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I. Introduction

Production costing and reliability models of electric power systems

are used to estimate the cost of operating the electrical generators and

to estimate the probability that there will not be enough power to meet

the customer demand. With these models, the effects on system cost and

reliability due to different assumptions about customer demand, fuel

costs, or generator characteristics can be studied.

Electric power systems are operated to meet the fluctuating power

demand at minimum cost. Electric utilities monitor the power flow

throughout the system to decide what the power output from each generator

should be. These decisions are based on economic criteria, but are con-

strained by electric stability requirements imposed by the transmission

network. A complete model of the cost of operating a power system

requires detailed models ofand data on,each generator and each

transmission line. Such m dels are too complex to be used for planning

studies, so many simplifying assumptions must be made. For example, most

production costing models,including the one presented here,do not

consider transmission or stability constraints.

This paper discusses a standard production costing methodology that

models the average generator output. The framework of the model is first

presented as a deterministic model in which the customer demand is fixed

and plants do not fail. Then, the model is expanded to a probabilistic

model in which the customer demand and plant failures are random

variables. Finally, the probabilistic model is extended to include

hydro-electric, storage, and time dependent power plants and an

alternative technique for computing the effective load carrying

capability of a plant is developed.
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The methodology presented in this paper has been implemented as

three linked computer programs. ELECTRA models time dependent

generators, SYSGEN performs the production costing analysis, and SCYLLA

computes the load carrying capability of time dependent plants.

(Conventional power plants can be evaluated within SYSGEN.)

Documentation for these programs are available as Energy Lab Technical

Reports. (See references 7,8 and 9.)
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II. Deterministic Production Costing Model

Electric power systems are operated with the goal of meeting the

electric demand at minimum cost. For a fixed set of generators, the

dispatch strategy that results in the minimum operating cost is to use

the generators in order of increasing marginal cost. In practice, this

strategy may be modified to account for operating constraints such as

spinning reserve requirements, high startup or shutdown costs and

transmission constraints. The final ranking of generators is called the

merit order or the economic loading order.

The power demand on an electric utility varies with the season and

the time of day. Figure la shows a typical daily variation in power

demand. Although the overall pattern is predictable, there is a large

random component that makes hourly predictions difficult. For this

reason, most planning studies use load duration curves that give just the

percent of time that each demand level occurs. Figure 1 shows how a

time-dependent curve can be converted into a load duration curve.

Although detail is lost in the conversion, the load duration curve is

easier to work with for time periods longer than a day and for future

time periods for which there is not enough information to create hourly

curves.

61 |
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The operation of the power system can be modeled by plotting the

capacity of the generators, in merit order, along the vertical axis of

the customer demand curve as shown in Figure 2a. The demand level at

which a unit starts to generate is called its loading point. The energy

that a unit generates is the area under the customer demand curve between

its loading point and the loading point of the next unit. Converting the

time-dependent curve into a load duration curve, as shown in Figure 2b,

leaves the loading point and the energy the same as in 2a.

II.A. Conventional Power Plants

Conventional central station power plants are plants that can

generate power at full capacity at any time, except when they are on

maintenance or forced outage. These plants are much easier to model than

hydro, storage, or solar plants that have limited energy and

time-dependent power output. Nonconventional power generation will be

discussed in later sections.

In the deterministic model, the conventional power plant with the

lowest marginal cost is loaded under the customer demand curve at a

derated capacity that reflects the plant's availability. For example, a

1000 MW plant with an 80% availability factor would be brought up to 800

MW. This plant generates as much energy as it can to meet the customer

demand. Since there is still unmet demand, the unit with the next lowest

marginal cost is brought on line. This process continues until all the

area under the load duration curve has been filled in. The total cost of

*b *e 
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the system operation can be computed by multiplying each plant's total

megawatt hours by the cost per megawatt-hour for that plant and then

summing the costs over all plants.

II.B. Hydro-Electric Plants

The inclusion of reservoir hydro-electric power complicates the

problem of finding the minimum cost operating plan. The marginal cost of

hydro-electric energy is essentially zero, since there are only operating

costs and no fuel costs. This implies that hydro plants should be first

in the economic loading order. However, the total amount of hydro energy

available is limited by the river flows and the reservoir size. Usually,

the total energy is not sufficient to run the hydro unit 100 percent of

the time at full capacity. There are several possible strategies for

discharging all of the hydro energy. One strategy is to load the hydro

first, reducing the capacity until the area under the curve is equal to

the total energy available. From Figures 3a and 3b, it is clear that

this is equivalent to removing the same area from the top of the curve.

But because the last units to be loaded are the most expensive to run,

the operating cost would be reduced if as much area as possible were

removed from the top of the curve. This can be achieved by removing the

free hydro energy at full capacity as shown in Figure 3c. This is

equivalent to finding the loading point for the hydro-electric unit such

that, run at full capacity, the hydro energy is exactly equal to the area

under the load duration curve. Figure 3d shows the result of these
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manipulations. The logic is explained here because it is easier to

understand in the deterministic model, although it is only necessary in

the probabilistic model where it is not possible to subtract demand from

the top of the curve.

In the process of finding the optimal loading point forethe hydro uqit,

it may be necessary to reduce the running capacity of the previously

loaded plant. The remainder of the other unit's capacity can be loaded

after the hydro energy has been discharged.

If there is more than one reservoir hydro plant, then they will be

ranked in the loading order by the number of hours that they can generate

at full capacity. That is, the reservoir with the largest ratio of

energy to capacity will be the first to fit under the curve. This

natural ordering can be used for reservoir hydro units, storage units, or

any other limited energy units.

II.C. Storage Plants

Electric utilities use storage plants to shift demand artificially

from high marginal cost plants to low marginal cost plants. Currently,

pumped hydro-electric storage is the only practical method available.

Although the following section will refer to pumped hydro, the analysis

is applicable to any central station storage unit that can be charged by

all plants on the system.

I· .I I
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Stored energy is generated by units which are low in the economic

loading order, but that are not needed 100 percent of the time to meet

the direct demand. Thus, an artificial demand is placed on these base

loaded units by storage units . This stored energy can be released

during periods of high demand when more costly units would normally be

generating. Since the charging and discharging operations are not

completely efficient, the energy available to meet demand using storage

units is less than the energy generated by the base loaded units.

Storage units are similar to conventional hydro units in that the amount

of energy available is limited. However, modeling storage is complicated

by the fact that the energy is not free and that the energy is generated

on one part of the curve and discharged on another.

