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Abstract

We consider approximation methods for discrete-time infinite-horizon partially observable
Markov and semi-Markov decision processes (POMDP and POSMDP). One of the main
contributions of this thesis is a lower cost approximation method for finite-space POMDPs
with the average cost criterion, and its extensions to semi-Markov partially observable
problems and constrained POMDP problems, as well as to problems with the undiscounted
total cost criterion.

Our method is an extension of several lower cost approximation schemes, proposed
individually by various authors, for discounted POMDP problems. We introduce a unified
framework for viewing all of these schemes together with some new ones. In particular, we
establish that due to the special structure of hidden states in a POMDP, there is a class
of approximating processes, which are either POMDPs or belief MDPs, that provide lower
bounds to the optimal cost function of the original POMDP problem.

Theoretically, POMDPs with the long-run average cost criterion are still not fully un-
derstood. The major difficulties relate to the structure of the optimal solutions, such as
conditions for a constant optimal cost function, the existence of solutions to the optimality
equations, and the existence of optimal policies that are stationary and deterministic. Thus,
our lower bound result is useful not only in providing a computational method, but also in
characterizing the optimal solution. We show that regardless of these theoretical difficul-
ties, lower bounds of the optimal liminf average cost function can be computed efficiently
by solving modified problems using multichain MDP algorithms, and the approximating
cost functions can be also used to obtain suboptimal stationary control policies. We prove
the asymptotic convergence of the lower bounds under certain assumptions.

For semi-Markov problems and total cost problems, we show that the same method
can be applied for computing lower bounds of the optimal cost function. For constrained
average cost POMDPs, we show that lower bounds of the constrained optimal cost function
can be computed by solving finite-dimensional LPs.

We also consider reinforcement learning methods for POMDPs and MDPs. We propose
an actor-critic type policy gradient algorithm that uses a structured policy known as a
finite-state controller. We thus provide an alternative to the earlier actor-only algorithm
GPOMDP. Our work also clarifies the relationship between the reinforcement learning meth-
ods for POMDPs and those for MDPs. For average cost MDPs, we provide a convergence
and convergence rate analysis for a least squares temporal difference (TD) algorithm, called
LSPE, and previously proposed for discounted problems. We use this algorithm in the critic
portion of the policy gradient algorithm for POMDPs with finite-state controllers.

Finally, we investigate the properties of the limsup and liminf average cost functions of
various types of policies. We show various convexity and concavity properties of these cost
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functions, and we give a new necessary condition for the optimal liminf average cost to be
constant. Based on this condition, we prove the near-optimality of the class of finite-state
controllers under the assumption of a constant optimal liminf average cost. This result
provides a theoretical guarantee for the finite-state controller approach.

Thesis Supervisor: Dimitri P. Bertsekas
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Overview

1.1 The Scope of the Thesis and Related Works

We consider discrete-time infinite-horizon partially observable Markov decision processes
(POMDPs) with bounded per-stage costs. Such models have a broad range of applications,
e.g., robot navigation, system control, resource allocation, experiment design and sequential
coding. Our work addresses several topics relating to the exact and approximate solutions
of POMDPs. In this section we give a preview of our results, and the background and
earlier works to which they are related. We address lower cost approximations of the
optimal cost function (Section 1.1.1), properties of the optimal solution to the average cost
problem (Section 1.1.2), and approximation algorithms for POMDPs and MDPs based on
reinforcement learning (Section 1.1.3).

1.1.1 Lower Cost Approximations for POMDPs with Undiscounted Cost
Criteria

The main contribution of this thesis is a lower cost approximation method for finite-space
POMDPs with the average cost criterion, and its extensions to semi-Markov partially ob-
servable problems (POSMDPs) and constrained POMDP problems, as well as to problems
with the undiscounted total cost criterion. The part on the average cost POMDP has a
preliminary version previously published in [YB04].

Relation to Theory on Optimal Solutions

Our lower cost approximation result for POMDPs with undiscounted cost criteria is a
consequence of the special structure of hidden states – a property that is unique to POMDPs
and not shared by general MDPs. We will show that by constructing fictitious processes
that in some sense exploit the information of the hidden states, one can derive lower bounds
of the optimal cost functions. Some of the lower bounds, which we call discretized lower
approximations, can then be computed exactly when the spaces are finite. The property
of hidden states that we use is also related to the concave preserving property of the DP
mappings of POMDPs [Åst69]. Elsewhere, this concavity has been shown useful not only
in deriving efficient computational methods for discounted POMDPs (e.g., [Son78, Lov91,
CLZ97]), but also recently in analyzing the existence of optimal policies that are stationary
and deterministic for average cost POMDPs ([HCA05]).
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At present the structure of the optimal solution to POMDPs with the average cost
criteria is still not well understood. The problem is significantly harder to analyze than its
counterpart with the discounted cost criterion, because the average cost DP equations are
only sufficient, and not necessary conditions for optimality. For the average cost criterion,
the focus of research has been on the constant optimal average cost POMDP problem and
on when the constant average cost DP equation has a bounded solution [Ros68, Pla80,
FGAM91, ABFG+93, RS94, Bor00, HCA05]. It is still hard to tell, however, whether most
of the problems in practice will or will not have this nice property, from the sufficient
conditions established in the literature so far. As we will show, there are very simple
examples of POMDPs in which the optimal average cost function is not constant.

In light of the preceding discussions, the usefulness of our results is thus not only in
suggesting computationally an approximation method, but also in characterizing the opti-
mal solutions and in providing performance measures for other computational approaches
for the average cost problems.

Relation to Discretized Approximations and Model Approximations

Our lower cost approximation approach for average cost POMDPs in fact grows out from
the same approach for discounted POMDPs. There, several discretized or continuous lower
approximation schemes are known. The first one was proposed by Lovejoy [Lov91] as a
measure of convergence for the subgradient based cost approximation proposed in the same
paper. Lovejoy’s lower bound was later improved by Zhou and Hansen [ZH01], and also
proposed by them as the approximate cost-to-go function for suboptimal controls. These
lower bounds are based on the concavity of the optimal discounted cost functions. In
reducing the computational complexity of incremental pruning – an LP based algorithm
of value iteration for discounted POMDPs ([LCK96, Cas98, ZL97, CLZ97]), Zhang and
Liu [ZL97] proposed a continuous approximation scheme, the “region-observable” POMDP.
In the “region-observable” POMDP, to derive approximation schemes one assumes that a
subset of the state space containing the true state would be revealed to the controller by a
fictitious “information oracle.” A different design of the partition of the state space, called
“region systems”, gives a different approximating POMDP, and the class of approximating
processes can range from the completely observable MDP to the POMDP itself. Prior to
Zhang and Liu’s work, the approximation based on the value of the completely observable
MDP had also been proposed by Littman, Cassandra, and Kaelbling [LCK95] to tackle
large problems.

Our work can be viewed as a generalization and extension of the lower approximation
approach for discounted POMDPs. We introduce a framework to characterize lower ap-
proximation schemes as a whole, including not only the previously known discretized and
continuous schemes that we mentioned above, but also new lower approximation schemes
that we have proposed. Conceptually, the idea in our development is close to that of the
information oracle in the “region-observable” POMDP. We present two lines of analysis for
establishing lower bounds. The first one combines the information oracle argument and the
monotonicity property of the DP mappings. It is an intuitive and constructive approach
for designing approximation schemes, and the use of the property of DP mappings is also
a common technique in analyzing general MDPs. Mathematically, this line of analysis,
however, leads to a weaker lower bound result, due to the dependence of the argument on
the DP mappings and consequently the convergence of value iteration. Our second line
of analysis subsequently alleviates this dependence, and proves a mathematically stronger
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lower bound result, which also applies to problems where the convergence of value iteration
is not guaranteed. This again uses the hidden state structure of a POMDP.

Another key feature in our characterization based on the information oracle idea, is
the model approximation view. We consider our approximation schemes as processes from
modified models, and reason out the relation between the optimal solution of the modified
problem and that of the original POMDP problem under various cost criteria and con-
straints. This model approximation view can be conceptually helpful in cases where the
original problem is hard to analyze. For example, in the case of an average cost problem, it
allows a line of analysis that does not rely on the existence of solution of the DP equations.

Relation to MDPs and SMDPs

The reason why lower bounds of the optimal cost functions are computable for finite space
POMDPs or POSMDPs, is because the modified problem corresponding to a discretized
lower approximation scheme can be viewed essentially as a finite state and action MDP or
SMDP – with additional infinitely many transient states – on the belief space. The devel-
opment of our lower cost approximation method thus has heavily relied on and benefited
from the completeness of the theories and algorithms for finite space MDPs and SMDPs.

In particular, there are two works important to our analysis that we would like to
mention. One of these works is the sensitive optimality theory, developed by Veinott, Miller
and many others (see the bibliography remarks of Chapter 10 of Puterman [Put94]). It
enables us to treat the average cost and total cost cases together, and it also has other uses
in our analysis. Another related result is the multichain average cost algorithms for MDPs,
which enable us to compute the lower bounds without imposing any conditions on either
the modified problem or the original POMDP problem.

We now address the difference between the way we derive lower bounds for POMDPs
and corresponding approaches in MDPs. As mentioned earlier, we use the unique feature
of hidden states of a POMDP, which does not apply to an MDP. One technique of deriving
lower or upper bounds in an MDP is based on the violations of the optimality equations, also
called Bellman residues. To apply this technique, one still need methods of approximating
the average and differential cost functions, which are not addressed by the technique itself.
Furthermore, aside from the fact that the bounds based on Bellman residues tend to be
loose and hard to compute in the case of POMDP, for average cost problems these bounds
are constant and hence not useful in the case where the POMDP has a non-constant optimal
average cost. Another result in an average cost MDP that is related to lower bounds, is based
on the fact that the optimal cost is the maximal solution to some inequalities associated
with the average cost optimality equations. This is however more useful in analysis than
computation, because finding a solution satisfying the inequalities is very hard in the case
of a POMDP.

Other Related Works

We also note several works somewhat related yet substantially different from ours. For
discounted and finite-horizon undiscounted MDPs with application to POMDPs, the work
by Lincoln and Rantzer [LR02] and Rantzer [Ran05] contains a lower cost approximation
method which is based on modifying the per-stage cost function and is computed through
value iteration. For discounted problems, discretized approximations that are not necessar-
ily lower bounds of the optimal are standard, and some related analysis can be found in
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e.g., [Ber75, Bon02].
The book by Runggaldier and Stettner [RS94] considers approximation methods (includ-

ing both belief approximation and cost approximation) for general space POMDPs under
discounted and average cost criteria, and contains comprehensive analysis. For the average
cost criterion Runggaldier and Stettner assumed a strong condition to ensure the existence
of a bounded solution to the constant average cost DP equation and the convergence of
the vanishing discount approach. They also suggested to use a near-optimal policy for a
discounted problem with sufficiently large discount factor as the suboptimal control in the
average cost problem, and proved the asymptotic convergence of the cost of these policies
under the assumption of a bounded solution to the constant average cost DP equation. The
convergence of costs of policies is an important issue. Since our analysis only established
convergence of the cost approximation but not that of the cost of the policies obtained
by solving an average cost modified problem, their results suggest, at least theoretically,
that for suboptimal control it may be more reliable to follow their approach under certain
assumptions.

For average cost MDPs with a continuous state space, the work by Ormoneit and
Glynn [OG02] is the closest to ours, and indeed some of our POMDP discretization schemes
can be viewed as special cases of their general discretized approximation schemes. However,
the work of Ormoneit and Glynn addresses a different context, one of approximating the
expectation by a sample mean and approximating the DP mapping by a random mapping.
Thus their schemes do not rely on the lower approximation property as ours do. Further-
more, their work has the usual recurrence assumptions for a general MDP, which are not
satisfied by a POMDP, therefore the analysis on various optimality and convergence issues
are also different in our work and theirs.

Computing lower bounds based on the information argument had appeared earlier in
a different field, information theory. In analyzing the entropy rate of stationary hidden
Markov sources, lower bounds of the entropy rate are established based on the fact that
information reduces entropy (see Cover and Thomas [CT91]). That method corresponds to
a special case of the information oracle. Since the entropy rate problem can be reduced to a
control problem with average cost criterion, our work provides new methods of computing
lower bounds for this problem as well as problems of the same kind, e.g., sequential coding
problems.

1.1.2 On the Optimal Average Cost Functions

Some of our work also relates to the exact solution of the average cost POMDP problem
with finite space models. These include:

(i) Examples of POMDPs with a non-constant optimal average cost function while the
associated completely observable MDPs are recurrent and aperiodic.

(ii) A necessary condition for a constant optimal liminf average cost function, (which is
also the necessary condition for the constant average cost DP equation to have a
bounded solution), based on the concavity of the optimal liminf cost.

Platzman [Pla80] gave an interesting example in which the optimal average cost of the
POMDP is constant, but there is no solution to the constant average cost DP equation. The
type of non-constant optimal average cost examples in (i) has not been addressed before,
and in fact one of our examples serves also as a counter-example to an earlier result on the
average cost problem in the literature [Bor00].
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The concavity of the optimal liminf average cost function and the necessary condition
in (ii) are new results also. The necessary condition is somewhat peculiar. It states that
if the optimal liminf average cost function is constant, then for any ε > 0 there exists a
history dependent randomized policy that does not depend on the initial distribution of
the state (i.e., only depend on the past observations and controls), but has an ε-optimal
liminf average cost for all initial distributions. Based on the existence of such policies, we
can further conclude that if the optimal liminf average cost is constant, then the optimal
limsup average cost equals the same constant.

Results (i) and (ii) are complementary to existing results (e.g., [Pla80, FGAM91, HCA05])
on when the optimal average cost is constant and when the constant average cost DP equa-
tion has a bounded solution. Furthermore, (i) and (ii) suggest in some sense that it might
be relatively strong to assume for a POMDP that the constant average cost DP equation
admits a bounded solution.

1.1.3 Reinforcement Learning Algorithms

In the last part of this thesis (Chapters 10 and 11) we consider approximation algorithms
for finite space POMDPs and MDPs under the reinforcement learning setting. This setting
differs from the previous problem setting – often referred as the planning setting – in that
a model of the problem is no longer required, and neither is an exact inference mechanism.
The motivation as well as inspiration behind these methods comes from animal learning and
artificial intelligence, and is to build an autonomous agent capable of learning good policies
through trial and error while it is operating in the environment (thus the name “reinforce”).
The reinforcement learning setting does require, however, that the per-stage costs or rewards
are physically present in the environment, which is not true for many planning problems. So
the reinforcement learning and the planning settings are complementary to each other. Via
simulations of the model, reinforcement learning algorithms can be applied in the planning
setting to obtain approximate solutions. For problems whose models are too large to handle
exactly and explicitly, such methods are especially useful.

The reinforcement learning methods for POMDPs are so far built upon the same
methodology for MDPs, for which there has been a rich literature developed in recent
years. For value iteration and policy iteration methods, most algorithms and their analyses
can be found in the books by Bertsekas and Tsitsiklis [BT96], Sutton and Barto [SB98], and
other works, e.g., [TV97, TV99, Kon02]. For policy gradient methods, the idea and detailed
analysis can be found in e.g., [GL95, CW98, SMSM99, KT99, BB01, MT01, Kon02].

Computationally, our contributions in this field are on analysis and extensions of two
algorithms. One is the policy gradient estimation algorithm for POMDPs and POSMDPs
with a subset of policies called finite-state controllers, and the other is a least squares
temporal difference algorithm called LSPE. The part on policy gradient in POMDPs was
published previously in [Yu05].

Theoretically, our contribution to the finite-state controller approach is a proof of near-
optimality of the class of finite-state controllers in the average cost case under a constant
optimal average cost assumption. The result however is established through our analysis on
the optimal average cost functions, and is not based on the theory of reinforcement learning
algorithms.
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Gradient Estimation for POMDPs and POSMDPs with Finite-State Controllers

The finite-state controller approach is a generalization of the finite memory (i.e., finite
length of history window) approach for POMDPs. Like a probabilistic automaton, the
internal state of the finite-state controller evolves probabilistically depending on the recent
history, and the controller outputs a randomized control depending on its internal state.

An important property is that under a finite-state controller, the state and observation
of the POMDP, and the internal state of the controller jointly form a Markov chain. Hence
the asymptotic behavior of the POMDP is well understood based on the MDP theory, (even
though the states are not observable), and consequently algorithms for MDPs are applicable,
when we take additional care of the hidden states. This property, when compared to the
difficulties in understanding the optimal policies for the average cost POMDP, makes the
finite-state controller a highly appealing approach.

There are also other attractive features in the finite-state controller approach. The
framework can incorporate naturally approximate inference; and it can separate the true
mathematical model from the subjectiveness, such as model uncertainty and subjective
prior distributions, by treating the latter as parameters of the controller.

Theoretically, the question of near-optimality of the class of finite-state controllers in the
average cost case has not been resolved, however. An interesting new result of this thesis is
that there exists an ε-optimal finite-state controller for any ε > 0, under the condition that
the optimal liminf average cost is constant.

The main computational methods to optimize over the set of finite-state controllers
have been policy gradient type methods (Baxter and Bartlett [BB01], Aberdeen and Bax-
ter [AB02]). There have been different opinions towards policy gradient methods in general
as to their effectiveness and efficiency compared to model-based methods, largely due to is-
sues on local minima, stochastic noises and convergence speed. Several recent works focus on
variance reduction techniques for policy gradient algorithms (Henderson and Glynn [HG01],
Greensmith, Bartlett and Baxter [GBB04]). On the other hand, whether a policy is ob-
tained from a model-based approximation method or any other method, the policy gradient
approach provides a generic way of further policy improvement.

Our contribution to POMDPs with finite-state controllers is to propose and analyze a
gradient estimation algorithm that uses a value function approximator. Policy gradient al-
gorithms proposed prior to our work for finite-state controllers belong to the so called actor-
only type of methods ([BB01, AB02] for POMDPs and Singh, Tadic and Doucet [STD02] for
POSMDPs). Overcoming a slight technical difficulty of hidden states that has perhaps been
neglected previously, our result finally shows that the Actor-Critic framework developed for
MDPs [SMSM99, KT99, Kon02] carries through to the case of POMDPs with finite-state
controllers, and algorithmically, the latter can be viewed as a special case.

On LSPE Algorithm

Our second contribution in the area of approximation algorithms is on LSPE, a least squares
temporal difference algorithm for policy evaluation in MDPs. The LSPE algorithm was
first proposed by Bertsekas and Ioffe [BI96] without convergence proofs, and was analyzed
for a diminishing stepsize by Nedić and Bertsekas [NB03], and for a constant stepsize by
Bertsekas, Borkar and Nedić [BBN03]. Extending the convergence proof in [BBN03] for the
discounted case, we prove the convergence of LSPE with a constant stepsize for the average
cost criterion. Furthermore, we prove that for both discounted and average cost criteria,
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the asymptotic convergence rate of LSPE is the same as that of the LSTD algorithm,
proposed initially by Bradtke and Barto [BB96] and extended by Boyan [Boy99]. The
LSTD algorithm is another least squares type algorithm differing from LSPE. It is proved
by Konda [Kon02] that LSTD has the optimal asymptotic convergence rate compared to
other TD algorithms. The convergence rate of LSPE has not been addressed before, and its
expression is not obvious due to the non-linearities involved in the LSPE updates. Thus the
result of Konda [Kon02] on LSTD has provided us with a shortcut in proving the optimal
asymptotic convergence rate of LSPE.

1.2 Contents and Organization

This thesis consists of two parts: Chapter 2 to Chapter 9 on POMDPs under the planning
framework in which the model is assumed given, and Chapter 10 to 11 on reinforcement
learning algorithms.

Chapter 2: Introduction to POMDP

In Chapter 2 we first give a brief introduction of POMDPs with general space models,
including definition of models, induced stochastic processes, optimality criteria and the
equivalent belief MDP as well as measurability issues. We then introduce the average cost
POMDP problem for finite space models, and discuss the associated difficulties and recent
progress. Along with the introduction we also show a few related miscellaneous results,
including two examples of POMDPs with a non-constant optimal average cost function,
and a somewhat peculiar necessary condition for a constant optimal liminf average cost.
The necessary condition further leads to a stronger claim on optimal average cost functions
and a proof of near-optimality of the class of finite-state controllers under the constant
optimal liminf cost assumption – we show these results in Appendix D.

Chapter 3-5: Lower Cost Approximations for Discounted and Average Cost
POMDPs

Chapter 3 considers general space POMDPs and establishes one of the main results of this
thesis: due to the special structure of hidden states in POMDPs, there is a class of processes
– which are either POMDPs themselves or belief MDPs – that provide lower bounds to the
optimal cost functions of the original POMDP problem for either the discounted, finite-
stage undiscounted, or average cost criteria. This chapter presents two lines of analysis,
which lead first to a weaker and then to a strengthened lower bound result. This lays the
foundation for the subsequent chapters up to Chapter 9.

Chapter 4 and Chapter 5 specialize the results of Chapter 3 to POMDPs with finite
space models for which certain lower bounds can be computed exactly, and their focus is on
issues in computing lower approximations and in analyzing approximation error and sub-
optimal controls. Chapter 4 considers the discounted case and summarizes the discretized
lower approximation schemes and asymptotic convergence issues there. Chapter 5 considers
the average cost case. It proposes to solve the modified problems under sensitive optimality
criteria such as n-discount optimality for obtaining lower bounds and suboptimal controls
for the original problem. It presents in details the algorithms, the approximation error and
asymptotic convergence analyses. It shows that if the constant average cost DP equation
of the original POMDP admits a bounded solution with the differential cost function being
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continuous, then the average cost approximations from the discretized schemes asymptoti-
cally converge to the optimal average cost.

Chapter 6: Extension to Semi-Markov Problems

Chapter 6 considers the more general partially observable semi-Markov decision processes
(POSMDPs). Its developments parallel those from Chapter 3 to Chapter 5, presenting
analogous results on lower cost approximation schemes and on algorithms solving modified
problems for finite space models to obtain lower bounds of the optimal cost functions under
the discounted or average cost criteria.

This chapter also addresses an application of the approximation results of POSMDPs
to POMDP problems with certain hierarchical controllers, in which one can obtain for
the POMDP problem lower bounds on the optimal cost over the subset of policies by
transforming the POMDP into a POSMDP.

Chapter 7: Extension to Total Cost Problems

Chapter 7 considers the implication of the lower bound results of Chapter 3 on the expected
undiscounted total cost POMDP problems for finite space models. It analyzes three cases:
non-negative, non-positive and general per-stage cost models. The main results are:

(i) For non-negative and non-positive per-stage cost models, the differential cost of a
0-discount optimal policy of the modified problem with a zero optimal average cost is
a lower bound of the optimal total cost of the original POMDP problem.

(ii) For non-negative per-stage cost models, under the assumption that the optimal to-
tal cost of the original POMDP is finite, the discretized lower cost approximations
asymptotically converge to the optimal.

(iii) For general per-stage cost models, the differential cost of a 0-discount optimal policy
of the modified problem with a zero optimal average cost is a lower bound of the
optimal limsup total cost of the original POMDP problem.

Chapter 8: Applications of Lower Bounds

Through example applications, Chapter 8 illustrates that the lower bound result for average
and total cost POMDPs can be applied to several problems, for which the use of the
discretized lower cost approximations is not in providing suboptimal control policies, but
in providing lower bounds and approximations to quantities of interest.

First, it demonstrates that problems such as reaching, avoidance and model identification
can be cast as POMDP problems, and lower bounds of the optimal average cost or total
cost can then be used to bound the probabilities or expected values of interest.

Secondly, it considers a classic problem on hidden Markov sources in information theory,
and demonstrates that the discretized lower approximation approach provides a new method
of computing lower bounds of the entropy rate of hidden Markov sources. Asymptotic
convergence issues are also addressed and proved under certain conditions. Applications of
the same type include sequential coding.
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Chapter 9: Lower Bounds for Constrained Average Cost POMDPs

Chapter 9 investigates the applicability of the discretized lower approximation schemes,
so far established for unconstrained problems, to constrained average cost problems with
finite spaces. The constrained problems under consideration are POMDPs with multiple
per-stage cost functions and with the objective being to minimize the limsup average cost
with respect to one per-stage cost function, subject to prescribed constant bounds on the
limsup average costs with respect to the other per-stage cost functions.

Chapter 9 describes and analyzes algorithms for solving the constrained modified prob-
lems (associated with discretized lower approximation schemes). The main results are

(i) A constant lower bound of the constrained optimal cost function can be computed
by solving a single finite-dimensional LP, which is the unichain LP of the modified
problem (regardless of its chain structure).

(ii) If the modified problem is multichain, a non-constant lower bound of the constrained
optimal cost function can be computed for each initial distribution, by solving a finite-
dimensional LP associated with that distribution.

(iii) If any one of the LPs is infeasible, then the original constrained problem is infeasible.

Chapter 10-11: Algorithms for Reinforcement Learning

Chapter 10 considers the estimation of the policy gradient in POMDPs with a special
class of structured policies called finite-state controllers. It extends the approach of an
earlier method GPOMDP, an actor-only method, and shows using ergodicity that policy
gradient descent for POMDPs can be done in the Actor-Critic framework, by making the
critic compute a “value” function that does not depend on the states of a POMDP. This
function is the conditional mean of the true value function that depends on the states. The
critic can be implemented using temporal difference (TD) methods with linear function
approximations, and the analytical results on TD and Actor-Critic can be transfered to this
case. Furthermore, it is shown that the same idea applies to semi-Markov problems with a
subset of finite-state controllers.

Chapter 11 considers finite space MDPs and proves some convergence results for the
LSPE algorithm, a least squares policy evaluation algorithm. In particular, it proves the
convergence of the average cost LSPE with a constant stepsize, and the asymptotically
optimal convergence rate of LSPE for both discounted and average cost cases.
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Chapter 2

Introduction to the Problem of
POMDPs with General Space
Models

A Markov decision process (MDP), also called a controlled Markov chain, is a sequential
decision problem in which the state evolves in a Markov way given the past states and
controls, and the goal is to minimize certain long term costs by controlling the evolution
of the states. The partially observable problem, POMDP, considers the case where the
states are no longer observable, but are partially “observable” through the observations
they generate. Though the dynamics of state evolution at every single stage is the same in
a POMDP as in an MDP, the fact that the controller in a POMDP does not have perfect
information about the states causes both analytical and computational difficulties to the
POMDP problem.

In this chapter, we give a brief introduction of POMDPs with general spaces. (General
space models will be used in Chapter 3 and Chapter 6, while discrete space models will be
used in the rest of the thesis.) We will start with reviewing the definition of the POMDP
problem, the induced stochastic processes, notions of optimality under different cost criteria,
the equivalent belief MDP formulation, and optimality equations as well as measurability
issues. We will then briefly introduce the average cost POMDP problem and its difficulties
in Section 2.4.

Along with the introduction, we will also give a few miscellaneous results that do not
seem to be known, or completely known. They are:

• concavity of the optimal liminf average cost function for general space models, and
Lipschitz continuity of the optimal liminf and limsup average cost functions for discrete
(i.e., finite or countably infinite) state space models (Section 2.2.2);

• examples of a finite space POMDP with non-constant optimal average cost when the
associated MDP is recurrent and aperiodic (Section 2.4.2); and

• for finite state space models, a somewhat peculiar necessary condition for the opti-
mal liminf average cost function being constant (Section 2.4.3), which will lead to a
stronger claim on the optimal average cost functions for a finite space POMDP, as
well as a proof of near-optimality of the class of finite-state controllers (Appendix D).
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2.1 POMDP Model and Induced Stochastic Processes

Let S, Y and U, called state, observation and control spaces, respectively, be Borel measur-
able sets of complete separable metric spaces.

For a metric space X, let B(X) denote the Borel σ-algebra of X, (i.e., σ-algebra gener-
ated by open balls); let P(X) denote the set of probability measures on B(X); and let the
metric on P(X) be the Prohorov metric.1 Define functions called transition probabilities2

as follows.

Definition 2.1. Let X and X ′ be separable metric spaces. We say a function P (·, ·) :
X ×B(X ′) → [0, 1] is a transition probability from (X,B(X)) to (X ′,B(X ′)), (abbreviated
“X to X ′”), if (i) for each x ∈ X, P (x, ·) is a measure on B(X ′), and (ii) for each A ∈ B(X ′),
P (x,A) as a function of x is Borel measurable. We say that P is a continuous transition
probability, if x→ y implies that P (x, ·) → P (y, ·).

We consider a discrete-time and time-homogenous POMDP. Its state, observation and
control at time t are denoted by St, Yt and Ut, respectively. Its model, including the dy-
namics of state evolution, the generation of observations and the per-stage cost function,
can be specified by a six-tuple < S,Y,U, PS , PY , g >, where

• PS((s, u), ·), called state transition probability, is a transition probability from S × U

to S, and it specifies the evolution of the state St given the previous state and control
(St−1, Ut−1);

• PY ((s, u), ·), called observation probability, is a transition probability from S × U to
Y, and it specifies the generation of the observation Yt given the current state and the
previous control (St, Ut−1); and

• g : S × U → R, called the per-stage cost function, is a real-valued Borel measurable
function, and it specifies the per-stage cost g(s, u) when the current state is s and
control u.

Throughout the thesis, we will assume boundedness of the per-stage cost function. We also
assume that for every state all controls are admissible, which is common practice in the
POMDP field.

The decision rules that specify how controls are applied at every time t, are called
policies. To define policies, first, we define Ht, t ≥ 0, called history sets, recursively as

H0 = ∅, Ht = Ht−1 × U× Y.

The set Ht is the space of observed histories, which consist of controls and observations up
to time t, (U0, Y1, . . . , Ut−1, Yt), prior to Ut being applied. The most general set of policies
can be defined as follows.

1Let P and Q be two laws on a metric space X with metric d. The Prohorov metric ρ(P, Q) is defined by

ρ(P, Q) = inf{ε : P (A) ≤ Q(Aε) + ε,∀A ∈ B(X)}, where Aδ def
= {x ∈ X : d(x, A) < δ}.

The Prohorov metric metrizes the convergence of laws. (See Dudley [Dud89].)
2While they are called transition probabilities by us and some authors, they are also called by other

authors stochastic transition kernels, or conditional probabilities.
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• We call π = (µt)t≥0 a policy, where (µt)t≥0 is a collection of functions such that for
each t, µt(·, ·) is a transition probability from Ht to U. We say that π is a history
dependent randomized policy.

• If for every t and h ∈ Ht the probability measure µt(h, ·) has all of its mass on one
single control, we say that the policy π is deterministic.

• We denote the set of all history dependent randomized policies by Π.

The set Π is indeed the common set of admissible policies for every initial distribution.
(Later we will introduce policies that also functionally depend on the initial distribution;
such a policy can be viewed as the set of pairs {(ξ, πξ)|ξ ∈ P(S), πξ ∈ Π}, i.e., for every
initial distribution one policy from Π is selected.)

Induced Stochastic Processes

The state, observation and control sequence {S0, U0, (St, Yt, Ut)t≥1} is to be defined formally
as a stochastic process induced by an initial distribution and a given policy. Definitions of
expected cost and notions of optimality will be given after this.

Let (Ω,F) be the canonical sample space for {S0, U0, (St, Yt, Ut)t≥1} with the Borel σ-
algebra F = B(Ω) and

Ω = S× U×
∞∏

t=1

(S× Y× U) .

With a sample ω = (s0, u0, . . . , st, yt, ut, . . .) ∈ Ω, the random variables are defined as the
projections of ω on their respective spaces:

St(ω) = st, t ≥ 0; Ut(ω) = ut, t ≥ 0; Yt(ω) = yt, t ≥ 1.

Let ξ ∈ P(S) be the initial distribution, and let π = (µt)t≥0 ∈ Π be a history dependent
randomized policy. There exists a probability measure Pξ,π on (Ω,F), induced by ξ and π,
that is consistent with the transition probabilities, i.e.,

Pξ,π(S0 ∈ ·) = ξ(·), Pξ,π(U0 ∈ ·) = µ0(·),
∀k ≥ 1 :

Pξ,π(Sk ∈ · | (St, Ut, Yt)t<k) = Pξ,π(Sk ∈ · | Sk−1, Uk−1) = PS ((Sk−1, Uk−1), ·) ,
Pξ,π(Yk ∈ · | (St, Ut, Yt)t<k, Sk) = Pξ,π(Yk ∈ · | Sk, Uk−1) = PY ((Sk, Uk−1), ·) ,
Pξ,π(Uk ∈ · | (St, Ut, Yt)t<k, Sk, Yk)(ω) = Pξ,π(Uk ∈ · | Fk)(ω) = µk (hk(ω), ·) ,

where {Fk} is an increasing sequence of σ-algebras generated by the past controls and
observations prior to Uk being applied:

F0 = {∅,Ω}, Fk = σ (U0, Y1, . . . , Uk−1, Yk) , k ≥ 1,

and hk(ω) = (u0, y1, . . . , uk−1, yk) ∈ Hk is the sample trajectory of the controls and obser-
vations up to time k and prior to Uk.
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Figure 2-1: The graphical model of a partially observable Markov decision process.

Graphical Model and POMDP

It is succinct to represent a POMDP by a graphical model shown in Fig. 2-1. Since we
will use this graph representation later in several places, we explain in some detail here the
representation and the way we use it in a decision process.

The graphical model is a way of specifying the conditional independence structure of
random variables by a graph. A reference to graphical models is [Lau96]. The type of
graphs we will be using are directed and acyclic. In some cases the graph coincides with
the actual physical mechanism that generates the random variables, so directed graphs are
also called generative models.

A directed acyclic graph specifies the form of the joint distribution of a finite collection
of random variables. Let V = {V 1, . . . , V n} be the vertices of the graph. Each V ∈ V

corresponds to a random variable in the stochastic process. Let Vpa denote the parents of
V , that is, vertices adjacent to the incoming edges of V . We say that a joint distribution
P
(
V 1, . . . , V n

)
, or the stochastic process (V 1, . . . , V n), is consistent with the graph if there

is a set of transition probabilities {PV (vpa, ·)} from the space of Vpa to the space of V such
that for any Borel set A in the product space of the spaces of V i, i ≤ n,

P
(
(V 1, . . . , V n) ∈ A

)
=
∫
· · ·
∫

1A(v1, . . . , vn)PV 1(v1
pa, dv

1) . . . PV n(vn
pa, dv

n),

where 1A(x) denotes the indicator function of the event {x ∈ A}.

Hence, a stochastic process can be fully specified by a graph with which it is consistent
and the collection of transition probabilities {PV (vpa, ·)} associated with the graph. Let
Van, called ancestors of V , be the set of vertices that have downward paths to V . The
graph representation is then equivalent to and more succinct than the statements “P(V ∈
·|Van) = P(V ∈ ·|Vpa)” for each vertex V in specifying the stochastic process.

In the case of a POMDP, which is a decision process, the graph in Fig. 2-1 specifies
the form of the joint distributions of those circled random variables, conditioned on the
non-circled variables, (here the controls). The six-tuple model of a POMDP specifies the
parameters PS and PY associated with the directed edges. When a policy is chosen, it
specifies the edges and parameters associated with Ut, and we then have a full graph rep-
resentation of the stochastic process {(St, Ut, Yt)} corresponding to a POMDP under that
policy. In the induced stochastic process, certain conditional independence statements, such
as “P(Y1 ∈ ·|S0, U0, S1) = P(Y1 ∈ ·|U0, S1),” can then be “read” off easily from the graphical
model.

24



2.2 Cost Criteria

We consider primarily two expected cost criteria, discounted cost and average cost, for
infinite-horizon problems. Throughout the thesis, we assume a bounded per-stage cost
function.

Assumption 2.1. There is a constant L > 0 such that |g(s, u)| ≤ L, for all s, u.

2.2.1 Definitions

Discounted cost

Let β ∈ [0, 1) be called a discount factor. In discounted infinite-horizon problems, the
expected total discounted cost Jπ

β of a policy π ∈ Π for an initial distribution ξ is defined
by

Jπ
β (ξ) = EPξ,π

{ ∞∑
t=0

βtg(St, Ut)
}
,

and the optimal cost function J∗β(ξ) is correspondingly defined by

J∗β(ξ) = inf
π∈Π

Jπ
β (ξ). (2.1)

The notation EP is used to specify that the expectation is taken with respect to the
probability measure P. Since we will deal with different probability measures induced
by different policies, we shall keep using this notation until it can be simplified without
ambiguity.

Average Cost

The average cost of a policy is defined by the limits of the long-run average of its expected
cost in the finite-horizon problem. Let the expected k-stage cost Jπ

k (ξ) of a policy π ∈ Π
for an initial distribution ξ be defined by

Jπ
k (ξ) = EPξ,π

{ k−1∑
t=0

g(St, Ut)
}
.

The optimal k-stage cost function J∗k (ξ) is defined by

J∗k (ξ) = inf
π∈Π

Jπ
k (ξ). (2.2)

The limit limk→∞
1
kJ

π
k (ξ) does not necessarily exist. So define the liminf and limsup average

costs of a policy by:

Jπ
−(ξ) = lim inf

k→∞

1
k
Jπ

k (ξ), Jπ
+(ξ) = lim sup

k→∞

1
k
Jπ

k (ξ),

which are the asymptotically best and worst, respectively, long-run average cost under the
policy π. Correspondingly, the optimal liminf and limsup average cost functions are defined
by

J∗−(ξ) = inf
π∈Π

Jπ
−(ξ), J∗+(ξ) = inf

π∈Π
Jπ

+(ξ). (2.3)
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In the literature, by the optimal average cost function we mean the optimal limsup cost
function, and by the optimal policy we mean the one whose limsup cost equals J∗+(ξ). We
will follow this convention, and when both optimal limsup and liminf cost functions are of
interest, we will address limsup and liminf explicitly.

2.2.2 Concavity and Continuity Properties of Cost Functions

When the state space S is discrete (i.e., finite or countably infinite), it is easy to show
that for all ξ, ξ̄ ∈ P(S), the β-discounted and k-stage cost functions of policy π satisfy,
respectively,

|Jπ
β (ξ)− Jπ

β (ξ̄)| ≤ L

1− β
ρ(ξ, ξ̄), |Jπ

k (ξ)− Jπ
k (ξ̄)| ≤ Lkρ(ξ, ξ̄), (2.4)

where L = 2maxs,u |g(s, u)|, and ρ(·, ·) is the Prohorov metric on P(S) (where S is endowed
with a discrete topology and a distance function, e.g., d(s, s′) = 0 if and only if s = s′, and
d(s, s′) = 1 otherwise.).

Proposition 2.1. The optimal β-discounted cost function J∗β(ξ) and the optimal k-stage
cost function J∗k (ξ) are concave in ξ. If S is discrete, then they are also Lipschitz continuous.

Proof: It is obvious that Jπ
β (ξ) and Jπ

k (ξ) are linear functions of ξ. Therefore, as the
pointwise infimum of linear functions, J∗β(ξ) = infπ∈Π J

π
β (ξ) and J∗k (ξ) = infπ∈Π J

π
k (ξ) are

concave in ξ.
When S is discrete, by Eq. (2.4) {Jπ

β (·) | π ∈ Π} and {Jπ
k (·) | π ∈ Π} are families of

uniformly bounded Lipschitz continuous functions each with the same Lipschitz constant,
hence J∗β(·) and J∗k (·) are Lipschitzian with the same Lipschitz constant L

1−β and Lk, re-
spectively.3 �

Remark 2.1. There are two other alternative ways to prove the concavity of the optimal
cost functions for general space models (under the bounded per-stage cost assumption),
which we will mention in the next chapter. These proofs are based on the optimality
equations (see the next section). The above proof, which is based on induced stochastic
processes, seems the easiest.

We now study the continuity and concavity properties of the average cost functions. By
the second equation of (2.4), when S is discrete, we have

1
k
|Jπ

k (ξ)− Jπ
k (ξ̄)| ≤ Lρ(ξ, ξ̄), (2.5)

i.e., for every policy π ∈ Π, all functions in the set { 1
kJ

π
k (·) | k ≥ 1} are Lipschitz continuous

with the same Lipschitz constant L.

3Let X be a subset of Rn and {fi | fi : X → R, i ∈ I} be an arbitrary collection of uniformly bounded
Lipschitz continuous functions each with Lipschitz constant C. The pointwise infimum function f(x) =
infi∈I fi(x) is Lipschitz continuous with the same Lipschitz constant: for any i ∈ I and x1, x2 ∈ X,

fi(x1) ≤ fi(x2) + Cd(x1, x2) ⇒ f(x1) ≤ f(x2) + Cd(x1, x2);

similarly, one can show f(x2) ≤ f(x1) + Cd(x1, x2); and therefore |f(x1)− f(x2)| ≤ Cd(x1, x2).
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Proposition 2.2. The optimal liminf average cost function J∗−(ξ) is concave in ξ. If S

is discrete, then the optimal liminf and limsup average cost functions J∗−(ξ) and J∗+(ξ) are
Lipschitz continuous on P(S) with Lipschitz constant L.

Proof: It is obvious that 1
kJ

π
k (ξ) is a linear function of ξ, i.e.,

1
k
Jπ

k (ξ) =
m∑

i=1

αi
1
k
Jπ

k (ξi)

for any convex combination ξ =
∑m

i=1 αiξi. By the non-negativity of αi and the inequality

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn,

Jπ
−(ξ) = lim inf

k→∞

m∑
i=1

αi
1
k
Jπ

k (ξi) ≥
m∑

i=1

αi lim inf
k→∞

1
k
Jπ

k (ξi) =
m∑

i=1

αiJ
π
−(ξi),

therefore Jπ
−(ξ) is a concave function of ξ. It follows that J∗−(ξ) = infπ∈Π J

π
−(ξ) as a

pointwise infimum of concave functions, is concave.
When S is discrete, by the preceding discussions, for any π ∈ Π, { 1

kJ
π
k (·) | k ≥ 1}

is a family of uniformly bounded Lipschitz continuous functions with the same Lipschitz
constant L. Hence it follows that Jπ

−(·) and Jπ
+(·) are Lipschitz continuous with the same

Lipschitz constant L.4 Since by definition J∗−(ξ) = infπ∈Π J
π
−(ξ) and J∗+(ξ) = infπ∈Π J

π
+(ξ),

and the inf operation preserves Lipschitz continuity, it follows that J∗− and J∗+ are Lips-
chitzian with the same constant. �

Remark 2.2. We do not know if the optimal limsup function is necessarily concave. Al-
though one can show similarly that Jπ

+(ξ) is a convex function of ξ by the inequality

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn,

J∗+(ξ) = infπ∈Π J
π
+(ξ) as the pointwise infimum of convex functions, may be neither convex,

nor concave.

