interface for collaborative tagging of geographical locations on

the MIT campus, designed for interfacing with users to collect semantic data.

Thesis Supervisor: Seth Teller
Title: Associate Professor of Computer Science & Engineering

Thesis Co-supervisor: Takehiko Nagakura
Title: Associate Professor of Architecture

Geometric, topological & sermantic
analysis of multi-building floor plan data

Acknowledgements

First I would like to thank my thesis supervisor, Professor Seth Teller, for

making this project possible. His support, clarity of mind, and infinite

well of ideas were inspirational.

To my thesis co-supervisor Professor Takehiko Nagakura I owe my

gratitude for his encouragement at every step along the way. I wish to

thank my reader, Dr. Axel Kilian, for his constructive feedback and many

comments that brought new perspectives and depth to my thesis.

It was a pleasure to work with Yoni Battat, my fellow student on the BMG

project who made all those late nights of work enjoyable.

My two WikiMap project partners Grayson Giovine and Will Stoltzman

were invaluable for their technical expertise and their willingness to spend

countless nights discussing tack minutiae (although it was a push-pin all

along). The WikiMap was developed as a project for 6.831: User Interface

Design & Implementation instructed by Professor Rob Miller.

I would like to thank all of my fellow students and professors in the

Computation (& Design) group in Architecture, in particular Professor

Terry Knight has given me every possible encouragement and support.

Without it I would have gone on a less challenging path.

I would like to end by thanking my parents, who have provided

unconditional support and love from Dundas, Ontario.

Geometric, topological & semantic
analysis of multi-building floor plan data

Table of Contents

1 Introduction -7

1.1 Motivation
1.2 Contributions
1.3 Related Work

1.4 Background
1.4.1 Building Model Generation Project

1.4.1.1 Overview
1.4.1.2 Floor Plan Data
1.4.1.3 Basemap
1.4.1.4 Location Server

1.4.2 Core Data Structures & Algorithms
1.4.2.1 Out-of-Core Graphs
1.4.2.2 Dijkstra's Graph Search Algorithm
1.4.2.3 Medial Axis
1.4.2.4 Constrained Delaunay Triangulation

1.5 System Design

2 Campus Data Corpus -20

2.1 Data Representation
2.1.1 Introduction
2.1.2 Spatial Hierarchy
2.1.3 Floors
2.1.4 Spaces
2.1.5 Portals

2.1.5.1 Vertical Portals
2.1.5.2 Horizontal Portals

2.1.6 Space-Portal Graph
2.1.7 Landmarks

2.2 Generating Campus Topology Data

2.2.1 Introduction
2.2.2 Portal Populating Agents

2.2.3 Intra-Floor Portals
2.2.4 Inter-Floor Portals

2.2.5 Mezzanines in Inter-Floor Connections

2.2.6 Inter-Building Portals

2.2.7 Dangling Portals

2.2.8 Intra-Basemap Portals

2.2.9 Summary
2.2.10 Remaining Challenges

3 MIT Route Finder -37

3.1 Introduction
3.2 User Interface

3.2.1 Map Display
3.2.2 Route Queries
3.2.3 Space and Portal Visualization

Geometric, topological & semantic
analysis of multi-building floor plan data

3.3 Implementation
3.3.1 Inter-Space Path Finding

3.3.2 Intra-Space Path Finding

3.3.3 Route Generation
3.3.4 Path Relaxation
3.3.5 Route Constraints

3.4 Results & Discussion
3.4.1 Route Optimizations
3.4.2 Medial Axis & Path Relaxation

3.4.3 Robustness & Space Geometry

3.4.4 Path discontinuities

4 MIT WikiMap -48

4.1 Introduction
4.2 Motivation
4.3 User Interface Design

4.3.1 Browsing
4.3.2 Adding a New Landmark

4.3.3 Displaying Added Items

4.3.4 Editing Landmarks

4.3.5 Deterring Vandalism

4.3.6 System Information

4.4 Implementation
4.4.1 Languages
4.4.2 Database

4.4.3 User Information
4.4.4 Coordinate Locators

4.4.5 Saving Item Edits

4.4.6 Item State

4.5 User Testing
4.5.1 Procedure
4.5.2 Results

4.6 Discussion

5 Future Work & Conclusions -60

5.1 Future Work
5.1.1 Landmark Salience
5.1.2 Route Preferences
5.1.3 Route Visualization

5.1.4 Route Granularity

5.2 Conclusion

Bibliography -65

A Project Build Instructions

B Portal & Space Types

C File Formats

Geometric, topological & semantic
analysis of multi-building floor plan data

1 Introduction

1.1 Motivation

Navigation tasks are essential to any environment involving movement

through complex spaces. The recent developments of online mapping

tools such as Google Maps® and Mapquest@ have made available
interactive geographic visualization tools with comprehensive route

searching functions. However, these applications are targeted primarily at

travel on the resolution of street networks at the speed of automobiles.

Their comprehensive survey of highways, traffic intersections and

neighborhood streets overlook local details, which may be important

navigational cues to travelers on foot.

Using MIT campus as a test-bed, this thesis presents a system for modeling

geospatial features of built environments at the scale of the walking

traveler. Methods for analyzing the environment aim to extract an

exhaustive set of geometric, topological and semantic properties of space.

Geometric features encapsulate the physical characteristics of space such

as coordinates and containment properties. For example rooms have a set

of dimensions describing their boundaries and a floor in which they are

contained. Topological features represent adjacency relationships
between spaces, such as doors that connect a hallway to a classroom, or

elevators that afford vertical movement through a building. Lastly,

semantic features capture the various meanings of space (e.g. functional,

historic or cultural), which are not expressed through geometric and

topological relationships. For example, a specific building may function as

a concert hall, student services center, or research laboratories. A certain

area of a building may be a classroom, office, or cafe.

JoR.CCJe 20U5AWW.p Com C6.com

The main motivation of this work is to develop an intuitive, human-

centered approach to navigation systems. This thesis presents an

application for generating efficient routes between locations on MIT's

campus with coverage of both interior and exterior environments. A

second application, the MIT WikiMap, aims to generate a more expressive

record of campus spaces by drawing from the knowledge of its inhabitants.

- --------- -- -

Geometric, topological & semantic
analysis of multi-building floor plan data

We offer a searchable and user-populated database, allowing visitors to
find "points of interest" on campus, and how to locate them.

Specifically, the work in this thesis aims to make possible the following
scenarios:

a) A new student at MIT needs to get to class but is bewildered by
the numbering system of buildings on campus. In a web form, he
enters his residence Westgate as the start location, and the lecture
hall 1-190 as the destination. As he types, Westgate is
automatically interpreted as W85. He submits his query and is
presented with a route displayed on the campus map directing
him along Amherst Alley and through Building 1, as seen in
Figure 1-1.

b) A visitor to MIT has an appointment at the Media Lab. When
submitting her route query she also chooses to display locations
of sculptures and paintings on the map. Discovering that her
route through Lobby 10 passes by Killian Court, she takes note to
stop and see the Henry Moore sculpture.

c) It's 12:15 PM, and an undergrad student is about to bike to
campus for her 1 PM class in 10-250. In the time before class, she
would also like to grab lunch. Using MIT WikiMap, she clicks to
display all bike rack and quick food locations. Zooming into the
area around Building 10, she quickly finds a place nearby to lock
her bike, and notes the Building 4 caf6 as the closest place to eat.

Fig. 1-1: A sample route from

Westgate to lecture room 1-190.

R.de. suro.m . W96 t.
801ding 1 190

Geometric, topological & semantic
analysis of multi-building floor plan data

1.2 Contributions
This thesis makes the following contributions:
* Framework for constructing graphs of large environments from floor

plan data, including an exhaustive classification of portal types for

both building interiors and building interfaces.
* User interface for interactive map application: database for storing,

editing, and visualizing campus landmarks.
* Substantial improvements to the Location-Aware API developed by

[Nichols 20041, including performance optimizations in route

generation, and improvements to path rendering methods for route

visualization.
* Re-implementation of space triangulation - more robust formatting of

output data, and structured as isolated process in pipeline rather than

embedded in "stew" of geometry processing.
* Approximated medial axis derived from space triangulation, with

applications to intra-space path finding.
* Proposals for identifying landmarks based on properties of the

campus topology and geometry.

1.3 Related Work
Substantial work has been done on digitizing road maps such as [Haunert

and Sester 20041 and [Gold 1997]. However, extraction of a link-node

graph representation for street networks is a clearly defined problem

considering the common geometric properties of roads: streets have

standard width, a single direction of motion, and intersections can be

modeled as a point. Further, centerline maps are often available which

obviate the need for simplifying road contours into a 1-D representation.

In contrast, walkers in urban environments are not limited to movement

along one-dimensional paths. Instead of point intersections, pathways

may meet at a courtyard or lobby. Pedestrians can move freely from

interior to exterior space, and take short cuts across fields. Online

mapping services such as Google Maps@ and Mapquest@ fail to model

these more diverse environments, as seen by the empty space covering

MIT campus in Figure 1-2.

j4

Fig. 1-2: Example of route through
the city of Cambridge generated by
Google Maps. Coverage of paths
through the MIT campus is sparse.

.................

Geometric, topological & semantic
analysis of multi-building floor plan data

Fig. 1-3: Stata Walking Guide:
output consisting of graphical
route map and written instructions
[Look et al 2005].

A sophisticated example of route generation for indoor environments is
the MIT Stata Walking Guide [Look et al. 20051. The Stata Walking
Guide provides both graphical route maps and written walking directions
between different locations in MITs Stata Center. The data model

incorporates not just metric distances but higher-level concepts such as the

ftnctional purpose of a place, which are then incorporated as landmarks

in the written directions (see Fig. 1-3).

"Head out of G494 and
Turn right.
You will see a set of double doors on your left; walk towards it.
Walk through the doorway into a new area (4th Floor Gates).
Walk forward.
You will pass the Elevator Lobby on your right along the way.
Turn right.
Walk through the doorway into a new area (4G Kitchenette).

Turn right, then left, and go straight down the hall through the doors
and past the elevators. Go through the first door on your right. [21"

What's missing in the Stata system is an automated process for

constructing the underlying data model. Manual methods are used to

build the graph for the route-finding component, as well as for landmark

identification and collection of other high-level information (e.g.

waypoints belonging to the same corridor). These methods are clearly

labor-intensive and intractable for extension to all buildings on the MIT

campus. The methods proposed in this thesis could fill an important

niche, offering a streamlined process from floor plan data to high-level

route descriptions.

Other projects have addressed the problem of automatic graph

construction from floor plans. However, in examples such as [Lee 20041,

the topological model is derived from hallway elements which share the

convenient property of street networks: movement is straight and linear,

with constant width between opposing boundaries (e.g. walls). Still

lacking is a system that robustly generates topology from arbitrarily shaped

spaces and varied connectivity types present in raw floor plan data.

Further, existing systems apply only to networks within an enclosed

building, and do not consider graphs between buildings, spanning

outdoor terrain.

Geometric, topological & semantic
analysis of multi-building floor plan data

Fig.1-4: Three-dimensional model

of MIT generated by BMG.

1.4 Background
This section provides background material relevant to this thesis,
including work by members of the MIT Building Model Generation
(BMG) group. The Location Aware API developed by Nichols [2004] and

Bell [2003] is reviewed, and subsequent modifications made to the API are

discussed. A review of algorithms used in route-finding and geometric

computations is also presented, including a brief discussion of Dijkstra's

graph search algorithm, constrained Delaunay triangulation, and the

medial axis transform.

1.4.1 Building Model Generation Project

1.4.1.1 Overview

The Building Model Generation (BMG) group at MIT has been tackling

the problem of automatic interpretation of floor plan data for a number of

years. This project originated at the University of Berkeley [Teller et al

1996] and has expanded through support at MIT [Nichols 2004, Kulikov

20041. Floor plans in their native DXF format are processed into a more

human-readable geometric format, which is then further analyzed to derive

three-dimensional models (Fig. 1-4) and a topological layout of the

environment. BMG has seen significant progress but still requires

improvement of accuracy and completeness in its output.

Previous work in the BMG project had shortcomings at two distinct stages

in the pipeline: the initial geometric processing of the floor plan data, and

the topological interpretation of the data. The topology-generating engine

recognized only a fraction of the connectivity types present on campus.

Vertical connections (stairs and elevators) were less than 50% complete,

and implicit connections (e.g. continuous corridors) were excluded from

the model entirely. The research in this thesis aims to generate a more

exhaustive topological representation of campus, building upon the

foundations developed by the BMG project.

1.4.1.2 Floor Plan Data

In order to build the applications described in this thesis, a comprehensive

dataset describing the campus geometry is required. Given the size of the

MIT campus - over 160 buildings and nearly 1,000 individual floors - the

proposition of manual data collection is unfeasible.

Our computations are based instead on floor plans. The advantages of

adhering to this format are three-fold:
. They are an immediately available data source: floor plans are

maintained and regularly updated by MIT's Department of

Facilities for every building on campus.

Geometric, topological & semantic
analysis of multi-building floor plan data

. The drawings are structured to follow strict conventions, such as
unique space names, consistent room use codes, and implied
adjacency information.

. Construction details are segmented into functional layers
including room contours, floor extents and exterior walls, which
lends to more streamlined parsing routines.

MIT floor plans are available on the web at https://floorplans.mit.edu.
Methods are discussed in Section 2.2 for extracting geometric and
topological information from the native DXF format.

1.4.1.3 Basemap

The campus basemap in its raw form is a contour map describing the
physical layout of MIT. Position and orientation is specified for building

footprints, along with other physical infrastructure such as locations of
sidewalks, streets and grass.

The methods developed in [Kulikov 20041 process the original CAD DXF
file to generate a properly labeled model of the campus terrain (Fig. 1-5).
The basemap is further divided into patches with known adjacency
relationships so that inter-building routes can be generated.

Fig. 1-5: The campus basemap.
The close-up image is colored
according to space type. Black
outlines indicate partitioning of
street (dark grey) and sidewalk
(light grey) regions into smaller
patches.

Each patch is labeled with a terrain type including sidewalk, street, grass,
construction, and building. See appendix B for a full listing. These type
classifications are later incorporated into constraints for inter-building
routes, discussed in chapter 3.

1.4.1.4 Location Sever

The Location Server is a network-accessible Java RMI program introduced
by Bell [20031 and developed by Nichols [2004] which provides campus

geometry and route-finding capabilities to client applications through a
general API. The location server currently provides these services to MIT

Maps [http://maps.csail.mit.edul which will be discussed in chapter 3.

Geometric, topological & semantic
analysis of multi-building floor plan data

Fig. 1-6: Route passing between

server and client over Java RMI

[Nichols 20041.