The total energy potentially available from a base loaded unit for

storage can be found by computing the area above the load duration curve

for the base loaded unit. Due to the limited capacity of the storage

unit, some of this energy may be unavailable (see Figure 4a). Another

limiting factor is the size of the reservoir. When the energy above the

curve, subject to the limited capacity and the charging inefficiency, is

equal to the storage capacity of the reservoir, then charging stops.

Taking into account the inefficiencies of generating from storage, the

total energy available to meet customer demand will be about two-thirds

the energy generated for storage. This results in a marginal generating

cost about one and a half times that of the base loaded unit used for

storage.
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Depending on the system and shape of the load curve, several base

loaded units may fill a single storage unit, or one base loaded unit may

fill several storage rervoirs. For the deterministic case, the marginal

cost of the storage will be taken to be the average of the base loaded

costs (with the inefficiencies factored in) weighted by the amount of

energy each base loaded unit provides. If the storage units are ranked

in order of decreasing number of hours at full capacity, then the first

unit will be filled by the least expensive base loaded plant.

Consequently it will be the first storage unit in the merit order after

the storage units are sorted into the economic loading order based on the

energy costs. When the first loading point is reached, the storage unit

may have sufficient energy to discharge at full capacity, or it may not.

In Section III.H it is shown that, in the deterministic case, the

operating cost of the system is reduced if the pumped hydro is delayed in

the loading order until the demand can be met by using the pumped hydro

at full capacity. The argument is analogous to the one given for

conventional hydro, even though the energy is no longer free. An

illustration of the loading of pumped hydro is given in Figure 4.

III. Probablistic Production Costing Model

Two major factors affecting system operating costs are uncertainties

in demand and random failures of plants. There are several models

available that take these factors into account. The simplest is a

deterministic model with heuristic calibration coefficients added to
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account for plant failures. Slightly more complicated is the method

developed by Baleriaux and Jamoulle1 which combines the probability

distributions of customer demand and of plant failures to find the

expected value of the energy produced by each plant and the probability

that the customer demand will not be met. There is also a frequency and

duration (FAD) method developed by Ringlee and Wood2 that models both

the load and plant failures as Markov chains. The FAD method gives

information about the frequency and duration of system outages.

Recently, Ayoub and Patton3 have developed a method that includes

frequency and duration in the Jamoulle-Baleriaux model and that requires

fewer assumptions than the Ringlee-Wood model. The model described in

this section is the combined method of Ayoub and Patton. In addition,

several extensions are developed that allow the model to treat plants

with limited energy and time-dependent power output.

The main difference between the deterministic model and the

probabilistic model is that the electrical demand and electrical

generation are treated as random variables in the probabilistic model.

In the deterministic model, a plant's capacity is derated to reflect

1Baleriaux, H., et al. "Simulation de l'exploitation d'un parc de
machines thermiques ee production d'6lectricite couple a des stations de
pompage," Revue E, Vol.V, No.7, 1967, pp.225-245.

2Ringlee and Wood "Frequency and Duration Methods for Power System
Reliability Calculations - Part II - Demand Model and Capacity Reserve
Model," IEEE Transactions, PAS-38, No. 4, April 1969.

3Ayoub, A.K., and Patton, A.D., "A Frequency and Duration Method for
Generating System Reliability Evaluation." IEEE PAS Summer Power
Meeting. F75 421-8.
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random outages of the plant during its operating period. This assumes

that the plant is always available at its derated capacity, or

equivalently, that it has a forced outage rate of zero at its derated

capacity, In fact, the plant is not always available. When a plant

fails, more expensive generation must be brought on line to replace it.

Since the deterministic model assumes that units never fail, the energy

supplied by more expensive plants is underestimated. The deterministic

model also assumes that the electrical demand is fixed. In the

probabilistic model, uncertainty in the demand can be included in its

probability distribution.

In the probabilistic model, the electrical demand and power plant

failures are modeled as random variables with memory. That is, a power

plant has a probability of failure and an expected time that it remains

in a failure state. The electrical demand has a probability of being at

a given level and an expected time that it remains at that level.

III.A Electrical Demand

III.A.1 Load Probability Distribution

The probability curve for the electrical demand can be created either

by using a demand model that estimates the distribution of demand or by

equating the cumulative distribution function with the load duration

curve. The latter procedure is done by rotating the axes of the load
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duration curve and normalizing the time period so that the vertical axis

gives the percent of time that the demand level is exceeded. These

operations are shown in figure 5. The percent of time that a given load

level occurs can be interpreted as a probability. For example, there is

a probability of 1.0 that the load will be greater than the minimum load

at any given time, or equivalently the minimum load is exceeded 100

percent of the time. Further, there is a probability of zero that the

load will be greater than the maximum load at any given time, or

equivalently the maximum load is exceeded zero percent of the time.

III.A.2 Load Frequency Distribution

The expected time that the demand remains at a given level or load

state can be derived from a demand model or from the original

time-dependent demand curve. In the latter case, the expected duration

can be found by measuring the lengths of time that the demand remains in

a given state and then taking the expected value over all such time

lengths. However, this procedure is rather awkward, and the same

information is contained in the curve that gives the frequency with which

the demand enters a given state. The load frequency curve is found by

counting the number of times that the demand makes a transition from a

level below to a level above the given demand. This is illustrated in

figure 6. The relationship between the frequency curve and the duration

curve is given below in equation 1.
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The notation used in this section is explained in Section IV. In

general, the letter 'f' is used for probability density functions, 'fq'

for frequency curves, 'd' for duration curves, 'FQ' for reverse

cumulative frequency curves, 'G' for cumulative probability functions,

and 'F' for reverse cumulative probability functions . The subscript of

the function tells which random variable the function describes. Thus

fc(d) is the probability density function for the customer demand,

DC. By definition:

fc(x) = Probability x < DC < x + dx]

Gc(x) = Probability [DC < x fC (y) dy (1)

0

F (x) = 1 - Gc(x) = Pr [Dc > x] fC(Y) dy.

xJ

fqc(x) = Frequency [Dc= x]

FQc(x) = Frequency [Dc> x] = jfqc(y)dy

dc x) = duration [D = x]

= f(x)/fq (x),

or:

fc() = fqc(x) dc(x).
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The last equation states that the probability that the load is found in a

particular state is the product of the frequency with which it enters

that state and the length of time that it remains in that state.

