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Abstract

With the need for greater autonomy in unmanned vehicles growing, design of
algorithms for mission-level planning becomes essential. The general field of motion
planning for unmanned vehicles falls into this category. Of particular interest is the
case of operating in hostile environments with unknown threat locations. When a
threat appears, a replan must be quickly formulated and executed. The use of terrain
masking to hide from the threat is a vital tactic, which a good algorithm should
exploit. In addition, the algorithm should be able to accommodate large search spaces
and non-linear objective functions. This thesis investigates the suitability of the Ant
Colony Optimization (ACO) heuristic for the agile vehicle motion planning problem.
An ACO implementation tailored to the motion planning problem was designed and
tested against an existing genetic algorithm solution method for validation. Results
show that ACO is indeed a viable option for real-time trajectory generation. ACO’s
ability to incorporate heuristic information, and its method of solution construction,
make it better suited to motion planning problems than existing methods.
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Chapter 1

Introduction

1.1 Motivation

The field of unmanned aerial vehicles (UAVs) has made tremendous strides in
recent years. With the wide range of shapes and sizes of UAVs available, an equally
broad range of applications becomes possible. Without the systems in place to sup-
port a human pilot, UAVs can have greater endurance and agility than manned
aircraft. Commercial applications include cargo transportation and weather moni-
toring. These are tasks that a human pilot might become fatigued performing, due
to the tedious nature of the operation. A UAV would not be prone to this problem.
Military applications such as reconnaissance and target monitoring also seem well-
suited to unmanned aircraft. Using UAVs in hazardous environments has the benefit
of reducing risk to human pilots. Team missions in which unmanned vehicles are
led by a manned vehicle are also a possibility. Coordination of a team mission by a
small group of operators would require that each agent be able to act independently
in order to remove unnecessary operator fatigue.

Several examples of operational UAVs include the Predator, Global Hawk, and
UCAV. Both the Predator and Global Hawk have demonstrated their capability in
warfare. Since 1995 the Predator has flown hundreds of missions and thousands
of operational hours. Since 2001 the Global Hawk has flown over 50 missions and
1000 hours. Global Hawk also set world records for UAV endurance, flying 7500
miles nonstop across the Pacific to Australia. The Boeing UCAV is expected be the
most technologically advanced and exhibit the greatest deal of autonomy. It has
demonstrated its ability to do inflight replans during test flights [25]. More advances
are certain to appear in the years to come. It is predicted that over a dozen fully
operational UAV programs will exist by 2013.

Before UAVs can reach their full potential and replace human pilots, a greater
level of autonomy is needed. The current level of autonomy in unmanned systems
has been described as ‘supervisory control’ [15, 23]. That is, a human operator
(or several) are continually in the loop and aiding the UAV in decision making.
The human is generally responsible for setting up high-level tasks such as waypoint
following, and then monitoring the UAV as it executes the plan. Mission replanning
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Figure 1-1: Trend in UAV Level of Autonomy [23]

capabilities by the UAV are limited. To be effective in military applications, the
UAV must be able to intelligently make mission-level decisions in response to new
information. Especially when operating in hazardous environments the UAV must
be able to operate without input from a ground station. This increased level of
autonomy has several benefits. First, loss of communications between the UAV and
any ground station due to distance or interference will not result in a mission-ending
failure. Second, as the UAV is able to make more decisions on its own the operator’s
workload will be reduced. Third, in the case of the appearance of an unexpected
threat the UAV might not have time to inform the ground operator and wait for
a course of action to be sent. Instead, it should be able to quickly formulate and
execute an escape route. Generating trajectories offline for the entirety of the mission
in a partially known environment is problematic as the plan may be invalidated by
detection of a threat. As such, online replanning is essential.

1.2 Objective

The goal of this thesis is development and validation of a real-time motion planner
for use in agile aerial vehicles. In particular, application to the case of operating in
threat-laden environments in which quick response to previously unknown threats is
needed. The optimization paradigm used is that of Ant Colony Optimization (ACO).
An ACO implementation was created specifically for the agile motion planning prob-
lem. In order to validate the performance of this method, a currently existing method
was used as a benchmark. The benchmark used was a Genetic Algorithm (GA) tai-
lored to the same problem. Using this existing method as a benchmark is reasonable
due to the similarities between ACO and GA. Also, a great deal of time and energy
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was put into the GA’s development, so outperforming it is a non-trivial objective.
It should be noted that the goal of this algorithm is to generate a ‘good’ solution
quickly. The real-time aspect of this algorithm is a critical concern. High-quality
trajectories should be generated in under a few seconds.

ACO should perform better for optimal agile maneuver planning as a function of
time due primarily to the way in which ACO constructs solutions iteratively. That is,
each ACO agent constructs a trajectory by iteratively appending feasible maneuvers
to the current solution. This allows for easy management of cluttered environments
where obstacles are a concern. Once an obstacle is detected the set of feasible maneu-
vers is trimmed and construction continues. No backtrack search or repair method is
required. This is in contrast to GA solution construction where the crossover operator
is used to construct an entire trajectory in one step. This leads to a solution which is
not guaranteed to be feasible and may need to be repaired. Formulating a good re-
pair algorithm can be a difficult task. Is is possible that the trajectory created by the
crossover algorithm can not be repaired and needs to be discarded entirely. This can
lead to wasted computational effort which is detrimental to real-time performance.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 will give a review of
previous solution formulations for this problem, along with a comparison of which ones
have the potential to meet the algorithm requirements. The focus will be primarily
on maneuver-based optimization approaches. More detailed discussion of the ACO
and GA algorithms will also be given. Chapter 3 will give a detailed formulation
of the algorithm used. Insight will be given into the particular design decisions.
Chapter 4 will present the results from running the algorithm on a number of test
cases. Analysis of expected versus actual results and comparisons between algorithms
will also be made. Finally, Chapter 5 presents conclusions, final analysis, and some
suggestions for future work.
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Chapter 2

Background

2.1 Motivation

The benefit of using UAVs instead of manned vehicles in hostile situations is
reduced risk to human pilots. Using UAVs in hostile environments poses some oper-
ational problems that must be handled. For example, loss of communications with a
ground station may happen during a mission either due to terrain, long distance, or
interference from enemy sources. Also, reduced operator workload is highly desirable.
It currently takes several human operators to operate one UAV. Also, in the case of
manned and unmanned vehicles flying together in a team, if a critical situation arises,
the pilot’s last concern is the health of the UAV. Thus the UAV must be able to au-
tonomously generate a trajectory that will maximize survivability while possibly still
continuing to satisfy the mission objective.

The need for greater autonomy in unmanned air vehicles (UAVs) is evident. With
the existence of reliable control systems that are capable of following trajectories, even
if those trajectories take the vehicle into its nonlinear flight regime, the next step is
to go about generating those trajectories autonomously. This problem falls under the
general moniker of motion planning. The general problem of robot motion planning
has been studied for several decades. The quintessential book by Latombe [19] is
an excellent place to get the fundamentals of the field. While the motion planning
problem encompasses many different levels and complexities of specific problems,
we will concern ourselves only with a specific instance: that of generating feasible
trajectories for a UAV that will maximize the UAV’s chance of survival in a hazardous
environment.

With the idea in mind that a motion planning algorithm will eventually be placed
on an autonomous vehicle there are several key attributes that a good algorithm
should have:

1. Real-time performance

2. Ability to handle a non-linear objective function

3. Ability to handle large state spaces
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4. Deterministic

5. Optimal

Of primary concern is the real-time aspect of the algorithm. Since threat locations
will generally not be known ahead of time, the UAV must be able to react to pop-up
threats by quickly generating an escape plan. Having a good solution in a matter of
seconds rather than minutes is a necessity. Another key attribute is that the algo-
rithm must be able to handle non-linear cost functions. For low altitude operations
near ground-based threats, the use of terrain masking becomes an essential survival
technique. This is the process of using the terrain to break the threat’s line-of-sight
(LOS) with the vehicle. The exposure function which we are minimizing will need to
account for this terrain masking. Line-of-sight cannot be represented as a continuous
parameter though. It is instead a binary function: either the vehicle is within the line
of sight, or it is not. As such, the exposure function is non-linear. Also of relatively
high importance is that the algorithm be able to handle state-space dimensionality
of more than several states. The UAV motion planning problem takes place in a
full 3D environment where position, velocity, time, and even possibly orientation of
the vehicle play a role in characterizing a good solution to minimize exposure to the
threat. Other attributes that might be desirable are if the algorithm is deterministic
and/or optimal. Deterministic simply means that the same solution will be returned
given the same conditions. Generally, deterministic systems are more predictable and
possibly more reliable in the solutions produced, which may be important for flight
validation. An optimal scheme is one which will return the solution corresponding to
the global minimum/maximum of the objective function, if one exists. This might
be asking for too much of the algorithm. For our purpose, getting a ‘good’ solu-
tion quickly is more important than getting the best solution possible if excessive
computation time is required.

This thesis explores the application of the Ant Colony Optimization algorithm to
the agile UAV motion planning problem. This chapter will give a brief overview
of previous solution approaches for this problem. The primary focus will be on
maneuver-based solution methods, though some time will be spent analyzing non-
maneuver-based methods as well. These terms will be better defined in their respec-
tive sections. Finally, a detailed analysis of the Ant Colony Optimization heuristic
will be developed. Some exposition on Genetic Algorithms will also be given since a
currently existing GA motion planning solver will be used as the benchmark to test
the performance of the implemented Ant Colony Optimization algorithm.

