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ABSTRACT

Short-run residential demand equations for electricity and gas are

estimated in this study. Short-run demand depends on the appliance stock

in existence. Use of the appliance stock is a function of the price of

fuel, income, and the weather. The major difference between this study

and others explicitly using appliance stock data is that appliances are

not aggregated into a single stock measure. Demand consists of the sum

of the individual demands for energy for each fuel-burning appliance

type. Consequently, different price, income, and weather elasticities

are estimated for each use of the fuels.

The data consist of annual observations for each state for the years

1960-1975. Most of the appliance stock data were developed by Data

Resources, Inc. These are supplemented by appliance data developed for

use in this study. Two different methods of pooling time-series and

cross-section data, the random and fixed effects models, are used, and a

specification test is performed to test for consistency of the random

effects model estimates.

The results are somewhat mixed. However, they do suggest directions

for further research. Fairly reasonable estimates in terms of average

energy consumption for each type of appliance are obtained. The aggregate

price and income elasticities fall in the range found in previous work.

Price elasticities appear to vary among the demands for fuel for different

end uses, but the differences are not statistically significant. Income

elasticities for the individual fuel uses are disappointing; they are often

of the wrong sign and magnitude. The most reasonable results are obtained

for the appliances which consume the most fuel. Further work most likely

would benefit from aggregation of the small appliances, leaving only for



estimation the coefficients of demand for the major users of fuel and the

residual aggregate appliance stock.
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I. Introduction

The demand for energy by the residential sector of the economy is

derived from the demand for the services of household appliances using

that energy. As a result, ownership of appliances is requisite to energy

demand and residential demand should be thought of as the result of a

two-part decision-making process: the decision to purchase an appliance

of a particular type and the decision to utilize it with a certain

frequency or intensity. The decision to purchase an appliance with a

particular set of characteristics is long-run in nature, effecting a

change in the appliance stock. The decision to utilize an appliance with

a certain intensity or frequency is short-run in nature, taking the

appliance stock as given.

The latitude for changes in energy demand is greatest in the long

run when the consumer can purchase new appliances. Characteristics of

appliances, such as efficiency and fuel-consuming features, will affect

the consumer's choice. Once an appliance has been purchased, the scope

for altering energy demand is limited since the efficiency and other

characteristics of the appliance stock are fixed. The consumer can

change only the utilization of the stock by such measures as altering the

frequency or duration of use of the appliances, changing thermostat

control settings, or altering other factors affecting fuel consumption.1

Since most household appliances are durable goods with relatively

long lives, changes in the energy characteristics of the appliance stock

1 For a more detailed discussion of the short-run and long-run components

of energy demand and a critical review of models incorporating both, see
Hartman [1978].
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are likely to take place only gradually. Thus, in order to predict

energy demand by the residential sector and the responsiveness of demand

to particular policies, it is important to investigate the determinants

of energy demand in the short run, when the appliance stock is held

constant. The purpose of this paper is to present the results of a study

on the determinants of short-run residential demand for electricity and

gas.

The distinguishing characteristic of the study presented here is that

an attempt is made to estimate separate coefficients for the variables

affecting the demand for energy for different end uses. Instead of

aggregating different appliances into a single stock measure and

estimating average price and income elasticities, as is usually done,

demand is represented as the sum of separate demands for fuel for

different uses, and price, income, and weather elasticities are allowed

to differ among the different uses.

The data consist of annual observations for each state for the years

1960-1975. Most of the appliance stock data were developed by Data

Resources, Inc. [1977]. It is supplemented by appliance data developed

for use in this study.2 Two different methods of pooling time-series

and cross-section data, the random and fixed effects models, are used and

a specification test is performed to test for consistency of the random

effects model estimates.

1See Fisher and Kaysen [1962], Acton, Mitchell, and Mowill [19761,
Taylor, Blattenberger, and Verleger [1977], and Wills [1977].

2See Braid [1978].
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Section II of the paper presents the short-run residential demand

models for electricity and gas. Section III discusses specification and

estimation issues. The data are discussed in Section IV. Section V

presents the results.
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II. The Model of Short-Run Demand

Although residential energy demand has been modeled by many

researchers, only a few studies adequately differentiate short-run and

long-run demand.1 Since the primary distinction between the two as

defined here is that the appliance stock is held constant in the short

run, a short-run demand model should explicitly incorporate the stock of

appliances when possible. Attention has been given to this aspect of

short-run demand by Fisher and Kaysen [1962], Acton, Mitchell, and

Mowill [1976], and Taylor, Blattenberger, and Verleger [1977], among

others. The model of short-run residential demand for electricity and

gas that is developed in this section is similar in spirit to the work of

these researchers. Differences are discussed at the end of the section.

Households use fuel in order to receive the services of household

appliances. It is assumed here that the demand by a household for a

particular fuel consists of the sum of its demands for the fuel for each

of its appliances using that fuel, i.e.

qi : E qij (1)

where qi is the household's total demand for fuel i and qij is the

household's demand for fuel i in order to use appliance j. The

appliances explicitly considered in this analysis are those used for

space heating, central and room air conditioning, water heating, cooking,

freezing, clothes washing and drying. An "all other" category

1See Hartman [1978].
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encompasses the use of electricity for lighting, refrigeration,

television, dishwashers, and small electric appliances.

Since the appliance stock is assumed to be fixed in the short run,

the demand for a fuel for a particular end use consists of the level of

utilization of the given capital stock. Hence,

qij = Uij . APPij (2)

where Uij represents the utilization of fuel i by appliance j and

APPij is the stock of appliance type j which uses fuel i. In this

study APPij is used to denote the number of appliances of type j using

fuel i and Uij is the demand per appliance for fuel i. In the studies

previously mentioned, appliances are aggregated into a single stock

measure using "normal" usage or rated capacity as weights. The appliance

stock is measured in energy units and Ui is the utilization rate of the

appliance stock.

Since the data used in this study consist of annual observations by

state, it is necessary to sum equation (1) over all households in the

state to arrive at total residential demand by state. Short-run demand

for electricity and gas is developed more formally below.

Short-Run Demand for Electricity

Household demand for electricity is assumed to be a linear function

of price, income, and, in the case of space heating and air conditioning,

of heating and cooling degree days.l Since electricity is sold under

1 Heating degree days are the number of degrees that the daily mean
temperature is below 65OF. Annual heating degree days are the sum of
the daily heating degree days. Cooling degree days are the number of
degrees that the daily mean temperature is above 65OF. Annual cooling
degree days are the sum of the daily cooling degree days.
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declining block price schedules, two price variables, a marginal price

and a fixed charge to represent the inframarginal blocks, are generally

necessary to represent the price schedule.1 Letting i now index

households, j index appliances, and suppressing the time subscript, the

demand for fuel for each end use is specified as follows:

Space Heating

QEij = Oj + lj HDi + 2j PE + 3j FCi + 4j Y +
Eij

Central Air Conditioning, Room Air Conditioning

QEij= Oj + .lj CD + 2j PEi + 3j FC + 4j Yi +ij

Freezing, Cooking, Water Heating, Clothes Washing, Clothes Drying, All

Other

QE + PE + + Si*
ij Oj + 82j PEi + 83j FC +

14j Yi +i

where

QE.. = the demand for electricity by household i for end use j

PEi = the marginal price of electricity for household i

FCi = the fixed charge facing household i

HDi = heating degree days in the area in which household i

lives

CD i = cooling degree days in the area in which household i

lives

.j = a random error.

1See Taylor [1975], Acton, Mitchell, and Mowill [1976], and Taylor,
Blattenberger, and Verleger [1977]. The marginal price is the price per
kWh of electricity on the block on which the household's last unit of

demand falls. The fixed charge is the difference between the total
electric bill and the charge if all units of electricity were priced at

the marginal price.
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The category "all other" includes the demand for electricity for

lighting, refrigeration, television, dishwashers, and small appliances.