III.B Conventional Power Plants

In the probabilistic model, the equivalent demand on a unit is

defined to be the sum of the demand due to customers plus the demand due

to failures of plants lower in the merit order. The equivalent demand

DE is the sum of two random variables:

DE =D C + F (2)

Where DC is the direct customer demand and DF is the demand due to

forced outages of units already dispatched. From probability theory, the

cumulative distribution for the sum of two random variables is given by:

GE (d) = F 1 D fC,F (Dc,DF) dDc dOF (3)

0 0

The function fC,F(DC,DF) is the joint probability density function

of the customer demand, Dc, and the forced outage demand, DF.

Assuming these two random variables are independent implies that:

fC,F (DC,DF) = fc (DC) fF (DF) (4)

Using equation (4), equation (3) can be simplified to:
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d d-D
GE (d) - fF (DF) fC (DC) dDC dDF (5)

0 0

From the definition of the cumulative distribution function for the

customer demand given in equation (1), equation (5) becomes:

GE (d) = J fF (DF) GC (d- DF) dDF (6)

= Probability load + outages < d].

The distribution of the equivalent demand is central to the

probabilistic model. As will be shown below, the expected energy

generated by each unit can be computed from it, as can the loss of load

probability.

The equivalent load also has a frequency distribution that can be

computed from the probability and frequency functions of the load and the

outages:

FQ)e q()F(d - x) + fF(x)FQC(d - x x (7)

= Frequency [load + outage d]

where

fqF(x) Frequency [demand due to failures = x]

FQc(x) = Frequency [customer demand > x]

and FC and fF are the probability distributions for load and outages

as defined in (1).
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III.B.1 Single Increment Algorithm

III.B.l.a Outage Probability Distribution

For the case in which the forced outage rate of each plant is a

discrete random variable, the integral over the probability density

function fF(DF), can be replaced by the sum over the probability mass

function. For a plant with forced outage rate, q, and capacity, K, this

probability mass function is given by:

P if DF O (8)

PF (DF) q if DF = K

where p + q = 1. That is, there is a probability, q, that the plant will

not perform and the demand on plants higher in the loading order due to

its failure will be the capacity of the plant. There is a probability,

p, that the plant will perform and the demand due to forced outage will

be zero.

Replacing the integral with the sum, equation (6) becomes:

GE(d) = pGC(d) + qGc(d - K)

or since p + q = 1 and GE = 1 - FE :

FE(d) = pFC(d) + qFc(d - K). (9)

Equation (9) gives the new equivalent load duration curve. Figure 7

illustrates graphically how this curve is found using convolution. This
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curve can be used in much the same way the original load duration curve

was used in the deterministic model, except that a new curve must be

computed each time another unit is brought on-line.

III.B.l.b. Outage Frequency Distribution

If the power output of a plant can be modeled as a Markov chain, then

there exists a mean time to failure and a mean time to repair:

m = mean time to repair

x = 1/m (10)

- average forced outage occurrence rate

p average forced outage restoral rate

and

q =- /( x+ )

p = p/( AX+ )

or = q/(mp)

From the mean times to failure and repair and the outage

distribution, the frequency curve for plant failures can be created using

the last equation in equation set (1).

I P if DF =O
fqF(DF) = (11)

fFD)q p if DF = K.

From the last equation in set (10), it can be shown that p equals q.

This is equivalent to stating that the frequency that the plant goes down

equals the frequency that the plant goes up, i.e., it can't be brought up,

from a failure state more often than it fails. Combining equations (7)

tC ~ I
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and (11) implies:

FQE(d) = pFC(d) + qFc(d - K) (12)

+ PFQC(d) + qFQc(d - K).

III.B.l.c. Probability and Frequency Distribution of the Equivalent Load

With these basic equations, the probabilistic analysis proceeds in

much the same way as the deterministic analysis. Units are loaded

starting at the left of the equivalent load duration curve. The demand

on the first base-loaded unit to be brought up is the entire customer

demand. There are no outages from previous units, so

DEl = DC (13)

Where DEl equivalent demand on the first unit

DC = total customer demand.

Because the two random variables, DEl and DC, are equivalent, their

distribution and frequency functions are the same:

FEl(d) = FC(d) (14)

FQEl(d) = FQc(d)

where FC(d) is the normalized load duration curve.

In the deterministic model, a unit is loaded onto the system by

filling in the area under the load duration curve. The area gives the

energy generated. To load a unit in the probabilistic model, the area is
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again filled in. The vertical axis, instead of being the percent of time

that a unit operates at a given capacity, is now the probability that a

unit operates at that capacity at any given time. Taking the integral

over the capacity gives the expectation of the operating capacity* for

the unit at any given time (see Section III.G). The expected capacity

for the first unit is:

E(C1 ) = F (x)dx (15)
0

where K1 = capacity of the first unit
C1 = random variable describing the running capacity of the

first unit.

E(C1) is the expected capacity required to meet the equivalent load,

without considering the availability of the unit. The total expected

energy from the first unit, taking outages into account, is:

M1 = P1 T E(C1) (16)

where P = availability of unit one

T = total length of the time period in hours.

The capacity factor, CF, the ratio of operating capacity to nameplate

capacity, is given by:

CF1 = P1 E(C1) /K1 (17)

The expected number of times that a plant is started up can be found

*The operating capacity is a continuous variable which takes on values
between zero and the unit's capacity in response to the customer demand.
This does not violate the assumption that plant outages occur in discrete
blocks.
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from the frequency curve by reading off the expected number of times that

the loading point of the unit is crossed. Because the time scale for the

frequency curves is normally in hours, this value must be multiplied by

the number of hours in the time period:

E(N1) = fqE1(O)T (18)

where

N1 - number of startups for unit 1

0 = loading point for unit 1.

Also, in practice, the frequency curve is stored in its cumulative form,

so its derivative at the loading point must be computed.