2.2 Previous Attempts

2.2.1 Maneuver-Based Motion Planning

The problem of motion planning for autonomous air vehicles is difficult for sev-
eral reasons. Flying at low altitude in a hazardous environment requires that the
aircraft be able to make full use of its aerodynamic capabilities. As such, many of
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the desirable trajectories will push the vehicle into a non-linear flight regime which is
difficult to model precisely. The continuous nature of this non-linear flight envelope
only increases the intractability of the problem. Using maneuvers as a basis set for
trajectory generation is designed to alleviate these issues. In this thesis, a maneuver
is used to generally refer to a smaller unit of a larger trajectory. Solving for an entire
trajectory on board in real time can be a difficult task. Maneuver-based motion plan-
ning is the process of breaking down the trajectory into smaller pieces and solving
for each of these maneuvers successively. The benefit is that it has the potential to
greatly simplify the problem.

The idea of a maneuver automaton was formalized by Frazzoli [10]. It was essen-
tially a known input sequence and corresponding state trajectory that would move
the vehicle from one trim trajectory to another. A trim trajectory is simply a steady-
state regime which the vehicle can remain in for any amount of time. The major
feature of these maneuvers is that there exist group actions under which the system
dynamics remain invariant. As such, applying one of these group actions to the state
does not affect the feasibility of maneuvers which could be executed. An example
of a group action is rotation about a vertical axis: executing a left turn is feasible
regardless of the initial heading of the vehicle. Either through non-linear optimiza-
tion methods or capturing human pilot inputs, a set of maneuvers can be generated
offline. These maneuvers should span the full flight envelope of the vehicle. Addi-
tionally, they are guaranteed to be feasible and may be implemented online using a
feedforward controller. Given this (finite) maneuver library, the problem of trajectory
generation can be reduced to a discrete optimization problem. Trajectories can be
generated by ‘stitching’ together compatible maneuvers and trim trajectories. The
idea is that this formulation will simplify trajectory optimization while still retaining
the agile capabilities of the vehicle. Frazzoli implemented a path planner based on
these maneuver automata using a Rapidly-exploring Random Tree (RRT) search ap-
proach. Random states were generated and a local planner was then used to attempt
to connect the random state to the nearest state in the tree. Using this scheme it was
possible to generate trajectories through cluttered environments, with both moving
and stationary obstacles.

The maneuver automata used by Frazzoli were rather rigid structures. Dever [7]
expanded upon them by introducing a means of trajectory interpolation. With this
it became possible to parameterize the maneuvers developed by Frazzoli, allowing
for greater flexibility and efficiency in trajectory generation. Dever used a Mixed-
Integer Linear Programming (MILP) framework to construct a path planner using
these parameterized maneuvers. Schouwenaars [29] similarly used MILP to compute
optimal trajectories for an agile helicopter. Schouwenaars also constructed a receding
horizon version of the MILP planner. While MILP solvers are deterministic and
optimal, their computational time grows exponentially with the size of the state
space.

Not all maneuver-based planners have used the highly formalized maneuver prim-
itives of Frazzoli. Indeed, maneuvers can often be reduced to simple heading changes
over some fixed time interval. Dogan [8] used a probabilistic scheme to navigate
through a 2D environment with known threat probability distribution. The ‘maneu-
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vers’ used were simple heading changes. The method used was essentially a one-step
lookahead. In the regions where the exposure was less than some critical value, the ve-
hicle would steer toward the goal point. Otherwise it would attempt to steer around
regions of high exposure. The exposure map was generated by planting Gaussian
kernels at various points in the 2D environment. As such, the regions maneuvered
around were circular (and generally convex, when two or more circles didn’t inter-
sect) and a simple local search scheme such as this one was capable of finding usable
trajectories. This scheme can run rather quickly, but handling hard constraints such
as obstacles and terrain with this potential based method could lead to poor solution
quality. By doing only one-step lookaheads the vehicle could quickly become stuck in
a local minimum without enough space to maneuver around obstacles. Some form of
backtrack search would then be needed to revise the plan.

Randomized techniques have proved useful for searching large state spaces where
deterministic methods might get bogged down. Both LaValle [20] and Kim [18] have
successfully used RRTs. The benefit is that they can easily handle non-holonomic
constraints. The main difficulty lies in finding a way to uniformly search the state
space, especially in the case where obstacles exist.

The motion planning problem can also be cast as a Markov Decision Process
(MDP). An good source for general MDP knowledge is Russell and Norvig [27]. A
classical MDP problem is movement of a robot in a 2D grid environment. The same
framework can be applied to higher dimensional problems such as the one under
investigation, but the solution methods remain the same. Generally some form of
value or policy iteration is used to determine an optimal set of actions. The difficulty
still remains that searching through a large state space can require large computa-
tional effort and some form of simulation or approximation is needed. Marbach [21],
for example, uses a simulation scheme to update a parameterized policy. This need
for simulation and learning of the cost-to-go function can negate the possibility of
real-time application.

Genetic algorithms (GAs) have been applied to many different optimization prob-
lems in many different fields, and motion planning is no different. Ahuactzin [1]
used GAs to solve for the trajectory of a robot in a 2D environment with obstacles.
The maneuvers (chromosomes to use the GA terminology) used were simple heading
changes. Crossover was done in the usual manner by encoding the heading changes
as bit strings and then swapping substrings from two individuals. Sauter [28] solved
a higher-level motion planning problem. He planned a path through a hexagonal
2D grid environment with threats. Vehicle dynamics were not explicitly accounted
for. The specific problem under investigation of motion planning for a UAV in a
threat-laden environment with terrain has been solved using a GA [24]. More detail
is available in Section 2.4.

2.2.2 Non-Maneuver-Based Methods

In addition to the maneuver-based methods described in Section 2.2.1, numerous
non-maneuver-based methods have been developed. These generally try to solve for
the entire trajectory as a whole, rather than breaking it down into smaller pieces. A
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simple 2D planning case where the exposure is described by a density function (similar
to that in [8]) was solved by Bortoff [5] using Voronoi cell decomposition. Voronoi
cells were constructed based on the potential function and the edges were then used to
construct a minimum exposure path. To account for dynamic constraints, the sharp
corners of the cells were smoothed using a set of virtual forces that deformed the edges
in a manner similar to a chain of masses and springs. Beard [3] also used Voronoi cells
to solve for the problem of having multiple UAVs service multiple targets. Again, some
post-processing is needed to form dynamically feasible trajectories. Asseo [2] solved
a similar problem, but rather than using a density function to describe exposure, the
threats were well-defined circular regions. The solution method generated a shortest
path by traveling along tangents of the circular regions and then heading directly
toward the goal when possible. In the first two cases, extension to higher-dimensional
spaces and non-linear objective functions is difficult since formation of Voronoi cells
in the presence of terrain and line-of-sight regions is ill-defined. In the third case,
there is no natural way to account for trajectories which are forced to travel through
the threat region and use terrain masking to avoid exposure.

Several more analytic optimization methods have also been used for motion plan-
ning problems. Toussaint [32] used H∞ optimization techniques to tune spline para-
meters. An RRT search was superimposed to handle obstacle avoidance. This had
the benefit of explicitly incorporating the vehicle dynamics, but no optimization is
performed. The goal is simply to find a trajectory that reaches some final state, not
the best trajectory to do so. Godbole [13] also used a spline-based representation to
solve for entire trajectories. In that case, a wavelet-based optimization was used to
transform the splines into wavelet coefficients and then tune those coefficients. The
benefit is that it is a naturally multi-resolution scheme capable of handling different
time scales. Optimization was either by an interior point method (for short term
optimization) or evolutionary directed random search (for long term).

2.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is often referred to as a metaheuristic [9]. That
is, it is a very general method for solving combinatorial optimization problems. ACO
is an agent-based evolutionary scheme in which each agent acts in a probabilistic
manner to iteratively construct solutions. The way in which agents iteratively con-
struct solutions fits well with a maneuver-based approach. As the name suggests,
ACO is loosely based on the foraging and colony behavior of ants. Ants communicate
with one another by depositing pheromone as they walk. This pheromone is detected
by other ants which are then more likely to follow the same path as the previous ant,
rather than wandering in some random direction. Using this relatively simple mech-
anism, it is possible for a colony of ants to find the shortest path to a food source.
To see this, consider the case where there are only two paths to a food source from
a colony, one short and the other long. At first there is no pheromone deposited on
either path and ants will not prefer one path over the other. As time progresses and
ants start carrying food back and forth to the colony the ants taking the shorter path
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will be able to make more round trips in a given amount of time than those taking the
long path. As such, more pheromone will be deposited on the short path and more
ants will begin to take that path. Similarly for the ACO algorithm, each agent con-
structs solutions based on ‘pheromone’ left by previous agents and then deposits its
own pheromone based on the quality of the solution constructed. Pheromone deposit
management is the most critical aspect of any ACO.

Using ant behavior as an optimization paradigm was originally outlined in Dorigo’s
Ph.D. thesis, and he has since written a book [9] detailing its origins and many
applications. The original scheme was known as Ant System (AS) and it was applied
to relatively small instances of the well-known travelling salesman problem (TSP).
While the approach was novel, it was not competitive with modern TSP optimization
schemes. Several adjustments were made and ACO was the result.

In addition to TSP, the ACO algorithm has been tested on other NP-complete
combinatorial problems. Gambardella [12] used a multiple-colony approach to solve
the vehicle routing problems with time windows. The solution quality and computa-
tion time were competitive with existing methods. Gambardella [11] also combined
ACO with a local search algorithm and solved instances of the sequential ordering
problem. Again, the results were competitive with existing methods.