2.3 Optimality and Measurability

The policies we have considered so far are structureless. Optimal or ε-optimal policies for
one initial distribution ξ are not related to those for another ξ′. We now introduce the
reduction of a POMDP to an MDP on P(S) with equal expected cost. The importance
of this well-known reduction is that it allows us to transport from general space MDPs to
POMDPs certain results such as optimality equations, structures of optimal policies, and

4Let X be a subset of Rn and {fi | fi : X → R, i ≥ 1} be a series of uniformly bounded equi-Lipschitzian
functions with Lipschitz constant C. The pointwise liminf function f(x) = lim infi→∞ fi(x) is Lipschitz
continuous with the same Lipschitz constant: for any i and x1, x2 ∈ X,

fi(x1) ≤ fi(x2) + Cd(x1, x2) ⇒ f(x1) ≤ f(x2) + Cd(x1, x2);

similarly, one can show f(x2) ≤ f(x1)+Cd(x1, x2); and therefore |f(x1)−f(x2)| ≤ Cd(x1, x2). Similarly, the
pointwise limsup function f(x) = lim supi→∞ fi(x) is Lipschitz continuous with the same Lipschitz constant.
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measurability conditions. These will be outlined in what follows. For the details, one can
see e.g., the books by Bertsekas and Shreve [BS78], and Dynkin and Yushkevich [DY79].

2.3.1 The Equivalent Belief MDP

Consider the induced stochastic process {S0, U0, (St, Yt, Ut)t≥1} and the probability measure
Pξ,π. Define P(S)-valued random variables {ξt} with ξ0 = ξ and

ξt(ω)(·) = Pξ,π (St ∈ · | U0, (Yk, Uk)k<t, Yt) (ω),

i.e., ξt is a version of the conditional distribution of the state St given the observed history
(U0, (Yk, Uk)k<t, Yt) prior to Ut being applied. So the random variable ξt is a function of
the initial distribution ξ and the observed history up to time t. We refer to ξt as beliefs. By
taking iterative conditional expectations, the expected n-stage cost (similarly the expected
discounted cost) can be expressed as

EPξ,π

{
n−1∑
t=0

g(St, Ut)

}
=

n−1∑
t=0

EPξ,π
{
EPξ,π{

g(St, Ut) | U0, (Yk, Uk)k<t, Yt

}}
=

n−1∑
t=0

EPξ,π {ḡ(ξt, Ut)} , (2.6)

where the function ḡ in the second equality is defined as ḡ : P(S)× U → R and

ḡ(ξ̂, u) =
∫
g(s, u)ξ̂(ds), ∀ξ̂ ∈ P(S), u ∈ U, (2.7)

and the second equality of Eq. (2.6) follows from the conditional independence of St and Ut

given the history (U0, (Yk, Uk)k<t, Yt). Equation (2.6) implies that for all n, the expected
n-stage cost of π with respect to the per-stage cost function g(s, u) and the state-control
process {(St, Ut)} can be equivalently viewed as the expected n-stage cost of π with respect
to a different per-stage cost function ḡ(ξ, u) and the belief-control process {(ξt, Ut)}, (al-
though for each sample path of the POMDP the costs with respect to the two per-stage
cost functions are different.)

The belief process {ξt} is “observable,” since the beliefs are functions of the histories
and the initial distribution. Furthermore, the beliefs also evolve in a Markov way due to
the Markovian property in a POMDP. In particular, for every u ∈ U, denote by P ξ,u

0 the
marginal distribution of (S0, S1, Y1) when the initial distribution is ξ and initial control u,
i.e.,

P ξ,u
0 ((S0, S1, Y1) ∈ A) =

∫
· · ·
∫

1A(s0, s1, y1)PY ((s1, u), dy1)PS((s0, u), ds1)ξ(ds0)

for all Borel measurable sets A of the space of (S0, S1, Y1). Correspondingly, let P ξ,u
0 (S1 ∈

· | Y1) be a version of the conditional distribution of S1 given the observation Y1, and let
P ξ,u

y be the marginal distribution of Y1. Then given ξt−1 = ξ and (Ut−1, Yt) = (u, y), the
succeeding belief ξt is equal to φu(ξ, y) ∈ P(S), where the function φ : U×P(S)× Y → P(S)
is defined by

φu(ξ, y)(A) = P ξ,u
0 (S1 ∈ A | Y1)

∣∣
Y1=y

, ∀A ∈ B(S). (2.8)
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(Note that φu(ξ, y) is determined by the model of a POMDP, not by any particular policy
π.) So ξt can be viewed as a function of (ξt−1, Ut−1, Yt), instead of ξ0 and the entire observed
history. We will refer to the function φ as the function for the next belief in the POMDP.

Furthermore, when our objective is to minimize a certain expected cost, it is well-
known that the belief ξt is a sufficient statistic for control, in the following sense. For any
policy π ∈ Π and any initial distribution ξ ∈ P(S), there exists a policy π̂ξ that functionally
depends only on the sufficient statistic, instead of the entire history, and induces a stochastic
process with the same expected cost as the one induced by π. (The proof for the case of
discrete spaces can be found in [Åst65], and for the case of general spaces in [BS78, DY79].)
This together with the preceding discussions implies that for any expected cost criterion
(e.g., discounted or undiscounted, finite or infinite horizon), controlling a POMDP can be
equivalently viewed as controlling the P(S)-valued process of beliefs. Furthermore, it is
sufficient to consider such policies π̂ξ, under the control of which, the process {(ξt, Ut)} can
be equivalently viewed as a completely observable MDP on the state space P(S).

This equivalent MDP is called belief MDP. We can view it as a process “embedded” in
the POMDP. When viewed separately by itself, its model can be described as follows. The
equivalent belief MDP has

• state space P(S) and control space U,

• per-stage cost ḡ(ξ, u) as defined by Eq. (2.7), and

• state transition probability, denoted by Pξ and defined by

Pξ ((ξ, u), A) =
∫

1A (φu(ξ, y1))P ξ,u
y (dy1), ∀A ∈ B(P(S)),

where P ξ,u
y is the marginal distribution of Y1 in the POMDP with initial distribution

ξ and control u.

We can now define policies with respect to the equivalent belief MDP. Since beliefs are
functions of the observed history, these policies are also admissible policies of the original
POMDP. In particular, a history dependent randomized policy π̂ of the belief MDP is a
collection of transition probabilities: π̂ = (µt)t≥0, where µt is a transition probability from
H′

t to U, with
H′

0 = P(S)

being the space of the initial distribution, and

H′
t = H′

t−1 × U× P(S)

being the space of the observed histories of beliefs and controls (ξ0, U0, . . . , Ut−1, ξt) up to
time t and prior to Ut being applied. Deterministic policies are defined as policies with the
probability measure µt(h′t, ·) assigning mass one to one single control for all t. As known
from the result of sufficient statistic for control in a POMDP, for a given initial distribution,
it is sufficient to consider only the Markov policies, that is, policies π̂ = (µt)t≥0 with µt

being a transition probability from P(S) to U and mapping the belief ξt to a randomized
control law. A Markov policy is called stationary if µt are the same for all t.

As will be addressed in the next section, for discounted and finite-stage POMDP prob-
lems, it is sufficient to consider only the deterministic and stationary policies with respect
to the belief MDP. (The average cost problems are more complex.)
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2.3.2 Optimality Equations

The equivalent belief MDP formulation allows one to pass results from general space MDPs
to POMDPs. Under measurability conditions to be specified later, the following results
are known for the discounted infinite-horizon and the undiscounted finite-stage problems.
(The average cost problem is not as well-understood and will be addressed separately in
Section 2.4.)

1. The optimal β-discounted infinite-horizon cost function J∗β and the optimal k-stage
cost function J∗k are measurable and bounded, and satisfy the following optimality
equations, also called dynamic programming (DP) equations, or Bellman equations:

J∗β(ξ) = inf
u∈U

[
ḡ(ξ, u) + β EP ξ,u

0
{
J∗β (φu(ξ, Y1))

}]
, (2.9)

J∗0 = 0, J∗k (ξ) = inf
u∈U

[
ḡ(ξ, u) + EP ξ,u

0
{
J∗k−1 (φu(ξ, Y1))

}]
, k ≥ 1. (2.10)

These optimality equations can also be written as

J∗β(ξ) =
(
TJ∗β

)
(ξ), β ∈ [0, 1), J∗k (ξ) =

(
TJ∗k−1

)
(ξ), β = 1,

where T is the mapping associated with the right-hand sides of Eq. (2.9) and (2.10),
and defined by

(TJ) (ξ) = inf
u∈U

[
ḡ(ξ, u) + β EP ξ,u

0 {J (φu(ξ, Y1))}
]
, β ∈ [0, 1],

for any bounded measurable function J . We call T the DP mapping of the POMDP.

2. In the discounted infinite-horizon case, if for all ξ the minima of the optimality equa-
tion are attainable, then there exists an optimal policy that is deterministic and
stationary (with respect to the belief MDP); otherwise, for every ε > 0, there exist
ε-optimal policies that are deterministic and stationary.

3. In the finite-stage case, if for all ξ the minima on the right-hand sides of the optimality
equations are attainable, then there exist optimal policies that are deterministic (with
respect to the belief MDP); otherwise, for every ε > 0, there exist ε-optimal policies
that are deterministic.

2.3.3 Measurability

We now describe the issues of measurability of cost functions and policies within our context.
As these issues are quite complicated, we will not go into them in detail. Instead, we
only briefly mention two approaches from the literature – the universal measurability and
the semi-continuity approaches, (for references, see e.g., Bertsekas and Shreve [BS78], and
Dynkin and Yushkevich [DY79]), and discuss what they mean in the context of a POMDP.

First note that we do not require the optimal cost functions to be measurable in the
definition given earlier. These functions are well defined as pointwise infima over policies
for each ξ. Nevertheless, this is not sufficient for the recursive optimality equations (2.9)
and (2.10) to hold, which involve expectation of the optimal cost functions, and therefore
require these functions to be measurable. The conditions so far given for general space
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POMDPs do not guarantee that the optimal cost functions are Borel measurable.5 Even
when they are measurable, there are no guarantees for an optimal or ε-optimal policy that
is measurable and stationary (with respect to the belief MDP).

To overcome these problems, the methodology of both the semi-continuity and universal
measurability approaches is to consider a set of measurable functions such that, with certain
conditions on the transition probabilities, the set is closed under the DP mapping. Further-
more, for every member function of the set, there always exists a measurable selection of
the exact or approximate minimum (as a function of the state) in the DP equation. Thus,
central to the methodology are the closedness of the set of measurable functions and the
selection theorem.

First we describe a context where the semi-continuity approach applies. We assume (i)
U is compact; (ii) g(s, u) is continuous; (iii) PS((s, u), A) and PY ((s, u), A) are continuous
transition probabilities; (iv) the next belief φu(ξ, y) as a function of (ξ, u, y) is continuous
when restricted on a set satisfying certain conditions.6 Under these assumptions, the results
of Section 2.3.2 hold with Borel measurable policies and the optimal cost functions being
continuous. The compactness assumption on U ensures that there exists an optimal policy
that is deterministic. However, as a comment on the assumptions, we consider condition
(iv) too restrictive for the POMDP problem, because it is not implied by (iii), which itself
can already be a very strong condition for some problems. (We note, however, that when
the state, observation and control spaces are discrete, all the continuity assumptions are
satisfied.)

In the context of a POMDP, the universal measurability approach is as follows. We
assume that (i) g(s, u) is lower semi-analytic,7 (ii) Π is defined to be the set of all history
dependent universally measurable policies.8 Under these assumptions, the results of Sec-
tion 2.3.2 hold with universally measurable policies and the optimal cost functions being
universally measuable, or more precisely lower semi-analytic. One thing to note in this case
is that, in the absence of assumptions guaranteeing that J∗β or J∗k is lower semi-continuous,
often one cannot ensure the existence of an optimal policy that is deterministic, even if U

is compact.
Under these conditions there are no measurability issues for either the POMDP or its

equivalent belief MDP. In this thesis whenever we talk about general space POMDPs, we
will assume that the measurability conditions are satisfied, either Borel measurable
or universally measurable, so that the results listed above hold. For the sake of notational
simplicity, we will keep using Borel σ-algebra, and it should be understood that what we
will state about general space POMDPs hold when the Borel σ-algebra and a measure on
it is replaced by the universal σ-algebra and the completion of the measure. On the other
hand for countable space POMDPs, the measurability issues are of no concern and can be
ignored.

5Generally, the function F (x) = infy f(x, y) is not Borel measurable even if the function f(x, y) is.
6Let this set be D and it is such that for any fixed (ξ, u), the set {y | (ξ, u, y) ∈ Dc} has P ξ,u

y -measure
zero, where P ξ,u

y is the marginal distribution of Y1 when the initial distribution is ξ and initial control u,
and Dc denotes the complement of D.

7A set is called analytic, if it is the image of a Borel set under a Borel measurable function; a real-valued
function f is called lower semi-analytic, if its lower level sets {x | f(x) ≤ µ} are analytic.

8A function on X is called universally measurable, if it is measurable with respect to the universal σ-
algebra of X – defined such that for any measure on B(X), a universally measurable function is measurable
for the completion of that measure, hence the name “universal”; a policy is called universally measurable, if
for every Borel set A of U, µt(h, A) as a function of h is universally measurable.
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2.4 The Average Cost Problem for Finite Space Models

2.4.1 Difficulties

Even for a POMDP with finite spaces, the average cost problem is still not well under-
stood, in contrast to the simplicity of the average cost problem in a finite space MDP. This
discrepancy can be intuitively explained as follows. While the asymptotic behavior of the
state-control sequence under a history dependent randomized policy is in general very hard
to analyze in a finite space MDP, fortunately, for an MDP there always exists an optimal
policy that is stationary and deterministic, so it is sufficient to consider only stationary
and deterministic policies under which the state process is simply a Markov chain. Admis-
sible policies in a POMDP, however, are in general history dependent randomized policies
of its associated completely observable MDP. Thus in a POMDP, even for stationary and
deterministic policies, their asymptotic behaviors are not easy to characterize. This causes
difficulties in analyzing the average cost POMDP problem.

A central question of the average cost POMDP is the existence of an optimal policy
that is stationary and deterministic (with respect to the belief MDP) under the average
cost criterion. By the theory of general MDPs, we have the following sufficient conditions.
If either the two nested equations – referred as optimality equations,

J(ξ) = min
u∈U

EP ξ,u
0 {J (φu(ξ, Y1))} , U(ξ)

def
= arg min

u∈U
EP ξ,u

0 {J (φu(ξ, Y1))} ,

J(ξ) + h(ξ) = min
u∈U(ξ)

[
ḡ(ξ, u) + EP ξ,u

0 {h (φu(ξ, Y1))}
]
, (2.11)

or the two equations – referred as modified optimality equations,

J(ξ) = min
u∈U

EP ξ,u
0 {J (φu(ξ, Y1))} ,

J(ξ) + h(ξ) = min
u∈U

[
ḡ(ξ, u) + EP ξ,u

0 {h (φu(ξ, Y1))}
]
, (2.12)

have a bounded solution (J∗(·), h∗(·)), then the optimal liminf and limsup average cost
functions are equal and J∗−(·) = J∗+(·) = J∗(·),9 and any stationary and deterministic policy
that attains the minima of the right hand sides simultaneously is an average cost optimal
policy.

If the optimal average cost function is constant, then the first equation of the optimality
equations (2.11) or (2.12) is automatically satisfied, leaving us the second equation, which
we will refer as the constant average cost DP equation:

λ+ h(ξ) = min
u∈U

[
ḡ(ξ, u) + EP ξ,u

0 {h (φu(ξ, Y1))}
]
. (2.13)

If a bounded solution (λ∗, h∗) to Eq. (2.13) exists, then both the optimal liminf and limsup
cost functions are equal to λ∗, and any stationary deterministic policy that attains the
minima of the right hand side is an average cost optimal policy.

For discrete space MDPs, only under certain recurrence conditions is the optimal average
cost guaranteed to be constant. Equations (2.11) and (2.12) are the optimality equations

9To see this, note first it is true for countable space MDPs (Theorem 9.1.3 and Theorem 9.1.2 (c)
of [Put94]) and then note that for every initial belief a finite space POMDP can be viewed as a countable
space MDP.
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for the multichain case, and Eq. (2.13) is the optimality equation for the unichain case.10

A finite space POMDP is peculiar in that under any policy only countable beliefs are
reachable from a given initial belief, so that naturally the belief space would be decompos-
able and the recurrence conditions would be in general violated. Nevertheless, even when
this happens, in some of the cases the optimal average cost can still be proved to be con-
stant, (see e.g., sufficient conditions for a constant optimal average cost in Hsu, Chuang
and Arapostathis [HCA05]). Thus although these optimality equations can be taken as the
starting point for the average cost POMDP problem, due to the special structure of hidden
states of a POMDP, the POMDP theory is not subsumed by the general MDP theory.

The theoretical studies on the average cost POMDP problem so far have been centered
on the existence of solution to the constant average cost DP equation (2.13), for which
necessary and sufficient conditions based on the vanishing discount argument are given
in [Ros68, Pla80, FGAM91, HCA05]. Ross’s result on general MDPs [Ros68] showed that
a sufficient condition in the context of a finite space POMDP is the equicontinuity of the
discounted cost functions. Platzman [Pla80] essentially proved that a necessary and suffi-
cient condition for a bounded solution to Eq. (2.13) in a finite space POMDP is the uniform
boundedness of the optimal discounted relative cost functions |J∗β(·)−J∗β(ξ̄)|, β ∈ [0, 1) with
ξ̄ being an arbitrary fixed reference point; and Hsu, Chuang and Arapostathis in their recent
work [HCA05] established the same necessary and sufficient condition in a POMDP with
discrete state and observation spaces, and a compact control space. Fernández-Gaucherand,
Arapostathis and Marcus [FGAM91] established sufficient conditions under which Eq. (2.13)
has possibly unbounded solutions, using the countability property of the set of reachable
beliefs in a discrete space POMDP.

Sufficient conditions relating to the transition structure of a POMDP that can be
easier to verify for given problems are also proposed in [Ros68, Pla80, RS94, FGAM91,
HCA05]. In particular, there are Ross’s renewability condition [Ros68], Platzman’s reach-
ability and detectability condition [Pla80], Runggaldier and Stettner’s positivity condi-
tion [RS94], and Hsu, Chuang and Arapostathis’s interior and relative interior accessibility
conditions [HCA05]. Hsu, Chuang and Arapostathis’s conditions are the weakest among
all. These conditions apply to certain classes of problems.

In summary, unlike for MDPs, we still do not fully understand the constant average
cost POMDP problem. Details of recent progress are summarized in the survey paper on
average cost MDPs [ABFG+93] by Arapostathis et al. and the recent work on average cost
POMDPs [HCA05] by Hsu, Chuang and Arapostathis. It is still unclear whether most
practical problems will have a constant optimal average cost; and not much is understood
for the average cost problem without the assumption of a constant optimal cost.

2.4.2 Examples of POMDP with Non-Constant Optimal Average Cost

It is natural to expect a non-constant optimal average cost of a POMDP, when its associ-
ated completely observable MDP is multichain, or is deterministic and periodic. We give
examples to show that the optimal average cost is not necessarily constant, even when the
completely observable MDP is recurrent and aperiodic (which means that the Markov chain

10Following [Put94], we classify an MDP as a unichain MDP, if under any stationary and deterministic
policy the induced Markov chain has one single recurrent class with a possibly non-empty set of transient
states, and we classify an MDP as a multichain MDP, if there exists a stationary and deterministic policy
under which the induced Markov chain has multiple recurrent classes.
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induced by any stationary deterministic policy of the MDP is recurrent and aperiodic). Af-
ter the examples, we will discuss the construction and implications.

Example 2.1. First we describe the model of a small MDP that will be used subsequently
to make a bigger MDP that we want. The MDP has 4 states {1, 2, 3, 4} and 2 actions {a, b}.
Fig. 2-2 shows the transition structures. We use the symbol ‘−’ to mean either action a or
b. For states except state 2, under either actions the transition probabilities are the same.
In particular, p(2 | 1,−) = p(3 | 1,−) = 1/2; p(4 | 3,−) = 1; p(1 | 4,−) = 1. For state 2,
the two actions differ: p(2 | 2, a) = p(4 | 2, a) = 1/2; p(1 | 2, b) = 1. For this MDP, there are
essentially only two different deterministic and stationary policies, namely, taking action a
or b at state 2. Both of them induce a recurrent and aperiodic Markov chain, as can be
easily seen.

{ a , 1/2 }

4

2

3

1

{ − , 1 }

{ a , 1/2 }{ − , 1/2 }

{ − , 1/2 }

{ − , 1 }

{ b , 1 }

Figure 2-2: The symbolic representation of a MDP with 4 states {1, 2, 3, 4} and 2 actions
{a, b}. Possible state transitions are indicated by directed edges with {action, probability}
values, and the symbol ‘-’ stands for either action a or b.

In this MDP if we apply the non-stationary policy that repeats actions in this sequence:

a, a, b, a, a, b, . . .

then starting from state 1, the set of states we possibly visit form a “cycle”:

{1} → {2, 3} → {2, 4} → {1}.

We choose the per-stage cost function so that the cost of this cycle is zero. In particular,
we define g(1, a) = 0, g(1, b) = 1; g(2,−) = 0; g(3, a) = 0, g(3, b) = 1; g(4, a) = 1, g(4, b) = 0.
Then the policy has zero cost from state 1. Since this policy does not depend on state
information at all, for any partially observable problem associated with this MDP, the
optimal average cost starting at state 1 is, with ξ̄(1) = 1,

J∗(ξ̄) = 0.

Now we combine two models of this MDP to have the MDP with 8 states as shown in
Fig. 2-3. We then double the action set to define actions {a′, b′}, under each of which the
transition probabilities are the same as under a or b, respectively. This MDP of 8 states
and 4 actions is recurrent and aperiodic (for every stationary and deterministic policy) by
construction.

We define the per-stage costs as follows. On states 1-4 the per-stage cost of applying
action a or b is as defined in the 4-state MDP, and the per-stage cost of applying a′ or b′
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{ b , 1 }

4

2

3

1

{ − , 1 }

{ a , 1/2 }{ − , 1/2 }

{ − , 1/2 }

{ a , 1/2 }

{ − , 1 }

{ a , 1/2 }{ − , 1/2 }

{ − , 1/2 }

{ a , 1/2 }

3’

1’

2’

4’

{ − , 1 }

{ b , 1 }

{ − , 1 }

Figure 2-3: The symbolic representation of a MDP with 8 states, constructed from stitching
up two 4-state MDPs shown in Fig. 2-2.

is 1; while on states 1′-4′ the per-stage cost of applying a′ or b′ is as defined in the 4-state
MDP, and the per-stage cost of applying a or b is 1.

Starting from ξ̄ with ξ̄(1) = 1, the optimal average cost is 0 for any partially observable
problem associated with this MDP, and one of the optimal policies is the one that repeats
controls in this sequence:

a, a, b, a′, a′, b′, a, a, b, a′, a′, b′, . . .

Consider a partially observable problem in which no observations can distinguish states
i from i′ for i = 1, . . . , 4. Consider the initial distribution ξ with ξ(1) = ξ(1′) = 1/2.
Then under any policy, because of the symmetry of the system, we always have the same
probability of being in state i as in state i′. Hence the expected cost of each step is at least
1/2, and consequently the optimal average cost is at least 1/2. Hence J∗−(ξ) > J∗(ξ̄). The
optimal average cost function cannot be constant. �

Remark 2.3. In the example above, one can see that we have still exploited the periodic
structure of the chain, even though the completely observable MDP is aperiodic under
stationary policies. As to the role of the periodic structure, we are inclined to believe that
it is not fundamental to the problem, but a mere constructional convenience. Key to the
construction in the example is the non-identifiability of the two subsets of the state space.
The next example to some degree confirms this observation.

Remark 2.4. The 4-state POMDP in the first part of the example indeed has a constant
optimal average cost which equals zero. This can be verified by showing that there is a
policy which asymptotically drives the state process to follow the cycle.

Example 2.2. The MDP has 4 states {1, 2, 3, 4} and 2 actions {a, b}, and its transition
structures are as shown in Fig. 2-4, where we use the symbol ‘−’ to represent any action.
Under any policy the state process is a Markov chain and the transition probabilities are
as follows: p(1|1,−) = 1/2, p(2|1,−) = 1/2; p(3|2,−) = 1; p(3|3,−) = 1/2, p(4|3,−) =
1/2; p(1|4,−) = 1. Clearly the Markov chain is recurrent and aperiodic.

Now we define the observations such that the states {1, 3} are indistinguishable and
{2, 4} are indistinguishable. In particular, let the observation space be {c, d} and let
p(c|1,−) = p(c|3,−) = 1; p(d|2,−) = p(d|4,−) = 1. Thus if we know the initial state,
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Figure 2-4: The symbolic representation of a MDP with 4 states and 2 actions. Possible
state transitions are indicated by directed edges with {action, probability} values, and the
symbol ‘-’ stands for either action a or b.

then the state process can be inferred from the observations as if it were completely observ-
able.

We then define the per-stage costs as g(1, a) = g(3, b) = 1 and all the other per-stage
costs to be zero. It follows that if we start from an initial distribution ξ(1) = 1 or an initial
distribution ξ(3) = 1, then the optimal average cost is zero, while if we start from an initial
distribution ξ with ξ(1) = ξ(3) = 1/2, say, then the optimal average cost is strictly greater
than zero. �

Remark 2.5. This example is also a counter example to a result of [Bor00] on the existence
of a bounded solution to the constant average cost DP equation. Consider the state processes
of two POMDPs governed by a common control process. It is stated in [Bor00] that if the
expected coupling time of the two state processes is bounded by a constant K0 under any
control process, then the optimal average cost must be constant. The POMDP in this
example satisfies the finite expected coupling time condition of [Bor00], since the Markov
chain is uncontrolled and recurrent, yet the optimal average cost function is non-constant.

Remark 2.6. Of course our examples violate the sufficient conditions given in the literature
for a constant optimal average cost. Our examples also violate a necessary condition that
we are going to show next.

2.4.3 A Peculiar Necessary Condition

We now show for the finite state space model a necessary condition for J∗− to be constant,
which sounds somewhat peculiar.

Recall the set Π of history dependent randomized policies, defined in Section 2.1. Each
π ∈ Π is a collection of conditional control probabilities {µt}t≥0 where µt maps the history
ht consisting of past observations and controls up to time t, to a measure on the control
space. (The initial history is by definition empty, so that µ0 is a measure on the control
space independent of the initial state distribution of the POMDP.)

Recall also that for any history dependent randomized policy π ∈ Π, Jπ
−(·) is a concave

function (see the proof of Prop. 2.2), and is bounded below by J∗−(·), the pointwise infimum
of all such functions {Jπ

−(·)|π ∈ Π}. Thus, if J∗−(·) is constant, then there must be a function
Jπ
−(·) that is nearly “flat”, implying that π is near-liminf optimal. This observation is stated

and proved formally in the following proposition. Abusing notation, we use J∗− to denote
the constant value of the function J∗−(·), when the latter is constant.
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Proposition 2.3. Assume a finite state space S. If the optimal liminf average cost function
J∗− is constant, then for any ε > 0, there exists a history dependent randomized policy π that
does not functionally depend on the initial distribution ξ, such that π is ε-liminf optimal,
i.e.,

Jπ
−(ξ) ≤ J∗− + ε, ∀ξ ∈ P(S).

The proof starts with a lemma, which uses some basic notions of convex analysis.11

Lemma 2.1. Let X be a compact and convex subset of Rn, and D be the relative boundary
of X. Let f : X → R, f(x) ≥ 0 be a non-negative and concave function. Then for any
relative interior point x̂ ∈ ri(X) = X \D and any x ∈ X,

f(x) ≤ Cx̂f(x̂), where Cx̂ =
(

maxx∈X ‖x− x̂‖
minx∈D ‖x− x̂‖

+ 1
)
.

Proof: For any x̂ ∈ ri(X) and x ∈ X, let r(x) be the intersection point of the relative
boundary D and the ray that starts at x and passes through x̂. By the concavity and
non-negativity of the function f , we have

f(x̂) ≥ ‖x̂− r(x)‖
‖x− x̂‖+ ‖x̂− r(x)‖

f(x) +
‖x− x̂‖

‖x− x̂‖+ ‖x̂− r(x)‖
f(r(x))

≥ ‖x̂− r(x)‖
‖x− x̂‖+ ‖x̂− r(x)‖

f(x).

Hence

f(x) ≤ ‖x− x̂‖+ ‖x̂− r(x)‖
‖x̂− r(x)‖

f(x̂) ≤
(

maxx∈X ‖x− x̂‖
minx∈D ‖x− x̂‖

+ 1
)
f(x̂),

and the claim follows. �

Proof of Prop. 2.3: For all π ∈ Π (as defined in Section 2.1), Jπ
−(·) is a concave function

(Prop. 2.2) and Jπ
−(·) ≥ J∗−.

Since the state space S is finite, P(S) is a compact and convex set in Rn with n = |S|.
Let D be the relative boundary of P(S). Pick an arbitrary ξ̂ in the relative interior of P(S),
and let Cξ̂ be defined as in Lemma 2.1.

For any ε > 0, let π be a policy such that Jπ
−(ξ̂) ≤ J∗− + ε

Cξ̂
. Applying Lemma 2.1 to

the concave and non-negative function Jπ
−(ξ)− J∗−, we have,

Jπ
−(ξ)− J∗− ≤ Cξ̂

(
Jπ
−(ξ̂)− J∗−

)
≤ Cξ̂

ε

Cξ̂

≤ ε, ∀ξ ∈ P(S),

i.e., Jπ
−(ξ) ≤ J∗− + ε and π is ε-liminf optimal. �

Remark 2.7. Note that the policy π in Prop. 2.3 is proved to be ε-liminf optimal, not
ε-limsup optimal. By contrast, there is a policy stationary with respect to the conditional

11Let X be a subset of Rn. The affine hull aff(X) of X is defined to be S + x̄ where x̄ is an arbitrary
point in X and S is the subspace spanned by X− x̄. A point x ∈ X is called a relative interior point if there
exists an open neighborhood N(x) of x such that N(x) ∩ aff(X) ⊂ X. The set of relative interior points of
X is called the relative interior of X, and denoted by ri(X). A convex set always has a non-empty relative
interior. Let cl(X) be the closure of X. The set cl(X) \ ri(X) is called the relative boundary of X.
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distributions of the states that is both liminf and limsup optimal, when the optimality
equation (2.13) admits a bounded solution.

Remark 2.8. For a POMDP with finite state, observation and control spaces, Prop. 2.3
indeed leads to a stronger claim on the optimal average cost functions, as well as a proof
of the near-optimality of the class of policies called finite-state controllers, to be discussed
later. These results are reported in Appendix D.

Finally, we mention an example which is due to Platzman. The POMDP has a constant
optimal average cost, but the constant average cost DP equation does not have a bounded
solution, and there exists an optimal policy that is deterministic and non-stationary (with
respect to the belief MDP). We show that for Platzman’s example the policy in Prop. 2.3
can be easily constructed.

Example 2.3 (Platzman [Pla80]). The POMDP has 2 states {1, 2}, 3 observations
{1, 2, 3}, and 3 actions {1, 2, 3}. Under any action, the state remains the same, i.e.,

p(S1 = i|S0 = i,−) = 1, i = 1, 2.

By applying actions one can gain information or rewards, however the two goals are “mu-
tually exclusive.” Under action 1 or 2, the observation 3 is generated which bears no
information of the state. Under action 3, the correct state is observed with probability p,
i.e.,

p(Y = i|S = i, U = 3) = p, i = 1, 2,

(without loss of generality, assuming p > 1/2.) The per-stage costs are

g(i, i) = −1, g(i, 3) = 0, i = 1, 2.

So, if the states are guessed correctly, the non-informative actions bring rewards.
By applying action 3 with a diminishing frequency, one can have an average cost of −1.

Thus the optimal average cost function is constant and equals −1. The constant average
cost DP equation does not have a bounded solution, however. To see this, suppose the
contrary that there is a bounded solution to

−1 + h(ξ) = min
u∈{1,2,3}

[
ḡ(ξ, u) + EP ξ,u

0
{
h
(
φu(ξ, Y1)

)}]
.

Then, for ξ with 1 > ξ(1) > 0 and 1 > ξ(2) > 0, actions 1 or 2 cannot attain the minimum
of the right hand side. Otherwise, since action 1 or 2 does not bring out information about
the state, the next belief remains the same, and by the DP equation,

−1 + h(ξ) = −ξ(1) + h(ξ), or − 1 + h(ξ) = −ξ(2) + h(ξ),

a contradiction. So only action 3 can attain the minimum of the right hand side, and thus
action 3 is optimal for all beliefs in the relative interior of the belief space, i.e., the set of ξ
with ξ(i), i = 1, 2 strictly greater than zero. However, starting from such a belief ξ, the belief
always remains in the relative interior, and the policy that applies action 3 all the time,
incurs an average cost of zero, which cannot be optimal. The contradiction implies that
the constant average cost DP equation does not admit a bounded solution. The preceding
discussion also shows that neither does the DP equation admit an unbounded solution in
the sense as defined and analyzed by [FGAM91]. �
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Indeed for this example, the history dependent policy in Prop. 2.3 can be chosen to be
the optimal. Independent of the initial distribution, fix a sequence tk, which will be the time
to apply action 3, such that action 3 is applied infinitely often with diminishing frequency,
i.e.,

lim
k→∞

tk = ∞, lim
t→∞

max{k | tk ≤ t}
t

= 0.

At time t, let nt(1) be the number of times that observation 1 is observed up to time t,
and nt(2) the number of times that observation 2 is observed up to time t. At time t 6= tk,
apply action 1 if nt(1) ≥ nt(2), and apply action 2 otherwise. By the law of large number,
it is easy to show that such a policy has average cost −1 and therefore optimal.

2.5 Summary

We have reviewed briefly POMDPs with general space models and the difficulties of the
average cost POMDP problems for finite space models. We have also shown a few new
results. Among them, we would like to acknowledge that the method of proving the concav-
ity and Lipschitz continuity of optimal cost functions by considering the induced stochastic
processes, instead of considering optimality equations, came to us from personal communi-
cations with Prof. S. K. Mitter.

Our results on non-constant optimal average cost examples and the necessary condi-
tion of Prop. 2.3 for a constant optimal liminf cost raise questions on whether for applied
problems the constant average cost DP equation will be usually satisfied. Our necessary
condition will further lead to a proof of near-optimality of the class of finite state controllers,
which has not been proved before.
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Chapter 3

Fictitious Processes, Inequalities
for Optimal Cost Functions and
Lower Bounds

3.1 Introduction

In this chapter we will establish that due to the special structure of hidden states in a
POMDP, one can construct a class of processes (either POMDPs themselves or belief MDPs)
that provide lower bounds of the optimal cost functions of the POMDP problem with either
the discounted, finite-stage undiscounted, or average cost criteria and with general space
models. This will lay the foundation for the subsequent chapters where the lower bound
results will be further discussed or extended.

For discounted problems individual lower approximation schemes (eg., [Lov91, LCK95,
ZL97, ZH01]) have been proposed as approximations to the optimal cost function. There,
the role of the lower approximations has been more computational than analytical, since
analytically the discounted problem is well understood.

Our main contribution is for the average cost criterion. The extension of these approxi-
mation schemes to the average cost problems and their role as lower bounds of the optimal
average cost function have not been proposed and analyzed previously. Since the average
cost POMDP problem is still not well understood (see Section 2.4), the role of the lower
approximations is thus, in our opinion, as much analytical as computational.

The development of this chapter, consisting of two lines of analysis and summarized
in Fig. 3-1, is as follows. We will analyze as a whole the class of processes that have the
lower bound property, and characterize them in a way linking to the information of hidden
states. To this end, we will first introduce in Section 3.2 processes that we will call fictitious
processes. They resemble the original POMDP and differ from it only in the first few
stages. Following their definitions and analyses, we give in Section 3.3 and 3.4 the lower
bound property in its primitive form – it will be characterized by the inequalities satisfied by
the optimal discounted and finite-stage cost functions J∗β and J∗k of the original POMDP. In
particular, when fictitious processes are defined for all initial distributions, one can define,
corresponding to their transition models, a belief MDP, which will be called the modified
belief MDP. The inequalities will be of the following form:

J∗β ≥ T̃J∗β , J∗k ≥ T̃J∗k−1,
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POMDP

Fictitious Process

Modified Belief

MDP

POMDP

Modified Belief

MDP

Approximating

POMDP

Figure 3-1: A summary of the development of this chapter. The left diagram corresponds
to the first line of analysis, in which we first construct fictitious processes resembling the
original POMDP by exploiting information of the hidden states, and we then derive the
corresponding modified belief MDPs and lower approximation schemes. This line of anal-
ysis is more intuitive and constructive. However, it leads to a weaker lower bound result.
The right diagram corresponds to the second line of analysis, in which we construct an
approximating POMDP that is equivalent to the modified belief MDP and also relates to
the original POMDP. This leads to a stronger lower bound result.

with T̃ being the DP mapping of the modified belief MDP. The transition models of the
belief MDP will be called a lower approximation scheme.

Since the average cost and the total cost are defined through limits of the finite-stage
costs, the finite-stage cost inequalities then lead to lower bounds of the optimal cost func-
tions for the average cost and total cost cases. Thus we obtain in Section 3.4 our first lower
bound result (Prop. 3.3) for the average cost case, which will be strengthened later.

We then consider ways of designing fictitious processes that seem natural and can be
useful in practice for designing cost approximation schemes. In Section 3.5, we will give
examples which include approximation schemes previously proposed for discounted prob-
lems, as well as a new lower approximation scheme and various combinations of schemes,
followed by a brief discussion on comparisons of schemes in Section 3.6. We will categorize
the design methods into two types of approaches that seem to be different conceptually.
One type involves an information oracle assumption, in which case information is revealed
and the evolution model of the POMDP is however not altered. The other type, which is
closely related to discretization-based approximation schemes, involves an alteration of the
POMDP model in addition to the revelation of information.

Next, in Section 3.8, following the second line of analysis, we will strengthen our lower
bound result of Section 3.3 and 3.4 to obtain the main theorem (Theorem 3.2), which is
more powerful. It alleviates the dependence of the lower bound result on the DP mapping
of the modified belief MDP, and enables one to claim directly that the optimal expected
cost of the modified belief MDP is a lower bound of the original POMDP under various
cost criteria, including constrained cases. Earlier, this property was known to be true only
for those approximation schemes constructed using the information oracle assumption. For
the general case it was proved only for finite space POMDPs and modified belief MDPs
that have essentially finite spaces, ([YB04] for the average cost case and other works by the
author for the total cost and constrained cases).

Our method of proof of Theorem 3.2 involves construction of an approximating POMDP
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that relates to both the original POMDP and the modified belief MDP. The approximating
POMDP is such that while it has an equivalent belief MDP formulation identical to the
modified belief MDP, it can be viewed at the same time as the original POMDP plus
additional observations (generated in a certain non-stationary way). The approximating
POMDP is a proof device here. For certain approximation schemes, it can be highly non-
intuitive to interpret them as approximating POMDPs. Nevertheless, this interpretation
and the main theorem show that at least mathematically, we need not distinguish between
approximation schemes constructed using the information oracle method and those using
the non-information oracle method.

In addition to the main line of analysis just outlined, we will also give in this chapter two
alternative ways of proving the concavity of the optimal discounted and finite-horizon cost
functions, besides the proof in Section 2.2.2. One is a by-product of the construction of the
fictitious process, which shows the link of concavity to the structure of hidden states. The
other is Åström’s backwards induction argument [Åst69] of proving that the DP mapping
of the POMDP preserves concavity. Åström’s proof was for the case of finite state and
observation spaces. For completeness, we will supply a proof for general space models in
Section 3.7. Alternatively (even though less constructively as we argue), the inequalities
we construct based on fictitious processes, can also be proved using the concave preserving
property of the DP mapping. The latter leads to the immediate extension of the inequalities
and hence the first lower bound property to the case where the per-stage cost is a concave
function of the belief. It is worth to mention that the second, stronger lower bound result
also holds for the concave per-stage cost case. Therefore there seems to be a technical
limitation in that method of analysis that relies on the DP mapping.

As a last comment before we start the analysis, in this chapter, we will focus more on
general analytical properties and be less concerned about computational issues. Chapters 4
and 5, as well as later chapters, will focus on the computation and application issues when
specializing the results to discretized cost approximation schemes for finite space models
with various optimality criteria.

3.2 Fictitious Processes

Notation

Fictitious processes are to be constructed on a sample space, which is different from the
sample space of the original POMDP. In addition to states, observations and controls, there
will be one more random variableQ = (Q1, . . . , Qm), which carries certain information of the
hidden states that the controller can exploit. This will be the key idea in the construction.

Let Q be M-valued, where M =
∏m

i=1 Mi and Mi are Borel measurable sets of complete
separable metric spaces. The sample space (Ω̃, F̃) of a fictitious process is defined as

Ω̃ = M× S× U×
∞∏

t=1

(S× Y× U) , F̃ = B
(
Ω̃
)
.

With a sample ω̃ = (q, s0, u0, . . . , st, yt, ut, . . .) ∈ Ω̃, the random variables of a fictitious
process,

{Q, S̃0, Ũ0, (S̃t, Ỹt, Ũt)t>0},
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are defined as the projections of ω̃ to their respective spaces:

Q(ω̃) = q, S̃t(ω̃) = st, t ≥ 0, Ỹt(ω̃) = yt, t ≥ 1, Ũt(ω̃) = ut, t ≥ 0.

Define an increasing sequence of σ-algebras {F̃t} corresponding to the observable history
consisting of controls and observations by

F̃0 = {∅, Ω̃}, F̃t = σ
(
Ũ0, Ỹ1, . . . , Ũt−1, Ỹt

)
, t ≥ 1.