No attempt is made to separate these uses of electricity either because

data do not exist, electricity cnsumption is very small, or saturation is

virtually 100 percent and the variable would be collinear with the number

of households in the state which appears in the final form of the model.

To arrive at total residential demand by state, the individual

demands are summed over end uses (j) and households (i).

QE QE ij E ( 0 1 11 HD + 2 1PEi + 3 1 FCi + B41Yi)APP

i j i

3

+ E E (DO + ljCD + 2jPEi + 3jFCi + 4j.Yi)APPij
i j=2

8

+ E (Oj + 2jPE + 3jFCi+ 4jYi)APP
i j=4

+ (809+ 2 9PEj + 3 9 FC + 49Yi) + E EcijAPPij

i i j

where APPij = 1 if household i owns appliance j

0 if household i does not own appliance j

and the index j

1 for space heating

2,3 for central and room air conditioning, respectively

4-8 for cooking, water heating, clothes washing,

clothes drying, and freezing, respectively

: 9 for all other uses.



8

To arrive at the model which is to be estimated, state averages are

substituted for the price variables, income, and heating and cooling

degree days.

QE = (B1 + B11 + 21 T 31 f+ a41¥)E 1 (3)

+ i- (lOj + BljCD + 2jP E + 3jFC +B4jY)Ej

j=2

8

+ E ( 0oj + 2jPE+ 3jFC+ 4j Y)Ej

j=4

+ %9 + 2 9 E + 3 + 9 ) + ii i
i j

where

HS = the number of households in the state

Ej = the stock of appliance j in the state

and averages are denoted by bars over their variable names.

Short-Run Demand for Gas

Short-run demand for gas by state is derived in an analogous fashion.

QG (01 + +11 + 821- a41Y)G1 (4)

+ (s Oj 2j G + .)G. +j)G + .' jAPPij

j=4,5,7 i j=1,4,5,7

where

QG = gas sales

PG = the average price of gas

Gi = the stock of gas appliance j.
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Unlike the model of electricity demand, there is no "all other" category

for the gas equation because the use of other gas appliances is

limited.1 The four end uses specified here, space heating (1), cooking

(4), water heating (5), and clothes drying (7), comprise almost all of

the uses for which residential demand for gas exists. The specification

also differs from that of electricity since the average price of gas is

used due to the lack of a marginal price series for gas. The biases that

this creates, along with other estimation difficulties, are discussed in

Section III.

Comparison with Other Models of Short-Run Demand

Several differences between the demand model specified here and those

of other studies are worth examining. As mentioned previously, the major

difference between this study and most others is that in this study,

appliances are not aggregated into a single stock measure. The

advantages and disadvantages of this approach are discussed in Section

III. Studies using a single stock measure of appliances are those by

Acton, Mitchell, and Mowill [1976] and Taylor, Blattenberger, and

Verleger [1977]. Acton, Mitchell, and Mowill also disaggregate space

heating and air conditioning from other uses of electricity. Fisher and

Kaysen [1962] model short-run demand using a single stock measure of

1 Other residential uses of natural gas are in gas air conditioners, gas

refrigerators, swimming pool heaters, gas-log fireplaces, and gas lights.
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appliances, but concern about the quality of the appliance data leads

them to make a simplifying assumption which allows them to estimate

short-run demand without explicitly using their stock measure.

Another difference in the approach taken here is that the prices of

other fuels are not included in each demand equation; only the own price

is included. The reason that other fuel prices are not included is that

once a household obtains a certain appliance stock, there appears to be

little room for fuel substitution. Portable space heaters can be

substituted for oil and gas space heating, electric frying pans and other

small appliances can be substituted for gas cooking, but there are not

many other ways in which one fuel may be substituted for another without

changing the major appliance stock. Support for this approach is

obtained from the study by Taylor, Blattenberger, and Verleger [1977],

which generally finds the price of gas to be insignificantly different

from zero.1 Acton, Mitchell, and Mowill [1976] find the price of gas

to be significant, but in their study it is serving as a proxy for

changes in the appliance stock, and hence represents long-run as well as

short-run effects of the price of gas on electricity demand. Other

studies, such as the one by Mount, Chapman, and Tyrrell [1973],

1In one of their short-run demand equations the price of gas appears to
be significant, but since there is evidence of serial correlation, the
standard errors may be biased downward.
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also find the price of gas to be significantly different from zero in the

electricity demand equation, but they model demand using a Koyck lag

adjustment process, thus combining the long-run with the short-run.

Another difference between the model specified here and others is

that short-run demand is assumed to adjust immediately to new levels of

fuel prices, income, the weather, and appliance stocks. Acton, Mitchell,

and Mowill also model short-run demand without an adjustment mechanism.

An alternative assumption often made in the literature is that demand

responds with a geometric lag to changes in the independent variables.

Most researchers making this assumption are attempting to estimate

long-run as well as short-run demand, in which case some kind of lag is

reasonable as consumers adjust their appliance stocks, but Taylor,

Blattenberger, and Verleger model short-run demand this way as well.

Aside from the theoretical issue of specification, an estimation

difficulty arises. Models incorporating a geometric lag are estimated

with a lagged endogenous variable on the right-hand side, which leads to

inconsistency of the estimates if serial correlation is present and the

appropriate econometric techniques are not applied.

Other similarities and differences worth noting are the specification

of the price of electricity and the level of aggregation. Like Acton,

Mitchell, and Mowill [1976], Taylor, Blattenberger, and Verleger [1977],

and Wills [19771, the marginal price for electricity is used along with a

fixed charge. Acton, Mitchell, and Mowill drop the fixed charge variable

from their specification because they finds its coefficient to be near

zero and frequently of the wrong sign and statistically insignificant.
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Wills restricted the coefficient of the fixed charge variable to equal

its theoretical value by subtracting it from income. Only Taylor,

Blattenberger, and Verleger find the coefficient on the fixed charge

variable to be negative and significantly different from zero, but it is

of the wrong magnitude.1

The data in this study consist of annual observations by state, and,

as such, are highly aggregated, introducing possible aggregation biases.

The level of aggregation is the same as that in most studies in this

field of research. Recently, however, researchers are using more

disaggregated data which presumably are of better quality and are less

likely to cause aggregation biases. Examples of studies in which the

unit of analysis is aggregated at a lower level than a state are Acton,

Mitchell, and Mowill [1976 ]and Wills [ 1977].

III. Specification and Estimation Issues

In this section a number of issues regarding the specification and

estimation of short-run energy demand equations are raised and

discussed. These issues arise in most of the work in this area and

researchers have dealt with them in a variety of ways. One issue is the

representation of the declining block structure of rates under which most

electricity and gas is sold. This problem has received much attention in

the literature. The discussion below attempts to summarize the

difficulties and the solutions adopted by previous researchers. Another

issue, and one that has been dealt with by only a few researchers, is

that of the simultaneous nature of supply and demand.2

1 The specification of the price variable is discussed in Section III.

2 See Halvorsen [1973].
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If this is indeed a problem, estimates arrived at without using

simultaneous equation estimation techniques are inconsistent. Methods of

pooling cross-section and time-series data is another issue discussed

below. Most of the work in this area uses the variance components method

of pooling,l which is referred to as the random effects model in this

study. This approach is cpared to the fixed effects method of

pooling. Another issue also dealt with below is the practice of

aggregating appliances into a single stock measure.

Specification of the Price Variable

Specification of the price variable presents a problem for the

estimation of demand equations for electricity and gas because of the

declining block nature of rate structures. Typically, a customer is

charged a fixed fee plus a price P1 for the first x1 units of demand,

a lower price P2 for the next x2 units of demand and so on. Various

researchers have discussed the problems created by this type of pricing

schedule and have shown that the rate schedule generally can be

represented by two terms: a marginal price, which is the price per kWh

of consumption for the block on which the last unit of demand by the

customer falls, and a fixed charge, which represents the inframarginal

blocks of consumption.2 The fixed charge is the difference between the

1 The variance components method of pooling time series and cross

section data was used by Balestra & Nerlove [1966].