Several variants of the ACO algorithm have been developed in an attempt to
increase performance overall or on a specific problem. The first such variant was the
elitist ACO developed by Dorigo. In it, only the best ants from each generation are
allowed to update the pheromone trails. The rank-based ACO [6] is a slight extension
of this in which only the best n ants deposit pheromone, and the amount deposited
is proportional to their rank. In an attempt to more explicitly control pheromone
levels, Stützle [31] developed the MAX −MIN ACO in which upper and lower
limits are placed on the amount of pheromone permitted on any arc. ACO is best
suited for discrete optimization, but attempts have been made to apply the principles
to continuous domains [4, 30]. In these cases though, the test cases used were rather
trivial problems.

Merkle [22] applied several ACO variants to the resource-constrained project
scheduling problem. In most cases, ACO outperformed other heuristic approaches
such as genetic algorithms and simulated annealing. Some attempts have even been
made to merge the ACO and GA schemes. Karimifar [17] developed an ant con-
versation extension in which ants are capable of combining partial solutions to form
new solutions that may not have been visited otherwise. As parameter tuning can
be a difficult proposition when implementing a ACO algorithm, Rice [26] used a GA
overlay to optimize the parameters used as the ant colony was evolving.

2.4 Genetic Algorithms

In the field of general heuristic methods, genetic algorithm [16] (GA) is certainly
one of the more popular ones. It has been applied to numerous combinatorial and
optimization problems. Goldberg’s book [14] gives a good explanation of some of the
fundamentals and potential applications for GAs. Like ACO, GA is an agent based
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method in which populations of agents act cooperatively to achieve some optimization
goal. The main difference is the way in which the two share information between
agents. The fundamental operator in GA is the crossover operator, which is meant to
take two solutions in the current population and combine information from both to
generate a new solution. Ideally this new solution will inherit the positive qualities of
both of its parents and have a higher fitness. Finding a way to effectively implement
the crossover method is the primary challenge in any GA implementation.

Pettit [24] used a GA to solve almost this exact problem instance. Pettit’s paper
will be the basis for the GA implemented in this thesis to be used as a comparison.
In this case, the goal is to minimize exposure to stationary, ground-based threats. If
the vehicle is within range of a threat and in its line-of-sight, the vehicle’s exposure
increases. The benefit of GA is that it can easily handle such a non-linear, discrete
objective function.

It is necessary to find a proper solution encoding to use a GA. That is, a way
to represent a solution to the problem as a series of genes capable of crossover. In
Pettit’s case, a solution consisted of a series of command inputs including a change in
velocity magnitude (∆v), change in heading angle (∆ψ), and change in climb angle
(∆γ). Each command input was assumed to last for one second. From this set of
relative command inputs it was possible to decode it into a series of absolute positions,
suitable for fitness evaluation.

The exposure (fitness) function used is a function of absolute position. Thus
when two solutions are combined it is desirable to keep the absolute locations of part
of each. The difficulty with this is that we then face the task of finding a way to
transition from the end of one trajectory segment to the beginning of another. Pettit
did this using a two-circle method in which two constant radius arcs are used to match
velocity and position at the end of each segment. The problem is that this addition
to the trajectory could possibly add an excessive amount of exposure and ruin the
quality of the solution. Also, there is no guarantee that this repair method will even
return a feasible solution, since the added segment might intersect the terrain.

2.5 Algorithm Comparison

Comparisons with existing methods, especially GA, are common. The reason for
this is the similarity between ACO and GA. Several benefits of using either heuristic
method are apparent. First, both are something of an anytime algorithm. That is,
a feasible solution is available at any point after the first generation has completed.
Letting the algorithm run for longer periods of time will simply improve solution
quality, to a point. Second is the ability to handle non-linear cost functions. The
agents do not need to know anything about the structure of the function they are
trying to optimize. All that is required is that, given a full solution, the cost function
may be evaluated to a real number. The real-time characteristics of using ACO for
motion planning are not fully known; this is what this thesis intends to investigate.
The runtimes for several TSP instances presented by Dorigo are promising, and it
would seem that runtime performance can be adjusted based on formulation, but at
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the expense of solution quality. Similarly, it is not clear how well ACO can handle
high-dimensional state-spaces. This will be another area of investigation for this
thesis.

Several possible shortcomings of ACO are also evident. First, stagnation can be a
problem. This is when the colony quickly gets stuck in a local minimum and is unable
to improve solution quality as time progresses. This seems to largely be a function of
how pheromone levels are handled. Another possible shortcoming is that ACO, like
GA, is not a deterministic algorithm. This may be seen as a shortcoming by some,
since different results may be given for the same problem. Yet non-deterministic
algorithms can perform well in large optimization problems where more systematic
searches may fail or take too long. Finally, ACO is not really an optimal algorithm.
A convergence proof is given in [9] which states that the colony will eventually find
an optimal solution, but no estimate on the time of convergence can be given. Thus,
it may take infinitely long to find the best solution.

Table 2.1 presents a summary of the characteristics of several of the algorithms
described so far. With these attributes in mind, ACO seems like a logical choice
for a motion planning solver. The goal of this thesis is to determine whether or
not ACO is a viable solution method for the problem of trajectory generation in a
hazardous environment. A genetic algorithm will be used as a benchmark to gauge its
performance. This comparison is natural considering the similarities between ACO
and GA. As seen in the table, ACO and GA share similar algorithm characteristics.
These similarities will be discussed further in Chapter 4.

Attribute ACO GA MILP Voronoi Cell RRT

Real-time
Yes (See Sec-
tion 4.3)

Yes (See Sec-
tion 4.3)

No Yes No

Non-linear
cost function

Yes Yes No No Yes

Large state
space

Yes Yes Yes No Yes

Deterministic No No Yes Yes No
Optimal No No Yes Yes No

Table 2.1: Motion Planning Algorithm Characteristics
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Chapter 3

Problem Formulation

3.1 Dynamic Constraints

The problem under consideration is the so-called UAV motion planning problem.
Formally, the problem may be stated as:

min J(x(t), u(t))

s.t. ẋ = f(x, u)

x(t) /∈ T t ∈ [0, T ]

(3.1)

Where T is used to represent terrain. Hence the constraint x(t) /∈ T simply means
that the state trajectory does not intersect the terrain. The dynamic system under
consideration is a UAV. Its dynamics are generally non-linear and can be described
by a set of differential equations, ẋ = f(x, u). The general motion planning problem
is to select an input profile, u(t), that will minimize some cost function, J(x(t), u(t)).
While in some cases it may be possible to linearize the dynamics to simplify the
problem, this is not always desirable. Often the non-linear dynamics region is where
the vehicle is able to perform at its maximum capabilities and has the potential to
lead to significantly better performance.

Working directly with the differential form of the dynamics is generally very dif-
ficult, and undesirable. The work on maneuver automatons done by Frazzoli [10]
allows us to simplify the representation of this complex dynamical system. By limit-
ing our actions to those of known maneuver primitives we transform this continuous
optimization problem into a discrete one. That is, rather than considering all possi-
ble input profiles, u(t), we will consider only those input segments which have been
learned a priori and result in predictable behavior. Using a known dynamics model
it is possible to generate this feasible maneuver set offline and store it in a maneuver
library.

The dynamics model used for this thesis is the same one used by Pettit [24]
for his GA construction. Maximum acceleration and deceleration are a function of
velocity magnitude. Maximum and minimum velocity constraints are also imposed.
A polynomial curve fit of Rate-of-Climb (ROC) as a function of velocity is used to
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determine the upper limit on flight path angle increase.
One additional constraint that is particularly important is obstacle avoidance.

In this motion planning problem terrain is the main concern for obstacle avoidance.
Clearly any trajectory that intersects the ground is infeasible. However, it is usually
desirable to fly relatively close to the ground in hazardous environments and use the
terrain to mask any threats. As such, we would like to be able to fully exploit the
vehicle’s ability to climb, dive, and bank to hug the terrain.

3.2 Maneuvers

A ‘trajectory’ in this thesis refers to a finite sequence of states, {xi}, in some
state space, X , and an associated sequence of maneuvers , {Mi}, that describe the
movement between these states. The maneuvers implemented here are similar to
those described by Frazzoli[10]. The result of executing a maneuver is a change in
state that can be described by a simple offset applied to each element in the state.
Thus a maneuver can be represented as Mi = ∆xi. Given an initial state decoding
a series of maneuvers is a simple matter of iteratively adding the offset from each
maneuver:

xi+1 = xi +Mi i = 1 . . . N − 1 (3.2)

The maneuvers are invariant under group action. That is, applying a symmetry
transformation to the state does not affect the system dynamics (for a more precise
definition refer to Section 2.2 of [10]). For example, consider a 2D environment where
the state, x = (x, y, v, ψ), consists of position, velocity, and heading. The ‘maneuver’
of cruising 10 meters along the positive x-axis, M = (∆x,∆y,∆v,∆ψ) = (10, 0, 0, 0),
is known to be feasible. Then by applying the symmetry transformation of rota-
tion about the z-axis we see that the maneuver M = (∆x cos θ −∆y sin θ,∆x sin θ +
∆y cos θ,∆v,∆ψ) = (10 cos θ, 10 sin θ, 0, 0) is also feasible for any θ.

M ′ =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1




∆x
∆y
∆v
∆ψ

 =


∆x cos θ −∆y sin θ
∆x sin θ + ∆y cos θ

∆v
∆ψ



Thus it doesn’t matter what heading the aircraft is flying. Similarly, translation is a
group action, so it doesn’t matter at what (x, y) location the aircraft begins. In this
thesis these symmetry transformations are limited to translation and rotation about
a vertical axis. For more detail read Section 3.4.1.