Definition

The fictitious process will be constructed from a directed graphical model. Roughly speak-
ing, it is defined such that Q alters the POMDP model in the first stage, and from time
1 the process evolves like the original POMDP. The first stage model of the fictitious pro-
cess, which will correspond to cost approximation schemes defined later, is subjected to our
choice, provided that certain marginal distributions of the states, controls and observations
(marginalized over Q) are preserved, so that the expected cost in the fictitious process and
the expected cost in the original POMDP are equal for any common policy.

Formally, for a given initial distribution ξ, let there be an acyclic directed graph Gξ

on the vertex set V = {Q1, . . . , Qm, S̃0, Ũ0, S̃1, Ỹ1} with a set of transition probabilities
{PV (Vpa, ·) | V ∈ V}, where Vpa ⊂ V denotes the parent vertices of V . Furthermore, let
there be no parent node to Ũ0, i.e., Vpa = ∅ for V = Ũ0. By choosing such a graph Gξ, we
specify the probabilistic independence structure of those random variables involved in the
first stage of the fictitious process.

For any policy π = (µt)t≥0 defined as in Section 2.1, (i.e., a collections of conditional
control probabilities), a probability measure P̃ξ,π is induced on

(
Ω̃, F̃

)
. The choice of Gξ

and {PV (Vpa, ·)} must be such that the fictitious process satisfies the set of conditions listed
below.

Condition 3.1. For a given ξ and all policies π ∈ Π, the following relations hold.

1. P̃ξ,π(V ∈ · | Vpa) = PV (Vpa, ·) for all V ∈ V, i.e., P̃ξ,π is consistent with the graph Gξ.

2. Let h̃k(ω̃) = (Ũ0, Ỹ1, . . . , Ũk−1, Ỹk), i.e., the history of controls and observations. Then
P̃ξ,π(Ũ0 ∈ ·) = µ0(·), and for k ≥ 1,

P̃ξ,π(Ũk ∈ · | Q, (S̃t, Ũt, Ỹt)t<k, S̃k, Ỹk)(ω̃) = P̃ξ,π(Ũk ∈ · | F̃k)(ω̃) = µk

(
h̃k(ω̃), ·

)
,

(3.1)

i.e., Q and the states are not observable to the controller. Furthermore, for k ≥ 2,

P̃ξ,π
(
S̃k ∈ · | Q, (S̃t, Ỹt, Ũt)t<k

)
= P̃ξ,π

(
S̃k ∈ · | S̃k−1, Ũk−1

)
= PS

(
(S̃k−1, Ũk−1), ·

)
,

(3.2)

P̃ξ,π
(
Ỹk ∈ · | Q, (S̃t, Ỹt, Ũt)t<k, S̃k

)
= P̃ξ,π

(
Ỹk ∈ · | Ũk−1, S̃k

)
= PY

(
(S̃k, Ũk−1), ·

)
,

(3.3)

i.e., beginning from time 1 the process evolves like the original POMDP.
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3. The transition probabilities {PV } are such that

P̃ξ,π(S̃0 ∈ A) = ξ(A), ∀A ∈ B(S), (3.4)

P̃ξ,π
(
(S̃1, Ỹ1) ∈ A | Ũ0 = u

)
= Pξ,π ((S1, Y1) ∈ A | U0 = u) , (3.5)

∀A ∈ B (S× Y) , ∀u ∈ U.

In other words, the marginal distribution of S̃0 is the same as that of S0, and the
conditional distribution of (S̃1, Ỹ1) given Ũ0 = u is the same as that of (S1, Y1) given
U0 = u in the original POMDP.

The first and second conditions in Condition 3.1 describe the structure of the fictitious
process. Only the third condition places a constraint on the model parameters {PV }. This
condition ensures that by construction the fictitious process has the following property:

Lemma 3.1. For any policy π ∈ Π, (S̃0, Ũ0) has the same marginal distribution as (S0, U0),
and (S̃t, Ỹt, Ũt)t≥1 conditioned on Ũ0 = u has the same distribution as (St, Yt, Ut)t≥1 condi-
tioned on U0 = u in the original POMDP.

Thus, for a given initial distribution ξ, it holds that for any π ∈ Π, the expected cost of
the fictitious process and the expected cost of the POMDP are equal:

E
ePξ,π

{ ∞∑
t=0

βtg(S̃t, Ũt)

}
= Jπ

β (ξ), E
ePξ,π

{
k−1∑
t=0

g(S̃t, Ũt)

}
= Jπ

k (ξ). (3.6)

In particular, the above equations hold for the optimal or ε-optimal policies (of the POMDP)
that are deterministic. We now use these facts to derive inequalities for the optimal cost
functions.

3.3 Inequalities for Discounted Infinite-Horizon Case

Let P̃ ξ,u
0 be the marginal distribution of (Q, S̃0, S̃1, Ỹ1) in the fictitious process with the ini-

tial distribution ξ and initial control u. Define φ̃u(ξ, (q, y1)) to be a version of the conditional
distribution of S̃1 given (Q, Ỹ1):

φ̃u (ξ, (q, y1)) (A) = P̃ ξ,u
0 (S̃1 ∈ A | Q, Ỹ1)

∣∣∣
(Q,Ỹ1)=(q,y1)

, ∀A ∈ B (S) ,

which is the “belief” that would be if Q is revealed prior to control Ũ1 being applied. The
inequality we show next says intuitively that if Q is revealed at time 1 then the cost will be
smaller for a controller that exploits this information.

Proposition 3.1. For a given ξ, let {Q, S̃0, Ũ0, (S̃t, Ỹt, Ũt)t>0} be a fictitious process satis-
fying Condition 3.1. Then

J∗β(ξ) ≥ inf
u∈U

[
ḡ(ξ, u) + β E

eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1))

)}]
. (3.7)
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Proof: First assume a deterministic optimal policy exists, and denote it by πξ. Define

G1 = σ
(
Q, Ũ0, Ỹ1

)
. By Lemma 3.1,

J∗β(ξ) = E
ePξ,πξ

{
g(S̃0, Ũ0)

}
+ E

ePξ,πξ

{
E

ePξ,πξ

{ ∞∑
t=1

βtg(S̃t, Ũt)
∣∣∣G1

}}
. (3.8)

Let
νω̃(·) = P̃ξ,πξ

(
S̃1 ∈ · | G1

)
(ω̃),

then by construction of the fictitious process (Condition 3.1), for any A ∈ F,

P̃ξ,πξ

((
S̃1, Ũ1, (S̃t, Ũt, Ỹt)t>1

)
∈ A | G1

)
(ω̃) = Pνω̃ ,πω̃

(
(S0, U0, (St, Ut, Yt)t>0) ∈ A

)
,

where πω̃ = (µ′t)t≥0 is a policy defined by, assuming πξ = (µt)t≥0,

µ′t(ht, A) = µt+1

(
(Ũ0, Ỹ1, ht), A

)
, ∀A ∈ B(U).

Hence,

E
ePξ,πξ

{ ∞∑
t=1

βtg(S̃t, Ũt)
∣∣∣G1

}
(ω̃) = β EPνω̃,πω̃

{ ∞∑
t=0

βtg(St, Ut)

}
≥ βJ∗β(νω̃). (3.9)

It follows from Eq. (3.8) and (3.9) that, assuming U0 = ū for πξ,

J∗β(ξ) ≥ E
ePξ,πξ

{
g(S̃0, Ũ0)

}
+ β E

ePξ,πξ{
J∗β (νω̃)

}
= ḡ(ξ, ū) + β E

eP ξ,ū
0

{
J∗β

(
φ̃ū(ξ, (Q, Ỹ1))

)}
≥ inf

u∈U

[
ḡ(ξ, u) + β E

eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1))

)}]
,

where the expectation in the right-hand side of the first equation is justified because J∗β
is measurable and bounded, and νω̃ is G1-measurable, and hence J∗β (νω̃) is G1-measurable;
and similarly the expectations in the second and third equations are justified.

When a deterministic optimal policy does not exist, we can take a sequence of deter-
ministic εk-optimal policies with εk ↓ 0 and repeat the same argument. Thus the claim is
proved. �

Remark 3.1. The proof above does not assume continuity or concavity property of J∗β .
In summary it used the following facts of the POMDP problem: (i) J∗β is measurable and
bounded; and (ii) there exist deterministic optimal or ε-optimal policies to the POMDP
problem.

One example of the fictitious processes is the following simple construction based on
replacing the initial distribution by a mixture of distributions. The corresponding inequality
is later to be used as a discretized lower cost approximation scheme. The inequality also
implies that J∗β is concave.
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Figure 3-2: The graphical model of the fictitious process in Example 3.1.

Example 3.1. For any ξ, ξi ∈ P(S), γi ∈ [0, 1], i = 1, . . . k such that ξ =
∑k

i=1 γiξi, we
generate S̃0, whose marginal distribution is ξ, from a mixture of distributions {ξi}. The
directed graphical model is shown in Fig. 3-2. Let Q ∈ M = {1, 2, . . . , k}, and define

PQ(Q = i) = γi, i = 1, . . . , k; PS̃0
(i, S̃0 ∈ ·) = ξi(·).

Condition 3.1 is clearly satisfied. Using the relation

E
eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1))

)}
= E

eP ξ,u
0

{
E

eP ξ,u
0

{
J∗β
(
φ̃u(ξ, (Q, Ỹ1))

)
| Q
}}

=
k∑

i=1

γiE
P

ξi,u
0
{
J∗β
(
φu(ξi, Y1)

)}
,

the inequality of Prop. 3.1 is now specialized to the following equation.

Corollary 3.1. For ξ =
∑k

i=1 γiξi, ξ, ξi ∈ P(S), γi ∈ [0, 1], i = 1, . . . k,

J∗β(ξ) ≥ inf
u∈U

[
ḡ(ξ, u) + β

k∑
i=1

γiE
P

ξi,u
0
{
J∗β
(
φu(ξi, Y1)

)}]
. (3.10)

By exchanging the order of inf and summation, using the fact that ḡ(ξ, u) =
∑

i γi ḡ(ξi, u),
we have

J∗β(ξ) ≥
k∑

i=1

γi inf
u∈U

[
ḡ(ξi, u) + β EP

ξi,u
0
{
J∗β
(
φu(ξi, Y1)

)}]
=

k∑
i=1

γi J
∗
β(ξi),

which implies the concavity of the function J∗β . �

Remark 3.2. This gives the second way of proving the concavity of the optimal cost
functions. In the literature, an alternative proof of concavity of J∗β assumes the case of
discrete spaces and uses a backward induction argument [Åst69]. In Section 3.7, we will
extend the backward induction argument to the general space case.
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More Complicated Inequalities

We can define more complicated fictitious processes by altering the model of the first k stages
of the original POMDP, instead of only the first stage model as we did. Correspondingly we
can derive more complicated inequality expressions. These fictitious processes can still be
viewed as fictitious processes as we defined earlier, if we consider the equivalent POMDP
problem that has each one of its stages identical to k stages of the original POMDP, (and
enlarge the state, observation and control spaces accordingly). For simplicity, we will not
discuss these inequalities here, although we will mention a few examples in the later chapters.

3.4 Inequalities for Finite-Horizon Case

The inequality for the optimal k-stage cost function follows from the same argument as in
the proof of Prop. 3.1:

Proposition 3.2. For a given ξ, let {Q, S̃0, Ũ0, (S̃t, Ỹt, Ũt)t>0} be a fictitious process satis-
fying Condition 3.1. Then

J∗k (ξ) ≥ inf
u∈U

[
ḡ(ξ, u) + E

eP ξ,u
0

{
J∗k−1

(
φ̃u(ξ, (Q, Ỹ1))

)}]
. (3.11)

Our interest of the finite-horizon problem is in its relation to the average cost problem.
From the finite-stage inequality (3.11) we can derive lower bounds of the optimal liminf
average cost function. To this end, noticing that the fictitious processes and their associated
inequalities are defined for one initial distribution ξ, we now consider the set of fictitious
processes for all ξ.

Definition 3.1. We call the set {P̃ ξ,u
0 | ξ ∈ P(S), u ∈ U} a lower approximation scheme,

if for each ξ a fictitious process is defined with the induced probability measures satisfying
Condition 3.1 and with P̃ ξ,u

0 being the corresponding law of (Q, S̃0, S̃1, Ỹ1), and furthermore,
φ̃u(ξ, (q, y1)) as a function of (ξ, u, q, y1) is Borel-measurable.

Define T, the DP mapping of the POMDP, and T̃, the mapping associated with a lower
approximation scheme {P̃ ξ,u

0 | ξ ∈ P(S), u ∈ U} by

(TJ)(ξ) = inf
u∈U

[
ḡ(ξ, u) + EP ξ,u

0
{
J
(
φu(ξ, Y1)

)}]
,

(T̃J)(ξ) = inf
u∈U

[
ḡ(ξ, u) + E

eP ξ,u
0

{
J
(
φ̃u(ξ, (Q, Ỹ1))

)}]
.

We assume that both T and T̃ preserve measurability, (which can be satisfied by making
proper continuity or lower semi-analytic assumptions on J and g), so that Tk and T̃k are
well defined. Clearly both T and T̃ have the monotonicity property, i.e.,

J1 ≥ J2 ⇒ TJ1 ≥ TJ2, T̃J1 ≥ T̃J2.

The Modified Belief MDP

Corresponding to a lower cost approximation scheme, we define a belief MDP on P(S) with
the mapping T̃ as its DP mapping. We call this belief MDP the modified belief MDP, or
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the modified MDP in short. Its per-stage cost function is defined by ḡ(ξ, u) and its state
transition probability, denoted by P̃ξ, is defined by

P̃ξ ((ξ, u), A) =
∫

1A

(
φ̃u

(
ξ, (q, y1)

))
dP̃ ξ,u

q,y1
, ∀ξ ∈ P(S), u ∈ U, A ∈ B(P(S)),

where P̃ ξ,u
q,y1 denotes the marginal distribution of (Q, Ỹ1) corresponding to the joint distri-

bution P̃ ξ,u
0 of (Q, S̃0, S̃1, Ỹ1). (In other words, the modified belief MDP is constructed by

repeating and joining together at every stage the first-stage model of the fictitious pro-
cesses.)

Our First (Weaker) Average Cost Lower Bound

Define J0(ξ) = 0 for all ξ ∈ P(S). Then the k-stage optimal cost J∗k satisfies J∗k = TkJ0 by
the finite-stage optimality equation (i.e., Bellman equation). Define

J̃∗k (·) = (T̃kJ0)(·), k ≥ 0.

The function J̃∗k is the k-stage optimal cost function of the modified belief MDP. We claim
that J∗k ≥ J̃∗k . To see this, we use induction: first, J∗0 = J̃∗0 = J0; suppose J∗k−1 ≥ J̃∗k−1, and
it follows then from inequality (3.11) and the monotonicity of T̃ that

J∗k ≥ T̃J∗k−1 ≥ T̃J̃∗k−1 = J̃∗k . (3.12)

Recall from the definition of the optimal liminf average cost

J∗−(ξ) = inf
π∈Π

lim inf
k→∞

1
k
Jπ

k (ξ) ≥ lim inf
k→∞

inf
π∈Π

1
k
Jπ

k (ξ) = lim inf
k→∞

1
k
J∗k (ξ). (3.13)

Hence we have the following proposition.

Proposition 3.3. Let J0 = 0 and T̃ defined by a lower approximation scheme from Defi-
nition 3.1. Then

lim inf
k→∞

1
k

(
T̃kJ0

)
(ξ) ≤ J∗−(ξ), ∀ξ ∈ P(S).

Remark 3.3. When specialized to discretized approximation schemes in POMDPs with
finite spaces, the quantity of the left-hand side can be computed exactly, and hence we
obtain lower bounds on the optimal liminf cost function of a POMDP.

Remark 3.4. For the β-discounted case, it can be seen that T̃ is also a contraction mapping.
Hence by a similar argument, J̃∗β ≤ J∗β , where J̃∗β and J∗β are the optimal discounted cost
functions of the modified belief MDP and the original POMDP, respectively.

Proposition 3.3 will be strengthened later in Section 3.8. Let us address here one motiva-
tion for strengthening it. Note that similar to Eq. (3.13), it can be shown that by definition
the optimal liminf average cost function J̃∗− of the modified belief MDP satisfies

J̃∗−(ξ) ≥ lim inf
k→∞

1
k
(T̃kJ0)(ξ).

Thus, in order for us to claim J̃∗− ≤ J∗− using Prop. 3.3, we will have to rely on the
convergence of value iteration 1

k T̃kJ0 to J̃∗−, which does not hold for general cases. Similar
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issues also arise in the total cost case as well as other cases. We will see more motivations
in the next section on examples of fictitious processes.

3.5 Examples

We give more examples of fictitious processes that correspond to several approximation
schemes from the literature. We categorize the design methods into two conceptually dif-
ferent types. One type we refer to as the “replacing” approach and the other type as the
“information oracle” approach – the categorization is more from the point of view of de-
signing a lower approximation scheme, than that of proving a certain scheme being a lower
approximation scheme. There can be more methods than those we are aware of at present.

The way we construct the fictitious process in Example 3.1 belongs to the “replacing”
approach. In that example we replace the state variable of the original POMDP by a new
state variable with the same marginal distribution and generated from a mixture of distri-
butions. Example 3.2 is another example of this approach. However, instead of replacing
the initial state, it replaces the first state by another variable with the same (conditional)
marginal distribution and generated from a mixture of distributions. Example 3.2 is a
fictitious-process interpretation of the approximation scheme proposed initially by Zhou
and Hanson [ZH01] for discounted problems. When a fixed set of component distributions
in the mixture are chosen for all initial distributions, the “replacing” approach naturally
quantizes the belief space, and is one straightforward way of generating discretized approx-
imation schemes. These schemes are also called grid-based approximations and will be the
focus of the subsequent chapters.

The “information oracle” approach to constructing fictitious processes is to assume the
presence of an “oracle” that reveals to the controller certain information of the hidden states
of the original POMDP. Example 3.3 is an example of this approach, in which the oracle
reveals the subset of state space that contains the true state. It is initially proposed by Zhang
and Liu [ZL97] as a continuous cost approximation method for discounted problems. The
oracle approach is a fairly intuitive way for constructing approximation schemes. Besides
subsets of state space, one can also let the oracle reveal the previous state, or states k-step
earlier, or components of the state variable, etc.

The conditions of the fictitious process will be automatically satisfied. The free param-
eters in the model can be further chosen in a way suitable for approximating the original
POMDP.

Example 3.2. The graphical model of the fictitious process is shown in Fig. 3-3 (right),
(comparing the graphical model of Example 3.1 shown on the left). We will generate S̃1

from a mixture of distributions ξi, i = 1, . . . , k. The model parameters are as follows.
Let PS̃0

= ξ, and Q ∈ {1, 2, . . . , k}. To preserve the marginal distributions when
marginalized overQ, we need to define transition probabilities PỸ1

(u, Ỹ1 ∈ ·), PQ((y1, u), Q ∈
·) and PS̃1

(q, S̃1 ∈ ·) such that they satisfy the condition

P̃ξ,π
(
(S̃1, Ỹ1) ∈ · | Ũ0 = u

)
= Pξ,π((S1, Y1) ∈ · | U0 = u), ∀π ∈ Π,

i.e., Eq. (3.5) of Condition 3.1. To this end, we first let the marginal distributions of Y1 and
Ỹ1 be equal (conditioned on the control) by defining

PỸ1
(u, ·) = P ξ,u

y (·),
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Figure 3-3: Examples of fictitious processes constructed by replacing distributions with
mixtures of distributions. Left: a process corresponding to Eq. (3.10); right: a process
corresponding to Eq. (3.14).

where P ξ,u
y is the marginal distribution of Y1 in the original POMDP with initial distribution

ξ and initial control u. We then let the conditional distributions of S̃1 and S1, conditioned
on Ỹ1 and Y1, respectively, be equal by applying the following steps:

• Define ν = φu(ξ, Ỹ1), and assume that for P ξ,u
y -almost every y, φu(ξ, y) can be ex-

pressed as a convex combination of ξi with coefficients γi

(
φu(ξ, y)

)
, i.e.,

φu(ξ, Ỹ1) =
k∑

i=1

γi

(
φu(ξ, y)

)
ξi.

• Define

PQ((y, u), {i}) = γi

(
φu(ξ, y)

)
, PS̃1

(i, S̃1 ∈ ·) = ξi(·), i = 1, . . . , k.

Condition 3.1 is thus satisfied.
Using the relation

E
eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1))

)}
= E

eP ξ,u
0

{
E

eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1))

) ∣∣∣ Ỹ1

}}
= E

eP ξ,u
0

{
k∑

i=1

γi

(
φu(ξ, Ỹ1)

)
J∗β(ξi)

}

= EP ξ,u
y

{
k∑

i=1

γi

(
φu(ξ, Y1)

)
J∗β(ξi)

}

= EP ξ,u
0

{
k∑

i=1

γi

(
φu(ξ, Y1)

)
J∗β(ξi)

}
,

the inequality of Prop. 3.1 for the β-discounted case is then specialized to

J∗β(ξ) ≥ inf
u∈U

[
ḡ(ξ, u) + β EP ξ,u

0

{
k∑

i=1

γi

(
φu(ξ, Y1)

)
J∗β(ξi)

}]
. (3.14)
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Figure 3-4: Examples of fictitious processes from the “information oracle” approach. Left:
a process corresponding to the region-observable POMDP; right: a variant of the left.

Similarly, the inequality of Prop. 3.2 for the finite-stage case is specialized to

J∗k (ξ) ≥ inf
u∈U

[
ḡ(ξ, u) + β EP ξ,u

0

{
k∑

i=1

γi

(
φu(ξ, Y1)

)
J∗k−1(ξi)

}]
.

The inequality (3.14) was proposed by Zhou and Hansen in [ZH01] for a discretized cost
approximation scheme. It was derived in their paper directly from the optimality equation
using the concavity of J∗β . �

Example 3.3 (Region-Observable POMDP). Zhang and Liu [ZL97] proposed the
“region-observable” POMDP as a continuous cost approximation scheme. Our descrip-
tion of it is slightly more general. The graphic model is as shown in Fig. 3-4 (left). The
random variable Q indicates which subset of state space contains S̃1 and may be viewed
as an additional component of observation. Except for the transition probability PQ, the
rest of the transition probabilities are defined as they are in the original POMDP. Since
Q is a leaf node in the graph, the marginal distributions of other random variables do not
change when marginalized over Q. Thus, no matter how we define PQ, the condition of the
fictitious process will be satisfied, and PQ is hence a free parameter that one can choose
accordingly for a given problem.

More precisely, let {Sk | Sk ⊂ S, k ∈ K}, where the index set K is a set of integers, be a
collection of subsets of states such that ⋃

k∈K

Sk = S.

The set {Sk} is called a region system by [ZL97]. Let Q be K-valued, and let the transition
probability PQ(s1, Q ∈ ·) be defined. Then the marginal distribution P̃ ξ,u

0 of (Q, S̃0, S̃1, Ỹ1),
when the initial distribution is ξ and initial control Ũ0 = u, satisfies

P̃ ξ,u
0

(
(S̃0, S̃1, Q, Ỹ1) ∈ A

)
=
∫∫

1A(s0, s1, q, y1)PQ(s1, dq) dP
ξ,u
0

for all Borel measurable sets A, where P ξ,u
0 is the marginal distribution of (S0, S1, Y1) in
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the original POMDP. The belief at time 1 in the fictitious process is

φ̃u(ξ, (q, y1))(·) = P̃ ξ,u
0 (S̃1 ∈ · | Ỹ1, Q)

∣∣∣
(Q,Ỹ1)=(q,y1)

.

Thus we have defined the function for the next belief φ̃u(ξ, (q, y1)) and the distribubtion
P̃ ξ,u

0 in the inequality of Prop. 3.1 for the β-discounted case:

J∗β(ξ) ≥ inf
u∈U

[
ḡ(ξ, u) + β E

eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1)

)}]
,

and in the inequality of Prop. 3.2 for the finite-stage case.
An important property of region-observable POMDP is

φ̃u(ξ, (Q, Ỹ1))(A) = 0, if A ∩ SQ = ∅,

which implies, when S is discrete, that the next belief φ̃ is always on the affine space
corresponding to some Sk. This property is the key motivation in [ZL97] for proposing
the region-observable POMDP, and it reduces the computational complexity of exact value
iteration for discounted problems.

As for the choice of the region system, for example, Zhang and Liu [ZL97] choose the
so called “radius-k” regions, with each region being a subset of states that are reachable
from certain fixed state within k steps. The transition probability PQ, which corresponds
to how a region is revealed given the state s1, can be chosen in a way that minimizes the
information carried by Q, roughly speaking.

Variants of the region-observable POMDP can be formed by, e.g., letting Q depend on
the control and observation in addition to the state, or letting Q depend on ξ in addition,
as shown in Fig. 3-4 (right). �

Differences between Information Oracle and Non-Information Oracle Approaches

At least in our opinion, clearly there are conceptual differences between the information
oracle type of schemes, such as region-observable POMDPs, and the non-information oracle
type of schemes, such as those based on discretizing the belief space.

Mathematically, at first there seems to be a difference as well. For example, as mentioned
earlier, the average cost lower bounds established by Prop. 3.3 rely on the DP mapping T̃ ,
and are in general smaller than the optimal average cost functions of the modified belief
MDPs. On the other hand, one can claim a stronger result for an information oracle type
of scheme: the optimal cost function of its associated modified belief MDP is a lower bound
of the optimal of the original problem. The reason is that an information oracle type of
scheme can be viewed as the original POMDP plus additional observation variables at every
stage. Thus it has the same state evolution model as the original POMDP and however a
larger policy space than the latter, and its optimal cost is consequently no greater than the
optimal of the original problem.

This difference motivates us to strengthen the analysis given earlier. Indeed we will show
that the stronger lower bound statement holds for non-information oracle type of schemes
as well. So mathematically, there seem to be no differences between the information oracle
and non-information oracle approaches.
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3.6 Comparison of Approximation Schemes

Given two lower approximation schemes, we may be interested in comparing the lower
bounds associated with them. In general it is hard to claim one scheme strictly dominating
the other (i.e., better for every ξ), if the schemes are constructed to have different proba-
bilistic dependence structures. We give such a comparison in the next proposition under
restrictive conditions. The proposition says intuitively that the less information is revealed
to the controller, the better is the approximation.

Proposition 3.4. Let T̃ be defined by a lower approximation scheme as defined in Defini-
tion 3.1 with Q = (Q1, Q2). For i = 1, 2, let φ̃i

u(ξ, (Qi, Ỹ1)) be the conditional distributions
of S̃1 given (Qi, Ỹ1), respectively. Then for i = 1 or 2,

J∗β(ξ) ≥ (T̃iJ
∗
β)(ξ) ≥ (T̃J∗β)(ξ), β ∈ [0, 1),

J∗k (ξ) ≥ (T̃iJ
∗
k−1)(ξ) ≥ (T̃J∗k−1)(ξ), β = 1,

where T̃i and T̃ are defined by

(T̃iJ)(ξ) = inf
u∈U

[
ḡ(ξ, u) + β E

eP ξ,u
0

{
J
(
φ̃i

u(ξ, (Qi, Ỹ1))
)}]

,

(T̃J)(ξ) = inf
u∈U

[
ḡ(ξ, u) + β E

eP ξ,u
0

{
J
(
φ̃u(ξ, (Q, Ỹ1))

)}]
.

Proof: The proof for β < 1 and β = 1 is similar, so we only consider β < 1. That
J∗β(ξ) ≥ (T̃iJ

∗
β)(ξ) follows from the same argument as in the proof of Prop. 3.1. To show

(T̃iJ
∗
β)(ξ) ≥ (T̃J∗β)(ξ), it is sufficient to show that for i = 1 and for any u,

E
eP ξ,u
0

{
J∗β

(
φ̃1

u(ξ, (Q1, Ỹ1))
)}

≥ E
eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1))

)}
.

Since
E

eP ξ,u
0

{
φ̃u(ξ, (Q, Ỹ1))

∣∣∣Q1, Ỹ1

}
= φ̃1

u(ξ, (Q1, Ỹ1)),

and J∗β is concave, it follows then from Jensen’s inequality for conditional expectation that

E
eP ξ,u
0

{
J∗β

(
φ̃1

u(ξ, (Q1, Ỹ1))
)}

≥ E
eP ξ,u
0

{
E

eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1))

) ∣∣∣Q1, Ỹ1

}}
= E

eP ξ,u
0

{
J∗β

(
φ̃u(ξ, (Q, Ỹ1))

)}
,

and hence the claim. �

Remark 3.5. The above proposition does not imply T̃k
i J0 ≥ T̃kJ0, for which we need

stronger conditions such as either T̃i or T̃ preserves concavity – usually this property does
not hold for discretized approximation schemes.

Remark 3.6. The above proof gives an alternative way of proving the inequalities using
the concavity of the optimal cost functions: For a lower approximation scheme T̃ with Q,
let Q1 = c be a constant dummy variable and let Q2 = Q. Then T̃1 = T, the DP mapping of
the POMDP; and the preceding proof establishes that TJ ≥ T̃J for any concave function J .
This fact together with the concavity perserving property of T (i.e., TJ is concave whenever
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J is concave) then implies that the inequalities hold for the case where the per-stage cost
function ḡ(ξ, u) is concave in ξ.

3.7 Concavity Preserving Property of the DP Mapping T

Recall that the DP mapping T with β ∈ [0, 1] is defined as

(TJ)(ξ) = inf
u∈U

[
ḡ(ξ, u) + βEP ξ,u

0
{
J
(
φu(ξ, Y1)

)}]
.

It is true that TJ is concave whenever J is concave. Using this property together with
a backward induction argument, one can conclude that the optimal discounted and finite-
stage cost functions are concave. This is yet another alternative method of proving the
concavity of those cost functions. In fact, chronologically it is the first method, given by
Åström [Åst69], who proved for the case of discrete space models.

Here, for completeness, we give a proof of the concavity preserving property of T for
general space models. The idea of proof being the same as that of [Åst69], technically the
proof is however different. We also avoided the use of any fictitious process argument. This
makes our proof different from the one in [RS94].

To show that TJ is concave whenever J is concave, it is sufficient to show that for any
given control u, EP ξ,u

0
{
J
(
φu(ξ, Y1)

)}
is a concave function of ξ.

Proposition 3.5. EP ξ,u
0
{
J
(
φu(ξ, Y1)

)}
is a concave function of ξ.

Proof: Suppose ξ =
∑k

i=1 αiξi, where αi ∈ (0, 1],
∑k

i=1 αi = 1. Abusing notation, let
us denote again by P ξ,u

0 (respectively, P ξi,u
0 ) the marginal distribution of (S1, Y1) under

the initial control u and the initial distribution ξ (respectively, ξi), and denote by P ξ,u
y

(respectively, P ξi,u
y ) the marginal distribution of Y1. Then P ξ,u

0 =
∑k

i=1 αiP
ξi,u
0 and P ξ,u

y =∑k
i=1 αiP

ξi,u
y . There exist Radon-Nikodym derivatives dP

ξi,u
0

dP ξ,u
0

(s1, y1) and dP
ξi,u
y

dP ξ,u
y

(y1), and

they satisfy for any s1 and y1,∑
i

αi
dP ξi,u

0

dP ξ,u
0

(s1, y1) = 1,
∑

i

αi
dP ξi,u

y

dP ξ,u
y

(y1) = 1.

First we prove for P ξ,u
y -almost surely all y1

φu(ξ, y1) =
∑

i

αi
dP ξi,u

y

dP ξ,u
y

(y1)φu(ξi, y1).

Recall φu is the conditional distribution of S1 given Y1 = y1. For any A ∈ B(S) and
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B ∈ B(Y),

P ξ,u
0 (S1 ∈ A, Y1 ∈ B) =

∫
B
φu(ξ, y1)(A) dP ξ,u

y (y1),

P ξi,u
0 (S1 ∈ A, Y1 ∈ B) =

∫
B
φu(ξi, y1)(A) dP ξi,u

y (y1)

=
∫

B
φu(ξi, y1)(A)

dP ξi,u
y

dP ξ,u
y

(y1) dP ξ,u
y (y1),

⇒
∫

B
φu(ξ, y1)(A) dP ξ,u

y (y1) =
∫

B

∑
i

αiφu(ξi, y1)(A)
dP ξi,u

y

dP ξ,u
y

(y1) dP ξ,u
y (y1). (3.15)

For every y1, since
∑

i αi
dP

ξi,u
y

dP ξ,u
y

(y1) = 1,
∑

i

(
αi

dP
ξi,u
y

dP ξ,u
y

(y1)
)
φu(ξi, y1)(·) is also a probability

measure on B(S). Hence by Eq. (3.15) for a fixed set A,
∑

i αiφu(ξi, y1)(A)dP
ξi,u
y

dP ξ,u
y

(y1) can

only disagree with φu(ξ, y1)(A) on a set of y1 with P ξ,u
y -measure zero. Because S is a Borel

set of a separable metric space, the Borel σ-algebra B(S) is generated by a countable number
of open sets {Aj}. Thus, the set of all y1 for which there exists some Aj such that the terms∑

i αiφu(ξi, y1)(Aj)
dP

ξi,u
y

dP ξ,u
y

(y1) and φu(ξ, y1)(Aj) disagree, has P ξ,u
y -measure zero. In other

words, for every y1 except on a set with P ξ,u
y -measure zero, it holds that for all Aj ,

φu(ξ, y1)(Aj) =
∑

i

αi
dP ξi,u

y

dP ξ,u
y

(y1)φu(ξi, y1)(Aj).

It follows from the uniqueness in the Caratheodory’s extension theorem that

φu(ξ, y1)(A) =
∑

i

αi
dP ξi,u

y

dP ξ,u
y

(y1)φu(ξi, y1)(A), A ∈ B(S).

By the concavity of J , it then follows that∫
J
(
φu(ξ, y1)

)
dP ξ,u

y (y1) =
∫
J
(∑

i

αi
dP ξi,u

y

dP ξ,u
y

(y1)φu(ξi, y1)
)
dP ξ,u

y (y1)

≥
∫ ∑

i

αi
dP ξi,u

y

dP ξ,u
y

(y1) J
(
φu(ξi, y1)

)
dP ξ,u

y (y1)

=
∑

i

αi

∫
dP ξi,u

y

dP ξ,u
y

(y1) J
(
φu(ξi, y1)

)
dP ξ,u

y (y1)

=
∑

i

αi

∫
J
(
φu(ξi, y1)

)
dP ξi,u

y (y1),

and the proof is complete. �

Remark 3.7. The proof for the universally measurable case is the same, as the measure
of the universal measurable sets is uniquely determined by the measure of the Borel sets.
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Remark 3.8. Clearly the above proposition implies the more general statement that T

preserves concavity when the per-stage cost function ḡ is concave in the belief. Thus the
lower bound results of the previous sections apply to the general case of concave per-stage
cost models (see Remark 3.6).

3.8 A Strengthened Lower Bound Result

Let {P̃ ξ,u
0 | ξ ∈ P(S), u ∈ U} be a lower approximation scheme as defined by Definition 3.1.

Consider its associated modified belief MDP problem. In this section we will strengthen the
first average cost lower bound result, Prop. 3.3. In particular, we will prove the following
theorem, which has been shown only for those lower approximation schemes constructed
from the information oracle approach.

Theorem 3.1. Let J̃∗− and J̃∗+ be the optimal liminf and limsup average cost functions,
respectively, of the modified belief MDP. Then,

J̃∗−(ξ) ≤ J∗−(ξ) J̃∗+(ξ) ≤ J∗+(ξ), ∀ξ ∈ P(S).

Furthermore, it is not only for the average cost criterion but also for various expected
cost criteria, (including constrained cases), that lower bounds analogous to the ones above
hold. This will be implied by the following theorem, which is the main result of this section.

Theorem 3.2. Given an initial distribution ξ0, for any policy π of the original POMDP,
there exists a policy π̃ of the modified belief MDP such that

J̃ π̃
k (ξ0) = Jπ

k (ξ0), J̃ π̃
β (ξ0) = Jπ

β (ξ0), ∀k ≥ 1, β ∈ [0, 1),

for any bounded per-stage cost function g.

It can be seen that Theorem 3.1 is an immediate consequence of Theorem 3.2 applied
to the average cost case (the cost of any policy of the original POMDP can be attained by
a policy of the modified belief MDP). Theorem 3.2 was shown only for lower approximation
schemes constructed form the information oracle approach.

In the rest of this section, we will prove Theorem 3.2. The method of proof is to con-
struct a POMDP, to be called an approximating POMDP, that relates in a special way to
both the original POMDP and the modified belief MDP associated with a lower approxi-
mation scheme. In particular, while similar to that in the information oracle approach, the
approximating POMDP can be viewed as the original POMDP plus additional observations,
the approximating POMDP is also equivalent to the modified belief MDP.

Theorem 3.2 and the construction of such an approximating POMDP for any lower
approximation scheme also illustrate that the distinction between information oracle and
non-information oracle approaches is more conceptual, rather than mathematical. On the
other hand, the approximating POMDP is introduced here mainly as an intermediate proof
device, and its interpretation of a non-information oracle type lower approximation scheme
can be highly non-intuitive, and therefore not helpful for designing approximation schemes
in our opinion.

In what follows, we define the approximating POMDP in Section 3.8.1. We then ana-
lyze the relations of the three processes, namely the approximating POMDP, the original
POMDP and the modified belief MDP in Sections 3.8.1 and 3.8.2. Finally we prove the
main theorem as well as its extension to the concave per-stage cost case in Section 3.8.3.
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3.8.1 Definition of an Approximating POMDP

Define a POMDP
{S0, U0, (St, Yt, Qt, Ut)t≥1}

on the canonical sample space Ω = S× U×
∏

t≥1(S× Y×M× U), where Qt are M-valued
observation variables in addition to Yt. We refer to this POMDP as the approximating
POMDP and define its evolution model in what follows.

The evolution of the state St and observation Yt is the same as in the original POMDP.
The evolution of Qt is defined for each initial distribution ξ0 differently. The control can
depend on Qts in addition to Yts and Uts. To make these precise, we first give certain
notation to be used later. We order the random variables in the following order:

S0, U0, S1, Y1, Q1, U1, . . .

The observable random variables are Uts, Yts and Qts. Define F
q
t and Fu

t to be the σ-
algebras generated by the observable random variables prior to (and not including) Qt and
Ut, respectively, and denote the corresponding random variables by Hq

t and Hu
t for short,

i.e.,

F
q
t = σ(U0, Y1, Q1, U1, . . . , Ut−1, Yt), Fu

t = σ(U0, Y1, Q1, U1, . . . , Ut−1, Yt, Qt),
Hq

t = (U0, Y1, Q1, U1, . . . , Ut−1, Yt), Hu
t = (U0, Y1, Q1, U1, . . . , Ut−1, Yt, Qt).

Similarly, define G
q
t and Gu

t to be the σ-algebras generated by all the random variables before
Qt and Ut, respectively. Denote by F1 ∨F2 the σ-algebra generated by sets in F1 ∪F2, then
G

q
t and Gu

t can be equivalently expressed as

G
q
t = F

q
t ∨ σ

(
(Sk)k≤t

)
, Gu

t = Fu
t ∨ σ

(
(Sk)k≤t

)
.

Policy Space

Let Hu
t be the space of Hu

t , the observed history prior to and not including the control Ut.
For each initial distribution, the common set of admissible policies is Π̂ = {π = (µt)t≥0},
where µt are transition probabilities from Hu

t to the control space U:

µt(hu
t , ·) ∈ P(U), ∀hu

t ∈ Hu
t ,

i.e., Ut depends on the observable variables Yk and Qk for k ≤ t, as well as Uk for k < t.

Probabilistic Independence Structure of Qt

We now define the evolution of Qt. First we define the belief process in the approximating
POMDP. Let Pξ0,π be the probability measure induced by initial distribution ξ0 and policy
π ∈ Π̂. Define the P(S)-valued random variable ξt to be a version of the conditional
distribution of St given Hu

t :

ξt(ω)(·) = Pξ0,π (St ∈ · | Fu
t ) (ω).

The random variable ξt is a function of (ξ0, hu
t ) – the inititial distribution and the sample

trajectory, (and note that ξt is not a function of π). We call {ξt} the belief process of the
approximating POMDP.
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For a given ξ0, we let Qt depend on the state St and the observed history Hq
t prior to

Qt:
Pξ0,π(Qt | Gq

t ) = Pξ0,π(Qt | σ(St) ∨ F
q
t ), (3.16)

where σ(St) ∨ F
q
t = σ(St,H

q
t ). Since Qt is an additional observation variable generated by

the state and the past observable variables, the approximating POMDP has

• the same evolution model of the states St as in the original POMDP,

• the same evolution model of the observations Yt as in the original POMDP, and

• a policy space that includes the policy space of the original POMDP, (when the
policy of the latter is viewed as a policy of the approximating POMDP that does not
functionally depend on Qt).

These properties of the construction are simple, yet powerful, (as they have been in the
information oracle approach). We state their implications in the following lemma.

Denote by Ĵπ
k (ξ0) and Ĵπ

β (ξ0) the k-stage cost and β-discounted cost, respectively, of a
policy π of the approximating POMDP.

Lemma 3.2. Given an initial distribution ξ0, for any policy π of the original POMDP,
there exists a policy π̂ of the approximating POMDP such that

Ĵ π̂
k (ξ0) = Jπ

k (ξ0), Ĵ π̂
β (ξ0) = Jπ

β (ξ0), ∀k ≥ 1, β ∈ [0, 1),

for any bounded per-stage cost function g.

Hence, it can be seen that with respect to the same per-stage cost function g(s, u), the
optimal expected cost of this approximating POMDP is no greater than that of the original
POMDP for various expected cost criteria.