Client

Java RMI

Start,Finish, Constraints

{S51, S2, Route.WALKING_ROUTE}

Vector of Spaces

IS1,S2,...SN}

Vector of Portals

{P(51, S2), P(52, 53),... P(SN-1,SN)}

Polyline of Positions

{P31, P2,... PN)

LocationServer

MIT Floor Plan Corpus

DXF floor plans

BMG Pip n

XML geometry,
adjacency data

Location Server

................... S.RCLIENT
Routes*,

maps. csai 1.mit. edu

Applications]

Fig. 1-7: Location Server overview.

As illustrated in Fig. 1-6, route requests are made by the client and

embedded in a Java route object containing a source space, a destination

space and route constraints. The route object is then passed to the

Location Server over Java RMI. The returned route contains a path

described at three levels of abstraction: as a sequence of spaces traversed,

as a sequence of portals traversed while moving between spaces, and as a

collection of ordered connected points in the polyline path.

The procedures used by the Location Server for generating routes have

been substantially modified since the initial developments of [Bell 20031

and [Nichols 20041. Performance optimizations and improved rendering

routines have been incorporated and will be explained in detail in the

implementation section of chapter 3.

Geometry and adjacency data is provided to the Location Server by the

BMG pipeline in the form of XML documents. This is a further

modification made in this thesis, meant to replace the custom file format

for input data specified in [Nichols 20041. For details on the structure of

the XML data model refer to section 2. 1.

1.4.2 Core Data Structures & Algorithms

1.4.2.1 Out-of-Core Graphs

Large datasets composed of millions of geometric primitives are commonly
used to represent complex geometric models such as architectural

buildings and urban environments. The massive size of these models

poses challenges for both storage and interactive display. Consequently,
"out-of-core" algorithms have been proposed which are designed to

process data too large to fit into a computer's main memory at one time.

Such algorithms must be optimized to efficiently fetch and access data

stored in slow bulk memory [Funkhouser et al. 19921.

Geometric, topological & semantic
analysis of multi-building floor plan data

As will be discussed in section 2.1.6., our data model stores adjacency

relationships between campus spaces using a graph (G) data structure.

Each node in G is one XML element. Each edge in G is also an XML

element - stored as a child element of its source node, and containing an

attribute naming its destination node. By parsing the XML tree structure

it is possible to quickly reconstruct portions of the graph in main memory

as needed.

1.4.2.2 Dijkstra's Graph Search Algorithm

Dijkstra's algorithm obtains the shortest path from a source node s to

every other node in a weighted graph G [Cormen et al. 20011.

Given a graph G = (V, E), where V is the set of vertices and E is the

set of weighted edges, find the shortest path from a given source vertex s

e V to each vertex v E V.

In our application, vertices represent locations on campus, and edge

weights represent positive distances between pairs of locations connected

by a portal. Dijkstra's algorithm is used to find the shortest route between

two locations.

The input to the algorithm is a weighted graph G, a source vertex s, and a

weighting function w which gives the weights of edges in the graph. The

cost of a path between two vertices is the sum of weights of edges in that

path.

An initial distance of infinity is assigned to each node except for the

source, which has an initial distance of zero from itself. The algorithm

updates the distance estimates for each node with edge relaxation:

consider an edge connecting two vertices u and v. If the distance estimate

to v from the source is reduced by first traveling through u, then the

shorter distance value for v is saved. The algorithm is structured so that

each edge (u, v) is relaxed only once, when the shortest distance to u is

known.

The algorithm maintains a set S of vertices for which the minimum weight

path is known, and priority queue Q containing all other vertices in the

graph. The following pseudocode has been modified to terminate when

the destination node is found.

Dijkstra(G, s, dest, w)

1 for each vertex v E V(G) // initialization

2 Distance(v) < oo

3 Distance(s) (0

4 S(-O

5 Q < V(G)

Geometric, topological & semantic
analysis of multi-building floor plan data

6 while Q *0

7 curr < Extract-Min(Q)

8 if curr = dest

9 return Path(s, curr)

10 else S < S U (curr}

11 for each vertex v adjacent to curr // edge relax

12 if Distance(v) > Distance(curr) + w(curr, v)

13 Distance(v) < Distance(curr) + w(curr, v)

In order to extract the actual path to the destination node, one possible

approach is to store the path in the queue, updating it along with the

distance estimate every time an edge is relaxed:

line 14: Path(source, v) <- {Path(s, curr), v}

Alternatively, an attribute Previous(v) could be stored for every node that

represents the previous node in the shortest path towards source s.

line 14: Previous(v) < curr

Transition point

Fig. 1-8: Taxonomy of medial axis

points [Joan-Arinyo 1996].

Then the path can be read from the source to v by iteration, assuming all

vertices are initialized with Previous(v) <- 0:

Path(s, v)

1 P < 0
2 while Previous(v) * 0
3 P < {Previous(v), P}

4 v <- Previous(v)

5 P <-{s, P}

5 return P

1.4.2.3 Medial Axis

The medial axis is a set of curves which roughly follows the centerline of a

space. It is a representation often used in navigation applications, as it can

generate valid and natural appearing paths with maximal clearance from

all obstacles.

Formally, the medial axis is the locus of the centers of all maximal discs

inscribed in the polygon boundary [Lee 19821. End points occur at

convex vertices where the medial axis runs into the polygon boundary and

the disc radius is zero. Every other point in the medial axis can be

classified as a regular point, where the maximal disc touches two

boundary elements, or a junction point where several branches in the

medial axis meet, and the maximal disc is tangent to at least three

boundary elements [Joan-Arinyo 19961. The type of curve the medial axis

path follows is defined by its two closest boundaries:

Geometric, topological & semantic
analysis of multi-building floor plan data

Fig.1-9: Shape of medial axis
segments (red). (a) straight line
between a concave-vertex pair; (b)
parabolic arc between concave
vertex and boundary edge; (c)
straight line between two
boundary edges [Joan-Arinyo
19961.

V

A

b

Straight line segments are equidistant from two concave vertices (Fig. 1-9a)
or two boundary edges (Fig. 1-9c). Parabolic arc segments are equidistant
from a concave vertex and a boundary edge (Fig. 1-9b).

1.4.2.4 Constrained Delaunay Triangulation

In order to triangulate general polygonal regions, the incremental
Constrained Delaunay Triangulation (CDT) algorithm is used. This is a
generalization of the standard Delaunay triangulation that forces certain
edges (the boundaries) into the triangulation. We use the public domain
implementation of [Bern and Eppstein 1992] by Dani Lischinski [1994].
The implementation is based on the quad-edge data structure, designed
for representing general subdivisions of orientable manifolds [Guibas and
Stolfi 19851.

Fig. 1-10: CDT construction.
Constrained contour edges (black)
inserted into an initial bounding
mesh. All other edges in the mesh
(grey) are unconstrained.

lefi face

Lnex(e) e e Sym(e)

Lnext(Lnext(e))

Fig.1-11: Basic edge functions.

The incremental CDT is initialized with vertices of a bounding convex
polygon. This forms a starting triangle mesh large enough to contain all of
the edges in the input. Constrained edges are then added into the
triangulation one by one. A completed mesh can be seen in Fig. 1-10.

Next, in order to find the triangulation for the polygonal region (i.e.
triangles inside the polygon), we perform a depth first search. The
implementation relies on the following edge functions (see Fig. 1-1 1):

" Lnext () returns the counter-clockwise edge around the left face
following the current edge.

. Sym () returns the edge from the destination to the origin of the
current edge.

Additionally, each edge stores two Boolean values, c and triangleMark,
that indicate a constrained edge and a visited left face (respectively).

The depth first search is illustrated in Fig. 1-12: the root triangle is chosen
as the left face of a polygon edge E. This will return an interior triangle
assuming E is oriented counter-clockwise, which we guarantee. The

orientation of the ordered list of contour points is determined, and if

clockwise, then Sym(E) is used as the starting edge.

77-

--- --------- ---- ---- --e_ ---

Geometric, topological & semantic

analysis of multi-building floor plan data

Fig.1-12: Depth-first search for

polygon triangulation. The black

triangle is at the top of the stack.

Light grey/ dark grey triangles are

discovered/visited. The search
expands only over unconstrained

edges interior to the polygon. From the root triangle, the search proceeds by finding neighboring

triangles that share an unconstrained edge. Recall that only the boundary

edges of the polygon are constrained. Since the search never crosses a

constrained edge, the search is guaranteed to remain inside the polygon.

The algorithm maintains a list T of triangles forming the polygon's

interior mesh. Freshly discovered edges are added to a 'last in first out'

stack S for expansion.

Polygon-CDT(rootEdge)

1 T 4 0

2 S*-O

3 Push(S, rootEdge)

4 while S *0

5 currEdge < Pop(S)

6 T < T U {leftFace(currEdge)}

7 for e in [currEdge, Lnext(currEdge), Lnext(Lenxt(currEdge))]

8 if e not constrained and leftFace(Sym(e)) not visited

9 Push(S, Sym(e))

10 set leftFace(currEdge) visited

11 return T

These methods are applied when determining intra-space paths, discussed

in Section 3.3.2.

Geometric, topological & semantic
analysis of multi-building floor plan data

1.5 System Design

The goals of the Building Model Generation project as a whole are to

develop a system that is comprehensive, automated, intuitive to the user,

and scalable. To achieve these goals, our system is composed of a central

database for storing geospatial elements, and a set of agents designed for a

specific set of read/write operations. Section 2.1 reviews the design of the

data model itself, and the conventions of our XML representation for

geometric, topological and semantic features of locations on campus.

The data model is populated through input agents that extract

information from our common data sources. The work of [Battat]

involved the development of an AutoCAD DXF parser that reads

geometry data from raw DXF files, and populates the data model with

pertinent information such as building footprints, space contours, and

portal locations. Section 2.2 provides an overview of floor plan

conventions used by the DXF Parser to recognize portal locations.

MIT CAD DXF Corpus
(Data Corpus)

CAD files

DXF Parser
(Input Agent)

XML spaces,

Fig.1-13: Project overview.
dangling portals

dangling portals spaces

Portal Linker CDT

(Derivative Agent) XML Data Model (Derivative Agent)

linked portals space triangulations

graph geometry landmarks

Location Server Visualization Interface Landmark Interface

(Derivative Agent) (Output Agent) np

-------------- ----------- - ------- -

MIT Route Finder

Once the data is inserted in the data model, derivative agents operate on

the data to derive richer geometric information including space

triangulations and topological information such as stairway connections

that require further computation on the raw geometry data. These agents

can both read and write to the data model. Section 2.2 provides a review

of connectivity types and methods for deriving adjacency data.

19

Geometric, topological & semantic
analysis of multi-building floor plan data

Output agents act as intermediaries between the geospatial database and
external applications, and have only read capabilities. A visualization
output agent is designed specifically for display of the campus map in a
web interface.

Chapters 3 and 4 present two web-based applications that combine the
visualization interface with additional agents. The MIT Route Finder uses
the location server to derive campus routes based on adjacency data stored
in the data model, and the MIT WikiMap incorporates an additional
input agent designed to collect landmark data directly from users.

Geometric, topological & semantic
analysis of multi-building floor plan data

2 Campus Data Corpus

2.1 Data Representation

2.1.1 Introduction

This section introduces a robust and scalable data representation designed

to exhaustively characterize geospatial features. In particular, this chapter

discusses the spatial hierarchy used to represent containment relationships

in our geometric model of campus. Elements of the data model are

described including floors, spaces, portals, and landmarks, as well as the

specific XML format designed for each. A review of the space-graph

structure is also given, which models the adjacency relationships between

geospatial features.

2.1.2 Spatial Hierarchy

The data framework is organized into a tree hierarchy, where each feature

node can have attributes and children nodes. For example, the root

element of MIT is the basemap of the campus; the basemap has individual

buildings as children nodes; buildings have floors as children nodes; and

so on. Concurrently, each of those nodes carries with it a series of

properties that define it such as its name and its defining contour.

Building

Fig.2-1: Spatial hierarchy of MIT
campus.

- Floor

- Floor

Floor

Spaces

Contour

Triangulation

The hierarchical approach lends itself naturally to a number of geometric

operations. For example given a 2D point, its enclosing space may be

efficiently computed by progressively refining the search space from

regions (e.g. North campus), to buildings (e.g. N5 1), to rooms (e.g. N5 1-

105).

Geometric, topological & semantic
analysis of multi-building floor plan data

The XML file format (Extensible Markup Language) was chosen to

represent this hierarchy for its ability to store information in a tree-based

structure [Bray et al 20041. Additionally, XML is designed for transferring

such richly structured data over the internet, making it well-suited for the

web applications described later in this thesis.

2.1.3 Floors

Floors embody the containing region for a set of spaces. They are

represented in our XML data model with a top level node called

MITquest which is the parent element of all spaces on that floor. Floors

are physically represented with a contour consisting of an ordered set of

2D points. Each contour has additional elements specifying a bounding

box and centroid. For example, floor 1 of Building 1 appears as:

<MITquest>

<floor name="FLOORCONTOUR">

<contour>

<centroid x="710039.91" y="495107.19"/>

<extent maxx="710223.8
3" maxy="495264.34"

minx="709923.96" miny="494964.77"/>

<point x="709923.96" y="495181.
2 7"/>

<point x="709935.56" y="495186.5
5"/>

<point x="709927. 75" y="495203. 69"/>

</contour>

</floor>

<space name="1-142" type="CMPUTR"> ... </space>

<space name="1-171" type="OFF"> ... </space>

</MITquest>

2.1.4 Spaces

Spaces are physical locations on campus, including both the outdoor

environment (such as streets, sidewalks, and grass) and places within

indoor environments (such as corridors, classrooms, and lobbies). Spaces

may be physically surrounded by walls, or have only implied boundaries

such as the transitions between buildings along MIT's infinite corridor.

Fig.2-2: Example space. Spaces are
physically represented with a set of
contour points and a triangulation.

73

-p2

L- --- - - - - - - -------- P -------' P

T(23 4)
P5

T(0.4.5)

p 0 T(0 .4)

POt

(max,, max,)

*| .
contour extent

centroid

*------ -----------------------

(min,,, min,)

Geometric, topological & semantic
analysis of multi-building floor plan data

Spaces are represented geometrically as closed simple polygons bounded

by an ordered polyline of 2D points that define the contour of the space.

Each contour has child properties including its centroid and bounding

box extents. A set of triangles corresponds to the space's constrained

Delaunay triangulation. And each space has a globally unique name,

following the convention [BUILDING]-[FLOOR] [ROOM] set by MIT's

Department of Facilities. In our XML data model, spaces are represented

in the following format:

<space name=SPACENAME type=SPACE TYPE>

CONTOUR

CENTROID

EXTENT

POINT, POINT2 POINT3

TRIANGLE, TRIANGLE2 TRIANGLE 3 ...