Before a maneuver can be executed, certain boundary conditions must be met. To
state it formally, to execute maneuver Mi from state xi, xi must belong to the set of
initial condition states for the maneuver, xi ∈ D(Mi) ⊂ X . Intuitively, each maneuver
can be thought of as a function that maps states from some domain, D(Mi) ⊂ X ,
to a range, R(Mi) ⊂ X . Inclusion in a maneuver’s domain is dependent on certain
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properties of the state. In this thesis this simplifies to matching velocity. That is,
each maneuver has a specified initial velocity, and a state is included in the domain if
and only if it matches that velocity. Using this representation, the motion planning
problem then becomes:

min J(xi)

s.t. xi+1 = xi +Mi i = 0, 1, . . . , N − 1

xi ∈ D(Mi)

xi /∈ T

(3.3)

Four algorithms have been implemented for this thesis: 2D ACO, 3D ACO, 2D GA,
3D GA. In the 2D case the state consists of the tuple (~r, v, ψ, t) where ~r ∈ R2 is the
position, v is the velocity magnitude, ψ is the heading, and t is the time. In the 3D
case the state contains a 3D position vector ~r ∈ R3 and also the flight path angle, γ.
The same dynamic model was used in all four algorithms. Also, in each case every
maneuver had the same fixed execution time, and the solution horizon was the same.
The main difference between the ACO and GA is the types of maneuvers used.

In the case of the GA each gene that comprises a chromosome is a command
{∆v,∆ψ,∆γ}, where ∆v is a change in velocity, ∆ψ is a change in heading angle,
and ∆γ is a change in flight path angle. ∆v, ∆ψ,and ∆γ can take on any value in the
continuous feasible range defined by the dynamics model. These changes are assumed
to occur at a constant rate during the maneuver. It should be noted that everything
here is deterministic. There is no uncertainty when performing a maneuver as to
what the final state will be.

The maneuvers used by the ACO are a discrete subset of those maneuvers used
by the GA. Since ACO is a discrete optimization scheme, the maneuver library must
adhere to this framework. Hence the ∆v, ∆ψ,and ∆γ used in ACO are only allowed
to take on finitely many values in the feasible range. Thus, the capabilities of the
ACO algorithm may appear to be limited compared to the GA. The idea though is
that this restriction on trajectory construction will allow for faster computation times
without a significant detriment to performance.

3.3 Trajectory Evaluation

Both ACO and GA are capable of handling non-linear cost functions. Indeed,
this is one of their greatest advantages. The only requirement is that given a full
trajectory, we are able to evaluate the cost function, J , to a real number. Several
cost functions were implemented for this thesis. The simplest of these was distance to
some goal point. This was implemented in both the 2D and 3D cases. More formally,
given a sequence of N states and a goal state, xf , the function is:

J(x) = mini=1...N |xi − xf | (3.4)
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Thus the goal is to come as close as possible to the desired state. Here the distance
between states is simply the Euclidean norm, |xi − xf | ≡

√
(xi − xf )2 + (yi − yf )2.

Only position is specified; time, velocity, and heading are not accounted for. A similar
function would be one which only accounts for the final state. That is:

J(x) = |xN − xf | (3.5)

In some sense though this is a more difficult condition to minimize than Equation 3.4
since it requires that the time horizon be approximately right.

A more interesting cost function, and the one at the core of maneuvering in a
hazardous environment, is that of exposure minimization. Each ground-based threat
in a hazardous environment has a position, p, a effective lethality range, R, and a
lethality weight, L. Given m land-based threats the exposure function to minimize
is then:

J(x) =
∑N

i=1

∑m
j=1Ej(xi) (3.6)

Where Ej : X → R is the exposure function for the jth threat. The exposure function
implemented in this case was:

Ej(xi) =

{
b(xi)Li(1− |xi−pj |

Rj
) if |xi − pj| < R

0 if |xi − pj| ≥ R
(3.7)

b(x) =

{
1 if within line-of-sight
0 otherwise

(3.8)

The b(x) is a binary switch used to account for line-of-sight. That is, if the terrain
occludes the vehicle from a target, it does not take any exposure from that target.
Clearly this cost function is non-linear. The discrete nature of the line-of-sight check
can make traditional continuous optimization schemes such as gradient descent diffi-
cult.

Other exposure functions are certainly possible. The exposure function used by
Pettit [24] was something similar to a Gaussian distribution, while constant functions
and functions that decay as 1/x2 have also been used. Any of these would work for
evaluating the effectiveness of the ACO algorithm. The goal is to see if ACO can
exploit LOS to reduce exposure.

3.4 ACO Implementation

At this point some more discussion of the problem representation is warranted.
Recall that the trajectories constructed by ACO are sequences of maneuvers from
a finite maneuver library. Thus the problem may be abstracted to one of choosing
N − 1 branches in a decision tree. Each node of this decision tree corresponds to a
state, and each branch corresponds to the feasible maneuvers that can be executed
from that state. Associated with each branch are two values: a pheromone value,
τ , and a heuristic value, η. It is these two values that will guide an agent during
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solution construction, and which will be modified based on information learned from
previously constructed solutions. The time horizon of the problem is on the order of
20 seconds. Each maneuver lasts a fixed amount of time, usually one or two seconds.

defineManeuverLibrary();
initializePheromoneTree();
while Termination Conditions not met do

for each Ant in colony do
constructSolution();
updatePheromones();
daemonActions();

end

end
Algorithm 1: ACO Pseudocode [9]

ACO is an evolutionary, population-based optimization algorithm. Algorithm 1
shows the basic steps implemented for this ACO scheme. The primary operations
needed are constructSolution and updatePheromones. As the name suggests, con-
structSolution is responsible for constructing a full trajectory using the current pheromone
and heuristic information. It uses the maneuver library produced offline by defineMa-
neuverLibrary. Once a solution has been constructed and evaluated updatePheromones
is used to update the relevant pheromone values. The daemonActions function is any
centralized operation that requires global information. In this implementation it will
take the form of an elitist update strategy which allows only the top 25% agents in the
population to deposit pheromone. The remainder of this section will give more detail
into possible implementations for each method, and the reason behind the specific
implementation chosen for this design.

3.4.1 Trajectory Generation

A trajectory consists of a sequence of states. Transitions between states are de-
scribed by maneuvers. Thus a full trajectory will consist of N states and N − 1
maneuvers. Note that this representation is used as a matter of convenience. For
each maneuver the entire state trajectory as a function of time is known. A sam-
pling of states is used to make evaluating the cost functions easier. It is essentially a
discretization of an integral cost.

Before discussing trajectory generation, the idea of the maneuver library must
first be explained. Recall that the ACO only used finitely many maneuvers. Also,
these maneuvers can be rotated and translated freely without affecting feasibility,
allowing us to stitch them together to make larger trajectories. The maneuver library
stores this finite set of maneuver ‘templates’. Refer to Figure 3-1 to see an example
of such a library. Each maneuver is two seconds in duration. The straight cruise
segments are parameterized by initial velocity, final velocity, and change in elevation.
The turns are parameterized by velocity, turn radius, and elevation change.
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Figure 3-1: Example Maneuver Libraries

Each agent (ant) of the ACO algorithm generates a feasible trajectory by stitching
together maneuvers from the maneuver library. Each solution consists of a fixed
number of maneuvers. Given an ant at state xi it will choose which maneuver to
execute next based on the pheromone and heuristic information available. Specifically,
each feasible maneuver has associated with it a pheromone value, τ , and a heuristic
value, η. The next maneuver is selected according to a pseudo-random distribution.

P (Mi) =


τα
i ηβ

iP
i τα

i ηβ
i

if q > q0

1 if q < q0 and i = arg max τα
i η

β
i

0 if q < q0 and i 6= arg max τα
i η

β
i

(3.9)

Where P (Mi) is the probability that Mi will be the next maneuver selected. The
pseudorandom factor, 0 ≤ q0 ≤ 1, is a parameter and 0 ≤ q ≤ 1 is a uniformly
random value. That is, with probability q0 the ant will select what appears to be the
best maneuver based on the pheromone and heuristic information. Otherwise, the
ant randomly selects a maneuver based on a weighted probability distribution.

Once a maneuver has been selected the next step is to append it to the end of the
current trajectory. It is important to note that the maneuvers in the maneuver library
are simply templates. They must be rotated and/or translated to match the current
terminal conditions. As an example, consider Figure 3-2. The maneuver template
selected is a straight cruise. To patch this maneuver to the current trajectory we
must first rotate, then translate the template.

3.4.2 Pheromone Update

Pheromones are the primary means by which agents communicate. Once a popula-
tion has constructed and evaluated solutions the next step is to update pheromones so
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Figure 3-2: Appending a new maneuver to an existing trajectory

the next generation can benefit from the information gained. Two pheromone update
steps are executed every generation: pheromone evaporation and pheromone deposit.
The problem of pheromone management is directly related to the population’s ability
to tradeoff exploration and exploitation.