Transition Model of Qt and Link to the Modified Belief MDP

We now specify the transition model of Qt, which links the approximating POMDP to
the modified belief MDP. The evolution of Qt is defined differently for a different initial
distribution ξ0, and furthermore, Qt depends on (St,H

q
t ) in a way that is stationary with

respect to (ξt−1, Ut−1, St, Yt). More precisely, we define PQt , a transition probability from
P(S)× U× S× Y – the space of (ξt−1, Ut−1, St, Yt) – to the space of Qt, to be

PQt((ξ, u, s, y), ·) = P̃ ξ,u
0 (Q ∈ · | S̃1 = s, Ỹ1 = y), (3.17)

where {P̃ ξ,u
0 | ξ ∈ P(S), u ∈ U} is the lower approximation scheme (recall that for each

(ξ, u), P̃ ξ,u
0 is the law of (S̃0, S̃1, Ỹ1, Q) in the fictitious process with initial distribution ξ and

initial control u). Thus, with hq
t = (hu

t−1, ut−1, yt), the evolution of Qt in the approximating
POMDP can be specified by, (comparing Eq. (3.16)),

Pξ0,π(Qt ∈ · | σ(St) ∨ F
q
t )
∣∣
(Hq

t (ω),St(ω))=(hq
t ,st)

= PQt

((
ξt−1(ξ0, hu

t−1), ut−1, st, yt

)
, ·
)

= P̃
ξt−1,ut−1

0 (Q ∈ · | S̃1 = st, Ỹ1 = yt), (3.18)

where, abusing notation, in the first equation we write ξt−1 as ξt−1(ξ0, hu
t−1) to emphasize

that ξt−1 is a function of (ξ0, hu
t−1). Notice that the transition model of Qt does not depend

on t, and is stationary with respect to (ξt−1, Ut−1, St, Yt).
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3.8.2 Equivalence to the Modified Belief MDP

We now show that the approximating POMDP is equivalent to the modified belief MDP
associated with the lower approximation scheme {P̃ ξ,u

0 }. The arguments that we are about
to go through, are similar to those for establishing the sufficient statistic for control in
POMDPs. For the following analysis, it is hepful to consider the joint process

{S0, ξ0, U0, S1, Y1, Q1, ξ1, U1, . . .}

that includes the beliefs.

Step 1: Change to Per-Stage Cost ḡ

First, we express the expected cost of a policy π as the expected cost with respect to the
per-stage cost ḡ(ξ, u).

Lemma 3.3. In the approximating POMDP, given an initial distribution ξ0, for any policy
π, the expected cost of π with respect to any bounded per-stage cost function g satisfies for
all k ≥ 1 and β ∈ [0, 1),

Ĵπ
k (ξ0) = EPξ0,π

{
k−1∑
t=0

ḡ(ξt, Ut)

}
, Ĵπ

β (ξ0) = EPξ0,π

{ ∞∑
t=0

βtḡ(ξt, Ut)

}
.

Proof: Taking iterative conditional expectations, we have for any k,

EPξ0,π

{
k−1∑
t=0

g(St, Ut)

}
=

k−1∑
t=0

EPξ0,π
{
EPξ0,π{

g(St, Ut) | Fu
t

}}
=

k−1∑
t=0

EPξ0,π {ḡ(ξt, Ut)} ,

where the second equality follows from the conditional independence of St and Ut given Hu
t .

Similarly, for any discount factor β,

EPξ0,π

{ ∞∑
t=0

βtg(St, Ut)

}
=

∞∑
t=0

βtEPξ0,π
{
EPξ0,π{

g(St, Ut) | Fu
t

}}
=

∞∑
t=0

βtEPξ0,π {ḡ(ξt, Ut)} = EPξ0,π

{ ∞∑
t=0

βtḡ(ξt, Ut)

}
,

where the interchange of summation and expectation is justified by the dominated conver-
gence theorem, (since the per-stage cost function is assumed bounded). �

Thus, in the approximating POMDP, the expected cost of π can be equivalently defined
as the expected cost of π with respect to the per-stage cost ḡ(ξ, u).

Step 2: A Markovian Property of the Belief Process

Next, we show that with (Ut−1, Yt, Qt) = (ut−1, yt, qt), ξt is a function of (ξt−1, ut−1, yt, qt),
and this function does not depend on t. Therefore, {ξt} evolves in a stationary and Markov
way in the approximating POMDP. Generally speaking, this property is due to the evolution
model of Qt as defined by Eq. (3.17). We now give the detailed analysis as follows.
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Recall that the P(S)-valued random variable ξt is defined as

ξt(ω)(·) = Pξ0,π (St ∈ · | Fu
t ) (ω).

Consider the (random) law Pt(ω) of (St−1, St, Yt, Qt) defined by

Pt(ω) ((St−1, St, Yt, Qt) ∈ ·) = Pξ0,π
(
(St−1, St, Yt, Qt) ∈ · | Fu

t−1 ∨ σ(Ut−1)
)
(ω). (3.19)

Since Hu
t = (Hu

t−1, Ut−1, Yt, Qt) and Fu
t = Fu

t−1 ∨ σ(Ut−1, Yt, Qt), comparing the preceding
two relations, we have, with (Yt(ω), Qt(ω)) = (yt, qt),

ξt(ω)(·) = Pt(ω)(St ∈ · | Yt = yt, Qt = qt). (3.20)

Lemma 3.4. In the approximating POMDP, given an initial distribution ξ0, there exists
a transition probability Pξ from P(S) × U × Y ×M to P(S) such that for any policy π and
t ≥ 1, with (Ut−1(ω), Yt(ω), Qt(ω)) = (ut−1, yt, qt),

Pξ0,π (ξt ∈ · | Fu
t ) (ω) = Pξ

(
(ξt−1, ut−1, yt, qt), ·

)
. (3.21)

Proof: It is sufficient to show that ξt is a function of (ξt−1, ut−1, yt, qt) and this function
is the same for all t. To show this, by Eq. (3.20), it is sufficient to show that the random
law Pt is a function of (ξt−1, ut−1) and this function is the same for all t. To this end, let(
Hu

t (ω), Ut−1(ω)
)

= (hu
t−1, ut−1). It follows from Eq. (3.18) on the evolution of Qt and the

conditional independence of St−1 and Ut−1 given Hu
t−1 that

Pt(ω)
(
(St−1, St, Yt, Qt) ∈ A

)
=
∫
· · ·
∫

1A(st−1, st, yt, qt)PQt

(
(ξt−1, ut−1, st, yt), dqt

)
PY

(
(st, ut−1), dyt

)
PS

(
(st−1, ut−1), dst

)
ξt−1(dst−1)

(3.22)

for all Borel sets A. Since by Eq. (3.17) the transition probability PQt does not depend on
time t, it can be seen from Eq. (3.22) that Pt is a function of (ξt−1, ut−1) and this function
is the same for all t. Hence by Eq. (3.20) ξt is a function of (ξt−1, ut−1, yt, qt) with the
function being the same for all t. In other words, consider the joint process

{S0, ξ0, U0, S1, Y1, Q1, ξ1, U1, . . .},

and there exists some transition probability Pξ from P(S)× U× Y×M to P(S) such that

Pξ0,π (ξt ∈ · | Fu
t ) (ω) = Pξ0,π

(
ξt ∈ · | Fu

t ∨ σ(ξ0, . . . , ξt−1)
)
(ω) (3.23)

= Pξ0,π(ξt ∈ · | ξt−1, Ut−1, Yt, Qt)(ω) (3.24)
= Pξ

(
(ξt−1, ut−1, yt, qt), ·

)
. (3.25)

The proof is complete. �

Step 3: Same Evolution of the Belief Processes

We now show that the evolution model of ξt is the same as that of the belief process in the
modified belief MDP. This is stated by the next lemma.
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Lemma 3.5. The following two relations hold:

(i) Given Hu
t (ω) = (hu

t−1, ut−1, yt, qt),

ξt = φ̃ut−1(ξt−1, (yt, qt)) , (3.26)

where φ̃ is the function for the next belief as defined in the fictitious process.

(ii) Given
(
Hu

t−1(ω), Ut−1(ω)
)

= (hu
t−1, ut−1), the marginal distribution of (Yt, Qt) corre-

sponding to Pt(ω) satisfies

Pt(ω)((Yt, Qt) ∈ ·) = P̃
ξt−1,ut−1

0

(
(Ỹ1, Q) ∈ ·

)
. (3.27)

Proof: Consider the fictitious process associated with the modified belief MDP. By the
construction of the fictitious process, it is true that marginalized over Q, the marginal
distribution of (S̃1, Ỹ1) is the same as that of (S1, Y1) of the original POMDP. In other
words, denote by P̃

ξt−1,ut−1
s,y the marginal distribution of (S̃1, Ỹ1) in the fictitious process

with initial distribution ξt−1 and initial control ut−1, then

P̃ ξt−1,ut−1
s,y

(
(S̃1, Ỹ1) ∈ A

)
= P̃

ξt−1,ut−1

0

(
(S̃1, Ỹ1) ∈ A

)
=
∫ ∫ ∫

1A(s1, y1)PY

(
(s1, ut−1), dy1

)
PS

(
(s0, ut−1), ds1

)
ξt−1(ds0)

for all Borel sets A. Thus, denote by P̃ ξt−1,ut−1

q|s,y

(
Q ∈ · | S̃1, Ỹ1

)
the conditional distribution

of Q given (S̃1, Ỹ1) in the fictitious process, then the marginal distribution of (S̃1, Ỹ1, Q)
can be expressed as

P̃
ξt−1,ut−1

0

(
(S̃1, Ỹ1, Q) ∈ A

)
=
∫ ∫

1A(s1, y1, q)P̃
ξt−1,ut−1

q|s,y

(
dq | S̃1 = s1, Ỹ1 = y1

)
P̃ ξt−1,ut−1

s,y (d(s1, y1))

=
∫
· · ·
∫

1A(s1, y1, q)P̃
ξt−1,ut−1

q|s,y

(
dq | S̃1 = s1, Ỹ1 = y1

)
PY

(
(s1, ut−1), dy1

)
PS

(
(s0, ut−1), ds1

)
ξt−1(ds0). (3.28)

By Eq. (3.22) and Eq. (3.17) (the definition of PQt), we have

Pt(ω)
(
(St, Yt, Qt) ∈ A

)
=
∫
· · ·
∫

1A(st, yt, qt)PQt

(
(ξt−1, ut−1, st, yt), dqt

)
PY

(
(st, ut−1), dyt

)
PS

(
(st−1, ut−1), dst

)
ξt−1(dst−1)

=
∫
· · ·
∫

1A(st, yt, qt)P̃
ξt−1,ut−1

q|s,y
(
dqt | S̃1 = st, Ỹ1 = yt

)
PY

(
(st, ut−1), dy1

)
PS

(
(st−1, ut−1), dst

)
ξt−1(dst−1). (3.29)

Comparing Eq. (3.28) and (3.29), we thus have

Pt(ω)
(
(St, Yt, Qt) ∈ ·

)
= P̃

ξt−1,ut−1

0

(
(S̃1, Ỹ1, Q) ∈ ·

)
,
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which implies that

Pt(ω)
(
(Yt, Qt) ∈ ·

)
= P̃

ξt−1,ut−1

0

(
(Ỹ1, Q) ∈ ·

)
,

Pt(ω)
(
St ∈ · | Yt = yt, Qt = qt

)
= P̃

ξt−1,ut−1

0

(
S̃1 ∈ · | Ỹ1 = yt, Q = qt

)
,

and the second equation is equivalent to ξt = φ̃ut−1 (ξt−1, (yt, qt)) by the definitions of ξt
and φ̃. Thus Eq. (3.26) and (3.27) hold. �

Step 4: Sufficient Statistic for Control

Finally, we show that ξt is a sufficient statistic for control in the approximating POMDP.
This implies that we can without loss of generality consider the set of Markov policies with
respect to ξt in the approximating POMDP. Together with the analysis from the previous
steps, this will then establish the equivalence of the approximating POMDP to the modified
belief MDP.

Lemma 3.6. In the approximating POMDP, given an initial distribution ξ0, for any policy
π, there is a policy πξ0 = (µ̂t)t≥0, with µ̂t functionally depending only on the belief ξt, that
has the same expected cost as π for any bounded per-stage cost function g.

Proof: Define a transition probability µ̃t from P(S) to U by

µ̃t(ξ, ·) = Pξ0,π (Ut ∈ · | ξt)
∣∣
ξt(ω)=ξ

, ∀ξ ∈ P(S). (3.30)

(If ξ is not realizable as ξt, µ̃t(ξ, ·) can be defined arbitrarily, subject to measurability
conditions.) Define a policy πξ0 = (µ̂t)t≥0 depending on ξ0 by

µ̂t(hu
t , ·) = µ̃t

(
ξt(ξ0, hu

t ), ·
)
, ∀hu

t ∈ Hu
t . (3.31)

We now show by induction that

Pξ0,π (ξt, Ut) = Pξ0,πξ0 (ξt, Ut) , ∀ t ≥ 0. (3.32)

Let ω and ω̂ denote a sample of the sample space of the stochastic process induced by π
and πξ0 , respectively. By the definition of µ̂t, Eq. (3.32) holds for t = 0. Assume that
Pξ0,π (ξt, Ut) = Pξ0,πξ0 (ξt, Ut) holds for t. By the definition of µ̂t+1, to show that Eq. (3.32)
holds for t+ 1, it is sufficient to show that for all (ξ, u),

Pξ0,π (ξt+1 | ξt, Ut)
∣∣(

ξt(ω),Ut(ω)
)
=(ξ,u)

= Pξ0,πξ0 (ξt+1 | ξt, Ut)
∣∣(

ξt(ω̂),Ut(ω̂)
)
=(ξ,u)

. (3.33)

This relation is evident from the evolution models of Yt+1 and Qt+1 in the approximating
POMDP. Therefore Eq. (3.32) holds.

By Lemma 3.3, for any bounded per-stage cost function g(s, u), the expected cost of
a policy in the approximating POMDP is equal to its expected cost with respect to the
per-stage cost function ḡ(ξ, u). Therefore, Eq. (3.32) implies that

Ĵπ
k (ξ0) = Ĵ

πξ0
k (ξ0), Ĵπ

β (ξ0) = Ĵ
πξ0
β (ξ0), ∀ k ≥ 1, β ∈ [0, 1),

63



for any bounded per-stage cost function g. The proof is complete. �

3.8.3 Proof of Main Theorem

We can now prove Theorem 3.2. For convenience we restate the theorem.

Main Theorem (Theorem 3.2). Given an initial distribution ξ0, for any policy π of the
original POMDP, there exists a policy π̃ of the modified belief MDP such that

J̃ π̃
k (ξ0) = Jπ

k (ξ0), J̃ π̃
β (ξ0) = Jπ

β (ξ0), ∀k ≥ 1, β ∈ [0, 1),

for any bounded per-stage cost function g.

Proof of Theorem 3.2: For a given ξ0 and any policy π of the original POMDP, by
Lemma 3.2 there exists a policy π̂ of the approximating POMDP such that

Ĵ π̂
k (ξ0) = Jπ

k (ξ0), Ĵ π̂
β (ξ0) = Jπ

β (ξ0), k ≥ 1, β ∈ [0, 1), (3.34)

for any bounded per-stage cost function g. This relation together with Lemma 3.6 im-
plies that there exists a policy in the approximating POMDP, denoted here by π̂ξ0 , that
functionally depends on ξt at each stage and has the same expected cost:

Ĵ
π̂ξ0
k (ξ0) = Jπ

k (ξ0), Ĵ
π̂ξ0
β (ξ0) = Jπ

β (ξ0), k ≥ 1, β ∈ [0, 1),

for any bounded per-stage cost function g. As can be seen in the proof of Lemma 3.6, the
policy π̂ξ0 = (µ̂t)t≥0 can be viewed equivalently as a policy of the modified belief MDP,
and we denote the latter by π̃ξ0 . By Lemma 3.5, π̂ξ0 and π̃ξ0 induce in the approximating
POMDP a belief-control process {(ξt, Ut)t≥0} and in the modified belief MDP {(ξt, Ũt)t≥0},
respectively, with the same joint distribution (marginalized over the rest of random vari-
ables). Therefore,

Ĵ
π̂ξ0
k (ξ0) = J̃

π̃ξ0
k (ξ0), Ĵ

π̂ξ0
β (ξ0) = J̃

π̃ξ0
β (ξ0), k ≥ 1, β ∈ [0, 1), (3.35)

for any bounded per-stage cost function g. Combining this with Eq. (3.34), we thus have

J̃
π̃ξ0
k (ξ0) = Jπ

k (ξ0), J̃
π̃ξ0
β (ξ0) = Jπ

β (ξ0), k ≥ 1, β ∈ [0, 1),

for any bounded per-stage cost function g. �

It can be seen that Theorem 3.1 is a corollary of the preceding main theorem applied
to the average cost case.

Proof of Main Theorem for the Case of a Concave Per-Stage Cost Function

The statement of Theorem 3.2 holds with “≤” replacing “=” for the more general case
where the per-stage cost function ḡ(ξ, u) is a concave function of beliefs for each value of u.
The proof needs a slight modification, which we address in what follows. First, note that
since the approximating POMDP is equivalent to the modified belief MDP, Eq. (3.35) in the
preceding proof holds for the case of a concave per-stage cost function. The modification
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we need is to replace Lemma 3.2 with the following lemma, and consequently to have “≤”
replacing “=” in Eq. (3.34) in the preceding proof.

Lemma 3.2’. Given an initial distribution ξ0, for any policy π of the original POMDP,
there exists a policy π̂ of the approximating POMDP such that

Ĵ π̂
k (ξ0) ≤ Jπ

k (ξ0), Ĵ π̂
β (ξ0) ≤ Jπ

β (ξ0), ∀k ≥ 1, β ∈ [0, 1),

for any bounded per-stage cost function ḡ(ξ, u) that is concave in ξ for each value of u.

Proof: We specify some notation first. For the approximating POMDP and the original
POMDP, denote by P̂ξ0,π̂ and Pξ0,π the probability measures induced by policy π̂ and π
in the two processes, respectively, and denote by ω̂ and ω a sample of the two processes,
respectively. Let ξt be the belief process as defined before for the approximating POMDP.
Denote the belief process in the original POMDP by {ξo

t }. Correspondingly, also define
P(S)-valued random variables ξ̂o

t in the approximating POMDP by

ξ̂o
t (ω̂)(·) = P̂ξ0,π̂ (St ∈ · | U0, (Yk, Uk)k<t, Yt) (ω̂).

For a given policy π, we let π̂ be the same policy π viewed as a policy of the approximat-
ing POMDP (i.e., π̂ ignores Qts). Thus the marginal distributions of (S0, U0, (St, Yt, Ut)t>0)
are the same in the approximating POMDP controlled by π̂ and in the original POMDP
controlled by π. This implies

P̂ξ0,π̂
(
(ξ̂o

t , Ut) ∈ ·
)

= Pξ0,π ((ξo
t , Ut) ∈ ·) , t ≥ 0

Consequently, by the concavity of ḡ(·, u) for all u and Jensen’s inequality, for all t ≥ 0,

EP̂ξ0,π̂ {ḡ(ξt, Ut)} = EP̂ξ0,π̂
{
EP̂ξ0,π̂ {ḡ(ξt, Ut) | U0, (Yk, Uk)k<t, Yt}

}
≤ EP̂ξ0,π̂

{
ḡ(ξ̂o

t , Ut)
}

= EPξ0,π {ḡ(ξo
t , Ut)} ,

where, to derive the second inequality, we have also used the conditional independence
of Ut and ξt given {U0, (Yk, Uk)k<t, Yt}, (which is true due to our choice of π̂). Hence
Ĵ π̂

β (ξ0) ≤ Jπ
β (ξ0), β ∈ [0, 1) and Ĵ π̂

k (ξ0) ≤ Jπ
k (ξ0), k ≥ 1 for any bounded per-stage cost

function ḡ(ξ, u) that is concave in ξ for each value of u. �

Thus we have the following theorem.

Theorem 3.2’. Given an initial distribution ξ0, for any policy π of the original POMDP,
there exists a policy π̃ of the modified belief MDP such that

J̃ π̃
k (ξ0) ≤ Jπ

k (ξ0), J̃ π̃
β (ξ0) ≤ Jπ

β (ξ0), ∀k ≥ 1, β ∈ [0, 1),

for any bounded per-stage cost function ḡ(ξ, u) that is concave in ξ for each value of u.
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3.9 Summary

In this chapter we have established essentially the lower approximating property for a class
of processes as a whole, and characterized them in a unified way that links to the presence
of hidden states in a POMDP. This theme is to be further carried out in more details or
extended in the subsequent chapters.
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Chapter 4

Discretized Lower Approximations
for Discounted Cost Criterion

We now consider POMDP with finite state, observation and control spaces. Our interests
are on those lower approximation schemes that can be computed exactly for finite space
models. We will refer to them generally as discretized lower approximation schemes. We
will consider computational issues, for discounted cost in this chapter, and for average cost
in Chapter 5.

The discounted case is well-studied. This chapter is thus more for the preparation of
the subsequent chapters, and for the sake of completeness. We will summarize discretized
lower approximation schemes, which are applicable not only for the discounted but also the
average cost and many other cases, as has been essentially established in Chapter 3. We
will present, somewhat in detail, the algorithms and approximating functions, as well as
asymptotic convergence analysis for the discounted case.

We shall simplify notation, since we will be dealing with DP equations instead of induced
stochastic processes for most of the time. The distribution symbol P ξ,u

0 in the expectation
EP ξ,u

0 will be dropped. Instead we write EV |ξ,u for the conditional expectation over the
random variable V with respect to the conditional distribution of V given the initial dis-
tribution ξ and control u. As to the symbol µ, instead of denoting a transition probability
from the history set to the space of control, it will be used to denote a stationary and
deterministic policy (with respect to the belief MDP), as a convention in DP problems.

4.1 Approximation Schemes

First we consider “grid”-based approximation schemes associated with the inequalities (3.14)
and (3.10). Let G = {ξi} be a finite set of beliefs such that their convex hull is P(S). A
simple choice is to discretize P(S) into a regular grid, so we refer to ξi as grid points.
By choosing different ξi and γi(·) in the inequalities (3.14) and (3.10), we obtain lower
cost approximations that are functionally determined by their values at a finite number of
beliefs.

Definition 4.1 (ε-Discretization Scheme). Call (G, γ) an ε-discretization scheme where
G = {ξi} is a set of n beliefs, γ = (γ1(·), . . . , γn(·)) is a convex representation scheme such
that ξ =

∑
i γi(ξ)ξi for all ξ ∈ P(S), and ε is a scalar characterizing the fineness of the
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discretization, and defined by

ε = max
ξ∈P(S)

max
ξi∈G

γi(ξ)>0

‖ξ − ξi‖.

Given (G, γ), let T̃Di , i = 1, 2, be the mappings corresponding to the right-hand sides of
inequalities (3.14) and (3.10), respectively:

(T̃D1J)(ξ) = min
u∈U

[
ḡ(ξ, u) + β

∑
i

EY |ξ,u

{
γi

(
φu(ξ, Y )

)}
J(ξi)

]
, (4.1)

(T̃D2J)(ξ) = min
u∈U

[
ḡ(ξ, u) + β

∑
i

γi(ξ)EY |ξi,u

{
J
(
φu(ξi, Y )

)}]
. (4.2)

Associated with these mappings are the modified belief MDPs. The optimal cost functions
J̃i in these modified problems satisfy, respectively,

(T̃Di J̃i)(ξ) = J̃i(ξ) ≤ J∗β(ξ), ∀ξ ∈ P(S), i = 1, 2.

The function J̃1 was proposed by Zhou and Hansen [ZH01] as a grid-based approximation
to improve the lower bound on the optimal cost function proposed by Lovejoy [Lov91].
Both J̃i are functionally determined by their values at a finite number of beliefs, which
will be called supporting points, and whose set is denoted by C. In particular, the function
J̃1 can be computed by solving a corresponding finite-state MDP on C = G = {ξi}, and
the function J̃2 can be computed by solving a corresponding finite-state MDP on C =
{φu(ξi, y)|ξi ∈ G, u ∈ U, y ∈ Y}.1 The computation can thus be done efficiently by common
algorithms for finite-state MDPs, e.g., variants of value iteration or policy iteration, and
linear programming.

Usually P(S) is partitioned into convex regions and beliefs in a region are represented
as the convex combinations of its vertices. The function J̃1 is then piecewise linear on each
region, and the function J̃2 is piecewise linear and concave on each region. To see the latter,
let f(ξi, u) = EY |ξi,u{J̃2

(
φu(ξi, Y )

)
}, and we have J̃2(ξ) = minu[ḡ(ξ, u)+β

∑
s γi(ξ)f(ξi, u)].

The simplest case for both mappings is when G consists of vertices of the belief simplex,
i.e.,

G = {es|s ∈ S}, where es(s) = 1, es(s′) = 0, ∀s, s′ ∈ S, s 6= s′.

Denote the corresponding mappings by T̃D0
i
, i = 1, 2, respectively, i.e.,

(T̃D0
1
J)(ξ) = min

u∈U

[
ḡ(ξ, u) + β

∑
s

p(s|ξ, u)J(es)
]
, (4.3)

(T̃D0
2
J)(ξ) = min

u∈U

[
ḡ(ξ, u) + β

∑
s

ξ(s)EY |es,u

{
J
(
φu(es, Y )

)}]
. (4.4)

The mapping T̃D0
1

gives the so called QMDP approximation suggested by Littman, Cassan-
dra and Kaelbling [LCK95], and its corresponding function J̃1 is simply

J̃1(ξ) = min
u∈U

[
ḡ(ξ, u) + β

∑
s

p(s|ξ, u)JMDP
β (s)

]
, (4.5)

1More precisely, C = {φu(ξi, y)|ξi ∈ G, u ∈ U, y ∈ Y, such that p(Y1 = y|ξi, u) > 0}.

68



where JMDP
β (s) is the optimal cost for the completely observable MDP. In the belief MDP

associated with T̃D0
1
, the states are observable after the initial step. In the belief MDP asso-

ciated with T̃D0
2
, the previous state is revealed at each step. Both approximating processes

can be viewed as POMDPs, and derived using the information oracle argument.

Comparison of T̃D1 and T̃D2

First, we can apply Prop. 3.4 to compare the QMDP approximation T̃D0
1

with T̃D0
2
. The op-

erator T̃D0
1

corresponds to a lower approximation scheme withQ = (Q1, Q2) = ((S̃0, Ỹ1), S̃1)),

while T̃D0
2

corresponds to Q = Q1, or in other words, the “T̃1” in Prop. 3.4. Both mappings
preserve concavity, because the fictitious processes are POMDPs. Thus by Prop. 3.4 and
Prop. 3.1 we have

J∗β(ξ) ≥ (T̃D0
2
J∗β)(ξ) ≥ (T̃D0

1
J∗β)(ξ), J∗β(ξ) ≥ J̃2(ξ) ≥ J̃1(ξ), ∀ξ ∈ P(S), (4.6)

where J̃i, i = 1, 2 are the fixed points of T̃D0
i

respectively. By a similar argument for the

finite-stage case, we have that T̃D0
2

gives a better cost approximation than T̃D0
1
, under both

discounted and average cost cases.
For the comparison of T̃Di in general, one can show that by relaxing the inequality J∗β ≥

T̃D2J
∗
β using the concavity of J∗β , we obtain an inequality of the same form as the inequality

J∗β ≥ T̃D1J
∗
β . Note, however, this does not imply (T̃D2J

∗
β)(ξ) ≥ (T̃D1J

∗
β)(ξ),∀ξ ∈ P(S). We

must also be aware that a better cost approximation does not imply a better greedy policy.

Other discretization schemes

Grid-based approximations are not the only schemes that have finite representations. One
may combine the information oracle and the grid-based approximations to obtain other
discretization schemes. For example, while a region-observable POMDP [ZL97] gives a con-
tinuous cost approximation, we can apply it to all beliefs in the relative interior of P(S),
and apply a grid-based approximation to the beliefs on the boundary of P(S). Recall that
the next belief in a region-observable POMDP is always on a lower dimensional affine space
corresponding to some Sk in the region system (see Example 3.3). So in this combined
scheme we only need to put grid points on lower dimensional spaces, which can be compu-
tationally appealing, (even though by Prop. 3.4 the resulting approximating function is a
worse bound than that from the region-observable POMDP.)

By concatenating mappings we also obtain other discretized lower approximation schemes.
For example,

T ◦ T̃Di , i = 1, 2; and T̃I ◦ T̃D2 , (4.7)

where T̃I denotes the mapping in a region-observable POMDP. While concatenating two
lower approximating mappings does not give a better approximation than concatenating T

with one of them, the concatenated mapping T̃I T̃D2 has the same property that we only
need grid points ξi on some low dimensional affine spaces. Thus, the number of grid points
needed for discretizing the entire belief space is traded with a more complex minimization
problem as well as the approximation quality.

Discretized approximation schemes can also be obtained using a “pure” information
oracle approach. The simplest schemes of this kind are T̃D0

1
and T̃D0

2
, in which the states
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are revealed immediately or after one step. In order to obtain better approximations, one
can design more complicated information patterns revealed by the oracle. For example, for
some fixed k, assume that every state Sik would be revealed at time (i+ 1)k; within every
k stage interval, one can further make certain region-observable type of assumptions, to
reduce computation when needed.

Mathematically, we can represent these combined or concatenated schemes using one
single mapping T̃, by considering multiple stages as one single stage and enlarging the state,
observation and control spaces accordingly. So there is no loss of generality in addressing
all the discretized schemes, including the more complicated ones, simply by T̃.

4.2 Asymptotic Convergence

For discounted problems asymptotic convergence of cost approximations is naturally ex-
pected and a detailed analysis can be done in some standard way, (see e.g., [Ber75, Bon02]),
to show the sufficient resolution in the discretization for obtaining an ε-optimal policy. We
will leave these details out and give only a simple proof for completeness, using the uniform
continuity property of J∗β(·).

We first give some conventional notation related to policies, to be used throughout the
text. Let µ be a stationary policy, and Jµ be its cost. Define the mapping Tµ by

(TµJ)(ξ) = ḡ(ξ, µ(ξ)) + β EY |ξ,µ(ξ){J
(
φµ(ξ)(ξ, Y )

)
}.

Similarly, abusing notation, for any control u, we define Tu to be the mapping that has the
same single control u in place of µ(ξ) in Tµ. Similarly, for the modified belief MDP, let T̃µ

and T̃u be the mappings correspond to a policy µ and control u, respectively.
The function J∗β(ξ) is continuous on P(S). For any continuous function v(·) on P(S),

the function EY |ξ,u{v
(
φu(ξ, Y )

)
} as a function of ξ is also continuous on P(S). As P(S)

is compact, by the uniform continuity of corresponding functions, we have the following
simple lemma.

Lemma 4.1. Let v(·) be a continuous function on P(S). Let β ∈ [0, 1]. For any δ > 0,
there exists ε̄ > 0 such that for any ε-discretization scheme (G, γ) with ε ≤ ε̄,

|(Tuv)(ξ)− (T̃uv)(ξ)| ≤ δ, ∀ξ ∈ P(S), ∀u ∈ U,

where T̃ is either T̃D1 or T̃D2 associated with (G, γ).

Proof: For T̃ = T̃D1 ,

(Tuv)(ξ)− (T̃uv)(ξ) = β EY |ξ,u

{
v
(
φu(ξ, Y )

)
−
∑

i

γi

(
φu(ξ, Y )

)
v(ξi)

}
,

and the conclusion follows from the uniform continuity of v(·) over P(S). For T̃ = T̃D2 ,

(Tuv)(ξ)− (T̃uv)(ξ) = βEY |ξ,u

{
v
(
φu(ξ, Y )

)}
− β

∑
i

γi(x)EY |ξi,u

{
v
(
φu(ξi, Y )

)}
,

and the conclusion follows from the uniform continuity of EY |·,u{v(φu(·, Y ))} over P(S). �

70



Lemma 4.1 implies that for any δ > 0, there exists ε̄ > 0 such that for any ε-discretization
scheme with ε < ε̄, the corresponding T̃ satisfies

(T̃J∗β)(ξ) ≤ J∗β(ξ) ≤ (T̃J∗β)(ξ) + δ, ∀ξ ∈ P(S). (4.8)

Using this implication and the standard error bounds, one can show the following theorem
which states that the lower approximation and the cost of its look-ahead policy, as well as
the cost of the policy that is optimal with respect to the modified belief MDP, all converge
to the optimal cost of the original POMDP.

Theorem 4.1. Let T̃ε be either T̃D1 or T̃D2 associated with an ε-discretization scheme.
Define the function J̃ε, the policy µε and µ̃ε to be such that

J̃ε = T̃εJ̃ε, Tµε J̃ε = TJ̃ε, T̃µ̃ε J̃ε = T̃εJ̃ε.

Then
J̃ε → J∗β , Jµε → J∗β , Jµ̃ε → J∗β , as ε→∞,

and the convergence is uniform over P(S).

Proof: Let δ > 0. When ε is sufficiently small, by Eq. (4.8) we have ‖T̃εJ
∗
β − J∗β‖∞ ≤ δ.

Viewing J∗β as the approximate cost-to-go in the modified problem associated with T̃ε, we
have by the standard MDP error bounds (see e.g., [Ber01]) that

‖J∗β − J̃ε‖∞ ≤
‖T̃εJ

∗
β − J∗β‖∞
1− β

=
δ

1− β
.

This implies limε→0 ‖J∗β − J̃ε‖∞ = 0, which in turn implies limε→0 ‖J∗β − Jµε‖∞ = 0, where
µε is the one-step look-ahead policy with respect to J̃ε. We now show Jµ̃ε → J∗β , where µ̃ε

is the optimal policy of the modified problem. We have Jµ̃ε ≥ J∗β ≥ J̃ε and

‖J∗β − Jµ̃ε‖∞ ≤ ‖J̃ε − Jµ̃ε‖∞ ≤ ‖Tµ̃ε J̃ε − J̃ε‖∞
1− β

,

where the second inequality follows from the standard MDP error bounds by viewing J̃ε

as the approximate cost-to-go in the original POMDP controlled by µ̃ε. Using triangle
inequality, the last term in the preceding equation can be further relaxed as

‖Tµ̃ε J̃ε − J̃ε‖∞ ≤ ‖Tµ̃ε J̃ε − Tµ̃εJ
∗
β‖∞ + ‖Tµ̃εJ

∗
β − T̃µ̃εJ

∗
β‖∞ + ‖T̃µ̃εJ

∗
β − J̃ε‖∞ .

As ε → 0, the second term on the right-hand side diminishes by Lemma 4.1, and the rest
terms diminish due to the fact J̃ε → J∗β . Thus the claimed convergence is proved. Further-
more, since the convergence is in sup-norm, the convergence of the approximating functions
is uniform in ξ. �

4.3 Summary

This chapter summarizes discretized lower approximation schemes and their computation
issues for finite space POMDPs with the discounted cost criterion. The asymptotic conver-
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gence analysis is provided for completeness.
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Chapter 5

Discretized Lower Approximations
for Average Cost Criterion

In this chapter we will establish the application of discretized lower approximation schemes
to finite space POMDPs with the average cost criterion. While for discounted problems
several lower approximation schemes have been proposed earlier, ours seems the first of its
kind for average cost POMDP problems. We show in Section 5.2 that the corresponding ap-
proximation can be computed efficiently using multichain algorithms for finite-state MDPs.
We show in Section 5.3 that in addition to providing a lower bound to the optimal liminf
average cost function, the approximation obtained from a discretized lower approximation
scheme can also be used to calculate an upper bound on the limsup optimal average cost
function, as well as bounds on the cost of executing the stationary policy associated with
the approximation.

We prove in Section 5.4 the asymptotic convergence of the cost approximation, under
the condition that the optimal average cost is constant and the optimal differential cost
is continuous. We will also discuss the restriction of this condition and issues relating to
the convergence of policies. We show in Section 5.5 experimental results of applying the
discretized lower approximation approach to average cost problems.

5.1 Introduction

As reviewed in Section 2.4, exact solutions for POMDPs with the average cost criterion
are substantially more difficult to analyze than those with the discounted cost criterion.
Consider the belief MDP equivalent to the POMDP, and denote the belief at time 1 by X̃,
a random variable. For a POMDP with average cost, in order that a stationary optimal
policy exists, it is sufficient that the following functional equations, in the belief MDP
notation,

J(ξ) = min
u
EX̃|ξ,u{J(X̃)}, U(ξ) = argmin

u∈U
EX̃|ξ,u{J(X̃)},

J(ξ) + h(ξ) = min
u∈U(ξ)

[
ḡ(ξ, u) + EX̃|ξ,u{h(X̃)}

]
, (5.1)

admit a bounded solution (J∗(·), h∗(·)). The stationary policy that attains the minima of
the right-hand sides of both equations is then average cost optimal with its average cost
being J∗(ξ). However, there are no finite computation algorithms to obtain it.
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We now extend the application of the discretized approximations to the average cost case.
First, note that solving the corresponding average cost problem in the discretized approach
is much easier. Let T̃ be any of the mappings from discretized lower approximation schemes
as listed in Section 4.1. For its associated modified belief MDP, we have the following
average cost optimality equations:

J(ξ) = min
u
ẼX̃|ξ,u{J(X̃)}, U(ξ) = argmin

u∈U
ẼX̃|ξ,u{J(X̃)},

J(ξ) + h(ξ) = min
u∈U(ξ)

[
ḡ(ξ, u) + ẼX̃|ξ,u{h(X̃)}

]
, (5.2)

and we have denoted by X̃ the belief at time 1, and used Ẽ to indicate that the expectation
is taken with respect to the distributions p̃(X̃|ξ, u) of the modified MDP, which satisfy for
all (ξ, u),

p̃(X̃ = ξ̃ | ξ, u) = 0, ∀ξ̃ 6∈ C,

with C being the finite set of supporting beliefs (see Section 4.1). There are bounded
solutions (J̃(·), h̃(·)) to the optimality equations (5.2) for the following reason: Every finite-
state MDP problem admits a solution to its average cost optimality equations. Furthermore
if ξ 6∈ C, ξ is transient and unreachable from C, and the next belief X̃ belongs to C under
any control u in the modified MDP. It follows that the optimality equations (5.2) restricted
on {ξ} ∪ C are the optimality equations for the finite-state MDP with |C| + 1 states, so
the solution (J̃(ξ̄), h̃(ξ̄)) exists for ξ̄ ∈ {ξ} ∪ C with their values on C independent of ξ.
This is essentially the algorithm to solve J̃(·) and h̃(·) in two stages, and obtain an optimal
stationary policy for the modified MDP.

Concerns arise, however, about using any optimal policy for the modified MDP as sub-
optimal control in the original POMDP. Although all average cost optimal policies behave
equally optimally in the asymptotic sense, they do so in the modified MDP, in which all
the states ξ 6∈ C are transient. As an illustration, suppose for the completely observable
MDP, the optimal average cost is constant over all states, then at any belief ξ 6∈ C any
control will have the same asymptotic average cost in the modified MDP corresponding to
the QMDP approximation scheme. The situation worsens, if even the completely observ-
able MDP itself has a large number of states that are transient under its optimal policies.
We therefore propose that for the modified MDP, we should aim to compute policies with
additional optimality guarantees, relating to their finite-stage behaviors. Fortunately for
finite-state MDPs, there are efficient algorithms for computing such policies. Furthermore,
by adopting these algorithms, we automatically take care of the total cost case in which
both the POMDP and the modified MDP have finite optimal total costs.

5.2 Algorithm

Review of n-discount optimality

We first briefly review related results, called sensitive optimality in literature, for finite-state
MDPs. A reference can be found in Puterman [Put94].

Since average cost measures the asymptotic behavior of a policy, given two policies
having the same average cost, one can incur significantly larger cost over a finite horizon
than the other. The concept of n-discount optimality is useful for differentiating between
such policies. It is also closely related to Blackwell optimality. Let Jπ

β be the cost of policy
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π in a β-discounted problem. A policy π∗ is called n-discount optimal if its discounted costs
satisfy

lim sup
β→1

(1− β)−n(Jπ∗
β (s)− Jπ

β (s)) ≤ 0, ∀s, ∀π.

By definition an (n + 1)-discount policy is also k-discount optimal for k = −1, 0, . . . , n.
A policy is called Blackwell optimal, if it is optimal for all the discounted problems with
discount factor β ∈ [β̄, 1) for some β̄ < 1. For finite-state MDPs, a policy is Blackwell
optimal if and only if it is ∞-discount optimal. By contrast, any (−1)-discount optimal
policy is average cost optimal.

For any finite-state MDP, there exist stationary average cost optimal policies and fur-
thermore, stationary n-discount optimal and Blackwell optimal policies. In particular, de-
noting by S̃ the state at time 1, there exist functions J(·), h(·) and wk(·), k = 0, . . . , n+ 1,
with w0 = h such that they satisfy the following nested equations:

J(s) = min
u∈U(s)

ES̃|s,u{J(S̃)}, (5.3)

J(s) + h(s) = min
u∈U−1(s)

[ g(s, u) + ES̃|s,u{h(S̃)}],

wk−1(s) + wk(s) = min
u∈Uk−1(s)

ES̃|s,u{wk(S̃)},

where

U−1(s) = arg min
u∈U(s)

ES̃|s,u{J(S̃)},

U0(s) = arg min
u∈U−1(s)

[ g(s, u) + ES̃|s,u{h(S̃)}],

Uk(s) = arg min
u∈Uk−1(s)

ES̃|s,u{wk(S̃)}.

Any stationary policy that attains the minimum in the right-hand sides of the equations
in (5.3) is an n-discount optimal policy.

For finite-state MDPs, a stationary n-discount optimal policy not only exists, but can
also be efficiently computed by multichain algorithms. Furthermore, in order to obtain a
Blackwell optimal policy, which is ∞-discount optimal, it is sufficient to compute a (N−2)-
discount optimal policy, where N is the number of states in the finite-state MDP. We refer
readers to the book by Puterman [Put94], Chapter 10, especially Section 10.3 for details of
the algorithm as well as theoretical analysis.

Algorithm

This leads to the following algorithm for computing an n-discount optimal policy for the
modified MDP defined on the continuous belief space. We first solve the average cost
problem on C, then determine optimal controls on transient states ξ 6∈ C. Note there are
no conditions (such as unichain) on the recurrence structure of the modified belief MDP,
which is a preferred property, since the modified process is, after all, an artificial process,
that may lack nice properties usually found in real problems.
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The algorithm solving the modified MDP

1. Compute an n-discount optimal solution for the finite-state MDP problem associated
with C. Let J̃∗(ξ), h̃(ξ), and w̃k(ξ), k = 1, . . . , n+1, with ξ ∈ C, be the corresponding
functions obtained that satisfy Eq. (5.3) on C.