</space>

Triangle vertices contain an index which refers to the ordered list of

contour points. Contour points are specified in global campus

coordinates, corresponding to the Massachusetts State Plane Coordinate

System (SPC) in the Mainland Zone. Contour points are measured in

feet, where x increases eastward and y increases northward in reference to

the SPC origin located in south-eastern Massachusetts [MassGIS]. Our

campus coordinates range from (693 000 feet, 489 000 feet) to (723 000

feet, 504 000 feet). The following example specifies a classroom in

building 1:

<space name="1-150" type="CLASS">

<contour>

<centroid x="710044.
2 8 " y="4 9 5 03 3 .19"/>

<extent maxx="710062.06" maxy="495054.31"

minx="710024.92" miny="495011.80"/>

<point x="710030.10" y="
49503 6.59"/>

<point x="710039.6
7 " y="495015.58"/>

<point x="710038.15" y="495014.
8 9 "/>

</contour>

<triangle vO="O" vl="1" v2="12"/>

<triangle vO="O" vl="12" v2="19"/>

<triangle vO="0" vl="19" v2="20"/>

</space>

Basemap spaces have the same geometric representation as interior spaces,

and follow the naming convention: BMAP-[ID] where ID is a unique

integer ranging from 0 to 7,070. A complete listing of codes used for

specifying space types can be found in appendix B.

Geometric, topological & semantic
analysis of multi-building floor plan data

s2

si

Fig.2-3: Node-edge representation
of spaces and portals. Portals have
a distinct source and destination,
representing one direction of the
physical connection between two
spaces.

Fig.2-4: A sample vertical portal.
Two overlapping staircases.

t=-0 t=1

t=minparam t=maxparam

Fig.2-5: A sample horizontal portal.
Portal position is defined by an
edge index - referencing the
ordered list of points for the source
space - and the parameterized

position along the edge.

2.1.5 Portals

Portals are physical connections (such as doors, elevators, and stairs)

representing an adjacency relationship between two spaces. Each portal

has a source and a destination space, representing one direction of the

physical connection between two spaces. Portals also have an associated

type (e.g. DOOR, ELEV) and a physical representation in the x-y plane.

<space name=SOURCE_NAME type=SOURCETYPE>

<portal class=CLASS target=TARGETNAME type=TYPE [OTHER]/>

</space>

In our XML data model, every portal is represented as a child element of

its source space. Each portal has class, target and type attributes. The

class attribute captures a distinction between vertical and horizontal

portals, defined below.

2.1.5.1 Vertical Portals

Vertical portals involve connections between adjacent floors including

elevators and stairs. An additional direction attribute is included in the

portal definition to indicate an upward or downward traversal. The

convention is:

<portal class="vertical" target=NAME type=["STAIR" I"ELEV"]

direction= ["UP" I "DOWN"] />

For example, a staircase connecting the first floor to the second floor of

building 1 is written:

<space name="1-100SB" type="STAIR">

<portal class="vertical" target="1-200SB" type="STAIR" direction="UP"/>

</space>

The data model representation of a vertical portal is a closed polyline

identical to its source space (e.g. an elevator portal has the same shape as

the elevator itself). Rather than repeat the 2D points, each vertical portal

is defined by the contour of its source.

2.1.5.2 Horizontal Portals

Non-vertical portals are classified as horizontal. These include

connections between spaces on the same floor, connections between

buildings, or adjacent basemap spaces. Possible portal types are door,

outdoor and implicit. Horizontal portals are represented geometrically as

a line segment (Fig.2-5). In our XML representation, horizontal portals

have an "edge" child element that provides the line segment parameters:

Maxparam and minparam values specify the parameterized position of the

Geometric, topological & semantic
analysis of multi-building floor plan data

portal along edge (Pindex, Pindex+1), where pi is a point on the source contour

and minparam is strictly less than maxparam. The format is as follows:

<portal class="horizontal" target=NAME type= ["DOOR" I "OUTDOOR" "IMPLICIT"]>

<edge index=INT maxparam=FLOAT minparam=FLOAT/>

</portal>

For example:

<portal class="horizontal" target="1-150" type="DOOR">

<edge index="l" maxparam="0.7" minparam="0.25"/>

</portal>

Methods for inferring portal connections from the floor plan geometry are

discussed in section 2.2.

2.1.6 Space-Portal Graph

Connectivity relationships between locations are represented with a graph

data structure. A graph G = (V, E) is a set of elements V, called nodes or

vertices, linked by a set of edges E [Cormen et al 20011. In our

representation, spaces are modeled as graph nodes and portals as graph

edges.

Floor
Floorr

Fig. 2-6: Topological model of
campus representing adjacent spaces - . -
as nodes (solid circles) connected by

graph edges (dashed arrows). Spaces

- . Spaces (a) (b)

A directed graph has the additional property that each edge has an

ordered pair of vertices. Specifically, an edge = (vi, v2) is considered to be

directed from vi to v2, where v, is the source and v2 is the destination. We

model the MIT campus under this convention, capturing the physical fact

that portals such as security doors allow exit but not unconditional

reentry.

v2

Fig.2-7: Directed graph.

e(v , v2)

Geometric, topological & semantic

analysis of multi-building floor plan data

The graph structure is extended by assigning weights to edges. Since we

are modeling connections between physical locations, weights are used to

represent the distance between spaces centroids.

Finally, a graph is connected if for every pair of vertices (vi, V2) E V, there

exists a path from vi to v2. For a directed graph, if the same property holds

when all directed edges are replaced by undirected edges, it is called

weakly connected. One of the goals of the BMG pipeline is to generate a

(weakly) connected graph with coverage of all rooms, hallways, streets,

sidewalks and other spaces within MIT.

In the XML data model, a portal edge is contained as a child element of its

source space. Each portal has a "target" attribute which points to the

portal's uniquely named destination space.

<space name="1-10OCB" type="C0PP">
<contour>

<centroid x="710013.354898" y="495071.55231
5

"/>

<extent maxx-"710081. 354307" maxy-"495163. 420646"

minx-"709962.406567" ziny-"494999. 3
32621"/>

<point x="710007.477059" y="4
9 5

O
8

1.
4 1 2 7 5 9

"/>

Fig.2 XML representation of <point x-"710022.339760" y-"495088.l
86 0 82

"/>

<point x="710t016.81L0517" y="4
95

100.
3
1
88 9 9

"/>
the space-graph. Boxes denote <Pin x=71001.98151" y="r4

9 5l
0 O.

3 l8899"/>

nodes<point x="710001.947816" y="49093.545576"/>

attribute of a portal stores a </contour>
pointer to the portal's destination <portal class="horizontal" target="1-134' type="explicit">

space. <edge index="19" maxparam="0.822" mi araa="0.205"/>
</portal>
<portal class="horizontal" target="I-100SB" t e="implicit">

<edge index="32" maxpara="0.0" minparaz= .0"/>

</portal>

</space>
<space name="l-lloA" type="OFF">

<contour>
<centroid xz"71003 .753683" y="495207.521074"

<extent maxx-"71 42.667227" maxy-"495216.0662 9"

minx=" 0026.767613" miny-"495199.617 0"/>

<point x-"710 32.227381" y-"49
52 10

.
37

1131"/>

<point x-"71 026.767613" y-"49
52 07

.
8
8
2 9 72

"/>

<point xa"71 030.534410" ya"4
9 5
1
9 9

.
6
1
7 4 90

"/>

< / c o n t o u r >

_7 9 0 /
<portal class="h. -izontal" target=" 1-ll0" typ ="implicit">

<edge index=" " maxpara ="0.366972523
3 5

" zinparaa="O"/>

</portal>

</space>

<space namke="rl-134" type=" ASS">

<contour>

<centroid X-"70999 902862" y="495136.544827"/>

<extent maxx-"710013. 57873" maxy-"495153.94
7 3 4 7

"

minx="709981. 8726" miny-"495119.702218"/>
<point x-"710002.261155 y."

49 5
1
5 3

.
94 7 34 7

"/>

<point x."709981.028726" a"495144.271172"/>

<point x="709985.244774" y "495135.019899"/>

</contour>

<portal class-"horizontal' target-"l-IOOCB" type-"explicit">

<edge index-"0" maxparam-"0.455" minparam-"0.1
7

5"/>

</portal>

</space>

Geometric, topological & semantic
analysis of multi-building floor plan data

2.1.7 Landmarks

Landmarks are physical objects representing points of interest within the
MIT campus environment. They may vary broadly in scale - some
landmarks are large and seen at great distances, such as the Green
Building, others may only be visible at close range, such as a painting in a
faculty lounge. Further, landmarks may be characterized by a number of
different qualities such as visual contrast (e.g. a brightly-colored wall),
structural prominence (e.g. the intersection of Mass. Ave. and Vassar St.),
or functional significance (e.g. the Building 4 cafe) [Sorrows and Hirtle
1999].

To capture variability in scale and salient features, we represent landmarks
with the following attributes:

Name - descriptive title.

Location - name of containing region. This allows for varying
granularity. A landmark may apply to a single space (e.g. lobby 7-100),
an entire building (e.g. Kresge Auditorium), or an outdoor courtyard
(e.g. Killian Court).

Position - 2D coordinate. For small objects such as a sculpture in
Killian Court, an exact point accurately describes its position within
the containing space. When the landmark pertains to a larger area,
the coordinate is used for visualization purposes only.

Category - landmark classifications such as painting, sculpture, or
public computer cluster.

Description - supplementary unstructured information not accounted
for in the above attributes.

We store landmarks in a geo-referenced database using the fields listed
above. Although this implementation uses a separate database, landmarks
could naturally be incorporated into the xml data model as child elements
of a space. For example:

<space name="7-407" type="FOODSV">

<landmark name="steam cafe" category="quick food"

description="a student-designed cafe">

<point x="710030.10" y="495036.59"/>

</landmark>

</space>

A landmark could be similarly represented as a child element of a floor or
building region to reflect the varying scale of salient features on campus.

Geometric, topological & semantic
analysis of multi-building floor plan data

2.2 Generating Campus Topology Data

2.2.1 Introduction

This chapter describes the methods used in populating the data model
with adjacency information. The chapter begins with an overview of BMG
pipeline components dedicated to portal construction. Subsequent
sections present a portal taxonomy, which classifies all portal types found
in the MIT floor plans. Geometric properties for portal identification are
summarized, along with methods for matching portals to their source and
destination spaces.

2.2.2 Portal Populating Agents

Methods for populating the data model with portal information are
handled by both the DXF Parser, developed by [Battat], and a set of
derivative agents designed specifically for portal linking.

................ DXF CAD files
Vertical Linker -SW

DXF Parser
Fig.2-9: Components of BMG (Input Agent)
pipeline involved in generating
portal data. Building-basemap b spE. spaces, dangling portals,

Linker linked intra-floor portals
dangling portals,

- ---- spaces

Inter-building downs9 potb 4 !TInterii XML Data Model

. .. linked portals

Portal Linkers (Derivative Agents)

Portal construction can be divided into two stages: a "creation" stage that
associates a portal with a source space, followed by a "linking" stage that
determines the portal's destination space. We term portals that are
created but not linked as "dangling" portals.

The DXF Parser is responsible for all portal information that can be
extracted from a single floor plan: intra-floor portals are fully constructed,
and inter-building portals are created but left dangling. See section 2.2.3
for intra-floor portal identification and linking methods; and section 2.2.6
for inter-building portal creation.

A set of Portal Linkers then derives additional topological information.
Dangling portals created by the DXF Parser are linked - accounting for
both inter-building connections and connections from interior spaces to
the basemap (cf. section 2.2.7). An additional agent constructs portal
edges between stair and elevator spaces on adjacent floors, providing the
vertical connections within multi-story buildings.

Geometric, topological & semantic
analysis of multi-building floor plan data

2.2.3 Intra-Floor Portals

Portals between spaces on the same floor of a building can be classified as

either explicit or implicit connections:

Explicit
Explicit portals represent connections between spaces that are physically

separated by a barrier. The most common example is a doorway

embedded in a wall between two rooms. In the floor plan data, doorways

also have an explicit geometric representation (Fig. 2-10a): A circular arc is

positioned along the dividing wall between its source and destination

spaces. The two spaces have non-overlapping contours indicating the

thickness of the dividing wall.

Fig.2-10: Explicit portal. (a) Floor

plan representation. (b) Two points
offset in opposite directions along
the normal vector to the wall.
Source and destination spaces are OFF OFF

CML CML

found as the containing region for
each point. (a) (b)

A difficulty is that in the floor plan data, a door arc has no association

other than geometric proximity with the polylines defining its two

adjacent rooms. Further analysis is required to determine the source and

destination of the portal: First a vector is positioned through the door

frame, normal to the incident wall. Two points, pi and P2, are then placed

at the head and tail of the vector, at a distance of half the arc radius from

the wall (Fig. 2-10b). To guarantee each point lies inside the correct space,

the vector length is chosen to be smaller than shallow spaces such as

closets, but large enough to protrude through the wall thickness.

An additional script then searches all spaces in the current floor to find

the containing region for each point. A portal is then constructed with

the returned spaces, si and S2, as the source and destination. Note two

directed portal edges will be constructed assuming the door allows both

exit and re-entry.

ConstructExplicitPortals(doorArc, normalVec, doorCenterPt, Floor)

1 Position(p) < doorCenterPt + normalVec X Radius(doorArc)/2

2 Position(p 2) <- doorCenterPt - normalVec X Radius(doorArc)/2

3 si < ContainingSpace(pi, Floor)

4 s2 < ContainingSpace(p 2, Floor)

5 Portals(s) < Portals(si) U ExplicitPortal(si, s2)

6 Portals(s2) < Portals(s2) u ExplicitPortal(sz, Si)

.

Geometric, topological & semantic
analysis of multi-building floor plan data

. Implicit

Implicit portals represent connections between spaces where no physical
barrier exists. It is normally for organizational reasons that implicit
divisions are placed in the floor plans. For example, the photo in Fig. 2-11
shows a large open space outside the "Steam Cafe" in Building 7.
Although there is no wall between the corridor and the cafe tables, these
two regions are defined as separate spaces in the floor plans to
differentiate between circulation zones and food services.

Fig.2-1 1: A sample implicit portal.
The dotted line denotes an
incident edge between the space
contours. Although no physical
barrier exists, the portal places an
implicit divide between the
corridor and cafe tables.

FO0D
-P - -

1Vt
-J DOa

1~ Hi Kv1~ >~{
CORRIDOR 0., FOOD

Implicit portals are recognized in the floor plans by a coincident edge

between two space contours. This is denoted by the dotted line in Figure

2-11. The portal adopts the entire length of the coincident edge as its

physical representation in the data model.

2.2.4 Inter-Floor Portals

Inter-floor portals provide the vertical links in a building. Stair and

elevator spaces - made for vertical movement between floors - are

represented as source and destination nodes in our topological data

model. We determine links by finding pairs of vertically adjacent spaces.

Specifically, two staircases are said to be vertically adjacent if they belong

to neighboring floors and their axis-aligned bounding boxes intersect in

the x-y plane.

Fig.2-12: Vertical portal. (a) Plan
view of stairs on adjacent floors; (b)
axis-aligned bounding box for each
stair space. Matches are made by
testing for overlapping bounding
boxes.