2 See Taylor [1975], Acton, Mitchell and Mowill [1976],, and Taylor,

Blattenberger, and Verleger [1977].
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total bill and the charge the customer would have faced had all units of

electricity been priced at the marginal rate. The elasticity of demand

with respect to this variable should be equal to the product of the

income elasticity and the budget share commanded by the fixed charge,1

but of the opposite sign. Basically, the reason is that changes in the

prices of the infra-marginal blocks do not change the marginal price,

(hence the price consumers are using to equate the ratios of marginal

utilities to prices of goods in their consumption decisions) but do

affect the real income of the consumer. If the prices of the

inframarginal units of demand rise, the consumer has less real income and

hence should react as if real income has fallen.

Due to the efforts of Taylor, Blattenberger and Verleger [1977],

there exists a time-series and cross-section data base containing

state-averaged marginal and fixed charge prices for electricity. Their

data is used in this study. Unfortunately, since no similar series

exists for gas, the average price of gas is used instead of the marginal

price and a fixed fee.

Use of the average price instead of the marginal price and the fixed

charge variable produces inconsistent estimates. The bias in the price

coefficient due to the errors in variables problem is toward zero.

Berndt [1978] has shown recently that the bias caused by omitting the

fixed charge variable is negligible.

Simultaneity

The demand for electricity is part of a simultaneous system of

1 The mean inframarginal budget share by state over the 1960-72 period
is about .01.



15

equations which in addition to demand includes supply and the rate-

setting process. It is difficult to tell how much of a problem

simultaneity creates without examining it explicitly. Considering the

complexity of the regulatory process and supply characteristics, price

changes or differences may be much more related to factors other than

quantity. In any case, an instrumental variable estimator ought to be

used to insure consistent estimates. Mount, Chapman and Tyrrell [1973],

used instrumental variables to estimate their demand model, and found

that the estimates were very close to those achieved by ordinary least

squares. Houthakker, Verleger and Sheehan [1974], also used an

instrumental variable estimator, but their standard errors were large.

Halvorsen [1973], who explicitly modeled the supply side, achieved

essentially the same estimates of the demand parameters with two-stage

least squares as with ordinary least squares. The study here does not

use instrumental variables.

Aggregation of Appliance Stocks

Most studies using appliance stocks aggregate the different kinds of

appliances into one stock measure using as weights the "normal" usage or

rated capacity of the appliances. Several difficulties arise with this

approach which are avoided by specifications (3) and (4). First, it is

very likely that the demands for energy for different end uses have

different elasticities. When appliances of different types are

aggregated, this kind of information, which may be very useful, is lost.

Second, if elasticities for different end uses vary, average elasticities

will depend on the particular appliance configuration of the household or

of the state. Thus, it is inappropriate to use estimates of average

elasticities to project future demand if the appliance mix is changing.
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Along the same lines, an elasticity estimated by pooling state

aggregated appliance data may not be a very good estimate of the

elasticity for an individual state if the appliance-mix of the state is

different from the typical state appliance configuration.

One advantage of aggregating appliance stocks is that the demand

equation can be divided by the appliance stock and the utilization rate

of the stock can be estimated instead of the demand. The advantage of

putting the appliance stock on the left hand side of the equation arises

if there are measurement errors in the appliance stock, which there

undoubtedly are. If a variable measured with error is on the left hand

side of an equation, no problem in terms of estimation is created unless

the measurement error is correlated with the right hand side variables.

In the disaggregated model discussed in Section II, the appliance stocks

are on the right hand side of the equation. If they are measured with

error, the estimated coefficients are inconsistent and generally biased

toward zero.

Another problem with the estimation of separate elasticities for

different end uses is that some of the variables are highly collinear,

making it difficult to obtain precise estimates of the parameters. In

addition, degrees of freedom are lost when more coefficients are being

estimated.

Pooling Time-Series and Cross-Section Data

When pooling time-series and cross-section data, the specification

should allow for differences which might exist either across the units of

observation or across time. In this study the concern was that there

might be some part of demand associated with each state that the right

hand side variables could not explain. Suppose that the error term,
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nit, consists of two parts: an individual component, ai, and a

random error, it. If the expectation of ai, along with expectation

of Eit, is zero and if it is uncorrelated with the right hand side

variables, ordinary least squares leads to consistent, but inefficient

results, since the covariance matrix does not obey the least squares

assumptions. Instead, it takes the form:

E(nn') = IN ® (a 2 IT + 2 JT) 

where n is a stacked vector of state time-series errors, N is the number

of states, T is the number of years and JT is a TXT matrix of ones, if

the following assumptions hold:

E(ai) = E(eit) = for all i and t

E(E it it) = E(Eitjt ) = E(citai) = E(i j ) = 0 for all i j and t t'

var(a 2) = a2 for all i

var(it) = 2 for all i and t

This specification is called a variance components or a random effects

model. To attain consistency the critical assumption is that the

individual state effect, ai, is uncorrelated with the right hand side

variables.1

1 See Maddala [19711.
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The efficient estimation technique for this model is generalized least

squares. Since E(nn') has to be estimated, the coefficients are only

consistent and not unbiased. A two-step procedure is available which

yields asymptotically efficient estimates.l Estimates of a 2 and o2 can

be obtained from the ordinary least squares residuals by the formulas2:

'^22 1 _1 E ^
c (N-1)T-1) z C(iit

If the data is then transformed according to the formula

If the data is then transformed according to the formula

Xit = Xit - YXi.

where Xit is the transformed variable, and

2 + T2
a £

ordinary least squares can be performed on the transformed variables to

obtain asymptotically efficient estimates.

An important assumption underlying the use of the random effects

model is that the individual state effect ai is uncorrelated with the

right hand side variables. If this assumption is not true, the random

effects model leads to inconsistent estimates, as does ordinary least

squares. However, a fixed effects model, in which individual state dummy

variables are estimated, yields consistent estimates because the error

term in this model consists only of it, which is assumed to be

uncorrelated with the right hand side variables. If the assumptions of

2 See Wallace and Hussain [1969]. T
2Analysis of variance notation is being used, e.g. 

Analysis of variance notation is being used, e.g. ci. TtEl it
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the random effects model hold, however, the fixed effects model is not

efficient. The fixed effects model can be estimated by transforming the

observations into deviations from state means over time and using

ordinary least squares on the transformed variables.

It is sometimes difficult to decide which approach is appropriate.1

The efficiency of the random effects model is desirable, but not at the

cost of losing consistency. A specification test developed by Hausman

[1976] can be used to test whether the assumptions of the random effects

model hold. The basis for the test is that if the assumptions of the

random effects model hold, both the random and fixed effects models

produce consistent estimates. Under the null hypothesis of no

misspecification, Hausman has shown that the statistic

= q'V(q)-lq
K

is distributed as F(K,T-K), where q = FE-SRES the difference between the

fixed and random effects estimates, V(q) = V( FE)-V(6RE) , and K is the

number of coefficients. In forming V(q), the estimate of

o2 from the fixed effects model should be used in order to insure that

the estimate of 2 is independent of so that m is distributed as F.

1 See Hausman [1976] for a brief discussion of the issue and further

references.
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Heteroskedasticity

It is clear from the model that heteroskedasticity exists since the

error term is

z z . jAPPij -
1 j

If e i and j for i j are independent, and ei is distributed

N(O,o2), then the error term is distributed N(O, z 7 ?.APP..). A simpleE:E ~ ~ ~ ~ -i j 1j 1ij
procedure, although not quite correct, was adopted. The electricity

observations were weighted by dividing them by the square root of the number of

households in the state and the gas observations were divided by the square

root of the number of gas space heating customers in the state.

The results did not appear to be very sensitive to the procedure

used.l

IV. The Data

Electric appliance stocks and the stock of gas-heated houses were

obtained from the study by Data Resources, Inc. (DRI) [1977]. Gas

appliance stock data for water heaters, ranges and clothes dryers were

developed as a part of this study. A detailed review of the methodology

used to develop the electric appliance stock data by DRI and the approach

used to develop the gas appliance stock data is contained in Braid [19781.

