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Abstract

Frame representations, which correspond to overcompkaterglizations to basis expansions, are
often used in signal processing to provide robustness twserin this thesis robustness is provided
through the use of projections to compensate for errorsdrrdpresentation coefficients, with spe-
cific focus on quantization and erasure errors. The pragestare implemented by modifying the
unaffected coefficients using an additive term, which isdinin the error. This low-complexity im-
plementation only assumes linear reconstruction usingalptermined synthesis frame, and makes
no assumption on how the representation coefficients arergtmual.

In the context of quantization, the limits of scalar quaatiizn of frame representations are first exam-
ined, assuming the analysis is using inner products wittirdmae vectors. Bounds on the error and
the bit-efficiency are derived, demonstrating that scal@ntjzation of the coefficients is suboptimal.
As an alternative to scalar quantization, a generalizatio8igma-Delta noise shaping to arbitrary
frame representations is developed by reformulating nelis@ing as a sequence of compensations
for the quantization error using projections. The totabeis quantified using both the additive noise
model of quantization, and a deterministic upper bound dasethe triangle inequality. It is thus
shown that the average and the worst-case error is reducepaced to scalar quantization of the
coefficients.

The projection principle is also used to provide robustrtessrasures. Specifically, the case of a
transmitter that is aware of the erasure occurrence is @ered, which compensates for the erasure
error by projecting it to the subsequent frame vectors. fier demonstrated that the transmitter
can be split to a transmitter/receiver combination thatgoers the same compensation, but in which
only the receiver is aware of the erasure occurrence. Humttre, an algorithm to puncture dense
representations in order to produce sparse approximateigirgroduced. In this algorithm the error
due to the puncturing is also projected to the span of theirenggcoefficients. The algorithm can be
combined with quantization to produce quantized sparseeseptations approximating the original
dense representation.
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CHAPTER 1

Introduction

The use of redundancy as a robustness mechanism is very comisignal process-
ing and communications applications. For example, chacoéés provide robust-
ness to communication errors and oversampling is oftentosediuce distortion due
to quantization. This thesis uses the redundancy in frapresentations in order to
provide robustness to quantization and erasures.

The use of frames to generate representations that are tol®rsors has been con-
sidered in several contexts. For exampl¥, [31, 7, 8, 14, 34] demonstrate the ro-
bustness of general frame expansions to erasures, ZRjld,[5, 9, 17, 27] discuss
the case of quantization. These methods mostly assumehthditaime is used to
analyze a signal using inner products with the frame vecidepending on the error
type, the synthesis method is appropriately modified to mocodate for the error.
In some cases 8@, 14, 43, 27], for example), the frame design problem is also con-
sidered. In these cases, an analysis method, a synthedisdnand an error type
are imposed by the problem. The issue is the selection obrgat the frame most
appropriate for the specific problem.

This thesis approaches the problem assuming the synthetli®dis predetermined.
In most of this work, a linear synthesis equation with a greesfied frame is con-
sidered. To accommodate for errors, the representatiofficdents are modified
instead of the synthesis method. Specifically, an error grreppresentation coeffi-
cient is compensated for by removing its projection from ti@aining unaffected
coefficients. The details of this projection principle axamined in chapteB. The
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frame design problem is not considered; the frame is asswineddy designed or
pre-determined by the application.

The use of projections has several advantages, most due tim¢farity of the pro-
jection operator. For example, in most of the applicatioosstdered, the system
implementing the projection, and its parameters are ortigrdeéned once, at the de-
sign stage. To project the error, it is only necessary tedte parameters according
to the error magnitude. Furthermore, linearity often alidhe superposition of pro-
jections to compensate for errors on different coefficidajtcompensating for the
error on each coefficient separately. Using these progemtiest of the algorithms
described can be implemented efficiently using linear syste

Chapter2 provides an overview of frame representations, projestemd quantiza-
tion. Its purpose is to establish the notation used throbghhesis. It also serves as
a quick reference for the definitions and the properties usdge remainder of the
thesis.

Chapter3 introduces the main tool used repeatedly in this thesior @wmpensa-
tion using projections. Specifically, this chapter exarmihew the error introduced
in one coefficient can be compensated for using the unaffextefficients. This
compensation performs, essentially, a frame analysiscdhgputation of which is
discussed. Using this method to compensate for errors naakésplicit choice of
computational simplicity over other properties. This dois also discussed. The
tools developed in chapt&are used in chaptegsthrough?.

Chapter4 discusses the quantization of frame representations. |Siamalysis us-

ing inner products followed by scalar quantization of thef6icients is shown to be
suboptimal in terms of the bit use and the error decay as d@ifumof the frame

redundancy. The result is independent of the frame, or tbensgruction method
used. The results in this chapter motivate the use of congrlalysis and quantiza-
tion methods, followed by linear reconstruction, insteflihear analysis using inner
products and scalar quantization followed by complex ssithmethods.

One method to improve the performance of scalar quantizai&igma-Delta noise
shaping, discussed in chaptérand 6. Specifically, chapteb develops first-order
Sigma-Delta noise shaping for arbitrary finite frames. Twetmds to measure the
performance are discussed, and two noise shaping algodésigns are presented.
The results are also generalized to higher order noise rsipafthaptel6 extends
these results to frame expansions in infinite dimensionateR The chapter also
includes a discussion on simplifications and extensiontassical Sigma-Delta con-
verters used in A/D and D/A conversion.

In chapter?7 the use of projections to compensate for erasures is exdmitids

shown that projection of the erasure error is equivalentrgjeption of the data.
Thus, several properties of the compensation are derivad.pfojection algorithm
is used to causally compensate for erasure errors. The @agdyeanf this method is
the simplicity and the causality of the resulting systemrttr@rmore, this approach
does not assume a signal analysis using inner products,tiomlgynthesis using a

18
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linear frame synthesis operator. Two equivalent systempi@sented, one assuming
that the transmitter is aware of the erasure occurrencepaedssuming that only

the receiver is. The use of the same principle to intentlgriairoduce erasures and

sparsify dense representations is also considered.
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awerer: - Background

This chapter provides a brief overview of the concepts aed#iinitions used through
the thesis, namely basis and frame expansions, projectmusquantization. The
primary emphasis is on the definitions and the properties ar@ used in the re-
mainder of the thesis, the aim being to establish the notaimd serve as a quick
reference.

2.1 Linear Representations of Vectors

The signals we consider in this thesis are vectors, elenoéhtdbert spaces. Vectors
such ax are denoted using boldface, and the Hilbert spaces Wimy 7. In most

of this thesis the convention’ C H is followed, unless otherwise noted. Subscripts
are used to denote multiple subspaces wherever necessary.

2.1.1 Bases and Basis Representations

A set of vectors{b;, € H} form a basis forH if they are linearly independent and
spanH. A Riesz basis further satisfies the following condition:

Allx]| < 1, )| < BlJx]], (2.1)
k

for some boundst > 0, and B < oo, and for allx. The upper bound ensures that
the basis expansion converges, and the lower bound thatthters span the space.

21



Any vectorx € H is uniquely expressed as a linear combination of the bast®nse
using the synthesis, or reconstruction, sum:

X = Z aiby. (2.2)
k

The analysis ok to the representation coefficients is performed using inner prod-
ucts ofx with the dual basis:
ar = (x,by), (2.3)

in which the dual basi$b, } is the unique set of biorthogonal vectors satisfying:
(bg, by) = 0k, (2.4)

A basis is orthonormal if and only if it is self-dual. In thiase, all the basis vectors
have unit magnitude and each vector is orthogonal to thesth&n orthonormal
basis has Riesz bounds= B = 1.

If the basis is orthonormal, Parseval's theorem holdsingtahat:

I1xI17 =1, be)> =D laxl*. (2.5)
P P

More discussion on these properties and the applicatiobgasi§ expansions can be
found in several linear algebra and signal processing {&x&6, 20].

2.1.2 Frames and Frame Representation

Frames are a generalization of bases, first introduce®4in A set of vectors{f;, €
W} forms a frame if there exist constant frame boufids A < B < +o0, such
that for allx € W:

Allx[| < 1, )| < BlIx]]. (2.6)

k

As with Riesz bases, the left side of the inequality guaemtbe vectors span the
space, while the right side ensures the convergence oftafidime expansions. A
Riesz basis is a frame, although a frame is not necessariliesz Rasis—linear
independence is not required in the definition of frames.

A vectorx in the spaceV can be represented with the synthesis equation:

X = Zakfk (27)
k

In contrast to basis representations, the frame expansigffidgentsa; are not nec-
essarily unique. Similar to basis expansions, howevey, ¢ha be determined using
an analysis equation:

ap = <X7 ¢k>7 (28)
in which the{¢,} is an analysis frame corresponding to the synthesis fréfipge

22
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The analysis frame is not unique given a synthesis fram#, t8& dual frame{f,},

is the unique frame that minimizes the energy of the reptatien, >, |ax|?, com-
pared to all the possible analysis framr{es }. The lower and upper frame bounds of
the dual frame aré/B and1/A, respectively.

A frame is tight if its dual frame is the frame itself scaleddgonstant. A frame is
normalized tight if it is self-dual, i.e. this constant is A.normalized tight frame
behaves similarly to an orthonormal basis. Tight framesheyual frame bounds
A and B, which are equal to unity if the frame is normalized tight. t&s on the
relationships of the analysis and synthesis vectors canuralfin a variety of texts
such as?20, 36).

Frame expansions are usually overcomplete. The redunddicy frame is denoted
by r. A finite frame has redundancy = M /N where M is the number of frame
vectors andV is the dimension of the space. fif= 1, the frame forms a basis. A
normalized tight frame with redundaney= 1 is an orthonormal Riesz basis. In this
thesis we exploit the redundancy of frame expansions to eosgie for degradation
of the expansion coefficients from quantization and erasure

2.1.3 Frames as a Transformation of Orthonormal Bases

Itis often convenient to view frames as a linear transforomabdf orthonormal bases.
Specifically, a spacet, an invertible linear operata¥ : YW — H, and an orthonor-
mal basis{b;} onH can be directly mapped onto an analysis fraffie} in ¥V by
requiring that the expansion coefficients are the same:

ap = (Fx,by) (2.9)
— (x,F*by) (2.10)
S f, = Fby, 2.11)

in which F* denotes the adjoint operator 6% Alternatively, starting fron?{ and
{br € H}, we defineF using{f, }:

Fx =Y (x,f;)by. (2.12)
k

Using the uniqueness of the adjoint operator it can be vdiifiat the two definitions
are equivalent.

Although the choice oK and{by} can be arbitrary, the requirement tifats invert-
ible has an implication about the dimensionality?ef and the cardinality ofby}:
they are both at least as large as the cardinality of the frexpansion (which is
equal to)M if the frame is finite). We calF' the frame analysis operatbrof the
frame{f, } The basis and the target spakieis sometimes not of particular signif-
icance, and they are omitted. In this case, the implied sparcé( is RM or i2,
depending on the cardinality of the frame, and the impliesidis the set of the unit

! Sometimes it is also referred to just as the frame operaterngnology not followed in this thesis.
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vectors along each coordinate directiop, Thus, the analysis frame operator maps
x to the vector corresponding to the coefficients of the frarp@aesion:

(Fa)y = (x,fy) = ay, (2.13)

= Fr = [al ceeoag .]T. (2.14)

This convention is often followed in this thesis, unlesseottise specified.

The singular values of" have particular significance in characterizing the franm. F
example, it can be showr27] that the frame is tight if and only if all the non-zero
singular values are equal. Furthermore, the smallest anthtbest singular values
are associated with the lower and upper bouddsnd B of the frame definition in
equation 2.6). When all the singular values are non-zero, the frame isredondant
and becomes an oblique basis. If they are all non-zero anal,eitpe frame is an
orthonormal basis. Because of the significance of the singallues, the operators
FF* or+/ FF* are important for the frame. They are sometimes referred frame
operators in the literatureIfl], for example). However, this is not a convention we
follow?.

Given a frame{f . }, it is straightforward to reconstrugtfrom the coefficients of the
expansion using that frame. Singeis invertible, it is possible to determirig, an
inverse ofF’, such thafl'F' = I, wherel is the identity operator. Usin@(12):

Fx = Y aby (2.15)
k

=x=TFx = > a;Thy, (2.16)
k

making the set of vector§T'b;} a synthesis set foff,}. In general, T’ and the
corresponding synthesis set is not unique. However whernntlesion uses the
unique left pseudoinverse of the frame operdtoe F, then the corresponding set
is the unique dual framéf, = FTby}, of {f,}. Given a frame{f,}, the dual of

its dual is the frame itself. Dual frames have particulaiilyerproperties (for some
examples, see2p, 27] and references within), and are often used in pairs for the
analysis and the synthesis set.

Given a pair of dual frame sets, either can be used in the sisadguation with the
other used in the synthesis equation. Therefore, namingfdhe two as the analysis
frame and the other as the synthesis frame implies a desmjnechas been made,
and we denote the sets usifify, } and{f}, } respectively. Although it is often the case
in practice, explicit mention of an analysis and a synthssisand the corresponding
equations, does not necessarily imply that the sets areafiwlch other, or, even,
that both sets form a frame. Unless otherwise noted, theinel@raof this thesis does
not assume duality of the analysis and synthesis sets. @$eoifithe frame is not

2Referring toF F* as the frame operator creates potential confusion withrtirad analysis or syn-
thesis operators. Furthermot®,itself is often referred to as the frame operator (omittimg word
analysig, the potential for confusion is greater.
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redundant, it forms a basis, and the expansion is uniquehisncase the analysis
frame is the dual of the synthesis frame.

2.1.4 Decoupling the Analysis from the Synthesis

In the same way that a frame analysis defines a linear opgsatdoes the synthesis
equation 2.7). We refer to this operator as the frame synthesis opem¢oioted by
S, although this name is not common in the literature

S:H =W, st.Sy => (y, bpf. (2.17)
k

As with the frame operator, the spag¢is sometimes assumed to B’ or 2,
with the corresponding basés = §,. The analysis and synthesis operators using
the same frame set are adjoints of each otl$ee= *. Furthermore, if the frame

is normalized tight, the synthesis operator is the psevdose of the analysis one:
S = Ft,

If the synthesis frame forms a complete basis, the syntlogssation is full rank.
When the analysis followed by synthesis is required to bédinatity, this completely
determines the corresponding analysis operator, ancefirer the analysis frame.
However, in the case of the synthesis with a redundant frémeedomair?{ of .S is

in general larger than the rand®, which implies that the synthesis operator has a
non-zero nullspace nylb).

The existence of this nullspace in redundant frames deesupk analysis process
from the synthesis one. Given a specific synthesis equadi@et of frame expan-
sion coefficients can be modified in many ways. The synthdsieetorx remains
the same, as long as the modifications only affect the ndéspéthe synthesis op-
eration. The analysis method itself can be modified to prectaefficients with
components in the nullspace of the synthesis. This es#igrdiecouples the usual
analysis-synthesis linear operation pair associated hveilis expansions.

The flexibility of modifying the expansion coefficients allg for the pursuit of other
desirable properties in the expansion coefficients. Fomeka, for processing and
transmission the coefficients need to be quantized. Sypassiisually desired in
compression applications. Additive noise immunity anétahce to erasures is also
desired in transmission applications. The rest of thisishe®sents some examples
and applications that this flexibility enables.

Most of this work only assumes that a frame is used for thenggis, using the syn-
thesis equation, making no assumptions about the analysisoah We should note
that this is not the only approach. Often the analysis isrglwethe application and

3 This name does occur, howevéd], as it should. There is no particular reason why only theyai
should be associated with an operator. Since in this workdotgs is on the synthesis operation, this
term is very useful. The terminology conventions over tlzerfe operator (as well as other aspects
of frame representations) have not yet been stabilized endften contradictory. Some discussion
exists in [L4].
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the synthesis is designed to accommodate modificationseondéfficients during
processing (se€3B, 28, 27, 7, 8] for some examples). We explore an important as-
pect of this choice when discussing quantization in chagitddowever, depending
on the application, either the synthesis or the analysitrbg imposed from the
setup.

2.1.5 Frames Implied by Matrix Operations

Any matrix F € RM*N with rank{F} = N defines an analysis frame operator, with
the corresponding frame vectors being the row& dfansposed. When the matrix
operates on a vecter € RY, it computes its frame expansion:

_f{_ Ty <£17 X> ai

—£T— TN (£ar,%) anp

Any left inverseT of F can be used to recover from the expansion coefficients,
since
Ta = TFx = x. (2.19)

The columns of any such left inverse form a synthesis frameesponding tq £, }.
The unique dual framéf;,} is the one derived from the pseudoinve®e= F1:

! \ a1 M
Ta=|f; --- fy | = Z aifi = x. (2.20)
k=1

’ ‘ aps

The singular values oF' determine the frame bound$ and B for equation 2.6).
Specifically, A = o and B = onax are the largest lower frame bound and the
smallest upper frame bound respectively. If all the singutdues ofF are equal—
i.e. FTF = ¢2I—then the two bounds4 and B are also equal, and the frame is
tight. In this case the dual frame vectors are the frame vestaled byl /o2

1 1
FIF=01< <;FT> F=T&f; = —f) (2.21)

Therefore, a tight frame iRV corresponds to &/ x N matrix whose transpose is
its pseudoinverse within a scalar.

2.1.6 Frames Implied by Discrete-time Filters

Any LTI discrete-time filter can be viewed as the synthesisrafor for a frame rep-
resentation. In particular, filtering of a signaln] € I, with an impulse response
h|n] produces the convolution sum:

z[n] =Y alklhln — k] = a[k]f, (2.22)

k k
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in which a[k] is the input to the filter and[r] is the output, also if,. This equation
has the same form as the synthesis equat®n (vith the coefficients:[k| taking
the place of the frame representation coefficients In general, the representation
coefficients are not produced using inner products with atyars frame. Still, they
represent the signal at the output of the filter.

The convolution sum can also be viewed as an analysis opetiimgx[k] to denote
the input, and:[k] to denote the output of an LTI filtern]:

alk] =) xlnlglk —n] = (x,f}). (2.23)

n

Thus, the vectoxk is analyzed using the analysis frafje= g[k — n] and the output
alk] corresponds to the analysis coefficienis In this case, the analysis frame
is translations of the impulse response time-reversed. ntamt of this thesis, we
consider only synthesis from frame representations, dredefore, this view is not
emphasized. However, it is an important aspect of the gualiframe expansions,
and an important consequence of the time invariance of L{Er$l

It can be shown that the adjoint operation of filtering usimgimpulse respongen)|
is filtering using a time-reversed impulse resporsen]. It follows that the singular
values of the filtering operator are determined by the magdeibf the Fourier trans-
form, |H (e/*)|. As expected, since the space is infinite dimensional, tigaiéar val-
ues are infinite in number, indexed by discrete-time or comtiis-time frequendy,.

The range of a filter is any signal in the space of linear coatimns of complex
exponentials, chosen in the frequencies in which the Fotraasform of the filter
is not zero. This is also the span of the vector set formed dystationsh[n — k]

of the filter impulse response. The nullspace of the filtehé&linear combination
of all complex exponentials for which its frequency resgoiszero. It should be
noted that if the frequency response has zero crossingsdudncy (as opposed to
frequency intervals in which the frequency response is)z¢hen the signals that
produce0 output are infinite length complex exponentials. These atami,, the
assumed input space of the filter.

To form a Riesz basis from an impulse respohge| and its shifts, the filter with
the impulse response should have frequency response with agnitude, lower
bounded away zero form in all frequencies:

0<A<H(EY) <B< 400, (2.24)

in which (assuming the Fourier transform is properly noireal) the constantst

4There is a subtlety involved in the cardinality of the integavhich index the filter taps in discrete-
time filters, versus the cardinality ¢f-, 7], which index the singular values in the discrete-time
frequency domain. This should be resolved using finite lesggnals and circular convolution, for
which the magnitude of the DFT provides the singular valuks.we let the length of the signals
grow to infinity, the cardinality of the filter indices in timand the DFT coefficient indices stays the
same, eliminating the issue. There is a further subtletyefinthg the Fourier transform, so that the
singular vectors are unit-norm, but this is not importamttfe purposes of this discussion.
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and B correspond to the lower and upper bounds of the Riesz bafsistida (2.1).
This simple rule, unfortunately does not extend to frameivee from filters.

When the input to a filter is restricted iy, equation 2.22) defines a linear synthesis
operatorS : ls — W, in which W is the range of the filter, as described in the
previous section. If the magnitude of the frequency respafishe filter is finite and
positive for all frequencies, then the filter defines a Riessid) and, therefore, a non-
redundant frame. If the frequency response contains witem whichH (¢/“) = 0
then W is the space of signals with frequency content limited to gpen of the
frequency response. In order for the filter to form a framaydacer, it should also
satisfy the boundsgl and B of the definition 2.6). Thus, the filter frequency response
in the range of the filter should be greater than the lower d@umd finite. Therefore,
the filter frequency response magnitude should satisfy:

0<A<|H(¥)| <B<+4o0o for wel (2.25)
and|H(e/*)| =0 for w eI, (2.26)
in which T U I = [—n,m), and [ is the set of frequency intervals for which the

response is positive. Thus, a filter forms a frame if it eith@s non-zero frequency
response in all frequencies, or discontinuities aroundutspace. Otherwise, if the
filter frequency response is continuous and positive in #ighborhood of a null,

then the lower frame bound becomes O.

Given a synthesis filteF (¢/*), a corresponding analysis filtél{e’“) should satisfy

G(e¥) = 1/H (') if H(e?*) # 0. (2.27)

The dual frame, determined by the psudoinvei®ée’) further satisfies:

. H(el¥ if H(elv
Hi(el) :{ 1/H( ()) :f ngngigl (2.28)

If the lower boundA is zero, anyG(e/*) is infinite around the null off (e/“’), which
makes the analysis equation unstable.

In most of this thesis we only use filters as synthesis operatbus this instability
is not an issue. The frames for which we need to determine ulés cire usually
finite. In the cases in which the dual of a filter should be usezlassume the filter
forms a frame. In practice, for numerical stability of thergautations the nullspace
of the filter is taken as the frequency interval in which thegfrency response mag-
nitude is small. The filter corresponding to the dual frameusth have frequency
response magnitude near zero in the same interval. Thisqakapproach is similar
to allowing passband and stopband ripple when designirgditb approximate ideal
designs.
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FIGURE 2-1: General Reconstruction filterbank

2.1.7 Frames Implied by Filterbanks

A similar synthesis equation exists for reconstructioreffilanks such as the one
shown in figure2-1.

zln] =Y alklhn — kP = a[k]fix (2.29)
kil kil

In this case the indexing is two dimensional, denoting time filterbank channel.

In other words, the frame vectors are all translations ofarscin a generating set
{fo,;}. Furthermore, depending on the filterbank the vectors ingémeerating set

might be related. For example, all the filters of modulataérilanks are modulated
versions of a fundamental filter.

The signalsy[n] on every channel are often produced using an analysis fitérb
such as the one in figuie2. The corresponding analysis equation is:

aln] =Y xlklnP — k] = (x,£,;) (2.30)
k,l

in which y[n] is the impulse response of tifé analysis filter.