I----I

I I
gi

II I I
I I I

II I

I I
I I

I - - l~ -
I I

I I

Our implementation has two stages. First we construct an ordered list of

floors for each building. One complication is that MIT Inventory orders

Geometric, topological & semantic
analysis of multi-building floor plan data

floors alphabetically rather than numerically (e.g. {1, 10, 11, 2, 3 ... 91 vs.
{1, 2, 3, ... 9, 10, 111), so an additional sorting algorithm was required.

Second, for each ordered pair of floors, we find stair and elevator spaces
that overlap in plan view. This is done by simply computing the axis-
aligned bounding box for each space (without the height dimension) and
testing for intersections in terms of the unit axes:

BoundingBoxOverlap(si, S2)

1 if (minX(si) > maxX(s2) or minX(s2) > maxX(si) or

2 minY(si) > maxY(s 2) or minY(s2) > maxY(si))

3 return false

4 else return true

Each stair and elevator space is assumed to have two neighbors - one on
the floor above, and one on the floor below - with the exception of the
lowest and highest floors of a building. Consequently, each portal is given
an explicit direction to indicate an upward or downward direction of

movement. The input to the linking procedure is a space scur, of type stair
or elevator, and a pointer to the next floor above, Floornext. We determine

a match for scurr by iterating through every space Snext of similar type and
testing for overlap.

LinkVertPortal(scurr, Floorne.t)

1 for each spacesnext E Floorext where Type(scurr) = Type(snext)

2 if BoundingBoxOverlap(scurr, snext)

3 if Type(scrr) is stair

4 Portals(scurr) < Portals(scurr) U StairUp(scurr, Snext)

5 Portals(snext) (Portals(sext) U StairDown(snext, scurr)

6 else if Type(scurr) is elevator

7 Portals(scur) < Portals(scrr) U ElevUp(scurr, Snext)

8 Portals(snext) <- Portals(snext) U ElevDown(snext, scurr)

Given an ordered list of floors, the algorithm starts at the lowest floor and
works its way upward, assuming consecutive floors in the sequence are
vertically adjacent.

LinkFloors (Floors) // naive: without mezzanines

1 for each floor F e Floors

2 for each stair or elevator space s E F

3 LinkVertPortal(s, Next(F))

Geometric, topological & semantic
analysis of multi-building floor plan data

2.2.5 Mezzanines in Inter-Floor Connections

In the general case, vertical portals are matched by analyzing pairs of

adjacent floors, and creating links between vertically aligned stair and

elevator spaces. However in the instance of a mezzanine, it can become

ambiguous which floors are adjacent to each other. We account for the

possible scenarios using a technique analogous to ray-casting: Cast a ray

upward from the bottom-most staircase si. If the ray originating from si

intersects the mezzanine floor, then only portals on the mezzanine may

provide a valid connection. If the ray does not intersect the mezzanine,

then the portal may connect to the full floor above.

The two cases are illustrated in Fig. 2-13. In (a), si is clear of the

mezzanine and connects directly to the full floor above. In (b), si connects

to a mezzanine staircase.

floor 2

Fig.2-13: Mezzanine floors in
vertical portal matching. mezzanine

floor I
(a) (b)

We determine if si is adjacent to the mezzanine by testing for bounding

box overlap with each space sm on the mezzanine level, Floorm. The

adjacency method returns true if any overlap test succeeds.

AdjacentToMezz (si, Floorm)

1 for each space SM e FloorM

2 if BoundingBoxOverlap(sm, si)

3 return true

4 return false

The following LinkFloors procedure is modified from 2.2.4 to account for

the presence of mezzanine floors:

LinkFloors (Floors) \\ corrected for mezzanines

1 for each floor F E Floors

2 for each stair or elevator space s E F

3 if Next(F) is a mezzanine

4 if AdjacentToMezz(s, Next(F))

5 LinkVertPortal(s, Next(F))

6 else LinkVertPortal(s, Next(Next(F)))

7 else LinkVertPortal(s, Next(F))

Geometric, topological & semantic
analysis of multi-building floor plan data

2.2.6 Inter-Building Portals

Inter-building portals represent connections between spaces in abutting

buildings. Like intra-floor portals, these can be classified as either explicit

or implicit.

. Explicit

An explicit portal represents a physical doorway connection between

adjacent buildings, or a connection from a building to the basemap.

Explicit inter-building portals are recognized using a method similar to

explicit intra-floor portals.

Fig.2-14: Explicit inter-building Y2R
portal. A point is placed on either
side of the door frame. One point
is contained by a space contour

(blue), the other point lies outside

the floor contour (red).

For every door arc found in the floor plans, a vector normal to the

incident wall is constructed. Two points, pi and p2, are positioned along

the normal vector at distances of half the arc radius from the wall (cf.

Figure 2-14). If one of the points pi lies outside the floor contour (i.e. it is

not contained by any space in the floor), then the portal is tagged as

"dangling". The other point p2 must be inside the floor contour, and its

containing space is the portal's source space.

. Implicit

Implicit portals represent connections between adjacent buildings where

no physical barrier is crossed. For example, in the photo below the

corridor spans buildings 3 and 7 without any visual indicator. Implicit

portals are represented in the floor plans by a coincident edge between the

space contour and the floor contour.

Fig.2-15: Implicit connection
between buildings. (a) The floor
contour overlaps the space contour,
indicated by the dotted line; (b) A
corridor in Building 7 connects to a
corridor in Building 3, but no

physical door or other barrier is BIdng 3

present between the two spaces.
Bldng 7

(a) (b)

An implementation challenge for inter-building connections is that the

source and destination spaces reside in separate floor plans. In the

Geometric, topological & semantic
analysis of multi-building floor plan data

*--+ ?

Fig.2-16: Stages of portal linking.
Middle is dangling portal with a
source but no destination.

example above, an outgoing portal is created from Building 7 with

corridor 7-400 as its source. However the target could be any of over 160

buildings on campus. Consequently, inter-building portals are initialized

with only a source space and left unlinked. These "dangling portals" are

then resolved using the methods described in section 2.2.7.

2.2.7 Dangling Portals

Dangling portals are graph edges with a known source space, but an

undetermined destination. Dangling portals provide a mechanism to

defer analysis of (a) connections between buildings; and (b) connections

from buildings to the basemap terrain. In both cases, the challenge faced

is a highly unconstrained search for the portal destination space. A portal

leading onto the basemap could link to any one of 7,000 basemap spaces.

A portal leading to another building must search over 160 distinct

buildings at MIT. Rather than process these large sets of geometric data

every time we encounter an inter-building portal, we instead identify inter-

building linkages with a multi-stage process:

First, all building geometry is processed by the DXF Parser and any portal

that leads out of a building is simply tagged, and attached to its source

space. Dangling portals are represented in XML with a target pointing to

the floor contour, communicating that the portal is incident on the edge

of the building.

<space name=SOURCENAME type=SOURCETYPE>

<portal class="horizontal" target="FLOORCONTOUR"/>

</space>

Once dangling portals have been created for every building on campus,

the second stage is to match proximal pairs: For each dangling portal pi, a

set of candidate destinations is collected (i.e. all spaces within a preset

radius). A successful match occurs when one of the candidate spaces

contains a corresponding dangling portal coincident with pi..

LinkDanglingPortals(Buildings)

1 for each building B e Buildings

2 for each dangling portal pi E B

3 proximalSpaces <- Proximal(Buildings, pi, Radius)

4 for each space s e proximalSpaces

5 for each dangling portal pj E Portals(s)

6 if Distance(pi, pi) < Tolerance

7 Target(pi) * Source(p)

8 Target(p) < Source(pi)

9 break

Geometric, topological & semantic
analysis of multi-building floor plan data

Connections from buildings to the basemap use similar operations, with
the additional constraint that only explicit portals are assumed to link an
interior space to the campus terrain. Recall that on the basemap, each
edge of a space contour can be a portal. So for each dangling portal pi
leading out of a building, we simply search for the closest basemap edge.
When a match is found, p is linked, and a new oppositely directed portal
is constructed from the basemap to the building interior.

LinkDanglingPortals(Buildings, Basemap)

1 for each building B E Buildings

2 for each explicit dangling portal pi E B

3 proximalSpaces <- Proximal(Basemap, pi, Radius)

4 for each basemap space s E proximalSpaces

5 for each edge e E Contour(s)

6 if Distance(pi, e) < Tolerance

7 Target(pi) <- s

8 Portals(s) <- Portals(s) U Portal(s, Source(pi))

2.2.8 Intra-Basemap Portals

Basemap portals are a simple case of implicit portals. Any two basemap
spaces whose boundaries have a coincident edge are considered adjacent.
Geometrically, a basemap portal is a straight line segment spanning the
incident edge between the two neighboring spaces.

2.2.9 Summary

A summary of portal types is presented in Table 2-1 below:

Implicit

Table 2-1: Summary of portal types
and detection methods.

Explicit

Type
Intra-Floor
Inter-Building

Intra-Basemap

Intra-Floor
Inter-Building

Stair/Elevator Inter-Floor

Test
Incident edge between two space contour
Incident edge between space contour and
floor contour
Incident edge between two basemap spac
contours
Door arc proximal to two space contours
Door arc proximal to space contour and
floor contour
Axis-aligned bounding box overlap

s

Geometric, topological & semantic
analysis of multi-building floor plan data

2.2.10 Remaining Challenges
. Misaligned Floors

A remaining challenge for future work is to account for height
differentials between adjacent buildings. For example, the third floor of
the Stata Center is slightly lower than the third floor of Building 36,
necessitating the short staircase in Fig. 2-17. Height differentials may be
ignored if we assume that inter-building connections always occur at the
same floor. However with the varied building styles at MIT and variations
in height of terrain, this assumption does not always hold. An example is
at the east end of the Infinite Corridor where floor numbers increase by
one from Building 8 to Building 16.

Fig.2-17: The stairs account for a
height differential between the Stata
Center and Building 36.

. Visual Stairway Identifiers
The DXF Parser recognizes stairways as any space with the "STAIR" room
use code. However, this relies on a thorough labeling scheme specific to
MIT, rather than more generic visual identifiers. For example, in the
figure below there is no "STAIR" label. Nevertheless a staircase is clearly
recognizable to the human eye by a sequence of closely spaced line
segments and a directional arrow. Incorporating such visual markers into
the DXF Parser may result in more complete semantic data, while
reducing a reliance on conventions specific to MIT.

P CRC

Fig.2-18: Unlabeled staircase. The F
staircase is part of a larger
circulation area and does not carry
the "STAIR" type label. However,
the closely spaced line segments and
arrow make it clear to a human eye
that the staircase exists.

UP

. Ramp Vertical Portals
Our current implementation does not incorporate ramp connections.
Ramps can be identified by directional arrows labeled "RAMP UP" or
"RAMP DOWN". In contrast to stairs and elevators, ramps are typically

Geometric, topological & semantic
analysis of multi-building floor plan data

contained within larger spaces such as the corridor in Figure 2-19. One

complication is that the majority of indoor ramps connect spaces within
the same floor (to account for a height differential). A systematic method

is still needed to determine the source and destination for a ramp portal,
differentiating between intra-floor and inter-floor connections.

Fig.2-19: A ramp within a corridor
space, indicated by a labeled arrow.

Y

ce-,R AMVP

=LOBBY LOBBY4~QF * Or

n UP

Geometric, topological & semantic
analysis of multi-building floor plan data

3 MIT Route Finder

3.1 Introduction

'MIT Maps' is a prototype application that provides custom routes on the

MIT campus using the data framework proposed by BMG. The

application is designed to assist campus visitors in the common task of

finding their way from one location to another, with the additional ability

of specifying route constraints. For example, on a cold or rainy day a

visitor might only be interested in routes that remain indoors; or travelers

in wheelchairs or carrying excessive luggage may want to avoid taking the

stairs. A web interface is provided for specifying source and destination

locations, along with visualization capabilities for displaying routes on the

campus map.

XML Data Model

Fig.3-1: Components of the "MIT

Maps" route finder application.

Location Server Visualization Interface
(Derivative Agent) (Output Agent)

MIT Route Finder

Routes between locations are supplied by a central Location Server,

introduced by Bell [20031, and substantially expanded in this work. The

Location Server provides this information through a Java RMI interface

(see 1.4.1.3).

3.2 User Interface

3.2.1 Map Display

A framework for route visualization has been developed combining

information from the campus model geometry and path-drawing

abstractions. The interface is implemented as an interactive web-based

application modeled after the Google Maps API (see [Battat] for

implementation details). The interface is designed for use in a regular

browser, without plugins or other installation requirements for the user.

Navigating the map is central to the user experience. Direct manipulation

controls are provided that allow the user to drag the map to pan and

double-click a point to re-center the map. A zoom bar is provided to

...

Geometric, topological & semantic
analysis of multi-building floor plan data

change the zoom level. Users may also submit a location in the search

field at the top of the page, and the map will zoom and pan appropriately

to display the result.

a

..lii'-,,--

Fig.3-2: MIT Maps user interface.

3.2.2 Route Queries

Route queries are run from the search field with the simple command:

[source] to [destination]

Source and destination points may be specified at varying levels of

granularity, either by building (e.g. "50 to W 11"), room (e.g. "1-205 to 1-

100LA") or a combination (e.g. "W11 to 1-100LA"). Auto-complete

functionality has also been incorporated in the form of a drop-down menu

to help prevent errors in location requests.

To visualize space contours and triangulations along with the route,

queries can also be run in debug mode using the command:

[source] to [destination] to debug

Figure 3-3 shows an example route in debug mode from a staircase on the

first floor of building 10 to office 10-183A. Each space also has a tack

positioned at its centroid, which will display the space's name on mouse-

over.

Fig.3-3: Route display in debug

mode. Red lines denote space

contours, green lines denote space
triangulations, and red tacks are
positioned at space centroids.

Geometric, topological & semantic
analysis of multi-building floor plan data

3.2.3 Space and Portal Visualization

The search field also supports visualization queries. Space contours for an

entire floor are displayed with the command:

draw: [Building]-[Floor]

For example, "draw: 50-1" will render all rooms on the first floor of

Building 50, as shown in Figure 3-4. Space contours are drawn in red with

space labels positioned at space centroids. Every explicit portal (e.g. door)

is drawn as an arrow perpendicular to its incident wall. Every implicit

portal is drawn as a line segment along its incident contour edge.

Fig.34: Visualization of spaces and
portals on floor 1 of Building 50.
Blue arrows represent explicit so 56
portals. Blue line segments incident
on contour edges represent implicit
portals. 50154

5 A

50-100LC 00E2

Basemap spaces are drawn with the command:

draw: BMAP-[index]

The index parameter is an integer between 0 and 14, specifying a chunk

of 500 basemap spaces (among a total of 7,070) to be displayed on the

map. For example, "draw: BMAP-4" will display all named basemap

spaces in the range [BMAP-2000, BMAP-24991.