2. For any belief ξ ∈ P(S), let the control set Un+1 be computed at the last step of the
sequence of optimizations, (note X̃ ∈ C with probability one):

U−1 = arg min
u

ẼX̃|ξ,u{J̃
∗(X̃)},

U0 = arg min
u∈U−1

[
ḡ(ξ, u) + ẼX̃|ξ,u{h̃(X̃)}

]
,

Uk = arg min
u∈Uk−1

ẼX̃|ξ,u{w̃k(X̃)}, 1 ≤ k ≤ n+ 1.

Let u be any control in Un+1, and let µ̃∗(x) = u. Also if ξ 6∈ C, define

J̃∗(ξ) = ẼX̃|ξ,u{J̃
∗(X̃)},

h̃(ξ) = ḡ(ξ, u) + ẼX̃|ξ,u{h̃(X̃)} − J̃∗(ξ).

With the above algorithm we obtain an n-discount optimal policy for the modified MDP.
When n = |C| − 1, we obtain an ∞-discount optimal policy for the modified MDP,1 since
the algorithm essentially computes a Blackwell optimal policy for every finite-state MDP
restricted on {ξ} ∪ C, for all ξ. Thus, for the modified MDP, for any other policy π, and
any ξ ∈ P(S),

lim sup
β→1

(1− β)−n(J̃ µ̃∗

β (ξ)− J̃π
β (ξ)) ≤ 0, ∀n ≥ −1.

It is also straightforward to see that

J̃∗(ξ) = lim
β→1

(1− β)J̃∗β(x), ∀ξ ∈ P(S), (5.4)

where J̃∗β(ξ) are the optimal discounted costs for the modified MDP, and the convergence is
uniform over P(S), since J̃∗β(ξ) and J̃∗(ξ) are piecewise linear interpolations of the function
values on a finite set of beliefs.

5.3 Analysis of Error Bounds

We now show how to bound the optimal average cost of the original POMDP, and how to
bound the cost of executing the suboptimal policy, that is optimal to the modified MDP,
in the original POMDP.

1Note that∞-discount optimality and Blackwell optimality are equivalent for finite-state MDPs, however,
they are not equivalent in the case of a continuous state space. In the modified MDP, although for each ξ
there exists an β(ξ) ∈ (0, 1) such that µ̃∗(ξ) is optimal for all β-discounted problems with β(ξ) ≤ β < 1,
we may have supξ β(ξ) = 1 due to the continuity of the belief space. In some literature, this is called
weak Blackwell optimality, while the definition of Blackwell optimality we use in this thesis is called strong
Balckwell optimality.
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The fact that J̃∗ is a lower bound of J∗− follows from the stronger lower bound re-
sult, Theorem 3.1 of Section 3.4. It can also be established by the weaker lower bound
result, Prop. 3.3, using the fact that value iteration converges for finite state and control
MDPs with average cost. We describe this line of analysis briefly as a comparison. Let
Ṽ ∗

N (ξ) be the optimal N -stage cost function of the modified belief MDP. By Prop. 3.3,
lim infN→∞

1
N Ṽ

∗
N (ξ) ≤ J∗−(ξ). Recall in the modified problem for each ξ it is sufficient to

consider the finite state MDP on {ξ} ∪ C. By Theorem 9.4.1. b of [Put94], the limit of
1
N Ṽ

∗
N (ξ) exists and J̃∗(ξ) = limN→∞

1
N Ṽ

∗
N (ξ). Hence it follows that J̃∗(ξ) ≤ J∗−(ξ).

Next we give a simple upper bound on J∗+(·), which is an upper bound on the cost of a
suboptimal policy, hence may be loose.

Theorem 5.1. The optimal liminf and limsup average cost functions satisfy

J̃∗(ξ) ≤ J∗−(ξ) ≤ J∗+(ξ) ≤ max
ξ̄∈C

J̃∗(ξ̄) + δ,

where δ = max
ξ∈P(S)

[
(Th̃)(ξ)− J̃∗(ξ)− h̃(ξ)

]
,

and J̃∗(ξ), h̃(ξ) and C are defined as in the modified MDP.

The upper bound is a consequence of the following lemma, the proof of which follows
by bounding the expected cost per stage in the summation of the N -stage cost. This is a
standard and useful bound for average cost MDPs, (not only for POMDPs).

Lemma 5.1. Let J(ξ) and h(ξ) be any bounded functions on P(S), and µ be any stationary
and deterministic policy. Define constants δ+ and δ− by

δ+ = max
ξ∈P(S)

[
ḡ(ξ, µ(ξ)) + EX̃|ξ,µ(ξ){h(X̃)} − J(ξ)− h(ξ)

]
,

δ− = min
ξ∈P(S)

[
ḡ(ξ, µ(ξ)) + EX̃|ξ,µ(ξ){h(X̃)} − J(ξ)− h(ξ)

]
.

Then V µ
N (ξ), the N -stage cost of executing policy µ, satisfies

α−(ξ) + δ− ≤ lim inf
N→∞

1
N V

µ
N (ξ) ≤ lim sup

N→∞

1
N V

µ
N (ξ) ≤ α+(ξ) + δ+, ∀ξ ∈ P(S),

where α+(ξ), α−(ξ) are defined by

α+(ξ) = max
ξ̄∈Dµ

ξ

J(ξ̄), α−(ξ) = min
ξ̄∈Dµ

ξ

J(ξ̄),

and D
µ
ξ denotes the set of beliefs reachable under policy µ from ξ.

Proof: Let {ξt} be the Markov process of beliefs in the original problem under the control
of µ. It can be seen that

V µ
N (ξ) = E{

N−1∑
t=0

ḡ(ξt, µ(ξt))}.

By definitions of δ− and δ+,

ḡ(ξt, µ(ξt)) ≤ J(ξt) + h(ξt)− Eξt+1|ξt,µ(ξt){h(ξt+1)}+ δ+,

ḡ(ξt, µ(ξt)) ≥ J(ξt) + h(ξt)− Eξt+1|ξt,µ(ξt){h(ξt+1)}+ δ−.
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Summing up the inequalities over t, respectively, it follows that

E{
N−1∑
t=0

ḡ(ξt, µ(ξt))} ≤ E{
N−1∑
t=0

J(ξt)}+ h(ξ0)− E{h(ξN )}+Nδ+

≤ N(α+(ξ0) + δ+) + h(ξ0)− E{h(ξN )},

E{
N−1∑
t=0

ḡ(ξt, µ(ξt))} ≥ E{
N−1∑
t=0

J(ξt)}+ h(ξ0)− E{h(ξN )}+Nδ−

≥ N(α−(ξ0) + δ−) + h(ξ0)− E{h(ξN )}.

Since h is a bounded function, we have

α−(ξ0) + δ− ≤ lim inf
N→∞

1
N V

µ
N (ξ0) ≤ lim sup

N→∞

1
N V

µ
N (ξ0) ≤ α+(ξ0) + δ+,

and this proves the claim. �

Let µ̃∗ be the stationary policy that is optimal for the modified MDP. We can use
Lemma 5.1 to bound the liminf and limsup average cost of µ̃∗ in the original POMDP. For
example, consider the modified process corresponding to the QMDP approximation. If the
optimal average cost J∗MDP of the completely observable MDP problem equals the constant
λ∗ over all states, then we also have J̃∗(ξ) = λ∗, ∀ξ ∈ P(S). The cost of executing the policy
µ̃∗ in the original POMDP can therefore be bounded by

λ∗ + δ− ≤ lim inf
N→∞

1
N V

µ̃∗

N (ξ) ≤ lim sup
N→∞

1
N V

µ̃∗

N (ξ) ≤ λ∗ + δ+.

The quantities δ+ and δ− can be hard to calculate exactly in general, since J̃∗(·) and h̃(·)
obtained from the modified MDP are piecewise linear functions. Furthermore, the bounds
may be loose, since they are worst-case bounds. On the other hand, these functions may
indicate the structure of the original problem, and help us to refine the discretization scheme
in the approximation.

5.4 Analysis of Asymptotic Convergence

In this section we will prove that as the resolution in discretization increases, the optimal
cost of the modified problem asymptotically converges to the optimal cost function of the
original POMDP, under the condition that there is a bounded solution (J∗, h∗) to the
optimality equations (5.1) with J∗ being constant and h∗ continuous. We note that this is
a fairly stringent condition. Because, first, it is easy to construct examples of POMDP with
a non-constant optimal average cost (Section 2.4), and secondly, questions such as when h∗

is continuous, how to verify it for a given problem, and several others, still lack satisfactory
answers.

Let (G, γ) be an ε-discretization scheme (Definition 4.1). Let J̃ε and J̃β,ε be the optimal
average cost and discounted cost, respectively, in the modified MDP associated with (G, γ)
and either T̃D1 or T̃D2 as defined in Section 4.1. We address the question whether J̃ε(ξ) →
J∗(ξ), as ε→ 0, when J∗(ξ) = J∗−(ξ) = J∗+(ξ) exists. Recall that in the discounted case for
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a fixed discount factor β, we have asymptotic convergence to optimality (Theorem 4.1):

lim
ε→0

J̃β,ε(ξ) = J∗β(ξ).

However, even under the conditions guaranteeing a constant optimal average cost J∗(ξ) = λ∗

and the convergence of discounted costs with vanishing discount factors, i.e.,

λ∗ = lim
β→1

(1− β)J∗β(ξ), ∀ξ ∈ P(S),

in general we have

lim
ε→0

J̃ε(ξ) = lim
ε→0

lim
β→1

(1− β)J̃β,ε(ξ) 6= lim
β→1

lim
ε→0

(1− β)J̃β,ε(ξ) = λ∗.

To ensure that J̃ε → λ∗, we therefore assume stronger conditions than those that guarantee
the existence of λ∗. We now show that a sufficient condition is the continuity of the optimal
differential cost h∗(·).

Theorem 5.2. Suppose the average cost optimality equations (5.1) admit a bounded solution
(J∗(ξ), h∗(ξ)) with J∗(ξ) equal to a constant λ∗. Then, if the differential cost h∗(ξ) is
continuous on P(S), we have

lim
ε→0

J̃ε(ξ) = λ∗, ∀ξ ∈ P(S),

and the convergence is uniform, where J̃ε is the optimal average cost function for the modified
MDP corresponding to either T̃D1 or T̃D2 associated with an ε-discretization scheme (G, γ).

Proof: Let µ̃∗ε be the optimal policy for the modified MDP associated with an ε-
discretization scheme. Let T̃ be the mapping corresponding to the modified MDP, defined by
(T̃v)(ξ) = minu∈U[ḡ(ξ, u)+ẼX̃|ξ,u{v(X̃)}]. Since h∗(ξ) is continuous on P(S), by Lemma 4.1
in Section 4.2, we have that for any δ > 0, there exists ε̄ > 0 such that for all ε-discretization
schemes with ε < ε̄,

|(Tµ̃∗εh
∗)(ξ)− (T̃µ̃∗εh

∗)(ξ)| ≤ δ, ∀ξ ∈ P(S). (5.5)

We now apply the result of Lemma 5.1 in the modified MDP with J(·) = λ∗, h = h∗, and
µ = µ̃∗ε . That is, by the same argument as in Lemma 5.1, the N -stage cost ṼN in the
modified MDP satisfies

J̃ε(ξ) = lim inf
N→∞

1
N Ṽ

µ̃∗ε
N (ξ) ≥ λ∗ + η, ∀ξ ∈ P(S),

where η = minξ∈P(S)

[
(T̃µ̃∗εh

∗)(ξ)− λ∗ − h∗(ξ)
]
. Since

λ∗ + h∗(ξ) = (Th∗)(ξ) ≤ (Tµ̃∗εh
∗)(ξ),

and |(Tµ̃∗εh
∗)(ξ)− (T̃µ̃∗εh

∗)(ξ)| ≤ δ by Eq. (5.5), we have

(T̃µ̃∗εh
∗)(ξ)− λ∗ − h∗(ξ) ≥ −δ.

Hence η ≥ −δ, and J̃ε(ξ) ≥ λ∗ − δ for all ε ≤ ε̄, and ξ ∈ P(S), which proves the uniform
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convergence of J̃ε to λ∗. �

Remark 5.1. The proof does not generalize to the case when J∗(ξ) is not constant; and
the inequality J̃ε ≤ J∗ is crucial in the preceding proof. If a stronger condition is assumed
that there exists a sequence of βk ↑ 1 such that the discounted optimal cost functions
{J∗βk

|k ≥ 1} are equicontinuous, then one can show the asymptotic convergence for other
discretized approximations J̃ε that are not necessarily lower bounds of J∗, using a vanishing
discount argument as follows. For any δ > 0, we can choose an ε-discretization scheme such
that the βk-discounted optimal cost J̃∗βk,ε of the modified problem satisfies

‖J∗βk
− J̃∗βk,ε‖∞ ≤ (1− βk)−1δ/3, ∀k.

Since
lim

k→∞
(1− βk)J̃∗βk,ε = J̃∗ε , lim

k→∞
(1− βk)J∗βk

= λ∗,

and the convergence in both equations is uniform, (the uniform convergence in the second
equation is due to the equicontinuity of {J∗βk

}), we can choose a k̄ sufficiently large such
that

‖J̃∗ε − λ∗‖∞ ≤ ‖J̃∗ε − (1− βk̄)J̃
∗
βk̄,ε‖∞ + (1− βk̄)‖J̃∗βk̄,ε − J∗βk̄

‖∞ + ‖(1− βk̄)J
∗
βk̄
− λ∗‖∞ ≤ δ,

where J̃∗ε is the optimal average cost of the modified problem. This shows the asymptotic
convergence of discretized approximation schemes that are not necessarily lower approxi-
mation schemes, when {J∗β} are equicontinuous.

Remark 5.2. Conditions in [HCA05] guarantee a bounded but not necessarily continuous
h∗. Platzman [Pla80] shows an example in which the optimal differential cost has to be
discontinuous. Platzman’s reachability and detectability conditions [Pla80] guarantee a
continuous h∗, but these conditions are quite strong and also not easily verifiable for a
given problem.

Convergence Issues for Policies

An important issue that we have not addressed so far is how to obtain ε-optimal control poli-
cies, assuming that the optimal average cost is constant. A worst-case error bound analysis
unfortunately fails to establish the asymptotic convergence of the cost of the suboptimal
control policies obtained in solving the average cost modified problem.

A different approach is to use a near-optimal policy for the β-discounted problem with
β sufficiently close to 1, as a suboptimal control policy for the average cost problem. This
approach was taken by Runggaldier and Stettner [RS94]. We describe it here for complete-
ness.

Assume that the constant average cost DP equation admits a bounded solution (λ∗, h∗).
This assumption is equivalent to {h∗β | β ∈ [0, 1)} being uniformly bounded (Theorem 7
of [HCA05]), where

h∗β(ξ) = J∗β(ξ)− J∗β(ξ̄)

is the relative cost with respect to some fixed reference belief ξ̄. Furthermore, this assump-
tion implies limβ↑1(1− β)J∗β(ξ) = λ∗,∀ξ ∈ P(S).
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Similar to the vanishing discount approach, first, by subtracting the term βJ∗β(ξ̄) from
both sides of the DP equation for the discounted problem, we can write the DP equation as

(1− β)J∗β(ξ̄) + h∗β(ξ) = (Tβh
∗
β)(ξ),

where we have used Tβ to denote the DP mapping for a β-discounted problem to its depen-
dence on β explicit. Consider the policy µ such that

‖TβJ
∗
β − Tβ,µJ

∗
β‖∞ ≤ δ, (5.6)

where Tβ,µ is the DP mapping associated with µ in the discounted problem. Then

(1−β)J∗β(ξ̄)+h∗β(ξ) = (Tβh
∗
β)(ξ) ≥ (Tβ,µh

∗
β)(ξ)− δ ≥ (Tµh

∗
β)(ξ)− (1−β)‖h∗β‖∞− δ, (5.7)

where Tµ is the average cost DP mapping associated with µ. By Eq. (5.7) and Lemma 5.1,
the limsup average cost Jµ

+(ξ) of µ is thus bounded by

Jµ
+(ξ) ≤ (1− β)J∗β(ξ̄) + δ + (1− β)‖h∗β‖∞, ∀ξ ∈ P(S).

If β is sufficiently large so that

(1− β)‖h∗β‖∞ ≤ δ, (1− β)J∗(ξ̄)− λ∗ ≤ δ,

and furthermore µ satisfies Eq. (5.6), then µ is 3δ-optimal for the average cost problem.
One method to obtain a policy satisfying Eq. (5.6) is to compute the optimal policy of a

discounted modified problem corresponding to an ε-discretization scheme with ε = O((1−
β)δ), roughly speaking. Another method is to use value iteration to compute an approximate
cost-to-go function Ĵβ such that ‖Tβ Ĵβ − Ĵβ‖∞ = O((1 − β)δ) and then take the greedy
policy with respect to Ĵβ. For β close to 1, both methods are of course computationally
intensive.

5.5 Preliminary Experiments

We demonstrate our approach on a set of test problems: Paint, Bridge-repair, and Shut-
tle. The sizes of the problems are summarized in Table 5.1. Their descriptions and param-
eters are as specified in A. Cassandra’s POMDP File Repository,2 and we define costs to
be negative rewards when a problem has a reward model.

Paint Bridge Shuttle

4×4×2 5×12×5 8×3×5

Table 5.1: Sizes of problems in terms of |S|×|U|×|Y|.

We used some simple grid patterns. One pattern, referred to as k-E, consists of k grid
points on each edge, in addition to the vertices of the belief simplex. Another pattern, re-
ferred to as n-R, consists of n randomly chosen grid points, in addition to the vertices of the
simplex. The combined pattern is referred to as k-E+n-R. Thus the grid pattern for QMDP

2http://cs.brown.edu/research/ai/pomdp/examples
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approximation is 0-E, for instance, and 2-E+10-R is a combined pattern. The grid pattern
then induces a partition of the belief space and a convex representation (interpolation)
scheme, which we kept implicitly and computed by linear programming on-line.

The algorithm for solving the modified finite-state MDP was implemented by solving a
system of linear equations for each policy iteration. This may not be the most efficient way.
No higher than 5-discount optimal policies were computed, when the number of supporting
points became large.

0−E 1−E 2−E+10−R 3−E 3−E+10−R 3−E+100−R 4−E

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

Figure 5-1: Average cost approximation for problem Paint using various grid patterns. The
upper blue curve corresponds to T̃D2 , and the lower red curve T̃D1 . Linear interpolations
between data points are plotted for reading convenience.

Fig. 5-1 shows the average cost approximation of T̃D1 and T̃D2 with a few grid patterns for
the problem Paint. In all cases we obtained a constant average cost for the modified MDP.
The horizontal axis is labeled by the grid pattern, and the vertical axis is the approximate
cost. The red curve is obtained by T̃D1 , and the blue curve T̃D2 . As will be shown below, the
approximation obtained by T̃D2 with 3-E is already near optimal. The policies generated by
T̃D2 are not always better, however. We also notice, as indicated by the drop in the curves
when using grid pattern 4-E, that the improvement of cost approximation does not solely
depend on the number of grid points, but also on where they are positioned.

Problem LB N. UB S. Policy

Paint −0.170 -0.052 −0.172 ±0.002

Bridge 241.798 241.880 241.700 ±1.258

Shuttle −1.842 −1.220 −1.835 ±0.007

Table 5.2: Average cost approximations and simulated average cost of policies.

In Table 5.2 we summarize the cost approximations obtained (column LB) and the
simulated cost of the policies (column S. Policy) for the three problems. The approximation
schemes that attained LB values in Table 5.2, as well as the policies simulated, are listed
in Table 5.3. The column N. UB shows the numerically computed upper bound of the
optimal – we calculate δ in Theorem 5.1 by sampling the values of (Th̃)(ξ) − h̃(ξ) − J̃(ξ)
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Problem LB S. Policy

Paint T̃D2 w/ 3-E T̃D1 w/ 1-E

Bridge T̃D2 w/ 0-E T̃D2 w/ 0-E

Shuttle T̃D1,2 w/ 2-E T̃D1 w/ 2-E

Table 5.3: Approximation schemes in LB and simulated policies in Table 5.2.

at hundreds of beliefs generated randomly and taking the maximum over them. Thus the
N. UB values are under-estimates of the exact upper bound. For both Paint and Shuttle
the number of trajectories simulated is 160, and for Bridge 1000. Each trajectory has 500
steps starting from the same belief. The first number in S. Policy in Table 5.2 is the mean
over the average cost of simulated trajectories, and the standard error listed as the second
number is estimated from bootstrap samples – we created 100 pseudo-random samples by
sampling from the empirical distribution of the original sample and computed the standard
deviation of the mean estimator over these 100 pseudo-random samples.

As shown in Table 5.2, we find that some policy from the discretized approximation with
very coarse grids can already be comparable to the optimal. This is verified by simulating
the policy (S. Policy) and comparing its average cost against the lower bound of the
optimal (LB), which in turn shows that the lower approximation is near optimal.

We find that in some cases the upper bounds may be too loose to be informative. For
example, in the problem Paint we know that there is a simple policy achieving zero average
cost, therefore a near-zero upper bound does not tell much about the optimal. In the
experiments we also observe that an approximation scheme with more grid points does not
necessarily provide a better upper bound of the optimal.

5.6 Summary

For average cost POMDP with finite space models, we have shown that lower bounds of
the optimal liminf average cost function can be computed by using discretized lower ap-
proximation schemes and multichain n-discount MDP algorithms. Standard error bounds
can be applied to the resulting approximating cost functions to bound the error of cost
approximation as well as the cost of the suboptimal control obtained from the cost approx-
imation. These results apply to POMDP problems in general, regardless of the equality of
the optimal liminf and limsup cost functions, or the existence of solutions to the optimality
equations.

We have also proved the asymptotic convergence of the average cost approximation under
the restrictive condition of a constant optimal average cost and a continuous differential cost
function. The question of the asymptotic convergence of the cost of the policies obtained
from the approximation is, however, still open.
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Chapter 6

Extension of Lower
Approximations to Partially
Observable Semi-Markov Decision
Processes

Consider first continuous-time semi-Markov decision processes (SMDPs). An SMDP is
similar to an MDP, except that there are random variables {τn}, called decision epochs,
which are the only times when controls can be applied. The time interval τn+1 − τn, called
the sojourn time, between transition from state Sn at time τn to state Sn+1 at time τn+1,
is random and depends on Sn, Sn+1 as well as the control Un.

A partially observable SMDP (POSMDP) is defined as an SMDP with hidden states
and observations Yn generated by (Sn, Un−1). A graphical model of POSMDP is shown in
Fig. 6-1.

2

τ 2τ

0 2

0 1u u
S SS1

Y1 Y

1

Figure 6-1: The graphical model of a partially observable semi-Markov decision process.

Though as a model, an SMDP is more general than an MDP, algorithmically many
SMDP problems (e.g., policy iteration and value iteration) share similar structures with
their MDP counterparts, and therefore can be solved by algorithms developed for MDPs
after proper transformations of the SMDP problems. (For theories and algorithms of discrete
space SMDPs one can see e.g., Puterman [Put94] and Sennott [Sen99].)

Similarly, our analyses from Chapter 3 to Chapter 5 for POMDPs also find their parallels
in POSMDP problems, with, nevertheless, subtleties and differences in the latter worth to
account for. In particular, we will show in this chapter the following results.

• The fictitious processes, inequalities for the optimal cost functions, lower cost approx-
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imations and modified belief MDPs proposed for POMDPs extend straightforwardly
to the POSMDP case. Correspondingly, there are two lines of analysis that lead first
to a weaker and then to a stronger lower bound result, and the latter states that
the optimal cost of the modified problem is a lower bound of the optimal cost of the
original problem (Theorem 6.1 and Corollary 6.1).

• For discounted or average cost POSMDPs with finite state, control and observation
spaces, the lower bounds are computable using finite-state and control SMDP algo-
rithms (Section 6.3).

• As an application of the POSMDP results, one can compute lower bounds of the
optimal cost function of a POMDP problem over a subclass of policies that we refer
to as hierarchical controllers, which induce a semi-Markov structure in the POMDP
problem (Section 6.4).

Like the POMDP, the average cost POSMDP problem is still not well understood. The
main contribution of this chapter is thus the proposal and analysis of lower bounds for the
average cost case.

6.1 Review of POSMDPs

We will review the model and induced stochastic processes of a POSMDP, the belief SMDP
equivalent to a POSMDP, expected cost criteria and optimality equations. We will follow
the notation of Chapter 2 and simplify it in later sections where we consider discretized
approximations.

6.1.1 Model and Assumptions

The model of a POSMDP can be specified by a seven-tuple < S,Y,U, Pτ,S , PY , g, α > with
the terms defined as follows.

• Pτ,S is the state and sojourn time transition probability, and Pτ,S((s, u), A) denotes
the conditional probability that (s′, τ) ∈ A, where s′ is the next state and τ the
sojourn time, given that at the current decision epoch the state is s and the control
u.

• PY ((s, u), ·) is the observation probability, the same as in POMDP.

• g(s, u) is the per-stage cost function, and α ∈ [0,∞) the discounting rate. With a
given α, g(s, u) is defined as the sum of two parts:

g(s, u) = c1(s, u) + E

{∫ τ1

0
e−αtc2(Wt, S0, U0) dt

∣∣S0 = s, U0 = u

}
(6.1)

where the first part of the cost c1(s, u) occurs immediately at the decision time, and
the second part involving a “natural” process {Wt} and a cost rate c2 is the expected
discounted cumulative costs during two consecutive decision epochs. Note that the
per-stage cost g(s, u) depends on the discounting rate α. We assume that g(s, u) are
given as part of the model.
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The set of admissible policies are policies depending on past controls, decision epochs
and observations. Let Hn be the space of {(Uk−1, τk, Yk)k≤n}, which is recursively defined
as

H0 = ∅, Hn = Hn−1 × U× R+ × Y.

A history dependent randomized policy π is a collection (µn)n≥0, where µn are transition
probabilities from the history set Hn to the control space U that map an observed history
up to the n-th decision epoch to a law on the control space. The set of all history dependent
randomized policies are denoted by Π.

We need a few assumptions to ensure that expected costs are well-defined. Let F (t|s, u)
be the conditional cumulative distribution of the length between two consecutive decision
epochs, i.e.,

F ( t | s, u) = Pτ,S

(
(s, u), (−∞, t]× S

)
.

Ross [Ros70] introduced the following important assumption, which ensures that only finite
number of decision epochs can happen during a finite period of time.

Assumption 6.1. There exist a > 0 and δ ∈ (0, 1) such that for all s ∈ S, u ∈ U,

F ( a | s, u) < δ. (6.2)

We will also impose the boundedness of the per-stage cost g.

Assumption 6.2. There exists a constant L such that for α = 0, sups∈S,u∈U |g(s, u)| < L.

The boundedness assumption is satisfied, if c1, c2 in Eq. (6.1) are bounded and E{τ1 |
S0 = s, U0 = u} <∞ for all s, u. Therefore we also make the following assumption.

Assumption 6.3. sups∈S,u∈UE{τ1 | S0 = s, U0 = u} <∞.

6.1.2 Discounted and Average Cost Criteria

Discounted Cost

Consider a discounted problem with discounting rate α. Let Pξ,π be the joint distribution
of the stochastic process {S0, U0, (Sn, τn, Yn, Un)n≥1} induced by the initial distribution ξ
and policy π ∈ Π. The discounted cost of π with discounting rate α is defined by

Jπ
α(ξ) = EPξ,π

{ ∞∑
n=0

e−ατn g(Sn, Un)

}
,

and the optimal cost function is defined by

J∗α(ξ) = inf
π∈Π

Jπ
α(ξ).

Assumption 6.1 together with the boundedness of g ensures that for Pξ,π-almost all sample
paths the infinite summation

∑∞
n=0 e

−ατng(Sn, Un) is well-defined and bounded. So Jπ
α and

J∗α are well-defined.

The Equivalent Belief SMDP and Optimality Equations

We have for a POSMDP the equivalent belief SMDP and other definitions analogous to
those in the POMDP case. For a given initial distribution ξ, define ξ0 = ξ, and define
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the belief ξn, a P(S)-valued random variable, to be the conditional distribution of Sn given
the observed history up to the n-th decision epoch, i.e., {U0, τ1, Y1, U1, . . . , τn, Yn}, prior
to control Un being applied. Let P ξ,u

0 be the marginal distribution of (S0, S1, τ1, Y1) when
the initial distribution is ξ and initial control u. Define the function for the next belief
φu(ξ, (τ1, Y1)) to be the conditional distribution of S1 given (τ1, Y1):

φu(ξ, (τ, y))(·) = P ξ,u
0 (S1 ∈ · | τ1 = τ, Y1 = y) .

Following the same line of analysis for POMDPs (see e.g., [BS78]), one can show that the
beliefs ξn are sufficient statistics for control, and the POSMDP can be viewed as a belief
SMDP {ξ0, U0, (ξn, τn, Un)n≥1} with state space P(S) and per-stage cost function ḡ(ξ, u)
defined by

ḡ(ξ, u) =
∫
g(s, u) ξ(ds).

In this belief SMDP the transition probabilities for (τn, ξn), denoted by Pτ,ξ, are defined as

Pτ,ξ

(
(ξn−1, un−1), (τn, ξn) ∈ A

)
=
∫∫∫

1A

(
τn, φun−1

(
ξn−1, (τn, yn)

))
PY

(
(sn, un−1), dyn

)
Pτ,S

(
(sn−1, un−1), d(τn, sn)

)
ξn−1(dsn−1),

for all values of (ξn−1, un−1) and all Borel measurable subsets A of R+ × P(S). Similar to
the POMDP case, we can either view the belief SMDP as an SMDP by itself or view it as
a process embedded in the joint process

{S0, ξ0, U0, τ1, S1, Y1, ξ1, U1, . . .}

of the POSMDP.
Furthermore, under proper measurability assumptions, there exists an optimal or ε-

optimal policy that is deterministic and stationary with respect to the belief SMDP, for
the discounted cost criterion. The optimal discounted cost satisfies the following optimality
equation

J∗α(ξ) = inf
u∈U

[
ḡ(ξ, u) + EP ξ,u

0

{
e−ατ1 J∗α

(
φu

(
ξ, (τ1, Y1)

))}]
. (6.3)

There are analogous statements for the finite stage case (i.e., finite decision epochs), al-
though the expected finite-stage cost may not be a natural cost criterion for certain prob-
lems, because the expected time length τN of N decision epochs for a fixed N depends on
the policy.

Average Cost

There are two definitions of average cost for SMDP problems, which are equivalent for the
SMDP case under certain conditions, but are not equivalent for the POSMDP case. We
will describe both definitions in what follows.

The first definition of average cost, also the one we will use, is the limit of the expected
cost up to time T divided by T , as T goes to infinity. Define the nT -th decision epoch by

nT = max { k | τk ≤ T }.
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For initial distribution ξ, the cost of policy π up to time T is defined by

Jπ
C(ξ, T ) = EPξ,π

{
nT∑
n=0

(
c1(Sn, Un) +

∫ τn+1∧T

τn

c2(Wt, Sn, Un) dt
)}

= EPξ,π

{
nT∑
n=0

g(Sn, Un) +
∫ T

τnT

c2(Wt, SnT , UnT ) dt

}
, (6.4)

where the subscript “C” stands for “continuous”, and a∧b = min{a, b}. The optimal liminf
and limsup cost functions, denoted by J∗C− and J∗C+, respectively, are defined by

J∗C−(ξ) = inf
π∈Π

lim inf
T→∞

Jπ
C(ξ, T )
T

, J∗C+(ξ) = inf
π∈Π

lim sup
T→∞

Jπ
C(ξ, T )
T

. (6.5)

For an SMDP there is also a second definition of average cost. Consider the expected
cost up to the N -th decision epoch divided by the expected length of N decision epochs:

Jπ(ξ,N) =
EPξ,π

{∑N−1
n=0 g(Sn, Un)

}
EPξ,π{τN}

.

Correspondingly, the optimal liminf and limsup cost functions are defined by

J∗−(ξ) = inf
π∈Π

lim inf
N→∞

Jπ(ξ,N), J∗+(ξ) = inf
π∈Π

lim sup
N→∞

Jπ(ξ,N).

For finite-state SMDPs the two definitions are equivalent for unichain models and sta-
tionary policies [Ros70]. This facilitates the computation of the average cost, because while
the first definition does not give much structure to exploit, the second definition is easier
for computing after relating the problem to the average cost MDP {(Sn, Un)}. For multi-
chain models, although the two definitions are not equal on transient states, the value of Jπ

C

at a transient state can be determined through the average cost optimality equation from
the values of Jπ

C at recurrent states, on which the two definitions agree. (For reference on
multichain SMDP, see e.g., [Put94].)

For POSMDPs, because in general a policy does not induce an ergodic Markov chain,
the two definitions of average cost are not equivalent. Furthermore, it is the first definition
that is sensible. So we will use the first definition of the average cost, Eq. (6.4).

Similar to the case of POMDPs, there are many open questions relating to the average
cost POSMDP problem. For example, the important issue of when we have J∗C− = J∗C+ is
not fully understood.

6.2 Lower Cost Approximations

6.2.1 Fictitious Processes, Inequalities and Lower Approximation Schemes

With a straightforward extension we can apply the various lower bound results of POMDPs
to POSMDPs. This is done by viewing τn as part of the observation variable.1

1Even though τn depends on both Sn−1 and Sn, and the observation Yn in a POMDP depends only on
Sn, this difference is not essential, because the Markov structure of the process is preserved. We could have
defined the observation of a POMDP to depend on Sn−1 as well, and all the analyses go through.
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First, for a given initial distribution ξ, we can define a fictitious process

{Q, S̃0, Ũ0, S̃1, (τ̃1, Ỹ1), . . .}

that satisfy Condition 3.1, with the pair of observation variables (τ̃n, Ỹn) replacing the
single observation variable Ỹn in the POMDP case. For every policy π of the POSMDP, let
P̃ξ,π be the induced joint distribution of the fictitious process. By the construction of the
fictitious process, the marginal distribution of (S̃0, Ũ0) and the conditional distribution of
(S̃1, τ̃1, Ỹ1, Ũ1...) given Ũ0 = u are the same as those in the POSMDP (Lemma 3.1). So we
have

Jπ
α(ξ) = E

ePξ,π

{ ∞∑
n=0

e−ατ̃n g(S̃n, Ũn)

}
, π ∈ Π.

Consequently, by an argument identical to that in proving Prop. 3.1 for POMDPs, we have
the inequality satisfied by the optimal discounted cost function:

J∗α(ξ) ≥ inf
u∈U

[
ḡ(ξ, u) + E

eP ξ,u
0

{
e−ατ̃1 J∗α

(
φ̃u(ξ, (Q, τ̃1, Ỹ1))

)}]
.

Here, P̃ ξ,u
0 is the marginal distribution of (Q, S̃0, S̃1, τ̃1, Ỹ1) when the initial distribution is

ξ and control u, and φ̃u(ξ, (Q, τ̃1, Ỹ1)) is the conditional distribution of S̃1 given (Q, τ̃1, Ỹ1).

Similarly, we have the inequality for the finite-stage case (i.e., finite decision epochs),
and can also show that these optimal cost functions are concave.

Lower Approximation Schemes and Modified Belief SMDP

We can analogously define lower approximation schemes {P̃ ξ,u
0 | ξ ∈ P(S), u ∈ U} and the

modified belief SMDP associated with the first stage model of the fictitious processes. The
function for the next belief is now φ̃u(ξ, (q, τ, y)), instead of φ̃u(ξ, (q, y)) in the POMDP
case.

For later use, it will also be helpful to define observation variables {(Qn, Ỹn)n≥1} in the
modified belief SMDP. They are defined to be generated by the belief state and the control.
In particular, we define in the modified belief SMDP the transition probability P̃Q,τ̃ ,Ỹ for
the random variables (Qn, τ̃n, Ỹn) by

P̃Q,τ̃ ,Ỹ

(
(ξn−1, un−1), (Qn, τ̃n, Ỹn) ∈ ·

)
= P̃

ξn−1,un−1

0

(
(Q, τ̃1, Ỹ1) ∈ ·

)
.

With (Qn, τ̃n, Ỹn) = (qn, τn, yn), we then define the n-th belief state to be

ξn = φ̃un−1

(
ξn−1, (qn, τn, yn)

)
.

In other words, the transition probability P̃ξ for the belief state can be expressed as

P̃ξ

(
(ξn−1, un−1, qn, τn, yn), ξn ∈ A

)
= 1A

(
φ̃un−1

(
ξn−1, (qn, τn, yn)

))
for all values of (ξn−1, un−1, qn, τn, yn) and all Borel measurable sets A of P(S).
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6.2.2 Lower Bounds

Define the DP mapping of the modified belief SMDP to be T̃, and we can use the contraction
and monotonicity properties of T̃ to derive lower bounds for the discounted and average cost
problems. This is similar to the first line of analysis for the weaker lower bound result in the
POMDP case. The conclusion of this approach applied to POSMDPs is, however, different
from that in the POMDP case. We will comment on this issue later and also provide the
corresponding analysis in Appendix A.1.

Our focus now is on a stronger lower bound result analogous to Theorem 3.2 in the
POMDP case.

Theorem 6.1. Given an initial distribution ξ0, for every policy π of the POSMDP, there
exists a policy π̃ of the modified belief SMDP such that

J̃ π̃
α(ξ0) = Jπ

α(ξ0), E
ePξ0,π̃

{
nT∑
n=0

ḡ(ξn, Ũn)

}
= EPξ0,π

{
nT∑
n=0

g(Sn, Un)

}
, ∀α > 0, T ≥ 0,

for any bounded per-stage cost function g.

Proof: We construct an approximating POSMDP in the same way as in the POMDP case
(Section 3.8.1), treating (τn, Yn) jointly as the observation variable. By this construction,
for any given initial distribution ξ0 and every policy π of the original POSMDP, there exists
a policy π̂ of the approximating POSMDP that has the same expected costs. Furthermore,
we can choose π̂ such that it depends only on the beliefs ξn in the approximating POSMDP.
We denote by π̃ the same policy applied to the modified belief SMDP. It suffices to show
that the joint distribution of the process {ξ0, U0, (τ1, Y1), ξ1, U1, . . .} in the approximating
POSMDP controlled by π̂ is the same as that of {ξ0, Ũ0, (τ̃1, Ỹ1), ξ1, Ũ1, . . .} in the modified
belief SMDP controlled by π̃. This is true by Lemma 3.5 and the fact that π̂ depends func-
tionally only on ξn. Thus, in particular, the marginal distribution of the process of beliefs,
controls and sojourn times, {ξ0, U0, τ1, ξ1, U1, τ2, . . .} in the approximating POSMDP is the
same as that of {ξ0, Ũ0, τ̃1, ξ1, Ũ1, τ̃2, . . .} in the modified belief SMDP. This implies that π̂
and π̃ have the same expected cost, and consequently π̃ and π, the policy of the original
POSMDP, have the same expected cost. �

Since the difference between the expected cost up to the random time τnT and the
expected cost up to time T is bounded, we have as an immediate consequence of the
preceding theorem the following lower bound result for the average cost case.

Corollary 6.1. Consider the modified belief SMDP associated with a lower cost approxi-
mation scheme. Then

J̃∗C−(ξ) ≤ J∗C−(ξ), J̃∗C+(ξ) ≤ J∗C+(ξ), ∀ξ ∈ P(S).

Remark 6.1. The different line of analysis that is based on the inequalities for the optimal
cost functions, leads to a lower bound result weaker than the preceding corollary. We include
the analysis in Appendix A.1 for comparison of the two lines of analysis, as well as for ease
of reference.
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6.3 Discretized Lower Cost Approximations for Finite Space
Models

Consider POSMDPs with finite state, control and observation spaces. The lower cost ap-
proximations for both discounted and average cost cases are computable by solving the
modified belief SMDPs associated with those discretized approximation schemes. These
modified belief SMDPs are essentially finite-state and control belief SMDPs, because there
is a finite set C of supporting beliefs containing all the recurrent states. In particular, denote
the next belief state by ξ̃ and the sojourn time by τ , and we can write the state and sojourn
time transition probability as

P̃ ( τ ≤ t, ξ̃ ∈ A | ξ, u) =
∫ t

0
P̃ ( ξ̃ ∈ A | ξ, u, τ) P̃ ( dτ | ξ, u),

where the conditional distribution P̃ ( τ ≤ t | ξ, u) of the sojourn time given (ξ, u) is the
same as in the original POSMDP. The support of P̃ ( ξ̃ | ξ, u, τ) is C, i.e.,

P̃ ( ξ̃ ∈ C | ξ, u, τ) = 1, P̃ ( ξ̃ ∈ A | ξ, u, τ) = 0, ∀A,A ∩ C = ∅.

One example of such approximation schemes, when the sojourn time takes continuous
values, is Zhou and Hansen’s scheme [ZH01] (see Example 3.2 of Chapter 3). The set C is
the set of grid points. If the sojourn time takes a finite number of values, then all discretized
approximation schemes for POMDPs, when applied to the POSMDPs (view τn as additional
observations), also have essentially finite space modified belief SMDPs.

To solve the modified belief SMDP problems, we can use the finite space SMDP algo-
rithms. The algorithms are slightly different for the discounted case and for the average
cost case, which we describe next.

6.3.1 Discounted Cost

For the discounted case, we mention a few issues in applying the finite space SMDP algo-
rithms.

First, to solve the modified belief SMDP associated with a discretized lower approxi-
mation scheme, we do not need to compute certain probabilities explicitly, which can be
especially hard to compute when the sojourn time takes continuous values. To illustrate
this point, take Zhou and Hansen’s approximation scheme for instance. The mapping T̃ is
of the form

(T̃J)(ξ) = inf
u∈U

[
ḡ(ξ, s) +

m∑
k=1

EP ξ,u
0

{
e−ατ1 γk

(
φu

(
ξ, (τ1, Y1)

))}
J(ξk)

]
(6.6)

where {ξk} is a set of m discretizing points, and γk(·) is the linear coefficients in the
convex representation φu

(
ξ, (τ1, Y1)

)
=
∑

k γk

(
φu

(
ξ, (τ1, Y1)

))
ξk. To solve the modified

belief SMDP, we do not need to keep explicitly the probabilities φu(ξ, (τ1, Y1)) for all values
of τ1. Instead, we only need the values of the expectation terms

EP ξ,u
0

{
e−ατ1 γk

(
φu

(
ξ, (τ1, Y1)

))}
, k = 1, . . . ,m,
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in the preceding equation. These can be computed by one-dimensional integration over τ1
or by Monte carlo methods.