The issues in treating filterbanks as frames are similardooties explored in sec-
tion 2.1.6 and we do not examine them in more detail here. In this thesisise
filterbanks mostly to synthesize vectors, not for analysishough we assume that
whenever a synthesis is performed through a filter bank, iteedank forms a frame,
in practice the assumption can relaxed in ways similar tottes described for filters.
More details on frame expansions derived from analysis gnitthesis filterbanks can
be found in a variety of references, such 3% L9, 10].

2.1.8 Useful Families of Frames

While any full-rank linear operator implicitly defines a fin@, as described above,
there are two frame families that are particularly inténgsin signal processing ap-
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FIGURE 2-2: General Analysis filterbank

plications, especially in the context of this thesis. Wespre a brief overview in this
section.

The Sampling Frame

Oversampling in time of bandlimited signals is a well stadidass of frame ex-
pansions, although not often described in the terminoldgyames. Historically it

evolved outside the context of frame theory, and it has mraxezy useful in signal

processing systems, such as Sigma-Delta conve8},sgnhd sampling rate convert-
ers.

A discrete time signak[n| or a continuous time signal(¢) bandlimited tor /T is
upsampled or oversampled to produce a sequepcén the terminology of frames,
the upsampling operation is a frame expansion in wifich= rf;, = sinc((n —
k)/r), with sinc(x) = sin(wz)/(7wx). The sequencey is the corresponding ordered
sequence of frame coefficients:

ar = (x,£,) = Zm[n]sinc((n —k)/r), (2.31)

n

X = Z apfy, = zn|= Zak%sinc((n —k)/r). (2.32)
k k

Similarly for oversampled continuous time signals:

+oo
ap = (x,f,) = /_ x(t)sinc((t — krT)/r), (2.33)
X = Z afy, = z(t) = Z ak%sinc((t —krT)/r), (2.34)
k k

in whichr > 1 and27 /T is the Nyquist sampling rate far(¢). The case of = 1
corresponds to sampling at the Nyquist rate and the regdl@me expansion forms
a non-redundant orthogonal basis.
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FIGURE 2-3: Signal processing systems computing the upsampling (to@)tlae oversampling
(bottom) frame expansion coefficients.

A subtlety in representing oversampling as a frame expansspecially in the
discrete-time case, involves the spakésandH in which the vectox lies. Specifi-
cally, if x is taken as a member 6f, with x[n] its corresponding basis expansion on
the basisi[n — k], then the upsampling operator is a linear n#ap I, — l5. This
means that the target spakehas the same cardinality as the original space and the
redundancy of the frame can only be inferred by the measuileeaiullspace of the
synthesis frame operator, not by directly comparing thespaeasures (which are
equal).

To avoid that complication we consideias a member of a subspacé4f functions
bandlimited tor/r. The coefficientsc[k]| are the basis expansion coefficientsxof
using a basis for that subspad@: — k] = sinc(n/r —k) = x = >, z[k|bln — k] €
lo. Thus, the analysis frame operatBris a linear map from the spad®’ of series
in I bandlimited tor/r to the space{ = l;. The map is the identity overy.
Combined with the requirement that the frame vectors shiilish 1V, the domain
is extended td, by makingW+ its nullspace. Thereforel is a low-pass filter
with cutoff frequencyr /r. The pseudoinverse of the analysis frame operA&tois
also a low-pass filter with the same cutoff frequency, whiaplies that the frame is
tight. Tightness can also be shown by the magnitude of theiérawansform. The
redundancy- is computed by taking the ratio of measureg-bénd\V.

In practice, the frame expansion coefficients can be cordpuséng simple signal
processing systems, such as the ones in figtBe
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The Harmonic Frames

The harmonic frame=2B] is a class of unit-norm tight frames R", for which the
frame vectors are:

. 2 2k . 2wk 2m2k . 2w2k
If Niseven:f, = N cos sin cos sin

M 9 M ) M ) M AR
T

27?% ) 27?% 535
cos — =, sin — (2.35)

. ) 2 1 2k . 2wk 2m2k . 2m2k

IfNISOdd.fk—UN[ﬁ,cos 3 SR €08 e sin— s
T
o (N=1k o (N=Dk

cos T M2 ,sin T M2 (2.36)

This class of frames are a proof that a unit-norm tight framiste for any combina-
tion of N, andM, M > N. One of their most useful property is that any subset of
N vectors from a harmonic frame still spans the space, as shoj@7], which also
proves that frames with this property exist for alyand/. Thus, we often refer to
the harmonic frames in this thesis as an example of a frantetiig property. In34]

this property is defined as maximal robustness to erasurds general construction
for frames with this property is described.

2.2 Orthogonal Projection of Vectors

Given an inner product spadé€, two vectorsv andu are orthogonal if their inner
product(v, u) is equal to 0. For any subspare C H, the orthogonal complement
W+ of Win H is the set of all vectora that are orthogonal to all the vectorss W:

Wt = {ueH|VwveW: (uv) =0} (2.37)
= wht = w. (2.38)

Any vectorx € H is uniquely expressed as the sum:
x=u+v, ueWandv e W (2.39)

to form the direct sum decomposition #&f into ¥V and its orthogonal complement
W+, denoted usingt = W & W+,

The orthogonal projectidnof x onto WV is the operatofPyy(-) that mapsx to the
correspondingr € W, as uniquely defined ir2(39. Combined with 2.38):

x = Py (x) + Py (x), Pyw(x) € WandPy,. (x) € Wt. (2.40)

®Unless otherwise noted, for the rest of this thesis, the @jection is used interchangeably with
the term orthogonal projection (as opposed to an obliqug one
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The projection is a linear operator, with several imporfaoperties, some of which
we state here. The proofs are discussed in a variety of limgabra texts such as

[2].

It can be shown thaPy, computes the vectan € W that minimizes the distance
[lx — ulf:

l[x — Pw(x)|| <||x —ul], forallue W, (2.41)
with equality if and only ifu = P)y(x).

If the vectorz projected ontd/V already belongs tdV, then the direct sum decom-
position isz = 0 @ z. Thus the projection is the identity operator. From that it
follows that Py, (P (x)) = Pw(x) for anyx € H. An implication is that any
vectorz € W is an eigenvector oPy,(-) with corresponding eigenvaluge = 1.
Similarly, any vectoly € W+ is an eigenvector o)y (-) with corresponding eigen-
value\ = 0. The multiplicity of A = 1 and\ = 0 in the eigenvalue decomposition
of Py (-) is equal to the dimensionality of the corresponding spaa#sydV), and
dim(W+) respectively. A projection operator has no other eigemglu

Using the eigenvalues it can be shown that the projectionatancrease the mag-
nitude of a vector. Indeed|P)y(x)|| < ||x|| for all x € H, with equality if and
only if x € W. It can be similarly shown that a projection is a positive mkafinite
operator, i.e{Py(x),x) > 0 for all x € H, with equality if and only ifx € W+.

Projections are extensively studied operators, both lsecatitheir important prop-

erties and their usefulness in several fields. This sectjondomeans exhausts the
known properties of projections. Extensive discussionlmfound in linear algebra

textbooks such a<].

2.2.1 Projections and Frame Expansions

The analysis of a vector using an analysis frame followedyyresis using a cor-
responding synthesis frame projects the vector to the spaspanned by the two
frames. UsingZ4.39, the analysis of the vectar € H using the analysis frame is:

ar, = (x,£;) (2.42)
= (Pw(x),£)) + (PWL( ), £1) (2.43)
= (Pw(x), £)) + (2.44)

Therefore, the analysis of is equal to the analysis @ (x). Since analysis fol-
lowed by synthesis is the identity for all vectors)ij, it follows that analysis of any
vectorx € H, followed by synthesis is the projection of that vector ovito

>, £ = Py (x) (2.45)

k
& S F(x) = Pw(x), (2.46)
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in which the domain of the analysis frame operatois extended td<{ by setting
F(u) =0forallu e w+.

Often it is also convenient to view the frame synthesis dpers : H — W as the
combination of two operators: a projecti®hy, : H — W, followed by a full rank
operatorSy : YW — W. This implies thatV C H. The frame is tight if and only if
the full rank operato5; is unitary. The projection operat®t,, rejects the nullspace
of the frame operator, and, thus, is responsible for thengalocy of the frame.

2.3 Quantization

Quantization is a non-invertible process that maps a cootis space to a set of
discrete points in that space. Quantization introducdsitign in the signal. Optimal

quantizers should minimize distortion for a pre-deterrdinember of output points

or use as few output point as possible to achieve a pre-digiedraverage distortion.
Often, optimality is traded off for other features such aplamentation simplicity.

2.3.1 Scalar Quantization

A scalar quantizer is a non-linear, non-invertible niap R — P, in which P =
{p1,p2,...,pr € R}isadiscrete set df levels, withL usually finite. The quantiza-
tion function assigns each real number to one of these leltéscompletely defined
by a set of disjoint intervalg; covering the reals, and the corresponding leygls
such that each scalar in an interval is assigned to the pameing level.

Vit LNl =0,UL =R} (2.47)
Q((I) =p;ifael (2.48)

{(Iz',pz')

= a

Although any function with a discrete set of output levels ba used as a quantizer,
it is reasonable to impose that the function is monotonic.

In order to minimize the distortion given the set of levelhg uantizer should assign
each scalar to the closest level. In this case, the set ofgpBicompletely defines
the set of intervalg 7;}, and thus, the quantiZer

a € I; & 1 = argminja — pill, (2.49)

in which || - || is the distortion measure. In most practical applicatidwesdistortion
is monotonic in the magnitude | of the difference, and therefore can be replaced by
that magnitude.

A quantizer might also trade-off distortion for implemerda simplicity. For ex-
ample a round-towards-zero quantizer quantizeée the closest poinp; that has

®We ignore the boundaries of the intervajswhich can be open or closed, as long as the union covers
the space. The boundaries are a set of measure 0, and thenasstgf each boundary to either of
the adjacent intervals has no effect in the average distorti
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FIGURE 2-4: Examples of scalar quantizers.

magnitude smaller thadx
a € I; < i =argmin, . ,lla — pil|- (2.50)

Such a quantizer can be implemented by removing, for exantipéebits below a
certain accuracy level of the binary representation offagent.

For the remainder of this thesis, unless otherwise notedsseme that scalar quan-
tization is performed using a uniform quantizer. A uniforoqtizer has uniformly
spaced quantization levets = 1 + iA, in which is an integer. Depending on the
application, the number of levels is finite or infinite. The corresponding intervals
I; = (p;i — A/2,p; + A/2] are chosen usin@(49 to minimize the distortion due to
quantization. Thus, the maximum error of a uniform quamtigéen,,,.| = A/2.

A scalar quantizer can be represented graphically by maitkie points and the cor-
responding intervals on a real line or by drawing the funttio= Q(a), as shown
in figure 2-4. The figure shows a uniform quantizer and a round-towards-aee.
These commonly used quantizers combine implementatiociezfly with low dis-
tortion, depending on the distortion measure.

2.3.2 Vector Quantization

Vector quantizers generalize scalar quantizers to a nmkidsional vector spadd’.
They are defined through a set of poiits= {p; € W} and a corresponding set of
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FIGURE 2-5:

Examples of vector quantizers in two dimensions.

disjoint regions{ R; } that partitionV:

{(Rispi) Vi#j: BRiNnR; =0,U; Ri =W} (2.51)
= x=Qx)=p;ifx€R,;, (2.52)

in which @ : W — P is the non-linear, non-invertible quantization functiofs
with a scalar quantizer, to achieve minimum distortion gitlee quantization points,
the regions should be such that any vector in the space idigedro the nearest
quantization poirft

x € R; < i = argmin|x — p;||, (2.53)

in which|| - || is the distance measure in the vector space.

Graphical representations of vector quantizers are pessibtwo dimensions, by
extending the real line of figur2-4 to the two dimensional plane and drawing the
corresponding region-point pairs as shown in fig2#® The figure shows an arbi-
trary quantizer, a triangle lattice quantizer and a squattieé quantizer. For certain
quantizers with regular structures visualization is algsgible in three dimensional
spaces, although the figures can be confusing.

The vector generalization of a uniform quantizer is a latjaantizer. The quantiza-
tion points of a lattice quantizer are defined as the sum et multiples of a linear
independent vector set and a vector offset:

Piy,.iy = K+ Z ixbr, (2.54)
k

in which eachi;, is an integer taking values in a finite or infinite range, deliegmon
the quantizer model. In a lattice quantizer all the regiéqs.. ;,, corresponding to
each point have the same shape and are all translations rajla findamental cell

” As with the scalar quantizer, the region boundaries are afsaeasure 0, and they can be assigned
to any of the neighboring regions;.
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ap = Q() = ar = ap +ex xp A Q() = Xk = Xp + e,

(a) Scalar Quantizer (b) Vector Quantizer

FIGURE 2-6: Scalar and vector quantizer operating on a sequence ofinput

R, which is usually assumed to contain the origin. For thiskwee define

R= R’il,...,i]\,{ — Piv,.is (255)
which is the same for any choice 4f, ... ,iy,.

In general, vector quantizers are designed to partitionnthétidimensional space
with less average distortion than scalar quantizers. Asgyieuniform source distri-
bution, the minimum distortion is achieved by making thergization cell shape as
close to a hypersphere as possible (given the cell's volumbypersphere achieves
the best worst-case and average error performance. §pkrbpheres do not cover
the space without overlap, and, therefore, cannot be usqdaasization cells. Lat-
tice vector quantizers attempt to create efficient, easgécstructures that have cells
close to hyperspheres. Scalar quantizers on basis and &gpa@sions can also be
viewed in terms of lattice vector quantizers, a view exglarechapter.

2.3.3 Additive Noise Models

The non-linearities of quantizers make them quite difficaltanalyze, especially
in the context of linear system29, 13, 30]. To facilitate the analysis it is often
convenient to model the quantizer using an additive stdithesodel, although the
guantizer itself is a deterministic function. The modelsstfintroduced in §] are
especially useful if the quantizer is used in a sequenceefficents or vectors. We
present them here in such a setup, as shown in figne

In the case of a scalar quantizer we assume a linear quantiteguantization in-
terval A, properly scaled not to overflow. The quantizer quantizeh éaputa, to

ar = Q(ay) = ax + ex, iIn whichey, is the additive error due to the quantization. The
ex is modeled as a white process, uncorrelated with the imputvith varianceo?.
Often it is further modeled as uniform in the interyalA /2, A /2], which implies

o2 = A?%/12[29,13].

Similarly for a vector quantizer, as shown in figu(b), the additive erroe; can
be modeled as an uncorrelated sequence of vectors, indagesfdhe datac;,, and
uniform in the quantization celR, as defined in4.55) [26, 42].
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These stochastic models aim to describe average behavtwe gtiantizer over many
signals. They provide no guarantees in individual reatirat and their assumptions
can often be quite inaccurate. For fine quantization levetsd models are well
motivated and provide a good description of the quantizgudu Their use in coarser
guantization grids is not as well justified, but they are camiy used in practice,
even in extreme quantization situatior29[13, 28, 9]. In this work we complement
these models with deterministic bounds to guarantee ttierpeaince of the quantizer
in the worst case conditions.
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cwerers  COMpensation Using Projections

The redundancy of a frame expansion can be exploited in atyaof ways. For
example, large frame dictionaries can lead to sparse rempa®Nns useful in data
compressiond8]. They are also useful in the cases of signal degradationtalue
additive noise, quantization, or erasur@g,[20]. In this thesis we exploit the re-
dundancy of frame expansions to linearly compensate forerAlthough the basic
principle is straightforward, it occurs in several diffeteeontexts. Specifically we
use this principle to analyze coefficient quantization araberes. A recurring and
important theme in the remainder of this thesis is that of mensation using projec-
tions. This chapter briefly introduces projections in thategt of frame expansions
and this thesis.

3.1 Error Compensation Using Representation Coefficients

Most of this thesis examines errors that corrupt one or nrareé expansion coeffi-
cients. We compensate for these errors by modifying othefficeents in the frame
expansion. Specifically, we assume that some coeffiaigstcorrupted and replaced
by a; = a; + e;. The coefficientai|k € S;} are to be modified tda; |k € S;} to
compensate for the known errey, in which S; = {k1, ..., k,} is the set of indices
of the coefficients to be used. Of cours&annot be a member &f;, otherwise the
error can be perfectly compensated for by modifyindpack toa;.

The reconstruction is performed using the synthesis emu#i7) with the updated
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coefficients, to produce:

x=afi+ > af+ > afy (3.1)
keS; k¢ (S;U{i})

The coefficients{a, |k € S;} should be chosen to minimize the magnitude of the
synthesis error:

& = 2 (3.2)

X —X
= —eifi+ ) (ar — ap)fi (3.3)
kES;

To minimize the norm of the error we 1&V; denote the space spanned by the set of
vectors{fy, k € S;} and recognize tha} _, . q. (aj, — ay)fy, spans that space by ap-
propriate choice of the).. Thus, as discussed in the previous chapter, the magnitude
of the error|[€]| = || — eifi + D pcq, (ar — a,)fx|| is minimized if and only if the
vector formed by the sum is the projectionegf; ontoW;:

D (ar—ap)fe = Pw(eif) (3.4)
keS;
Y afe = ) afi—ePw(f) (3.5)
kes; kes;
= Z apfy = Z(ak — eicik,s;)fr, (3.6)
keS; keS;

in which Zkesi eici ks, i is the frame expansion @y, (e;f;) onto W;. By the
linearity of the projection operator, the coefficiefits, s,, k € S;} are nota function

of the errore; or the datau;,, and, therefore, can be determined using only the frame
vectors. Specifically we define these coefficients such that:

Pw,(eifi) = Zeici,k,sifk (3.7)
keS;

=Pw(f) = Y kst (3.8)
1€S;

In other wordsg; ;. s, are the frame expansion coefficients of the projectiof) ohto
the space/V;, defined by the span of the frame vectéfg|k € S;}. We refer to the
¢i ks, as the compensation coefficients. Using these, we updalteogéiteq,, to:

ay = ay — €iCi .S, (3.9)
This ensures that equatioB.4) is satisfied.

Although the projectiorP)y, (f;) is unique, the corresponding compensation coeffi-
cients and the assignmer8.9) are not necessarily unique. Specifically, the coef-
ficients are unique if and only if the frame vectd|k € S;} are linearly inde-

pendent. Otherwise the frame formed 4; is redundant, and the expansion, as
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discussed in chapté;, is not unique.

If the vectorf; on which the error occurs is linearly dependent with the eect
{fx|k € S;}, then the error can be perfectly compensated for. Otheniligere-
sulting error ise; (f; — Py (f;)). We separate the magnitude from the direction of
the error by defining therror coefficient;; s,, and theresidual directiorvectorr; g, :

éis;, = |fi—Pw, (£l (3.10)
fi — Pw, (fi)

s, = ool (3.11)
|1f; — Py, (£)]|

such that the error is;¢; s,r; 5,. These two quantities are particularly useful in the
performance analysis of the algorithms presented in chapthrough?.

The error coefficient is always positive since it is the magie of a vector. Also,
the residual direction is a vector that has, by definitiont mragnitude. Furthermore,
it should be emphasized that the error vector is orthoganthe spaceV;, which
includes all the frame vectofd |k € S;} used in the compensation.

In denoting the coefficients the s&t of indices used to compensatgis explicitly
mentioned. This choice was made to emphasize that modityiegset of indices
used also modifies the corresponding compensation and aveficients, and the
residual error. The notation used in this chapter disanstégipotential confusion on
which coefficients should be used. However, this notationlEcome cumbersome
in simple situations in which the set of indices is clear. fBf@re, in the remainder
of this thesis the se$; might or might not be included, depending on the context.
For the remainder of this chapter the notatigp, r;, andc¢; is used, and the sé}; is
implied.

In most of the applications considered in this thesis, thm# is known in advance.
Thus the compensation coefficients can be precomputedheffdt the design stage
of the system, together with the error coefficients and thielval directions. Further-
more, the error can often be detected when it occurs, angftiie the compensation
can be computed at run-time by appropriately scaling thepemsation coefficients.
Even if the error cannot be explicitly obtained at run-tiibé& sometimes possible to
pre-compensate for the error such that after the error scthe data can be restored
while the error is compensated for.

3.1.1 Computation of the Projection Coefficients

As described in equatior8(8) in the previous section, thg ; should be such that
ZieSi ¢kt = Pw, (£;). Thus, the compensation coefficients are the frame expan-
sion coefficients ofPyy, (f;) using the frame{f,|k € S;}. From the discussion in
chapter2, it follows that an analysis frame fdif |k € S;} exists and could be used

to determine the compensation coefficients. We{mzsfef]k € S;} to denote this set,
which is different than the subset of the analysis frameorsdrom the original set
corresponding to the coefficients to be used for compensatio
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The projection coefficients can, in principle, be computgdiitst calculating the
{gzb,fi}, and using these to compute the inner products:

ik = (Pw,(£), 600). (3.12)

The vectors;b,fi lie in W; by construction. Therefore the projection oper&®yy, (-)
can be removed using:

(£, 000 = (Pwi(£) + Py (B), 0 (3.13)
= (Pwi(f). ¢7") (3.14)
= cip = (f00). (3.15)

Calculating the dual se{tqsfi}, however, can be computationally expensive, and it
is not necessary in order to calculate the projection caeffis. Instead, using the
inner product of 8.8) with f;, for all [ € WV, it follows that:

(Pw,(£), ) = Y (confi,f1) (3.16)
kES;
Rik, Riyky 0 Beyk, Cirky
A = A : (3.17)
Rik, R,k - Riyk, Cik,
= p = R, (3.18)

in which R, ; = (f,f;) is the frame autocorrelation. Satisfying this equation is
equivalent to computing the projection coefficients withaaralysis frame, as de-
scribed above. If the framéf;|k € W;} is redundant, the matriR of autocor-
relations is not full rank. Any left inverse can be used to pate the projection
coefficients. The use of the left pseudoinverse in the smiuf (3.18) is equivalent
the use of the dual frame éf;|k € S;} in W; as the{¢fi|k: € S;}in(3.15.

Computation for Shift-invariant Frames

If the frame is shift invariant, the frame autocorrelatianai function only of the
difference of the indices of the frame vectors:

R; iy = Roy = Ry. (3.19)
If, furthermore, the se§; consists of the coefficients subsequent to the corrupted
one (i.e. S; = {i + 1,...,i + p}), then the projection coefficients are also shift-
invariant:
Cii+k = €0,k = Ck- (3.20)
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In this case, equatior3(18 takes the special form of the autocorrelation normal
equations, or the Yule-Walker equatiodd[40Q]:

R1 R(] tee Rp_l C1
Rp Rp_l tee R(] Cp

Although the solution to these equations can be determisad)wa general matrix
inversion algorithm, it is more efficient to use the Levindoarbin recursion 32,

25].

In addition to the computational efficiency, the Levinsoaursion algorithm, being
recursive in the equation order, provides the solution écettpuations for all interme-
diate orderd, . .., p. In certain applications the intermediate solutions asfuigor
the compensation of subsequent errors. Sed@i8rprovides an example in which
the intermediate solutions are used in the compensatidgaraysn that case, the use
of the Levinson recursion reduces the computation féa/*) to O(M?).

If the frame is redundant, the syste@141) might be underdetermined, and the so-
lution is not unique. The Levinson recursion determinesmresible solution to the
problem. This solution is not the one corresponding to tftepleeudoinverse of the
problem, which is not necessarily an issue. However, it isoagrty of the recursion
to be aware of during system design.