The equivalent demand on the second unit to be brought up is the

customer demand plus the demand due to the outages of the first unit:

DE2 = DC + DFl (19)

Because of the way the equivalent load is defined, the loading point of

the second unit on the equivalent load duration curve is the same whether

or not the first unit fails. If the first unit fails, it creates a

demand, K 1, so the second unit is loaded when the equivalent demand is

K1. If the first unit does not fail, there is no demand due to

outage. The first unit supplies the demand until the demand exceeds

Kl, at which point the second unit is loaded. The loading point, U,

for the rth unit is just the sum of the capacities of the previously

loaded units:
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r-l

Ur = Ki

i=l

and U1 = 0 (20)

Equation (9) gives the equivalent load curve for DE2:

FE2 (d) = P1 FEl(d) + qlFE1(d K1) (21)

Equation (12) gives the equivalent frequency curve:

FQE2(d) = 11PlFEl(d) + lqlFEl(d-kl)

+ plFQEl(d) + qlFQEl(d-kl) (22)
{22)

This equation cannot be written in a recursive formula similar to

equation (21). However, FQE can be broken into parts that can be

stored recursively:

F1E2(d) = lplFEl(d) + lqlFEl(d - x) (23)

F2E2(d) = plFQE1(d) + qlFQEl(d - x)

Then,

FQE2(d) = F1E2(d) + F2E2(d). (24)

Having found the equivalent load curve for the second unit, the

expected capacity, capacity factor, energy generated, and number of

startups can be obtained:
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E(C2) =

CF2 P2

M2 = P2

U3
f FE2(x)dx
U2

E(C2 ) K2

T E(C2)

E(N2) = fqE2(U2) T

For the third unit, the equivalent load is given by:

DE3 DC + DF1 + DF2

Using the definition of DE2 in equation (20):

DE3 = DE2 + DF2 

FE3 (d) = P2FE2 (d) + q2 FE2 (d-K2)

E(C3 )
U4

- f FE3 (X)

U3

dx

CF3 = P3 E(C3 ) K3

M3 = P3 T E(C3)

E(N3) fqE3(U 3 ) T.

In general,

r-1

DEr D C + D DEr C i=l Fi Er-l Fr-i

(25)

(26)

Then,

I

(27)
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FEr -Pr-l FEr-l (d) + qr-l FEr-l (d - Kr-l)

E(Cr) J FEr (x) dx (28)
Ur

CFr = Pr E(C K r

Mr Pr T E(C 

E(Nr) = fqEr(Ur) T

where r = loading order of the plant.

III.B.2 Multiple Increment Algorithm

III.B.2.a. Outage Probability Distribution

In the derivation of the equation for the equivalent load, it was

assumed that units would always be brought to full capacity. However,

units are often brought up to full load in stages or increments. If each

increment has a discrete probability of failing, then the probability

mass function is given by:

P if d = O

PF (d) f ( 1 *FP, ( qj if d = K j = 1, . J

J

and p+ C qj = 1 (29)

j=l

where K= k

i=l

.. " ,. .
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J is the number of increments of the unit and K is the total capacity.

Kj is the capacity up to and including the increment j. With this set

of definitions:

qj = Probability [power outages exactly equal Kj].

(30)

The probability function could also be expressed for each increment

of capacity. Assuming that each plant increment has an underlying

distribution that describes its failure rate, define:

qj - Probability increment j fails, independent of the
rest of the plantJ

(31)

and p + j 1.

Then with the first increment loaded, the probabilities of outages are

given by:

Pr [outage = 0O] = 1

Pr [outage = kl] = ql.

(32)

The second increment can generate only if the first increment I

failed. Taking this dependence into account, the probabilities of

levels are given by:

p [outage = 0] = P12 - Pi (33)

p [outage = k2 Pl q2

p [outage = k + k2] = ql - ql

where P1, q1, and q2 are analogous to the probabilities defined in

has not

outage
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equation (29). In general, the outage probabilities are given by:

p [outage = 0] = Pp2 p . ., Pn P

p [outage = kn] = PnP2P3 "', Pn-ln E qn

p [outage = knl + kn) = PlP2P3, **' Pn-2qn-1

(35)

n

p outage = k = q1 E q1.

In this paper, the dependent probabilities p and qj, will be used. The

example at the end of section III.B shows the distinction between the

dependent and independent probabilities.

III.B.2.b Outage Frequency Distribution

Each increment described in equation (29) has an equivalent forced outage

occurrence rate given by:

t
i =

mean time to a failure of

magnitude K.
J (35)

Then, the fre

fqF(d) 

where K and q

j = average redtoral rate

for K.

= l/t.

equency distribution becomes:

I , if d = O

if d = K, j = 1, ..., 
qj Pj j

are defined in equation (29).

(36)i
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III.B.2.c. Probability and Frequency Distribution of the Equivalent Load

Before finding the new distribution for the equivalent load, it is

necessary to examine its definition:

r-l

DEr = DC + DFi. (37)
i l

Included in the demand due to forced outages are outages of increments of

plant r that are lower in the loading order. However, if a lower

increment of a unit fails, then higher increments will not be available.

Therefore, a lower increment cannot place an outage demand on a higher

increment. To account for this, the demand due to forced outage of

earlier increments is removed from the curve before the increment is

added. The equivalent demand on increment j of unit r is given by:

j-1

DEr. DEr-l + DFrl - DFr (38)
J i-il 1

To compute the distribution of this random variable, it is easier to

consider the system with all of the increments of unit r convolved into

the equivalent load. Because the order in which random variables are

convolved does not affect the final distribution, to include increment j

of a unit, one can assume that the j-l increments were the last ones

added to the system. Combining equations (6) and (29), the equivalent

load duration curve for increment j is:
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FEr (d) = PrFEr(d) (39)
J

+ qr FEr( dKrl )
i=1 i

The frequency convolution algorithm for multiple increments is more

complicated than the one for probability convolution. Combining

equations (7), (29), and (36), the multiple frequency distribution

becomes:

j-1
FQER(d) = rPrFEr(d) + FEr(d - K) (40)

j-1

PrFQEr(d) + E qrFQEr(d - K+).
i=1 1i

Given the equivalent load and frequency curves for the increment j, to

load increment j, the outages of the j-l previous increments have to be

deconvolved. Rearranging equation (39) gives:

FEr (d) = 1 [FE (d) t FEr(d - K ) (41)Er Pr j ri 

FErj(d) is the equivalent load curve for the jth increment to be
loaded. Equation (41) is used to remove all of the outages of plant r

from this curve. Points of the curve can be evaluated even though

FE r-l appears on both sides of the equation. The curve is evaluated

starting at d = O. Since FE(d) always has a value of one for a

negative number (i.e., the load is always greater than zero), the right

hand side can be evaluated. Through an iterative process, the entire

curve can be constructed from left to right.

* X *
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Once the equivalent load curve, FEr is known then the equivalent

frequency curve can be found:

FQEr(d) =P [FQEr(d) XrPrFEr(d)

j-l

- E qr FQEr(d K (42)
itl

j-1

pr qr FEr(d- K).]