Pheromone evaporation is the first step. The purpose of evaporation is to prevent
stagnation by allowing the colony to ‘forget’ past solutions. That is, according to
Equation 3.9 a reduction in τi will reduce the probability that maneuver Mi will be
selected. There are several ways in which evaporation can be handled. The simplest
approach is to reduce every pheromone by a constant factor, ρ, so that τi+1 = τi(1−ρ).
Another possibility is to only remove pheromone along the paths which ants have
travelled across. That is, in the decision tree which stores the pheromone values, only
reduce the pheromone on a branch when that branch is selected by an agent. This is
the method used by this thesis.
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The purpose of pheromone deposit is to share information from one generation to
the next and allow for exploitation of known good solutions. Several methods have
already been developed for handling pheromone deposit. One method is to allow every
ant to update based on a globally weighted score. A second is to allow every ant to
update based only on local information. The elitist approach, developed by Dorigo [9],
allows only the iteration-best and best-overall ants to update. The method used here
was similar to the Rank-Based method proposed by Bullnheimer [6]. Only the best
25% of each generation and the best-so-far are allowed to update the pheromone
trail. The amount deposited is proportional to the ants rank in the population. Since
the goal is to minimize the objective function, J(xi), the pheromone deposited is
proportional to 1/J(xi). Saturation limits are placed on the amount of pheromone
an agent can deposit at one time to prevent extreme bias towards good solutions.
The saturation limit used was 10τ0, where τ0 is the initial pheromone value. This
was done in an attempt to eliminate the need to scale the pheromone updates to
each problem instance. An example of the pheromone deposit function is given by
Figure 3-3.
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Figure 3-3: Pheromone Deposit Function

Initializing the pheromone value can be a difficult task. If the pheromone value is
too low, the first several solutions will unduly bias the search, leading to stagnation.
If the initial pheromone value is too high, the first several pheromone deposit cycles
will be negligible and many generations will need to run before enough evaporation
has taken place to lead to meaningful pheromone deposit. When used to solve the
travelling salesman problem, the initial pheromone value used was 1/Cnn, where
Cnn is the nearest-neighbor heuristic solution. The idea was that this was relatively
similar in magnitude to the pheromone deposits that would be made. One novel
approach developed to handle this issue of pheromone levels was the MAX −MIN
ant system developed by Stützle [31]. In the MAX −MIN formulation explicit
upper and lower limits are placed on the pheromone levels.
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3.4.3 Heuristic Information

One benefit of the ACO algorithm is the ability to explicitly incorporate problem-
specific heuristic information. Notice that the probability distribution defined by
Equation 3.9 includes both pheromone, τ , and heuristic, η, information. A good
heuristic can be used to guide the algorithm toward promising solutions, leading to
overall better performance.

In this thesis, heuristic calculation was performed using a one step lookahead. In
the case where the cost function is given by Equation 3.4 the heuristic is the reciprocal
of the distance to the goal point if the maneuver under investigation were executed.

ηi =
1

|(xcurr +Mi)− xf |
(3.10)

In the case where the cost function is the threat exposure given by Equation 3.6 the
heuristic value is the reciprocal of the exposure incurred along the maneuver. In the
case that the exposure is very small, so that its reciprocal is very large, a saturation
value of 10τ0 was used as the maximum allowable value. This is essentially the same
scheme used for pheromone updates, Figure 3-3.

ηi =
1∑

Ej(xcurr +Mi)
(3.11)

During the one-step look ahead, if it is discovered that the maneuver is infeasible due
to collision both the pheromone and heuristic values are set to zero so that subsequent
ants will ignore these options. Intuitively, that branch of the decision tree is pruned.
It should be noted that these heuristic calculations are only performed once for each
node.

3.4.4 Parameter Selection

When implementing an Ant Colony algorithm, several design parameters need to
be selected, namely:

1. α pheromone exponent, Equation 3.9

2. β heuristic exponent, Equation 3.9

3. τ0 initial pheromone value

4. q0 pseudo-random factor, Equation 3.9

5. ρ evaporation factor

In order to minimize the amount of tuning needed, only two parameters(α and β) were
adjusted for each scenario, while the remaining parameters were fixed. The initial
pheromone value, τ0, was set to 10. The goal of the implemented pheromone update
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rules was to remove scaling issues from pheromone maintenance. That is, usually the
pheromone and heuristic values at each branch needed to be properly scaled to avoid
one factor significantly outweighing the other. Doing this for every scenario would
be tedious. Instead, a constant value of τ0 was selected, and then all pheromone
and heuristic updates were expressed as a multiple of τ0. The pseudo-random factor,
q0, was set to 0.5. This value was selected after reviewing the results presented by
Dorigo [9]. For large values of q0 the algorithm would focus primarily on exploiting
known good solutions, while for small values it would favor exploration of the search
space. The evaporation factor, ρ, was set to 0.1 (again based on Dorigo’s results).
The larger ρ is, the quicker the algorithm is likely to ‘forget’ previously constructed
solutions and explore new areas of the search space. The exponents, α and β, weight
how strongly the decision of the next maneuver is influenced by pheromone and
heuristic values, respectively. For large values of α one would expect the algorithm
to quickly stagnate toward the first good solution found. Similarly, for large values
of β the agents will be heavily drawn toward solutions with high heuristic value.
Historical data were used to select reasonable value ranges for α and β. For each
scenario several parameter settings were used to determine which produced the best
results. The possible selections were α = {1, 2} and β = {2, 3, 4}. More discussion of
these parameter sweeps is available in Section 4.2. Some factors are common to both
ACO and GA. The population size was set to 8. The length of each maneuver was
2 seconds. The number of generations to execute before termination was set to 50.
The correspondence between number of generations and runtime will be discussed
further in Section 4.3. In short, a relatively small number of generations was selected
to ensure small runtimes and the potential for real-time application.

3.4.5 Termination Conditions

The final design decision is how and when to terminate the algorithm. Left to
run indefinitely the quality of the best-so-far solution will continue to increase to a
point. One possible concern that must be addressed is stagnation. It is possible that
the algorithm will quickly find a local minimum in the cost function and then heavily
saturate the pheromone trail so that finding new solutions becomes increasingly un-
likely. One possible way around this is to restart the algorithm once no improvement
has been shown for a set number of generations.

One major benefit of ACO is that, by using the above implementation, every agent
constructs a feasible solution every generation. Thus no matter when the algorithm
is stopped a feasible solution is available (as long as one generation has finished of
course). The scheme used here was to simply run the algorithm for a fixed number
of generations, in this case 50.

3.5 GA Implementation

Like ACO, GA is a population based evolutionary algorithm. Each generation
attempts to collect information about the solution space and then use this informa-
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tion to make future generations better. For a fully detailed explanation of GAs refer
to Goldberg [14]. The major steps involved in implementing a GA are population
initialization, selection, crossover(recombination), and mutation. Each of these will
be explained in detail in the following sections. It should be noted that the imple-
mentation used here is very similar to that used by Pettit [24], since Pettit’s thesis
was used as a guideline.

To define some GA terminology, a chromosome is an entire trajectory. A chromo-
some is made of smaller building blocks known as genes. In this case each gene is a
command of the form (∆v,∆ψ,∆γ), where ∆v is the change in velocity, ∆ψ is the
change in heading angle, and ∆γ is the change in flight path angle. Each of these
values is restricted to lie between an upper and lower bound which are determined
using the dynamics model described in Section 3.1 based on the vehicle state. Since
each gene is just a command and not a position, the chromosome must be decoded
into a state trajectory before a cost function (fitness) evaluation can be performed.
This is easily done by propagating forward in time from some known initial state.
Each command has a fixed execution length and the prescribed changes are assumed
to happen at a constant rate.

3.5.1 Population Initialization

Population initialization in the GA is a relatively simple task. Given an initial
state, x0, command limits are computed as a function of this state: ∆vmax, ∆vmin,
∆ψmax, ∆ψmin, ∆γmax, ∆γmin. A command is then constructed by selecting values
in these ranges according to a uniform random distribution. This command is then
used to propagate to the next state where the process repeats until enough commands
have been generated.

3.5.2 Selection

Selection is the process of choosing which members of the population are carried
into the next generation or are recombined to form new members. The selection
scheme used here was a simple roulette selection, where the probability that a member
is selected is directly proportional to its fitness. One exception to this is the use of an
elitist strategy where the best member from each generation is automatically carried
over to the next.

3.5.3 Crossover

Crossover is the most critical operator in a genetic algorithm. It is the means
by which beneficial information from one generation is carried over into the next.
After being selected using the roulette method described above, two individuals are
recombined with probability Pcross. During the crossover operation, two individuals
are ‘combined’ to form a new one. This method of combining solutions is largely
dependent on the representation used and the programmer’s preference. It can also
greatly affect the performance of the GA.
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The crossover mechanism used here is the same used by Pettit [24]. Since the
trajectory evaluation is based on the state trajectory, and not explicitly on the ma-
neuvers or control inputs used, it makes sense to preserve the states from individual
solutions when recombining them. The basic idea is to take the beginning section of
one trajectory, and the tail section of another trajectory, and patch them together
in some appropriate manner. The way in which trajectory segments are patched
together is the so-called 2-circle method. Two tangent, constant-radius circles are
constructed to connect the end state of the first segment with the initial state of
the second segment. Figure 3-4 illustrates a 2D example of patching two trajectories
together.