3.1.2 Projections and Re-expansion of the Error

As noted in the previous section, depending on the frame laadétS; used for
the projection, the compensation coefficients might or migit be unique. If the
former is the case, then the solution to equati8ri® is uniquely determined by
inverting the matrixR. However, if the solution is not unique, it can be determined
using a variety of algorithms. Although all solutions ardimgl in terms of the
compensation error, each algorithm might have significalwvaatages over others
depending on the application.

Itis important to further recognize that equati@i(@) is derived assuming equations
(3.8) and @.9). These are sufficient but not necessary to minimize the enegni-
tude. The correction should only satisB/4). The necessary and sufficient condition
for (3.4) is that the sun)_, ¢ (ax — aj,)fx is the frame expansion Gy, (e;f;) using
{fi|k € W;} as the synthesis frame. Equatios3f and @.9) are derived fromJ.4)
only with computational simplicity and linearity in mind.

As discussed in chapty this expansion can be computed using a variety of meth-
ods, adaptive or not, such as inner products with an andlgsise or the use of the
matching pursuit33, 28]. The choice implied by3.9) is equivalent to using inner
products with an analysis frame. Furthermore, inverlitigising the pseudoinverse
implies that the analysis frame is the dual frame. This, hawvenight not be the best
choice for the application considered. For example, a spsotution reduces the
computation in updating the coefficients usir®y9j. Alternatively, minimizing the
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maximum magnitude of the projection coefficients (i.e. thenorm of c) reduces
the effect of the coefficient updates to each of the updatefficients.

The optimal method might also be data dependent. If we rezedhat:

ST apfi =Y awfi — P, (£) (3.22)

keS; keS;

satisfies 8.4), then the{a, |k € S;} are the frame expansion Of, g axf, —
e;Pw, (fi) using the{fy|k € W;} as the synthesis frame. THe,|k < S;} can
be determined using any analysis algorithm, and used t@acephe correspond-
ing {ar}. This is not necessarily the same as expanding only the eedior ¢;f;
and adding the expansion to the existifig. }. For example, to maintain coefficient
guantization, taking into account coefficiemtsbefore computing the update can be
beneficial. Still, in this thesis, we only consider the linetata independent case. It
should be emphasized however, that all the solutions armalif the error magni-
tude is the metric.

Even in the case for which the solution i8.18) is unique, it might be more im-
portant for an application to tolerate more error in ordeimprove other aspects of
the design. For example, in chapté&rand6 it is demonstrated that in the case of
Sigma-Delta noise shaping the projection coefficients aydified from the optimal
choice in order to eliminate products and reduce the cortipaotd complexity in
the feedback loop. Sectioh2.3shows that a suboptimal solution can improve the
stability of the resulting systems.

Projections can be extended to compensate for errors tleat abts of coefficients
at once, such as block erasures or vector quantizationy asset of coefficients that
is not affected by the error. In this case the whole errorarestiould be projected to
the space used for the compensation, using the same pendifd do not explicitly
develop the formulation of this problem in the applicatigmesented here, but the
setup and solution is straightforward as long as care istakéhe bookkeeping of
the indices. For example, the compensation coefficientovecshould become a
matrix, and so should in equation 8.18).

3.2 Pre-compensation Followed by Post-correction

Implementation of equatior8(9) is straightforward if the error is known during com-
pensation. A more surprising result, however, is that in s@ases compensation
using projections can be performed even if the error is natwknat the point of
compensation. In certain cases it is possible to pre-cosgterfor the error before
it occurs, and undo the compensation after the error oaucereFor the remainder
of this section we assume that the application allows twtesys to be inserted one
before and one after the error occurs, before the signahegist The systems are
not allowed to share information directly, but are allowedrtodify the coefficients
on which the error occurs. We also assume the error occuysoonbne coefficient,
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ay —| Pre-compensationt— a; — Error — Post-correction | Synthesis — x

FIGURE 3-1: Architecture of the system implementing pre-compensafiolfowed by post-
correction of a single coefficient error.

a;, and is not dependenon the coefficients used for the compensation. Sequential
application of the principle to multiple coefficients is @lgossible. The details of
sequential application vary depending on the applicafidmus, they are discussed in
the corresponding chapters.

The pre-compensation algorithm can be implemented usiagsyistem in figure
3-1 In the figure the system implementing the pre-projectiordifies coefficients
{ak|k € S;} to:

_ { ar + aicip, Ifkes (3.23)

a = .
k ar, otherwise.

The modified coefficients are used instead of the originasotineis representing the
sum ofx and the projection of;f; ontoW;: X = x + a; Py, (f;). The error modifies
coefficienta; = a; to:

a; = a; +e; = a; +e;, (3.24)
which are subsequently input to the post-correction systemodify {a|k € S;} to
aj:

CL?f = ELk — &ici,k (325)
= ap — €Cik- (3.26)

Theaj, are used for the reconstructiénof x. The error is equal to:

E = eifi — €5 Z Ci,kfk: (327)
keS;
= eiéiri, (329)

which is the same as if the error was known before the comfiensa

1n this statement, “not dependent” can be interpreted indifferent ways: a) if the error is random,
then it should be statistically independent to the coefiitsiéar, & € S;} used for compensation, or
b) if the error is a deterministic but unknown function of dh&a, then it should not be a function of
the coefficientay, k € S;}.
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cwerers  QUanNtization of Frame
Representations

This chapter examines scalar quantization on frame reqtasans, and derives bounds
on the performance of the quantizer. The performance isiated by considering
how many of the available quantization points are used bytiaatizer, not by con-
sidering the shape of the corresponding quantization msgidhus a lower bound
on the error and the bit waste as a function of the redundandyttee number of
guantization levels is derived.

A similar bound has been previously demonstrate@®hfior the oversampling frame
of periodic functions. In that work the quantization is simot@ partition the signal
space in a particular structure called hyperplane wavetsire. An upper bound on
the cell density is derived, which is subsequently used tivela lower bound on the
error decay of the quantization as a function of the reducygarhe analysis assumes
an infinite level uniform quantizer, although it is showntthdinite level quantizer
can only perform worse.

Although the analysis in39] can be applied to any finite frame, this chapter takes
a different view of the problem. Specifically, we considee tinap of the frame
analysis operator from the signal spadéto a higher dimensional spaéé. Scalar
guantization of the analysis coefficients is equivalentctda quantization of a basis
expansion irf{. By considering the hyper-cube quantization lattice gateel by the
scalar quantizer on the basis expansion, it is shown thainthge of\W under the
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frame operator does not reach all the quantization celtbtlzerefore cannot use all
the quantization points.

The analysis in this chapter explicitly assumes a fixed nurabguantization levels
and provides a slightly different bound the89]. Specifically, the bound we provide
is a function of the quantization levels and does not depenthe quantizer being
uniform. Asymptotically, both bounds demonstrate the sgrowth rates. However,
the analysis in this chapter allows us to quantify the erearag and the bit waste of
any scalar quantizer both as a function of the redundancytentmber of quantiza-
tion levels of the quantizer. In principle, the same resaitt be derived by extending
the approach ind9, but the proof in this chapter provides a more straightémav
generalization.

4.1 Quantization of Orthonormal Basis Expansions

In this section we assume an orthonormal bébis} in a spacé{. The basis expan-
sion coefficients can each take anylofjuantization levels, uniformly spaced with
interval A:

pi=p+iA i=1,..., L. 4.1

Thus, theL M points in that can be represented using the quantized expansion are:
M
Pii,. iy = Zpikbk: (4.2)
k=1

M
= Y bp+AD by, ix€{l,...,L}, k=1,...,M, (4.3)
k k=1

in which k& denotes the dimension, arg the corresponding quantization level in
each dimension.

The quantization cells in this lattice, denoted By, are hypercubes of sizAM
centered at each of the" quantization points. A scalar quantizer quantizes any
vectorx in a cell to the corresponding quantization point at the exeof the cell.
For a basis expansion, this is an optimal coefficient quatitia strategy. Figure
4-1 demonstrates (a) a scalar quantizer and (b) the two-dimeaissquare lattice
generated if the scalar quantizer operates on a two dimeaddi@asis expansion. In
the figure, vectok is quantized to the nearest poim.

The assumption of a uniform quantizer is not necessary fod#velopment in this
chapter, except where explicitly noted. Any finite levellacguantizer withl. levels
can be used instead. The effect is that the lattice ceasesuaiform and the cells
are not translations of a fundamental hypercube. Insteaddhs become arbitrary
hypercuboids—generalizations of rectangles in higheredsions. For the purposes
of clarity, the assumption of a uniform quantizer is mainéa, although it is not
necessary, unless the quantizer paramater explicitly used.
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(a) Scalar Quantizer (b) Corresponding Square Lattice

FIGURE 4-1: Example of a scalar quantizer, and the square lattice gexos the scalar quantizer
operating on a two dimensional basis expansion.

4.2 Quantization Grids and Frame Representations

Quantization of frame representations can also be analyzied lattices and lattice
points. Both frame analysis and synthesis can be relateddntigation points on
orthogonal lattices using the analysis and synthesis tpsrarespectively, as de-
scribed in chapteR. However, the decoupling of the analysis from the synthesis
operation implies that quantizing the analysis coeffidesftould be approached sep-
arately from the synthesis from quantized coefficients. fidy section explores the
synthesis from quantized coefficients, while secdla®.2examines the quantization
of analysis coefficients.

4.2.1 Linear Reconstruction from the Quantized Coefficiers

To understand the synthesis from quantized samples, w&deorise synthesis oper-
ator S, as defined in equatior2(17)

S:H—W, st.Sy => (y b, (2.17)
k

in which y is any vector inH, andby is the basis set assumed by the synthesis
operator. In synthesizing quantized frame representgtiplis one of the quantiza-
tion points,p;, and the inner product®;, b;) take one of the discrete values of the
scalar quantizer. All the quantization points lie on a squattice inH defined by
the interval spacing\ of the quantizer and the badiby }.

The frame operator reconstructs these paint® Sp; in the low dimensional space
W, in which the frame lies. An expansion method that assumezdeermined
linear synthesis should quantize a vectoe WV to the pointi that minimizes the
distance |x — Sp;|| in W. This is not necessarily the same point that minimizes the
distance||Fx — p;||, in which F is the analysis operator of the dual frame or any

4.2 Quantization Grids and Frame Representations 49



other analysis frame.

In principle the desired point can be determined using estivaisearch, although
in practice this is usually not possible, especially in tasecof infinite frames. The
guantized matching pursui2@] or Sigma-Delta noise shaping on frames, described
in the next section, are examples of efficient expansion oastithat assume a fixed
synthesis frame and aim to find the quantized representakimest to the original
vector. Neither method claims the optimality of exhaussearch, but they are far
simpler and practical, even for infinite frame expansions.

4.2.2 Analysis Followed by Scalar Quantization

If, instead, a linear analysis using inner products folldvig scalar quantization is
assumed, the signal spake is mapped to the higher dimensional sp&té¢hrough
the analysis operatdr:

Fx =) (x,f;)by. (2.12

k

Scalar quantization of the coefficients corresponds t@scpiantization of the basis
expansion off'x. Thus, the synthesis operation should reconstruct eadattigaaon
point p; to the vectork that minimizes the average distance from all the vectors tha
were quantized tp,. Linear reconstruction from the quantized samples, whash ¢
responds to setting = Sp; using the dual frame fos, is known to be suboptimal.
Instead consistent reconstruction methdg 8] have been shown to improve the
guantization performance.

To design the reconstruction and analyze the quantizeoipeaince, we need to ex-
amine the map ofV onto’H through the analysis operatét. SinceF is invertible,

it has rank/V, same as the dimensionality ¥W. Thus, the image ofV underF' is
an N dimensional subspace i, which we denote using’(VV). Scalar coefficient
guantization of the frame expansion is equivalent to vegt@ntization of that sub-
spaceF' (W) using the lattice defined by the scalar quantizer and the bhagic H}
implied by the frame operatar.

Figure 4-2 illustrates an example for an arbitrary two-vector frameraging on a
one-dimensional signal spat®. Any vectorx € W is quantized to the poinp;
closest to its mag'x. This implies that all the vectors in the intersectionfiV)
with the square celR; are quantized to the poipt;. Consistent reconstruction pro-
duces the vectak that minimizes the error from all the points in the inversega
of the intersectior?'" (F (W) N R;) [38, 28).

In the figure it is also obvious thaf' (W) only intersects a small number of the
available quantization cells. The next section uses anruppend on the number of

cells intersected to derive a bounds on the quantizaticor end the bit use of the

quantizer.
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FIGURE 4-2: A scalar quantization example of a two-vector frame opegatin a one-dimensional
space.

4.3 Limits of Scalar Quantization of the Analysis Coefficiems

Analysis using inner products followed by scalar quaniimatjuantizes a vectot to

the quantization poinp; € H if and only if the image of the point'x € H lies in the
quantization cellR;. Therefore, scalar quantization of the coefficients cay pnb-
duce one of the quantization points in the cells intersebted' (V). This is only a
fraction of theL™ possible quantization points that can be represented mssible
guantization levels for each of the coefficients. Assuming no subsequent entropy
coding, this representation uses at Idagt (L) bits per coefficient, i.eM log, (L)

bits in total to represent the coefficients.

An L-level uniform scalar quantizer operating on/airdimensional basis expansion
forms anM-dimensional hypercube lattice. The hypercube has withon each
dimension for a total volume ofAL)", in which A is the interval spacing of the
quantizer. The lattice consisfs' cells, each of which is a smalléZ-dimensional
hypercube of size\™ . It is also not necessarily centered at zero; its positictén
space depends on the constamf the scalar quantizer in equatiof.f). The lattice
is intersected by"'(W), which is anN-dimensional subspace #.

We usel (M, N, L) to denote the maximum number of cells that any hyperplane
of dimension/V intersects in a hypercube lattice of dimensibh with L cells per
dimension. In sectiod.4it is shown that:

I(M,N,L) < (20)N (%) (4.4)
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Thus, independent of the frame used for the expansion, at hio$, N, L) out of
the possiblel. points are used. The binomial coefficient is upper bounded by

()= (%)

2LMe> N

= I(M,N,L) < < (4.6)
= (2Lre)", 4.7)

in whichr = M/N is the frame redundancy rate.

4.3.1 Representation Bits Use

The representation of the coefficients, assuming no subsegmtropy coding, uses
at leastlog, (LM) = Mlogy(L) = rNlogy(L) bits. However, onlyl (M, N, L)
cells are ever reached, il€M, N, L) points are ever used. To uniquely represent
each of these points approximatétg, (I(M, N, L)) are necessary. Thus the ratio
of necessary bits to the number of used bits is:

logy (I(M,N,L))  Nlogy(2Lre)

logy (LM) ~ rNlogy(L) (4.8)
logy(2Lre)
7rlog2(L) ) (4.9)

As the quantization becomes finer (i.e. — oo) the redundancy is not as helpful
in reducing the quantization error in the signal. Therefaeexpected, the ratio of
necessary to used bits tendsl{o:, which implies that all the redundant coefficients
can be removed without loss in the reconstruction. Sinyilddr a constantl, as
the redundancy increases, the fraction grows é5(log,(r)/r), and the ratio of
necessary to used bits decreases.

The analysis above also provides a target bit rate for sulesggentropy coder.
Specifically, independent of the distribution of the souxca »V, subsequent en-
tropy coding of the representation should use at mwast((M, N, L)) bits, i.e. at

most a fraction 0f252227¢) of the input bits.
rlogy (L)

4.3.2 Lower Bound on the Quantization Error

Equation 4.4) can also be used to bound the error of a uniform quantizethdf
loss of generality we assume that the analysis frame veatensormalized such that
they have magnitudgf, || < 1, and examine two different cases. In the first case,
the vectors represented by the frame have bounded lepdth< R. To ensure
the quantizer does not overflow, the quantization intesvakt toA = 2R/L. In the
second case, the quantization interak constant. For the quantizer not to overflow,
the vectors to be represented should have magnitude bolwyded| < LA/2.
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In the first case, the bound on the vector magnitude,
x| < R, (4.10)
implies that the vectors occupy a volume:

N/2 pN

V= M, (4.11)

NT'(N/2)

in whichT'(+) is the Gamma function, an is the dimensionality of the low dimen-
sional signal spac®V. This volume is divided among all the attainable quantorati
pointsI(M, N, L). Thus, there is some quantization pointhat has corresponding
volume at leasV//I(M, N, L). The maximum distance = ||x — p|| of a vectorx
in that volume from the quantization poiptfollows:

2 N/2eN \% on N2 RN

NT(N/2) = T(MLN.L)  NT(N/2)I(M,N.L) (4.12)
=e¢ > R-I(M,N,L)™N (4.13)
=€ > R(2Lre)™!, (4.14)

which implies that the worst case error magnitude decreas€g§1/(Lr)) as the
redundancy- or the number quantization levelsincreases.

Similarly, in the second case, the vectors are bounded by

l|Ix|| < LA/2, (4.15)
and occupy a volume:
N/2 N
_ 27V 2(LA/2) (4.16)
NT'(N/2)
Using the same analysis as above:
2 lN/2eN - Vv B 2nNI2(LA/2)N (4.17)
NT(N/2) — I(M,N,L) NI(N/2)I(M,N,L) '
LA N
> | — .
~< 2 (amrwo) “19
= ¢ > RA(4re) L. (4.19)

Therefore, the worst case error magnitude is proportiantiié quantization interval
A. The error decreases 8$A /r).

We can also use Zador’s formuld( and an analysis similar to the one B9 to de-
termine a lower bound in the mean-squared error of quartizéat decreases sim-
ilarly to the worst case squared error(a§(Lr)~?) in the first case anft ((A/r)?)

in the second. We do not present this here since the soluties ot provide further
intuition to the problem.

4.3 Limits of Scalar Quantization of the Analysis Coeffidgen 53



4.3.3 Discussion

The analysis above demonstrates that direct scalar gatiotizof the frame expan-
sion coefficients is inefficient. Equatiod.Q) quantifies the number of bits wasted
using such an approach to quantization, or equivalenthatwie should expect the
minimum gain to be from subsequent entropy coding of the tgemoutput. The
worst-case or mean squared error decaf ¢f /(Lr)) shows that doubling the re-
dundancy rate- or doubling the number of quantization levelsof the quantizer
reduces the quantization error at the same rate. Howeveblidg the redundancy
rater doubles the bits used by the representation while doubliaghtimber of lev-
els L only uses one more bit per coefficient, il more bits in total. Similarly for
the ) ((A/r)?) case. Therefore, decreasing the error by refining the quearii the
more rate-efficient approach to decrease the error.

The bound in4.4) is on the number of cells of the hypercube that any hypegotam
intersect. Therefore, any affine data-independent operatn the frame expansion
coefficients has no effect on the result as long as it doeshaoige the redundancy
of the coefficients. This is necessary to accommodate arpitiffsets in the linear
qguantizers, but it also implies that any data-independanstation of the coefficients
before the quantization (such as data-independent detistioior random dither)
does not improve the asymptotic performance of the scalantqer. Furthermore,
the derivation of the bound does not assume uniform qudittizantervals. There-
fore, any monotonic scalar transformation of the repregemt coefficients cannot
improve the bit-use efficiency of the quantizer, or the ederay rate—although the
constants might be affected.

The synthesis method is not considered in the analysis abbve results provide
the lower bound on the error for any synthesis method. Howéhe use of the
synthesis sum in equatio.{) with the dual frame does not necessarily reach that
bound. In fact, it has been shown that the method that achiéeclower bound (at
least asymptotically) is consistent reconstructi2g].]

A significant conclusion of this chapter is that analysismgshner products followed
by individual scalar coefficient quantization is not effitie If, instead, the expan-
sion method is able to reach all tid! = L™V quantization points available, then,
in principle, the error squared can decay exponentiallp &~ "). This implies that
rate-efficient quantized representations employ noratimxpansion methods such
as the quantized matching-purs88[ 28] or the generalization to Sigma-Delta noise
shaping described in the next chapter. These assume the §arthesis is predeter-
mined and the determination of the quantized coefficients mn-linear process
taking the synthesis frame vectors into account. Both nuksthoy to determine a
quantized representation that has a reconstruction ctosée original signal than
simple scalar quantization of the frame expansion coeffisidt has been shown, for
example, that using'” order Sigma-Delta noise shaping on the oversampling frame
the error decays &3(r—(*—1)) [37].

We should also note, that all the results above are bestreasks, based only on the
number of quantization cells reached by the frame analyBi®e advantage is that
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this method is independent to the frame used. Frames ttett feaver quantization
cells exist and have worse performance. There is also nastiEmn on how the frame
partitions the volume of the vector space to the the cormedipg cells. The proof
provides only some intuition on how a rate-efficient framewti be designed, but
not necessary or sufficient conditions to reach the bound.

4.4 Intersection of a Hyperplane with a Hypercube Lattice

In this section we prove the result we asserted in equatiah (sing a proof recur-
sive in N and M. The problem, as defined in the previous section, is courting
maximum number of hypercube cells in Afi-dimensional space that can be inter-
sected by arV-dimensional hyperspace. We denote the number of theseusitig
I(M, N, L). Assuming a uniform quantizer, and without loss of gensralie scale,
rotate and translate the problem such that the hyperculkesligned with the inte-
gers, and have sides at integer coordinates. Then the sigbspaomes an arbitrary
N-blade, i.e. anV-dimensional hyperplane in the -dimensional plane.

The lattice boundaries of the hypercubes becdie— 1)-blades satisfying:;, =
(x,bg) =1, inwhichk € {1,..., M} is the coordinate index andec {0,...,L} is
the boundary index along that direction, for a total\éf L + 1) lattice boundaries.
We call the boundaries @ = 1, ..., L — 1 internal, and the boundariesiat= 0, L
external, for a total o/ (L—1) internal lattice boundaries aRd/ external ones. We
assign a direction to the boundaries in each dimension4yith 0 to be the leftmost
andip = L the rightmost. As an example, figude3 demonstrates the elements of
the problem forNV = 1 andM = 2.

After defining the necessary terms for the proof, in the nextisn, the proof pro-
ceeds as follows:

1. Section4.4.2proves that anV-blade intersecting a cell intersects at leAst
internal cell sides.

2. It is then shown that aiV-blade intersecting one side of a lattice boundary
intersects at most(M — 1, N — 1, L) cell sides.

3. By counting the number of boundary sid€s\/, L) in the lattice, an upper
bound ofs(M, L)I(M — 1, N — 1, L) to the number of cell sides intersected
follows.

4. Dividing this upper bound by the minimum number of cellesicheeded to
be intersected for a cell to be intersected—shown té&vha section4.4.2—a
recursive expression for the upper bound/ @i/, N, L) follows. Expanding
that expression provides the upper bounddid),

Steps 2-4 of the proof are presented in secdoh3 It should be noted that the
counting in steps 1-3 of the proof does not depend on the larigsdof the hypercube
lattice having integer coordinates, or even being equakced. Therefore, the proof
does not rely on the quantizer being uniform—only on havindevels. Still, a
uniform quantizer is assumed for clarity of exposition, &amdimplify notation.
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FIGURE 4-3: An example of the hypercube (square) lattice, lattice batied, cells, and arbitrary

N-blade (line) formed in thé/ = 2, N = 1 case of the intersection problem.