Again, this curve is evaluated from left to right using the same

technique that was used to create FEr.

The expected energy, capacity factor, and number of startups for

increment of plant r are computed using FEr and FQEr in equation

(28). The loading point for increment j is the current loading point and

does not change becauce the other increments have been removed. Finally,

all j increments are convolved back into the curves using equations (39)

and (40).

It should be noted that the order of convolution does not change the

distribution of the sum of random variables. The increments are

considered individually in order to find the proper loading points and

expected energies. However, even if a multiple value point plant is

loaded in sequence, equation (40) should be used to account for partial

outages. In practice, an equivalent forced outage rate, PE, for the

entire plant is frequently used instead:
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J

PE = P - j=l qi
KJ

(41)

Similarly, the equivalent forced outage occurrence rate is given by:

J

X j=1 i- i
K3

As an example, suppose that a plant has two valve points and that the

first one is first in the loading order. The energy generated by the

first increment is found from FE1, the original customer demand, using

equations (15), (16), and (17). To find the equivalent demand on the

next plant, the outages of the first increment are convolved with the

customer demand:

FE2 = p1FE1(d) + qlFE(d - kl) (43)

For simplicity, assume that the second increment is next in the loading

order. To account for the dependence of the second increment on the

first, the first is removed from the curve:

FEl(d) = 1 [FE2(d) - qlFEl(d- 1 )] (44)

The energy generated by the second increment is also found from FE1 and

the results are the same as if the first and second increments had been

loaded together under the original demand curve. Normally, there are

intervening plants and the second increment is loaded under a different

curve than the first increment.

(42)

I e
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Using equation (40), the equivalent load curve for the third unit

becomes:

FE3(d) = p FEl(d) + q2FEl(d - k2)

+ q1 FE1(d - kl - k2) (45)

where p = probability both increments work

q1 = probability that the first increment-falis

q2 = probability that just the second increment fails.

The resulting curve accounts for the dependence of the second

increment on the first. If the first and second increments were

independent then the resulting curve would be:

FE3(d) = plP 2FEl(d) + p2ql(d - k1) + Plq2FEl(d - k2) +

+ qlq 2FEl(d - k - k2)

= P2FE2(d) + q2FE2(dl- k2) . (46)

III.C Reservoir Hydro-Electric Energy

The treatment of reservoir hydro using probabilistic model is similar

to the treatment in the deterministic model, except that it is more

difficult to reduce the capacity of earlier plants and to compute the

area under the curve. At each successive loading point, a test is

performed on the feasibility of bringing up the hydro unit. The total

energy demand on a unit with a capacity, Kh, can be found using the

current equivalent load duration curve. The total energy demand, D, on

the hydro unit is given by:
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Ur+Kh

Dh = T U FEr (X) dx . (47)

FEr is the equivalent demand curve for the next unit. Equation (47) is

used to find the energy demand if the next unit is the conventional hydro

unit. If the energy demand is greater than the available hydro energy,

then the unit is not loaded. Plant r in the economic order is loaded

instead. If the total energy demand is less than or equal to the

available hydro energy, then the reservoir hydro unit is loaded.

If thermal plants are run only at valve points, then the process is

simplified because only the first loading point at which the available

energy is greater than the energy demand has to be found. If, however,

there is a constraint that all hydro energy must be used, then a

procedure has to be followed which allows hydro plants to be operated at

any loading point. To make the most efficient use of the free hydro

energy, the previously loaded unit should be backed off until the total

energy demand balances the hydro energy available. However, changing the

capacity of the r-lst unit changes the shape of the equivalent load

demand curve for the unit r. Equation (47) can be rewritten using

equation (28) and changing the capacity of the last unit to K'

r-:

+ T q r- 1 h FEr-l (x - Kr-1) dx (48)

Ur.-
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where

r-2

Ur 1 = Ki + K-l

If Mh is the actual energy available from conventional hydro, then

K' r-l must be found such that Dh equals Mh. This involves solving

equation (48) for K'rl which is an argument in the limits of the

integrals and in the integrand of the second integral. Rather than

solving analytically, the last unit can simply be removed and then added

in small steps until the energies are balanced to within a set

tolerance. The reservoir hydro unit is loaded under the new curve, its

expected energy and capacity factor are computed. It is convolved into

the curve to give the equivalent demand on the remaining capacity of the

unit that was backed off. In order to load the remaining capacity of the

interrupted plant, outages of the earlier portion have to be removed

using the multiple increment altorithm. The final curve is the same as

if the hydro and thermal units had just been convolved in. The

intervening steps were needed to find the loading point for the hydro

unit and the energy generated by the interrupted plant.

III.D Storage Plants

Once the energy available for storage has been computed, its

treatment is similar to reservoir hydro. However, in order to find the

energy available, the following values must be computed: (1) the

expected excess energy available from base loaded units, given that each
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unit has a probability of failing; (2) the probability that a storage

unit has sufficient energy available and the generator does not fail; and

(3) the expected cost of the stored energy.

A storage unit creates a demand on base loaded units; however, unlike

the customer demand, the storage demand does not necessarily have to be

met. Also, storage units do not impose outage demands on other units

until their place in the merit order is reached and they are called on to

generate. Therefore, a separate curve that includes the demand from

storage units on base loaded plants is created. This curve is used only

to generate information on the availability and cost of stored energy and

is unecessary for the rest of the analysis.

The storage units are ranked, as they were in the deterministic

model, so that the unit with the most hours of generation at full

capacity is the first to be filled. The ranking of a storage plant

relative to other storage plants is denoted by 'u' and is distinct from

the plants ultimate place in the loading order, denoted by 'r'.

Each storage unit has the following characteristics:

Dsu demand for storage by unit u

cu if DsU = KCu
Ps(Dsu) = c if Dsu = KC(49)

qcu if Dsu = 0

where

qcu = probability that the charging cycle of unit u fails

KCu = changing capacity of unit u.
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Note that the storage units impose demand on the base loaded units when

they work. This is the reverse of generating units that impose outage

demands when they fail. (See equation (8).)

IIID.1 Energy Supplied to Storage

The demand imposed by storage units can be modeled as an increase in

the customer demand. The equivalent augmented demand, D', can be defined

as:

DEr = DEr + KCu (50)

The distribution of KCU is given in (49) and the distribution of DEr

is given by FEr, the equivalent load curve for unit r. Convolving

these distribution results in the distrubiton for the augmented demand:

Fru = qcuFEr(d) + PcuFEr(d - KCu) (51)

The expected capacity available for charging storage unit u from base

load plant r is the area between FEr and Fru as shown in figure 8.