It should be noted that all the trajectories are constrained to be of a fixed length.
As such, the solution produced by the crossover may need to be trimmed. This
trimming can at times mean that no part of the second parent is included in the
child. There are several potential problems using this recombination method. First,
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Figure 3-4: Trajectory crossover patching example.

the crossover is not guaranteed to be feasible. Either due to dynamic constraints
or ground collision, the operation may fail. In the case that the crossover fails, it is
attempted two more times using different crossover points. If both of these additional
attempts fail the two chromosomes are moved into the next generation without gen-
erating a child. Also, adding this extra patch in the middle has the potential to ruin
the solution quality. Generally, it is desirable to crossover two ‘good’ solutions and
obtain a solution that is at least as good if not better. If the patch segment runs
through an area of high exposure, the solution quality may be very poor. It would
seem that physical trajectories are not naturally suited to crossover.
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3.5.4 Mutation

The final GA operator needed is mutation. After a population is constructed each
gene in each chromosome is mutated with some (small) probability, Pmutate. The
mutation of a command involves choosing one the of components, (∆v,∆ψ,∆γ), and
selecting a new random value from the feasible range. This mutation then of course
requires that all states downstream of this point be recomputed. Also, there is the
possibility that the mutation may result in an infeasible trajectory due to collision
with the terrain. If this is the case, the mutation is discarded and the algorithm
continues.

3.5.5 Parameter Selection

The two main parameters which must be specified are Pcross and Pmutate. Pcross

is the probability that when an individual is selected it will be crossed over with
another solution rather than simply transferred to the next generation. Pmutate is the
probability that an individual will undergo mutation before being transferred to the
next generation. Similar to what was done for α and β in the ACO case, multiple
runs of the GA were conducted for several values of Pcross and Pmutate. The ranges
used were Pcross = {0.5, 0.6, 0.7} and Pmutate = {0.05, 0.1}.

3.5.6 Termination Conditions

Stagnation is still a concern with genetic algorithms, though this can be mitigated
by selecting high values of Pmutate. Also, the algorithm can be restarted by generating
a new random population when solution quality has not improved in a given number
of generations. For this thesis the GA, like the ACO, was run for a fixed number of
generations. In this case, 50 generations was used as the termination value.

37



38



Chapter 4

Simulation Results

This chapter will present the results obtained from running both the ACO and GA
algorithms on a set of test cases. Several degenerate cases of the ACO algorithm were
also used as baselines. Namely, since ACO utilizes both pheromone and heuristic in-
formation, tests were conducted in which only pheromone or only heuristic data were
used. These correspond to the parameter selection of β = 0 and α = 0, respectively,
in Equation 3.9. Also, a purely random search was performed. This corresponds to
the case where β = 0, and no pheromone updates are made by any agent. As such,
there is a uniform probability distribution for selecting any maneuver at any given
time. It should be noted that each of these three degenerate cases use the same ma-
neuver basis set for constructing trajectories as ACO. Only GA uses a continuous set
of available maneuvers. Again, the hypothesis is that even though ACO uses a more
limited command set it will still be able to generate trajectories of superior quality
to the GA.

At this point it is worth mentioning why a GA is being used as a comparison
for ACO. The ACO and GA algorithms are remarkably similar. They are both
population-based randomized evolutionary search schemes. As such, parameters such
as population size and generation have the same meaning in both interpretations.
Also, they have been formulated in such a way that the solution representation is
nearly identical in each. Both use maneuvers of fixed length to construct full trajec-
tories. The fact that both algorithms share such a similar structure makes comparison
sensible.

Two metrics used to compare algorithms are best overall score per iteration and
population average per iteration. Best overall score is the score (according to what-
ever cost function is being used) of the best solution found so far. Clearly this is
a monotonically decreasing quantity. This metric should give some insight into how
quickly the algorithm is able to converge on a good solution, and also whether or not
the algorithm is prone to stagnation. The population average is the average score of
every individual during a given generation. This gives an idea of how well the popu-
lation as a whole is converging on a favorable solution region, as well as the relative
emphasis given to exploration versus exploitation.
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Environment threats/obstacles objective
Scenario 1 2D none get to goal
Scenario 2 2D 2 obstacles get to goal
Scenario 3 2D 8 obstacles get to goal
Scenario 4 3D terrain get to goal
Scenario 5 3D 1 threat, terrain minimize exposure
Scenario 6 3D 2 threats, terrain minimize exposure
Scenario 7 3D 1 threat, terrain minimize exposure and get to goal
Scenario 8 3D 2 threats, terrain minimize exposure and get to goal

Table 4.1: Scenario Parameters

4.1 Scenario Results and Discussion

The test cases implemented were designed to start simple, and then progress to
more difficult situations. The basic parameters of each test case are as follows:

In the 2D case the obstacles are hard constraints. They are circular regions which
the vehicle cannot enter. In the 3D case, the only hard constraint is the terrain. The
threats are treated as soft constraints. That is, the vehicle may enter the threat region
but there is a cost function penalty for doing so (Equation 3.7). For each case, the
trajectory computed by each algorithm will be shown, as well as average population
fitness and best individual fitness as a function of generation number.

4.1.1 Scenario 1

Scenario 1 is perhaps the simplest case imaginable. The objective is simply to
get as close as possible to the goal point of (x, y) = (900, 900) in a 2D obstacle-free
environment. The vehicle begins at (x, y) = (0, 0) traveling at 50 kts along the positive
x axis. The score (fitness) is calculated according to Equation 3.4. Certainly there
are better ways to solve this optimization problem. A simple A∗ search, for example,
could find the best set of maneuvers relatively quickly. The objective though is to see
if these randomized methods are still capable of coming up with reasonable solutions.
The results are presented in Figures 4-1(a)–(c).

As can be seen in Figure 4-1(c) all 5 methods produce reasonable results. Though
the Purely Random and Pheromone Only approaches fail to get as close to the goal
as other trajectories, the trend is for them to head in the right direction. This is a
common trend that will repeat itself throughout these results: the Purely Random
and Pheromone Only methods will perform poorly compared to the others.

From Figure 4-1(a) we see that the ACO algorithm does indeed outperform the
other methods. It not only converges faster (in a per iteration sense) but it also finds
a trajectory closer to the goal than any other algorithm. One thing to note on this
graph is the rapid improvement of ACO during the initial generations followed by
much shallower improvement. This is possibly due to stagnation in the algorithm,
which will be discussed further in Chapter 5. In contrast, the GA shows gradual,
steady improvement throughout. This would imply that the GA is converging on a
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Figure 4-1: Scenario 1 Results
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narrow solution region and heavily exploiting knowledge from previous generations.
This is another trend that will appear throughout the results: rapid convergence and
leveling-off of ACO solutions, and gradual improvement by the GA. This can be seen
as a positive or negative aspect of the ACO algorithm and will be discussed further
in terms of runtime impact and stagnation in Chapter 5.

Figure 4-1(b) shows the average score of the entire population at each generation.
It is meant to give some insight into how the population is getting better by learning
from previous generations. Also, it can lend some insight into the degree to which the
algorithm is emphasizing exploration versus exploitation, and vice versa. It is evident
that the GA population generally gets better on average from one iteration to the
next. In contrast, the ACO average continues to fluctuate. This would seem to imply
that a great deal of exploration of the search-space continues even during the later
iterations. There are several possible explanations for this. First, the value of α used
in Equation 3.9 may be too low. That is, since α controls how heavily pheromone
value influences maneuver selection a low α would mean that pheromone information
from previous generations is not contributing much to trajectory generation. The
values used for this scenario were α = 1 and β = 3. A second possible reason for
this behavior is that not enough pheromone is being deposited by the top 25% agents
to significantly affect subsequent generations. Indeed, as the number of available
maneuvers grows, the effect of one agent depositing pheromone for a single maneuver
is reduced.

To better visualize this idea of population average fitness and convergence, con-
sider Figure 4-2. Figures 4-2(a) and 4-2(b) show the entire population for the ACO
algorithm at Generations 5 and 50, respectively. Clearly, there is still a great deal
of exploration in both cases. In contrast, the GA population(4-2(c)–(d)) very tightly
converges to a narrow solution space by the later generations. Notice that the best
ACO trajectory from Figure 4-1(c) is not present in the last generation, Figure 4-2(b).
Even though ACO uses an elitist strategy by heavily weighting the best trajectory
found, it does not explicitly carry that solution through subsequent generations.

4.1.2 Scenario 2

Scenario 2 is a slight modification of Scenario 1 in that a couple of obstacles
have been added to make maneuvering to the goal more difficult. The vehicle begins
at (x, y) = (0, 0) traveling at 50 kts along the positive x axis. The score (fitness)
is calculated according to Equation 3.4, with the goal point at (x, y) = (900, 900).
These obstacles represent hard constraints, in that any trajectory that intersects them
is discarded as being infeasible rather than heavily penalized. Figures 4-3(a)–(c) show
the best overall score, population average score, and trajectories computed. Nearly
identical trends are seen as in scenario 1. ACO is quick to converge while GA is slower,
but both find very good solutions in the end. It would appear that having a couple
trivially placed obstacles does little to affect algorithm performance. In Figure 4-3(a)
ACO and Heuristic Only are very close to one another. This is indicative of a strong
heuristic influence on ACO performance. This will become a recurring theme as ACO
closely mimics the decisions of whatever heuristic is used to guide it. Also, it would
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appear that the heuristic was able to outperform the GA. This is not always the case
and is dependent on what heuristic is selected. It is possible to incorporate heuristic
information into GAs by using it to initialize the population, rather than using a
purely random scheme. This would presumably improve GA performance, but was
not implemented for this thesis.