4.4.1 Definitions

Each of the lattice boundaries has a left and a right sidenel@fiespectively as the
subsets with — ¢ < 2, < 7 andi < z;, < i + ¢, for some smalk, in which the
coordinate index and the boundary indexdetermine the boundary in between the
two sides. In counting the sides we are not interested initles ghat face outside
the hypercube lattice, which is left side of the leftmosti¢atboundary, and the right
side of the rightmost lattice boundary. Thus, the total nendgf internal boundary
sidess in the hypercube grid are:

s(M,L) =2M +2M(L — 1) = 2ML, (4.20)

which counts one side for each of thé/ external lattice boundaries and two sides
for each of theV/ (L — 1) internal ones.

Each cell is identified from the coordinates of its rightmbstundaries in each di-
mension(iy, ... ,ixr), ix € {1,...,L}. The cell boundaries along tfi& dimension
are defined, as the sefsB(iy,...,iy) and RBy(i1,...,ip) for the left and the
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right boundary, respectively:

xk:ik—l, if k=1
i — 1 <xp < g, Ifk‘#l

} . (421

LBk(il,... ,’L']\/[) = {(.1'1,... ,:EM)

Tp = U, if k=1
i — 1 <xp <ig, Ifk#l

RBk(zl,,zM):{(ml,,xM) } (422)

The inside facing sides of the cell along tHe dimension are defined as the right
facing side of the left cell boundary and the left facing sid¢he right cell bound-
ary, restricted by the remaining cell boundaries. Thesecalled the left internal
cell side and the right internal cell side, and are denotéugusSy(-) and RS(+),
respectively:

i <xzp+1<ip+e Iifk=1
i — 1 <axp < i, Ifk#l

LSk(ilv"wiM):{(xlw"?xl\/[) }7 (423)

i — € < xp < ik, if k=1
i — 1 <xp < i, Ifk‘;él

RSk(il,...,iM):{(ml,...,xM) }, (424)

for some smalle > 0. Any cell in M dimensions hagM internal sides. The
interior of the cellC(iy, ... ,iys) is defined as the open set of points inside the cell
boundaries, without the boundaries:

C(il,. .. ,iM) = {(1‘1, C ,acM)\zk -1 <x < g, for all k} (425)

The set of cell boundaries for all cells adjacent to a lathigendaryi; form a hyper-
cube lattice of dimensio® — 1 on that lattice boundary, which also has dimension
M — 1. Thus, each of the lattice boundaries hag &h— 1)-dimensional structure,
similar to the M-dimensional one defined here. The proof exploits this acer
structure of the hypercube lattice.

4.4.2 Intersection of a Single Cell with a Hyperplane

To prove the desired statement we first prove that a cellsatéed by anV-blade
has at leasiV of its internal cell sides and the corresponding boundaniessected
by the bladée. An N-blade intersects a cell if its intersection with the interf the
cell is non-zero.

Starting from a poinp on the N-blade, interior to the cell, we determine a vector
parallel to the blade and follow it along the blade until iteirsects one of the cell
boundaries. This implies that the blade intersects theespanding internal side of
the cell. In the same manner, we determine a second vecialigddo the blade and
the boundary intersected by the previous step. Followirsgviactor along the blade,
starting from the same point, we intersect another boundary. This boundary is
different from the boundary intersected before, since gwtor followed is parallel to

1 With a little more care, it can be demonstrated that at |8&stl internal sides and the corresponding
boundaries are intersected, Butof them are enough for the purposes of the bound we present.
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the first boundary, and the poiptis interior to the cell. We repeat the process making
sure that the vector determined in each iteration is parbadéh to the blade and
all the previously intersected boundaries. This ensurasdwery vector intersects
a boundary and the corresponding internal cell side thatnlbaseen intersected
before.

This is possible for at leasY iterations because the intersection of/érblade with
the cell boundary forms afiV — 1)-blade that is an affine subspace parallel both to
the original N-blade and the boundary. Therefore, after the first itenatiere are at
least/NV — 1 linearly independent vectors that are parallel to the ssteted boundary
and to the original blade. Using that argument recursivielfgllows that after the
k" iteration there aréV — k linearly independent vectors to pick from, that are all
parallel to the original blade and the boundaries that hiready been intersected.

4.4.3 Intersection of Cells in the Hypercube Lattice

We denote usind (M, N, L) the upper bound on the number of hypercube cells of
an LM sized hypercube lattice il dimensions that an arbitrafy -blade intersects.
The degenerate case in which a blade is a subset of one ofttive laoundaries
is equivalent to the problem(M — 1, N, L), and can be ignored. The intersection
of any other arbitraryV-blade with a lattice boundary creates at mos{An— 1)-
blade within that boundary, which is also a sub-blade of ttigireal V-blade. The
cell boundaries form af)\/ — 1)-dimensional lattice inside each lattice boundary.
Therefore, theV-blade intersects at mostM — 1, N — 1, L) cell boundaries within
each lattice boundary, and the corresponding left and sigleis. The only exception
is the leftmost and rightmost external lattice boundarnigsich only have one side
facing the inside of the lattice. In total there a(@/, L)-I1(M —1, N —1, L) internal
cell sides that are being intersected, in whi¢h/, L) is the total number of sides, as
defined in 4.20.

For each cell being intersected, there should be at Fashique internal cell sides
intersected. A recursive upper bound follows:

s(M,L)-I(M —1,N —1,L)

I(M,N,L) < N (4.26)
_ (2ML)I(M —1,N —1,L)
_ = (4.27)

N

- 2L)NM(M —1)--- (MN_' N+1)I(M —N,0,L) (4.28)
~ (2L)NM!I(M — N,0,L)
- NI(M = N)! (4.29)
= (2L)V (% > I(M — N,0,L). (4.30)

But I(M — N,0, L) < 1 since a 0-blade is a single point, which can only be interior
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to (i.e. intersect) at most one cell. Thu4,4) follows:

I(M,N,L) < (2L)N (%) 4.9

This bound is loose, and is often larger thaf ,the number of total cells in the
lattice. However, it is good enough for the purposes of thisgp and the asymptotic
bounds we proved in this chapter.

The bound can be made tighter using the fact thaVdlade intersects at leadt+ 1
internal cell sides of any cell it intersects. Furthermarean be shown that:

I(M,1,L) < M(L —1) +1, (4.31)

which can be used to terminate the recursion instedd &, 0, L)—using the recur-
sion onI(M,1, L) results tol (M, 1, L) < 2M L. Thus the upper bound becomes:

I(M,N,L) <

2NLN—1(ML—M+1)< M > (4.32)

N(N +1) N -1
Still, the tighter bound does not change the rates detedmimsectiord.3.

4.5 Efficiency of Frame Representations

Frame representations are not necessarily inefficientimstef quantization. Indeed,
there are examples that achieve e ") reduction of error magnitude expected
if the redundancy in the representation is used efficiemtlyerms of minimizing
the quantization errorlg]. Similarly, the next chapter, discusses how Sigma-Delta
noise shaping can be generalized to arbitrary frame expasig0 reduce the total
quantization error.

The proof in the previous sections, demonstrates the liofitsrect scalar quantiza-
tion of frame expansions, not the limits of any other methbdomputing the quan-

tized frame coefficients. The difference in the methodsabkhteve further efficiency

is the assumption that the synthesis instead of the anasypiedetermined. Under
this assumption the analysis is modified to a non-linear otethat determines a
better set of quantized expansion coefficients, such tleatitnal reconstruction has
an improved error performance.

A side issue in that discussion is the measurement of quaasiatiz efficiency. In a
classical Sigma-Delta A/D or D/A configuration the signab#or 128 times over-
sampled using the classical oversampling frame and geahtiath a Sigma-Delta
converter to a 1-bit per sample representation. Comparacttiically sampled 16-
bit signal, for example, the 1-bit, oversample represemtaises 4 or 8 times more
bits. It is, however, a very efficient representation if tlostoof the representation is
in the D/A or the A/D converter, not in the storage or transiois cost. Indeed, a
64 times oversampled 1-bit D/A converter is much cheapar ¢heritically sampled
16-bit D/A because the 1-bit converter can be implementdiidware using a sim-
ple switch, whereas a 16-bit one requires a careful manufagt process to ensure
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linearity and other properties, even though it is running slower rate. This demon-
strates that implementation cost is an important aspechwbmparing quantization
strategies. The next two chapters present a low-complepproach to improve
the error performance of direct coefficient quantizatiorgbperalizing Sigma-Delta

guantization to arbitrary frame expansions.
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cwerers  QUantization Noise Shaping on
Finite Frame Representations

This chapter presents how quantization noise shaping ceieWed as a sequence of
compensations using projections in the framework of cliehtd he generalization
of noise shaping to arbitrary finite frame expansions fofavaturally. Different
guantization algorithms are described, together with nressto evaluate them. The
generalization to higher order quantization is also carsid.

5.1 Introduction

Quantization methods for frame expansions have receivesiderable attention in
the last few years. Simple scalar quantization applieddaddently on each frame
expansion coefficient, followed by linear reconstructiswell known to be subop-
timal [20, 17]. Several algorithms have been proposed that improve adiace
although with significant complexity either at the quantig28] or in the recon-
struction method28, 38]. The previous chapter proves that scalar quantization of
the frame representation has fundamental performancts)imdependent of the re-
construction method. To improve performance an improvexhtigation method is,
therefore, necessary.

One such method, oversampled noise shaping, has beenwudddidsand established
for the oversampling frame2p, 13]. In [1] it is shown that noise shaping can be
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considered as a causal example of error diffusion, a metfied encountered in im-
age halftoning in which error due to quantization of overghat representations is
diffused among multiple coefficients. More recently, fraguantization methods in-
spired by uniform oversampled noise shaping (referred tegeally as Sigma-Delta
noise shaping) have been proposed for finite uniform framgS][and for frames
generated by oversampled filterbanB§ [In [4, 5] the error due to the quantization
of each expansion coefficient is subtracted from the nexfficent. The method
is algorithmically similar to classical first order noiseaping and uses a quantity
called frame variation to determine the optimal orderindraime vectors such that
the quantization error is reduced. 19] higher order noise shaping is extended to
oversampled filterbanks using a predictive approach. Talatisn performs higher
order noise shaping, in which the error is filtered and sel#hfrom the subsequent
frame coefficients.

This chapter formulates noise shaping as compensationeadriior resulting from

guantizing each frame expansion coefficient through a ptioje onto the space de-
fined by another synthesis frame vector. This requires ambykedge of the synthe-
sis frame set and a pre-specified ordering and pairing fdréinee vectors. Instead of
attempting a purely algorithmic generalization, we incogte the use of projections
and explore the issue of frame vector ordering. This methgatoves the average
guantization error even if the frame vector ordering is mpitroal. However, the ben-
efits from determining the optimal ordering are also denratest. The theoretical
framework presented provides a design method for noiseirghapantizers under
the cost functions presented. This generalization of Sifmiéa noise shaping im-
proves the error in reconstruction due to quantization éeenon-redundant frame
expansions (i.e. a basis set) as long as the frame vectorarerthogonal. The
results in this chapter have also appeared.in 12].

Sectionb.2describes classical first-order Sigma-Delta quantizetldrierminology
of frames. Sectioh.3offers two generalizations, which we refer to as the sedalent
qguantizer and the tree quantizer, both assuming a knowmiongdef the frame vec-
tors. Sectiorb.4explores two different cost models for evaluating the gzanstruc-
tures and determining the frame vector ordering. The firbased on a stochastic
representation of the error and the second on determinigper bounds. In section
5.5the optimal ordering of coefficients is considered, assgntite cost measures
in section5.4. It is shown that for finite frames the determination of fraveetor
ordering can be formulated in terms of known problems in lyrid@ory and that for
Sigma-Delta noise shaping the natural (time-sequentidBrong is optimal. Section
5.6 considers cases where the projection is restricted and hesetcases relate to
the work in @, 5]. Furthermore, the natural extension to higher order duation is
examined. Sectiob.7 presents experimental results on finite frames that venty a
validate the theoretical ones. In secti®Bthe special case of quantization followed
by complete compensation of the error is further analyzed.
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5.2 Concepts and Background

This section establishes the notation and reformulates&ielta noise shaping
using the terminology of frames and projections.

5.2.1 Frame Representation and Quantization

As described in chapt&;, we assume a vectarin a spacé/V of finite dimensionV
represented using a predetermined finite frame:

M
X = Z arfr, (5.1)
k=1
inwhich {fy,k = 1,..., M} is the synthesis frame. The redundancy of the frame is

r = M/N. Aframe is uniform if all the frame vectors have the same nitage, i.e.
£, = 1£,]] for all k and.

The coefficientsa;, above are scalar, continuous quantities to be quantizese Th
simplest quantization strategy, which we call direct scalentization, is to quantize
each one individually ta,, = Q(ax) = ax +ex, whereQ(-) denotes the quantization
function ande;. the quantization error for each coefficient. The total adelierror
vector from this strategy is equal to

M
£= efy. (5.2)
k=1

Section4.1 demonstrates that if the frame forms an orthonormal bases) direct
scalar quantization is optimal in terms of minimizing theoemagnitude. However,
as discussed i4[ 5, 9, 13, 17, 20, 28, 38] and shown in sectiod.3 this is not the
case for all other frame expansions. Noise shaping is orfeegidssible strategies to
reduce the error magnitude. In order to generalize noisgirstpdo arbitrary frame
expansions, we first present traditional oversampling asisenshaping formulated
in the context of projections.

5.2.2 Sigma-Delta Noise Shaping

Oversampling in time of bandlimited signals is a well stadi¢ass of frame expan-
sions, presented in secti@l.8 A signalz[n] or z(t) is upsampled or oversampled
to produce a sequenas,. In the terminology of frames, the upsampling opera-
tion is a frame expansion in whidf), = rf;, = sinc((n — k)/r), with sinc(z) =
sin(rz)/(mx). The sequencey is the corresponding ordered sequence of frame
coefficients:

ap, = (x,£,)= Zw[n]sinc((n —k)/r) (5.3)

n

x = Z apfi[n] = Z ak%sinc((n —k)/r). (5.4)
k k
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FIGURE 5-1: Traditional first order noise shaping quantizer

Similarly for oversampled continuous time signals:

+oo
o = Gt = [ a(t)psinc(E k) (5.5)
X = Zakfk:Zaksinc(%t—k), (5.6)
k k

whereT" is the Nyquist sampling period far(t).

Sigma-Delta quantizers can be represented in a number weéept forms L3]. The
representation shown in figuBel most directly represents the view that we extend
to general frame expansions. Performance of Sigma-DeHlatgqers is sometimes
analyzed using the additive white noise model for the qaatitin error presented in
section2.3.3[13]. Based on this model it can be shown that the quantizatieseno
power at the reconstruction is minimized when the scalirgffament c is chosen to
bec = sinc(1/r).t

The process in figurB-1 can be viewed as an iterative process of coefficient quan-
tization followed by error projection. The quantizer in thgure quantizesy; to

d; = a) + ;. Considerz;[n], such that the coefficients up #_; have been quan-
tized ande;_; has already been scaled bgnd subtracted frony, to produceu;:

-1 400

zln] = > afiln] +aifiln] + ) axfiln] (5.7)
k=—00 k=l+1

= an] +e(fin] —c-fi[n]). (5.8)

The incremental erraf; (f;[n] — c - f;.1[n]) at thel'" iteration of 6.8) is minimized
if we pick ¢ such that - f;;[n] is the projection of;[n] ontof; 4 [n]:

¢ = (filn], fip [n]) /|| i [n)||* = sinc(1/r). (5.9)

This choice of: projects taf; 1 [n] the error due to quantizing and compensates for
this error by modifyinga;,1. Note that the optimal choice efin (5.9) is the same

L with typical oversampling ratios, this coefficient is claseunity and is often chosen as unity for
computational convenience.
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as the optimal choice efunder the additive white noise model for quantization. It is
also the solution of equatio3.(18 in page42 for the first order case (i.@. = 1).

Minimizing the incremental error is not necessarily optinmaterms of minimizing

the overall quantization error. It is, however, optimal énnhs of the two cost func-
tions described in sectidn4. Before we examine these cost functions we generalize
first order noise shaping to general frame expansions.

5.3 Noise shaping on Frames

This section considers two generalizations of the disonssf section5.2.2to ar-
bitrary finite frame representations of length. Throughout the discussion in this
section we assume the ordering of the synthesis frame eddtor. ., f5/), and cor-
respondingly the ordering of the synthesis coeffici¢ats. . . , ays) has already been
determined.

The ordering of the frame vectors is addressed in se&ibnHowever, it should be
emphasized that the execution of the algorithm and the ioglef the frame vectors
are distinct issues. The optimal ordering can be determamee, off-line, in the
design phase. The ordering only depends on the propertithe afynthesis frame,
not the data or the analysis frame.

5.3.1 Single Coefficient Quantization

To illustrate our approach, we consider quantizing thedwsfficienta; toa; = a1+
e1, with e; denoting the additive quantization error. Equatibri) then becomes:

M
x = aifi + > apfy —erfy (5.10)
k=2
M
= a1f; + asfy + Z arfy, — erciofs —e1(fi — c10fa). (5.11)
k=3

Asin (3.4) and 6.8), the norm ok, (f; —c; »f>) is minimized ifc; »f; is the projection
of f; ontofy:

Cl,gfg = <f1,ll2>ll2 (512)
fo £
= (fi, —/—)—— (5.13)
121" || £2]
(fi,ug)  (fi,£2)
:>Cl72 = = , (5.14)
[£2] |[£2] |2

whereuy, = fi./||fx|| are unit vectors in the direction of the synthesis vectoisally,
we incorporate the terme; c; of> in the expansion by updating as in @.9):

a'z = a2 — €1C12. (5.15)
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This is the same development as presented in ch@8p&smsuming first ordemp(= 1)
compensation. The only difference is in the notation, inalhihe setS; and the
spacelV; are ignored here, since they are implied by first order corsguém.

After the projection, the residual error is equalet@f; — c; »f2). Consistent with
chapteBwe simplify this expression and defing, to be the direction of the residual
error, ance; ¢; » to be the error amplitude:

I'172 = (fl — CLgfg)/Hfl — 61’2f2|| (516)
5172 = ||f1 — 61’2f2|| = <f1,I'1’2>. (517)

Thus, the residual error is; (fi,r1 2)r1 2 = e1¢1 2112, iIN Which & 2 is the error
coefficient for this pair of vectors.

Substituting the above, equatios11) becomes

M
x =a1f; + alzfg + Z apfy, — 6151721‘172. (5.18)
k=3

Equation 6.18 can be viewed as decomposiad; into the direct sunfe;c; of>) ®
(e1€1,2r1,2) and compensating only for the first term of this sum. The camepb
e1¢1 2112 IS the final quantization error after one step is completed.

Note that for any pair of frame vectors the correspondingrecoefficientcy, ; is
always positive. Also, if the synthesis frame is uniforngréhis a symmetry in the
terms we definede, ; = ¢;;, andcy; = ¢ 5, for any pairk # I.

5.3.2 Sequential Noise Shaping Quantizer

A sequential first order noise shaping quantizer iterateptbcess in sectioh.3.1
by quantizing the next (updated) coefficient until all thefficients have been quan-
tized. Specifically, the algorithm continues as follows:

1. Quantize coefficient by settinga, = Q(ay},).

2. Compute the erraf, = a, — aj..

3. Update the next coefficienf,; to aj, | = a1 — excrry1, Where
(fr., f1)

Ckl =~ - 5.19
S e 529

4. Increasé: and iterate from step 1 until all the coefficients have beemtined.
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Every iteration of the sequential quantization contributer;, .11 141 to the total
guantization error, where

£, — cpfy

L] and (5.20)

|| — crafil]’
ey = |lfk — crafill- (5.21)

Since the frame expansion is finite, the algorithm cannotpmoreate for the quanti-
zation error of the last stepf;. Thus, the total error vector is

M-1

= Z €kCh k+1Tk,k+1 + enrfar. (5.22)
k=1

Note that the definition of;, ; in (5.19 is consistent with the solution of equation
(3.18 for the case op = 1. Also, ¢ ;r; is the residual from the projection 6f
ontof;, and has magnitude less than or equdl.tdSpecifically, for allk and!:

¢y < |Ifxll, (5.23)

with equality holding if and only iff}, is orthogonal tdf;. Furthermore note thaj, ;,
being the magnitude of a vector, is always nonnegative.

5.3.3 Tree Noise Shaping Quantizer

The sequential quantizer can be generalized by relaxinggyeence of error assign-
ments: Again, we assume that the coefficients have beenrgesed and that the
ordering defines the sequence in which coefficients are izeantin this generaliza-
tion, we associate with each ordered frame vefanother, possibly not adjacent,
frame vectoff;, further in the sequence (and, therefore, for which the spoeding
coefficient has not yet been quantized) to which the erroragepted using equa-
tion (5.195. With this more general approach some frame vectors carséé o
compensate for more than one quantized coefficient.

A tree noise shaping quantizer uses the algorithm presentsection5.3.2 with
step 3 modified to:

3. Updaten;, to a; = aj, — eycy,, Wherecy; = <fkl’fl>

T andil, > k.

The constraint;, > k ensures that,, is further in the sequence than. For fi-
nite frames, this defines a tree, in which every node is a fre@céor or associated
coefficient. If a coefficient;, uses coefficient;, to compensate for the error, then
ay, is a direct child ofq;, in that tree. The root of the tree is the last coefficient to
be quantizedq,,;. The sequential quantizer is a special case of the treeigaair
whichl, = k + 1.
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The resulting expression faris given by:

M M—1
X = defk — Z ekékvlkrk’,lk — er]\/[ (5.24)
k=1 k=1
M—1
= X- €kCr,1, Tkl — e ||far]ung, (5.25)
k=1

wherex is the quantized version of after noise shaping, and thg are the quanti-
zation errors in the coefficients after the corrections ftbenprevious iterations have
been applied ta,. Thus, the total error of the process is:

M-1

&= Z ekéhlkrk,lk +epfar. (5.26)
k=1

5.4 Error Models and Analysis

In order to compare and design quantizers, we need to be@abtaripare the mag-
nitude of the error in each. However, the error terpsn equations %.2), (5.22,
and 6.26) are data dependent in a very non-linear way. Furthermore{althe error
projection and propagation performed in noise shapingctiedficients being quan-
tized at every step are different for the different quanitrastrategies. Therefore,
for eachk, e is different among the equationS.®), (5.22), and 6.26), making the
precise analysis and comparison even harder. In order tpa@guantizer designs
we need to evaluate them using cost functions that are indigp¢ of the data.

To simplify the problem further, we focus on cost measuresvfuch the incremental
cost at each step is independent of the whole path and the\Wataall these incre-
mental cost functions. In this section we examine two sucheais) one stochastic
and one deterministic. The first cost function is based omwthiée noise model for
guantization, while the second provides a guaranteed ugmperd for the error. Note
that for the rest of this development we assume uniform gzegian, withA denot-
ing the interval spacing of the uniform quantizer. We alssuase that the quantizer
is properly scaled not to overflow.