This can be written as

Ur+l Ur+1
E(Cru) = f Fru()dx _ J(x)dxX)dx (52)

min min
where

dmin = minimum demand. This is the first point where

p[demand < x 1.0].



46

500 1000 1500 2000
Demand (MW)

Figure 8d. Loading of second storage
augmented demand curve

unit onto the

500 1000 1500 2000
Demand (MW)

Figure 8e. The area
expected

above the second
capacity availabl

of the storage units

Demand (MW)

Loading of the
demand curve,

demand curve,

third unit.

FE 3

A new equivalent
, and a new augmented

F 32 , are created

Figure 8. Storage demand on base load-ed units

NI

0
C
0
E
0
.0

.0

0S-
CL

o.

-

Al

c

E

0

.0

CL

1.0

0.0

unit
e fo

is the
r each

Al

-o

E
0,

0

.0
0

0

Figure 8f.

I



47

CI = excess capacity available from unit r for storage

unit u.

Combining equations (51) and (52):

Ur+l

E(C) = cu ' [Er(X - KC) - FEr(X) dx. (53)
min

This capacity is available with the probability of r, the availability

of the base load unit. The expected energy available to the storage unit

is the expected capacity multipled by the time length and the

availability of the base load plant.

aru = Pr E(Cru) T (54)

where

aru = expected energy available from
plant r for storage unit u.

Equations (50) through (53) imply that the storage demand is constant

through time. However, the storage unit has a limited capacity and once

the reservoir is full, the demand stops. Due to inefficiencies, the

storage unit consumes more energy than its rated size, so pumping stops

when the area between the curves equals the total energy requirement,

Zu:

Zu = Zu/eu (55)

where

u total energy required by storage unit u

Zu = size of storage reservoir u

eu = efficiency of storage unit u.
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The equivalent augmented demand curve can be written as:

Fru(d) qcuFEr(d) + PcuFEr(d - KCu) for d• d'u+l

and Fu(d) = FEr(d) for d>d'u+l

(56)

where d is determine such that:
u

Zu = T u f [FEr(x - KCu) FEr(x)]dx. (57)
d u Er

min

The resulting curve is shown in Figure 8c. This same curve could

have been derived by adding the capacity of the storage unit to the

original customer demand. However, the demand level at which storage

starts and stops depends on the capacities and outage rates of earlier

plants, so it is not possible to predict ahead of time when the storage

demand will occur.

If there are additional storage plants, then they must also be added

to the augmented demand curve. If the first storage plant were to fail,

then the base load plant would supply the second storage plant instead.

F;u+l(d) = qcu+lFru(d) + Pcu+Fru(dKCu+l ) for d d'u+l

and F r (d) Fu(d) for d>d u+l

(58)

where d' is determine such that:

Zu+ 1 T Pcu+ FEr(X- KCu) - FEr(X)]dx. (59)
mn
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All storage units are loaded using equations (58) and (59).

The expected capacity available from base plant r for the first

storage unit is given by:

E(C 1r) 
U [Er( - r(+1

Pc1 ~ [FEr(X' KC) FEr()dx- (60)

The expected energy available is:

arl = Pr T E(Cr1) (61)

and the expected cost is:

Crl = arl Cr (62)

To find the expected capacity available to the second storage unit, the

equivalent loading point is increased by KC1, the capacity of the first

storage unit. Then,

Ur+ +KC1
E(Cr2) = Pc1 Ur+KC [Fr2(x - KC1 ) - 1F2(x dx.

ar2 = Pr T E(Cr2)

and the expected cost is:

Cr2 = ar2 Cr.

(63)
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Equation (63) is repeated until the expected energy supplied to each of

the storage plants by plant is found.

The next base plant in the loading order must supply whatever energy

the first one could not due to outages, insufficient capacity, or

insufficient energy. For the first storage plant, the augmented demand

curve is given by

Fr+l,l(d) = PrFrl(d) + qr Frl(d - Kr)

(64)

and the expected capacity is:

Ur+2

r+1

Equations (64) and (65) are much simpler than equations (58) and (60)

because the demand due to storage is already included in F'rl The

only additional factor that must be included is the probability that the

first base unit fails and that the second must supply the additional

energy to the storage unit.

In general for the first base load plant with excess energy

! I

Fru+l(d) = qcu Fru(d) + PCuFru (d KCu). (66)

Ur+l+KCU I
E(Cru) = cu r - [Fru(x - KCu) - Fru(x)]dx. (67)
E(Cu) Pcu U +KCu 

aru = Pr T E(Cru)

.r'
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Cru = r aru

Finally, the expected energy and its cost for each storage plant are

computed.

Au ( aru) . eu (68)
r

Cu = (E aru Cr )/Au
r

The total expected energy and cost for the storage units cannot be

found until all the base units have been loaded. There is an implicit

assumption that the storage units will not be used before the base load

units.

III.D.2 Energy Supplied by Storage

The expected energy cost for storage unit, u, as computed in equation

(67) dictates the minimum spot it will have in the economic loading

order. However, because the storage plant has limited energy, its use

may be postponed until all its energy can be dispatched at full

generating capacity. The argument is analogous to that used for

reservoir hydro because the objective is again to minimize the use of

expensive fuels.

When a storage plant is loaded as a generator in position r in the

loading order, it has the following characteristics:
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qr = probability that the generator part of the cycle fails

Kr = capacity of the generator

Ar = expected energy available (69)

Cr = expected cost per unit energy

Xr = average forced outage occurrence rate

In theory the average forced outage occurence rate should be modified

to include the effects of the outages of base load units and other

storage plants. However, these effects are negligible and difficult to

compute, so they are ignored.

III.E Time-Dependent Power Plants

The electrical output of some types of plants such as solar and wind,

vary with the weather and the time of day. These plants cannot be

modeled as any of the plants discussed above. In the original model,

there was an implicit assumption that if all the other plants failed, a

peaking unit could generate 100% of the time. There is also an

assumption that a plant can produce at its full capacity at any time.

Obviously neither of these assumptions is true for time and

weather-dependent generation. However, one other attribute of these

plants is that their marginal cost is zero because they use free

resources as fuel.
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If time-dependent plants have a marginal cost of zero then they will

be used whenever they are available. Under this assumption,

time-dependent plants can be modeled as modifying the net hourly load on

the rest of the central station plants. The net hourly load will have a

distribution that includes the uncertainty in the demand and the output

of the generators.