Secondly, in the special case where the length of interval τ1 depends only on the control
and not the state, the random discounting factor e−ατ1 in the optimality equation (6.3) can
be replaced by its mean. The problem is then simplified to a POMDP with discounting
factors β(u) depending on controls:

β(u) = EP ξ,u
0
{
e−ατ1

}
=
∫
e−αtdF ( t | u).

So despite that τn can take continuous values in this case, all the discretized lower approx-
imation schemes for POMDPs can be applied.

Finally, with an identical argument as in Section 4.2 for POMDP, one can show the
asymptotic convergence of the cost approximation and the cost of the greedy policies, using
the fact that T, T̃ are contraction mappings with respect to the sup-norm and with the
contraction factor β = maxs,uE{e−ατ1 | S0 = s, U0 = u} < 1.

6.3.2 Average Cost

The approximation algorithm is similar to the average cost POMDP case. Because except
for a finite set of beliefs, the rest belief states are transient, and from which we reach the
set C in one step, it suffices to solve the finite-state belief SMDP and extends the solution
to the entire belief space. It is also known from the the theory on finite-state and control
SMDPs that the optimal average cost exists for every ξ, i.e., J̃∗C−(ξ) = J̃∗C+(ξ) = J̃∗(ξ).

The multichain SMDP algorithm can be applied to compute the function J̃∗(ξ) on C.
Indeed, the algorithm first transform the finite-state SMDP problem into an MDP using the
so called “uniformization” transformation, and then solve it by a multichain algorithm for
MDP. (For references on this transformation, see e.g., Chapter 11, Puterman [Put94].) The
solution (J̃∗, h) for the modified problem restricted on C satisfies the following optimality
equation in the belief SMDP notation:

J̃∗(ξ) = min
u∈U

ẼX̃|ξ,u{J̃
∗(X̃)}, U(ξ) = argmin

u∈U
ẼX̃|ξ,u{J̃

∗(X̃)},

h̃(ξ) = min
u∈U(ξ)

[
ḡ(ξ, u)− τ̄(ξ, u) J̃∗(ξ) + ẼX̃|ξ,u{h̃(X̃)}

]
, (6.7)

where X̃ denotes the next belief, the distribution with respect to which the expectation
ẼX̃|ξ,u is taken is the marginal state transition distribution P̃ (ξ̃|ξ, u) (marginalized over the
sojourn time), and τ̄(ξ, u) is the expected length between decision epochs, defined by

τ(s, u) = E{τ1 | S0 = s, U0 = u}, τ̄(ξ, u) = E{τ(S0, u) | S0 ∼ ξ},

(and note that τ̄(ξ, u) is a linear function of ξ). Note that in computing the solution,
we do not need explicitly the values of P̃ ( τ, ξ̃ | ξ, u), which can be a fairly complicated
distribution. Instead we only need the marginal state transition probabilities P̃ ( ξ̃ | ξ, u)
and the expected sojourn time τ̄(ξ, u) for ξ, ξ̃ ∈ C. These quantities should be computable
with high precision in practice without too much difficulty.

The solution can then be extended to the entire belief space to obtain the optimal average
cost function J̃∗(·) and a stationary optimal policy for the modified problem: For ξ 6∈ C,
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compute J̃∗(ξ) and then h̃(ξ) by the above equations; the controls that attain the minima in
the two nested equations above define a stationary optimal policy for the modified problem.
The computation of this extension is more intensive than that in the case of POMDP.
The overhead is mainly in computing for each ξ the marginal state transition probabilities
P̃ ( ξ̃ | ξ, u), where ξ̃ ∈ C. Hence one may not be able to have an explicit representation of
the function J̃∗(ξ), but one can always have an implicit representation and compute J̃∗(ξ)
for any ξ of interest from the function J̃∗ restricted on C.

Remark 6.2. The interpretation of the solution as a suboptimal policy for the original
POSMDP need to be further studied, due to the concern of transience structure in the
modified SMDP problem similar to the case of average cost POMDPs in Chapter 5. We
may also solve the n-discount optimal problem for the transformed MDP corresponding to
the modified SMDP problem. However, note that in this case the corresponding optimal
policy is not n-discount optimal for that SMDP in the sense as n-discount optimality is
defined.

6.4 Application to POMDPs with Hierarchical Control Strate-
gies

We apply the lower bound results for POSMDPs to POMDP problems with certain struc-
tured policies that we call hierarchical control strategies, thus to obtain lower bounds of the
cost function that is optimal over the subset of policies under consideration.

The Hierarchical Control Approach and its Motivations

Consider a POMDP with finite spaces. Suppose we are given a finite set of heuristic policies
which we can apply one at a time and follow for a certain period before switch to another.
Our goal is to find the best way to do so under either discounted or average cost criteria.
This is a problem of a POMDP with a subset of structured policies. From the optimization
point of view, one may hope that finding a good policy in a restricted policy space is more
tractable than that in the entire policy space. There are motivations also in practice for
considering this approach.

In certain large POMDP problems, such as navigation, while finding the exact solution
is intractable, we have enough understanding of the structure of the problem to break a
problem down to sub-problems. Subsequently, finding exact or approximate solutions to
the sub-problems can be more tractable. The goal is then to design a high level controller
which decides which sub-problem to invoke under various scenarios.

The approach of designing subproblems or hierarchical controllers which induce a semi-
Markov structure, has been proposed and used for large scale MDPs (Sutton et al. [SPS99])
as well as POMDPs (Theocharous and Kaelbling [TK03]). The full scope of this approach
and its applications is beyond the range of this section, and we will address only one specific
type of hierarchical controllers.

Definitions of Controllers and Transformation to POSMDP

The controller has two levels, a high level controller which we intend to design, and base
level heuristic policies which are given to us.
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Formally, let us define a heuristic control strategy (abbreviated “heuristic”) by {π =(
(µt)t≥0, (ft)t≥1

)
} where µ0 is a probability distribution on U, µt, t > 0 are transition

probabilities from the history set Ht to U, (recall the history set is the product space of
the spaces of controls and observations), and ft, a function from Ht to {0, 1}, defines the
stopping condition: when ft(ht) = 1 the heuristic exits, and the control is given back to the
high level controller.

The initial condition of a heuristic is as follows. If the high level controller calls a
heuristic π at time t0, then π is applied with its internal time index set to 0, that is, the
heuristic does not depend on histories prior to t0. Let t0 + τ be the time the heuristic exits,
and St0+τ the state at that time. It then follows that

Pπ(τ ≤ t, St0+τ | (Sk, Uk, Yk)k<t0 , St0) = Pπ(τ ≤ t, St0+τ | St0). (6.8)

We require that for all heuristic π, Eπ{τ | St0 = s} < ∞,∀s, in order to satisfy the
assumptions for SMDPs (Section 6.1).

At the exit time t0 + τ of the heuristic, the high level controller receives the observation
Ȳ , which can be either simply the sequence of the controls uk and observations yk during
the period [t0, t0 + τ ], or some message generated by the heuristic controller based on its
observations during the same period. (We may restrict the range of τ or the length of the
message so that the space of Ȳ is finite.)

Denote by ū a heuristic, and Ū the finite set of such heuristic control strategies. Treat
each ū as a control and Ū as the control space. Let {τk} be the exit times of the heuristics
and let S̄k = Sτk

. At the decision epochs {τk} for the high level controller, we now have a
POSMDP problem whose graphical model is as shown in Fig. 6-2. The model parameters of
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_ _ _

_ _
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1 Y2
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Figure 6-2: The graphical model of the POMDP with hierarchical controllers at the decision
epochs {τk}.

the POSMDP are as follows. The transition probabilities of Pτ,S̄(τ ≤ t, s′|s, ū) are defined
by the right-hand side of Eq. (6.8); the per-stage cost of the POSMDP, denoted by g′, is
defined by

g′(s, ū) = Eπ{
τ−1∑
t=0

βtg(St, Ut) | S0 = s}, β ∈ [0, 1];

and the observation probabilities PȲ (Ȳ |s, s′, ū) are defined by the corresponding probabil-
ities in the POMDP controlled by the heuristics. These parameters can be obtained from
simulation, if we have the model of the POMDP. The parameters of the modified belief
SMDP can also be obtained from simulation, as mentioned in the preceding sections.
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Lower Bounds

The results established in the previous sections for POSMDPs then have the following
implications. By solving the modified SMDP problem corresponding to a discretized lower
approximation scheme, we obtain

• for average (discounted, respectively) cost criterion, a lower bound of the optimal
liminf average cost function (the optimal discounted cost function, respectively) of
the original POMDP problem over the set of hierarchical control policies that use the
heuristics in the way described above, and

• a deterministic and stationary suboptimal policy that maps a belief to a heuristic
control strategy.

We now discuss when this approach may be useful in practice. First, note that with
the same discretized lower approximation scheme, the modified SMDP problem from the
transformed POSMDP is more complex than the modified MDP problem from the original
POMDP. So in order to gain from this approach, it has to be that in the POSMDP, coarse
discretization can already yield good approximations, for otherwise, we may work directly
with the POMDP without restricting the policy space. The second scenario when the
approach can be useful is that some physical constraints require us to follow these heuristics
for a certain period of time. In that case, the lower bounds obtained here are better than
those obtained in the previous chapters, which are lower bounds on the optimal cost over
all policies of the POMDP.

6.5 Summary

In this chapter we have extended the discretized lower approximation approach to the
partially observable semi-Markov case with both the discounted and average cost criteria.
We have given the algorithms and discussed their subtleties different to their counterparts for
POMDPs. We have also shown that the POSMDP lower bound result allows one to compute
for a POMDP lower bounds of the optimal cost function over a subset of hierarchical control
policies that induce a semi-Markov structure in the original POMDP problem.
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Chapter 7

Discretized Lower Approximations
for Total Cost Criterion

In this chapter we consider the expected total cost criterion for finite space POMDPs. We
show the application of our lower bound method and address the computational issues.

We first consider non-negative per-stage cost models and non-positive per-stage cost
models. (In the reward maximization formulation, they are called negative models and
positive models, respectively.) For these models the total costs, which may be infinite, are
well defined.

Consider the modified problem associated with a discretized lower approximation scheme.
By the stronger lower bound result, Theorem 3.2, the optimal total cost of the modified
problem is a lower bound of the optimal total cost of the original POMDP. To obtain
the optimal total cost of the modified problem, by the sensitive optimality theory for finite
MDPs, we can solve the 0-discount optimality equation. If the solution (J̃∗(·), h̃∗(·)) satisfies
J̃∗(ξ) = 0, then the optimal total cost of the modified problem with initial distribution ξ is
bounded and equal to h̃∗(ξ). (These will be proved rigorously later.) For non-negative cost
models, under the assumption that the optimal total cost is finite, we also prove asymptotic
convergence of the lower bounds.

We will address general per-stage cost models at the end. For that case we show that
a zero optimal average cost of the modified problem yields a lower bound of the optimal
limsup total cost of the original problem.

As a comparison of the stronger lower bound result and the weaker lower bound result
that depends on the DP mapping, we will also sketch the line of analysis via the latter
approach aiming for proving the same claims. This will show the technical limitation of the
latter approach in various cases.

7.1 Non-Negative and Non-Positive Per-Stage Cost Models

7.1.1 Lower Bounds and Their Computation

Define Ṽ ∗(ξ) to be the optimal total cost of the modified problem with initial distribution
ξ. To compute Ṽ ∗, we use the average cost multichain policy iteration algorithm for the
sensitive optimality criterion. Let (J̃∗, h̃∗) satisfy the 0-discount optimality equations for
the modified problem. As the following lemma indicates, if the optimal average cost J̃∗ is
zero for initial distribution ξ, then h̃∗(ξ) = Ṽ ∗(ξ).

97



As for the proof of the lemma, if one assumes that the total cost of any policy in the
modified problem is bounded, therefore J̃∗ is zero everywhere, then the proof can be found
in Chapter 7 of [Put94]. Here, aiming for a pointwise lower bound on V ∗(ξ), we relaxed the
finite total cost assumption for all policies. We provide a proof for completeness.

Lemma 7.1. Assume either that the per-stage cost function is non-negative or that it is
non-positive. For any ξ ∈ P(S), if J̃∗(ξ) = 0, then h̃∗(ξ) = Ṽ ∗(ξ).

Proof: Recall that the modified problem is a belief MDP with its recurrent states con-
tained in the finite set C of supporting beliefs, and that for every ξ it is sufficient to con-
sider the finite state and control MDP on {ξ} ∪ C. For the latter MDP, by Theorem 7.1.9
of [Put94], there exists a total cost optimal policy that is stationary and deterministic.
Denote this optimal policy by πtc, and denote the 0-discount optimal policy by π.

First we show that π is total cost optimal. By the definition of 0-discount optimality,

lim sup
β↑1

(1− β)0
(
J̃π

β (ξ)− J̃πtc
β (ξ)

)
= lim sup

β↑1

(
J̃π

β (ξ)− J̃πtc
β (ξ)

)
≤ 0. (7.1)

By Lemma 7.1.8 of [Put94], the total cost of a policy equals the limit of its discounted costs
when β ↑ 1 (note that the limit can be infinite-valued):

Ṽ π(ξ) = lim
β↑1

J̃π
β (ξ), Ṽ πtc(ξ) = lim

β↑1
J̃πtc

β (ξ). (7.2)

Thus Eq. (7.1) implies that

Ṽ π(ξ) ≤ Ṽ πtc(ξ) = Ṽ ∗(ξ), ⇒ Ṽ π(ξ) = Ṽ ∗(ξ). (7.3)

Now suppose J̃∗(ξ) = 0 for a certain ξ. Since per-stage costs are bounded, by the result
of Laurent series expansion (see Theorem 8.2.3 and Theorem 8.2.4 of [Put94]),

lim
β↑1

J̃π
β (ξ) = lim

β↑1
(1− β)−1J̃∗(ξ) + h̃(ξ) = h̃(ξ).

Thus, by the first equation in (7.2) and the second equation in (7.3), we conclude that
h̃(ξ) = Ṽ ∗(ξ). �

Combining Lemma 7.1 with the stronger lower bound result, Theorem 3.2, we have the
following theorem.

Theorem 7.1. Assume either that the per-stage cost function is non-negative or that it is
non-positive. Then

Ṽ ∗(ξ) ≤ V ∗(ξ), ∀ξ ∈ P(S).

Furthermore,

Ṽ ∗(ξ) =


h̃∗(ξ), J̃∗(ξ) = 0,
∞, J̃∗(ξ) > 0,
−∞, J̃∗(ξ) < 0.

(7.4)

Remark 7.1. As a consequence of the theorem, for non-positive per-stage cost models,
since Ṽ ∗(ξ) ≤ V ∗(ξ) ≤ 0, we have a method to testify if the optimal total cost of the
original POMDP is finite.
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Remark 7.2. For non-negative and non-positive per-stage cost models, we note that one
can prove the same claim using the weaker lower bound result based on the finite-stage
inequalities. We sketch this line of analysis in what follows. Recall the finite-stage inequality
from Section 3.4:

Ṽ ∗
N (ξ) ≤ V ∗

N (ξ), ∀ξ ∈ P(S).

This implies
lim

N→∞
Ṽ ∗

N (ξ) ≤ lim
N→∞

V ∗
N (ξ) ≤ V ∗(ξ).

Furthermore, it can be shown that for finite-stage and control MDPs, value iteration (with
the initial cost function being 0) converges to the optimal total cost. Thus the preceding
inequality and Lemma 7.1 imply that

h̃∗(ξ) = Ṽ ∗(ξ) = lim
N→∞

Ṽ ∗
N (ξ) ≤ V ∗(ξ).

7.1.2 Asymptotic Convergence of Lower Bounds in Non-Negative Per-
Stage Cost Models

Consider a POMDP with the per-stage cost g(s, u) ≥ 0 for all s, u. Assume that the
POMDP has the optimal total cost V ∗(ξ) <∞ for all ξ ∈ P(S). Then the optimal average
cost of the POMDP is 0 for all initial distributions. Furthermore, we know the following
facts:

1. The pair (0, V ∗), with 0 being the optimal average cost and V ∗ the optimal differential
cost, is a bounded solution to the average cost optimality equation, i.e., the Bellman
equation. (This is a standard result. See Theorem 7.1.3 of [Put94].)

2. The β-discounted optimal cost J∗β ↑ V ∗ as β ↑ 1. To see this, due to non-negativity of
g(s, u), the limiting function of the monotonically increasing sequence J∗βk

, as βk ↑ 1,
is positive and less than V ∗, and satisfies the Bellman equation. Since V ∗ is the
minimal positive solution to the Bellman equation (Theorem 7.3.2 of [Put94]), we
conclude that this limiting function equals V ∗.

3. In the modified problem, the optimal average cost J̃∗ = 0, (since it is bounded both
above and below by 0). The pair (J̃∗, h̃∗) = (0, Ṽ ∗) is the solution to the 0-discount
optimality equation of the modified problem, as proved in the previous section.

Theorem 7.2. Assume that the per-stage cost function is non-negative and the optimal
total cost V ∗ <∞. Let Ṽ ∗

ε be the optimal total cost of a modified problem corresponding to
either T̃D1 or T̃D2 of Section 4.1 associated with an ε-disretization scheme. Then

lim
ε→0

Ṽ ∗
ε (ξ) = V ∗(ξ), ∀ξ ∈ P(S).

Proof: Prove by contradiction. Suppose the statement is not true. Then there exist
δ > 0, ξ ∈ P(S) and a sequence εk → 0 such that for all k sufficiently large

Ṽ ∗
εk

(ξ) < V ∗(ξ)− δ.

Let J∗β be the optimal β-discounted cost of the POMDP. Due to the second fact of the
preceding discussion, for β sufficiently close to 1, J∗β(ξ) > V ∗(ξ)− δ

2 . Fix β. Thus for all k
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sufficiently large, Ṽ ∗
εk

(ξ) < J∗β(ξ) − δ
2 . However, in the modified problem the β-discounted

optimal cost J̃∗β,εk
≤ Ṽ ∗

εk
due to non-negativity of per-stage costs. Hence for all k sufficiently

large J̃∗β,εk
(ξ) < J∗β(ξ) − δ

2 . As εk → 0 when k → ∞, this contradicts the asymptotic con-
vergence of cost approximation for the discounted problems. �

Remark 7.3. The proof has used the fact that Ṽ ∗ ≤ V ∗. The finiteness assumption
V ∗ <∞ may be hard to verify. Note that when Ṽ ∗ <∞, V ∗ can still take infinite value.

Remark 7.4. We comment on the issue of convergence of cost of policies.
(i) Like the average cost case, the above proposition shows the asymptotic convergence
of cost approximations, but not that of the total cost of the policies obtained from the
approximation schemes. The proposition does show, however, the asymptotic convergence
to zero of the average cost of the policies, (and it also shows the asymptotic convergence of
the differential cost function in the average cost context under the given conditions). As an
example, consider a stochastic shortest path problem that has an absorbing destination state
and a finite optimal total cost. The preceding theorem then implies that as the resolution of
the discretization increases, the policies obtained from the corresponding modified problems
have increasing probabilities of reaching the destination state.
(ii) Recall that in the MDP theory, for total cost criterion, there are no finite error bounds
on the cost of a look-ahead policy, except when the DP mapping is a k-step contraction for
some integer k. Thus in the case here it seems hard to us to prove the convergence of cost
of policies without additional assumptions.

7.2 General Per-Stage Cost Models

For general per-stage cost models, the total cost may not be well defined. So we define the
liminf and limsup total cost functions as in the average cost case:

V ∗
−(ξ) = inf

π∈Π
lim inf
N→∞

V π
N (ξ), V ∗

+(ξ) = inf
π∈Π

lim sup
N→∞

V π
N (ξ).

Consider the modified problem associated with a discretized lower approximation scheme.
Since it is essentially a finite-state MDP, by the result of Denardo and Miller [DM68] (see
also Chapter 10 of [Put94]), a stationary and deterministic 0-discount optimal policy, de-
noted by π̃, is average overtaking optimal, i.e., for all policy π of the modified problem,

lim sup
N→∞

1
N

(
N∑

k=1

J̃ π̃
k (ξ)−

N∑
k=1

J̃π
k (ξ)

)
≤ 0, ∀ξ ∈ P(S).

Also by [DM68], if for some ξ0, the 0-discount optimal solution (J̃∗, h̃∗) satisfies J̃∗(ξ0) = 0,
then h̃∗(ξ0) is the Cesaro-limit of the finite-stage costs of π̃ for initial distribution ξ0:

h̃∗(ξ0) = lim
N→∞

1
N

N∑
k=1

J̃ π̃
k (ξ0).

Since the Cesaro-limit is no greater than the limsup value, by the average overtaking op-
timality result of Denardo and Miller [DM68], we thus claim the following lower bound
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property for general per-stage cost models.

Theorem 7.3. Consider a POMDP with a general per-stage cost model. If J̃∗(ξ) = 0, then
the optimal limsup total cost V ∗

+(ξ) of the original POMDP satisfies

h̃∗(ξ) ≤ V ∗
+(ξ).

Remark 7.5. For general per-stage cost model, the weaker lower bound result based on
the finite-stage inequalities does not lead to the same claim. A technical difficulty there is
that the finite-stage inequality result (Section 3.4) implies that for J0 = 0,

lim sup
k→∞

T̃kJ0 ≤ lim sup
k→∞

TkJ0,

but in MDP with a general per-stage cost model, value iteration does not have to converge
to the total cost. So it may happen that

h̃∗ ≥ lim sup
k→∞

T̃kJ0

in the modified problem.

7.3 Summary

We have shown that discretized lower approximations can be applied to compute lower
bounds of the optimal total cost function for POMDPs with non-negative and non-positive
per-stage cost models. For non-negative per-stage cost models, we have also shown the
asymptotic convergence of cost approximations under a finite optimal total cost assumption
on the original POMDP. We have also considered general per-stage cost models and shown
that the discretized lower approximation schemes can be applied to compute lower bounds
of the optimal limsup total cost of the original POMDP.
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Chapter 8

Applications of Lower Bounds

In this chapter we show several applications, for which the use of the discretized lower cost
approximations is not so much in providing suboptimal control policies, as it is in providing
lower bounds and approximations to quantities of interest.

In Section 8.1 we consider problems of reaching, avoidance and model identification.
These problems can be cast as POMDP problems, and lower bounds of the optimal average
cost or total cost function can be used to bound probabilities or expected values of interest.

In Section 8.2 we consider the entropy rate of hidden Markov sources, a classic problem
in information theory. We show that the discretized lower approximation provides a new
and more efficient method of computing lower bounds of the entropy rate. Asymptotic
convergence issues will be addressed and proved under certain conditions. Applications of
the same type include sequential coding, which we briefly address in the summary.

8.1 Bounding Probabilities of Success in Reaching, Avoid-
ance and Identification

We consider problems of reaching, avoidance, and model identification, and apply results
from Chapters 5 and 7 to bound the probabilities of success, or certain expected values
of interest. The bounds are mostly useful, in our opinion, for quantitative assessment of
the risk, or the possibility of success, in accomplishing the corresponding control task.
Especially, the bounds are informative when their indications are negative, for instance,
when they indicate a high probability of failure in reaching or identification in a given
problem.

Example 8.1 (Reaching). Consider a POMDP problem in which the goal is to reach a
certain set S′ of destination states. We assume S′ is absorbing, but we do not assume the
rest of the states are non-absorbing – there can be other absorbing states, which will be
undesirable destinations. We can upper-bound the maximal probability of reaching and
lower-bound the minimal expected reaching time of this problem as follows.

Define the per-stage cost function of this POMDP simply as,

g(s, u) = 0, ∀s ∈ S′, g(s, u) = 1, ∀s ∈ S\S′, ∀u ∈ U.

One can show that the optimal liminf and limsup average cost functions are equal, and
furthermore, the optimal average cost function, denoted by J∗(ξ), is the minimal probability
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of starting from the distribution ξ and never reaching the destination set S′,1 i.e.,

J∗(ξ) = inf
π∈Π

Pπ(never reach S′ | S0 ∼ ξ). (8.1)

Choose a lower discretization scheme and compute the optimal average cost function J̃∗

for the corresponded modified problem. Then starting from a distribution ξ, the probability
that S′ is not reached is at least J̃∗(ξ) under any policy, i.e.,

P(S′ never reached | S0 ∼ ξ) ≥ J̃∗(ξ), (8.2)

and the inequality is non-trivial when J̃∗(ξ) 6= 0.
If J̃∗(ξ) = 0, then we can bound the expected reaching time. (Note that this will be

the case, if S′ is reachable with probability 1 under any policy in the original problem.)
The optimal total cost V ∗ of this problem is the minimal expected reaching time over all
policies,

V ∗(ξ) = inf
π∈Π

Eπ{τ | S0 ∼ ξ}

where τ = min{k |Sk ∈ S′} is the hitting time. Let (J̃∗, h̃∗) be the solution pair to the
0-discount optimality equations of the modified problem. Since the per-stage cost is non-
negative, by Theorem 7.1 of Section 7.1, h̃∗ is the optimal total cost function of the modified
problem, and h̃∗(ξ) ≤ V ∗(ξ). Thus,

inf
π∈Π

Eπ{τ} ≥ h̃∗(ξ). (8.3)

1 To see this, for any initial distribution ξ, define the hitting time

τ
def
= min{k | Sk ∈ S

′}.

Since S′ is absorbing, from time 0 to time N − 1, the N -stage cost V π
N of any policy π satisfies the following

relation, (which uses a standard trick in expressing expected value):

V π
N = Eπ{min{τ, N}} =

N−1X
k=0

k Pπ(τ = k) + N Pπ(τ ≥ N)

=

N−1X
k=1

kX
j=1

Pπ(τ = k) + NPπ(τ ≥ N) =

N−1X
j=1

N−1X
k=j

Pπ(τ = k) + NPπ(τ ≥ N)

=

NX
j=1

Pπ(τ ≥ j).

Since Pπ(τ ≥ j) ≥ Pπ(τ = ∞), it follows that

V π
N ≥ NPπ(τ = ∞) ⇒ lim inf

N→∞

V π
N

N
≥ Pπ(τ = ∞);

and since for any M < N , Pπ(τ ≥ M) ≥ Pπ(τ ≥ N), it follows that

V π
N ≤ M + (N −M) Pπ(τ ≥ M) ⇒ lim sup

N→∞

V π
N

N
≤ Pπ(τ ≥ M), ∀M,

⇒ lim sup
N→∞

V π
N

N
≤ Pπ(τ = ∞),

where the last inequality follows by letting M → ∞. Thus limN→∞
V π

N
N

= Pπ(τ = ∞), so both the liminf
and limsup average cost of π are equal to Pπ(τ = ∞). Since this holds for all policies π, the optimal liminf
and limsup cost functions are also equal and the optimal cost satisfies Eq. (8.1).
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In summary, if J̃∗(ξ) is zero, then starting from the distribution ξ, the minimal expected
time of reaching the set S′ is no less than h̃∗(ξ), (note that this does not imply a finite
expected reaching time). �

Example 8.2 (Avoidance). Consider the opposite of the reaching problem: there is a
absorbing set S′ of undesirable destinations, and the goal is to avoid them as long as possible.
Define the hitting time by

τ
def
= min{ k | Sk ∈ S′},

and we set the objective to be maximizing the expected lifetime E{τ}. As the following
shows, we can upper-bound the probability of the event {τ = ∞}, i.e., the probability
of never being absorbed into S′, and furthermore, in some cases when absorbing into S′

happens with probability 1, we can upper-bound the maximal expected lifetime E{τ} of
this problem.

Define the per-stage cost function of this POMDP as,

g(s, u) = 0, ∀s ∈ S′, g(s, u) = −1, ∀s ∈ S\S′, ∀u ∈ U.

By a similar argument as in Footnote 1 of the reaching example, one can show that the
optimal liminf and limsup average cost functions are equal, and furthermore, the optimal
average cost function, denoted by J∗(ξ), is minus the maximal probability of never being
absorbed into S′, i.e,

J∗(ξ) = − sup
π∈Π

Pπ(never reach S′ | S0 ∼ ξ).

Choose a lower discretization scheme and compute the optimal average cost function
J̃∗ for the corresponded modified problem. Since J̃∗ ≤ J∗, it follows that starting from a
distribution ξ, under any policy, the probability

P( never reach S′ | S0 ∼ ξ) ≤ −J̃∗(ξ), (8.4)

and the inequality is non-trivial when J̃∗(ξ) 6= −1.
Suppose J̃∗(ξ) = 0. This implies that under any policy, with probability 1 the system will

be absorbed into S′. In this case we can bound the maximal expected lifetime as follows. Let
(J̃∗, h̃∗) be the solution pair to the 0-discount optimality equations of the modified problem.
Then, since the per-stage cost is non-positive, by Theorem 7.1 of Section 7.1, h̃∗(ξ) is the
optimal total cost of the modified problem, and furthermore, it is a lower bound of the
optimal total cost V ∗(ξ) of the original POMDP. Since the optimal total cost V ∗(ξ) of this
problem is

V ∗(ξ) = − sup
π∈Π

Eπ{τ | S0 ∼ ξ},

and h̃∗(ξ) ≤ V ∗(ξ), thus the maximal expected life time is bounded:

sup
π∈Π

Eπ{τ | S0 ∼ ξ} ≤ −h̃∗(ξ). (8.5)

In summary, if J̃∗(ξ) is zero, then starting from the distribution ξ, the maximal expected
lifetime of this problem is no greater than −h̃∗(ξ). �

Example 8.3 (Identification). Suppose we have a POMDP problem in which the model,
not exactly known, belongs to a finite set Θ of possible models. Assume a prior distribution
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p0 on Θ is given. The goal is to identify the true model of the POMDP while controlling the
system. We consider a simple case where identification is assumed to be the only goal and
there is no concern for the cost as in adaptive control. We show that one can upper-bound
the maximal identification probability of this problem as follows.

First we cast the identification problem into a new POMDP problem with augmented
state space Θ×S and augmented control space Θ×U. The augmented states (i, s) ∈ Θ×S

are not observable. The observations are as in the original POMDP. Define the per-stage
cost of the state (i, s) ∈ Θ× S and control (j, s) ∈ Θ× U as

g
(
(i, s), (j, u)

)
= 0, if i = j, g

(
(i, s), (j, u)

)
= 1, if i 6= j.

So, the system can be controlled with no cost, if the true model has been identified.
We now study the relation between the optimal average cost of this augmented POMDP

and the probability of identification. Let the initial distribution of the augmented POMDP
be the product distribution p0 ⊗ ξ, where ξ is the initial distribution of the state S0 of the
original POMDP. (It is not essential in assuming a product distribution.) For every sample
path, we say that a policy identifies the model in k steps for that path, if the policy applies
control (̄i, Ut) with ī being the true model for all t ≥ k. Define the probabilities of the
identification events as

qπ
N (ξ) = Pπ(model identified in N steps | S0 ∼ ξ), qπ

∞ = lim
N→∞

qπ
N (ξ).

Thus qπ
∞ is the probability that the model is identified in finite steps, while 1 − qπ

∞ is the
non-identification probability, under the policy π. One can show that the optimal liminf
average cost is less than the non-identification probability,2 i.e., for all π,

J∗−(p0 ⊗ ξ) ≤ 1− qπ
∞.

Choose a lower discretization scheme3 and compute the optimal average cost J̃∗ of the
corresponded modified problem. Then for all π, 1 − qπ

∞(ξ) ≥ J̃∗(p0 ⊗ ξ), or, equivalently,
under any policy

P(model identifiable in finite steps | S0 ∼ ξ) ≤ 1− J̃∗(p0 ⊗ ξ), (8.6)

and the inequality is non-trivial when J̃∗(p0 ⊗ ξ) 6= 0. �

We address the distinction between the identification problem considered here and the
seemingly equivalent problem in reinforcement learning. One may recall that reinforce-

2To see this, fix N first, and consider the T -stage cost V π
T (p0⊗ξ). For those sample paths that the model

is identified in N steps, the T -stage cost is less than N , while for the rest of the sample paths, the T -stage
cost is at most T . Thus

1

T
V π

T (p0 ⊗ ξ) ≤ qπ
N (ξ)

N

T
+

`
1− qπ

N (ξ)
´T

T
= qπ

N (ξ)
N

T
+

`
1− qπ

N (ξ)
´

⇒ lim sup
T→∞

1

T
V π

T (p0 ⊗ ξ) ≤ lim
T→∞

qπ
N (ξ)

N

T
+

`
1− qπ

N (ξ)
´

= 1− qπ
N (ξ).

Letting N →∞, it follows that

lim sup
T→∞

1

T
V π

T (p0 ⊗ ξ) ≤ 1− qπ
∞(ξ), ⇒ J∗−(p0 ⊗ ξ) ≤ J∗+(p0 ⊗ ξ) ≤ 1− qπ

∞(ξ).

3As a reminder, we should not choose a scheme that assumes the knowledge of the true model.
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ment learning methods can obtain asymptotically optimal controls while the controller is
operating, without prior knowledge of the model. For this to be possible, however, the
per-stage cost must be physically present while the controller is operating, while in reality
the per-stage cost can be merely a design mechanism in order to keep the system in certain
desired status, so that it is not physically present. The latter case is of interest in the
above identification problem. (Certainly, using simulation, reinforcement learning methods
for POMDP can be used to compute control policies for this problem.)

8.2 Entropy Rate of Hidden Markov Sources

8.2.1 Introduction to the Problem

Computing the entropy rate of a hidden Markov source is a classic problem in information
theory. Let {Yn}n≥1 be the observation process of the Markov chain {Sn}n≥1. It is for
notational convenience that we let the index start with 1. Assume both the state and
observation spaces are finite. We write Y n for (Y1, . . . , Yn), Y n

k for (Yk, . . . , Yn) and similar
notation for Sn. Assume that the Markov chain {Sn} is under an equilibrium distribution,
so that {Yn} is also a stationary process. The entropy rate H(Y ) of {Yn} is defined by

H(Y )
def
= lim

n→∞

1
n
H(Y n). (8.7)

It is equal to
H(Y ) = H ′(Y )

def
= lim

n→∞
H(Yn | Y n−1),

and this equality relation and the existence of both limits in the two preceding definitions
are general properties of stationary processes (Theorem 4.2.1 of [CT91]).

The method of computing the entropy rate H(Y ) in the textbook of information theory
(Section 4 of [CT91]) is to compute the lower and upper bounds of H(Y ):

H(Yn | Y n−1, S1) ≤ H(Y ) ≤ H(Yn | Y n−1). (8.8)

The quantities H(Yn | Y n−1, S1) and H(Yn | Y n−1) are proved to converge to the entropy
rate H(Y ) in the limit (Theorem 4.4.1 of [CT91]).

We have a new computation method for the entropy rate using the discretized lower
approximation approach. We first describe the reduction of the problem to the form of an
uncontrolled POMDP with a concave per-stage cost function, then address the application
of lower approximations, as well as asymptotic convergence issues.

8.2.2 Reduction to a POMDP Problem

It is a basic fact of entropy that

H(Y n) =
n∑

k=1

H(Yk | Y k−1). (8.9)

As will be elaborated, this can be viewed as the n-stage cost of an uncontrolled POMDP
with H(Yk | Y k−1) being the expected cost of stage k, so that the entropy rate is the average
cost of that POMDP. The reduction to the control problem here, with details as follows, is
a special case of the reduction result in [BMT01].
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We will consider the process {Sn} starting with an arbitrary initial distribution ξ of S1.
For this, let us first make explicit the dependence on ξ by rewriting the joint entropy of Y n

as
H(Y n; ξ).

We use similar notation for conditional entropies. We denote an equilibrium distribution of
the Markov chain {Sn} by ξ̄.

The entropy rate H(Y ) can be viewed as the average cost of the uncontrolled POMDP
with initial distribution ξ̄ and a per-stage cost function concave in the belief ξ defined as

g(ξ)
def
= H(Y1; ξ) = −E

{
log
(∑

s

ξ(s)p(Y1 | s)
)}
, (8.10)

i.e., g(ξ) is the entropy of Y1 given that S1 is distributed as ξ. The reduction of the entropy
rate problem to a POMDP follows by first noticing that

p(Yk | Y k−1) = p(Yk | Sk ∼ ξk), ξk(·) = p(Sk ∈ · | Y k−1),

so that

E{log p(Yk | Y k−1) | Y k−1} = g(ξk)

⇒ H(Yk | Y k−1; ξ) = E{E{log p(Yk | Y k−1) | Y k−1}} = E{g(ξk)}.

Hence H(Yk | Y k−1; ξ) is the expected cost at stage k, with per-stage cost as defined
by (8.10). The expected n-stage cost Jn(ξ) in this POMDP is

Jn(ξ) =
n∑

k=1

H(Yk | Y k−1; ξ) = H(Y n; ξ).

The finite-horizon Bellman equation Jn(ξ) = g(ξ)+E{Jn−1(ξ2)} is simply the chain rule of
entropy

H(Y n; ξ) = H(Y1; ξ) +H(Y n
2 | Y1; ξ).

By definition the average cost of this uncontrolled POMDP with initial distribution ξ1 = ξ̄
equals

lim
n→∞

1
n
E
{ n∑

k=1

g(ξk)
}

= lim
n→∞

1
n
H(Y n; ξ̄) = H(Y ),

the entropy rate of {Yn}.

8.2.3 Lower Bounds of Entropy Rate

The application of lower bounds hence becomes immediate for this uncontrolled POMDP.
The constructions of the fictitious process carry through and yield inequalities for the op-
timal finite-stage cost functions. The interpretation of the inequalities, translated to the
information terminology, is simply the inequality of the conditional entropy

H(Ỹ 1; ξ) +H(Ỹ n
2 | Ỹ 1, Q; ξ) ≤ H(Ỹ n; ξ) = H(Y n; ξ), (8.11)
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where {Q, (S̃n, Ỹn)n≥1} is a process such that the marginal distribution of (S̃1, Ỹ1) and the
conditional distribution of {(S̃n, Ỹn)n≥2} given Ỹ1 are the same as those in the original
process {Sn, Yn}, respectively, so that in particular, {Ỹn} and {Yn} have the same marginal
distribution.

Apply any discretized lower approximation scheme to obtain the modified belief MDP
problem; despite the non-linearity in the per-stage cost function, the solution methods for
the modified problem is the same as in the POMDP problem that we considered. The
average cost function J̃∗ of the modified problem can be computed by solving one linear
system of equations, and

J̃∗(ξ̄) ≤ H(Y ), (8.12)

where ξ̄ is the equilibrium distribution of the Markov chain {Sn}.

8.2.4 Asymptotic Convergence

Now we consider the asymptotic convergence issue. The asymptotic convergence results we
had for POMDPs carry through here, because they are valid for general MDPs. Thus in
order to use them to show the asymptotic convergence of J̃∗ to the entropy rate, we need
conditions to ensure a constant average cost and a continuous differential cost.

That the average cost of the POMDP is constant, is equivalent to the statement that
the entropy rate of {Yn} exists and is insensitive to the initial distribution ξ. Although this
seems an expected result, we have not found such a statement in the textbook of information
theory. So we provide one for completeness. The proof is given in Appendix B.

Proposition 8.1. Suppose the Markov chain {Sn} is irreducible.4 Then

H(Y ) = lim
n→∞

1
n
H(Y n; ξ), ∀ξ ∈ P(S).

Next we claim that the conditional entropy is also insensitive to the initial distribution
when the Markov chain is aperiodic. The proof is given in Appendix B.

Proposition 8.2. Suppose the Markov chain {Sn} is irreducible and aperiodic. Then

lim
n→∞

H(Yn | Y n−1; ξ) = H(Y ), ∀ξ ∈ P(S).

For the asymptotic convergence of J̃∗ to the entropy rate H(Y ), it is now sufficient that
the differential cost is continuous. We thus make the following assumption.

Assumption 8.1. The sequence

H(Y n; ξ)− nH(Y ) =
n∑

k=1

(
H(Yk | Y k−1; ξ)−H(Y )

)
as functions of ξ, converges uniformly.

Under Assumption 8.1, the limiting function is continuous, and as easy to show, it is
indeed the differential cost.

4This means that the Markov chain has only one recurrent class and a possibly non-empty set of transient
states.

109



In view of Prop. 8.2, a sufficient condition for Assumption 8.1 to hold is when the
convergence rate of the conditional entropy H(Yn | Y n−1; ξ) is of O(1/n1+α) for some
positive α. At this point, however, we are not yet clear about the convergence rate of the
conditional entropies, and whether Assumption 8.1 hold for a general irreducible Markov
chain {Sn}.

In summary, we have the following proposition.

Proposition 8.3. Suppose the Markov chain {Sn} is irreducible and Assumption 8.1 holds.
Then, for every initial distribution ξ,

lim
ε→0

J̃∗ε (ξ) = H(Y ),

where J̃∗ε (·) is the optimal average cost function of the modified problem corresponding to
either T̃D1 or T̃D2 of Section 4.1 associated with an ε-disretization scheme.

We also see that a constant upper bound on H(Y ) can be in principle computed from
the solution (J̃∗, h̃) of the modified problem using the Bellman residue, as in the POMDP
case. However, this upper bound may be loose, and it is also hard to compute exactly.

8.3 Summary

We have shown the use of the lower bounds in the problems of reaching, avoidance, and
identification, as well as the classic problem of computing entropy rate of hidden Markov
sources in information theory.

The problem of entropy rate of hidden Markov sources is technically a special case of
the sequential quantization problem of hidden Markov sources considered by Borkar, Mitter
and Tatikonda [BMT01]. Their work shows that one can cast the sequential quantization
problem into an average cost POMDP problem with a concave per-stage cost function that
measures coding cost and distortion cost. Thus, the discretized lower approximation ap-
proach can be applied to the sequential quantization problem, when the state space is finite,
to obtain lower bounds and suboptimal quantizers. Furthermore, one can also formulate
the sequential quantization problem as a constrained average cost POMDP problem with a
concave per-stage cost function and distortion constraints. Discretized approximations can
be applied to the constrained average cost POMDP as well, as will be shown in Chapter 9.
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Chapter 9

Lower Bounds for Constrained
Average Cost POMDPs

9.1 Introduction

Consider a finite space POMDP problem with multiple per-stage cost functions g0, g1, . . . , gn.
The objective, to be made precise later, is to minimize the average cost with respect to the
per-stage cost function g0, subject to prescribed bounds on the average costs with respect
to other per-stage cost functions gk. In practice different cost functions may correspond to
consumption of different resources, say. This type of problem is also called a multi-objective
problem.