5.4.1 Additive Noise Model

The first cost function assumes the additive uniform whitseonodel for quanti-
zation error, to determine the expected energy of the drfof€||?}. All the error
coefficientse, are assumed white and identically distributed, with varéan?/12,
whereA is the interval spacing of the quantizer. They are also asduim be un-
correlated with the quantized coefficients. Thus, all ecomponents contribute
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additively to the error power, resulting in:

A? (I

E{lEIPY = E(ZkaHZ)a (5.27)
k=1
AZ M—-1

B - E(Z éz,k+1+||fM||2>,and (5.28)
k=1
AZ M—-1

B - E(Z éz,zk+||fM||2>, (5.29)
k=1

for the direct, the sequential and the tree quantizer réispéc

This model, further described in secti@rB.3is a generalization of the additive noise
model sometimes used to characterize noise shaping onéhngamnpling frame. The
model has been applied to other frame expansi®ngq], although its assumptions
are often inaccurate. This model only attempts to descrleegage behavior and
provides no guarantees on performance for individualzaaéins. It is possible that

guantizing a particular signal using noise shaping geesratore error than using
direct coefficient quantization.

5.4.2 Error Magnitude Upper Bound

As an alternative cost function, we can also consider anmuppend for the error

magnitude. For any set of vectors, || >, ug|| < >, ||lug||, with equality only
if all vectors are collinear, in the same direction. Thisde#o the following upper
bound on the error:

M
A
el < 5 (ZII&II) : (5.30)
k=1
M—1
A _
HEH < 5 (Z Ckk+1+ HfMH> , and (5.31)
k=1
M—1
A _
el = 5 (Z Chp + HfMH> , (5.32)
k=1

for direct, sequential and tree quantization, respegtivel

The vectorry,;_1,, , is by construction orthogonal ), and ther, ; are never
collinear, making the bound very loose. Thus, a noise slgagiuantizer can be
expected in general to perform better than what the boundestg. Still, for the
purposes of this discussion we treat this upper bound ag &ucasion and we design
the quantizer such that this cost function is minimized.
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5.4.3 Analysis of the Error Models

To compare the average performance of direct coefficienbttuadion to the pro-
posed noise shaping schemes we only need to compare magaoittite right hand
side of equationsy(27) through 6.29, and £.30 through 6.32) above. The cost of
direct coefficient quantization computed using equati@27 and 6.30 does not
change even if the order of quantization is different. Tfgee we can assume the
ordering of the synthesis frame vectors and the associateftiaients is given, and
compare the three strategies. In this section we provedhatiy frame vector order-
ing, the proposed noise shaping strategies reduce botlvénage error power, and
the worst case error magnitude, as described using the ggdganctions, compared
to direct scalar quantization.

When comparing the cost functions, the multiplicative mr@é and % are elim-
inated because they are the same in all equations. Furtherthe final additive
term ||fy;||?> and ||fy|| does not affect the comparison since it exists in all equa-
tions. Therefore, it can also be eliminated. To summarizeneed to compare the
following quantities:

M-—1 M-—1 M-—1
SR D G and > &y, (5.33)
k=1 k=1 k=1

in terms of the average error power, and

M-1

M—1 M—1
STl D Grprr, and > Gy, (5.34)
k=1 k=1 k=1

in terms of the guaranteed worst case performance. Thesespond to direct coef-
ficient quantization, sequential noise shaping, and trésergihaping respectively.

Using 6.23 it follows that both noise shaping methods have lower duesh tirect
coefficient quantization for any frame vector ordering. tRermore, we can always
pick [, = k + 1, and, therefore, the tree noise shaping quantizer can slaayeve
the cost of the sequential quantizer. Therefore, we canyahfiad /;, such that the
comparison above becomes:

M-1 M-1 M-1
SRIE> Y &pn > &, and (5.35)
k=1 k=1 k=1
M—1 M-1 M—1
> Il > Crps1 > D Chy (5.36)
k=1 k=1 k=1

The relationships above hold with equality if and only if #ilé pairs(f, fy. 1) and

(fy, f;,) are orthogonal. Otherwise the comparison with direct odefit quantiza-
tion results in a strict inequality. In other words, noiseging improves the quan-
tization cost compared to direct coefficient quantizatigareif the frame is not re-
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dundant, as long as the frame is not an orthogonal Baliste that the coefficients
ci,; are 0 if the frame is an orthogonal basis. Therefore, thebf@eldtermse.cy, ;,

in step 3 of the algorithms described in sect®B are equal to 0. In this case, the
strategies in sectiob.3reduce to direct coefficient quantization, which can be show
to be the optimal scalar quantization strategy for orthegbasis expansions.

We can also determine a lower bound for the cost, indeperafehe frame vector
ordering, by pickingj, = argmin, ;¢ . This does not necessarily satisfy the
constrainj, > k of section5.3.3 therefore the lower bound cannot always be met.
However, if a quantizer can meet the lower bound, it is theimmiim cost first or-
der noise shaping quantizer, independent of the frame wveatering, for both cost
functions.

The inequalities presented in this section are summarigkaivb

For given frame orderingj, = argmin, ;¢ 1, and some(ly, > k} :

M M-—1 M-—1 M
S e €3 G Bl <7 Grprr + [l < DTN, (8.37)
k=1 k=1 k=1 k=1
and
M M-—1 M-—1 M
Y@ < Y G el <Y @ Il < IIEIP (5.38)
k=1 k=1 k=1 k=1

where the lower and upper bounds are independent of the fraoter ordering.

In the development above we proved that the proposed noegnghreduces the
average and the upper bound of the quantization error fdraatie expansions. The
strategies above degenerate to direct coefficient quéiotizd the frame is an or-

thogonal basis. These results hold without any assumptionthe frame, or the
ordering of the frame vectors and the corresponding coeffisi Finally, we derived
a lower bound for the cost of a first order noise shaping gmentln the next section
we examine how to determine the optimal ordering and pawirtge frame vectors.

5.5 First Order Quantizer Design

As indicated earlier, an essential issue in first order dgantlesign based on the
strategies outlined in this chapter is determining the iandeof the frame vectors.
The optimal ordering depends on the specific set of syntlfiesise vectors, but not
on the specific signal. Consequently, the quantizer design the frame vector

2 An oblique basis can reduce the quantization error comparad orthogonal one if noise shaping is
used, assuming the quantizer uses the sammdowever, more quantization levels might be necessary
to ensure that the quantizer does not overflow if an obliqesha used.
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ordering) is carried out off-line and the quantizer implenadion is a sequence of
projections based on the ordering chosen for either theesdigilior tree quantizer.

5.5.1 Simple Design Strategies

An obvious design strategy is to determine an ordering amdhgaof the coeffi-
cients such that the quantization of every coefficieptis compensated as much
as possible by the coefficienf, . This can be achieved by settidg = 5, with
Jk = argmin, ., ¢, , as defined for the lower bounds of equatiohs37) and 6.38.
When this strategy is possible to implement, ijg. > k, it results in the optimal
ordering and pairing under both cost models we discussetghlibecause it meets
the lower bound for the quantization cost.

This is exactly how a traditional Sigma-Delta quantizer kgorWhen an expansion
coefficient is quantized, the coefficients that can comgerfsamost of the error are
the ones right before or right after it. This implies that time sequential ordering
of the oversampling frame vectors is the optimal orderingfifst order noise shap-
ing (another optimal ordering is the time-reversed, i.@ dhticausal version). We
examine this further in sectiohi 1.1

Unfortunately, for certain frames, this optimal pairinggmi not be feasible. Still,
it suggests a heuristic for a good coefficient pairing: arggtepk, the error from
quantizing coefficient:;, is compensated using the coefficient that can compen-
sate for most of the error, picking from all the frame vecteh®se corresponding co-
efficients have not yet been quantized. This is achievedtingé, = argmin. ;¢ ;.
This, in general is not an optimal strategy, but an easilyiémegntable heuristic. Op-
timal designs are discussed next.

5.5.2 Quantization Graphs and Optimal Quantizers

From sections.3.3it is clear that a tree quantizer can be represented as a-graph
specifically, a tree—in which all the nodes of the graph aeffaments to be quan-
tized. Similarly for a sequential quantizer, which is a sglecase of the tree quan-
tizer, the graph is a linear path passing through all the siagan the correct se-
quence. In both cases, the graphs have edgds), pairing coefficienta; to co-
efficientq;, if and only if the quantization of coefficient, assigns the error to the
coefficientay, .

Figure5-2 shows four examples of graph representations of first ordisershaping
guantizers on a frame with five frame vectors. The top two &gufa) and (b),
demonstrate two sequential quantizers ordering the frao®ss in their natural and
their reverse order respectively. In addition, parts (c) @ of the figure demonstrate
two general tree quantizers for the same frame.

In the figure a weight is assigned to each edge. The cost of quaatizer is pro-
portional to the total weight of the graph with the additidntlwe cost of the final
term. For a uniform frame the magnitude of the final term isshme, independent
of which coefficient is quantized last. Therefore it is eliatied when comparing the
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FIGURE 5-2:

Examples of graph representations of first order noise shapiantizers on a frame
with five frame vectors. Note that the weights shown repregenupper bound of
the quantization error. To represent the average error pthweeweights should be
squared.

cost of quantizer designs on the same frame. Thus, desigimengptimal quantizer
corresponds to determining the graph with the minimum wteigh

We define the quantization error assignment graph which@érame vectors as
nodesV = {fj,...,fy} and edges with weight(k,1) = F:%J orw(k,l) = ¢y
if we want to minimize the expected error power or the uppearnooof the error
magnitude respectively. On this graph, any acyclical padh ¢isits all the nodes—a
hamiltonian path—defines a first order sequential quantRenilarly, any tree that
visits all the nodes—a spanning tree—defines a tree quantize

The minimum cost hamiltonian path defines the optimal setiplequantizer. This
can be determined by solving the traveling salesman probl&®). The TSP is NP-
complete in general, but has been extensively studied iliténature [L5]. Similarly,
the optimal tree quantizer is defined by the solution of theimum spanning tree
problem. This is also a well studied problem, solvable irypomial time [L5]. Since
any path is also a tree, if the minimum spanning tree is a hani@n path, then it is
also the solution to the traveling salesman problem. Thesidts can be extended to
non-uniform frames.

We should note that in general the optimal ordering and qgidepend on which
of the two cost functions we choose to optimize for. Furtrenenwe should reem-
phasize that this optimization is performed once, off;liaethe design stage of the
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quantizer. Therefore, the computational cost of solvireséhproblems does not af-
fect the complexity of the quantizer.

5.6 Further Generalizations

In this section we consider two further generalizationssdation5.6.1we examine
the case for which the product term is restricted. In sechidn2we consider the
case of noise shaping using more than one vector for compamsaAlthough a
combination of the two is possible, we do not consider it here

5.6.1 Projection Restrictions

The development in the previous sections uses the preglug, to compensate for
the error in quantizing coefficient;, using coefficienty;, . Implementation restric-
tions often do not allow for this product to be computed to tés&ectory precision.
For example, typical Sigma-Delta converters eliminats phoduct altogether by set-
ting ¢ = 1. In such cases, the error compensation is not using a pajetill, the
intuition and approach remains applicable.

The restriction we consider is one on the product: the coeffisc; ;, are restricted
to be in a discrete sed = {a, ..., ax }. Requiring the coefficient to be an integer
power of 2 or to be onlyt1 are examples of such constraints. In this case we use
again the algorithms of sectidn3, with c;,; now chosen to be the coefficient j
closest to achieving a projection, i.e. with; specified as:

cr = argmin.c 4| [fi, — cfy| (5.39)

As in the unrestricted case, the residual erran,id), — ci ;) = epcy v With ry;
and¢y,; defined as in equation$.0 and 6.21), respectively.

To apply either of the error models in sectib we use the new; ;, , as computed
above. However, in this case, certain coefficient ordergngd pairings might in-
crease the overall error. A pairing 6f with f;, improves the cost if and only if

£ — crp i, 1| < |Ifkll < ke < |1kl (5.40)

which is no longer guaranteed to hold. Thus, the strategissribed in sectiob.5.1
need one minor modification: we only allow the compensatmtake place if the
inequality 6.40 holds. Similarly, in terms of the graphical model of sect®t5.2
we only allow an edge in the graph if the inequali®/40 holds. Still, the optimal
sequential quantizer is the solution to the TSP, and thengptiree quantizer is the
solution to the minimum spanning tree problem on that graptrieh might now
have missing edges.

The main implication of missing edges is that, dependinghenftame we operate
on, the graph might have disconnected components. In tkis w& should solve
the traveling salesman problem or the minimum spanningdneevery component.
Also, it is possible that, although we are operating on ansarapled frame, noise
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shaping is not beneficial due to the constraints. The sirhplag to correct for this
is to always allow the choice;;, = 0 in the setA. This ensures tha(40 is
always met, and therefore the graph stays connected. Tienawver noise shaping
is not beneficial, the algorithms will pick;, ;, = 0 as the compensation coefficient,
which is equivalent to no noise shaping. We should note tteathoice of the sefl
matters. The denser the set is, the better the approximatitre projection. Thus,
the resulting cost is smaller.

An interesting special case is to sét= {1}, so that no multiplications are required.
As mentioned previously, this is a common design choiceaditional Sigma-Delta
converters. Furthermore, it is the case examined4r], where the issue of the
optimal permutation is addressed in terms of the frame tiraniaThe frame variation
is defined in fi] motivated by the triangle inequality, as is the upper bomutiel of
section5.4.2 In that work it is also shown that incorrect frame vectoresiag might
increase the overall error, compared to direct coefficieintjzation.

In the cased = {1} the compensation is improving the cost if and only|ff, —

fi.|| < ||fx||. The rest of the development remains the same: determihi@jt-
timal frame vector ordering requires solving the travelgadesman problem or the
minimum spanning tree problem on a possibly disconnecteghgr In the exam-
ple we present in sectidh 7, the natural frame ordering becomes optimal using our
cost models, yielding the same results as the frame variatiterion suggested in

[4, 5]. In section6.1.1we show that when applied to classical first order noise shap-
ing this restriction does not affect the optimal frame omtgrand does not impact
significantly the error power.

5.6.2 Higher Order Quantization

Classical Sigma-Delta noise shaping is commonly done itiptellstages to achieve
higher-order noise shaping. Similarly noise shaping oitrary frame expansions
can be generalized to higher order. Unfortunately, in thsecdetermining the op-
timal ordering is not as straightforward, and we do not agtethis development.

However, we develop the quantization strategy and the enameling for a given

ordering of the coefficients.

The goal of higher order noise shaping is to compensate fant@ation of each
coefficient using more than one coefficients. There are akpesssible implemen-
tations of a traditional higher order Sigma-Delta quamgizeAll have a common
property; the quantization error is in effect modified by'a order filter, typically

with a transfer function of the form:

H.(z)=(1—2z71P (5.41)

and equivalently an impulse response:

he[n] = 8[n] = > cidn — ], (5.42)
i=1
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for somec;. Thus, every error coefficiemj, additively contributes a term of the form
e (fx — D-F_, ¢ifi4;) to the output error. In order to minimize the magnitude of thi
contribution we need to choose thesuch thafy"?_; ¢;fi; is the projection of}, to
the space spanned K¥j.+1, ..., f;+,}. Using 6.41) as the system function is often
preferred for implementation simplicity but it is not thetiopal choice. This design
choice is similar to eliminating the product in figusel. As with first order noise
shaping, it is straightforward to generalize this to admitrframes.

Given a frame vector ordering, we consider the quantizaif@oefficienta, to a, =

ar + ex. This error is to be compensated using coefficientsto a,,, with all the

l; > k. Thus, we desire to project the vectee,f; to the spaceV;, defined by the
vectorsf,, ..., f;,, as described in chapt8r We use the analysis in that chapter to
determine a set of coefficients that multiply the errin order to project it to the
appropriate space.

To perform the projection we view the |l € Si} as the reconstruction frame for
Wi, whereS;, = {l1,...,1,} is the set of the indices of all the vectors that we use
for compensation of coefficient,. Ensuring that for alj > k, k ¢ S; guarantees
that once a coefficient is quantized, it is not modified again.

We usecy, ; to denote the coefficients that perform the projection—tbeespond-
ing setS, and the spaceV, are implied and not included in the notation. These
coefficients perform a projection if they satisfy equatiBrilg), which becomes:

<f11’f11> <fll7flz> T <fll’flp> Ck,ly <fllﬂfk>
(i, 7. fi,) (i, 11,) - (fy 7' fi,) Ck',l2 _ (i, f fr) (5.43)
(f,.5,) (f,.f,) - (f,.f,) Ch 1, (f1,, fx)

If the frame{f;|l € S;} is redundant, the coefficients are not unique, but any swluti
is appropriate. The projection is equal to:

Pwk(—ekfk) = —€ Z Ck,lfl- (544)
€Sk

Consistent with sectioB.3, we change step 3 of the algorithm to:
3. Update{a;|l € Sk} toa; = a; — exck 1, Wherecy, ; satisfy 6.43).

Similarly, the residual is-ex¢ry, Where

& = k= crfil], and (5.45)
leSk
fr, — ci.f
b = T tesGhill (5.46)
£ — 2 ies, cr il

consistent with3.10 and @.11) in page4l respectively. In other words, we express
erTi, as the direct sum of the vectarsc,ry, ey, Zlesk ci,1,5f;, and compensate only
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for the second part of this sum. Note tldgtandr;, are the same independent on what
method is used to solve equatidn43.

The modification to the equations for the total error and tiveesponding cost func-
tions are straightforward:

£ = ) erri (5.47)
k=1
A2 Y
E{|&|*} = E &, and (5.48)
k=1
A M
€l < 5;% (5.49)

When S, = {ii} for k < M, this collapses to a tree quantizer. Similarly, when
Sk = {k + 1}, the structure becomes a sequential quantizer. Sincecthetrantizer

is a special case of the higher order quantizer, it is easyhaw ghat for a given
frame vector ordering a higher order quantizer can alwakigeae the cost of a tree
quantizer. Note thab,, is always empty, and therefo@, = ||fi/||, which is
consistent with the cost analysis for the first order quansiz

For appropriately ordered finite frames /M dimensions, the first/ — N error co-
efficients ¢, can be forced to zero with aN*” or higher order quantizer. In this
case, the error coefficients determining the cost of the tipeanare the remaining
N ones—the error becom&S,” ,,_x.1 exéry, with the corresponding cost func-
tions modified accordingly. One way to achieve that funcimto use all the un-
guantized coefficients to compensate for the quantizati@oefficienta,, by setting
Sk = {(k+1),..., M} and ordering the vectors such that the [¥strame vectors
span the space. This is not the only option; another exarapls¢ussed in the next
section.

Unfortunately, the design space for higher order quardisaguite large. The optimal
frame vector ordering an$l, selection is still an open question and we do not attempt
it in this work.

5.7 Experimental Results

To validate the theoretical results we presented abovajsrsection we consider the
same example as was included & $]. We use the tight frame consisting of the
7" roots of unity to expand randomly selected vector®&n uniformly distributed
inside the unit circle. We quantize the frame expansionguéin= 1/4, and recon-
struct the vectors using the corresponding synthesis frarhe frame vectors and
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FIGURE 5-3: Histogram of the reconstruction error under (a) direct ficieht quantization, (b)

natural ordering and error propagation without projedijoft) skip-two-vectors or-
dering and error propagation without projections. In theosel row, natural ordering
using projections, with (d) first, (e) second, and (f) thirder error propagation. In
the third row, skip-two-vectors ordering using projecipwith (g) first and (h) sec-
ond order error propagation (the third order results arelairto the second order
ones but are not displayed for clarity of the legend).

the coefficients relevant to quantization are given by:

f, = (cos(2mn/7),sin(27n/7)), (5.50)
f, = ((2/7)cos(2mn/7),(2/7)sin(27n/7)), (5.51)
cgy = cos(2m(k—1)/7), (5.52)

Cky = (2/7)]sin (27(k —1)/7)

: (5.53)

For this frame the natural ordering is suboptimal given thigiga we propose. An
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optimal ordering of the frame vectors(if , f4, f7, f3, fs, f2, f5), and we refer to it as
the skip-two-vectors ordering for the remainder of thistisec A sequential quan-
tizer with this optimal ordering meets the lower bound fae ttost under both cost
functions we propose. Thus, it is an optimal first order naisaping quantizer for
both cost functions. We compare this strategy to the onegsexbin §, 5] and also
explored as a special case of secttofi.1 Under that strategy, there is no projec-
tion performed, just error propagation. Therefore, basedhe frame variation as
described in4, 5], the natural frame ordering is the best ordering to impleintleat
strategy.

The simulations also examine the performance of higherrajdantization, as de-
scribed in sectio®.6.2 Since the frame is two dimensional, a second order quantize
can perfectly compensate for the quantization of all buldlsetwo expansion coef-
ficients. Therefore, all the error coefficients of equatibrt() are 0, except for the
last two. A third order or higher quantizer will not improveet quantization cost.
However, the ordering of frame vectors is still importairice the angle between the
last two frame vectors to be quantized affects the totakearad should be as small
as possible.

To visualize the results we plot the distribution of the mstouction error magni-
tude. In figureb-3(a) we consider the case of direct coefficient quantizatiogures
5-3(b) and (c) correspond to noise shaping using the naturathenskip-two-vectors
ordering respectively, and the method proposedhn], i.e. without projecting the
error. Figures-3(d), (e), and (f) use the projection method using the natuaahe
ordering, and first, second and third order projectiongyeetvely. Finally, figures
5-3(g) and (h) demonstrate first and second noise shapingsesespectively, using
projections on the skip-two-vectors ordering. For claoityhe legend we do not plot
the third order results, although they are almost ident@tie second order case. On
all the plots dotted and dash-dotted lines indicate theameeand maximum recon-
struction error respectively. Dashed and solid lines aesl s indicate the average
and maximum error, as determined using the cost functiossaifon5.4.3

The results show that the projection method results in nattror, even when using
the natural frame ordering. As expected, the results usiagptimal frame vector
ordering are the best among the simulations we performed sithulations also
confirm that inR?, noise shaping provides no benefit beyond second order and th
the frame vector ordering affects the error even in highdeonoise shaping, as pre-
dicted by the analysis. It is evident that the upper boundehisdoose, as expected.
The residual error vectons ; are not collinear, and therefore the triangle inequal-
ity, on which the upper bound model is based, provides a vengervative bound.
The error average, on the other hand, is surprisingly cloghad simulation mean,
although it usually overestimates it.

The results were similar for a variety of frame expansiondifiarent dimensions, re-

3In some parts of the figure, the lines are out of the axis baurfetsr completeness, we list the
results here: (a) Estimated Max=0.25, (b) Estimated Ma&3&(c) Estimated Max=0.45, Simulation
Max=0.27, (d) Estimated Max=0.20.
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dundancy values, vector orderings, and noise shapingyridefuding non-orthogonal
bases, validating the theory developed in the previousosect

5.8 Noise Shaping with Complete Compensation

As described in sectioh.6.2 when quantizing a finite frame, it is possible to force
the error coefficientg, to zero for the firstM — N coefficients to be quantized.
This can be done, for example, by ordering the frame vectaech ghat the lastV
vectors form a linearly independent set, and compensatinthé error from quan-
tizing coefficienta; using all the subsequent coefficiedis, 1, ...,ax }. Evenin
this case, the ordering of the frame vectors affects thetquadion error. The lasiv
coefficients to be quantized correspond to linearly inddpah vectors, which can
be chosen and ordered such that they are as aligned as mudssasig and the
corresponding error coefficients become as small as pessibl

In this case it is possible to exploit the orthogonality mdies of the residual vec-
torsr; in order to obtain a tighter expression on the upper boundherrgsidual
error due to the use of projections. Using Gram-Schmidtogioinalization it is
also possible and computationally efficient to computeghesxtors. In the subse-
guent development we assume that the Mstoefficients are quantized in sequence
ary—nN+k, k =1,..., N and the error due to the quantizationugf _ 5 iS compen-
sated using all the remaining unquantized coefficiéntg _ N1 x+1,-..,anm}. The
error due to the quantization of coefficiets, . .., ay/—n } is zero since the quanti-
zation of these coefficient can be perfectly compensatedrfatenoting the relevant
vectors and coefficients, we eliminate; y.r = {M — N+ k+1,...,M} and
Wr—n+kr = spardf;,l € Sy—n} from the subscripts since they are not ambigu-
ous and they make the notation cumbersome.