Geometric, topological & semantic
analysis of multi-building floor plan data

3.3 Implementation

A requirement of the route finder is the ability to quickly generate routes

between any two locations on campus. On the basemap alone there are

over 7,000 spaces and 88,000 portals. Considering building interiors

expands the search to a 36,000 node graph. Increasing the resolution to

space triangulations expands the graph further by an order of magnitude.

The problem of generating routes can be subdivided into two distinct sub-

problems: finding the collection of spaces that optimally connect the

source and destination spaces, and finding the actual path through each

space. These two sub-processes are explained in sections 3.3.1 and 3.3.2.

The algorithm combining both steps is then demonstrated in section

3.3.3.

3.3.1 Inter-Space Path Finding

The first search is performed by considering spaces to be "nodes", and

portals to be "edges" for the purpose of graph construction and traversal.

Edge weights are estimated by the distance between space centroids as

depicted in Fig. 3-5. Although the distance between adjacent spaces could

be estimated by the length of a valid path (e.g. the shortest path between

pairs of portals), this is potentially expensive to compute and ambiguous

when multiple portal exit/entry pairs exist.

Dijkstra's algorithm was implemented for graph searching, which is a

fundamental algorithm for shortest-path route-finding problems. See

section 1.4.2.2 for a review. An optimal sequence of spaces is then

determined by applying this standard graph searching technique to the

network of spaces as depicted in Figure 3-5.

Fig.3-5: Example space-portal graph.
Edges (dashed lines) are placed
between adjacent spaces, weighted
according to the distance between
space centroids. In the example
path, solid arrows represent
traversed edges.

...

Geometric, topological & semantic
analysis of multi-building floor plan data

3.3.2 Intra-Space Path Finding

Additional work is required to determine the physical path through a

collection of spaces. For convex spaces, a simple straight line from an

entry point to an exit portal represents the shortest possible path through

the space. However for concave spaces, a straight line can result in an

illegal path as shown in Fig. 3-6a.

Fig.3-6: Finding a path through a
concave polygon: (a) a straight line
results in an illegal path; (b) a path
traversing triangle centroids yields
a valid but jagged path; (c) a
smoothed path [Nichols 20041. (a) (b) (c)

The solution proposed by Nichols [20041 is to construct a valid path by

connecting centroids of adjacent triangles as illustrated in Fig. 3-6b.

While the triangulated path doesn't intersect any of the space's

boundaries, it also looks unnatural compared to the kind of path a person

might draw by hand (Fig. 3-6c).

Instead we propose the use of the medial axis for intra-space path drawing,

which is commonly used in motion planning applications [Latombe 19911.

The medial axis provides a central skeleton for the space, where every

point on the skeleton is equidistant from its two closest boundary edges.

The medial axis can be thought of as composed of paths with maximal

clearance through a room, furthest from obstacle boundaries.

Fig.3-7: (a) Exact medial axis of a
typical room contour. Squares are
portal positions. (b) Trimmed to
remove branches that do not lead to
portals.

(a) (b)

When computed precisely, the medial axis consists of straight line

segments and parabolic arcs. Fig. 3-7a shows the exact medial axis of a

typical room contour. On the right, the medial axis has been simplified by

trimming off all branches that lead to a convex corner. In the resultant

graph, a valid path can be found between any pair of portals.

However, the practical complexity of computing the medial axis is high,

and provides more precision than required for path rendering routines.

As an alternative, one can approximate the medial axis (MA) with straight

line segments using the constrained Delaunay triangulation [Joan-Arinyo

et al 1996] as illustrated in Fig. 3-8. Medial axis points are placed at the

midpoint of all interior triangle edges, and line segments are constructed

between MA points incident on the same triangle. Fig. 3-8a is the

Geometric, topological & semantic
analysis of multi-building floor plan data

trimmed version, approximating Fig. 3-7b. To find the shortest path

between any pair of portals, we simply run Dijkstra's algorithm on the

resultant MA graph. A sample path is shown in Fig. 3-8b.

Fig.3-8: (a) Approximate medial axis

of a room contour, connecting
midpoints of shared triangles edges;
(b) Example of one intra-space path.

(b)

In addition to being a simpler representation, the benefit of this method is

it leverages triangulation data already present in the data model.

3.3.3 Route Generation

This section illustrates the application of inter-space and intra-space path

finding to efficient route generation. The outdoor route in Figure 3-9 is

used as an example.

Fig.3-9: Outdoor route from

Building 50 to Building 6.

Given a source and destination space, the optimal sequence of spaces is

determined using the inter-space path finding methods from section 3.3.1.

The graph search is course-grained, considering spaces to be nodes, and

portals to be edges. Figure 3-10 shows the resulting path modeled as a

traversal of space centroids.

Geometric, topological & semantic
analysis of multi-building floor plan data

Fig. 3-10: A course search 6878 6 337
between space centroids (red tacks)
first finds the optimal sequence of
spaces connecting the source and
destination.

The second search is performed on the union of intra-space graphs (as

described in section 3.3.2) for each space in the sequence. The graphs are

combined by merging corresponding portal nodes (nodes incident on the

space contour) between each pair of adjacent spaces. Figure 3-11 shows an

example for two adjacent spaces S1 and S2 . Every portal node in Si that

has space S2 as its destination is merged with a portal node in S2 that has

space Si as its destination. When multiple matches are available, nodes

are paired by geometric proximity.

Sl

Fig.3-11: Combination of internal
graphs for spaces Si and S2. Gray to S, 2
lines are graph edges, circles are
graph nodes, and green lines are S2
space triangulations. Nodes 1 S toS

incident on the space contour
represent portals. The two graphs
are connected at corresponding tos,
portal nodes.

Dijkstra's algorithm is then run on the resultant graph to determine the

actual polyline path. The search terminates when it reaches a portal node

leading into the destination space, as shown in Fig. 3-12.

Fig. 3-12: Dijkstra's algorithm is
run on the combined internal
graph to find the actual path
through the sequence of spaces. start

Geometric, topological & semantic
analysis of multi-building floor plan data

3.3.4 Path Relaxation

Once the polyline path has been determined, a final shape simplification

process is applied. This stage reduces the number of segments in the path

while leaving the overall shape of the route intact. The main motivation is

to yield a cleaner looking map, removing artifacts present in the medial

axis representation. A simpler route polyline may also increase the speed

of subsequent rendering routines in our web interface.

Our approach to simplification considers the path through each space

independently. In a step-wise fashion we remove interior points from the

medial axis path, checking to ensure that the removal does not cause an

intersection with any of the space's boundaries. This method is similar to

work by Agrawala [20011 in shape simplification of road maps, with the

difference that we maintain overall shape by constraining the route within

the space boundaries. The process is demonstrated in Figure 3-13.

piIpintersection intersection

Fig. 3-13: Path relaxation process start point start point

removes interior points, ensuring (b)
that removals do not cause an
intersection with the space start point
boundary.

final shape

end point

(c) (d)

We step through the path forming a ray between the start point and the

current point pi. If the ray intersects the space boundary (Fig. 3-13a), we

mark the previous point pi-I as irremovable, and collapse all points

between the start and pi-i to a single straight line segment (Fig. 3-13b).

The process repeats with pi1I as the new start point, and continues until

we reach the last point in the current space. The final simplified shape is

shown in Fig. 3-13d.

3.3.5 Route Constraints

Route constraints are implemented by selectively restricting undesirable

space and portal types in the campus graph. In the edge relaxation step of

Dijkstra's algorithm, connections with restricted types are ignored,

effectively removing the edge from the graph. For example, paved routes

Geometric, topological & semantic
analysis of multi-building floor plan data

prohibit portals leading to grass or construction on the basemap, but allow
streets, sidewalks, and any indoor space type. Rolling routes are
additionally constrained to elevator portals and ramps when moving
vertically within buildings. On the other hand, walking routes are free to
cut across fields and traverse any indoor space, and are consequently
shorter than highly constrained paths.

3.4 Results & Discussion

3.4.1 Route Optimizations

In rare cases, the optimizations built into the route-finder make it
impossible to find the shortest path. This occurs when the best route
requires leaving a space, and then entering the space again at a different
point. Figure 3-14 illustrates one example with the U-shaped sidewalk
segment. The problem occurs during the first phase of the route-finder
which searches for a sequence of spaces. The optimal route in Fig. 3-14
would result in a cycle.

s, -

S2

s3 (a) (b)

Fig.3-14: Concave basenap spaces.
The optimal route requires a cycle Shortest-path graph search algorithms prohibit cycles, and therefore the
in the space sequence (SI, S2, S1). optimal route is not found. Instead, the path is forced to stay within the
(a), (b) Two alternative routes. oddly-shaped space (Fig. 3-14a), or find an alternative route (Fig. 3-14b).

A possible solution is to split basemap spaces with large ratios of perimeter
to area into more balanced components, or more rigorously, to break up
all concave spaces into convex components.

3.4.2 Medial Axis & Path Relaxation

The path relaxation methods discussed in section 3.3.4 do not consistently
produce better results than the medial axis path. There are two distinct

cases where each method produces the more natural appearance:
1) When the direction of travel is across the main axis of a space

contour (e.g. traversing the short distance across a rectangular
space, as in Fig. 3-15a), the medial axis rendering pulls the path
toward the center of the space, away from the intended
destination. Iterative shortening substantially improves the

appearance of the path.

Geometric, topological & semantic
analysis of multi-building floor plan data

2) For street, sidewalk and hallway segments - paths following the
centerline of the space with approximately constant width - the
medial axis produces a more natural appearance. This is
particularly evident in winding sections (e.g. Fig. 3-15c, d).

Fig.3-15: (a) Path through
McDermott Court with medial axis (
rendering. The relaxed path in (b)
is smoother. (c) Medial axis path
along Amherst Alley follows the (a)
curves of the street. (d) The relaxed
path appears to bounce off the
boundaries.

(b) (d)

A possible remedy could be to take a denser sampling of contour points

when constructing the CDT, which would more closely mirror the exact
medial axis. Alternatively, the CDT could incorporate portal positions,

for example, by constraining a triangle edge to span the width of a door
frame rather than the full length of the door's incident wall.

3.4.3 Robustness & Space Geometry

For a practical implementation of the geometric algorithms used in this

project, problems in numerical errors and geometric degeneracies needed
to be addressed. Numerical errors are uncertainties resulting from the use

of data of varying precision. For example, interior measurements may be

accurate within fractions of a foot, while the position of the building itself

may be known only to within a few feet. This results from the great

variations in the scale of the site: the campus coordinate system has an

order of magnitude of i01 ft., yet walls separating individual rooms are

only inches thick. Double precision floating point values are used in all
computations, with epsilon tolerances to determine when two points

coincide.
Fig.3-16: Geometric degeneracies
present in basemap spaces: (a) Self-
intersecting polygon. Performing a
depth first search on the CDT
finds the triangulation for only
one simple polygon component.
(b) Repeated edge. Both right and
left face triangles are outside the we t

polygon. (a) (b)

Geometric, topological & semantic
analysis of multi-building floor plan data

Geometric degeneracies were prevalent in the basemap. Partitioning of

the basemap in (Kulikov 20041 resulted in instances of self-intersecting

polygons and repeated edges (cf. Fig. 3-16). This caused a number of

problems when determining triangulations. Specifically, self-intersecting

polygons result in an incomplete triangulation, since the search algorithm

(separating interior and exterior triangles) finds only the triangulation of

one simple polygon component. Repeated edges are interpreted as a

single constrained edge in the CDT since they share source and

destination coordinates. As illustrated in Fig. 3-16b, if the search

algorithm chooses the bad edge as a starting point, the root triangle will be

outside the polygon, and the triangulation of the outer mesh will be

returned in error. To alleviate this issue, a filtering script pre-processes all

basemap spaces to remove any repeated edges from the space contours.

3.4.4 Path discontinuities

The Location Server described in [Bell 20031 and [Nichols 20041 used a

significantly different optimization scheme than presented in this work.

Their method was to pre-compute shortest path lengths.

Fig.3-17: Example of generated For every sequence of three adjacent spaces {SI, S2 , S31, pre-computations
basemap route in [Nichols 20041. determined the best pair of portals {P(51 , SA P(S2, SA providing the

shortest route through S2. Routes were then constructed by simply

appending the set of pre-computed paths inside individual spaces, once

the high-level sequence of spaces was obtained.

S,
The problem was that continuity is not guaranteed, resulting in irregular

paths as shown in Fig. 3-17. Consider a sequence of four spaces {SS, S2 ,S 3 ,

S4 S4d. The first three spaces optimally connect with the portal pair P(Si, S2),

S3 ------ P(S 2, Si, and the last three spaces optimally connect with a second portal

pair {P(S 2, S3), P(S3, S4)}2. When adjacent spaces have more than one

common portal, P(S 2, S3)1 is not guaranteed the same as P(S2, S3)2 causing
Fig.3-18: Discontinuous path. the path discontinuity illustrated in Fig. 3-18.

Geometric, topological & semantic
analysis of multi-building floor plan data

4 MIT WikiMap

4.1 Introduction
An expressive representation for location is an important component of
many applications. Semantic properties focus on the meaning of a
feature, such as its cultural, historical or functional significance. While the
previous two chapters reasoned about space at the level of coordinates,
containment relationships and adjacency networks, these representations
have no way to express the semantics that define how a particular space is
used. This chapter presents the MIT WikiMap, an application that
models the geographical relationships between spaces as well as the
functional significance or other meanings of a given space.

XML Data Model

Fig.4-1: MIT Wikimap components.
A map visualization interface is
combined with UI controls for geomery landmarks
adding landmarks to the data
model.

Visualization Interface Landmark Interface

S(Output Agent) (Input Agent)

MIT WIklMap

The broad-view motivation for this work is landmark-based navigation. As
the semantic layer becomes populated with distinct visual entities from

around campus, route-finding algorithms may provide directions or plan
paths based upon particular landmarks. Further, route visualizations may

provide richer information to travelers in the form of visual markers
supplementing map geometry, or even landmark descriptions integrated
into textual route instructions.

Material in this chapter appeared in a report for course 6.831 User

Interface Design & Implementation instructed by Professor R. Miller

[Whiting, Giovine and Stoltzman 2005].

4.2 Motivation
Complex public spaces, such as a college campus, are host to a wealth of

interesting and practical locations that are too often neglected or

underutilized simply due to the community's lack of awareness. As a

collective, the denizens of a space encapsulate this information, but there

is currently no convenient way to gather this information and disseminate

it to the individual.

...........

Geometric, topological & semantic
analysis of multi-building floor plan data

The MIT WikiMap is proposed as a solution. The WikiMap is an
interactive, web-based application that allows collaborative, distributed
tagging of geographical points on the MIT campus. The WikiMap will
serve as a collective record of the public's knowledge of campus: any user
may add an item to the map, at which point the item will be world-
viewable. Any user may update or edit previously added items at any time,
so an effectively-used WikiMap can be perpetually correct and up to date.