Concern over the quality of the appliance stock data led to the

development of an alternative stock series for stocks other than space

1 In fact, the ordinary least squares residuals show only slight
heteroskedasticity. Taylor, Blattenberger and Verleger [1977] also report
little indication of heteroskedasticity.
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heating and air conditioning. The alternative series is also discussed in

Braid [1978]. It is developed by trending saturation rates obtained from

census data for each appliance and for each state between the years 1960

and 1970. The series thus obtained is then adjusted to insure that state

stocks sum to the national stock for each year.

Other data wereobtained from the following sources. Average marginal

and fixed charge electricity price datawere obtained from DRI. The data

wereconstructed by taking a customer-weighted average over different rate

schedules within a state of the marginal and fixed charge prices for the

average level of kWh consumption. Gas revenues and sales by state were

taken from Gas Facts and the average price was calculated by dividing

revenues by sales. Electricity sales came from the Edison Electric

Institute Statistical Yearbook. Personal income was taken from the Survey

of Current Business. Average heating and cooling degree day data was

developed by taking a population weighted average of heating and cooling

degree days of major population centers. Heating and cooling degree data

was obtained from the National Oceanic and Atmospheric Administration.

Prices and income were deflated by the consumer price index and the

cross-section index developed by Anderson [1973].

V. The Results

The electricity demand equation (3) was estimated using annual state

data for the period 1960-1972. Four states (Alaska, Hawaii, Virginia and

Maryland) were excluded because one or more variables were missing. The

gas demand equation (4) was estimated using annual data for all states for

the period 1960-1975. The results of the estimation are discussed in this

section. The first part of the discussion describes the results obtained

by ordinary least squares. The second part compares the ordinary least
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squares results with results obtained using random and fixed effects

models. The third part discusses the differences found in the results

using the two alternative sets of data.

Ordinary Least Squares Results

Several kinds of information are useful in evaluating the results of

the estimation of equations (3) and (4). The signs of the estimated

coefficients can be compared to prior beliefs, i.e. the price coefficients

are expected to be negative and the income and degree day coefficients are

expected to be positive. Tests of the significance of individual

coefficients or groups of coefficients can be made. It is also useful to

calculate the estimated average energy use per appliance from the

estimated equations. These estimates can then be compared with estimates,

both econometric and engineering, from other studies in order to determine

how reasonable the results are. Finally, the elasticities of demand can

be examined for their plausibility and compared to elasticities from other

studies.

Table 1 presents the results of estimating the electricity demand

equation (3) by ordinary least squares. First, judging by the signs and

significance of the coefficients, the results are mixed. The coefficients

of the degree day variables are all positive as expected and highly

significant. Five of the eight price coefficients are negative but only

three of the five (space heating, room air conditioning, and water

heating) are significantly different from zero. These three significant

coefficients, however, are for major uses of electricity. The positive

price coefficients are all insignificant. Five of the eight income

coefficients are positive as expected, but only two of them (clothes

washing and drying) are significantly different from zero. None of the
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negative coefficients on income are significant. The results for the

fixed charge variable are not as good. Only three coefficients (space

heating, water heating and clothes washing) are negative as expected and

only two of these (water heating and clothes washing) are significantly

different from zero. None of the positive coefficients are significantly

different from zero. In addition, the magnitudes of the fixed charge

coefficients are not equal to their theoretical values.l

Although many of the fixed charge coefficients are insignificantly

different from zero, the hypothesis that the fixed charge coefficients are

all equal to zero is rejected by an F test at the .01 level of

significance.2 Similarly, the hypothesis that all of the price and

income coefficients are zero is rejected at the .01 level of

significance.3 The results of the restricted regression (no price or

income variables) are contained in column (1) of Table A2 in the appendix.

1 To compare the coefficients, the coefficient on the fixed charge
variable must be divided by 1000 to put the variable in the same unit
(thousands of dollars) as the income variable.

2 The statistic m is distributed approximately as F (8,-), which has a

critical value of 2.51 at the .01 level of significance.

m = (SSR(restricted)-SSR(unrestricted)). df (numerator)
SSR (unrestricted) df (denominator)

= (53,144,300 - 46,088,000) . 561 = 10.74

46,088,000 8

where SSR is the sum of squared residuals and df is the degrees of

freedom. The null hypothesis is rejected.

3 The statistic m is distributed approximately as F(21,a), which has a

critical value of about 1.88 at the .01 level of significance.

m = (87,640,600 - 46,088,000) . 561 = 24.09.
46,088,000 21

The null hypothesis is rejected.
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Table 1

Coefficient Estimates for the Short Run Demand

for Electricity-DRI Data

(Standard errors in parentheses)

OLS

Space Heating

C 19,449.3
(5,415.42)

HD 2.16623

(.224396)
PE -3,831.58

(1,208.72)
FC -224.075

(345.854)
Y -1.1296

(3.97153)

kWh/appliance/yearl 12,782

Central Air Conditioning

C 3,483.31

(6,462.41)
CD .792216

(.327277)
PE -1,133.63

(1,516.02)
FC 49.2886

(464.642)
Y .088769

(.405312)

kWh/appliance/year 3,312

Room Air Conditioning

C 7,564.65

(2,870.32)
CD .873652

(.182517)
PE - 2,281.23

(577.580)
FC 7.86344

(198.558)
Y -.235154

(.164602)

kWh/appliance/year 2,333

I calculated at the means of the independent variables.
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Table 1 (continued)

Freezing

C 1,575.96

(3,431.46)
PE -208.117

(723.623)
FC 191.148

(259.049)
Y .0454039

(.231395)

kWh/appliance/year 2,273

Cooking

C 574.209

(2,557.91)
PE 382.234

(531.623)
FC 367.721

(237.569)
Y -.211413

(.168337)

kWh/appliance/year 649

Water Heating

C 9,041.07

(2,983.00)
PE -1,613.53

(596.213)
FC -1,017.65

(233.839)
y .0537846

(.191141)

kWh/appliance/year 3,033

Clothes Washing

C -1,286.04

(919.255)
PE 201.612

(192.311)
FC -168.705

(83.3908)
Y .173596

(.0580157)

kWh/appl i ance/year 57
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Table 1 (continued)

Clothes Drying

C -6,118.59

(2,825.09)
PE 849.349

(692.973)
FC 352.696

(254.135)
Y .755601

(.176472)

kWh/appliance/year 1,806

Other 1,398.97
(101.713)

Intercept -19.149

(21.0868)

R2 .9936

mean of the dependent variable 2654.95
(millions of kWh)

Standard error of the regression 286.624

Sum of squared residuals 46,088,000
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The estimates of average kWh consumption for each appliance in Table

1 can be compared to estimates from other sources which appear in Table

2. In general, the estimates compare quite favorably. With few

exceptions the relative magnitudes of energy consumption by the

appliances are correct. Although for some uses estimates of average

demand are off by as much as 1,000 kWh per year, considering the

difficulties inherent in the study, the results are quite reasonable.

The estimates are superior to those of the restricted regression (no

price or income variables) which are found in column (1) of Table A2 in

the appendix.

Table 3 presents the estimated elasticities of demand for electricity

with respect to prices, income and degree days for the different end

uses. The elasticities are calculated at the means of the independent

variables using for quantity the average use estimated by the equation.

The aggregate elasticity is calculated by weighting the individual

elasticities by an estimate of the proportion of total demand consumed by

each appliance.

Although some of the elasticities are either of the wrong sign or

clearly of the wrong magnitude, others are reasonable. For instance, the

price elasticity for space heating is -.55 while the price elasticity for

freezing is only -.17. The relative magnitude of these estimates is in

the range one would expect. In general, households can vary more easily

their consumption of fuel for space heating than they can for freezing.