4.1.3 Scenario 3

Scenario 3 is a cluttered environment with many obstacles. This time, obsta-
cle avoidance becomes a significant contributing factor to algorithm performance.
The vehicle begins at (x, y) = (0, 0) traveling at 50 kts along the positive x axis.
The score (fitness) is calculated according to Equation 3.4, with the goal point at
(x, y) = (900, 900). Figures 4-4(a)–(c) show the results. GA performance has signifi-
cantly decreased. This is most likely due to the limitations of the crossover operator.
As mentioned earlier, crossover is the primary means by which GAs pass useful infor-
mation from one generation to the next. With the presence of obstacles though, it is
far more likely that the resulting child solution will intersect one of these obstacles and
be infeasible. This is a significant detriment to GA performance. In contrast, ACO
builds each trajectory iteratively allowing it to maneuver around obstacles rather than
simply discarding solutions completely. This fundamental difference in solution con-
struction and information propagation between ACO and GA is the core reason why
ACO has the potential to out-perform GA for motion planning problems, especially
in cluttered environments.

In both Figures 4-4(a) and 4-4(c) the Pheromone Only and Purely Random solu-
tions lie directly on top of one another. This indicates that the amount of pheromone
being deposited is small compared to the amount of pheromone already present on
each branch. As such there is a nearly uniform chance of selecting any maneuver. To
make this clearer, consider the case where there are 100 maneuvers available, each
with an initial pheromone value of 10. The probability of selecting any single ma-
neuver based on pheromone alone (Equation 3.9 with β = 0, q0 = 0) is 1%. If an
additional 10 pheromone is deposited on a single maneuver, the probability of select-
ing that maneuver is only raised to 1.9%, and the selection is still nearly uniform. This
phenomena of pheromone influence decreasing as the number of maneuvers increases
is a potential drawback to ACO and is discussed further in Section 5.1.

4.1.4 Scenario 4

Beginning at scenario 4, the test cases involve a full 3D environment with terrain.
The vehicle must now climb and dive in order to avoid collision with the ground.
Recall that terrain collision is treated as a hard constraint. That is, there is nothing
in the objective function to encourage the vehicle to fly low or high. In later scenarios
where threats are present this will become an important issue, but for this simple case
it has little influence. The vehicle begins at (x, y) = (600, 550) at 100 m AGL, head-
ing north (positive y axis) with a velocity of 50 kts. The maneuver library has now
expanded to a total of 144 maneuvers. The goal point is at (1000, 1600). The usual
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Figure 4-4: Scenario 3 Results
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(a) Orthogonal View

(b) Isometric View

Figure 4-6: Scenario 4 Trajectories
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metrics are presented in Figures 4-5(a)–(c). The trajectories exhibit the expected be-
havior, with both the Purely Random and Pheromone Only cases performing poorly,
and the Heuristic Only performing well. In Figure 4-6 only the GA and ACO results
are shown for clarity. Figure 4-6(b) presents an isometric view of the ACO and GA
trajectories. From this angle is is possible to see the elevation changes that both
trajectories exhibit in order to compensate for the terrain.

4.1.5 Scenario 5

With scenario 5 the real problem of agile UAV motion planning begins. Here the
vehicle starts at the same location, (x, y) = (600, 550), as in scenario 4, but rather
than trying to get to a goal point, its objective is to minimize exposure to a threat
(Equation 3.6). A stationary ground threat is located at (500, 600) with a threat
radius of 700 m. A constant lethality, Li (Equation 3.7), of 100 was used for this and
all subsequent threats. Notice that the UAV begins in the threat envelope. This is
designed to represent the case of a pop-up threat where the location of the threat
is not known until the vehicle has already entered the threat envelope. The vehicle
must then do its best to maneuver out of the threat region and minimize exposure.
The results are presented in Figures 4-7(a)–(c). The black star is the threat and the
associated circle is its exposure radius. Notably, the same trends present themselves
as in previous cases. Again the Purely Random and Pheromone Only solutions are
nearly identical. Both the ACO and GA methods find good solutions. Intuitively,
these solutions make sense since the vehicle is simply turning away from the threat
and flying away radially.

Recall that one of the primary means of reducing exposure is using the terrain
to break line-of-sight. Figure 4-8 gives some insight into this phenomena. The ACO
trajectory is reproduced from Figure 4-7(c). The points plotted in red are those that
are within the LOS of the threat, while those in black are not within sight. Notice
that before the vehicle leaves the threat radius it is able to break the line of sight. It
does this by diving quickly after passing over a ridge. This behavior is easier to see
in Figure 4-9.

4.1.6 Scenario 6

Scenario 6 expands upon the previous scenario by adding an additional threat at
(1200, 800) with a radius of 500 m. Again, the objective is to minimize exposure.
The vehicle begins at (x, y) = (600, 550) at 100 m AGL, heading north (positive
y axis) with a velocity of 50 kts. Here the GA and ACO algorithms produce very
different solutions, Figure 4-10(c). The ACO takes the strategy turning away from
the first threat as in scenario 5, and then turning away again when it is within radius
of the new threat. The GA, on the other hand, decides to bypass the second threat
completely and fly closer to the first threat.

From Figure 4-10(a) it is evident that the ACO solution has the lowest exposure.
To see why the ACO solution has a smaller exposure even though it passes through
both threat envelopes consider Figure 4-11(a) which shows the LOS exposure of the
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Figure 4-8: Scenario 5 Line-of-Sight Visualization

Figure 4-9: Scenario 5 Line-of-Sight Perspective

51



0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

Iteration

M
in

im
um

 E
xp

os
ur

e

ACO
GA
Heuristic only
Pheromone only
Purely random

(a) Best Overall Score

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

Iteration

P
op

ul
at

io
n 

A
ve

ra
ge

 E
xp

os
ur

e

ACO
GA
Heuristic only
Pheromone only
Purely random

(b) Population Average Score

(c) Trajectories

Figure 4-10: Scenario 6 Results

52



(a) ACO

(b) GA

Figure 4-11: Scenario 6 Line-of-Sight Visualization
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(a) Generation 5

(b) Generation 50

Figure 4-12: Genetic Algorithm Generation Comparison
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ACO trajectory. Since the second threat is in a ravine, by flying close to the ridge
the ACO trajectory is able to avoid LOS exposure with both threats. The GA is
also able to break LOS (Figure 4-11(b)), but by flying closer to the first threat its
exposure becomes much higher. One possible explanation for this behavior is a lack
of exploration by the GA. Figures 4-12(a)–(b) show the population of solutions at
generation 5 and 50 respectively. Notice that the GA has the tendency to stagnate
toward later generations so little exploration takes place.

4.1.7 Scenario 7

Scenario 7 introduces the added difficulty of a multi-objective cost function. Here
the UAV has the task of avoiding exposure to a single threat as much as possible,
but it must still get near the goal point. This is meant to represent the case where a
pop-up threat appears, but rather than abandoning whatever mission the vehicle was
flying, it must reach the next waypoint despite the unexpected change in environment.
The vehicle begins at (x, y) = (600, 550) at 100 m AGL, heading north (positive y
axis) with a velocity of 50 kts. The goal point is (1000, 1600). A threat with a radius
of 700 m is located at (500, 600). The cost function used was w1J1 +w2J2 where J1 is
a minimum distance objective given by Equation 3.4 and J2 is a minimum exposure
objective given by Equation 3.6. The heuristic used is given by Equation 3.10.

Again, both ACO and GA generate reasonable trajectories (Figure 4-13(c)). While
the GA tries to circumvent the threat, it does not make it to the goal point. The ACO
compromises by taking a straighter path through the threat envelope. This behavior
can of course be controlled by changing the weighting on the two terms in the cost
function. For this experiment, both weights were set to unity. From Figure 4-13(a)
it appears that both the ACO and GA improve at roughly the same rate. The ACO
starts with a better initial solution though, most likely due to the use of a heuristic.
ACO also manages to use terrain masking to its advantage as seen in Figure 4-14(a).

4.1.8 Scenario 8

A slight extension to scenario 7, scenario 8 adds an extra threat to the environ-
ment. This is the full-blown multi-threat, multi-objective motion planning problem
that is the basis of this thesis. The vehicle begins at (x, y) = (600, 550) at 100 m
AGL, heading north (positive y axis) with a velocity of 50 kts. The goal point is
(1000, 1600). A threat with a radius of 700 m is located at (500, 600). An additional
threat with a radius of 500 m is also present at (1200, 800). Results are similar to
those of scenario 7 (Figure 4-15).

4.2 Parameter Sensitivity

During implementation of the ACO algorithm, it is necessary to select several
design parameters. The most notable among these are α, β, q0, and τ0. As mentioned
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Figure 4-13: Scenario 7 Results
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(a) ACO

(b) GA

Figure 4-14: Scenario 7 Line-of-Sight Visualization
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Figure 4-15: Scenario 8 Results
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(a) ACO

(b) GA

Figure 4-16: Scenario 8 Line-of-Sight Visualization
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in Section 3.4.4 q0 and τ0 were fixed at 0.5 and 10 respectively for each scenario.
Reasonable values for each parameter were obtained from historical data [9]. In
analyzing the properties of ACO as applied to motion planning problems, parameter
sensitivity is a possible concern. As the specific motion planning that needs to be
solved will, in general, not be known in advance the algorithm should be relatively
insensitive to parameter selection. That is, it should be able to generate good solutions
for a range of parameter values. Figure 4-17 shows the solutions produced by the
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Figure 4-17: Scenario 3 Parameter Comparison

ACO algorithm for scenario 3 for various values of α and β. It would appear that
in this case the algorithm is rather insensitive to parameter changes. Each selection
produces nearly identical final trajectories (Figure 4-17(b)), and while there is a
noticeable difference in convergence rate (Figure 4-17(a)), they all end up finding
good solutions. Thus if the user needs a solution quickly, parameter selection becomes
a more critical issue. The same parameter sweep was applied to scenario 8 (Figure 4-
18) and the results are quite different. Not only does each selection produce a vastly
different trajectory, the convergence rate and quality of the final trajectory are very
different. It would appear that the complications added by the increased state-space
size, and discontinuous nature of the objective function makes parameter selection a
more critical issue. It is difficult to find a balance between α and β that perform well
across all scenarios.