The users fall into two main groups: MIT community members and MIT
campus visitors. MIT community members have varying levels of
familiarity with the campus, and will be the primary contributors to the
WikiMap, actively adding entries about locations with which they are
familiar and updating those of others. Further, we expect that community
members will also reap the most benefit, given the amount of time they
spend on or around campus.

MIT campus visitors will generally be viewers of, rather than contributors
to, the WikiMap. Our system offers visitors "self-guided-tourism"-the
map will offer a wealth of information regarding the unique academic,
cultural and artistic facets of MIT and where to find them. Also, the
WikiMap offers pragmatic uses, for instance pointing out cafes or places to
board public transportation.

The WikiMap offers 3 basic actions to the user: 1) add an item to the
map; 2) edit an existing item; and 3) view an existing item. Users' tasks
largely consist of these operations. Important tasks include:

* browsing the map - a user may simply want to explore the campus by
casually perusing the WikiMap. He may explore by location (e.g. West
Campus) or by category (e.g. MIT history).

* sharing a point of interest - any time a user encounters a novelty or

amenity of campus not already present on the WikiMap, he may
access the WikiMap and add it.

* choosing destinations based on proximity - users may find locations which

offer multiple amenities, e.g. food near a lecture hall, or a computer
cluster near bike racks.

4.3 User Interface Design
Usability was the primary concern in the interface design. Principles of
intuitive user interface design were considered at all stages of development
focusing on Nielson's Usability Heuristics [19901:

" visibility of system status

* user control and freedom
* error prevention
* recognition rather than recall

* aesthetic and minimalist design

Geometric, topological & semantic
analysis of multi-building floor plan data

The following sections describe each component of the user interface,
summarizing design decisions and the alternatives considered during
various stages of development.

Fig.4-2: WikiMap user interface,
shown while viewing items

4.3.1 Browsing

e Navigating the Map

The interface incorporates the same map navigation tools as implemented
in the MIT Maps route-finder application. Direct manipulation controls
allow the user to drag the map to pan and double-click to re-center. A
zoom bar is also provided to change the map scale.

. Category Selection

We chose to implement category selection as a set of toggle buttons. Our
user tests clearly showed this was desirable, and in designs which pre-dated

|e Rack this selection idiom, users would ask why we didn't have this.

The buttons offer a clear affordance for clicking and are better mouse
pointer targets than, say, hyperlinks. Including icon images on the

Per" buttons acts as a visual attraction and makes clear the connection between
Rgst-ut buttons and map icons. Toggle buttons also offer easy undo: the user

clicks in exactly the same place to reverse a display or hide action. To
increase efficiency, we implemented "Add All" and "Remove All" options,
along with keyboard shortcuts for every button.

Fig.4-3: Toggle-button widget for

category selection.
An alternative "K of N" selection model can be seen in our original
selection UI, which uses two list boxes: one list box to display the set of N

Display Categories:

- Arctgectue

QowpAe ckjatar

ick Food

- - - jr-- -

Geometric, topological & semantic
analysis of multi-building floor plan data

Available Categores: Dispaed Categories:
Architecture Fun
Bike Racks MIT History
Computer alusters
Labs 4

Restaurants
Services

Fig.4-4: Alternative "K of N"
widget for category selection - one
list box for the K selected choices,
the other listing all N choices.

Add Item

Fig.4-5: Draggable tack used as
metaphor for tagging information
points on the map.

fixed choices, and a second list box for the K selected categories. This UI
scales better with the number of categories, addressing a concern we had
in early designs. However, this UI has many drawbacks. Adding a
category requires at least a double click, and undoing an action would
require the user to move the mouse between the two list boxes. Further,
the mapping between category names and icons was established by a small
legend, which led users to erroneously click on the icons in the legend
hoping to display items from that category.

Search Box

Users may submit a location in the search field at the top of the page. A
drop-down menu was incorporated with incremental search of all possible
location names on campus. This ensures users will select a valid search
item before submitting the query. A successful search re-centers the map
and highlights the selected location (room, building or green space).

In earlier iterations, the search box was intended for multiple query types.
For example, a valid query would be "bldg 10 food bike racks" in an
attempt to display all bike racks and places to eat in the area surrounding
building 10. We decided implementation of such a sophisticated search
tool was beyond the scope of this project. Complications would arise in
recognizing which part of a query corresponds to location, and which part
to category, and how to provide error recovery when search queries cannot
be resolved.

4.3.2 Adding a New Landmark

. The Tack: Initializing a Landmark

For the Add-Item task, we introduced an affordance for pinpointing a
location. We chose a tack because it is a well-understood metaphor for
representing information on traditional paper maps. It also provides a
visual representation for new items that is distinct from existing category
icons. Using direct manipulation, the tack is simply dragged across the
map to designate the new item location. Tacks are created via a
prominently placed button at the top corner of the map. Multiple features
are implemented for user freedom and efficiency:

1) Every time the tack button is pressed, an additional tack is added to
the map. This allows users to plan multiple items. For example, many

tacks can be positioned at their intended locations before entering

descriptive information for each one.
2) We included a "Delete Tack" button which removes the tack from the

map and cancels an Add-Item in progress.
3) New tacks are positioned in the center of the viewable region of the

map. This increases efficiency when used in conjunction with the

search box. A location search followed by an Add-Item action will

position the tack directly on top of the desired room.

Geometric, topological & semantic
analysis of multi-building floor plan data

The earliest design iterations included separate modes for adding and
viewing items, but this approach had poor learnability. Users were not
familiar with the operations available on the WikiMap, and modes
restrained exploration of all functionality in viewing, adding and editing
items. The result was frequent mode errors, for instance, attempting to
add items while in view mode and vice versa.

- Selecting Landmark Location

We treat the campus as 2.5D (layers of 2D stacked on top of each other),
e.g. by floors within a building. Consequently, choosing a location may
sometimes be ambiguous. We chose to alleviate this issue with a location-
selection bubble that provides a user with all the possibilities at a
particular 2D point. For instance, dropping a tack on 10-250 also offers
10-455 and the hallway below the lecture hall, among other possible
rooms. The user may alternatively choose a broader space destination (e.g.
Building 10) if the entry pertains to a larger area.

In order to speak the user's language, we incorporate room types into
location choices. For instance, instead of the formal space code "7-
100IA," the location bubble displays "7-100 lobby." A text field is also
available if the user prefers to enter a colloquial location name.

Fig.4-6: Stages in adding WikiMap
items: (a) choosing a location; (b)
adding descriptive information; and
(c) the final display.

Choose a location below
QUkWM 7
Z--=
7-100 lobby
7-300 Ca:dft
7-400 mdft

Or rdm this locefit-n

-- ----- ----

\
7A

0

Locliort 7-i00lobby (
Dreag kn te hnge

Desbon nea_..
se(a v(rtual wakt)ough of the
iftcoffidor

(b) (c)

If a user were to type a valid location name in the text field, we considered
automatically moving the tack to that location. This would act as an
alternative to dragging the tack across the map. In the end, we decided
against this feature because it would be disorienting to users and confused
with the ability to submit colloquial names.

Geometric, topological & semantic
analysis of multi-building floor plan data

4.3.3 Displaying Added Items

A consistency issue arose when prototyping the Add-item feature: What is
displayed if the category of the added item is not selected as a Displayed
Category? For example, the user adds a Sculpture item to the map, but
only Quick Food and Bike Racks are selected. To deal with this issue, we
decided to include the check box "Show all items I've added/edited this
session" that decouples selection of display categories from the user's
personal contributions.

In every round of user tests (since the paper prototype), we found that
users frequently re-check items immediately after saving to ensure the
information is displayed as expected. As such, we decided added item
icons should always be displayed. This provides visual feedback for a
successful save, and allows users to easily view and edit their contributions
(i.e. user control).

One considered alternative was to enforce consistency by automatically
selecting the category of the added item as a Displayed Category. We
decided it would be disorienting for a user's category selections to be over-
ridden. Instead, users are given complete control over category display.

4.3.4 Editing Landmarks

Changing Location of an Entry

In the spirit of the Wiki, entries may need to be moved to new locations,
while still retaining the rest of their data. We address this 'user freedom'
feature by allowing the entry icons to be dragged. Upon a drop of an
existing entry, we present the user with a location-selection bubble (as
when adding an item for the first time). A special case arises when the user
drags an icon while editing the entry. Here, we store the current state of
the edit so that it is once again available upon drop. Edit state is also
maintained if the user closes the edit bubble, or views other existing items
before saving.

. Category Selection

For the sake of consistency we decided to restrict category edits to
administrators, for example, to prevent redundant item groupings such as
"buildings" and "architecture". Future extensions may include hierarchal
category lists to allow for greater variety of display selections and a form
for user suggestions of categories.

An alternative was to allow custom categories. Although this follows our
original goal of having all content controlled by the user, the danger is a
long, cluttered category list with inconsistent or absent icon images.

Geometric, topological & semantic
analysis of multi-building floor plan data

4.3.5 Deterring Vandalism

The ability to add and edit items is restricted to members of the MIT

community. This distinction is made for two reasons: (1) community

members are assumed to have sufficient familiarity with the campus that

they can appropriately add items; and (2) this allows the WikiMap to deter

vandalism.

Fig.4-7: Email confirmation dialog.

After adding or editing a landmark

for the first time, users are asked to

submit an MIT email address. A
confirmation email is automatically
generated and sent to the address

provided.

Ron am: tr_

Loaio: 4

Several measures were taken to deter vandalism. First, users are made

accountable by requiring a valid MIT email address before finalizing a

user's edits and additions. This allows the WikiMap administrators to

associate every change to the system with a member of the MIT

community so that proper actions may be taken against those who confirm

inappropriate items.

Second, the power to delete an entry lies exclusively in the hands of the

administrators. Any user may flag a WikiMap entry for deletion, but the

action doesn't occur until an administrator approves it.

For efficiency reasons, users with add/edit permissions (MIT community

members) will get only one email asking them to confirm all changes they

made during a WikiMap session. This email is sent after completing the

first change, but the confirmation will apply to all changes during the

session, no matter when the user confirms. Only after this confirmation

will a user's changes be publicly visible on the WikiMap.

4.3.6 System Information

System Status

Some actions, such as displaying all sculpture items, may have no visible

effect on the map, either because no such items exist, or the items are

outside the viewport extents. To ensure users receive immediate feedback,

status messages are displayed prominently above the map. A blue

background hue (contrasting with map colors) and bold type add to

visibility. This feature gives confirmation an action was completed

successfully and speaks the user's language. Displaying a category will

return the message "Displayed n items on the map." Pressing save on an

edit will be confirmed with "Item successfully saved." Messages are

.

Geometric, topological & semantic
analysis of multi-building floor plan data

removed after approximately 10 seconds to avoid screen clutter or
messages taken out of context.

. Help & Documentation

For comprehensive information and instructions for use of the WikiMap,
users are one click away from our background and help page.

4.4 Implementation

4.4.1 Languages

The MIT WikiMap is built using Javascript, PHP, and MySQL aiming for
a lightweight implementation that is easily loaded into a browser. The
tradeoff is restricted functionality by Javascript's narrow range of
capabilities.

One example where usability was compromised is that the map does not
scroll when an icon is dragged outside the visible region. Scrollable maps
are much easier to implement in a Java applet, however, this would add a
large overhead on the initial load of the system.

4.4.2 Database

The MIT WikiMap has a MySQL database for its backend. Data is stored
persistently in the database as users add and edit items, organized in three
tables:

1. "wikiobj" stores the data for each landmark object.
2. "wikiconfirm" tracks which entries are awaiting confirmation.
3. "wikicategories" binds category names to icon images.

We decided that we wanted the system to be as real-time as possible. We
took advantage of many of the asynchronous capabilities of Javascript.
When a user clicks a category to load it onto the map, an asynchronous
call is made to our database, and XML is returned. This XML is then
parsed and displayed to the user appropriately. This system design means
that the user never needs to reload the page in order to view changes; they
are all available immediately.

Furthermore, when a user clicks an icon to load its information, it will
first display a local version of the information (stored client-side in

Javascript variables), and then will query the database to find thc most up
to date information for that item. If another user changes the information
for a particular icon, that change will be immediately visible to other users

(after clicking on that icon) - no page reloads are necessary. Note this only
occurs if a user is viewing, rather than editing an item, since we would not
want to overwrite a user's edit.

Geometric, topological & semantic
analysis of multi-building floor plan data

This real-time nature leads to a slight usability issue - a flicker upon
opening an item's information. This is caused by the call to the server
asynchronously coming back and refreshing the information displayed to
the user.

4.4.3 User Information

The implementation relies on session variables for storing user
information. When a user accesses the web page, a session variable called

overallnonce is generated that uniquely identifies that user during the
session. The session expires only if the browser window is closed. If the
page is refreshed or the user presses back/forward in the browser, the
session will persist. This was driven by a design decision to increase user
control and freedom.

Once a user adds or edits an item for the first time, she must enter an
email address. Since we are using a session variable, this step needs to be
completed only once. A confirmation email is then generated and sent to
the address provided. The new item is stored in the database, with the
"confirm" column of the entry initially set to 0 (off). Once the user
confirms the object, the entry's "confirm" column updates to 1 (on).

Email confirmation is flexible. The user may click on the confirmation at
any time. For example, a user may add/edit 10 different items then click
on the link via email to confirm. Since all of the objects were changed in
the same session, they will all be confirmed at once. Alternately, a user
may add/edit an item, then click on the link provided in the email, and
continue editing items. Future adds/edits in this session will be
automatically confirmed, since the user already confirmed his/her
identity.

4.4.4 Coordinate Locators

When an item's location is changed (after the user drags and drops an
icon), the location matches for the new point are displayed. This
information is retrieved by doing a point query, returning matches for the
provided layer of data. There are four layers that we use in order to return
these locations - rooms, greens, parking, and landmarks. For the rooms
layer, we query a script that finds all rooms in our data model containing
that x,y coordinate. As a consequence, multiple rooms will be returned if

the coordinate goes through multiple floors. For the greens, parking, and
landmarks layers, we query the IMS server maintained by MIT's
Department of Facilities [http://ims.mit.edu/help]. The greens layer
allows points such as Killian Court or McDermott Court to be identified.
Parking is for parking lots and garages, and landmarks are for a small set
of commonly known locations, such as 77 Mass Ave or the Harvard
Bridge.

Geometric, topological & semantic
analysis of multi-building floor plan data

One complication is that IMS returns space codes rather than colloquial
names. For example, IMS calls Killian Court "G6". In order to resolve
this, an additional table stores all known bindings between space codes
and colloquial names. After doing a point query to the various layers, we
send off another asynchronous call to a script that returns these bindings
as XML, and then replace the space codes with the colloquial names if
available. Similarly, we make sense of the space codes when we know a

more human-readable form for the location. We did this for lobbies,
corridors, stairs, and elevators. Instead of returning "10-100L1A" to the
user, we return "10-100 lobby".

4.4.5 Saving Item Edits

When an item is edited, previous versions of the item in the database are
left intact. The only part that changes is the "active" column of those

entries. Only one entry in the database for a particular object (identified
uniquely by a nonce) may be active at any time. This facilitates rolling
back an entry if a user inappropriately edited an item.