It is difficult to judge the individual elasticities in the absence of

other individual estimates. Most of them are in the inelastic range

which is in accord with prior expectations. The heating degree day
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elasticity of .88 is thought to be reasonable since engineering models

assume an elasticity equal to 1.0.1

In terms of the aggregate elasticities, the estimates compare

favorably with those from other studies. The aggregate short-run price

elasticity is -.19 and the aggregate short-run income elasticity is .09.

Elasticities from other studies appear in Table 4. Acton, Mitchell and

Mowill find the short-run price elasticity to be -.35. Fisher and Kaysen

produced estimates ranging from -.16 to -.25. Mount, Chapman, and

Tyrrell estimated the short-run price elasticity to be in the

neighborhood of -.14 to -.36. Other estimates are lower. The estimates

of the short-run income elasticity range from almost zero up to .40.

Appliances are not aggregated in this study because of the belief

that price and income elasticities vary for the different end uses. This

hypothesis can be tested. The null hypothesis that the price

1 Lehman and Sebenius [19771, p. 1.
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elasticities are equal cannot be rejected. 1 This is not a surprising

result since the estimates are not very precise. The conclusion that the

elasticities are in fact equal probably should not be drawn. Future work

might experiment with different degrees of appliance aggregation and

estimate only a few elasticities instead of one for every appliance.

To test the hypothesis that the price elasticities are equal the

statistic m = c'n/(2c'(X'X) c) was calculated where cis a vector with

four elements equal to 1 and four equal to -1 , is the vector of price

elasticity estimates, and 2(X'X)-lis an estimate of the

variance-covariance matrix of n. The variance of nj is set equal to

(E/Qj var (S2j). The covariance of nj and nis set equal

to ( j)(P j,)cov (2j, i2j'). Since the Qj are also

stochastic, the true variance-covariance matrix for n is much more

complicated, involving many more terms and variances and covariances.

Rather than calculate the true covariance matrix the statistic was

calculated using two separate estimates of the Qj, those from this

study and those made by Dole, in order to obtain an indication of the

sensitivity of the results of the test to the assumptions made about the

Qj. Using the Qj estimated in this study, m = 6.0/6.05 = 1.01.

Since m is distributed as tand the critical value of t at the .05 level

of significance is about 1.96, the null hypothesis that m is equal to 0

cannot be rejected. The value for m calculated using Dole's estimates

for the Qj is only .18, so the same conclusion holds with his estimates.
i1
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Table 2

Average Consumption Estimates for
(kWh/yr/unit)

Edison
Electric
Institute

Central Heating

Central Air Conditioning

Room Air Conditioner

Freezer

Range

Water Heater

Clothes Washer

Clothes Dryer

1190-1820

700-730

4470-4810

100

990

Electric Appliances

Stanford
Research
Institute

14,153

3,600

1,375

1,478

1,180

4,490

100

990

Dole

13,662

3,565

1,370

1,395

1,200

4,350

1,000
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Table 3

Elasticities of the Short-Run Demand

for Electricityl

Price elasticities
Space Heating -.55
Central air conditioning -.62
Room air conditioning -1.78
Freezing -.17
Cooking 1.07

Water Heating -.97
Clothes Washing 6.46
Clothes Drying .86

Aggregate2 -.19

Income elasticities
Space heating -.80
Central air conditioning .24
Room air conditioning -.91

Freezing .18

Cooking -2.94
Water heating .16
Clothes washing 27.45
Clothes drying 3.77

Aggregate .09

Heating degree
day elasticities

Space heating .88
Aggregate .11

Cooling degree day
elasticities

Central air conditioning .28
Room air conditioning .44

Aggregate .04
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Table 3 (continued)

Fixed Charge elasticities
Space heating -.06
Central air conditioning .05
Room air conditioning .01

Freezing .29

Cooking 1.98
Water heating -1.17
Clothes washing -10.33
Clothes drying .69

Aggregate -.22

1 Individual appliance elasticities are calculated at the means of the
independent variables using the estimated average kWh consumption of the
appliance. For example, the price elasticity of demand for space heating
is a3 P 1.823 =

aQ * j= -3,832 x 12,782 = -.55.
TFP Q -~ ij 12,782

2 Aggregate elasticities are calculated by weighting each individual
elasticity by the percentage of total residential demand for electricity
estimated to be used for that end use. The weights were calculated by
multiplying the number of appliances of each type by the estimate of
average use made by Dole [1975]. The following table shows the
calculation of the weights.
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Weights Used to Aggregate Elasticities

Fuel Average Average
Consumption State State Fuel
per Appliance Appliance Stock Consumption

Central Heating 13,662 66,678.3 9.1096 x 108

Central air conditioning. 3,565 88,476.9 3.1542 x 108

Room air conditioning 1,370 318,087 4.3578 x 108

Freezing 1,395 324,783 4.5307 x 108

Cooking 1,200 480,437 5.7652 x 108

Water heating 4,350 301,634 1.3121 x 109

Clothes washing 100 698,573 6.98573 x 107

Clothes drying 1,000 280,440 2.8044 x 108

Other3 2,600 1,280,290 3.3288 x 109

76.82947 x 108

Percent
of Total

.12

.04

.06

.06

.08

.17

.01

.04

.43

3 The sum of estimated annual use for lighting (1000 kWh), color television

(500 kWh) and refrigeration (1,100 kWh) taken from estimates found in Dole

[1975].
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Table 4

Estimates of Elasticities from other Studies

Short-Run
Price Elasticity

Short-Run
Income Elasticity

Acton, Mitchell & Mowill

Fisher and Kaysen -.16 to -.25 .07 to .33

Mount, Chapman,

and Tyrrell -.14 to -.36 .02 to .10

Taylor, Blattenberger
and Verleger

Wills

-.05 to -.54

-.08

.0004 to .38

.32

Houthakker, Verleger,
and Sheehan -.03 to -.09

-.35 .40

.13 to .15
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The results of the estimation of the demand for gas can be analyzed in

the same manner as the results for electricity. Table 5 presents the

ordinary least squares results for equation (4). All four price

coefficients are negative, and, except for water heating, they are

significantly different from zero. Only two of the four income

coefficients (space heating and water heating) are positive and of the

two, only the income coefficient for space heating is significant. Of the

negative income coefficients, the one for cooking is significantly

different from zero. As in the case of electricity, the hypothesis that

the price and income coefficients are zero is rejected by an F test at the

.01 level of significance. 1 The results of the restricted regression

appear in column (2) of Table A2 in the appendix.

Table 6 contains estimates from two sources of fuel consumption by gas

appliance. Comparing these estimates with the ones in Table 5, it can be

seen that the estimates in this study for space heating and cooking are

within a reasonable range, but the estimates for water heating and

especially clothes drying are too high.

1 The statistic m is distributed approximately as F (8,a) which has a

critical value of 2.51 of the .01 level of significance.

m= (120,642- 103,066) . 736 = 15.69.

103,066 8

The null hypothesis is rejected.
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Table 5

Coefficient Estimates for The Short-Run Residential Demand
for Gas-Trended Data

(standard errors in parentheses)

Space Heating

C -48.6689

(150.710)

HD .142483

(.00389035)

PG -5.80559

(3.53814)

Y .0208748

(.0141358)

Therms/appliance/yearl 815

Cooking

C 882.809

(212.212)

PG -10.5303

(5.94445)

Y -. 0651795

(.0164323)

Therms/appliance/year 126

Water Heating

C 120.794

(217.963)

PG -1.67961

(5.49556)

Y .0338782

(.0185614)

Therms/appliance/year 426

I Calculated at the means of the independent variables.
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Table 5 (continued)

Clothes Drying

C

PG

Y

Therms/appliance/year

Intercept

R2

Mean of
dependent variable

Standard error
of the regression

Sum of

squared residuals

925.032
(549.485)

-29.9698
(17.6206)

-.0214319
(.0423308)

351

-1,545.51
(717.834)

.9855

15.2850

11.8337

103,066
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Table 6

Average Consumption Estimates
for Gas Appliances
(therms/yr/unit)

(1)
Dole

Central Heating 1040

(2)1

880

95 138

Water Heater 260

Clothes Dryer 43

288

40

1 C.W. Behrens, "AHAM offers Energy Saving Aids to the Public,"
Appliance Manufacturer, October 1974, as reported in Dole [1975].