5.8.1 Error Upper Bound

As noted in sectiorB.1, the residual vectorr;, is orthogonal to all the synthesis
vectors{f;|l € Sy} used for the compensation of the error. Combined with the
compensation ordering described above, this implies that:

(rg,f)) =0, foralll >k > M — N. (5.54)
Butr; is a linear combination of all the synthesis vectfyror [ < ¢ < M:

f, - Zl<i§M cifi
|1 — Zl<i§M cifil]”

r =

foralll > M — N. (5.55)
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Therefore, the lasWV residual vectors are orthogonal to each other:

fi — Zm‘gM aifi

(rp,r) = (v, (5.56)
|I1f; — zl<i§M cifil|
T ,f — i T, C ifi
) — i (rrs i) (5.57)
|1f; — Zl<i§M cifil|
= 0, foralll>k>M— N. (5.58)
The corresponding error becomes:
M
E= Y endiry (5.59)
k=M—N+1

in which ther,, vectors are orthonormal and form a basis. Thus, the erraggne
follows from Parseval’'s equality:

M
€ = Y. aa (5.60)
k=M-—-N+1
AQ M
< o > g (5.61)
k=M-N+1

This is a tighter upper bound than the one described in sebtib.2 It also pro-
portional (with a proportionality constant/3, independent of the frame) with the
expected error power, as derived by the additive noise miad&ction5.4.2 This
provides further justification in the use of the additive seomodel for the design
of this system, not because it validates the noise modehgssons but because it
provides the same results.

5.8.2 Determination of the Residual Vectors

In the case of complete compensation the residual vectotddastN quantizations
and the corresponding error coefficients can be efficiemigmuted using the Gram-
Schmidt orthogonalization procedur® pn the sequencéfy,, ..., fy—n11} of the
last V frame vectors reversed.

Starting from a se{y1,...,yn~}, Gram-Schmidt orthogonalization produces a se-
quence of orthonormal vectofs, ..., uy} using:
k—1
B 2.i=1\Yk W5)u;
= 22:11 i wju; (5.62)
HYk = > i=1 (ks uj>ujH
The algorithm guarantees that for any< N the vectorguy, ..., u;} are orthonor-
mal and have the same span as the vedtgrs. . ., y« }. Therefore, at step, the sum
Z?;H}% u;)u; is the projection ofy;, onto the space spanned by, ..., yr—1}.
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By settingyx = fa/—k+1, andWy 1 = spadyi,...,yx}, it follows that the
orthogonal vectorsy, produced by Gram-Schmidt satisf@.11) with the indices
appropriately modified:

_ fM—k-i-l - ’PWMfkﬂ (fM—k’-i-l)
HfM—k—i-l - PWMkarl (fM—k+1)H
=T\ k1 (5.64)

ug

(5.63)

with the error, coefficients,;_j.1 being the inverses of the normalization factors:

eM—k+1 = [[Ev—k+1 — Py iy (Br—i41) || (5.65)
k—1
= 1Yt — Z<yk, 11j>11j . (566)
j=1
Thus, Gram-Schmidt orthogonalization on the 8¢, ..., fy;—n+1} generates an
orthonormal basis which is equal to the l1&étesidual vectors{ra, ..., ra—n+1},

of the compensation. The corresponding error coefficien@peoduced as a byprod-
uct of the algorithm.

5.8.3 Noise Shaping on Finite Shift Invariant Frames

For a shift invariant frame, the equation to determine themensation coefficients
is simplified to 8.21). In this case, the solution can be efficiently computedgitie
Levinson-Durbin recursiorBR, 25]. Compared to a general-purpose matrix inversion
algorithm the use of the Levinson recursion has two advastag

(@) The Levinson recursion has computational compleXity®) compared to the
O(p?®) complexity of general-purpose matrix inversion.

(b) The Levinson recursion is recursive in the matrix orddrerefore, it provides
the solution to all intermediate problems without the nemgérform sepa-
rate matrix inversions. These intermediate solutions esslad to implement
the projection of the error onto the remaining coefficierdstee number of
coefficient remaining unquantized decreases.

Specifically, the projection coefficients necessary togmbjhe error due to
quantizing thek*” coefficient onto the remainindy/ — k frame vectors, are de-
termined by solving the system of equatid@l), with p = M — k. In order
to project the error of each coefficient to all the remainingg in sequence, it
is, therefore, necessary to solve equati®2y) forp = (M —1),...,1. The
Levinson recursion starts from the simple casg ef 1 and produces the com-
pensation coefficients necessary to implement all thermgdrate projections
up top = M with overall computational complexit§ (1/?2).

It should be noted that for certain shift invariant frameshsas the harmonic frames
[28, 43, 27] any subset ofV coefficients spamV. Therefore, complete compensation
for each quantization is possible using only tNecoefficients subsequent to the
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guantized coefficient. In this case, the solution tojihe N problem can be used to
fully compensate for the error due to the quantization ofitlse M/ — N coefficients.
Thus the overall complexity in this case is further reduce@tN?).

For comparison, a general matrix inversion algorithm, igojpindependently to each
of thep = 1,..., M problems require® (1% + 23 + ... + (M — 1)3) = O(M*)
computation. Although this computation is performed ortdbedesign stage of the
guantizer, the gains are significant, especially for langdlems.
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cwerers - NOISE Shaping for Infinite Frame
Representations

This chapter discusses the extension of Sigma-Delta nbeggrgg to arbitrary infi-

nite frame expansions. Further emphasis is given on fraresrgted by LTI filters

and filterbanks. In addition, two modifications to classisama-Delta noise shap-
ing are considered. In the first, the complexity of digitalatmalog conversion is
reduced by eliminating the interpolation filter. In the sedothe converter is tun-
able, depending on the needs of the particular application.

6.1 Extensions to Infinite Frames

When extending the results of chapteto frames with countably infinite number
of synthesis frame vectors, we 18f — oo and modify equations5(22), (5.29),
and 6.3]) to reflect an error rate corresponding to average errorrperd vector, or
equivalently per expansion coefficient. A$ — oo the effect of the last term on
the error rate tends to zero. Consequently, in considehiagetror rate, we replace
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6.1.1

equations%.22), (5.28, and 6.31) by

B | M-l
£ = ]\}lgloo— Z €kCh k-+1Tk k+1 (6.1)
k=0
1 AZ M-—1
EAlEPy = lm s (Z Chk+1 (6.2)

IN

[E] i M_ ( > a k+1> (6.3)

respectively, wheré-_) denotes rate, and the frame vectors are indexéd iBimilar
modifications are straightforward for the cases of'traed higher order quantizers,
and for any countably infinite indexing of the frame vectdsthe design stage, the
choice of frame should be such as to ensure convergence cb#tdunctions. In
the remainder of this section we expand further on shiftriava frames, for which
convergence of the cost functions is straightforward to alestrate.

Infinite Shift Invariant Frames

As described in chapt&?, infinite shift-invariant reconstruction frames are irtini
framesf), for which the frame autocorrelatioR;; = (fy, ;) is a function only of

the index differencen = k — I: R,,, = (fi, fx+.,). Shift invariance implies that the
reconstruction frame is uniform, with€,||? = (fx, fi) = Ro.

An example of such a frame is an LTI system: consider a sigidlthat is quantized
to z[n] and filtered to producg([n| = >, Z[k|h[n — k]. We consider the coefficients
x[k] to be the coefficients in a frame representatiog|ef, in which h[n — k| are the
reconstruction frame vectofs. We rewrite the convolution equation as:

yln] = _alklhln — k] = _alklfi, (6.4)

k k

wheref;, = h[n — k]. Equivalently, we may considetn] to be quantized, converted
to continuous time impulses, and then filtered to prodg@e = >, Z[k]h(t —
kT). We desire to minimize the quantization error after filtgricompared to the
signalsy([n] = ", xz[k]h[n — k] andy(t) = >, x[k]h(t — kT), assuming the cost
functions described. A filter forms a frame under the coodgidiscussed in detail
in section2.1.6

For the remainder of this section we only discuss the disdigtie version of the
problem since the continuous time development is identicethe corresponding
frame autocorrelation functions are,, = th[ ] > h[n]h[n — m] in the
discrete-time case anfl,, = Ry,(mT) = [ h(t)h(t — mT)dt in the continuous-
time case. A special case is the oversamphng frame, in whi¢hor hln| is the

1 This is a slight abuse of the term, since the resulting irdigiaph might have no root.
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ideal lowpass filter used for the reconstruction, @&hgl = sinc(m/r), wherer is the
oversampling ratio.

6.1.2 First Order Noise Shaping

Given a shift invariant frame, it is straightforward to detne the coefficients;, ;
andcy; that are important for the design of a first order quantizéese coefficients
are also shift invariant, so we denote them usipg= cy j+m andc,, = Cx k+m-
Combining equations5(19 and 6.21) from section5.3 and the definition ofR,,
above, we compute the relevant coefficients:

Cm = Cpm = % (6.5)
Cm =Com = RO(l - C?n) (66)

For every coefficient;, of the frame expansion and corresponding frame vefgtor
the vector that minimizes the projection error is the ve€ay,, , in whichm, > 0
minimizesé,,, or, equivalently, maximizeg,,|, i.e. |R,,|. By symmetry, for any
suchm,, —m, is also a minimum. Due to the shift invariance of the frameg, is
the same for all frame vectors. Projectingfiq,,, or fx_,,, generates a path with
no loops, and therefore the optimal tree quantizer pathorg &s the direction is
consistent for all the coefficients. Whem, = 1, the optimal tree quantizer is also
an optimal sequential quantizer. The optimality holds urmgh the additive noise
model and the error upper bound model.

In the case of filtering, the noise shaping implementatioshiswn in figure6-1,
with H¢(z) = ¢m,2~ ™. For the special case of the oversampling framg, =
sinc(m/r), andm, = 1. Thus, the time sequential ordering of the frame vectors is
optimal for the given frame.

6.1.3 Higher Order Noise Shaping

As we discuss in sectioh.6.2 determining the optimal ordering for higher order
guantization is not straightforward. Therefore, in thists® we consider higher or-
der noise shaping for the natural frame ordering, assurhaigithen:,, is quantized,

the nextp coefficientsay 1, . . . , arp, are used for compensation by updating them
to

a}Hl =apy —epc, L=1,...,p. (6.7)
The coefficients;; projectf;, onto the spaces;, defined by{f;.,...,fi4,}. Be-

cause of the shift invariance property, these coefficierdsralependent of. Shift
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FIGURE 6-1: Noise shaping quantizer, followed by filtering

TABLE 6.1:

Noise Shaping
order

Oversampling Ratio
r=2|r=4|r=8|r=16|r=32|r=64

0.9 0.2 0.1 0.0 0.0 0.0
4.5 3.8 3.6 3.5 3.5 3.5
9.1 8.2 8.0 8.0 8.0 8.0
140 | 13.1 | 129 | 128 12.8 12.8

p=1
p=2

p=3
p=4

Gain in dB in in-band noise power comparip order classical noise shaping with
p'" order noise shaping using projections, for different oamgling ratios-.

invariance also simplifies equatios.43 to equation 8.21):

Ry Ry
Ry Ry

R, c1 Ry
R,_ c R
A I B N e (3.29)

Rp_l s Ro Cp Rp
with R,, being the frame autocorrelation function.

The implementation for higher order noise shaping befoteriiilg is shown in fig-
ure 6-1, with H;(2) = > ¢;27!, where ther; solve @.21). The feedback filter
implements the projection and the coefficient update desdrin equationg.?).

For the special case of the oversampling frame, téblelemonstrates the benefit of
adjusting the feedback loop to perform a projection. Théetadyports the approxi-
mate dB gain in reconstruction error energy using the smiuth 3.21) compared to
the classical feedback loop implied y.41). For example, for oversampling ratios
greater than 8 and third order noise shaping, there is an &iBilg implementing
the projections. The gain figures in the table are calculaiog the additive noise
model of quantization.

The applications in this section can be extended for frameasmted by oversampled
filterbanks, a case extensively studied 9 [In that work, the problem is posed in
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D/IC | LPFH(s) — x=(t)

FIGURE 6-2: Classical Sigma-Delta DAC architecture

terms of prediction and quantization of the prediction erkdotivated by that work,
we determined the solution to the filterbank problem usirggiojective approach.
Setting up and solving for the compensation coefficientagugiquation %.43 in
section5.6.2corresponds exactly to solving equation (21)9h fhe solution to that
setup under the white noise assumption.

It is comforting that the approach presented in this sectithough different from
[9] generates the same solution. Conveniently, the expetaheesults from that
work apply in our case as well. Our theoretical results cemant P] by provid-
ing a projective viewpoint to the problem, developing a deiristic cost function
and showing that even in the case of critically sampled bagonal filterbanks noise
shaping can provide improvements compared to scalar cieeffiguantization. On
the other hand, it is not straightforward to use our apprdaa@nalyze and compen-
sate for colored additive noise, as describedin [

6.2 Multistage D/A Converters

The use of projections for error compensation only assunpesdetermined synthe-
sis method using the frame synthesis equation. The methexdl tasdetermine the
representation coefficients has no effect on the methodslgedithms developed.
Specifically in the case of noise shaping, this allows forerefficient implementa-
tion of classical Sigma-Delta noise shaping structureshieroversampling frame.

Figure6-2 presents the typical structure of a classical Sigma-Degjiadito analog
converter DAC). The signale[n], to be converted to the signa(t) is being upsam-
pled by an integer factorto the intermediate representatiopn|, using the lowpass
filter Hy(z). The coefficients, [n] are the frame representation coefficients of the
signal using the--times oversampling frame. This representation is sulsstyu
quantized to the desired precisfousing a Sigma-Delta quantizer of order The
guantized representation is then used to reconstructdhalsiising a low precision,

2\We should use the term re-quantized to be precise, sincpaHisf the system is implemented digi-
tally, and the coefficients af[n] andz,[n] are digitally processed. Therefore they have already been
quantized to a high precision. The Sigma-Delta quantizegjuantizes them to a lower precision. For
the purposes of this discussion, we can consider the otigodficients to be of infinite precision
compared to the precision of the quantizer output.
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—{ Gainr YA

D/IC |—| LPFH(s) |— xz(t)

FIGURE 6-3:

Simplified Sigma-Delta DAC architecture with the low-pa#efiH,(z) replaced by
a gainr. This architecture has the same performance as the one e G¢ll

oversampled DAC, followed by the low pass filt&l;(s) to reject the out-of-band
guantization noise. The combination of the DAC with the filtaplements the syn-
thesis equation for the frame. The quantizer should thezdie designed based on
that filter, not on the analysis method.

6.2.1 Elimination of the Discrete-time Filter

As we discuss in chapt@; the use of a frame decouples the analysis from the synthe-
sis. In figure6-2, the analysis is performed by the digital low-pass fikgy(z). The
frame implied by this filter, assuming it is ideal, is the doBihe synthesis frame im-
plied by the output filtei,(s). In principle, Hy(z) can be replaced by a gain factor
r, which implies a different analysis frame fofn]. The resulting coefficients;, are
different, but represent the same signal, assuming th@sé&ttion is not modified.
Thus, the implementation and the performance of the Sigelta@uantizer should
not be affected by the change. For any particular input taribdified system, the
outputay is also different, but it represents the same signal, wighstime error after
reconstruction on average. The resulting system is siraglgignificantly, as shown
in figure 6-3.

The elimination of the filte{, from the signal path has both advantages and disad-
vantages. I, is designed to equalizH, its elimination poses tighter constraints
on the design of{;. On the other hand, if the output filtéf, is ideal or matches
the system specifications, the eliminationfaf removes a potential source of signal
degradation.

One important role of the discrete time filtéf is the implementation of a sharp
cutoff to eliminate the high-frequency components preseiiie signal due to the
expansion operation. Iff; is eliminated, even in the absence of quantization, the
filter H, at the output should reject all components above the bartkdwfdhe signal.

In the classical implementation of figue2 these components are rejectedyin

the digital domain. Thus, in the classical implementatibthe analog filter at the
output H is not as sharp, the only side-effect is that some out-otlzprantization
noise will pass through in the signal reconstruction.
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.1'[71]—) Trl 7 LPFHI(S) — TTQ — GainT‘g —>xu[n]:an

ap —| 2A

DIC | LPFH,(s) — ()

FIGURE 6-4: Two-stage simplified Sigma-Delta DAC architecture with zne performance as
the one in figures-2.

6.2.2 Multistage Implementation

The design and manufacture of sharp continuous-time fikenst easy, and affects
the total system cost. Thus, the elimination of the disetiete filter has the potential
of increasing the cost of the system since it transfers gshadoff from the discrete-
time domain to the continuous-time one. Furthermore theguee of the gain factor
r after the expansion increases the likelihood that the gqeeanwill overflow if it has
a finite number of levels. Alternatively, the gain can be pthafter the D/C conver-
sion stage which is equivalent to increasing the intervahefquantizer fromA to
rA. In this case the resulting error magnitude will increasthoagh the quantizer
is less likely to overflow.

It is also possible to implement a practical intermediatstay structure that uses
a continuous-time low-pass filter with loose specificatjcasd a discrete-time one
with looser specifications compared to the classical cadee dgain factor is also
reduced, thus decreasing the probability of overflow. Thig-$tage expansion is
demonstrated in figur@-4, in whichr,ry = r so that the output rate to the DAC is the
same as the previous systems. The discrete time flferan also be used to equalize
the output filterH if this is necessary. Furthermore, the gain can be placed ik
D/C conversion stage, as shown in fig@®. This increases the error compared to
the system in figuré-4, since the scaling of the quantizer is effectively changatd b
further reduces the probability of overflow.

The use of multiple stages to implement interpolation systbas been extensively
studied in [L6]. In that work it is demonstrated that the implementatioranfinter-
polation system using multiple interpolation stages casrafese the computational
complexity of the resulting system. This section furthezognizes that in Sigma-
Delta digital to analog conversion the functionality of theerpolation filter is repli-
cated by the synthesis filter at the output of the quantizer.
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FIGURE 6-5: Two-stage simplified Sigma-Delta DAC architecture with ¢jaénr» placed after the

D/C converter. Moving the gain effectively modifies the dization intervalA of
the quantizer, thus affecting the quantization perforreanc

6.2.3 Conversion Performance

The systems in figure&-3, 6-4, and6-5 can all be analyzed in the frequency domain
using the classical noise model and be compared to the ga#ai performance of
a direct quantization system. In the absence of the quaritizesystem behaves as
an ideal digital to analog converter. Using the additiveterimoise model and the
Sigma-Delta modulator, the analysis follows the standgt@ach described in a
variety of referencesl, 3.

However, white noise is not a good model for quantizationhiese systems, es-
pecially in the case of direct scalar quantization. Speadlficthe expansion by
without subsequent interpolation produces a sparse sigmahich every non-zero
coefficient is followed by(r — 1) zeros. Quantizing this signal produces a signal
in which (r — 1) out of everyr coefficients are the same and have the same ®rror.
Therefore, depending on the error due the quantizationrof\zgues, if noise shap-
ing is not used, performance might deteriorate signifigantl

The presence of the Sigma-Delta loop significantly imprdawesperformance, and
makes the white noise model more plausible. In additionygper bound introduced
in section6.1 provides an alternative cost measure that demonstrateghthavorst

case performance with or without the interpolation filtethis same. The use of pro-
jections minimizes the incremental error of quantizatigridking the reconstruction
into account. Thus, the error rejection of the system isrd@teed by the shape and
the nullspace of the output low-pass filter. The redundaadgtroduced by the ex-
pansion operation and the existence of more coefficientspiesent the signal, not
by the interpolation that follows the expansion. Furthemmahe zeros introduced
after the expansion provide a practical advantage. Thetigeans less likely to

overflow on these coefficients since the error feedback flmrSigma-Delta modi-

fies a zero coefficient, and not a coefficient that might beadliyenear the overflow

3 The error might in fact be zero for these coefficients, defrendn whether zero is one of the quan-
tization levels of the quantizer.
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(a) Gainr, placed before -A (v, [1,=64)
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FIGURE 6-6: Performance of two-stage Sigma-Delta quantizers, withngrpolation filter used
only after the first stage. In (a) the filter of the second stageplaced by a gain
factorry. In (b) the gain factor is placed in the system output. Nog the y-axis
scale is different in the two plots.

boundary.

Figures6-6(a) and (b) demonstrate simulation results for the systemasepted in
figures6-4 and6-5 respectively. The figures explore the simulation perforoesgior
r=64andr; = 1,2,4,8,16,32, and64. The output filter is simulated in discrete-
time using a 4097 point Hamming-window low-pass filter withaff at7/64. The
interpolation filter ; is implemented using a 4097 point Hamming-window low-
pass filter with cutoff frequency /r;. The cases of; = 64 andr; = 1 correspond
to the classical Sigma-Delta system in fig@€ and the system in figuré-3, re-
spectively. The figures plot the quantization performaricéigma Delta quantizers
designed optimally using(21) with the autocorrelation of the output filtéfy. In the
simulationsA = 1 and the input signal tested is white noise uniformly distielal
in £0.5. The solid line without markers represents the performaidbe system
without quantization, i.e. displays the distortion onlyedo the filters. It should be
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FIGURE 6-7: Tunable digital to analog converter.

noted that the y-axis scale is different in plots (a) andtb}YJemonstrate the details
of the plots.

In figure6-6(a) it is evident that beyor@*® order quantizatiorip > 2), the distortion
due to the filters lower bounds the distortion due to the Si@aka converter if
the gainrs is placed before the quantizer. Therefore, as expecteqyetfiermance
is improved by eliminating the filter using the systems in fagg6-3 and 6-4. On
the other hand, a gain of 64, for example, requires a quantith a much higher
overflow range, making this result impractical.

Figure6-6(b) demonstrates that placing the gain after the DAC, udiegsystem in
figure 6-5, can still improve the error or reduce the complexity if thdasr; andr,
are chosen correctly. Specifically, for < 8, the effective increase of the quantiza-
tion interval due to the gain increases the error signiflgai@n the other hand, for
r1 > 16 andp > 2 the performance is comparable to the system in figu2e

These results demonstrate the potential to simplify pratDAC systems. However,
the benefit depends on the design of the filter in the outputeitbnverter, which

forms the synthesis frame. In practical system desigrhdéuimulation and analysis
is necessary to determine the exact tradeoff, if any.

6.3 Tunable Sigma-Delta Conversion

In an oversampled Sigma-Delta digital to analog conveherdoarsely quantized
output is low-pass filtered by a fixed low-pass filter. Sintjlathe coarsely quan-
tized output of an oversampled analog to digital Sigma-detinverter is low-pass
filtered and then decimated to produce a finely quantizedakagra lower rate. How-
ever, other filters can be applied at the output of the Sigraialstage to perform
reconstruction. In this case, the feedback loop is modifiechplement the projec-
tion according to equatior8(21).