4.4.6 Item State

Finally, data entered by the user is persistent. When a user clicks to edit
an item, makes a change, then closes the edit bubble without saving, the
item's state will be the same when the user returns to that item's
information. This is done by maintaining two sets of the item's data -
one that is editable and one that is not. Any time a change is detected

(using onKeyup and onMouseUp events), the editable version will change
to reflect what the user did. If a user saves his/her changes, the editable
version of the data will overwrite the non-editable version. Alternately, if
the user cancels changes, the non-editable version will overwrite the

editable version. This can be used even for location changes. Therefore,
if a user drags an item to another location, then decides to put it back,
there is a link he/she can click on that will jump the item back to its
original location. We made this design decision in order to reduce errors
and increase user control and freedom.

4.5 User Testing

4.5.1 Procedure

User tests were conducted by finding volunteer users, briefing them, and

then observing their ease of use while completing prescribed tasks at a
computer. Since the WikiMap is web-based, the only equipment
requirement was a computer with access to the Internet.

To represent the MIT community, we requested participation from several

friends and acquaintances, both undergraduates and graduates. The bulk

Geometric, topological & semantic
analysis of multi-building floor plan data

of our users were from this group, which is reflective of our anticipated
demographic for WikiMap usage. To represent MIT visitors, we asked a
college student who was visiting MIT for a day.

We began our user briefing with an overview: "The MIT WikiMap is a
web-based, collaborative way of tagging features of the MIT campus by
location." We then asked our users if they were familiar with the concept
of a Wiki. Those who were not familiar were briefed on how a Wiki
allows public editing of common resources. Next, we asked our users if
they had used Google Maps, after which we modeled our map zooming
and panning UI. All users had used Google Maps.

We did not provide a demo, since we hoped to observe the learnability of
the interface. Before performing tasks, most users preferred to have a few
moments to explore and experiment with the interface, which was
granted.

We asked each user to perform 3 tasks. MIT community members were
asked the following:

1) Find a place to eat with bike parking nearby.
2) Add an item to the map at a specified location (different items and

locations for each user).
3) Edit an existing item on the map.

Non-community members currently do not have add/edit privileges so
their tasks differed:

1) Locate 26-100 exactly.
2) Find a place to eat with bike parking nearby.
3) Find something interesting to see (artwork, sculpture, etc. at the

user's discretion) on the eastern side of campus.

To encourage a relaxed testing environment, the users were told that we
were "testing the interface, not the user."

4.5.2 Results

The results of user testing were classified as cosmetic, minor, major or
catastrophic usability problems. In the final design no cosmetic or
catastrophic usability concerns were raised. Minor and major concerns are
summarized below with proposed solutions:

Minor: A user complained some icons (e.g. "Fun") blend into the background.
This could be solved by redesigning the icons, for example to have drop
shadows.

Text asking a user to enter an email address to validate the session was not easily
understood at first read. We solved this by rewording the dialog box to be
more concise.

Geometric, topological & semantic
analysis of multi-building floor plan data

Major: Many users were unconsciously reluctant to zoom the map. All users had

used Google Maps before, so all users knew that the map was zoom-able

and how they could accomplish this. Despite this, new users tended to

remain at the default zoom level, regardless of the number of items they

displayed on the map or the area they were interested in. This could be

alleviated by reminding users that they may zoom the map whenever more

than a certain number of icons become displayed. Alternatively, zooming

could be made more accessible, say, by having the scroll wheel control the

zoom level.

Users were often quick to enter their own place names. When presented with a

list of locations in the location bubble, many users went straight to the

"Name this location" field. Sometimes the user did this correctly (e.g. to

put the item "DDR machine" in the "Game Room"), but other times

users entered a room location simply because the tack was in the wrong

place and they did not see their room listed. The users may have expected

the tack or item to relocate to the correct location, but we made the

decision not to do this as it could be disorienting, especially if the entered

location was off-screen. We tried to mitigate this mistaken usage by

explicitly stating to the user that their best action may be to reposition the

tack.

4.6 Discussion

Upon reflection, the iterative design process was critical to the success of

our interface. We can all remember how pleased we were with our initial

design, and we now all look back at it aghast at how much more usable

and elegant our current design is.

We chose to paper prototype virtually all of our front end. This exercise

helped us recognize elements of our back end which were unrealistic (e.g.

an intelligent search box that would parse complex search expressions).

The paper prototype session also had its drawbacks. For instance, until

Fig.4-8: An early paper prototype. the final user testing, we had a false sense of security that our status

messages would guide the user. Indeed, they did in the paper prototype,

but that probably owed to the fact that they were physically placed onto

the interface, thus drawing attention to them. In our user testing, we

found that users barely noticed the status messages, let alone took their

advice.

.....

Geometric, topological & semantic
analysis of multi-building floor plan data

5 Future Work & Conclusions

5.1 Future Work

5.1.1 Landmark Salience

A compelling challenge is to integrate local landmarks into route-

representations. Research in spatial cognition has shown that landmarks

can be a powerful tool for communicating and visualizing directions

[Lovelace et al 1999]. Examples include identifying origin and destination

points, identifying decision points (points of reorientation, or junctions

where current orientation is maintained), verifying route progress, and

influencing expectation [Raubal and Winter 2002].

The main challenge is to develop a system to automatically define and

extract salient landmarks from the existing campus model. Drawing from

the semantic dataset described in Section 4, a measure of salience could be

incorporated by analyzing landmarks according to such features as

singularity (contrast with the surroundings), prominence/visibility, or

content (having meaning or cultural significance).

Fig.5-1: Visually salient locations

on campus. (Left) a red wall marks
the entranceway to building 10;
(right) the shape factor and

visibility of fagade contribute to
Simmons Hall's landmark status
on campus.

Visual Salience
Some landmarks fit naturally into the mechanisms developed for

describing model geometry in generic walkthrough systems: e.g., interior

windows, unusual entranceway dimensions, distinctive floor surfaces or

wall colors or textures. Such regional differentiating features provide

contrast with their surroundings and contribute to a measure of visual

salience. [Raubal and Winter 20021 also suggest visibility of faeade and

shape factor (deviation of fagade area to bounding rectangle) as salient

qualities.

. Structural Salience
Structural salience corresponds to the elements defined by Kevin Lynch

[19601 that structure a city, classified as nodes, boundaries, and regions.

The topological model presented in this thesis affords a number of

possibilities for extracting structurally salient locations on campus. For

example, comparing the relative connectivity of spaces in the space-graph

Geometric, topological & semantic
analysis of multi-building floor plan data

may reveal important nodes in the structure of MIT campus. In Figure 5-3

below, hallways emerge as structurally salient spaces due to the many
classrooms to which they provide access.

Fig.5-2: Structurally salient
locations on campus. (Left) the
entrance to Lobby 7; (right)
navigational signs posted inside
Lobby 10.

Connectivity comparisons could be further enhanced by weighting edges

based on predefined notions of importance. For instance, a connection to

a corridor or elevator is more useful for movement through a building
than a connection to an office. Thus, a lobby linked to two corridor

spaces might rank higher than a classroom with two portal edges to a lab

and storage space.

Fig.5-3: Floor plans of MIT
buildings 10 and 7, superimposed
with a graph representation. L
Hallways emerge as nodes with
high connectivity.

5.1.2 Route Preferences

As an alternative to hard constraints (e.g. rolling routes that cannot ascend

staircases), future work could incorporate route preferences. For example,

during the winter a student may prefer an indoor route to class, but will

agree to take a short detour outdoors if it reduces his travel time by five

minutes. Soft constraints such as this could be implemented through edge

weight adjustments - any graph edge leading to an outdoor space is

weighted more heavily, depending how strongly the traveler specifies his

inclinations.

Geometric, topological & semantic
analysis of multi-building floor plan data

5.1.3 Route Visualization

The problem of visualizing routes inside buildings presents specific
challenges. In particular, an extra dimension (the z-axis) is required to
illustrate vertical movement such as ascending a staircase. Our current 2D
map does not make use of height information; instead, all features are
projected onto a plane which may result in a cluttered and ambiguous
path when traversing multiple floors (see Fig. 5-4).

Fig.5-4: Example vertical route
inside a building. The path goes
through 1" and 2n floor corridors
that overlap in plan view.

Fig.5-5: An exploded view of a
multi-story building showing both
interior and exterior structure

(Niederauer et al. 2003].

A possible solution is to display route maps in 3D. However, this requires
a display mechanism allowing viewers to simultaneously see interior spaces
and exterior structure of the environment. Standard viewers for three-
dimensional building models are suited to display exterior structure, but
occlude indoor spaces. On the other hand, walkthrough interfaces reveal
inner structure, but only for individual rooms.

One technique used by illustrators is to create exploded views separating
buildings into individual floors. The work by [Niederauer et al. 2003]
presents a system for interactively generating such views of 3D
architectural environments. Incorporating such a display interface into
the MIT Route Finder would greatly enhance usability.

Furthermore, the Niederauer visualization system provides interactive
control. Allowing users the additional ability of visualizing routes from
multiple viewpoints may have great benefits to their spatial cognition,
enhancing the mental map they form of a route.

5.1.4 Route Granularity

The route-finding applications described in this thesis offer a fine-grained,

human-centered approach to navigation services in built environments. If
integrated with other higher-level mapping services, this could lead to

applications which model multiple levels of granularity in urban
environments, providing a continuous representation between traffic
networks and interior spaces. For example, defining interface points
between Google Maps and MIT Maps could enable the following scenario:

A student's parents are visiting for the weekend. Their hotel is near
Boston Commons and their son's architecture studio is in 7-403. A

Geometric, topological & semantic
analysis of multi-building floor plan data

A student's parents are visiting for the weekend. Their hotel is near

Boston Commons and their son's architecture studio is in 7-403. A
query to MIT Maps automatically redirects the first part of the search to

Google Maps for a route from the hotel address to the parking lot

nearest Building 7. MIT Maps determines the remaining path as a

walking route from the lot to 7-403. The final display presents one

continuous route with an icon to mark the parking lot location, and

color coded paths indicating walking and driving segments.

5.2 Conclusion

The principal motivation of this work was to develop an intuitive, human-

centered approach to landmark-based navigation systems in a large urban

space. The work in this thesis presents three main contributions towards

that goal:

1) Framework for generating a topological model of complex environments

Methods have been presented for constructing a topological

representation of built environments from floor plan geometry. The MIT

campus was used as a test-bed containing over 160 buildings, over 800

floors, and approximately 36,000 indoor and outdoor spaces. An

exhaustive classification of adjacency types was provided for the university

infrastructure.

2) Prototype application for efficient route generation

An MIT route finder was developed to provide efficient computation of

paths throughout the MIT campus with coverage of interior and exterior

environments. Improved path rendering methods were introduced,

combining an approximated medial axis path with shape simplification

techniques.

3) User interface for generating a repository of local landmarks

The MIT WikiMap application was developed to provide for collaborative

tagging of geographical locations on the MIT campus according to

functional, historical or cultural features. The resulting repository of

"points of interest" on campus will serve as a collective record of the

university community's knowledge of campus.

The methodologies developed in this thesis may contribute to novel

design tools for complex environments. The ability to map and navigate

interior and exterior spaces at human scale provides tools to answer

numerous practical questions in architectural design. For example, what

are the common navigation paths and do they provide adequate capacity?

Are landmarks effectively placed in the environment to aid navigation?

Does a building provide appropriate facilities for access and navigation by

people with disabilities? The WikiMap may also lead to studies on the

64
Geometric, topological & semantic
analysis of multi-building floor plan data

usability of spaces. Simple measurements such as the frequency of
searched locations may provide insight on features of functional or
culturally significant spaces.

This work leads to many different directions for future research including
measures of landmark salience, improved route visualization mechanisms,
and integration of local environment models with global urban features.

Geometric, topological & semantic
analysis of multi-building floor plan data

Bibliography

Agrawala, M. and Stolte, C. Rendering Effective Route Maps: Improving Usability
Through Generalization. In Proc. of SIGGRAPH 2001, pp. 241-249, 2001.

Battat, Y. M.Eng. Thesis, Massachusetts Institute of Technology (In Progress).

Bell, J. An API for Location Aware Computing. M.Eng. Thesis, Massachusetts
Institute of Technology, 2003.

Bern, M. and Eppstein, D. Mesh generation and optimal triangulation. In Hwang, F.
and Du, D. (eds.), Computing in Euclidean Geometry, pp. 23-90, World
Scientific, 1992.

Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E. and Yergeau, F. Extensible
Markup Language (XML) 1.0 - 3 d edition, originally published 2004.
(http://www.w3.org/TR/REC-xmV].

Cham, J. In Piled Higher & Deeper, originally published December 1, 2005.
[http://www.phdcomics.com/comics/archive.php?comicid=6561.

Cormen, T., Leiserson, C., Rivest, R. and Stein, C. Introduction to Algorithms - 2
edition. The MIT Press and McGraw-Hill, 2001.

Darken, R. and Peterson, B. Spatial Orientation, Wayfinding, and Representation. In
Stanney, K. (ed.), Handbook of Virtual Environments: Design,
Implementation, and Applications, pp. 493-518, Lawrence Erlbaum
Associates, 2002.

de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, 0. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2000.

Funkhouser, T., Saquin, C. and Teller, S. Management of Large Amounts of Data in
Interactive Building Walkthroughs. Computer Graphics: SIGGRAPH
Symposium on Interactive 3D Graphics, pp. 11-20, March 1992.

Gold, C. Simple Topology Generation from Scanned Maps. In Proc. of Auto-Carto 13,
ACM/ASPRS, pp. 337-346, Seattle, April 1997.

Guibas, L. and Stolfi, J. Primitives for the Manipulation of General Subdivisions and
the Computation of Voronoi Diagrams, ACM Transactions on Graphics, Vol. 4,
No. 2, pp. 75-123, 1985.

Haunert, J.-H. and Sester. M. Using the Straight Skeleton for Generalisation in a

Multiple Representation Environment. In Proc. of ICA Workshop on
Generalisation and Muliple Representation, Leicester, August 2004.

Joan-Arinyo, R., Perez-Vidal, L. and Gargallo-Monllau, E. An Adaptive Algorithm to
Compute the Medial Axis Transform of 2-D Polygonal Domains. In Brunet, P. and
Roller, D. (eds.), CAD Tools for Products, Springer-Verlag, 1996.

Klippel, A., Tappe, H., Kulik, L. and Lee, P. Wayfinding Choremes - A Language for

Modeling Conceptual Route Knowledge. In Journal of Visual Languages and
Computing, Vol. 16, No. 4, pp. 311-329, 2005.

Geometric, topological & semantic
analysis of multi-building floor plan data

Klippel, A. and Winter, S. Structural Salience of Landmarks for Route Directions. In
Cohn, A. G. and Mark, D. M. (eds.), Spatial Information Theory,
International Conference COSIT, pp. 347-362, Springer, Berlin, 2005.