Range
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The elasticity estimates are shown in Table 7. The estimates are

calculated using the estimates of average use from this study. The price

elasticities of demand for gas for cooking and clothes drying appear to

be much higher than those for space heating and water heating. The

aggregate price elasticity of -.15 seems reasonable for a short-run price

elasticity. The positive income elasticities are .23 for space heating

and .72 for water heating. The others are clearly unreasonable. The

degree day elasticity is .91, which, as in the case of electricity, is

close to the value of 1 which is used in engineering models. 1

The null hypothesis that the price elasticities are equal was tested

using the same method explained in the discussion of the electricity

results. The value for m calculated using the Qj estimated in this

study is 2.59, which would allow the hypothesis that the price

elasticities are equal to be rejected since the critical value of the t

statistic is approximately 1.96 at the .05 level of significance. Using

Dole's estimates of the Qj, however, the value of m falls to .17, so

the results are very sensitive to the assumptions made about the Qj and

no conclusions should be drawn from this test. Again, it is not

surprising that the hypothesis that the price elasticities are equal

cannot be rejected because of the lack of precision in the estimates and

the conclusion should not be drawn that the price elasticities are in

fact equal.

1 Lehman and Sebenius [1977], p.l.
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Table 7

Short-Run Elasticities of the Demand for Gas1

Price Elasticities

Space Heating -.09

Cooking -1.02

Water Heating -.05

Clothes Drying -1.05

Aggregate2 -.15

Income Elasticities

Space Heating .23

Cooking -4.66

Water Heating .72

Clothes Drying -.55

Aggregate .02

Heating Degree Day Elasticities

Space Heating .91

Aggregate .68

1 Individual elasticities are calculated as described in footnote (1)
of Table 3.

2 Aggregate elasticities are calculated using the weights shown in the
following table.
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Space Heating

Cooking

Water Heating

Clothes Drying

Weights Used to Calcul

Average Fuel

Consumption
per Appliance3

1040

95

260

43

ate Aggregate Elasticities

Average State Average Fuel
Appliance Consumption
Stock per State

650,053 6.7606 x 108

598,943 5.6900 x 107

647,049 1.6823 x 108

124,621 5.3587 x 106

9.065 x 108

3 The estimates used are from Dole [1975].

Percent

of Total

.75

.06

.19

.01

I

- -
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Comparison of Methods of Pooling Cross-Section and Time-Series Data

As discussed in Section III, the appropriate method of pooling

cross-section and time-series data depends on the assumptions of the

model. If the individual effect associated with each state is a random

variable with an expected value of zero and if it is uncorrelated with

the right hand side variables, the random effects model produces

consistent and efficient estimates. OLS produces consistent estimates of

the parameters, but not efficient ones, and the estimates of the standard

errors are biased. If, however, the individual element associated with

each state is correlated with the right hand side variables, both OLS and

the random effects model produce inconsistent estimates. The fixed

effects model still produces consistent estimates.

The results of estimating the electricity demand equation (3) by OLS,

a fixed effects model and a random effects model appear in Table 8. The

elasticities are contained in Table 9. The fixed charge variables have

been excluded from the regressions.1 Some of the estimates,

particularly those of the fixed effects model, differ substantially from

the estimates made using the other models. This is not surprising. As

Maddala [1971]has shown, the random effects estimator for can be

written as

= xy Oxy
W + OB
Wxx + xx

where W = (Xit - )2
xx it i.

1 If the fixed charge variables belong in the regression, which,
theoretically, they do, leaving them out introduces specification error.
However, as shown by Berndt [1978], the resulting bias is small.
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Wxy =z (Xit - Xi)(Yit - Yi.)
t

Bxx = z (Xit X)2 - Wxx
it

Bxy : z (Xit - X)(Yit Y) - Wxy

8 = £
ao +Tc

W refers to within groups and B refers to between groups. The ordinary

least squares estimator corresponds to = 1 and the fixed effects

estimator corresponds to = 0. The fixed effects estimator eliminates a

large portion of the total variation in the data since it eliminates the

between group variation, which is much larger than the within group

variation. Since e in the random effects model for electricity is

estimated to be .667, the random effects estimates are not very different

from the OLS estimates. The hypothesis that the state dummy variables are

all equal to 0 is rejected by an F test at the .01 level of

significance.1 Similarly, the hypothesis that the variance of the

random component in the random effects model is zero is rejected at the

.01 level with a x2 test. 2

1 The statistic m is distributed approximately as F (49,-), which has a

critical value of about 1.59 at the .01 level of significance.

m = (53,144,300 - 21,080,100) 520 = 16.14.
21,080,100 49

The null hypothesis is rejected.

2 The statistic m is distributed as x2 which has a critical value of

6.63 at the .01 level of significance.

LR
m =-2log L-- = - 2(-4408.89) + 2(-4334.39) = 149.

U

The null hypothesis is rejected.
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Table 8

Comparison of Short-Run Electricity Demand
Results with Different Pooling Techniques

(Standard errors in parentheses)

(1)

OLS
(2)

Fixed
Effects

Space Heating

17,872.7
(4,574.20)

1.96513
(.213195)

-5,220.26
(1,107.98)

-.993086
(.394075)

6,403.51
(6,239.07)

1.72969
(.215803)

-2,309.76
(1,236.27)

-.0691287
(.472662)

18,502.7
(4,770.76)

1.85439
(.223802)

-5,405.54
(1,156.14)

-.964652
(.395688)

kWh/appliance/
year1

Central Air
Conditioning

446.909
(5,933.09)

1.15168
(.341979)
17.0104

(1,441.06)
.182645
(.424352)

-127,105
(5,178.45)

.979084
(.302834)

1,730.17
(1,240.48)

.0110619
(.370403)

-442.191
(5,911.53)

1.01472
(.346164)

748.918
(1,431.19)

.225335
(.418362)

Kwh/appliance/year

Room Air

Conditioning

3,510.09
(2,393.45)

.853756
(.179396)

-1,678.31
(546.981)

.0589242
(.156012)

-1,022.23
(2,111.13)

.840579
(.210960)

-900.394
(493.802)

.286982
(.139120)

3,198.93
(2,402.11)

.79841

(.191889)
-1,591.42

(550.181)
.0687321
(.155263)

kWh/appliance/year 1,977 903

1 Calculated at the means of the independent variables.

(3)

Random
Effects

C

HD

PE

Y

9,639 10,576 9,611

C

CD

PE

Y

3,405 4,268 4,137

C

CD

PE

Y

1,848
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Table 8 (continued)

(2)

7,497.23
(2,721.98)
-818.268
(701.014)

-.362109
(.217471)

382.444
(2,550.82)
-745.186
(640.294)

.162647
(.191832)

5,253.08
(2,802.30)
-431.261
(715.175)

-.233030
(.216565)

kWh/appliance/year

Cooking

4,186.43
(2,032.45)

153.861

(473.333)
-.367877
(.170211)

-6,975.62
2,362.69
1,079.69
(539.610)

.498981
(.167116)

3,714.34
(2,165.65)

-89.8967
(492.611)

-.269261

(.173593)

kWh/appliance/year

Water Heating

-14.3784
(2,436.4)
-743.297
(580.499)

.468130
(.182784)

1,842.62
(2,512.72)
-1,000.84
(646.722)

.0857251
(.171500)

-129.898
(2,510.35)
-557.052
(604.883)

.433053
(.182267)

kWh/appliance/year

Clothes Washing

-2,392.88
(732.678)
407.666

(179.048)
.192463
(.0578662)

-3,064.43
(522.063
123.166
(127.025)

.303618
(.0419126)

-2,226.55
(674.353)
302.686
(164.793)