Band-pass Sigma-Delta converters sampling signals inédffnequencies centered
away from zero have been used in a variety of applicationrseffamples se€e3] and
references within). Tunable analog to digital convertenggtbeen introduced i2§],
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FIGURE 6-8: Tunable analog to digital converter. The gaifpsare tunable components. Their
value is determined by inserting the autocorrelation ottimable filterk[n] in equa-
tion (3.21).

while tunable digital to analog converters have been meation [35] but not further

explored. This section presents these systems in the ¢mftérames generated by
arbitrary filters. Thus, the parameters in the feedback &vepletermined using only
the autocorrelation of the synthesis filter evaluated atahs necessary to compute

(3.2).

One application of such systems are tunable software radiokich signals of pre-
determined bandwidth should be acquired or generated fatetit center frequen-
cies. For example a cellular phone operating in differentntges or in different
frequencies only needs to have one such converter. Howineeflexibility of the
systems allows the conversion of signals at varying banithsidith varying fidelity
in the representation. A wide-band or a multi-band signallw@acquired or gener-
ated with low precision at the output, while a narrow-barghal can be converted
with higher precision.

It should be noted that the methods discussed in this seatmnot adaptive in real
time. The converters presented are tuned before they sirating, according to the
application. To modify their tuning their state should bgate or some transient time
period should be tolerated to reach steady state. In pi&atgs possible to use the
results of this chapter to design converters tunable intied without transients. In
this case, the autocorrelation of the frame generated bijrttesvarying tunable (or
adaptive) filter should be used iB8.21) to compute the time-varying parameters of
the feedback loop at each time point. However, this is notspeet explored in this
section.

6.3.1 Tunable Digital to Analog Conversion

A tunable digital to analog converter is shown in figér&, in which the filterh(t)
is tuned to the application requirements. Depending onrtipriise responsg(t),
the discrete-time filtef/ ;(2) in the feedback loop should be adjusted to perform the
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FIGURE 6-9: Tradeoff between error due to quantization and (a) filterdladth f,, or (b) filter

redundancy-, assuming an ideal lowpass synthesis filter and optimal emisgtion
of orderp.

noise shaping projection as determined usB@J). The impulse responggt) can
in principle take any shape. In practice it is determined fgnavariable components
in the analog filter implementation.

The digital to analog conversion component converts thadreepresentation coeffi-
cients to continuous-time pulses at a high rate= 1/7. The pulses are modeled as
continuous time impulses. An arbitrary pulse shape candmporated intdv(t) by
convolving the pulse shap€t) with the impulse response of the output filter. The
DAC component has finite quantization precision, which came adjusted.

6.3.2 Tunable Analog to Digital Conversion

A tunable analog to digital converter can be implementedgisiie system in fig-
ure 6-8. The feedback loop is implemented using switched capadiéays and
tunable gains. The system implements the feedback loopwkf@y1 for an analog
to digital converter system. The output is filtered by an itepuesponsé|[n] to
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produce the acquired signal. All the components of the sysigerate at a high rate
fs = 1/T. Depending on the application, the system output can beegulestly
converted to a lower rate. As with the digital to analog systthe analog to digital
conversion component is implemented as a combination opkagnand quantiza-
tion with finite precision, which is not adjustable.

6.3.3 Optimal Tuning and Quantization Precision

The application using the tunable systems has control destuinable filters and the
parameters of the feedback loop. To achieve optimal pedoom, according to the
metrics presented in secti@l, the application should set the feedback parameters
to match the output filter using821). In tuning these filters, however, there is a
tradeoff between the output error and the range of freqesnuoithe pass band of the
filter.

Specifically, in both systems, the digital to analog and thal@y to digital com-

ponents have finite quantization precision. The effect afngization at the output
of the two systems depends on the noise shaping loop anddbesteuction filters
hin] andh(t). In general, the larger the nullspace of the filters, the lEmtie error

due to quantization at the output. The tradeoff is difficalgtiantify without further

assumptions on the filters.

For example, figuré&-9 demonstrates the tradeoff between bandwidth and average
or worst-case error assuming the tunable filter is an idegbdss filter with tunable
bandwidthf,,. The error is normalized such that it is 0dB when the filterlipass.

In the figure, (a) plots the error in dB as a function of the ffutequency f,, of the

filter, normalized by half the sampling rate. Plot (b) shotes érror as a function of

the redundancy = f;/2f,, of the filter. In the figurep is the order of the system
used to determine the optimal coefficients 3n2(1).
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anerers - COMpPensation for Erasures

As discussed in chapt&, the redundancy of frame representations decouples the
analysis using inner products from the synthesis usingyththnesis sum. The coeffi-
cientsay, that represent a vectarusing a pre-specified synthesis fraffg} and the
synthesis equatior2(7) can be determined in a variety of ways (for some examples,
see B3, 27] and references within).

Similarly, the coefficients,, of a vector analyzed using the analysis frame and equa-
tion (2.8) can be used in a variety of ways to synthesize the vectorexample, it

is not necessary to use all the coefficients to reconstrecsitinal. A subset of the
coefficients is sufficient to represent the signal as longhascorresponding frame
vectors still span the space. In this case, perfect reamtiin is possible, making
the representation robust to erasures during transmission

Consequently, most of the existing work on erasures on fregpeesentations as-
sumes thai is analyzed using inner products with an analysis frame. edtiais
assumption, the synthesis is modified to reconstruct thygnadi signal. For example,
linear reconstruction can be performed using a recompyt@tiasis frame and equa-
tion (2.7) [27, 31]. Alternatively the erased coefficients can be re-compusidg the
non-erased ones, and used to fill in the coefficient streamvébtor is linearly syn-
thesized using the recovered stream and the original sgistirame 8, 7]. However,
neither approach is possible without assuming an expansiog equationZ.8).

In this chapter, rather than assuming that the vector isyaedlusing the analysis
equation 2.8), we make no assumptions on how the representation coaffcig
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are generated. We only assume that the synthesis is pedarsireg a pre-specified
synthesis frame and the synthesis sum of equafon).( The representation coef-
ficients may be generated in a variety of ways, including thayesis equation, the
use of the matching pursui88], or just coefficients to be used with the synthesis
sum. Under this assumption, it is not possible to fill in thessitig coefficients or
appropriately modify the synthesis frame at the receiver.

We consider two cases. In the first case the transmitter iscaofdhe erasure events
and uses the remaining coefficients in order to ensure tleasyththesis using the
pre-specified synthesis frame minimizes the reconstmieticor. The receiver in this

case only needs to perform the synthesis. In the second lvageahsmitter is not

aware of the erasure event. Instead, the transmitter estbdeoefficients such that
the receiver is able to recover the signal with as small exsquossible if the erasure
occurs.

In principle, itis possible to synthesizeat the transmitter using the synthesis frame
and the synthesis sum of equatidh?. Subsequently, a frame representation can
be recomputed using an appropriate analysis frame. If thesmnitter is aware of
the erasures pattern, for example, it can expand the symtldegectorx using the
dual of the remaining synthesis frame, taking that eraguaéiern into consideration.
Similarly, if the transmitter is not aware of the erasurégain analyzex using any
frame{¢;} with the same redundancy and transmit these coefficientsaids The
receiver receives some of the re-computed coefficients wamithessizesx using the
dual of{¢y } given the erasures pattern, as discusse@nd1, 8, 7]. This approach,
however, requires significant computation and knowledgeno$t of the erasures
pattern either at the transmitter or the receiver, whichgemerate significant delays
in the reconstruction of the signal.

The algorithms described in this chapter, instead, modli€é/representation coeffi-
cients using orthogonal projections at the transmitterreperly compensate for an
erasure. This assumes that the transmitter is aware thatauare occurs, which is
the first case considered. Even in the second case, in whiglhareceiver is aware
that an erasure occurs, we demonstrate that a simple trié@igreiceiver combination
can implement the same compensation method. The transmitidifies the frame
representation assuming the erasures will occur, and tleévezx undoes the changes
if the erasures do not occur. The input-output behavior efttansmitter/receiver
pair is identical to the input-output behavior of a transemitwhich is aware of the
erasure occurrence.

One advantage of using this approach is that the compleseirespattern does not
need to be known in advance. Furthermore, the represemtetiefficients may be
generated in a variety of ways and it is not necessary to egith and re-analyze
the signalx at the transmitter or the receiver. The drawback is that thesality
constraints imposed in part of this development often altowy for partial com-
pensation of the error. The approach described here is nppr@ariate for large
or infinite frame setups, and streaming conditions, in wiiietay is important. For
applications using small finite frames, in which delay is antissue, this method is
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not well suited.

The use of projections to compensate for erasures is sitoikieir use in chaptes

to extend quantization noise shaping to arbitrary frameegpns. However, in that
case, the quantization error is known at the transmittet—seessarily the case
with erasure errors. The use of redundancy to compensatrdeures assuming a
fixed reconstruction method has also been considered irfexatit context in 21,
22]. In that work the error is again known at the transmitter antyy the case of
LTI reconstruction filters is considered. The problem isrfalated and solved as a
constrained optimization.

Projections can similarly be used at the transmitter tontmeally introduce erasures
for the purpose of puncturing a dense representation. Esssompensated for with
projections can be the basis for algorithms that producesspgapresentations from
dense ones, a process we refer to as sparsification. Theystabneacombined with
guantization, in which the combined error is projected ®rétmaining coefficients,

as described in chapté& although not necessarily in a data-independent ordering.
In that context, erasures can also be viewed as an extremeofaguantization, and
can be compensated for accordingly.

The usefulness of redundant dictionaries of vectors as thesis set for approxi-
mate sparse representations has been shown for exam@8, ig3, although the
algorithms used to determine the sparse representatiafifiient compared to our
approach. In these papers the matching pursuit principises to produce a sparse
representation starting from no representation at all.SEtef coefficients and corre-
sponding dictionary elements is augmented until the sighadterest is sufficiently
approximated. In contrast, secti@tBdescribes an algorithm that starts from a dense
exact representation and removes dictionary elementshendarresponding coef-
ficients until the signal is sparse enough or the maximunrdble approximation
error is reached.

The next section states the problem and establishes théomotdt is shown that
the optimal solution is the orthogonal projection of thesera error to the span of
the remaining synthesis vectors, and some properties oéséigl compensations are
proven. A causal implementation is proposed in secfi@il, assuming the transmit-
ter is aware of the erasure. Sectibi2.2presents a transmitter that pre-compensates
for the erasure and a receiver that undoes the compenshtioa érasure does not
occur. The use of projections to sparsify dense represemsats explored in sec-
tion 7.3

7.1 Erasure Compensation Using Projections

After stating the problem and establishing notation, teistion examines the com-
pensation of a single erasure in the context of chaptén section7.1.3the results
are extended to the compensation of multiple erasures, ropeipies of sequential
compensations are considered.

7.1 Erasure Compensation Using Projections 101



7.1.1 Problem Statement

We consider the synthesis of a vectousing @.7):

X = Zakfk, (27)
k

in which we make no assumptions on how the representatidiiaeets {a; } orig-
inate. The{ax} might even be data to be processed using the synthesisXidm (
such as a discrete-time signal to be filtered, not origigaftiom the analysis ok.

The coefficients{a; } are used to synthesize the signal using the pre-specified syn
thesis frame{fy }, subject to erasures known at the transmitter or the receivie
model erasures as replacement of the correspondingith 0, i.e. removal of the
corresponding term,f; from the summation in2.7). Since the analysis method is
not known, the goal is to compensate for the erasure as mugpbsaghle using the
remaining non-erased coefficients.

Thru section7.2.1we assume that the transmitter anticipates an erasure amgskn
the value of the erased coefficient. Assuming coefficigns erased, the transmitter
is only allowed to replace the coefficienfs; |k € S;} with {a;|k € S;} in order
to compensate for the erasure, whéte= {ki,...,k,} denotes the set of coeffi-
cient indices used for the compensatioruofThe reconstruction is performed using
equation 2.7) with the updated coefficients:

x=> apfit+ > afy (7.1)

kesS; k¢S; ki

such that minimizes the magnitude of the errér= x — x.

7.1.2 Compensation of a Single Erasure

The error due to the erasure of a single coefficigraind its subsequent compensation
using the coefficient§a;|k € S;} can be rewritten using the synthesis sum:

E=afi+ Y (ar— )t (7.2)
kES;

The vectors{fy |k € S;} span a spac®V;. Therefore, the error magnitude is mini-
mized if the sumzkesi (ar — ag)fx is the orthogonal projection ofa;f; ontoWV;.

As described in chapte, we use the projection coefficients;,, which satisfy:

keS;

in whichPyy, (;) is the projection of; onto)V;. The projection coefficients are used
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to optimally compensate for the erasureby updating each of they, to:

ar = ap+acy, foralk e S; (7.4)

=& = aifi — a; Z Ci,kfk (75)
keS;

= CLZ‘EZ'I‘Z', (77)

in which ¢; andr; are the error coefficient and the residual direction, as défin
(3.10 and @.11) respectively.

As described in chaptéd, the projection coefficients; ;. satisfy equation3.18):

Riyky -+ Ry, Ciky Rk,
Riyor -+ Ry, Ci,ky Rik,
< Re = p, (3.18

in which Ry, ; = (fy,, f;) is the frame autocorrelation function.

Satisfying 8.18) is equivalent to computing the frame expansiorf;afsing{fy |k €

S;} as a synthesis frame. If the frame vectéfg|k € S;} are linearly dependent,
the solution t0 8.18) is not unique. All the possible solutions are optimal imerof
minimizing the error magnitude, given the constraint that @oefficients{ay |k €

S;} can be modified. If the vectar;f; being compensated is in the span of the
vectors{f;|k € S;} used for the compensation (i.&; € W), then the erasure
is fully compensated for. In this case the error is 0, and wietlota compensation
complete. In the development above we assume only one erasarthat none of
the {ax|k € S;} are erased during the transmission.

7.1.3 Compensation of Multiple Coefficients

Projection-based compensation can be generalized to ¢uersiéal erasure of mul-
tiple expansion coefficients, allowing a subset of the remgi coefficients for each
compensation. The sef§ of coefficients used to compensate each of the erasures
are part of the system design constraints. We assume thaiactmefficient has been
erased and compensated for, it is not used to compensateldseguent erasures.
Under these assumptions four properties of the compensatederived. In formu-
lating these, the term optimal is used if the compensatiarimizes the error given

the constraints and the term complete is used if the errer #fe compensation is
exactly 0. These properties are:

(a) Compensation of the error is equivalent to projectiothefdata. Consider the
vectory that can be synthesized from the erased coefficieand the coeffi-
cients to be modifieday |k € S;}. Projectingy to the spacéV;, spanned by
the frame vectors corresponding to the coefficients to befredds equivalent
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to compensating for the erasure. Specifically,

y = a;f; + Z afy

keS;

PWi (y) = PWz(ale + Z akfk) (78)

kES;
- PWz(alfl) + PWZ(Z akfk) (79)

keS;

= Pw, (aifs) + > apfi (7.10)

keS;
=" k. (7.11)

kEeS;

This also implies that the error after the compensationtisogional to all the
frame vectors used for compensation.

(b) Superposition. Using the linearity of projections ildavs that:
Pwl(azfl + ajfj) = ’PWZ (alfl) + ’PWZ (ajfj). (7.12)

Furthermore, ifS; = S; thenW; = W;. Thus, if the set of coefficients
S; = S; is used to separately compensate for the erasure of twaehffe
coefficientsa; anda;, then the superposition of the individual compensations
produces the same error as the erasure of a single veéior a;f; followed

by compensation using the same set of coefficiéhts

(c) Sequential superposition. ; C W; then

Pw; (Pwi(y)) = Pw; (¥)- (7.13)

Furthermore, ifS; C S; thenW; C W;. Consider the case in which one of the
updated coefficients;, j € S;, used in the compensation@f is subsequently
erased and optimally compensated for using the remainiafjicients inS;.
Using (a) and (b) this becomes equivalent to the followirgemtion sequence
of the data:

Pw, (P, (aifi + Y arfi)) = Pow, (Pw, (aifi + a;f; + Y axfy)) (7.14)
keS; kJESJ‘

= Pw, (aifi + a;f; + > apfy) (7.15)
kESj
=N afy, (7.16)
kESJ‘

in which S; = {k # jlk € S;} contains all the elements &f except forj,
and{ax|k € S;} is the set of the updated coefficients after both erasures of
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and ofa; have been compensated. Therefore, this is equivalent tmalft
compensating both; anda; using the coefficients i¥;.

(d) Sequential complete compensation. Ifagn; < S; used in the compensation
of a; is subsequently erased but completely compensated usirgpth;, the
compensation of; is still optimal since the incremental error of the second
compensation is zero.

If the compensation ofi; was complete, the total error after both compensa-
tions is zero. In this case:

aifi +a;fi+ Y apfy = ) afy (7.17)
kGSi,j kGSi,j
=Pw,, | D arfe (7.18)
kGSi,j
=Pw,, | afi +a;fi+ > apfi |, (7.19)
keS;

in which S; ; = {k # jlk € (S; U S;)} is the combined set of indices used
to compensate for the erasuresgfanda;. V; ; is the space spanned by the
corresponding frame vectors. Therefore, using (a), theiesgil complete
compensation in this case is equivalent to optimally andptetely compen-
sating the erasure of both anda; using the sef; ;.

7.2 Causal Compensation

In this section we examine the causal compensation of cmeffierasures using a
transmitter aware of the erasure occurrence. We also geeelmnsmitter/receiver
pair, which implements the same causal compensation megykbdnly the receiver
is aware of the erasure occurrence.

7.2.1 Transmitter-aware Compensation

For the remainder of this section we assume the coefficieptéransmitted in se-
guence, indexed by in (2.7). We focus on causal compensation in which only a
finite number of coefficients subsequent to the erasure a@ fas compensation.
The projections are straightforward to implement if thensmaitter is aware of the
erasure occurrence.

For clarity of the exposition we first develop the algorithon & shift invariant frame.
Such a frame has autocorrelation that is a function only efitldex difference, i.e.
satisfies?; j = Ri—j0 = Rji—j- Thus,c; i1 = cox = cx, and atransmitter aware of
the erasure occurrence can be implemented using the systigare 7-1, in which
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the feedback systerf is linear and time-invariant with impulse response:

P
= kb (7.20)

k=1

In the figure,e; denotes a sequence of 1 and 0, which multiplicatively imglets
the erasures. The resemblance of the system to Sigma-D&wmshaping systems is
not accidental; projection-based compensation of ersirgrioduced in11, 12] and
used in chapterS and6, to extend Sigma-Delta noise shaping to arbitrary frames.

The compensation is optimal if the erasures are rare suthhiee is only one era-
sure withinp coefficients, or ifp is such that the erasure compensation is complete.
Otherwise itis only a locally optimal strategy which minzas the incremental error
after an erasure has occurred, subject to the design cionstra

For arbitrary, shift varying frames, the feedback sys#éns time varying with coef-
ficients that satisfy3.18) at the corresponding time point. Specifically, the outgut
of H should be:

P
Yi = Zcz‘—k,ﬂi—k, (7.21)
k=1

inwhichz; = a;(1 — ¢;) is the input.
The input and the output of the transmitter satisfy:

p

di = Z(l — ei_k)ci_k,i&i_k + a; (722)
k=1
di = ELZEZ' (723)
p
=a; =a; + (1 —e;)a; Zl—elkclklalk (7.24)
k=1

This is a recursive algorithm. Although an erasure.pis compensated using only
the nextp coefficients, another coefficieat,; < i + p might be erased withip
coefficients from the first one. In this case, the compensaifdhe second erasure
attempts to compensate for the erasure of the modified ceetfic,;, i.e. for the
erasure of the original data,, of the second erased coefficient and for the additive
part due to the compensation @f Thus, the feedback loop is potentially unstable.
We explore some stability conditions in sectipi2.3

7.2.2 Pre-compensation with Correction

In many systems, particularly in streaming applicatiohs, ttansmitter is not aware
of the erasure occurrence. In such situations it is possibpee-project the error at
the transmitter side, assuming an erasure will occur. IfeifEsure does not occur,
the receiver undoes the compensation. It should be empglgiat the algorithm

described in this section has identical input output bedrata the one described in
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FIGURE 7-2:

(a) Transmitter (b) Receiver

Transmitter and receiver structure projecting erasurergrr Only the receiver is
aware of the erasure.

section7.2.1 Therefore all the analysis for that algorithm applies ie tine as well.

To pre-compensate for the erasure, the transmitter atisipdates the subsequent
coefficientsa; 1, . .., a;4p to:

/ /
Qjg g = Qitk + Ciipkly, (7.25)

where thec; ; 4, satisfy 8.18. Thea; used for the update is the coefficient as up-
dated from all the previous iterations of the algorithm, thet original coefficient of
the expansion, making the transmitter a recursive systeepeBding on the frame,
the transmitter might be unstable. This issue is separata the stability of the
compensation algorithm, raised in the previous sectioabitly of this transmitter

is also discussed in sectighn2.3

If an erasure does not occur the receiver at time stepeives coefficient; and sets
a!! = a;. Otherwise it sets:

a = &, (7.26)

p
with a; = > cipiaf_y, (7.27)
k=1

which is the part of:, from equation 7.25) that is due to the projection of the non-
erased coefficients. An erasure also erases the comporfiefitdue to the projection
of the previously received coefficients. The variaklesn (7.27) ensure that these

7.2 Causal Compensation 107



components can be removed from the subsequently receiedficents even when
a}; has not been received.

The receiver outputg;, conditional on whether an erasure has occurred or not:

P I s N, 07 ife,-:()
G = (@ = di)es = { a; — a;, otherwise. (7.28)

This removes the projection of the previously received foacefits froma/.

To show that this system implements the same compensatitmochas the system
in figure 7-1 we examine the evolution of the coefficients:

P
a; = aj — Z Cimk i}, (7.29)
k=1
P P
== Y gl peick — Y Cimkith_y(1— ei_p), (7.30)
k=1 k=1
P
a; = Z Cimhi ), (7.31)
k=1
P P
= Gkt ik + Y Cinitir(1 — €ig). (7.32)
k=1 k=1

Rearranging{.30 and substituting intod.32):

P P
a; = aj — Z Cik,iti—p(1 — €imk) —ai + Z Cimhyitli—k(1 — €i—p)

k=1 k=1
(7.33)
p
= a; = ag — di — Zci_kﬂ-(a;_k — di_k)(l — ez’—k) (734)
k=1
p
= CL;- — ELZ' = Z ci_k,i(a;_k — di_k)(l — ei_k) + a; (735)
k=1

which holds for any inpui; and any signa¢;, not restricted to be an erasure pattern
of zeros and ones. Comparing with22), it follows that:

a; = a, — a;, foralli. (7.36)

Using (/.29 in (7.36), the outputi; is equal to:
a; = a,e; — a;e; = ae;, (7.37)
which is the same a§ (23. Thus, the two systems are input-output equivalent.

The reconstruction in equatiofd.8 undoes the recursive effects af.25 and en-
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sures that the projection only affects fheoefficients subsequent to the erasure. The
system looks like the one in figuie2, in whiche;, the sequence of ones and zeros
denoting the erasures, is the same in all three locatior®ifigure. The system&

are the same as in figurel.

In several applications, such as packetized transmisdi@me expansions are used
for transmission of blocks of coefficients. In such casesststems described can

be modified using property (b) in sectighl.3to accommodate block erasures by
projecting the whole vector represented by the transmiitedk to the subsequent

coefficients.