More precisely, we define the constrained POMDP problem as follows. For k = 0, . . . , n,
define Jπ

k,+ as the limsup average cost of policy π with respect to the k-th per-stage cost
function gk:

Jπ
k,+(ξ)

def
= lim sup

T→∞

1
T
Eπ

{
T−1∑
t=0

gk(St, Ut) | S0 ∼ ξ

}
. (9.1)

Let c1, . . . , cn be given constants. The constrained average cost problem and its optimal
cost function are defined as for each ξ,

J∗c (ξ)
def
= inf

π∈Π
Jπ

0,+(ξ), (9.2)

Subj. Jπ
k,+(ξ) ≤ ck, k = 1, . . . , n.

So the feasible set, denoted by Πf , is

Πf
def
= {π ∈ Π | Jπ

k,+(ξ) ≤ ck,∀ξ ∈ P(S), k = 1, . . . , n},

i.e., the set of policies of which the limsup average cost with respect to gk is less than ck
for all initial distributions. We assume that Πf is non-empty.

There are both theoretical and computational difficulties in solving this constrained
average cost POMDP problem (9.2). Not much is known about the nature of the optimal
or ε-optimal policies, e.g., their stationarity.

We show in this chapter how to compute lower bounds of the constrained optimal
cost function by applying discretized lower approximation schemes proposed previously for
unconstrained POMDPs. In particular, we will show:
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• The constrained optimal cost of the modified belief MDP problem is a lower bound
of the constrained optimal cost of the original POMDP. This is another immediate
consequence of the stronger lower bound result, Theorem 3.2.

• When the modified belief MDP is unichain, its constrained optimal average cost, a
constant, can be solved by one single finite-dimensional linear program, the unichain
LP of a finite-state and control MDP.

• When the modified belief MDP is multichain, one can consider for each initial belief
ξ, a finite-dimensional linear program that is related (but not identical) to the con-
strained modified problem. The value of this LP equals the constrained optimal of
the modified problem, and is thus a lower bound of J∗c (ξ).

• Regardless of the chain structure of the modified belief MDP, a constant lower bound
of J∗c (ξ) can be obtained by solving one single LP, the unichain LP.

• If any one of the LPs considered is infeasible, then the original constrained POMDP
problem is infeasible.

We will also briefly comment on ways of using the policies obtained from the modified
problem at the end of this chapter.

9.2 The Constrained Modified Problem and Lower Bounds
of J∗c

Consider the modified belief MDP associated with a discretized lower approximation scheme.
Denote by ḡk the k-th per-stage cost, i.e.,

ḡk(ξ, u) =
∑
s∈S

gk(s, u) ξ(s), k = 0, 1, . . . , n.

Denote by Π̃ the set of policies in the modified problem. The constrained modified problem
can be stated as: For every initial belief state ξ,

J̃∗c (ξ)
def
= min

π∈eΠ J̃π
0,+(ξ) (9.3)

Subj. J̃π
k,+(ξ) ≤ ck, k = 1, . . . , n,

where for each k, J̃π
k,+ is the limsup average cost with respect to the per-stage cost ḡk in

the modified problem.

Theorem 9.1. Suppose the original constrained POMDP problem is feasible. Then the
constrained modified problem is feasible, and its value satisfies

J̃∗c (ξ) ≤ J∗c (ξ), ∀ξ ∈ P(S).

Proof: This is again an immediate consequence of the stronger lower bound result, Theo-
rem 3.2, applied simultaneously to multiple per-stage cost functions and to the average cost
case. �
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To solve the constrained modified problem (9.3), we can use the linear programming
method for solving constrained finite-state and control MDPs. This is the focus of the rest
of this secition.

There is one minimization problem for each ξ. However, recall that in the modified
problem there is a finite set C of supporting beliefs, and outside C all states are transient
and lead to C in one step under any policy. In the unconstrained case this has allowed
us to solve the modified problem by solving the restricted finite state MDP problem on
C. The constrained case is different, however. From the theory on constrained finite state
and control MDP (see Puterman [Put94] or Altman [Alt99]) we know the following. If the
modified belief MDP is unichain, then it is sufficient to consider only stationary randomized
policies on the finite set C, and furthermore, the constrained problem can be reduced to
one minimization problem. If the modified belief MDP is multichain, then for transient
states ξ 6∈ C the optimal policy on C can differ depending on ξ.1 Hence we will consider the
unichain and multichain cases separately.

9.2.1 The Unichain Case

First consider the case where the modified problem is unichain. As a standard result from
the finite-state and control MDP theory, the optimal average cost J̃∗c of the constrained
problem is a constant, and can be solved by one single linear program (see e.g., Section 8.9
of Puterman [Put94]):

J̃∗c = min
q≥0

∑
s∈C,u∈U

ḡ0(s, u) q(s, u) (9.4)

Subj.
∑
u∈U

q(s′, u)−
∑

s∈C,u∈U

p(s′|s, u) q(s, u) = 0, ∀s′ ∈ C (9.5)

∑
s∈C,u∈U

q(s, u) = 1, (9.6)

∑
s∈C,u∈U

ḡk(s, u) q(s, u) ≤ ck, k = 1, . . . , n. (9.7)

Here the transition probabilities p(s′|s, u) are from the modified belief MDP model. A
feasible solution q(s, u),∀(s, u), can be interpreted as the limiting probabilities of being at
state s and taking action u, under the stationary randomized policy:

p(u|s) =
q(s, u)∑
u′ q(s, u′)

, ∀(u, s).

Thus, if the modified problem is unichain, we can compute the lower bound J̃∗c , a
constant, by solving one single finite-dimensional LP.

Remark 9.1. We comment on the unichain condition. It is easy to check whether the
MDP is communicating or weakly communicating, (see the model classification algorithm,
pp. 351 of [Put94]). We do not know any efficient algorithm to check the unichain condition,

1Essentially, this is because a feasible policy can have its long-run average cost violate the constraint on
one recurrent class, with this violation compensated by its long-run average cost on another recurrent class
that is also reachable from the initial transient state.
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however. Nonetheless, as the analysis for the multichain case will show, the value of the
LP (9.4) is a lower bound of J∗c regardless of the chain structure.

9.2.2 The Multichain Case

When the modified belief MDP is multichain, its constrained average cost problem cannot
be solved by one single linear program, as in the unconstrained multichain case. So instead,
we will consider an LP formulation for the constrained problem on the finite set of belief
states {ξ} ∪ C for every initial belief ξ. Let s̄ = ξ. Consider the following LP, which relates
but does not exactly correspond to the constrained modified problem:

Ĵ∗(s̄) = min
q≥0,y≥0

∑
s∈C,u∈U

ḡ0(s, u) q(s, u) (9.8)

Subj.
∑
u∈U

q(s′, u)−
∑
s∈C

p(s′|s, u) q(s, u) = 0, ∀s′ ∈ C (9.9)∑
u∈U

q(s̄, u) +
∑
u∈U

y(s̄, u)−
∑

s∈C,u∈U

p(s̄|s, u) y(s, u) = 1, (9.10)

∑
u∈U

q(s′, u) +
∑
u∈U

y(s′, u)−
∑

s∈C,u∈U

p(s′|s, u) y(s, u) = 0, ∀s′ 6= s̄, s′ ∈ C

(9.11)∑
s∈C,u∈U

ḡk(s, u) q(s, u) ≤ ck, k = 1, . . . , n. (9.12)

We now review certain facts on constrained finite-state MDPs to show the relation between
the LP (9.8) and the constrained modified problem.

For every stationary randomized policy π (in the modified belief MDP), there is a
corresponding pair (qπ, yπ) feasible for the constraints (9.9)-(9.11) in the LP (9.8). The
vector qπ(s, u) corresponds to the limiting probabilities of (s, u) under π starting from the
initial state s̄, and qπ(s, u) are non-zero only on recurrent states reachable from s̄.

However, the feasible set for the constraints (9.9)-(9.11) includes more points than the
limiting probabilities realizable by all policies, when the MDP is multichain. For this reason,
the LP (9.8) is not equivalent to the constrained modified problem. The latter can be cast
into the following minimization problem:

J̃∗c (s̄) = min
q∈Qs̄

∑
s∈C,u∈U

ḡ0(s, u) q(s, u) (9.13)

Subj. constraints (9.12),

where Qs̄ is the set of limits of average state-action frequencies realizable by some policy
starting from the initial state s̄. The set Qs̄ is convex and compact,2 and it is equal to
the convex hull of the limiting probabilities that are realizable by stationary randomized
policies (Theorem 8.9.3 of [Put94]). Hence it is sufficient to consider policies that are convex
combinations of stationary randomized policies for each initial state.

The minimization problem (9.13) is not easy to solve because of the complex constraint
set Qs̄. So we will solve the LP (9.8). The optimal solution of the LP (9.8) may not be

2In fact in the finite space case, Qs̄ is a polyhedral set. However, we do not have to use this fact in the
subsequent proofs, due to a stronger result from the minmax theory.
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realizable by any policy, but the values of the two problems are actually equal, as we will
address later. So, for the sake of obtaining lower bounds of the original constrained POMDP
problem, the LP (9.8) is sufficient.

Proposition 9.1. Suppose the original constrained POMDP problem is feasible. Then for
each ξ ∈ P(S), the constrained modified problem (9.13) and the LP (9.8) are feasible, and
their values are equal:

Ĵ∗(ξ) = J̃∗c (ξ).

Proof: Let s̄ = ξ. Consider the Lagrangians of both problems formed by relaxing the
constraints (9.12). Corresponding to multipliers λ = (λ1, . . . , λn), the dual function for the
LP (9.8) is,

F1(λ) =min
q≥0

∑
s∈C,u∈U

ḡ0(s, u) q(s, u) +
n∑

k=1

λk

 ∑
s∈C,u∈U

ḡk(s, u) q(s, u)− ck

 (9.14)

Subj. constraints (9.9), (9.10) and (9.11),

while the dual function for the constrained modified problem (9.13) is

F2(λ) = min
q∈Qs̄

∑
s∈C,u∈U

ḡ0(s, u) q(s, u) +
n∑

k=1

λk

 ∑
s∈C,u∈U

ḡk(s, u) q(s, u)− ck

 . (9.15)

For fixed λ, both problem (9.14) and problem (9.15) correspond to the unconstrained av-
erage cost multichain MDP problem (modulo a constant term, −

∑
k λkck, in the objective

function) with the combined per-stage cost ḡ0 +
∑n

k=1 λkḡk. Therefore, F1(λ) = F2(λ),
which implies that the dual problems have the same dual optimal value:

max
λ≥0

F1(λ) = max
λ≥0

F2(λ).

By the strong duality of LP, there is no duality gap between the LP (9.8) and the dual prob-
lem of maximizing F1(λ). Since the constraint setQs̄ is compact, by the “minmax=maxmin”
equality for the convex problem (9.13) (Corollary 37.3.2 of Rockafellar [Roc70]), there is
no duality gap between the constrained modified problem (9.13) and the dual problem of
mazimizing F2(λ). Therefore, the primal optimal values are also equal. �

Thus we can bound J∗c (ξ) from below for each belief ξ by solving a finite-dimensional
LP associated with ξ. Now note that any feasible variable q of the LP (9.8) is also feasible
for the LP (9.4), so we have the following corollary.

Corollary 9.1. Suppose the original constrained POMDP problem is feasible. Then regard-
less of the chain structure of the modified problem, the LP (9.4) is feasible and its value is
a lower bound of J∗c (ξ) for all ξ.

The next corollary is about the feasibility of the original constrained problem.

Corollary 9.2. If any one of the LPs (9.4) and (9.8) for the constrained modified problem
is infeasible, then the original constrained POMDP problem is infeasible.

115



Remark 9.2. The results of Section 9.2.1 and 9.2.2 remain the same for constrained
POMDP problems with per-stage cost functions that are concave in the belief. This is
because the modified belief MDP has the lower approximating property for any concave
per-stage cost function as well (for proofs, see the remark in Section 3.7 for using the
weaker line of analysis and Section 3.8.3 for using the stronger line of analysis).

Remark 9.3. One can also prove the preceding results, for both the unichain and multi-
chain cases, using the weaker lower bound result that depends on the DP mapping. The
proof method is to use the lower bound result for the unconstrained average cost problem
and the strong duality of LPs or convex programs. For reference, we include such a proof
for the unichain case (the multichain case is similar) in Appendix A.2.

9.3 Summary

We have shown in this chapter how to compute lower bounds of the constrained average
cost POMDP problems using discretized lower approximations. Like in unconstrained cases,
these lower bounds can provide performance measure for suboptimal policies, which can be
obtained by other approximation methods, e.g., the finite-state controller approach that
will be addressed later.

We now discuss briefly about the policies. Consider the optimal solutions to the LPs
of the previous sections. The solution corresponds to a stationary randomized policy when
the modified problem is unichain, and the solution may not correspond to any policy when
the modified problem is multichain. However, it is always easy to verify whether or not the
solution corresponds to a stationary randomized policy and to obtain that policy when it
does.

As to applying that policy in the original constrained POMDP problem, a few issues
need consideration. First, the policy may not be feasible in the original POMDP. Secondly,
as discussed in the unconstrained case, for the modified problem most of the belief states are
transient, and hence the controls at these states do not affect the average cost of the policy
in the modified problem. So it may be possible, especially when the modified problem
is unichain, that the controls in the LP solution are arbitrary on these transient states.
Therefore for the purpose of suboptimal control in the original problem, one should be
cautious about these policies. The idea of the sensitive optimality approach may be helpful.
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Chapter 10

A Function Approximation
Approach to Estimation of Policy
Gradient for POMDPs with
Structured Policies

10.1 Introduction

In this chapter we consider reinforcement learning algorithms for POMDPs with finite
spaces of states, controls and observations. We consider the average cost criterion. As we
will refer often to certain key works of this area, for the convenience of comparisons, we
will use notation slightly different to the previous chapters. We denote by Xt the state,
Yt the observation, and Ut the control at time t. The random per-stage cost at time
t is gt = g(Xt, Yt, Ut), where g(·) is the per-stage cost function depending on the state
and control, as well as the observation. The state transition probability is denoted by
p(Xt+1|Xt, Ut) and the observation probability by p(Yt+1|Xt+1, Ut).

We limit the policy space to the set of finite-state controllers. A finite-state controller
is like a probabilistic automaton, with the observations being its inputs and the controls its
outputs. The controller has a finite number of “internal-states” that evolve in a Markovian
way, and it outputs a control depending on the current internal state and the current
observation.

The finite-state controller approach to POMDPs has been proposed in the work of
“GPOMDP” [BB01] by Baxter and Bartlett, and “Internal-state POMDP” [AB02] by Ab-
erdeen and Baxter. There are two distinctive features about finite-state controllers. One is
that the state of a POMDP, (even though not observable), the observation, and the internal
state of the controller jointly form a Markov process, so the theory of finite-state Markov
decision processes (MDP) applies. In contrast, the asymptotic behavior of a POMDP under
a general policy is much harder to establish. The other distinctive feature of finite-state
controllers is that the gradient of the cost with respect to the policy parameters can be
estimated from sample trajectories, without requiring the explicit model of a POMDP, so
gradient-based methods can be used for policy improvement. This feature is appealing for
both large problems in which either models are not represented explicitly, or exact infer-
ences are intractable, and reinforcement learning problems in which the environment model
is unknown and may be varying in time.
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In this chapter we consider the problem of learning a finite-state controller, i.e., op-
timizing the parameters of the controller, assuming no knowledge of the model and the
per-stage cost function. We note that if we have the model or if we can simulate the sys-
tem, then there are many algorithms immediately applicable. For example, if the model is
known and its size tractable, then one can directly compute the gradient and solve the op-
timization problem using gradient-based methods. If the model is too large, but the system
can be simulated, then one can directly apply policy gradient or actor-critic algorithms for
MDPs to estimate the policy gradient, because the state information that is necessary to
those algorithms, is available in simulation. We consider the case beyond simulation where
the controller is to be tuned in a real environment while it is operating, so that both the
controller and the learning algorithm do not have access to the hidden states. The main
question is then how to overcome the hidden states and estimate the policy gradient.

The gradient estimation method proposed by [BB01] and [AB02] avoids estimating the
value function. The idea there is to replace the value of a state in the gradient expression
by the path-dependent random cost starting from that state. To our knowledge, up to now
gradient estimators that use a value function approximator have not been proposed as an
alternative to GPOMDP in learning finite-state controllers for a POMDP.1 The purpose of
this chapter is to propose such an alternative.

We show that the gradient is computable by a function approximation approach. With-
out pre-committing to a specific estimation algorithm, our methodology starts with rewrit-
ing the gradient expression by integrating over the state variable, so that the new gradient
expression involves a “value” function that does not depend on the states. This “value”
function is shown to be the conditional mean of the true value function of a certain Markov
chain under the equilibrium distribution, conditioned on observations, controls, and inter-
nal states. By ergodicity, asymptotically unbiased estimates of this “value” function can be
obtained from sample trajectories. In particular, temporal difference (TD) methods with
linear function approximation, including both β-discounted TD(λ) and average cost TD(λ),
can be used, and the biases of the corresponding gradient estimators asymptotically go to
zero when β → 1, λ→ 1.

The computation of this value function may be viewed as the critic part of the Actor-
Critic framework (e.g., Konda [Kon02]), in which the critic evaluates the policy, and the
actor improves the policy based on the evaluation. Thus for POMDPs with finite-state
controllers, the algorithms as well as their analysis fit in the general MDP methodology
with both actor-only and actor-critic methods, and can be viewed as special cases.

The idea of estimating the conditional mean of the true value function first appeared in
the work of Jaakkola, Singh and Jordan [JSJ94], which is a gradient-descent flavored method
in the context of the finite memory approach to reinforcement learning in POMDPs. This
earlier work does not start with gradient estimation, though it is closely related to it. It
applies to a subclass of finite-state controllers that have the internal state storing a finite-
length of the recent history.

Our way of using the conditional expectation in rewriting the gradient expression is
to some degree new. Algorithmically, one does not have to take this additional step in
order to apply the Actor-Critic framework. However, taking conditional expectations and
making the conditional mean explicit in the gradient expression, we think, is a more direct

1Meuleau et al. [MPKK99] have used the value function to parameterize the policy and used the path-
dependent random cost for gradient estimation in episodic settings. A GPOMDP/SARSA hybrid was
proposed by Aberdeen and Baxter in an early work. However, the reasoning there was incorrect, because
the marginal process of internal-state and observation is not a Markov chain.
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approach. It allows the use of other estimation algorithms such as non-linear function
approximators. Furthermore, it has facilitated our derivation of the gradient estimation
algorithm for general finite-state controllers, in which case it would be less transparent to
apply a projection argument normally used in MDP policy gradient methods.

Finally we show that the same function approximation approach also applies to gradient
estimation in semi-Markov problems, for which a GPOMDP type algorithm was earlier
proposed by Singh, Tadic and Doucet [STD02].

The organization of this chapter is as follows. In Section 10.2, we lay out our approach
for reactive policies, a simple subclass of finite-state controllers, which captures all the main
ideas in the analysis. We introduce some background, and present the gradient expressions,
the algorithms, and an error analysis. In Section 10.3, we present the gradient estimation
algorithm for finite-state controllers, and in Section 10.4, for semi-Markov problems. In Sec-
tion 10.5, we provide experiments, showing that the estimates using function approximation
are comparable to those from an improved GPOMDP method that uses a simple variance
reduction technique, and in addition the function approximation approach provides more
options in controlling bias and variance.

10.2 Gradient Estimation for POMDPs with Reactive Poli-
cies

We first present our approach for the simplest finite-state controllers – reactive policies,
mainly for their notational simplicity. We will also introduce the background of policy
gradient estimation. A reactive policy is a randomized stationary policy such that the
probability of choosing a control is a function of the most recent observation only. The
graphical model of a POMDP with a reactive policy is shown in Fig. 10-1. The process
{(Xt, Yt, Ut)} jointly forms a Markov chain under a reactive policy, and so does the marginal
process {(Xt, Yt)}, (marginalized over controls Ut).

2

1Y0Y
0U 1U

2

X X X

Y

0 1

Figure 10-1: A POMDP with a reactive policy.

Let {γθ | θ ∈ Θ} be a family of reactive policies parametrized by θ. For any policy γθ,
let

µu(y, θ) = p(Ut = u | Yt = y; θ)

be the probability of taking control u upon the observation y. The following assumptions
are standard. We require that µu(y, θ) is differentiable for any given u, y, and the transition
probability p(Xt+1 = x̄, Yt+1 = ȳ | Xt = x, Yt = y; θ) is differentiable for any given x, y, x̄, ȳ.
Furthermore we assume that for all θ ∈ Θ the Markov chains {(Xt, Yt)} are defined on a
common state space2 and we make the following additional assumptions.

Assumption 10.1. Under any policy γθ, the Markov chain {(Xt, Yt)} is irreducible and
aperiodic.

2Note that this is not necessarily the product of the state and the observation spaces of a POMDP.
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Assumption 10.2. There exists a constant L, such that for all θ ∈ Θ, maxu,y

∥∥∥∇µu(y,θ)
µu(y,θ)

∥∥∥ ≤
L, where 0/0 is regarded as 0.

The first assumption ensures that the average cost is a constant and differentiable for
all policies γθ. (A short proof of differentiability in finite-state MDPs in general is given in
the Appendix C.) The second assumption of boundedness is to make it possible to compute
the gradient by sampling methods.

10.2.1 Review of Gradient and Gradient Approximation

Let η(θ) be the average cost of the reactive policy γθ, and let Eθ
0 denote expectation with

respect to the equilibrium distribution of the Markov chain {(Xt, Yt, Ut)} under policy γθ.
Conditional expectations are defined in the same way, i.e., with respect to the conditional
distributions from the equilibrium distribution. For simplicity of notation, we will drop θ
in η(θ) and Eθ

0 , and use η and E0 throughout the chapter.
Suppose θ = (θ1, . . . , θk) ∈ Rk, and let ∇µu(y, θ) be the column vector

∇µu(y, θ) =
(

∂µu(y,θ)
∂θ1

, . . . , ∂µu(y,θ)
∂θk

)′
.

By differentiating both sides of the optimality equation, it can be shown that the gradient
∇η can be expressed as

∇η = E0

{
∇µU (Y,θ)
µU (Y,θ) Q(X,Y, U)

}
, (10.1)

where the Q-function Q(x, y, u) is defined by

Q(x, y, u) = g(x, y, u) + E {h(X1, Y1) | X0 = x, Y0 = y, U0 = u} ,

and h(x, y) is the bias [Put94], defined by

h(x, y) = lim
T→∞

E

{
T∑

t=0

(gt − η) | X0 = x, Y0 = y

}
.

In order to compute h(x, y) directly one needs to pick a particular pair (x0, y0) as a regen-
erating state (Marbach and Tsitsiklis [MT01]). Since this is not possible in a POMDP,3

one has to approximate it by other terms.
Baxter and Bartlett [BB01] proposed the following approximate gradient:

∇βη
def
= E0

{
∇µU (Y,θ)
µU (Y,θ) Qβ(X,Y, U)

}
, (10.2)

where Qβ is the Q-function of the discounted problem:

Qβ(x, y, u) = g(x, y, u) + βE {Jβ(X1, Y1) | X0 = x, Y0 = y, U0 = u} ,

and Jβ is the cost function of the β-discounted problem. The approximate gradient ∇βη
converges to ∇η when β ↑ 1. This is due to the fact that when β ≈ 1, Jβ − η

1−β ≈ h, and

E0{∇µU (Y,θ)
µU (Y,θ) } = 0, therefore E0{∇µU (Y,θ)

µU (Y,θ) c} = 0 for any constant c. Although the state is not

3Note that in simulation one can apply the algorithm of [MT01] to estimate h(x, y) directly, because the
state process is generated by the simulator and therefore known, as discussed earlier.
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observable, an estimate of Qβ(Xt, Yt, Ut) can be obtained by accumulating the costs along
the future sample path starting from time t. This is the idea of the GPOMDP algorithm
that estimates the approximate gradient ∇βη by a sampling version of Eq. (10.2).

10.2.2 A New Gradient Expression for Estimation

We first write Eq. (10.1) in a different way:

∇η = E0

{
∇µU (Y,θ)
µU (Y,θ) Q(X,Y, U)

}
= E0

{
∇µU (Y,θ)
µU (Y,θ) E0{Q(X,Y, U) | Y, U}

}
= E0

{
∇µU (Y,θ)
µU (Y,θ) v(Y, U)

}
, (10.3)

where
v(Y, U) = E0 {Q(X,Y, U) | Y, U} , (10.4)

a function that depends on observation and action only. Similarly define vβ(Y, U) to be
the conditional mean of Qβ given Y, U , and the approximate gradient (Eq. (10.2)) can be
written as

∇βη = E0

{
∇µU (Y,θ)
µU (Y,θ) vβ(Y, U)

}
. (10.5)

Thus if we can estimate v(y, u) or its approximation vβ(y, u) from sample paths, then we
can estimate ∇η or ∇βη using a sampling version of Eq. (10.3) or Eq. (10.5).

It turns out that by ergodicity of the Markov chain, we are able to compute vβ from
a sample trajectory, and compute v with asymptotically no bias. This was first noticed
in [JSJ94]. Let us reason informally why it is so for the case of vβ(y, u). Let π(x, y, u) be
the equilibrium distribution of the Markov chain {(Xt, Yt, Ut)}, and π(y, u), π(x|y, u) be the
corresponding marginal and conditional distributions, respectively. For any sample trajec-
tory {(yt, ut)}t≤T , by ergodicity the number of the sub-trajectories that start with (y, u),
denoted by Ty,u, will be approximately π(y, u)T , as T →∞. Among these sub-trajectories
the number of those that start from the state x will be approximately π(x|y, u)Ty,u. Thus
averaging over the discounted total costs of these Ty,u sub-trajectories, we obtain in the
limit vβ(y, u), as T →∞.

Using ergodicity, there are many ways of estimating v(y, u) or vβ(y, u) from sample
paths. In what follows, we will focus on the temporal difference methods, as they have
well-established convergence and approximation error analysis.

10.2.3 Computing vβ(y, u) and v(y, u) by TD Algorithms

We approximate the function v(y, u) or vβ(y, u) by a linear combination of n basis functions:

v(y, u) ≈ φ(y, u)′r, or vβ(y, u) ≈ φ(y, u)′r,

where the symbol ’ denotes transpose,

φ(y, u)′ = [φ1(y, u), . . . , φn(y, u)]

is a vector with its entries φi(y, u) called the features of (y, u) and with φi(y, u) as a function
of (y, u) being the i-th basis function, and r is a length-n column vector of linear coefficients,
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to be computed by TD algorithms.4 Let Φ be the matrix

Φ =


...

φ(y, u)′
...

 , (10.6)

with rows φ(y, u)′. We require that the columns, i.e., the basis functions, are linearly
independent, and the column space of Φ includes the set of functions{

1
µu(y,θ)

∂µu(y,θ)
∂θ1

, . . . , 1
µu(y,θ)

∂µu(y,θ)
∂θk

}
which we call the minimum set of basis functions.

We describe how TD algorithms are used in this case. For clarity of description, we
define another identical set of features φ̃(x, y, u) = φ(y, u). We run TD algorithms in a
POMDP as if it were an MDP, with features φ̃. Since φ̃ does not depend on states x, we
do not require state information in running the TD algorithms.

Similar to the case in an MDP [KT99], [SMSM99], it can be seen from Eq. (10.3) or
Eq. (10.5) that for gradient estimation, it is not necessary to have the exact function v(y, u)
or vβ(y, u). Instead, it suffices to have the projection of the function v(Y, U) or vβ(Y, U),
viewed as a random variable, on a subspace that includes the minimum set of basis functions{

1
µU (Y,θ)

∂µU (Y,θ)
∂θ1

, . . . , 1
µU (Y,θ)

∂µU (Y,θ)
∂θk

}
, viewed as random variables, where the projection is

with respect to the marginal equilibrium distribution π(y, u).5 Thus, our goal is to estimate
the projection of the function v(y, u) or vβ(y, u) with asymptotically no bias using TD
algorithms.

From established results on discounted TD(λ) (Tsitsiklis and Van Roy [TV97], see also
Bertsekas and Tsitsiklis [BT96]) and average cost TD(λ) algorithms (Tsitsiklis and Van
Roy [TV99]), if r∗ is the limit that TD converges to, then φ(y, u)′r∗ as a function of (x, y, u)
is close to the projection of the function Q(x, y, u) or Qβ(x, y, u) with bias depending on
the values of λ. In what follows, we combine these results with an error decomposition
to show that φ(y, u)′r∗ as a function of (y, u) is close to the projection of the function
v(y, u) or vβ(y, u). Although the notation is for reactive policies, the analysis applies to the
general case of finite-state controllers, where the variables (y, u) are replaced by an enlarged
set of variables including the internal states of the controller. The question of what is the
resulting value function φ(y, u)′r∗, was discussed, yet not resolved, in an earlier work [SJJ94]
by Singh, Jaakkola and Jordan, and our analysis thus clarifies this issue.

4TD algorithms include the original TD algorithms (e.g., [Sut88], [BT96], [TV99]), the least squares
TD algorithms (e.g., [Boy99], [BBN03]), and many other variants. They differ in convergence rate and
computation overhead, and they converge to the same limits.

5One can define an inner-product for the space of square-integrable real-valued random variables on
the same probability space. For real-valued random variables X and Y , the inner-product is defined as

< X, Y >
def
= E{XY }, and the norm of X is E{X2}. The projection Ŷ of Y on the space spanned by

random variables X1, X2, . . . , Xn is a random variable such that with αi, α̂i denoting some scalars,

Ŷ =
X

i

α̂iXi, E
˘
(Y − Ŷ )2

¯
= min

α
E

˘
(Y −

X
i

αiXi)
2¯

.
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Estimation of vβ by Discounted TD

Consider the β-discounted TD(λ) with λ = 1. Let r∗β be the limit of the linear coefficients
that TD converges to, and v̂β(y, u) = φ(y, u)′r∗β be the corresponding function.

Proposition 10.1. The function v̂β(y, u) is a projection of vβ(y, u) on the column space of
Φ, i.e.,

E0

{(
vβ(Y, U)− φ(Y, U)′r∗β

)2} = min
r∈Rk

E0

{(
vβ(Y, U)− φ(Y, U)′r

)2}
.

Prop. 10.1 follows from results on discounted TD and the next simple lemma, which
follows from the fact that vβ(y, u) is the conditional mean of Qβ .

Lemma 10.1. For any vector r ∈ Rk,

E0

{(
Qβ(X,Y, U)− φ(Y, U)′r

)2} = E0

{
Qβ(X,Y, U)2 − vβ(Y, U)2

}
+ E0

{(
vβ(Y, U)− φ(Y, U)′r

)2}
. (10.7)

Proof of Prop. 10.1: Since λ = 1, by Proposition 6.5 in [BT96] (pp. 305), the func-
tion φ̃(x, y, u)′r∗β is the projection of Qβ(x, y, u) on the feature space with respect to the
equilibrium distribution, i.e., r∗β minimizes

E0

{(
Qβ(X,Y, U)− φ̃(X,Y, U)′r

)2
}

= E0

{(
Qβ(X,Y, U)− φ(Y, U)′r

)2}
.

Hence r∗β minimizes E0

{
(vβ(Y, U)− φ(Y, U)′r)2

}
by Lemma 10.1. �

The error analysis for the case of λ < 1, omitted here, is similar to and less complicated
than the case of average cost TD(λ) as shown next.

Estimation of v by Average Cost TD

Consider the average cost TD(λ) with λ < 1.6 Let r∗λ be the limit of the linear coefficients
that TD converges to, and v̂(y, u) = φ(y, u)′r∗λ be the corresponding function. The next
proposition says that modulo a constant translation, v̂ is an approximation to the projection
of v on the feature space, and converges to this projection when λ ↑ 1.

Proposition 10.2. There exists a constant scalar c̄ such that

E0

{(
v(Y, U) + c̄− φ(Y, U)′r∗λ

)2} ≤ α2
λ

1−α2
λ
E0

{
Q(X,Y, U)2 − v(Y, U)2

}
+ 1

1−α2
λ

inf
r∈Rk

inf
c∈R

E0

{(
v(Y, U) + c− φ(Y, U)′r

)2}
,

where αλ ∈ [0, 1) is a mixing factor, depending on the Markov chain, with limλ↑1 αλ = 0.

By Prop. 10.2, the approximation error, measured in the squared norm, is bounded by
two terms. The second term is a multiple of the best approximation error possible, and is

6We assume that the column space of Φ does not contain the vector [1 . . . 1]′, to satisfy a condition in
average cost TD algorithms.
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zero when v(y, u), modulo a constant translation, is in the feature space. The first term,
vanishing as λ ↑ 1, can be equivalently written as a multiple of the expectation of the
variance of Q(X,Y, U) conditioned on (Y, U):

α2
λ

1−α2
λ
E0 {V ar {Q(X,Y, U) | Y, U}} .

It does not depend on the features, and is a penalty for not observing states X.

The proof is a straightforward combination of the results for average cost TD (Theorem
3 of [TV99]) and a decomposition of error by Lemma 10.1.

Proof: Let r∗λ be the linear coefficients that TD converges to. Consider the Markov
chain {(Xt, Yt, Ut)} whose equilibrium distribution we denote by π(x, y, u). By the Bellman
equation for average cost and the definition of Q(x, y, u), we have Q(x, y, u) = h(x, y, u)−η,
where h(x, y, u) is the bias, and by definition satisfies E0{h(X,Y, U)} = 0. For TD in the
imaginary process, by Theorem 3 of [TV99],

E0

{(
h(X,Y, U)− ψ̃(X,Y, U)′r∗λ

)2
}
≤ 1

1− α2
λ

E0

{(
h(X,Y, U)− ψ̃(X,Y, U)′r∗

)2
}
,

(10.8)

where αλ ∈ [0, 1) is a mixing factor depending on the Markov chain, with limλ↑1 αλ = 0;
ψ̃(x, y, u) is defined by,

ψ̃(x, y, u) = φ̃(x, y, u)−
∑
x̄,ȳ,ū

π(x̄, ȳ, ū)φ̃(x̄, ȳ, ū);

and r∗ is defined by

r∗ = arg min
r∈Rk

E0

{(
h(X,Y, U)− ψ̃(X,Y, U)′r

)2
}
.

The definition of ψ̃ is to make the measure of approximation error insensitive to a constant
translation in the estimated function, and it satisfies that for any r

E0

{
ψ̃(X,Y, U)′r

}
= c(r) + E0

{
φ̃(X,Y, U)′r

}
= 0,

where c(r) is a constant depending on r. The expectation term in the right-hand side of
Eq. (10.8) can be equivalently written as

E0

{(
h(X,Y, U)− ψ̃(X,Y, U)′r∗

)2
}

= inf
c∈R

E0

{(
h(X,Y, U) + c− φ̃(X,Y, U)′r∗

)2
}

= inf
r∈Rk

inf
c∈R

E0

{(
h(X,Y, U) + c− φ̃(X,Y, U)′r

)2
}
.

(10.9)

Now we bound approximation error for v̂. Note Lemma 10.1 holds if we replace Qβ by
Q − η and vβ by v − η, because Q and v have the same mean η. Note also that ψ̃(x, y, u)

124



does not depend on the state x. Hence define

ψ(y, u) = ψ̃(x, y, u),

apply Lemma 10.1 to both sides of Eq. (10.8) separately, and after rearranging terms, it
follows that

E0

{(
v(Y, U)− η − ψ(Y, U)′r∗λ

)2} ≤ 1
1− α2

λ

E0

{(
v(Y, U)− η − ψ(Y, U)′r∗

)2}
+

α2
λ

1− α2
λ

E0

{
Q(X,Y, U)2 − v(Y, U)2

}
, (10.10)

where we have also used the fact that

E0

{
Q(X,Y, U)2 − v(Y, U)2

}
= E0

{
(Q(X,Y, U)− η)2 − (v(Y, U)− η)2

}
.

Similarly apply Lemma 10.1 to the definition of r∗ and to Eq. (10.9), and it follows that

r∗ = arg min
r∈Rk

E0

{(
v(Y, U)− η − ψ(Y, U)′r

)2}
, (10.11)

E0

{(
v(Y, U)− η − ψ(Y, U)′r∗

)2}
= inf

c∈R
E0

{(
v(Y, U)− η + c− φ(Y, U)′r∗

)2}
= inf

r∈Rk
inf
c∈R

E0

{(
v(Y, U)− η + c− φ(Y, U)′r

)2}
. (10.12)

Putting Eq. (10.10)-(10.12) together, we have the claim proved. �

10.3 Gradient Estimation for Finite-State Controllers

The graphical model of a POMDP with a finite-state controller is shown in Fig. 10-2. The
controller has an internal state, denoted by Zt, taking a finite number of values. Given
the observation Yt, the controller applies the control Ut with probability p(Ut|Zt, Yt), and
its internal state subsequently transits to Zt+1 with probability p(Zt+1|Zt, Yt, Ut).7 The
process {(Xt, Yt, Zt, Ut)} jointly forms a Markov chain, and so does the marginal process
{(Xt, Yt, Zt)}.

Let {γθ | θ ∈ Θ} be a parametrized family of finite-state controllers with the same
internal state space. For any policy γθ, let

µu(z, y, θ) = p(Ut = u | Zt = z, Yt = y; θ)

be the probability of taking control u at internal state z and observation y, and let

ζz̄(z, y, u, θ) = p(Zt+1 = z̄ | Zt = z, Yt = y, Ut = u; θ)

7One can define a finite-state controller different from the one we use here. For example, the internal
state transits to Zt+1 with probability p(Zt+1|Zt, Ut, Yt+1), i.e., the transition depends on Yt+1, instead of
Yt. The general idea outlined in Sec. 10.2 applies in the same way. The equations will be different from the
ones in this section, however.
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Figure 10-2: A POMDP with a finite-state controller. The states Zt are the internal states
of the controller.

be the transition probability of the internal states. We require that µu(z, y, θ) and ζz̄(z, y, u, θ)
are differentiable for any give u, z, y, z̄, and the transition probability p(Xt+1 = x̄, Yt+1 =
ȳ, Zt+1 = z̄ | Xt = x, Yt = y, Zt = z; θ) is differentiable for any given x, y, z, x̄, ȳ, z̄. Similar
to the case of reactive policies, we assume that for all θ ∈ Θ, the Markov chains {(Xt, Yt, Zt)}
can be defined on a common state space, and furthermore we make the following additional
assumptions.

Assumption 10.3. Under any policy γθ, the Markov chain {(Xt, Yt, Zt)} is irreducible and
aperiodic.

Assumption 10.4. There exists a constant L, such that for all θ ∈ Θ

max
u,y

∥∥∥∇µu(y,θ)
µu(y,θ)

∥∥∥ ≤ L, max
u,y,z,z̄

∥∥∥∇ζz̄(z,y,u,θ)
ζz̄(z,y,u,θ)

∥∥∥ ≤ L,

where 0/0 is regarded as 0.

Under these assumption, for all θ, the average cost is constant and differentiable, (for a
proof, see Appendix C). There is a unique equilibrium distribution for the Markov chain
{(Xt, Yt, Zt, Ut)}. We will use the symbol E0 to denote expectation with respect to the
joint distribution of the random variables {(Xt, Yt, Zt, Ut)} with the initial distribution of
(X0, Y0, Z0, U0) being the equilibrium distribution.

10.3.1 Gradient Estimation

By differentiating both sides of the optimality equation, it can be shown that the gradient
equals the sum of two terms:

∇η = E0

{
∇µU0

(Z0,Y0,θ)

µU0
(Z0,Y0,θ) Q(X0, Y0, Z0, U0)

}
+ E0

{
∇ζZ1

(Z0,Y0,U0,θ)

ζZ1
(Z0,Y0,U0,θ) h(X1, Y1, Z1)

}
, (10.13)

where the Q-function Q(x, y, u) is defined by

Q(x, y, z, u) = g(x, y, u) + E {h(X1, Y1, Z1) | (X0, Y0, Z0, U0) = (x, y, z, u)} ,

and h(·) is the bias function of policy γθ.
To estimate the first term of the r.h.s. of Eq. (10.13), we can write the term as

E0

{
∇µU0

(Z0,Y0,θ)

µU0
(Z0,Y0,θ) v1(Y0, Z0, U0)

}
, (10.14)
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where
v1(Y0, Z0, U0) = E0 {Q(X0, Y0, Z0, U0) | Y0, Z0, U0} . (10.15)

For estimating v1, consider the Markov chain {(Xt, Yt, Zt)}, and apply β-discounted or
average cost TD algorithms with the features φ̃(x, y, z, u) = φ(y, z, u) not depending on x.

To estimate the second term of the r.h.s. of Eq. (10.13), we first note the relation
between the bias function h(x, y, z) of the Markov chain {(Xt, Yt, Zt)} and the bias function
h̃(x, y, z, u, z̄) of the Markov chain {(Xt, Yt, Zt, Ut, Zt+1)} with its per-stage cost also being
g(Xt, Yt, Zt):

h(x, y, z) = E
{
h̃(X0, Y0, Z0, U0, Z1) | (X0, Y0, Z0) = (x, y, z)

}
,

which can be verified from the optimality equations of the two Markov chains. It follows
that

E {h(X1, Y1, Z1) | X0, Y0, Z0, U0, Z1} = E
{
h̃(X1, Y1, Z1, U1, Z2) | X0, Y0, Z0, U0, Z1

}
= h̃(X0, Y0, Z0, U0, Z1) + η − g(X0, Y0, U0),

where the second inequality follows from the optimality equation for the Markov chain
{(Xt, Yt, Zt, Ut, Zt+1)}. The term η − g(X0, Y0, U0) is not a function of Z1, and it can be
dropped in gradient estimation, because

E0

{
∇ζZ1

(Z0,Y0,U0,θ)

ζZ1
(Z0,Y0,U0,θ)

∣∣∣X0, Y0, U0, Z0

}
= 0,

which implies
E0

{
∇ζZ1

(Z0,Y0,U0,θ)

ζZ1
(Z0,Y0,U0,θ)

(
η − g(X0, Y0, U0)

)}
= 0.