.192336
(.0533024)

85 -104

Freezing

(1)

C

PE

y

(3)

2,742 490

C

PE

Y

2,367

1,152 -511

C

PE

y

1,124

2,849 791

C

PE

y

2,757

kWh/appliance/year 59
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Table 8 (continued)

(2)

Clothes Drying

-2,279.08

(2,203.36)
-470.452
(656.316)

.722520
(.173340)

17,879.4
(2,604.02)
-3,840.09

(683.827)
-.871266
(.181780)

372.678
(2,259.80)
-793.178
(663.271)

.488647
(.173151)

kWh/appl i ance/year

1,331.60
(97.5653)

3,902.19
(449.920)

1,456.71
(106.400)

-79.4455
(20.8979)

.9928

-52.39541
(25.9603)

Mean of

dependent variable
(millions of kWh)

Standard error of
the regression

Sum of

squared residuals 53,144,300

(1)

C

PE

V

(3)

Other

3,375 3,027

Intercept

3,331

2654.95

305.613

-53.6561 1753.26

192.309 269.816

21,080,100 41,423,600
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Table 9

Elasticities of the Demand for Electricity

(1) (2) (3)
OLS Fixed Random

Effects Effects

Price elasticities
Space Heating -.99 -.40 -1.03
Central Air Conditioning .01 .74 135.19
Room Air Conditioning -1.55 -1.82 -1.57
Freezing -.54 -2.77 -.33
Cooking .24 -3.85 -.15
Water Heating -.48 -2.31 -.37
Clothes Washing 8.75 -2.16 9.39
Clothes Drying -.25 -2.31 -.43

Aggregate -.40 -1.11 5.17

Income Elasticities

Space Heating .93 .06 .91
Central Air Conditioning .48 .02 .49
Room Air Conditioning .27 2.86 .82
Freezing -1.19 2.99 -.89
Cooking -2.88 -8.80 -2.16
Water Heating 1.48 .98 1.42
Clothes Washing 20.41 -26.31 29.37
Clothes Drying 1.93 -2.59 1.32

Aggregate .38 -.55 .54

Heating Degree Day Elasticities
Space Heating 1.06 .85 1.01

Aggregate .13 .10 .12

Cooling Degree Day Elasticities
Central Air Conditioning .39 .27 .29
Room Air Conditioning .50 1.09 .50

.08 .04Aggregate .05
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As discussed in Section III, a specification test can be used to test

the assumption of no misspecification in the random effects model. The

null hypothesis of no misspecification is rejected with an F test at the

.01 level of significance.1 This result indicates that a fixed effects

model is necessary for consistency. Since much of the work in this field

utilizes a random effects approach it would be useful to look at the

results of similar specification tests performed for other studies.2

Table 10 presents the results of the estimation of the demand for gas

equation (4) using ordinary least squares, a fixed effects and a random

effects model. The elasticities are contained in Table 11. The

hypothesis that the individual state dummy variables are all equal to

zero is rejected by an F test at the .01 level of significance. 3 The

hypothesis that the variance of the random term in the random effects

model is zero is also rejected at the .01 level of significance by a

chi-square test. 4 In the case of gas, is estimated to be .239.

1 The statistic m is distributed approximately as F(28, ).

' = V (q)- _q__ 324.777 11.6
m # of coefficients 28

where q = FE - RE and V(q) = (FE) - V(RE).

The standard errors of RE have been adjusted to use the estimates of

a2 from the fixed effects model to insure that the standard errors are
consistent. The critical value at the .01 level of significance is about
1.70.

2 Houthakker, Verleger & Sheehan [1974] report that their results
using variance components and state dummies are quite similar, but no
statistical test is reported.

3 m =(103,066-16,196) . 687 = 75.2.
16,196 .49

The critical value for F(49,-) at the .01 level of significance is 1.59.

4 m = - 2 log LR/LU = -2(-4186.68)+2(-3636.75) = 1100

The critical value for x2 at the .01 level of significance is 6.63.The critical value for x~1
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Table 10

Short-Run Residential Demand for Gas-Trended Data
(Standard errors in parentheses)

(1)
OLS

(2)
Fixed
Effects

Space Heating

-48.6689
(150.710)

.142483

(.00389035)

-5.80559
(3.53814)

.0208748
(.0141358)

804.892
(111.749)

562.257
(126.858)

.0931378

(.00580665)

-4.50701
(3.42923)

.118882

(.00463314)

-1.65961
(3.79839)

-.0189052
(.00797443)

-.0185456
(.00964024)

Therms/appliance/year

Cooking

882.809
(212.212)

-10.5303
(5.94445)

-.0651795
(.0164323)

-795.865
(161.385)

3.98169
(162.829)

21.6947
(5.04215)

.0171251
(.0100359)

14.575
(5.40432)

-.0047048
(.0108568)

Therms/appliance/year

Water Heating

C

-1.67961

(5.49556)

.0338782
(.0185614)

-15.2165

(5.60274)
-13.7007
(4.99719)

.00729366
(.0905341)

.00892274
(.00996805)

Therms/appliance/year

C

HD

(3)
Random
Effects

PG

y

815

C

PG

1047 975

y

126 -365

120.794
(127.963)

PG

y

137

230.571
(146.007)

238.039
(146.893)

426 114 156
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Table 10 (continued)

(2)

Clothes Drying
C 925.032

(549.485)
1,717.92
(335.925)

2,831.75
(357.229)

-29.9698
(17.6206

-.0214319
(.0423308)

-33.714
(10.362)

-491.046
(11.1703)

-.0705665
(.0239859)

-1.49838
(.0259988)

Therms/appliance/year

1,545.51

(717.834)
-112.957

(2,075.80)

.9855

Mean of
Dependent variable

Standard error
of regression

Sum of

Squared residuals

15.2850

11.8337

-6.3934 -1.21349

4.68786 5.68434

103,066 14,196.4

(1)

PG

(3)

y

Intercept

351 625 842

23,781.4
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Table 11

Short-Run Elasticities of the

Price Elasticities

Space Heating

Cooking

Water Heating

Clothes Drying

Aggregate

Income Elasticities

Space Heating

Cooking

Water Heating

Clothes Drying

Aggregate

Degree Day Elasticities

Space Heating

Aggregate

OLS

(1)

-.09

-1.02

-.05

-1.05

-.15

(1)

.23

-4.66

.72

-.55

.02

(1)

.91

.68

Demand for Gas

Fixed
Effects

(2)

-.05

.73

-1.64

.66

-.30

(2)

-.16

-.42

.58

-1.02

-.05

(2)

.46

.35

Random
Effects

(3)

-.02

1.30

-1.08

-7.14

-.21

(3)

-.17

-.31

.52

-16.04

-. 21

(3)

.08

.06
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As in the case of the demand for electricity, a specification test

rejects the hypothesis of no misspecification in the random effects

modell, thus indicating that the OLS and random effects estimates are

inconsistent.

Comparison of Two Alternative Sets of Data

Concern over an errors in variables problem due to the appliance

stock data led to the development of an alternative data set which might

avoid possible large errors in the original data set.2 Section IV of

this paper briefly describes the development of this alternative data

set. Although confidence may be gained with the alternative data that

there are no grevious errors in the stock data, quite a bit of

information is not used in calculating this data. Thus, it is not clear

which data set is better. Estimates were made using both sets of data in

order to compare the results.

For electricity, more reasonable results were obtained using the

original data than the alternative data and thus far all estimates

presented have been made with the original DRI data. For comparative

purposes, the results of the estimation of specification (3) using OLS

with the alternative data are presented in Table 12. Estimated

elasticities appear in Table 13. In terms of estimated average use and

1 m = 'Vq) 101.951 7.84.
# of coefficients 13

The critical value at the .01 level of significance for F (13,-) is 2.18.