7.2.3 Compensation Stability

Depending on the frame and the erasure pattern, the systiégaia7-1 can become
unstable. This section examines some aspects of the ilitytalid provides a neces-
sary condition and a sufficient condition for the systemsaatable. The conditions
are presented assuming a shift-invariant frame. In thisudision, stability refers to
bounded-input-bounded-output (BIBO) stability.

The evolution of the system variables is determined by équg?.22. For a shift
invariant frame this becomes:

p
a; = 1—e;_p)cpa;—p + a;. 7.38)
> ) (
k=1

Consequentlyji;, the expected value @f; is:

p

fii =Y qerfliok + i, (7.39)
k=1

inwhichp; = E{a;}, i; = E{a;}, andg = P(e; = 0) is the probability of erasures.
Therefore, the compensation algorithm is stable in the rifeard only if the system
H(z) =1/(1—YF_, qexz7F) is stable. Stability in the mean is a necessary but not
sufficient condition for system stability.

The triangle inequality implies that the magnitude of treteshas upper bound:

p
il <> lex] - lai—x] + ladl. (7.40)
k=1

Therefore, assuming a bounded inpyt, the stability of the algorithm is guaranteed
for all ¢ if the systemH (z) = 1/(1 — >_7_, |cx|z~*) is stable. This is only a
sufficient condition for stability. If it holds, this implgethat the system is stable for
any ¢, which also implies that the system described By39 is also stable for all
q. First order systems always hakg| < 1, which implies that first order optimal
compensation algorithms for shift invariant frames aresgfsvstable.

The analysis above considers the stability of the comprmsalgorithm. The stabil-
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ity of the transmitter in figur@-2(a) is a separate issue. However, the outfuif the

the transmitter in figur@-2(a) follows the same dynamics as the expected value of the
state in equations(39 with ¢ = 1. Therefore the transmitter is a stable system if and
only if the compensation algorithm is stable in the mearyfer 1. Otherwise it is

not possible to implement the compensation algorithm usiadransmitter/receiver
combination described in secti@n2.2 Furthermore, BIBO stability of the compen-
sation algorithm fory = 1 guarantees stability in the mean fpe 1, which implies

that a separate transmitter and receiver system is alsie stab

If both the transmitter and the compensation algorithm &els for some probability

of erasures;, then the receiver is also stable for the samelhe evolution of the
receiver variables in7(35 has the same dynamics asin (7.22. If the variable

a; and the transmitter output, are bounded, then the stability of the receiver state
variablea; follows from (7.36. Furthermore, for any < 1, the feedback loop in
the receiver is reset to zero with probability 1 in a finite tnemof time steps after
any erasure occurs. Therefore, the system does not exhiphidden instabilities,
such as pole-zero cancellations, even in the case of pasamésmatch with the
transmitter.

The solution to 8.18 might not provide coefficients that produce stable systems
In these cases, the equation can be modified to provide appates solutions that
balance the optimality of the projection with the stabibiythe system. Although we
do not explore this issue, we should note that diagonal tapdif the autocorrelation
matrix R often leads to stable systems:

(R+ al)c = p, (7.41)

in which « is a small value. This is a simple method to implement, bubé&sdnot
necessarily provide the best approximation tradeoff.

7.2.4 Simulation Results

In figure 7-3 simulation results are shown that demonstrate the perfucenaf the
algorithms in the case of i.i.d. erasures. The inpub the system is a white Gaussian
process with unit variance and zero mean. The oversamptamgef is approximated
using a 4096th order, Hamming window FIR filter with cutaffr. The feedback
coefficients are calculated using the filter autocorretatibo compute the error, the
output is compared to the unerased signal, as synthesiieglthe low-pass filter.

Four different cases are simulated. The systems in the tip pkrform the optimal
compensation of the erasures. The ones in the bottom pleta dgagonal loading
factora = 0.01 in (3.18 to improve the stability at the expense of optimality. The
oversampling rates are= 4 andr = 8 for the left and the right plots, respectively.
The plots display the mean squared error in dB against tHeapility of erasurey

for various compensation ordegs= 0 (i.e. no compensation) up o= 3.

The figures demonstrate that increasing the compensatitan onproves the perfor-
mance of the systems. They also show the tradeoff betwebilitgtand compen-
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FIGURE 7-3: Performance of erasure compensation using projectionth®uniform oversam-

pling frame, with oversampling ratias= 4 (left) andr = 8 (right). The top plots
demonstrate the optimal (unstable) systems. In the bottota pptimality is traded
for stability. In the legendp denotes the compensation order, gritie probability
of erasure.

sation performance. It is evident in the top two plots thatdbcond and third order
systems become unstable at low probability of erasures-theatase in the bottom
plots. On the other hand, especially foe= 8, there is an evident performance de-
crease to ensure stability. The plots also confirm thapthe0 andp = 1 systems
are stable.

7.3 Puncturing of Dense Representations

Coefficient erasures can also be introduced intentionatlyestransmitter to sparsify
dense representations. Sparse representations, in wioishainthe coefficients are
zero, are useful in signal processing applications, sudoagpression, model order
reduction, and feature selection. This section introdwres#erative sparsification
algorithm based on the compensation using projectionsteffional erasures.

7.3 Puncturing of Dense Representations
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The iterative algorithm is presented 3.1 Section7.3.2 uses the orthogonality
of the projections to show that the incremental error at e@ghation is orthogo-
nal to the total error until that iteration, and, therefdies total error magnitude is
straightforward to compute on-line. Secti@rB.3 presents different approaches in
determining the sequence of sparsifications to reach theedesparsity. In section
7.3.4the algorithm is extended to combine sparsification withngjaation.

7.3.1 Puncturing Algorithm

In sparsifying a dense representation of a vegtave make no assumption on the
origin of the representatiofuy }. The error introduced is measured against the syn-
thesis of the dense representation. Specifically, if

M
X = Z afy, (7.42)
k=1

and the synthesis from the sparse representation is:

x=>apf, (7.43)

keS

in which S denotes the indices of the coefficients remaining after timefuring algo-
rithm, anda,;, denotes the updated remaining coefficients, then the &lirdroduced
by the process is:

E=x—x. (7.44)

At each iterationy of the iterative puncturing algorithm a number of coeffitieare
erased. The erasures are compensated using projectiaesaied in sectioi. ],
using all the remaining coefficients. Consistent with seci#.l, S; denotes the set

of indices of all the coefficients remaining in the repreagan after iteratiori. Sim-
ilarly, W; denotes the vector space spanned by the corresponding Veantoes. The
setSy = {1,..., M} contains the indices of all the frame vectors before the era-
sures are introduced. We refer to the sequence ak the sparsification or erasures
schedule.

The analysis of this algorithm does not assume that the stdhetlerasures is prede-
termined. Specifically, the sequence of sgtsnay be adaptively determined during
each iteration using arbitrary rules. The number of coefficients erasedett @era-
tion is also arbitrary, and depends on the rules speciffnegsparsification schedule.
The setsS; satisfy:

S;i CSic1 =W CW_1. (7.45)
We useS{ = {k € S;_1|k ¢ S;} to denote the complement §f in S;_, i.e. the set
of all the coefficients to be erased at iteration

The algorithm stops according to some stopping rule dfiggrations. The stopping
condition is evaluated at the end of each iteration, andetbee, I is in general
data-dependent. For example the algorithm might stop dreddsired sparsity or a
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maximum tolerable error magnitude is reached.
In summary, the algorithm proceeds as follows:
1. Initialize So = {1,..., M}, a} = ay, k € So.

2. Atiteration: determineS; C S;_1, the indices of coefficients to be erased, and
the corresponding;, the set of coefficients to remain in the representation.

3. Updatea}, k € S; using (7.4) for each coefficient; ', k € S¢ being erased.

4. If the stopping condition is met, stop and output S;, a5, = ai, k € S;, and
1 = i. Otherwise increaséto i + 1 and iterate from step 2.

In this algorithm we use!, k € S; to denote the remaining non-erased coefficients
as they have been modified after iteration

7.3.2 Error Evaluation

This section uses the orthogonality property of the prajestto demonstrate that
the incremental error introduced at each iteration of tigerithm is orthogonal to
the error contributed from the other iterations. Therefdhe total error energy is
straightforward to characterize as a sum of the incremental energy.

We usex; to denote the vector represented by the coefficients rentpatfier itera-
tioni. Using (7.11) and (7.45):

xX; = Z aify (7.46)
kes;

= Pw;, (Xi-1) (7.47)

= Py, (x). (7.48)

The erroré; contributed at each iteration is:

(92‘ =X;—1 — X; (749)
= [|&il|rs, (7.50)

in whichr; = &;/||&]| is the direction of the error vector at iteration The error
&;, and therefore;, is orthogonal to all the vectors iV;, which includesk; and the
remaining frame vector§,, k € S;. Furthermore&; € W;_1. Using induction the
orthogonality of thef; follows:

Eew;, forallj <1 (7.51)
= & L&, foralli #j (7.52)
= <I‘Z‘, I'j> = 51'73' (753)
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The total error aftek iterations is the sum of;,i = 1, ..., k, which satisfies:

k
Y Ei=x—x (7.54)
=1

=x — Pw, (x). (7.55)

Using the orthogonality of;, the magnitude of the error aftériterations can be
determined from|&;||, the magnitude of the error at each iteration:

k k
Z gi = Z H&HI’Z (756)
i=1 i=1

k 2 k
= (Doal] =D e’ (7.57)
i=1 i=1
I
= €I =Y ll&l (7.58)
i=1

Thus the magnitude square of the total error is additive énnttagnitude square of
the incremental error at each iteration.

The additivity of the error is a particularly useful featafehis algorithm. It provides

a simple performance measure at run time, which can guidedteemination of the

S; at each iteration, before the sparsification is performechn also be useful in the
evaluation of the stopping rule.

Since the frame is redundant, upb— NN coefficient erasures can be tolerated with-
out any error. In principle, these erasures can all be pmddrin the initial iterations
of the algorithm, but this choice depends in general on tlaessfication schedule
and the rules used to determine it. Using certain frames, asithe harmonic frames
[43, 27], any subset ofV frame vectors spans the space, and thefifst NV erasures
can be tolerated without error, independent of the spaasibic schedule.

While the sparsification schedule and the stopping rule @aarbitrary, the frame
vectors{f;|k € S} remaining at the conclusion of the algorithm should be lilyea
independent, and we assume this is the case. Otherwisegphesentation can be
further sparsified without increasing the error. Under #sisumption, the expansion:

x=>apfy = Pw(x), (7.59)
kes
is unique givenx and S, independent of the intermediate steps taken. In this ex-
pressionV = spar{fy, k € S} is the span of the frame vectors remaining after the
sparsification.

The uniqueness of7(59 implies that if two different sparsification schedules -con
clude with the samé&' at the output, then the resultiq@, } are going to be equal.
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This holds independent of which method is used to computeth@verse of equa-
tion (3.18 at each iteration. However, the choice of left inverse tased can influ-
ence the schedule determination algorithm, and therefifiteence the final outpuf
and the corresponding error.

7.3.3 Sparsification Schedule

In general, the determination of the sparsification scleedepends on the applica-
tion. In this section we indicate certain heuristics that lba used at each iteration to
determine the sparsification schedule. These heuristisgdoon a greedy approach,
select the coefficients that reduce the incremental erreaah iteration, while taking
into consideration the complexity of evaluating the ernod ¢he effect of the erasure
to the remaining coefficients. We assume a frame in which engf$// — N erasures
can be tolerated without error, such as the harmonic fraB3e[7].

We consider two separate stages in the evolution of theitiigor During the first
stage more thaV coefficients remain in the representation and any erasurbea
completely compensated for. In this stage the incrememtat €; is always zero,
and other criteria are used to determine the coefficiente tréised at each iteration.
In the second stage less thancoefficients remain for compensation, and, therefore,
each erasure cannot be fully compensated for. In this stegeise the magnitude
square of the incremental error to erase the coefficientstivit smallest contribution

to the total error.

For the first stage, we identify three different rules, pnésé from the most to the
least complex to implement. Although the incremental emnothe representation
is zero at this stage, each rule affects the remaining cazffi; and therefore the
scheduling algorithm, in a different way.

(a) Each iteration erases the coefficient whose compenskeiast affects the re-
maining coefficients in a mean square sense. Any coefficiasiues can be
fully compensated using equation.{). The coefficient selected is the for
which the corresponding; ;. ¢. ¢} is as small as possible. An implication
of using this rule is that the Moore-Penrose pseudoinvdiseld be used to
determine the; ;, in equation 8.18. Thus, implementation of this heuristic
can be computationally expensive.

(b) Eachiteration erases the coefficient with the smallegimitude. This heuristic
is simpler to implement since it avoids the computation ef¥Moore-Penrose
pseudoinverse for each of the coefficients considered. Menvit might lead
to an iteration that significantly affects the remainingfGomnts, thus confus-
ing the subsequent iterations of the algorithm.

(c) Erase theMl — N smallest coefficients in one iteration. This approach is the
simplest and most greedy one. It has the advantage thahé lsast expensive
computationally. On the other hand, it has the potentiakrésein one step a
large number of small coefficients that together are sigaitidor the signal
representation and thus affect subsequent performanbe afgorithm.
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For the second stage, the incremental error is non-zero@ambte used to guide the
heuristics determining the schedule. In this stage we disatify three heuristics in
decreasing order of complexity:

(a) Each iteration erases the coefficient that least carté#hto the magnitude of
the error, as computed in equationX7). As with heuristic (a) in the first
stage, this is the least greedy and the most computatioaglignsive method.

(b) Each iteration erases the smallest coefficient from tiesa@emaining. This
approach uses the magnitude of each coefficient as a proxyef@rror due to
their erasure. While it is computationally simpler than (alas the potential
to erase a coefficient that contributes more to the incremhentor than (a).

(c) In one iteration erase all the coefficients necessarghsae the desired spar-
sity. The coefficients erased are the ones with the smallaghitude. This is
the simplest approach of the three, but the most greedy vheaslthe further
disadvantage that there is no control on the erasure enly,0on the sparsity
of the representation. Thus, it is not possible to use thisageh to sparsify a
representation up to a maximum tolerable error.

Heuristics (c) in both stages can also be combined to eraseesingle step all the
coefficients necessary to achieve the desired sparsitycdéfécients selected to be
erased are the smallest in magnitude.

7.3.4 Quantization Combined with Sparsity

The sparsification algorithm can be combined with quaritratio produce a sparse
gquantized representation. In addition to the coefficiemtseterased, at each iteration
1 the algorithm determines which coefficients should be dmedf and how severe

the quantization of each coefficient should be. Erasuresatssmbe considered an

extreme form of quantization to a single levek= 0.

All the coefficients that have not been quantized or erasedrgeused for the com-
pensation of the total error. Consistent with the previoestisns, we use; to
denote the set of indices of these coefficients, Bdo denote the space spanned
by the corresponding frame vectors. The nesting describexdjuiation 7.45 still
holds, which implies that the error evaluation results atisa 7.3.2also hold. The
only exception is the independence of the representafidi$)(from the erasure and
guantization schedule. Due to the quantization of inteiatedterations, the final
representation might be differently quantized for différechedules, even if the final
setS is the same.

One difference in this case is that there is no stopping fhe. algorithm continues
until all the coefficients have been quantized or erasedSang (). The algorithm
keeps all the coefficients,. The setS of the non-erased coefficients can be deter-
mined from the nonzero coefficients usifig= {k|a, # 0}.

In summary, the algorithm is modified as follows:

1. Initialize So = {1,..., M}, al = ay, k € So.
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2. Atiteration: determineSy C S;_1, the indices of coefficients to be erased or
quantized, and the correspondifg the set of coefficients to remain and be
used for compensation

3. Seta, = Q(a} 1), k € S¢, according to the quantization and erasure schedule
determined in step 2.

4. Updater:, k € S; using (7.4) to compensate for each coeﬁiciaﬁfl, keS¢,
being quantized or erased.

5. If all the coefficient have been quantized or erased, st@pautputS =
{klay # 0}, ap,k € S, andI = i. Otherwise increasétoi + 1 and it-
erate from step 2.

In this algorithm@,,(-) denotes the quantization or erasure function foritfiecoef-
ficient, as determined in step 2.
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anrrers . CoONclusions and Future Work

This section summarizes the most important contributidrikie thesis and suggests
possible research directions indicated by the results.

8.1 Error Compensation Using Projections

The main tool used through this thesis is the compensatia@rtrofs by modifying
frame coefficients. The modifications are such that the énarojected to the space
spanned by the selected frame vector and subtracted frooothesponding coeffi-
cients. The use of projections assumes a pre-specifiedesiatiname, but makes no
assumptions on the analysis method.

In comparison, most of the existing work on frame represmma assumes a pre-
specified analysis method, using inner produ2® B8, 39, 7, 8, 34]. This assump-
tion is used to determine the synthesis method dependindperrtor type. The
redundancy of the analysis frame creates dependencies Vralihes of the represen-
tation coefficients. The synthesis algorithms exploit ¢hdspendencies to reduce the
synthesis error. In contrast, assuming only a pre-spedfjathesis frame provides
no information on the values of the frame coefficients. lad{¢he use of projections
to compensate for errors exploits the existence of a nuéspad the spectral shape
of the singular values of the synthesis operator.

One significant exception is the use of the matching pursuitciple to determine
sparse and quantized sparse representat@B)28]. Similar to the compensation
using projections, the matching pursuit principle assumese-specified synthesis
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frame. However, the implicit assumption is that there n@mprepresentation, i.e.
that the matching pursuit principle is used as an analysithade Thus it cannot
be used to compensate for errors such as erasures or tozguexisting representa-
tions. Instead, the matching pursuit is useful in deterngra representation, which
includes the compensation coefficients used to projectriioe e

8.2 Quantization Limits

Although the inefficiency of scalar quantization was knoa®, B9], in chapter4 this
inefficiency is quantified deterministically, independefitthe frame used, for any
finite level quantizer. Specifically, a lower bound is dedi both the bit waste and
the quantization error reduction as a function of the fraptundancy. Consistent
reconstruction method$88, 28] are known to achieve that lower bound. The lower
bound on the error growth is also derived in the context obtrersampling frame in
[39], assuming a uniform infinite-level quantizer. In pringpt is applicable to any
finite frame. However, the general result in chagta@lso quantifies the bit use, and
assumes an arbitrary finite-level quantizer. The implaretiare important:

e The optimality of consistent reconstruction methods is dlestrated in terms
of the reconstruction error decay as a function of the rednog

e A target rate for subsequent entropy coding is providedepeddent of the
scalar quantizer used. An optimal entropy coder subsedaenscalar quan-
tizer should represent the signal at a rate lower or equalhat the bound
suggests.

e Smarter quantization on the encoder side is motivated.eSins known how
to achieve optimal error decay using consistent recortnydncreasing the
complexity of the synthesis method provides no benefit indbase. The alter-
native, increasing the complexity of the analysis metheepling the synthesis
simple is more promising since the optimal error magnitueleagt in this case
can exponential instead of linear in the redundancy. SiBmléa noise shap-
ing and the quantized matching pursuit are examples of sualysis methods,
although they still do not achieve exponential decay.

e A benchmark is provided for frame design. Although the loweund is
proven for any frame, ill-designed frames might achieve mworse perfor-
mance. A well-designed frame should achieve that lower 8ourhe over-
sampling frame and the harmonic frame do 38 B9, 29].

8.3 Generalization of Sigma Delta Noise Shaping

Extensions of classical noise shaping to bandpass filterearuhstruction filterbanks

have been explored in the literatur@ B, 35, 23]. Recent work also considers ex-
tending Sigma-Delta noise shaping to finite frame expassigrsubtracting the error

from subsequent coefficients, [4].
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Chapterss and6 contribute a novel view of Sigma-Delta noise shaping as gpto
tion of the error to the subsequent frame vectors. Furthexmavo cost functions
are identified, one based on the additive white noise modelcae based on a de-
terministic upper bound. These contributions are impdrfianseveral reasons:

e Extension of Sigma-Delta noise shaping to arbitrary frammgsossible, with
improvements in average and worst case error performamepéndent of the
frame vector ordering. The work irb[4], instead, requires the proper frame
vector ordering to improve the quantization error.

e Alternative noise shaping algorithms are introduced, sictine tree quantizer.
These allow for more flexibility in the quantizer design,thar reducing the
average error.

e The cost functions provide an algorithmic method to deteentine ordering of
frame vectors. The design of an optimal sequential quamigzehown to be
equivalent to solving the traveling salesman problem, evttie design of an
optimal tree quantizer is equivalent to the minimum spagiae problem.

8.4 Compensation for Erasures

Error compensation using projections is also considerdideiicase of erasure errors.
The main advantage, compared to existing work on erasufesive representations,
is that this compensation method does not make any assuratiothe origin of the
frame expansion coefficients. The contributions of chap@ne significant:

e Projection of the erasure error to the remaining coeffisigatshown to be
equivalent to projection of the data.

e A transmitter that causally projects the erasure erroreécstibsequent coeffi-
cients is developed, assuming the transmitter is awareecérfisure events.

e Itis demonstrated that the transmitter can be separatedvotstable systems:
a linear transmitter that encodes the data by pre-progethtia error assuming
an erasure occurs, and a received that undoes the compandagiending on
whether the error occurs. The input-output behavior of #masted systems
is equivalent to the behavior of the transmitter that prigjece erasure error

only when an erasure occurs.

e A puncturing algorithm is derived that generates approt@nsgarse represen-
tations starting from dense exact ones.

8.5 Suggested Research Directions

This section identifies possible research directionstadl#o the topics discussed
this thesis. This is only a biased sample of the possibleareBgroblems that exist
in the field.

e Although error compensation using projections is examiftedhe case of
quantization and erasures, the space of errors has not kbansted. For
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example, they can be used to compensate for additive rand@s®, white or
colored.

e Chapter3 develops the computation of the compensation coefficiengscer-
tain extent. When the equation is underdetermined, howsgeeral solutions
exist, all of them optimal. However, each of the solution fuather properties
that can affect other aspects of the system performancepactnot examined
in the thesis.

e Chapterd demonstrates the limits of the frame analysis using innedymts,
followed by scalar quantization. It is also shown that mor®ived analysis
methods followed by linear synthesis can improve the erecagl as a function
of oversampling. However, there is no known general algorithat achieves
exponential error decay using linear reconstruction. dtgs not known if such
error decay is feasible, even with arbitrary complexity.

e Chapter5 discusses the optimal ordering of frame vectors for firseprwise
shaping. The optimal ordering and grouping for higher ogileantization is a
difficult problem that is not addressed.

e The asymptotic performance of Sigma-Delta noise shapiimgysojections
as a function of the frame redundancy has not been analyzedrtbirary
frames.

e Chapter7 discusses the compensation of erasures, and the tradéotidre
system stability and compensation performance. This afades not been
explored in this thesis.

e The algorithms in chapte&sthrough 7 can be generalized to vector quantizers
and erasures of vectors.

e The determination of the schedule for the puncturing aflgoriin chapter7
is based on heuristics that have not been explored neitleerdtically nor
experimentally.

e The complexity of some of the heuristics in the puncturingesitle can be
reduced by exploiting the structure of the problem. Thisdassomething we
analyze in this thesis.

Of course, this is only the tip of the research iceberg intiais topic.
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