Let

PC[Dc- xjt, wt] - Probability that the customer demand

= x given the time and the weather

(70)

PG[Gi = xjt, wt] = Probability that generator i has

capacity = x given the time and the

weather

where wt = vector of meteorological measurements representing the

weather at time t (e.g. solar insolation, wind speed,

temperature).

Note that the probability of failure of a generator will be assumed to be

independent of time. For example, a solar generator producing anywhere

from zero to its rated capacity will always have a forced outage rate of

q.

If there is only one weather-dependent generator, then the reduced

load on the utility is the random variable, DR:

DR = DC - Gi (71)
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Using convolution:

PN[DN = ylt, t] = PC [DC = y - x I t, wt]

x

PG [Gi = xt, wt]. (72)
For more than one time-dependent generator, a distribution for the net

output of the units is found using convolution in an iterative process.

Using the abbreviation '*' for convolution:

PC+G(Y) = IPC(x)PG(Y - x) 3)

-PC * PG(Y),

Then

PG(y)t,wt) = PG1 * PG2 * *. PGm(YItVt) (74)
And

PR(ylt,wt) = PC * PGT(Ytt). (75)
where

n = total number of time-dependent plants

GT = total generation from the plants (random variable)

DR = reduced demand in time t.

This distribution of DR gives the probability of each possible net

load for a particular hour. It includes, for example, the probability of

the load level when all generators fail, and the probability of the load

level when they all operate.

Once the distributions of the hourly net load are known, these

distributions can be combined to form distributions for longer periods of
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time. The process of combining curves is done in a manner similar to

that used in forming the standard load duration curve. First, all of the

occurrences of a particular load level are grouped, their probabilities

are summed, and then the sum is weighted by the total number of hourly

density functions:

£PR(Xlt, Wt)
t (76)

PR(x) - T

The distribution PR, gives the probability that the net load, R, equals

any particular value. From this distribution, the load duration curve

that gives the probability that the load exceeds a particular value can

be found:

FR(x) = Prob [R > x] = PR().77)

y=x

The reduced curve can then be used instead of the original customer curve

for the rest of the analysis.

The analysis can be simplified greatly if the load and generator

characteristics are assumed to be uniform for certain blocks of time.

For example, one third of the days are sunny and the load and generator

output are the same for all sunny days.

A new load frequency curve must also be computed. The original

equation (7) for the load frequency curve was:

d
FQE(d) = fJrEfqF(x)Fc(d - x) + fF(x)FQc(d - x)]dx. (78)

0
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This formula is modified to use the hourly load density functions,

rather than the cumulative duration curves.

d

fqR(dit, t) = ffqG(x)fC(d - xlt, w t) (79)

+ f(x)fqC(d - xlt, wt)]dx

where the customer load depends on the time, but the outage rate and mean

time to failure of the generator itself are assumed to be independent of

time. The cumulative frequency curve is given by:

1 fqR(x t, wt)dx

FQR(d) -t T

The reduced load frequency curve replaces the original customer load

frequency curve for the rest of the analysis.

III.F Loss of Load Probability

After the last unit has been loaded, the final curve is the

equivalent load curve for the entire system. Since the loss of load

probability is defined to be the percent of time that the customer demand

cannot be met, its value can be read directly from the final curve. The

energy demand that cannot be supplied is given by:

n = T f FEn(X) dx (81)
Un+l
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where n = number of plants.

The loss-of-load probability is given by:

LOLP = FEn(Un+1) (82)
where Un+ 1 is the total installed capacity of the system. Figure 10

shows the final system configuration.

The expected loss of load frequency is given by:

LOLF = FQEn(Un+1) (83)

and from equation (1), the expected loss of load duration is

LOLD = L . (84)

One other measure of the reliability of a power system is its loss of

energy probability, LOEP. The LOEP is not really a probability, but an

expected value for the fraction of the original demand that cannot be

met. It is defined as:

(0

f F (x)dxU En
LOEP = dn+1 . (85)

max
f Fc(x)dx

where Un+1 = total installed capacity

dmax = peak customer demand
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III.G Expected Value of the Operative Capacity

In the deterministic model, the energy is found from the area under

the load duration curve. In the probabilistic model, this integral must

be reinterpreted because the vertical axis does not have the dimension of

time. To make the reinterpretation, a new random variable, the operating

capacity of unit r, is defined:

Cr = DEr - Ur (86)

where Ur is the loading point of unit r. The reverse cumulative

distribution of Cr is:

Fcr(S) = Pr [Cr >S]. (87)

By definition of Cr, Fcr(S) is given by:

Fcr(S ) = PrEDEr > S + Ur ]

= FEr (S + Ur) (88)

The expected value of a non-negative random variable is defined as:

x max

E (x)= f y G(y) dy (89)
0 x

Integrating equation (89) by parts and using the fact that Gx(xmax) = 1

gives:

I ,
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X

E(x) max F=(y) dy. (90)

0

Using equations (88) and (90) the expectation of Cr is:

Kr

E(C) - Fcr() dy
0

K
r

= f FEr (Y + Ur) dy (91)

Ur+l
= f FEr(X) dx

Ur

This is just the area under the equivalent load duration curve.

Therefore, the calculations for the energy produced by a unit appear the

same, although the interpretation of the variables is quite different.

In the probabilistic model, the expected operating capacity at any given

time is computed and then multiplied by the length of the time period.

III.H Storage Dispatch Strategy

Assume that plants are loaded in order of increasing operating cost,

that all storage units are loaded at the point where their costs become

competitive, and that the capacity of the storage units is reduced so

that a unit generates for the maximum length of time at the point where

it is first competitive.
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Now suppose that the operating capacity of the storage unit is

increased. Because the energy remains constant, the hours of operation

must be reduced. This means that the storage unit must be moved up in

the loading order (see figure 4). Moving the storage unit creates two

effects. One is that the plant directly below the storage unit must

generate longer to make up for the hours that the storage unit is no

longer supplying. The other is to decrease the capacity requirements on

units higher in the loading order.

The extra cost required to make up for the loss in storage generation

time is:

AC' = AH MW * C (92)

And the savings from decreasing the capacity requirement is:

AC = AMW * (H- AH) Ck (93)

where

MW = original storage operating capacity

MW = increase in storage operating capacity

H = original generation hours

H = decrease in generation hours

Cr = cost of replacement generation

Ck = cost of unit(s) displaced.
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Since the plants were loaded in order of increasing cost:

Ck > Cr k = r + 1, ..., n. (94)

In some cases the replacement generation and the displaced capacity may

be for the same unit; however, equation (94) still holds.