2 See Ralph Braid [1978].
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elasticities the results are not as reasonable. This can be seen by

comparing the estimated mean fuel consumption for each appliance with the

estimates of Table 1 and Table 2 and by comparing the elasticity

estimates in Table 13 with those in Tables 3 and 4. The results are

quite similar in terms of signs and significance.
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Table 12

Short-Run Demand for Electricity - Trended Data
(standard errors in parentheses)

OLS

Space Heating

C 7,035.33

(3,528.64)
HD 1.87849

(.154718)
PE -3,840.68

(966.257)
Y .0475575

(.293413)

kWh/appliance/yearl 10,244

Central Air

Conditioning

C -25,201.1

5,256.9)
CD 2.0689

(.254947)
P 4,423.86

(1,195.69)
Y 1.68085

(.362211)

kWh/appliance/year 424

Room Air

Conditioning

C 12,227.8

(2,193.24)
CD .665531

(.148745)
PE -2,204.5

(522.311)
V -.707509

(.137392)

kWh/appliance/year 2609

1 Calculated at the means of the independent variables.
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Table 12 (continued)

Freezing

C 15,940.1

(2,472.62)
PE -3,329.18

(651.743)

Y -.560838

(.206682)

kWh/appliance/year 4817

Cooking

C -670.171

(2,355.66)
PE 1,342.88

(593.013)
y -.160121

(.189464)

kWh/appliance/year 335

Water Heating

C 9,387.83

(2,296.37)

PE -2,582.89
(581.16)

y -. 130522
(.175544)

kWh/appliance/year 3503

Clothes Washing

C -4,954.72

(1,125.6)
PE 664.656

(262.454)

y .529140

(.0888692)

kWh/appliance/year 1026
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Table 12 (continued)

Clothes Drying

C -2,350.52
(2,079.47)

PE 665.003

(610.207)
Y .388480

(.160839)

kWh/appliance/year 2363

All other 690.972

(148.276)

Intercept -25.0452

(15.3692)

R2 

Mean of
dependent variable 177.867

(millions of kWh)

Standard error

of the regression 10.0654

Sum of

Squared Residuals 58,963.7
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Table 13

Short-Run Demand Elasticities

Electricity- Gas-
Alternative Data Original Data

Price Elasticities
Space Heating -.68 -.08
Central Air Conditioning 19.02

Room Air Conditioning -1.54
Freezing -1.26
Cooking 7.31 -1.45

Water Heating -1.34 .21
Clothes Washing 1.18
Clothes Drying .51 -1.09

Aggregate .90 -.12

Income Elasticities

Space Heating .04 .25
Central Air Conditioning 35.73
Room Air Conditioning 2.44
Freezing -1.05
Cooking -4.31 -4.62
Water Heating -.34 1.06
Clothes Washing 4.65
Clothes Drying 1.48 -.81

Aggregate 1.34 .10

Heating Degree Day Elasticities

Space Heating .80 .73

Aggregate .10 .55

Cooling Degree Day Elasticities

Central Air Conditioning 5.69
Room Air Conditioning .30

Aggregate .25
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In the case of gas the alternative data appears to give marginally

superior results in terms of estimated average usage and price

elasticities, so this data set was used in the estimation shown here.

Results for the original data calculated from shipments and estimated

depreciation rates, as described in Braid [1978J, appear in Table 14.

The elasticities appear in Table 13. The results are quite similar to

the ones presented earlier, as can be seen by comparing Table 14 with

Table 5 and the elasticities in Table 13 with those of Table 7.

The conclusion drawn is that the alternative trended data has no

major advantage over the original data, in spite of the difficulties

involved in the development of the original data.

Conclusion and Some Suggestions for Further Research

The purpose of this study was to estimate short-run residential

demand equations for electricity and gas using time-series and

cross-section data on a specification which did not aggregate appliances

into a single stock measure. The hope was that separate price and income

elasticities could be obtained for individual end uses of energy by the

household. The results are mixed. Fairly reasonable estimates in terms

of average energy consumption for each type of appliance are obtained.

Price elasticities appear to vary among the demands for fuel for

different end uses, but the differences are not statistically

significant. Income elasticities are disappointing. They are often of

the wrong sign and of unreasonable magnitude. In addition, the

coefficients of the fixed charge price variables in the electricity

demand equation are generally of the wrong sign. Aggregate elasticities
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Table 14

Short-Run Residential Demand for Gas-Shipment Data

(4)

Space Heating

C -49.438

(162.487)
HD .128461

(.00337273)
PG -4.94082

(3.6626)
Y .0209577

(.0154334)

Therms/appliance/year 753

Cooking

C 1,195.05

(215.446)
PG -19.1306

(6.25764)
Y -.08296

(.01678)

Therms/appliance/year 162

Water Heating

C 133.497
(230.593)

PG 6.79032

(5.91575)
Y .0458836

(.020305)

Therms/appliance/year 390
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Table 14 (continued)

(4)

Clothes Drying

C 1,837.22

(484.284)
PG -55.2071

(16.4514)

Y .0560875
(.0399356)

Therms/appliance/year 621

Intercept -1.26557
(7.58185)

R2

Mean of
dependent variable 29.6116

Standard error of
the regression 4.46419

Sum of

Squared Residuals 14,667.7



61

are reasonable. Specification tests indicate that the use of a random

effects model or OLS produces inconsistent estimates of the parameters

and thus that a fixed effects model is necessary for consistent results.

However, the results obtained using a fixed effects model are

disappointing. In spite of the difficulties involved in developing an

appliance stock data base for the intercensus years from either

saturation rates or shipment data, the results obtained from the data are

superior in the case of electricity and almost identical in the case of

gas to results obtained from an alternative data set derived so as to

minimize the probability of large random errors.

Future short-run work on residential demand should concentrate on the

estimation of parameters of the demand for fuel for individual end uses,

but little would be lost and precision would probably be gained if only

major appliances were disaggregated from the rest of the appliance

stock. Future work might also consider imposing constraints that

individual price or income elasticities are zero. Higher quality data at

a lower level of aggregation should also improve the quality of the

estimates. Since appliance characteristics, such as efficiency, have

changed over the years, it would also be desirable to incorporate this

information into the model. Future Ciork should also include tests of the

assumptions made in pooling data.
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Appendix

Table Al

THE DATA

Abbreviation

C

PE

PG

HD

CD

QE

QG

Variable

constant

price of electricity

price of natural gas

heating degree days

cooling degree days

sales of electricity

sales of natural gas

income per household $/hsehold.

fixed charge $

Units Mean

¢/kWh 1.823

¢/therm 12.25

5,207

1,166

m of kWh 2,655

m of

Y

therms 859.62

9,012

FC 3.49
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Appendix

Table A2

Restricted Regressions - No Price or Income Variables

(Standard errors in parentheses)

(1) (2)

electricity gas
(kWh) (therms)

Space Heating
C 4,294.56 282.036

(763.438) (24.505)
HD 3.21180 .1444484

(.18358) (.00381676)

Fuel consumption/appliance1 21,019 1,026

Central Air
Conditioning

C -840.747
(971.344)

CD 2.12806
(.363656)

Fuel consumption/appliance 1,640

Room Air
Conditioning

C 3,430.99
(387.108

CD -.0948689
(.1680557)

Fuel consumption/appliance 3,320

1 Calculated at the means of the independent variables.
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Appendix

Table A2 (continued)

(1)

Freezing

Fuel consumption/appliance

Cooking

Fuel consumption/appliance

3,901.99
(334.259)

2,317.42

(287.545)

Water Heating

Fuel consumption/appliance

Clothes-Washing

Fuel consumption/appliance

1,288.63
(242.380

189.398
(104.690)

Clothes Drying

Fuel consumption/appliance

HS

3,289.58
(293.742)

653.257
(105.262)

Intercept -184.098
(22.9104)

.9884

Mean of

dependent variable

Standard error of
the regression

Sum of Squared

Residuals

2654.95

387.057

-3,884.56
(636.382)

.9832

15.285

12.7339

87,640,600

(2)

36.8577

(19.1372)

321.886
(30.9308)

434.097

(73.3611)

120,642