4.3 Runtime Performance

Since the eventual goal of this algorithm development is real-time performance
some time must be spent analyzing the runtime characteristics of the ACO algorithm.
Both the ACO and GA algorithms were run on a Pentium 4 3.2GHz with 1GB of
RAM. In the 2D scenarios (1-3) the ACO had a maneuver library of 35 maneuvers.
The average time for a single ACO generation was 33.4 ms, while the average time for
a GA generation was 31.8 ms. In the 3D scenarios the ACO had a maneuver library
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Figure 4-19: Runtime Performance of ACO and GA

of 144 maneuvers. In these cases the average time for a single ACO generation was
117 ms, while the average time for a GA generation was 48 ms. The reason for the
discrepancy is most likely due to the pheromone maintenance of the ACO algorithm.
A good deal of time must be spent updating and maintaining the pheromone values,
as well as calculating the heuristic values for newly visited nodes. Clearly, as the
number of maneuvers increases this maintenance becomes more costly. This is not
the whole story though. Due to the faster convergence of ACO per generation and its
better initial value the ACO algorithm is able to find comparable solutions in about
the same amount of time as the GA. For example, in the same scenario it took ACO
1100 ms to find a solution with cost lower than 420, while the GA took 960 ms. Also,
the ACO continued to show significant improvement after this point, while the gains
from the GA were marginal. This can be seen in Figure 4-19 where best score has
been plotted as a function of time. In most every case ACO is able to return a good
solution faster than GA.
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Chapter 5

Conclusions

5.1 Analysis

This section will present some more in-depth discussion and big picture ideas from
the results. Recall that the objective of this thesis was to develop and validate a real-
time motion planner for use in agile aerial vehicles. It would seem that this objective
has been met. ACO was able to meet the requirements presented in Section 2.1. Good
solutions were found for a wide range of motion planning problems. In each scenario
presented, ACO outperformed GA and the other algorithms to some degree. Some
time should be spent analyzing why the ACO performed like it did, and any benefits
or detriments of the algorithm that were not known before. As discussed earlier, the
main difference between ACO and GA is the way in which solutions are constructed
and information passed from generation to generation. The hypothesis was that since
ACO builds solutions iteratively rather than using a crossover style method, it is
better suited to trajectory generation problems. This seems to be confirmed by the
results, but it is not the whole story. Several key issues that warrant further discussion
are heuristic influence, parameter selection, effect of state-space size, and stagnation.

It would seem that the heuristic plays a large role in ACO solution quality. Indeed,
even when the algorithm was originally developed and applied to the TSP a good
heuristic was needed to be competitive with existing methods [9]. This trend is evident
in the results where the ACO solutions very closely mimic that of the heuristic. This
strong heuristic contribution is something of a double-edged sword. If a good heuristic
can be developed from problem-specific information then ACO can perform very
well. Computing the heuristic values though may result in an undesirable increase in
runtime. In the absence of a good heuristic ACO has little hope of performing well.

A similar conclusion can be drawn for other randomized search methods. Indeed,
with any of these general heuristic methods starting solution generation with problem-
specific knowledge will likely result in better performance than if no prior information
is given. If heuristic information were incorporated into GA it would likely perform
better. Using heuristic information in a GA could take several forms. The population
could be initialized by selecting maneuvers weighted by heuristic values, rather than
purely random. Also, the mutation operator could be modified so that mutations
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toward maneuvers with higher heuristic values are more likely.

The parameter selection aspect of ACO is perhaps the most troublesome. There
appears to be no good way to select parameters such as α, β, τ0, etc. other than
trial-and-error. It was seen that for simple problem instances these parameters had
little effect on the outcome. For large-scale problems though there was a staggering
difference in solutions obtained. When a ‘good’ set of parameters is selected ACO
can outperform existing methods, but in the absence of reasonable parameter values
algorithm performance can be poor.

It would seem that ACO was indeed able to handle the large state-space presented
by the motion planning problem. It should be noted though that this ability is most
likely due to the use of a heuristic. The effect of pheromone deposit by a single agent
is reduced as state space size increases. For example, consider the case where m
maneuvers are available in the library, and a trajectory is n maneuvers long. This
leads to potentially mn states, and as many branches to deposit pheromone on. An
agent will only affect the pheromone on n of these branches. Compare this to the
TSP case where a fully connected graph with n nodes has O(n2) edges to deposit
pheromone on. The two most obvious solutions to this problem are using more
agents and running the algorithm for more generations. Each of these will result in
an increase in runtime. A more sophisticated solution could be to use ‘pheromone
smearing’ (Section 5.2.1) so that an agent affects more branches than just those
traversed. It is essentially a form of state aggregation in which similar states and
maneuvers are grouped so that pheromone update on one member of the group would
affect the others.

Stagnation is also a possible concern. The plots of best overall solution seem to
indicate that ACO quickly levels off and shows little improvement during later gener-
ations. But Figures 4-2(a)–(b) show that the population is not converging toward a
single region. The GA shows an opposite trend. There is steady improvement in the
best solution found but the population converges on a very narrow region during later
generations. One possible explanation is that ACO quickly finds a good solution, but
fails to exploit this knowledge in later generations. That is, the ACO algorithm is
exploring too much and not making use of information of good solution regions. If
this is the case, one possible solution is adjusting the parameters so that exploitation
of known solutions is heavily favored. This can be accomplished by selecting larger
values for q0, α, and the amount of pheromone deposited by an agent.

In general, ACO is well suited to agile motion planning problems, and is capable
of outperforming existing methods. Particularly in the case where the environment
is cluttered and obstacle avoidance becomes a primary concern, ACO can perform
significantly better than GA. This is due to the iterative manner in which ACO
constructs trajectories. While GA has to discard many possible solutions due to
the tendency of the crossover operator to produce infeasible solutions, ACO does
not need to discard any solutions and is able to avoid infeasible trajectories during
construction. This performance is dependent on existence of a good heuristic. If no
such heuristic is available, a GA is likely the more appropriate choice.
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5.2 Future Work

While the ACO algorithm performed well, there are still possibilities for improve-
ment. This section presents some ideas for future areas of research.

5.2.1 Pheromone Maintenance

Pheromone maintenance is the most critical aspect of any ACO implementation.
The scheme used in this thesis is described in Section 3.4.2. Many other options are
available though. Currently, when an agent deposits pheromone, and equal amount
is deposited along each branch of the decision tree. One possible modification is to
weight pheromone distribution so that larger amounts get deposited at the earlier
branches. This has the potential effect of more strongly affecting the initial maneu-
ver selections. This could be useful in the case where the first steps made are also
the most critical, such as the extreme case of choosing to go left or right around a
threat. Another possible modification is that of ‘pheromone smearing’. As discussed
in Section 5.1 the large state space of the motion planning problem can result in each
agent having a reduced effect on subsequent generations. With ‘pheromone smear-
ing’ rather than depositing pheromone only on the maneuver branch selected, each
agent would deposit pheromone on several maneuvers. For example, the benefit from
making a left turn of 20 degrees is probably similar to that from making a 15 degree
turn. As such, when an agent selects the 20 degree turn as a maneuver and later
updates the pheromone at that branch, it can also update the pheromone along the
15 degree turn branch. By defining a metric between maneuvers it may be possible
to have each agent adjust the pheromone levels on the maneuver it selected as well
as on ‘similar’ maneuvers.

5.2.2 ACO Extensions

Several extensions to the ACO formulation are also possible. The fact that ACO
is a discrete optimization scheme is potentially a limiting factor. One possible way
of extending it to continuous optimization is to use a continuous parameterization of
maneuvers and Gaussian kernels as the pheromone deposits [30]. This would require
the development of a pheromone look-up function F : X → P which maps states,
x ∈ X , to probability distributions over the set of available maneuvers, P . Another
possible way of extending ACO to continuous spaces is to integrate a local search
algorithm. That is, after an agent has constructed a solution, use a local search
scheme such as a gradient descent method to make minor parameter modifications to
each maneuver.

Another idea to increase algorithm efficiency is to implement a receding horizon
version of ACO. That is, rather than planning for a large time horizon, plan only for
a small one with the intention of replanning when the short-term horizon is reached.
ACO seems to lend itself well to receding horizon methods since the pheromone
information gained during one planning period can be used for subsequent planning
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periods. In terms of implementation this can be accomplished by starting the search
from a different node in the decision tree.

5.2.3 Parameter Optimization

The results in Section 4.2 are disconcerting. More work needs to be done to
determine if it is possible to optimize parameter selection, or how to decrease the
sensitivity of ACO to parameter changes. It is possible that this parameter sensitivity
is due in part to large state spaces. This seems to be supported by Figures 4-17 and
4-18 where a simple 2D search problem was unaffected by parameter changes. As
such, modifications such as ‘pheromone smearing’ or state aggregation might reduce
sensitivity.

Another ‘parameter’ that should be further investigated is the maneuver library
used. For this thesis a roughly uniform distribution of maneuvers was used within the
flight envelope. It is possible that there are better sets of maneuvers to use. In the
case of parameterized maneuvers one possible measure of quality could be the size of
the reachable space of the maneuver primitive in a given time horizon. Motion capture
from human pilots is also a possible source of high-quality maneuver primitives.
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