Kulikov, V. Generating a Model of the MIT Campus Terrain. M.Eng. Thesis,
Massachusetts Institute of Technology, May 2004.

Latombe, J. Robot Motion Planning. Kluwer Academic Publishers, 1991.

Lee, D.T. Medial Axis Transformation of a Planar Shape. IEEE Trans. Pattern Anal.
and Mach. Intelligence PAMI-4, pp. 363-369, 1982.

Lee, J. A Spatial Access Oriented Implementation of a Topological Data Model for 3D
Urban Entities. GeoInformatica, Vol. 8, No. 3, pp. 235-262, 2004.

Lischinski, D. Incremental Delaunay Triangulation. In Heckbert, S. (ed.), Graphics
Gems IV, Academic Press, pp. 47-59, 1994.

Look, G., Kottahachchi, B., Laddaga, R. and Shrobe, H. A Location Representation

for Generating Descriptive Walking Directions. IUI'05, January, 2005.

Lovelace, K., Hegarty, M., and Montello, D. Elements of Good Route Directions in

Familiar and Unfamiliar Environments. Spatial Information Theory, pp. 65-82,
Springer, Berlin, 1999.

Lynch, K. The Image of the City. The MIT Press, 1960.

MassGIS, Office of Geographic and Environmental Information, Commonwealth
of Massachusetts Executive Office of Environmental Affairs. Datalayers/GIS

Database Overview. March 2006. [http://www.mass.gov/mgis/spc-pts.htm].

Nichols, P. Location-Aware Active Signage. M.Eng Thesis, Massachusetts Institute of
Technology, January 2004.

Niederauer, C., Houston, M., Agrawala, M. and Humphreys, G. Non-Invasive

Interactive Visualization of Dynamic Architectural Environments. In Proc. of ACM
SIGGRAPH'03 Symposium on Interactive 3D Graphics, 2003.

Nielsen, J., and Molich, R. Heuristic Evaluation of User Interfaces. Proceedings of
ACM CHI'90 Conference on Human Factors in Computing Systems, pp. 249-
256, 1990.

Nothegger, C., Winter, S. and Raubal, M. Computation of the Salience of Features.
Spatial Cognition and Computation, Vol. 4, No. 2, pp. 113-136, 2004.

Raubal, M. and Winter, S. Enriching Wayfinding Instructions with Local Landmarks.
In Egenhofer, M.J. and Mark, D.M. (eds.), Geographic Information Science.
Vol. 2478, pp. 243-259, Springer, Berlin, 2002.

Richter, K. and Klippel, A. A Model for Context-Specific Route Directions. Spatial
Cognition IV, pp. 58-78, 2005.

Roush, W. Killer Maps. Technology Review, Vol. 108, No. 10, pp. 54-60,

October 2005.

Sorrows, M. and Hirtle, S. The Nature of Landmarks for Real and Electronic Spaces.
In Freksa, C. and Mark, D. (eds.), Spatial Information Theory, pp.37-50,
Springer, Berlin, 1999.

67
Geometric, topological & semantic
analysis of multi-building floor plan data

Timpf, S and Frank, A. Using Hierarchical Spatial Data Structures for Hierarchical

Spatial Reasoning. In Hirtle, S. and Frank, A. (eds.), Spatial Information
Theory, pp. 69-83, Springer, Berlin, 1997.

Teller, S., Funkhouser, T., Khorramabadi, D. and Sequin, C. The UCB System for

Interactive Visualization of Large Architectural Models. Prescence, Vol. 5, No. 1,
January, 1996.

Varadhan, G. and Manocha, D. Out-of-Core Rendering of Massive Geometric

Environments. In Proc. of IEEE Visualization, 2002.

Whiting, E., Giovine, G. and Stoltzman, W. MIT WikiMap. 6.83 1: User
Interface Design & Implementation, Final Report, Massachusetts Institute of
Technology, December 2005.

Geometric, topological & semantic
analysis of multi-building floor plan data

A Project Build Instructions

This chapter describes how to checkout, build and execute the
applications described in this thesis, including the CDT generator, vertical
portal linker, dangling portal linker, and the location server. The
instructions assume an MIT CSAIL account and a LINUX command-line
environment.

A.1 Checkout Instructions
The applications described in this thesis are stored in the CSAIL SVN
repository as part of the walkthru/mit source tree. To check out the
entire directory, first move to the directory where your local checkout of

the walkthru source tree will be hosted, then type one of the following
commands:

From a CSAIL machine with local access to the repository:

% svn checkout file:///${REPOSITORY}

With remote access to the repository through ssh:

% svn checkout
svn+ssh://login.csail.mit.edu/${REPOSITORY}

The variable REPOSITORY is the path to the repository, which currently

resides at: /afs/csail/group/rvsn/Repository/walkthru/mit.

A.2 Build & Run Instructions
Once the source code has been retrieved from the SVN repository, the
entire project can be built and run in batch mode with a single pipeline
script. First move into the directory where your local checkout of the
source tree is hosted, and type:

% python pipeline.py

It is assumed that all floor plans have been processed by the DXF Parser
and are accessible from a central location. To run each application
separately, step-by-step instructions are provided below.

1. Run CDTgenerator

To compile the CDT generator, move to the directory /mit/src/cdt/
and type:

% make cdtxml

The following command will process all spaces in the campus data corpus:

Geometric, topological & semantic
analysis of multi-building floor plan data

% python run.py [floors-file] [input-dir] [outputdir]

e.g.

% python run.py . . /orderedFloors. xml
/var/www/maps.csail.mit.edu/output.latest/ . . /output.cdt/

The floors_f ile is the ordered list of floors for each building (see C.1).
The input directory is the path to the floor data files (see C.2). In the
output, each space is given a set of "triangle" child nodes representing the
constrained Delaunay triangulation for the space's contour.

2. Run vertical portal linker

Move to the directory /mit/src/vertPortals/. The command-line

arguments to invoke the vertical portal linker are:

% python run.py [floorsfile] [input-dir] [outputdir]

e.g.

% python run.py ../orderedFloors.xml ../output.cdt/
../output.vert/

The f loors_f ile is the ordered list of floors (including mezzanines) for
each building (see C.1). The input directory is the location of the floor
data files. The portal linker processes each floor in the inventory, finds all
instances of vertical spaces (i.e. stairs and elevators) and finds their match
in neighboring floors. Floors are assumed to be neighbors if they are listed
sequentially in the f loors_f ile.

3. Run building-basemap dangling portal linker

Move to the directory /mit/src/danglingPortals/. The command-line

arguments to invoke the dangling portal linker are:

% python run.py [floorsfile] [inputdir] [outputdir]
[radius]

e.g.

% python run.py . . /orderedFloors.xml . . /output.vert/
../output.final/ 30

The f loors_ f ile is the ordered list of floors for each building (see C.1).
The input directory is the location of the floor data files, which must also
contain the basemap data files. The radius parameter sets the tolerance,
measured in feet, when searching for basemap spaces proximal to each
dangling portal.

Geometric, topological & semantic
analysis of multi-building floor plan data

4. Run Location Server

Once the triangulation and portal data has been generated for each space,
the output can be loaded into the location server. The location server is
invoked with the following command-line arguments:

% java -Xmx[heap size] -D[rmi codebase] -D[policy file]

[class] [mode] [db file] [input dir] [floor ...]

The mode parameter specifies whether the location server is run in batch
processing mode, where the parameter is BATCH__OUT, or quick start
mode, where the parameter is QUICKSTART. In batch processing mode,
the location server will load and pre-process the list of named floors, then
output this state to the specified file before binding to the Java RMI
port. The input dir parameter is simply the path to the floor data
files. The f loor parameter names one or more XML files, where each file
contains all space and portal information for the entire floor.

For example, to load all spaces and portals on floor 0 and 1 of Building 1
in batch mode, the command is:

% java -Xmxl500m -Djava.rmi.server.codebase=file://./

-Djava.security.policy=locationserver/java.policy

locationserver.JavaLocationServerRMI BATCHOUT full.db

-ewhiting/walkthru/mit/output.final/ 1-0.xml 1-l.xml

To actually compile and invoke the location server, first move to the
directory LocationAwareXML/locationserver then type:

% rmiregistry &

% make all

% make full

Alternatively, to load only the basemap spaces, type "make basemap"
instead of "make full". The location server will then load the campus
data from the local file system and publish itself on the default Java RMI
port. The set of floors to load is listed in the Makefile.

Geometric, topological & semantic
analysis of multi-building floor plan data

B Portal & Space Types

The following are lists of type codes used to define spaces and portals in
the XML data model.

Table B-1: Portal types.

Portal Class
vertical

horizontal

Portal Type
stair
elevator
explicit
implicit
basemap
slope

Table B-2: Basemap space types
[Kulikov 20041.

Table B-3: Indoor space types as
defined by MIT's Department of
Facilities
[https://floorplans.mit.edu/mit-
explore.htmll.

Space Type Code
sidewalk SDWLK
street HGWAY
grass GRASS
construction CNSTR
slope SLOPE
building footprint BLDNG
unknown UKNWN

Space Type
ALTER/CONVERSION
ANIMAL QUARTERS
ANIMAL RSCH LAB
ANIMAL SERVICE
APARTMENT
APARTMENT SVC
ATH LOCKER ROOM
ATH SHOWER ROOM
ATHLETIC FACIL
ATHLETIC SERVICE
BRIDGE/TUNNEL
CLASSROOM
CLASSROOM SVC
COAT ROOM
COMPUTER FACIL
COMPUTER SERVICE
CONFERENCE ROOM
CORRIDOR
DARK ROOM
DAY CARE
DAY CARE SV
DIAGNOS SVC LAB
DRAFTING ROOM
ELEC/TEL CLOSET
ELECTRIC CLOSET
ELEVATOR
EXHIBITION FACIL
EXHIBITION SVC
FEMALE LAVATORY
FOOD FACIL SVC
FOOD FACILITY

Code
ALTER
AN QTR
AN LAB
AN SV
APTMNT
APTSVC
ATH LK
ATH SH
ATHLET
ATH SV
BR/TUN
CLASS
CLA SV
COAT
CMPUTR
CMP SV
CONF
CORR
DK RM
DAY CR
DC SVC
DS LAB
DRAFT
EL/TEL
ELEC
ELEV
EXHIB
EXH SV
F LAV
FOODSV
FOOD

Code
STAIR
ELEV
EXPLICIT
IMPLICIT
OUTDOOR
SLOPE

Geometric, topological & semantic
analysis of multi-building floor plan data

GUEST ROOM GUEST
HEALTH CARE SVC HC SV
HOUSEMASTER APT H MSTR
INSTRUCTION SHOP INSTRC
INSTRUMENT ROOM INSTRU
JANITOR CLOSET JAN CL
JANITOR LOCKER JAN LK
JANITOR STORAGE JAN ST
LAB SUPPORT SHOP LAB SP
LABORATORY SVC LAB SV
LAUNDRY FACIL LAUN
LECTURE HALL LECT H
LIBRARY PROCESS LIB PR
LIVING QUARTERS LIVING
LOBBY LOBBY
LOUNGE LOUNGE
MAIL ROOM MAIL
MAINTENANCE SHOP M SHOP
MALE LAVATORY M LAV
MEDIA PRODUCTION MEDIAP
MEDIA SERVICE MEDIAS
MERCHAND FACIL MERCH
MERCHAND SVC MER SV
MULTI-PURPOSE RM MULTI
MUSIC PRACTICE MU PRA
NON-ATH LOCKR RM N-A LK
NURSE STATION NURSE
OFFICE OFF
OFFICE SERVICE OFF SV
PATIENT BATHROOM PBATH
PATIENT BEDROOM PBEDR
PRINT/DUP SHOP PR/DUP
PUBLIC LAVATORY PB LAV
PUBLIC WAITING P WAIT
PVT CIRCULATION P CIRC
PVT LAVATORY P LAV
RECEIVING ROOM RCVG
RECREATION FACIL RECREA
RESEARCH LAB RS LAB
RSCH LAB-OFFICE RES LO
SECY/RECEPTION SECY/R
SHAFT SPACE SHAFT
SHOP SERVICE SHP SV
SLEEP/STD W/BATH SLPBTH
SLEEP/STUDY SVC SLPSVC
SLEEPSTD W/OBATH SLEEP
STACK/STUDY STKSTD
STAIRWAY STAIR
STORAGE FACILITY STOR
STUDIO STUDIO
STUDY ROOM STUDY
SURGERY SURG
TEACHING LAB TC LAB
TELECOM CLOSET TELE
TERRACE TERR
TOILET OR BATH BATH
TREATMNT/EXAM RM TRT/XM
UTILITY/MECH RM U/M
VAULT VAULT
VEHICLE STORAGE VEH ST

Geometric, topological & semantic
analysis of multi-building floor plan data

C File Formats

c.i Floor Inventory
For batch processing, the applications described in appendix A require a
list of all available floor plans in the data corpus. The applications take an
XML file as input, containing an ordered list of floors for every building
on campus. The expected format is as follows:

<Project name="MIT">
<Buildings>

<building id="W70">
<floor id="l"/>
<floor id="2"/>
<floor id="3"/>
<floor id="4"/>
<floor id="5"/>
<floor id="6"/>

</building>

<building id="4">
<floor id="0"/>
<floor id="OM"/>
<floor id="1"/>
<floor id="lM"/>
<floor id="2"/>
<floor id="3"/>
<floor id="4"/>
<floor id="4M"/>
<floor id="5"/>

</building>
</Buildings>

</Project>

The id attribute specifies the building or floor name. Floor lists must be
ordered numerically from lowest to highest and include mezzanines. The

mezzanine naming convention is [parent floorIM , where 4M is the

mezzanine level above floor 4.

C.2 Floor Geometry
Space and portal geometry is currently stored in XML files grouped by
floor. Files are named according to the convention [Building] -

[Floor].xml. For example, all spaces and portals contained in the
second floor of Building 10 are stored in 10-2.xml. The file format is as
follows:

<ROOT>

FLOOR

SPACEO SPACE, SPACE2 SPACE 3 ...

</ROOT>

Geometric, topological & semantic
analysis of multi-building floor plan data

A top level node ROOT is the parent element for all spaces on the given
floor. The first child node FLOOR provides geometry of the floor contour
in the form:

<floor name="FLOORCONTOUR">

CONTOUR

</floor>

Each element SPACEn has the structure:

<space name=SPACE NAME type=SPACE TYPE>

CONTOUR

TRIANGLEO TRIANGLEi TRIANGLE 2 . . .

PORTALo PORTALi PORTAL 2 . . .

</space>

And CONTOUR elements are represented as:

<contour>

CENTROID

EXTENT

POINTo POINTi POINT 2 . . .

</space>

as described in chapter 2. For complete descriptions of the XML
representation for each element, refer back to the "Data Representation"
sections 2.1.3 for floors, 2.1.4 for spaces and 2.1.5 for portals.