The stored energy remains constant:

E = H MW (H - AH) (MW + MW)

(H - AH) AMW AH MW

This implies:

AC - AC AMW (H - H) Ck - AH MW Cr

= A H · MW (Ck - Cr)

>>0 (97)

by equations (94) and (96). Therefore, the savings are always greater

than or equal to the additional cost of delaying storage generation.

Therefore, it is always advantageous to increase the operating

capacity of storage as far as possible. Equation (97) states that

storage should be used to replace the maximum amount of energy near the

top of the customer load curve since a given amount of energy must be

generated to meet the customer demand and since energy lower in the

or

(95)

(96)
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customer load curve is generated by plants with lower operating costs.

The argument given above does not carry through to the probabilistic

model since there is no upper limit on the capacity required by the

system to meet the peak. That is, each additional megawatt at the top of

the curve reduces the loss of load probability, but, the loss of load

probability never reaches zero. (There is always a finite chance that

all plants will fail).

In the probabilistic case, increasing the capacity of the storage may

actually increase the costs since the additional capacity places an

outage demand on future units. However, the additional costs would be

relatively small, and the overall effect would be to increase the

reliability of the system.

III.I. Effective Load Carrying Capability

One measure of the worth of a power plant to an electric power system

is its effective load carrying capability (ELCC). The load carrying

capability is a function of the demand on the system, and the capacities

and outage rates of all the plants. So the same plant may have quite

different load carrying capability on different power systems.

Basically, the load carrying capability indicates how much load the plant

displaces. However, there are several alternative definitions and

techniques for finding the load carrying capability, so it is necessary

to give the definition along with the value. (See reference TO.)
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In this paper, the effective load carrying capability of a plant is

defined to be the capacity of a 100% reliable generator that can replace

the plant without changing the loss of load probability. This value is

equivalent to the load tha* can be subtracted uniformly from the demand

so that the loss of load probability is the same as if the plant operates

to meet the original demand.

The procedure for finding the load carrying capability involves

finding the equivalent load curve for the entire system and the loss of

load probability, then removing the plant in question from the equivalent

load curve and finally finding the capacity that must be added to bring

the loss of load probability down to its former value.

The first step is to find the equivalent load curve without plant r.

Using equation (41):

E (d) - [ FEn(d Endd - K qrF (98)
whEn Pr En ii En-r ' rie

where FEnr = final equivalent load curve with plant r removed.

Then, a 100% reliable plant is added. Looking at equation (28), it can

be seen that adding a 100% reliable plant to the equivalent load curve

leaves it unchanged:

FIK(d) )FEn-k'(d))+ FEn-k d K (99)FEn(d) = p FEnk(d) + q FEnk(d - K ) (99)

If p' = 1 and q' = 0, then:
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FEn(d) - FEn k(d) (100)

where FEn(d) = equivalent load curve with reliable plant

replacing plant r.

Finally, the equivalent installed capacity,Un, such that the loss of load

probability on the new curve equals the loss of load probability on the

old curve must be found.

LOLP = FEn(Un+1) = FEn(Un) (101)

The difference between Un-r, the total installed capacity excluding

plant r, and the new equivalent installed capacity, Un, is the

effective load carrying capability:

ELCC r = Un -Un-r (102)

This is illustrated in figure 10.

It should be noted that the equivalent load carrying capability does

not depend on the loading point of the plant. It does not measure how

much load the plant actually displaces, but how much it is capable of

displacing.
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IV. Notation and Definitions

Each random variable, X, has a probability mass function associated with it:

fx(t) = Pr t < X < t + dt]

and:

00ffX(t.)dt = 1

or, if the random variable is discrete:

Px(t) = Pr [X t]

and:

E Px(t) 1
t

The subscript on each function indicates that the function describes the

random variable, X.

The cumulative distribution function (CDF) of a random variable will be

noted by "G." The CDF of a random variable, X, is defined to be:

Gx(t) = Pr X < t]

= /fx(s)ds

or for discrete random variables:

t
GX(t) E Px(S)

S=- ao



67

Another function of the random variable, X, can be defined to be:

Fx =1-G x .

This function will be called the reverse cumulative probability

distribution. Fx is not a standard probability function; however, it

is useful here since the load duration curve is in this form. Thus:

Fx(t) = Pr X > t] = fx(s)ds

or for discrete random variables:

Fx(t) = E Px(s )

s=t

The random variables and their respective reverse cumulative probability

distributions as used in the probabilistic analysis are given below:

Dc = customer demand Fc(d) = Pr [Dc > d]

Df = forced outage demand Ff(d) = Pr [Df = d]

De = equivalent demand Fe(d) = Pr [Dc + Df > d]

= Dc + Df

Other variables that are input, or calculated from the functions

defined above are as follows:

aru = expected energy available from plant r for storage unit u

Au total expected energy available for storage unit u

CFr = capacity factor of plant r

Cr = operating capacity of plant r (MW)
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Cru = excess capacity available from plant r for storage unit u

(MW)

Cr cost per MWHr for plant r ($/MWH)

cu = expected cost for the storage unit u ($/MWH)

Dh - megawatt hour demand which would be placed on the hydro

unit h if it were loaded next in the loading order (MW)

DEr - equivalent demand on unit r

DEr = equivalent augmented demand on unit r including storage

demand

eu = pumping/generating efficiency for the uth pumped hydro

plant

En - expected energy demanded that cannot be produced after all

n plants have been loaded (MWH)

h = conventional hydro index after sorting. The hydro unit

with the longest hours of generation at full capacity

would have a hydro index of 1

Kr rated capacity of plant r (MW)

KCu rated generating capacity of plant r (MW)

LOLP = loss of load probability

m = mean time to failure

Mr - energy generated by the rth plant (MWH)

n - number of plants on the system

Nr = number of startups for unit r

r = probability that plant r generates

qr.= probability that increment j of plant r fails to generate

r = loading order of plant
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T = number of hours in the time period

u = pumped hydro index. The pumped hydro unit with the

longest hours of generation at full capacity would have a

hydro index of 1.

Z u size of the loading point of unit r hydro reservoir u (MWH)

Zu = energy consumed to fill hydro reservoir u (MWH)

x = average forced outage occurrence rate

= average restoral rate
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