Hence the second term in the gradient expression (10.13) equals

E0

{
∇ζZ1

(Z0,Y0,U0,θ)

ζZ1
(Z0,Y0,U0,θ) h̃(X0, Y0, Z0, U0, Z1)

}
= E0

{
∇ζZ1

(Z0,Y0,U0,θ)

ζZ1
(Z0,Y0,U0,θ) v2(Y0, Z0, U0, Z1)

}
,

(10.16)
where

v2(Y0, Z0, U0, Z1) = E0

{
h̃(X0, Y0, Z0, U0, Z1) | Y0, Z0, U0, Z1

}
. (10.17)

For estimating v2, consider the Markov chain {(Xt, Yt, Zt, Ut, Zt+1)}, and apply the TD
algorithms with the features φ̃(x, y, z, u, z̄) = φ(y, z, u, z̄) not depending on x. The line of
error analysis in Sec. 10.2.3 applies in the same way here.

10.4 Gradient Estimation for POSMDPs with Structured
Policies

Recall that POSMDPs as semi-Markov decision processes (SMDPs) with hidden states and
observations generated by states. Recall that the model of an SMDP is the same as an
MDP except that the time interval τn+1 − τn, called the sojourn time, between transition
from state Xn at time τn to state Xn+1 at time τn+1, is random, and depends on Xn, Xn+1

and the applied control Un. The random variables {τn}, called decision epochs, are the only
times when controls can be applied. For details of SMDPs, see [Put94].

We consider the problem of a POSMDP with a subset of finite state controllers that
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take the observations, but not the sojourn times, as inputs. This is to preserve the SMDP
structure of the joint process {(Xn, Yn, Zn, Un)} and the marginal process {(Xn, Yn, Zn)}.
Singh, Tadic and Doucet [STD02] gave a GPOMDP type gradient estimation algorithm for
this problem. We would like to point out that the function approximation approach applies
as well. The details are as follows.

The average cost is defined as the limit of the expected cost up to time T divided by
T , and under the irreducibility condition of the Markov chain {(Xn, Yn, Zn)}, by ergodicity
the average cost equals to

η =
E0{g(X0, Y0, U0)}

E0{τ1}
,

where g(x, y, u) is the mean of the random per-stage cost c(x, y, τ, u) that depends on the
sojourn time τ . In the case of reactive policies, one can show that the gradient equals to

∇η =
E0{

∇µU0
(Y0,θ)

µU0
(Y0,θ) h(X,Y, U)}

E0{τ1}
,

where h satisfies the equation

h(x, y, u) = g(x, y, u)− τ̄(x, y, u) η + E{h(X1, Y1, U1) | (X0, Y0, U0) = (x, y, u)},

and τ̄(x, y, u) is the expected sojourn time given (X0, Y0, U0) = (x, y, u).
Now notice that h is the bias function of the Markov chain {(Xn, Yn, Un)} with g(x, y, u)−

τ̄(x, y, u) η as the expected per-stage cost, or equivalently with c(X,Y, τ, U)− τ(X,Y, U) η
as the random per-stage cost, where τ is the random sojourn time. Let η̂n be the online
estimate of η. We can thus estimate the projection of h (equivalently the conditional mean
of h) by running TD algorithms (discounted or average cost version) in this MDP with
per-stage cost gn − (τn+1 − τn)η̂n, and with features not depending on state x and sojourn
time τ .

The general case of finite-state controllers is similar: the gradient is equal to the sum of
two parts, each of which can be estimated using function approximation by considering the
appropriate Markov chain – the same as in a POMDP – with per-stage cost gn−(τn+1−τn)η̂n.

10.5 Experiments

We test GPOMDP and our method on a medium size ALOHA problem – a communica-
tion problem — with 30 states, 3 observations and 9 actions.8 We take its model from
A. R. Cassandra’s POMDP data repertoire (on the web), and define per-stage costs to be
the negative rewards. The true gradients and average costs in comparison are computed
using the model. The family of policies we used has 3 internal states, 72 action param-
eters governing the randomized control probabilities µu(z, y, θ), and 1 internal-transition
parameter governing the transition probabilities of the internal states ζz̄(z, y, u, θ).9 The
parameters are bounded so that all the probabilities are in the interval [0.001, 0.999]. For
experiments reported below, β = 0.9, λ = 0.9.

8In this problem, a state generates the same observation under all actions, and for each observation, the
number of states that can generate it is 10.

9The internal-transitions are made such that the internal-state functions as a memory of the past, and
the parameter is the probability of remembering the previous internal-state, with 1 minus the parameter
being the probability of refreshing the internal state by the recent observation.
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B-TD OL-TD GPOMDP
0.9678± 0.0089 0.875± 0.006 0.9680± 0.0088

Table 10.1: Comparison of gradient estimators. The number ∇̂η′∇η

‖∇̂η‖2‖∇η‖2
when θ is far away

from a local minimum.

We demonstrate below the behavior of gradient estimators in two typical situations:
when the magnitude of the true gradient is large, and when it is small. Correspondingly
they can happen when the policy parameter is far away from a local minimum, and when
it is close to a local minimum (or local maximum).

First we describe how the local minimum was found, which also shows that the ap-
proach of finite-state controller with policy gradient is quite effective for this problem. The
initial policy has equal action probabilities for all internal-state and observation pairs, and
has 0.2 as the internal-transition parameter. At each iteration, the gradient is estimated
from a simulated sample trajectory of length 20000 (a moderate number for the size of this
problem), without using any estimates from previous iterations. We then, denoting the
estimate by ∇̂η, project −∇̂η to the feasible direction set, and update the policy param-
eter by a small constant step along the projected direction. We used GPOMDP in this
procedure, (mainly because it needs less computation). The initial policy has average cost
−0.234. The cost monotonically decreases, and within 4000 iterations the policy gets into
the neighborhood of a local minimum, oscillating around afterwards, with average costs
in the interval [−0.366,−0.361] for the last 300 iterations. As a comparison, the optimal
(liminf) average cost of this POMDP is bounded below by −0.460, which is computed using
an approximation scheme from [YB04].

Table 10.1 lists the number ∇̂η′∇η

‖∇̂η‖2‖∇η‖2
for several gradient estimators, when the policy

is far from a local minimum. The values listed are the means and standard deviations
calculated from 5 sample trajectories simulated under the same policy. In the first column,
the gradient estimator (B-TD) uses the batch estimate of the value function, that is, it uses
the function estimated by TD at the end of a trajectory. (The use of batch data does not
mean that the algorithm is offline. In fact, the estimator (B-TD) can be implemented on-
line.) In the second column, the gradient estimator (OL-TD) uses the on-line estimates of
the value function computed by TD. The TD algorithms we used are β-discounted LSPE(λ)
[BBN03] and average cost LSPE(λ). The difference between the discounted and average
cost TD turns out negligible in this experiment. In the third column, we use GPOMDP.10

The estimates from B-TD and GPOMDP align well with the true gradient, while OL-TD
is not as good, due to the poor estimates of TD in the early period of a trajectory.

Fig. 10-3 shows the number ∇̂η′∇η

‖∇̂η‖2‖∇η‖2
for several gradient estimators on 20 sample

trajectories simulated under the same policy, when that policy is near a local minimum.11

The horizontal axis indexes the trajectories. The blue solid line and the green dash-dot line
correspond, respectively, to the gradient estimator that uses the batch estimate (B-TD) and
the on-line estimate (OL-TD) of the value function, computed by β-discounted LSPE(λ).

10For both GPOMDP and the discounted TD algorithm, we subtracted the per-stage cost by the on-line
estimate of the average cost.

11More precisely, the number we compute here is the inner-product of the projections of −∇η and −∇̂η
(on the set of feasible directions) normalized by their norms.
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Figure 10-3: Comparison of gradient estimators. The number ∇̂η′∇η

‖∇̂η‖2‖∇η‖2
when θ is near a

local minimum. Linear interpolations between trials are plotted for reading convenience.

The red dash line corresponds to GPOMDP. While the estimator B-TD consistently aligns
well with the true gradient, GPOMDP often points to the opposite direction.

Our experiments demonstrate that when close to a local minimum (or local maximum),
where the magnitude of the gradient is small, in order to align with the gradient, the
estimator needs to have much smaller bias and variance. In GPOMDP we only have one
parameter β to balance the bias-variance. Hence it can be advantageous for the function
approximation approach to provide more options – namely the feature space, λ and β – in
controlling bias and variance in gradient estimation.

10.6 Summary

We have shown that Actor-Critic methods are alternatives to GPOMDP in learning finite-
state controllers for POMDPs and POSMDPs. Actor-Critic methods provide more options
in bias-variance control than GPOMDP. It is unclear, however, both theoretically or practi-
cally, which method is most efficient: actor-only, actor-critic, or their combined variants as
suggested in [Kon02]. We also note that using a value function in gradient estimation can
be viewed as a variance reduction technique based on Rao-Blackwellization. The control
variate idea [GBB04] is a different type of variance reduction technique, and applies to both
actor-only and actor-critic algorithms.
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Chapter 11

Some Convergence Results on the
LSPE Algorithm

In this chapter we consider finite space MDPs and prove two convergence results for a
least squares policy evaluation algorithm, called LSPE, first proposed by Bertsekas and
Ioffe [BI96]. LSPE(λ) is one of the iterative TD(λ) algorithms that evaluate the cost of
a policy from a sample trajectory and approximate the cost function by linear function
approximation. Nedić and Bertsekas [NB03] proved the convergence of LSPE with a dimin-
ishing stepsize. Recently Bertsekas et al. [BBN03] have shown that for discounted problems
the LSPE algorithm with a constant stepsize converges.

In this chapter we will show the following results:

• the average cost LSPE(λ) algorithm with a constant stepsize γ ≤ 1 converges to the
same limit as average cost TD(λ) algorithms; and

• for both discounted and average cost cases, LSPE(λ) with any constant stepsize (under
which LSPE converges) has the same convergence rate as LSTD(λ).

The LSTD algorithm is another least squares type algorithm, first proposed by Bradtke
and Barto [BB96] for λ = 0 and extended by Boyan [Boy99] to λ ∈ [0, 1]. It is proved by
Konda [Kon02] that LSTD(λ) has the optimal asymptotic convergence rate compared to
other TD(λ) algorithms. Thus our result shows that LSPE(λ) with a constant stepsize has
the optimal asymptotic convergence rate.

11.1 Introduction

First we establish some notation. We have a finite state and control MDP and a stationary
policy, which induces a Markov chain in the MDP. For this Markov chain, let P be the state
transition probability matrix with entries Pij = p(X1 = j|X0 = i). Let n be the number of
states, and e the length-n column vector of all 1s.

We assume that the Markov chain is recurrent. Thus the Markov chain has a unique
equilibrium distribution, denoted by π and satisfying

n∑
i=1

π(i)Pij = π(j), ∀j,
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or in matrix notation, defining π = [π(1), . . . , π(n)],

πP = π.

By ergodicity, the average cost η∗ is a constant independent of the initial state, and

η∗ = πḡ,

where ḡ is a column vector of expected per-stage cost at every state. The average cost DP
equation in matrix notation is

h = ḡ − η∗e+ Ph, (11.1)

where h, a length-n vector, is the bias function.

In least squares TD algorithms with linear function approximation, using data from
sample trajectories, we approximate h by Φ r with a given matrix Φ, and solve various least
squares problems to obtain the vector r. In particular, let

φ(x)′ =
[
φ1(x), . . . , φm(x)

]
be a length-m vector with its entries called features of state x, and let Φ be the n × m
matrix

Φ =


...

φ(x)′
...

 , (11.2)

with rows φ(x)′ and with linearly independent columns, called basis functions.

11.1.1 The Average Cost LSPE and LSTD Updates

Let (x0, u0, x1, u1, . . .) be an infinitely long sample trajectory where xk, uk are the state and
control at time k. Let ηk be the on-line estimate of the average cost at time k:

ηt =
1

t+ 1

t∑
i=0

g(xi, ui).

By ergodicity, we have ηt → η∗ with probability 1, where η∗ is the average cost.

The average cost LSPE(λ) algorithm with a constant stepsize γ updates the vector rt
by

rt+1 = rt + γB̄−1
t

(
Āt rt + b̄t

)
. (11.3)

Here,

B̄t =
Bt

t+ 1
, Āt =

At

t+ 1
, b̄t =

bt
t+ 1

,
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are matrices Bt, At and vector bt, respectively, averaged over time, which are defined as1

Bt =
t∑

k=0

φ(xk)φ(xk)′, At =
t∑

k=0

zk
(
φ(xk + 1)′ − φ(xk)′

)
,

bt =
t∑

k=0

zk (g(xk, uk)− ηk), zk =
k∑

m=0

λk−mφ(xm).

Using the analysis of Tsitsiklis and Van Roy [TV99] on average cost TD algorithms and
Nedić and Bertsekas [NB03] on discounted LSPE algorithms, it can be easily shown that
with probability one

B̄t → B, Āt → A, b̄t → b,

where

B = Φ′DΦ, A = Φ′D(I − λP )−1(P − I)Φ,

b = Φ′D(I − λP )−1(ḡ − η∗e),

and D is the diagonal matrix

D = diag(. . . , π(x), . . .)

with the diagonal entries π(x).
A different least squares TD algorithm, the average cost LSTD(λ), updates the vector

rt by
r̂t+1 = −Ā−1

t b̄t. (11.4)

So with probability one r̂t converges to −A−1b, the same limit as other TD(λ) algorithms.
The error of cost approximation, which depends on λ and the space spanned by the basis
functions, is analyzed by [TV99].

11.1.2 The Corresponding Least Squares Problems

The LSPE(λ) and LSTD(λ) updates are related to least squares solutions, which we are
now going to describe. Iteratively expanding the right-hand side of the average cost DP
equation

h = ḡ − η∗e+ Ph

1As a comparison, for the β-discounted criterion the update rule of LSPE(λ), λ ∈ [0, 1], is defined by
Eq. (11.3) with the corresponding matrices

Bt =

tX
k=0

φ(xk) φ(xk)′, At =

tX
k=0

zk

`
βφ(xk + 1)′ − φ(xk)′

´
,

bt =

tX
k=0

zk g(xk, uk), zk =

kX
m=0

(βλ)k−mφ(xm).

The matrix At and vector bt converge to A and b respectively, with

A = Φ′D(I − λβP )−1(βP − I)Φ, b = Φ′D(I − λβP )−1ḡ.
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for m-steps, we have the multiple-step value iteration equation

h =
m∑

k=0

P k(ḡ − η∗e) + Pm+1h. (11.5)

For λ ∈ [0, 1), define a series of scalars (1− λ)λm, which sum to 1. Multiplying Eq. (11.5)
by (1− λ)λm and summing over m, it follows that

h = (1− λ)
∞∑

m=0

λm

(
m∑

k=0

P k(ḡ − η∗e) + Pm+1h

)

=
∞∑

k=0

P k(ḡ − η∗e)

(
(1− λ)

∞∑
m=k

λm

)
+ (1− λ)

∞∑
m=0

λmPm+1h

=
∞∑

k=0

λkP k(ḡ − η∗e) +
∞∑

k=0

λkP k+1h−
∞∑

k=0

λkP kh+ h

=
∞∑

k=0

λkP k(ḡ − η∗e) +
∞∑

k=0

λk
(
P k+1h− P kh

)
+ h

= h+
∞∑

k=0

λk
(
P k(ḡ − η∗e) + P k+1h− P kh

)
.

Equivalently, we can write this last equation in the expectation notation. For every state
x,

h(x) = h(x) +
∞∑

k=0

λkE
{
g(Xk, Uk)− η∗ + h(Xk+1)− h(Xk) |X0 = x

}
= h(x) + E

{ ∞∑
k=0

λk
(
g(Xk, Uk)− η∗ + h(Xk+1)− h(Xk)

)
|X0 = x

}
. (11.6)

Equation (11.6) relates to the least squares problems associated with LSPE and LSTD.
To determine the linear coefficients rt+1 in the approximation

h ≈ Φ rt+1,

the two methods use different approximations for the left and right-hand sides of Eq. (11.6),
and correspondingly solve two different least squares problems of minimizing the difference
between the approximations of the two sides.

For LSPE, the h on the left-hand side of Eq. (11.6) is approximated by ht+1(x) =
φ(x)′r̄t+1, which is to be determined, while the h on the right-hand side is approximated
by ht(x) = φ(x)′rt, which is fixed. The least squares problem to determine r̄t+1 is

1
t+ 1

t∑
k=0

(
ht+1(xk)− ht(xk)−

t∑
m=k

λm−k
(
g(xm, um)− ηm + ht(xm+1)− ht(xm)

))2

.

(11.7)
As can be seen from the expression of (11.7), the sample value from every partial trajectory
up to time t has replaced the expectation term in the right-hand side of Eq. (11.6). The
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squared difference between the left-hand side of Eq. (11.6) approximated by ht+1, and the
right-hand side approximated by this sample value and ht, is then summed up over all
partial trajectories up to time t to form the least squares problem (11.7) of LSPE(λ). The
minimum of the least squares problem is

r̄t+1 =
(
I + B̄−1

t Āt

)
rt + B̄−1

t b̄t.

The update rule (11.3) with a constant stepsize γ is equivalent to

rt+1 = (1− γ) rt + γ r̄t,

and when γ = 1, rt+1 = r̄t+1.
For LSTD, the h functions of both sides of Eq. (11.6) are approximated by ĥt+1 = Φ r̂t+1,

which is to be determined. The least squares problem is

1
t+ 1

t∑
k=0

(
ĥt+1(xk)− ĥt+1(xk)−

t∑
m=k

λm−k
(
g(xm, um)− ηm + ĥt+1(xm+1)− ĥt+1(xm)

))2

.

(11.8)
As can be seen, similar to LSPE, the sample value from every partial trajectory has been
used to replace the expectation term in Eq. (11.6). The minimum solution of the least
squares problem (11.8) gives the update rule (11.4) of LSTD.

11.2 Convergence of Average Cost LSPE with a Constant
Stepsize

We will show the convergence of the average cost LSPE(λ) algorithm with a constant
stepsize, where λ < 1. (Note that all non-episodic average cost TD algorithms must have
λ < 1 to ensure that the iterates are bounded.) The limit of LSPE(λ) is the same as the
one of other average cost TD(λ) algorithms. This limit and its λ-dependent distance to the
projection of the bias function (modulo a constant scalar shift) on the space of the basis
functions are established in [TV99]. So only the convergence of LSPE need to be shown.

The convergence of the discounted LSPE(λ) (λ ∈ [0, 1]) with a constant stepsize γ ∈
(0, 1] is proved by Bertsekas et al. [BBN03]. The proof in the average cost case here is
a slight modification of the proof in [BBN03]. Let σ(F ) denote the spectral radius of a
square matrix F , (i.e., the maximum of the moduli of the eigenvalues of F ). Key to the
convergence proof is to establish that

σ(I +B−1A) = σ(I + (Φ′DΦ)−1A) < 1.

To this end, we need the following Lemma 11.1, which is a counterpart to Lemma 2.1
of [BBN03] for the discounted case.

For the remainder of this section, we make the following assumptions.

Assumption 11.1. The Markov chain is recurrent and aperiodic.2

2We note that the aperiodicity condition is not a limitation to the algorithm. Because, as is well-known,
one can always apply an aperiodicity transformation, by introducing artificial self-transitions, to construct an
aperiodic chain with the same bias function as the original Markov chain. Correspondingly, TD algorithms
can be modified slightly and viewed as being applied to the transformed aperiodic chain.

135



Condition 11.1. The columns of matrix [Φ e] are linearly independent.

Let C denote the set of complex numbers, and ‖ · ‖D denote the weighted 2-norm:

‖z‖D =

(
n∑

i=1

π(i) z̄i zi

) 1
2

, ∀ z = (z1, . . . , zn) ∈ Cn,

where x̄ denotes the conjugate of a complex number x. By Lemma 2.1 of [BBN03] it is
always true that

‖Pz‖D ≤ ‖z‖D, ∀ z = (z1, . . . , zn) ∈ Cn.

For the average cost case, we need a strict inequality.

Lemma 11.1. For all z ∈ Cn, z 6∈ {c e | c ∈ C}, ‖Pmz‖D < ‖z‖D for some positive integer
m.

Proof: Since πP = π, for any positive integer m, πPm = π. Let P̃ = Pm. We have

‖P̃ z‖2
D =

n∑
i=1

π(i)

 n∑
j=1

p̃ij z̄j

  n∑
j=1

p̃ij zj


≤

n∑
i=1

π(i)

 n∑
j=1

p̃ij |zj |

2

≤
n∑

i=1

π(i)
n∑

j=1

p̃ij |zj |2

=
n∑

i=1

n∑
j=1

π(i) p̃ij |zj |2 =
n∑

j=1

π(i) |zj |2 = ‖z‖2
D, (11.9)

where the first inequality follows from the fact that

x̄y + xȳ ≤ 2|x||y|, ∀x, y ∈ C, (11.10)

and the second inequality follows from Jensen’s inequality applied to the convex function
(·)2. In view of Eq. (11.10), equality holds in the first inequality of Eq. (11.9) if and only if
for all j, k such that there exists some i with Pm

ij > 0, Pm
ik > 0,

zj = cjk zk, or |zj | |zk| = 0,

where cjk is some real number. Since (·)2 is a strictly convex function, equality holds in the
second inequality of Eq. (11.9) if and only if for all j, k such that there exists some i with
Pm

ij > 0, Pm
ik > 0,

|zj | = |zk|.

Under Assumption 11.1, there exists a positive integer m, such that Pm
ij > 0 for all i, j. For

such an m, the preceding if and only if conditions are identical to

zj = zk, ∀j, k,

i.e., z = c e for some c ∈ C. Thus, for any z 6∈ {c e | c ∈ C}, strict inequality in Eq. (11.9)
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must hold, and hence the claim. �

We now give the convergence proof. Most parts of the analysis follow the original
analysis in [BBN03] for the discounted case by setting the discount factor to 1. At certain
critical places we use Lemma 11.1. In what follows, we will avoid repeating the part of
analysis identical to [BBN03], and we will point out only the differences between the two
analyses.

Lemma 11.2. The matrix I + (Φ′DΦ)−1A satisfies

σ(I + (Φ′DΦ)−1A) < 1.

Proof: Let ν be an eigenvalue of I+(Φ′DΦ)−1A and let z be the corresponding eigenvector.
By the proof of Lemma 2.2 of [BBN03],

|ν|‖Φz‖D ≤ (1− λ)
∞∑

m=0

λm‖Pm+1Φz‖D. (11.11)

Since [Φ e] has linearly independent columns by Condition 11.1,

Φz 6∈ {c e | c ∈ C}.

Hence by Lemma 11.1, for some m, we have the strict inequality

‖PmΦz‖D < ‖Φz‖D.

Since ‖PmΦz‖D ≤ ‖Φz‖D for all m, it follows from Eq. (11.11) that

|ν|‖Φz‖D < (1− λ)
∞∑

m=0

λm‖Φz‖D = ‖Φz‖D,

which implies that |ν| < 1. �

Proposition 11.1. For average cost MDPs, LSPE(λ) with λ < 1 and a constant stepsize
γ ≤ 1 converges with probability 1.

Proof: The method of proof is almost identical to that for the discounted case in [BBN03],
except for a slight modification, which we describe here. By the proof of Prop. 3.1 of
[BBN03], if the stepsize γ is such that

σ
(
I + γ(Φ′DΦ)−1A

)
< 1,

then LSPE(λ) converges to r∗ = −A−1b with probability 1. Write the matrix I+γ(Φ′DΦ)−1A
as

(1− γ)I + γ(I + (Φ′DΦ)−1A),

and it can be seen that

σ
(
I + γ(Φ′DΦ)−1A

)
≤ |1− γ|+ γσ(I + (Φ′DΦ)−1A).
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Using Lemma 11.2, it follows that

σ
(
I + γ(Φ′DΦ)−1A

)
< 1, ∀γ, 0 < γ ≤ 1,

and hence the convergence of LSPE holds for γ in the same range. �

11.3 Rate of Convergence of LSPE

Konda [Kon02] shows that LSTD has the optimal asymptotic convergence rate compared to
other TD algorithms. In this section we prove that LSPE(λ) with any constant stepsize γ
(under which LSPE converges) has the same asymptotic convergence rate as LSTD(λ). The
proof applies to both discounted and average cost cases and for any value of λ (λ ∈ [0, 1]
for the discounted case and λ ∈ [0, 1) for the average cost case). So we will suppress the
symbol λ.

The LSPE and LSTD updates are, respectively:

rt+1 = rt + γB̄−1
t

(
Āt rt + b̄t

)
, r̂t+1 = −Ā−1

t b̄t.

They converge to the same limit r∗ = −A−1b. Informally, it has been observed in [BBN03]
that for various λ ∈ [0, 1], rt became close to and “tracked” r̂t even before the convergence
to r∗ took place. One intuitive explanation of this phenomenon is that as time goes by, the
least squares problems solved by LSPE and LSTD differ “marginally”, especially when λ is
close to 1. Another explanation, given in [BBN03], is a two-time scale type of view: when t
is large, Āt, B̄t and b̄t change slowly so that they are essentially “frozen” at certain values,
and rt then “converges” to the unique fixed point of the linear system

r = r + γB̄−1
t

(
Āt r + b̄t

)
,

which is −Ā−1
t b̄t, the value of r̂t of LSTD.

In what follows, we will first make the above argument more precise, by showing a noisy
version of a multiple-step contraction type property. It states that the distance between
LSPE and LSTD shrinks geometrically outside a region, the size of which diminishes at
the order of O(1/t). This property will then be used to prove that LSPE has the same
convergence rate as LSTD.

11.3.1 A Noisy Version of Multiple-Step Contraction

The difference between LSPE and LSTD updates can be written as

rt+1 − r̂t+1 =
(
I + γB̄−1

t Āt

)
(rt − r̂t) +

(
I + γB̄−1

t Āt

)
(r̂t − r̂t+1). (11.12)

By a multiple-step expansion of Eq. (11.12), we have for any k ≥ 0,

rt+k+1 − r̂t+k+1 =
(
I + γB̄−1

t+kĀt+k

) (
I + γB̄−1

t+k−1Āt+k−1

)
· · ·
(
I + γB̄−1

t Āt

)
(rt − r̂t)

+
k∑

j=0

(
I + γB̄−1

t+kĀt+k

) (
I + γB̄−1

t+k−1Āt+k−1

)
· · ·
(
I + γB̄−1

t+k−jĀt+k−j

)
(r̂t+k−j − r̂t+k−j+1).
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Taking the 2-norm of both sides, and denoting the 2-norm of the matrices by Ct+k,j :

Ct+k,j =
∥∥∥(I + γB̄−1

t+kĀt+k

) (
I + γB̄−1

t+k−1Āt+k−1

)
· · ·
(
I + γB̄−1

t+k−jĀt+k−j

)∥∥∥ ,
we thus have

‖rt+k+1 − r̂t+k+1‖ ≤ Ct+k,k‖rt − r̂t‖+
k∑

j=0

Ct+k,j‖r̂t+k−j − r̂t+k−j+1‖. (11.13)

For a fixed k, the distance terms ‖r̂t+k−j−r̂t+k−j+1‖ in the right-hand side of Eq. (11.13)
are of the order O(1/t). This is stated in the following lemma, which can be easily shown.

Lemma 11.3. Consider a sample path for which both LSTD and LSPE converge. There
exist some constant C1 and C2 such that for all t sufficiently large,

‖B̄−1
t Āt‖ ≤ C1, ‖r̂t+1 − r̂t‖ ≤

C2

t
.

Proof: Consider a sample path for which both LSTD and LSPE converge. Since
‖B̄−1

t Āt‖ → ‖B−1A‖, the first relation of the claim can be easily seen.
For the second relation, by definition of the LSTD updates,

‖r̂t+1 − r̂t‖ =
∥∥Ā−1

t b̄t − Ā−1
t−1b̄t−1

∥∥
≤
∥∥Ā−1

t − Ā−1
t−1

∥∥∥∥b̄t∥∥+
∥∥Ā−1

t−1

∥∥∥∥b̄t − b̄t−1

∥∥ . (11.14)

Since
∥∥b̄t∥∥→ ‖b‖ and

∥∥Ā−1
t−1

∥∥→ ∥∥A−1
∥∥, there exists some constant C and C ′ such that for

all t sufficiently large, ∥∥b̄t∥∥ ≤ C,
∥∥Ā−1

t−1

∥∥ ≤ C ′.

Furthermore, by the definition of b̄t, it can be seen that for t sufficiently large,∥∥b̄t − b̄t−1

∥∥ =
1
t
‖ztg(xt, ut)‖+O(1/t2) = O(1/t),

(since zt is bounded for all t). By the definition of Āt and the Sherman-Morisson formula
for matrix inversion, it can be seen that∥∥Ā−1

t − Ā−1
t−1

∥∥ =
∥∥(t+ 1)A−1

t − tA−1
t−1

∥∥ =
∥∥A−1

t + t
(
A−1

t −A−1
t−1

)∥∥
≤
∥∥A−1

t

∥∥+ t

∥∥∥∥∥A−1
t−1zt (βφ(xk + 1)′ − φ(xk)′)A−1

t−1

1 + (βφ(xk + 1)′ − φ(xk)′)A−1
t−1zt

∥∥∥∥∥
=

1
t+ 1

∥∥Ā−1
t

∥∥+

∥∥∥∥∥Ā−1
t−1zt (βφ(xk + 1)′ − φ(xk)′) Ā−1

t−1

t+ (βφ(xk + 1)′ − φ(xk)′) Ā−1
t−1zt

∥∥∥∥∥
= O(1/t) +O(1/t) = O(1/t),

where β ∈ [0, 1]. Plugging these relations into Eq. (11.14), it follows that ‖r̂t+1 − r̂t‖ =
O(1/t) and the claim thus follows. �

We now state the multiple-step contraction property. First, define ρ0 to be the spectral
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radius of the limiting matrix:
ρ0 = σ(I + γB−1A).

Lemma 11.4. For each ρ ∈ (ρ0, 1) and each sample path for which both LSTD and LSPE
converge, there exists a positive integer k and a positive scalar sequence εt = C/t, where C
is some constant, such that

1. for t sufficiently large, whenever ‖rt − r̂t‖ ≥ εt,

‖rt+k − r̂t+k‖ ≤ ρk‖rt − r̂t‖;

2. there exist infinitely many t with

‖rt − r̂t‖ ≤ εt.

Proof: (Part 1): Since the spectral radius of I + γB−1A is ρ0, there is a matrix norm
denoted by ‖ · ‖w such that ‖I + γB−1A‖w = ρ0. Consider a sample path for which both
LSTD and LSPE converge. Since I + γB̄−1

t Āt → I + γB−1A, for any ρ1 ∈ (ρ0, 1), there is
a time N such that for all t > N , ∥∥I + γB̄−1

t Āt

∥∥
w
≤ ρ1,

so that for any k ∥∥∥∥∥
k∏

i=0

(I + γB̄−1
t+iĀt+i)

∥∥∥∥∥
w

≤
k∏

i=0

∥∥I + γB̄−1
t+iĀt+i

∥∥
w
≤ ρk+1

1 .

Using the fact that the matrix norm ‖ · ‖w and the matrix 2-norm are equivalent, i.e., there
exists some constant C0 such that ‖ · ‖ ≤ C0‖ · ‖w, we have for all t > N ,

Ct+k,j ≤ C0 ρ
j+1
1 , j = 0, 1, . . . , k.

Hence it follows from Eq. (11.13) that for a given k, when t is sufficiently large,

‖rt+k+1 − r̂t+k+1‖ ≤ Ct+k,k‖rt − r̂t‖+
k∑

j=0

Ct+k,j ‖r̂t+k−j − r̂t+k−j+1‖

≤ C0 ρ
k+1
1 ‖rt − r̂t‖+ C0

k∑
j=0

ρj+1
1

C1

t
≤ C0 ρ

k+1
1 ‖rt − r̂t‖+

C2

t
,

where we have used Lemma 11.3 to bound the terms ‖r̂t+k−j − r̂t+k−j+1‖, and C1 and C2

are some constants (depending on k, ρ1, and the sample path) with C2 ≤ C0 C1ρ1

1−ρ1
.

Now for a given ρ ∈ (ρ0, 1), we first choose some ρ1 < ρ in the preceding analysis, and
next we choose a k such that

C0 ρ
k+1
1 ≤ ρk+1

2

for some ρ2 ∈ (ρ1, ρ). So by the preceding analysis,

‖rt+k+1 − r̂t+k+1‖ ≤ ρk+1
2 ‖rt − r̂t‖+

C2

t
.
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Define
εt =

C2

(ρk+1 − ρk+1
2 ) t

.

So εt = O(1/t) → 0 and for t sufficiently large, whenever ‖rt − r̂t‖ > εt,

‖rt+k+1 − r̂t+k+1‖ ≤ ρk+1‖rt − r̂t‖.

The proof of part one is completed by redefining (k + 1) as k and letting C = C2

ρk+1−ρk+1
2

.

(Part 2): We prove the claim by contradiction. Suppose for all t sufficiently large, ‖rt−r̂t‖ ≥
εt. Then by the first part of the lemma, the k-step contraction continues to happen, and
we have for some fixed t1,

C

t1 +mk
≤ ‖rt1+mk − r̂t1+mk‖ ≤ ρmk‖rt1 − r̂t1‖, ∀m ≥ 1.

Hence ρmk ≥ C′

t1+mk ,m ≥ 1, for some constant C ′, which is impossible when m→∞. �

Remark 11.1. (i) The spectral radius ρ0 of the limiting matrix I + γB̄−1Ā depends on λ
and the stepsize γ. When γ = 1 and λ ≈ 1, ρ0 can be very small. In particular, ρ0 = 0
when γ = 1 and λ = 1 (in the discounted case). Thus when γ = 1 and λ ≈ 1, the differences
between LSPE and LSTD are smaller than when λ is close to 0, which is consistent with
what was observed in [BBN03].
(ii) Roughly speaking, contractions can start to happen when the spectral radius of the
matrix I + γB̄−1

t Āt becomes less than 1, before the spectral radius approaches ρ0 and
the matrices converge to the limiting matrix. (We provide justification for this comment:
while the matrix norm in the preceding proof depends on the limiting matrix, there is an
alternative proof for the lemma, albeit longer, that works with the 2-norm directly and does
not rely on this matrix norm.)

11.3.2 Proof of Convergence Rate

As Konda proved in [Kon02] (Chapter 6) under certain conditions, for LSTD,
√
t(r̂t −

r∗) converges in distribution to N(0,Σ0), a Gaussian random variable with mean 0 and
covariance matrix

Σ0 = A−1Γ(A′)−1,

where Γ is the covariance matrix of the limiting Gaussian random variable to which
√
t (Ātr

∗ + b̄t)

converges in distribution. As Konda also proved, LSTD has the asymptotically optimal
convergence rate compared to other recursive TD algorithms (the ones analyzed in [TV97]
and [TV99]), in the following sense. If r̃t is computed by another recursive TD algorithm,
and

√
t(r̃t − r∗) converges in distribution to N(0,Σ), then the covariance matrix Σ of the

limiting Gaussian random variable is such that

Σ− γ̄ Σ0 : positive semi-definite,
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where γ̄ is some constant depending on the stepsize rule of the recursive TD algorithm.3

The conditions assumed in Konda’s analysis (see Theorem 6.1 of [Kon02]) are standard
for analyzing asymptotic Gaussian approximations in stochastic approximation methods.
The conditions include: boundedness of updates, geometric convergence of certain means
and covariance matrices relating to the updates, and the positive definiteness of the matrix
−A− γ̄

2 I. This last assumption can be satisfied by scaling the basis functions if the stepsize is
chosen as 1/t, and the rest conditions are satisfied by TD algorithms under the assumption
that the Markov chain is irreducible and aperiodic (see Chapter 6 of [Kon02]).

We now show that LSPE has the same rate of convergence as LSTD, so that LSPE
is also asymptotically optimal. This also implies that LSPE with a constant stepsize has
the same asymptotic variance as LSTD (under the additional assumption that both rt and
r̂t are bounded with probability 1, the covariance matrices of

√
t(rt − r∗) and

√
t(r̂t − r∗)

converge to Σ0).
To prove this, we will use the multiple-step contraction property, Lemma 11.4, to es-

tablish first the following proposition. Since the rate of convergence is at least of the order
O(1/

√
t) for both LSPE and LSTD, the proposition says that LSPE and LSTD “converge”

to each other at a faster scale than to the limit r∗.

Proposition 11.2. For any α ∈ [0, 1), the random variable tα(rt− r̂t) converges to 0 w.p.1.

To prove this proposition, we will need the following lemma to bound the difference of
the successive LSPE updates.

Lemma 11.5. Consider a sample path for which both LSTD and LSPE converge, and let C
be any fixed positive number and n any fixed integer. Then there exists a constant K(C, n)
depending on C, n and the sample path, such that for all t sufficiently large, whenever
‖rt − r̂t‖ ≤ C

t , we have

‖rt+i − rt‖ ≤
K(C, n)

t
, i = 1, . . . , n.

Proof: By the definition of LSPE updates and LSTD updates,

‖rt+1 − rt‖ = γ
∥∥B̄−1

t

(
Āt rt + b̄t

)∥∥
= γ

∥∥B̄−1
t Āt

(
rt + Ā−1

t b̄t
)∥∥

= γ
∥∥B̄−1

t Āt (rt − r̂t+1)
∥∥ . (11.15)

By Lemma 11.3, we can choose constants C1 and C2 such that for t sufficiently large,

γ ‖B̄−1
t Āt‖ ≤ C1, ‖r̂t − r̂t+1‖ ≤

C2

t
.

Assume for a t sufficiently large, that

‖rt − r̂t‖ ≤
C

t
.

3More precisely, γ̄ = limt→∞ γ−1
t+1 − γ−1

t , which is equal to 1 if the stepsize is chosen as γt = 1/t.
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Define K0 = C. It follows from Eq. (11.15) that

‖rt+1 − rt‖ ≤ γ
∥∥B̄−1

t Āt

∥∥ ‖rt − r̂t+1‖
≤ C1 (‖rt − r̂t‖+ ‖r̂t − r̂t+1‖)

≤ C1

(
K0

t
+
C2

t

)
=
K1

t
, (11.16)

where K1 = C1(K0 + C2). This in turn implies that

‖rt+1 − r̂t+1‖ ≤ ‖rt+1 − rt‖+ ‖rt − r̂t‖+ ‖r̂t − r̂t+1‖

≤ K1

t
+
(
K0

t
+
C2

t

)
=
K ′

1

t
, (11.17)

where K ′
1 = K1+K0+C2. Recursively applying the argument of Eq. (11.16) and Eq. (11.17)

for t+ i, i = 2, . . . n, it can be seen that

‖rt+i − rt+i−1‖ ≤
Ki

t
, ‖rt+i − r̂t+i‖ ≤

K ′
i

t
, i ≤ n (11.18)

where Ki and K ′
i are recursively defined by

Ki = C1(K ′
i−1 + C2), K ′

i = Ki +K ′
i−1 + C2,

and they depend on i and constants C,C1 and C2 only. By the triangle inequality,

‖rt+i − rt‖ ≤
Ki +Ki−1 + · · ·+K1

t
≤
∑n

i=1Ki

t
, i ≤ n.

Hence the constant K(C, n) in the claim can be defined by K(C, n) =
∑n

i=1Ki, and the
proof is complete. �

Proof of Prop. 11.2: We will prove the proposition by contradiction. Consider a sample
path for which both LSTD and LSPE converge. Fix any δ > 0. Assume that there exists a
subsequence of rt − r̂t indexed by ti such that

tαi ‖rti − r̂ti‖ ≥ δ.

Equivalently, for C1 = δ,
‖rti − r̂ti‖ ≥ C1 t

−α
i . (11.19)

Let ρ, k and εt = C2
t be as defined in Lemma 11.4. By part two of Lemma 11.4, there

exist infinitely many t such that

‖rt − r̂t‖ ≤ εt =
C2

t
.

Since eventually C1t
−α ≥ εt = C2

t for sufficiently large t, there are infinitely many time
intervals during which ‖rt − r̂t‖ lies between the two.

Consider one such interval. Let a be the start of the interval, and Ta the interval length,
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defined such that

‖ra−1 − r̂a−1‖ ≤ εa−1, (11.20)

εa+i < ‖ra+i − r̂a+i‖ <
C1

(a+ i)α
, 0 ≤ i < Ta, (11.21)

‖ra+Ta − r̂a+Ta‖ ≥
C1

(a+ Ta)α
. (11.22)

Write Ta as Ta = lk+m with 0 ≤ m < k. By Eq. (11.21) and Lemma 11.4, within the time
interval [a, a+ Ta] the k-step contractions continue to happen, so that

‖ra+Ta − r̂a+Ta‖ ≤ ρTa−m‖ra+m − r̂a+m‖
≤ ρTa−m (‖ra−1 − r̂a−1‖+ ‖ra−1 − ra+m‖+ ‖r̂a−1 − r̂a+m‖)
≤ ρTa−m (εa−1 + ‖ra−1 − ra+m‖+ ‖r̂a−1 − r̂a+m‖) .

By Eq. (11.20) and Lemma 11.5, for a given k, when the time a is sufficiently large, ‖ra−1−
ra+m‖, where m+ 1 ≤ k, is at most C ′/(a− 1) for some constant C ′ (depending on k). By
Lemma 11.3, ‖r̂a−1 − r̂a+m‖ ≤ Ck/a for some constant C. Therefore for some constant C,

‖ra+Ta − r̂a+Ta‖ ≤ ρTa−m (εa−1 + C/a+ C/a) ≤ ρTa−mC3

a
,

where C3 is some constant. Combining this with Eq. (11.22), we have

ρTa−mC3

a
≥ C1

(a+ Ta)α
,

and equivalently, redefining the constants, we have for some constant C

ρTa ≥ Ca

(a+ Ta)α
.

Clearly for a sufficiently large, in order to satisfy this inequality, Ta must be at least of the
order of a1/α, and therefore the preceding inequality implies that

ρTa ≥ Ca

(2Ta)α

for a sufficiently large. However, it is impossible for Ta to satisfy the inequality. Thus we
have reached a contradiction, and the claimed convergence statement follows. �

Proposition 11.3. Assume that with probability 1 the random variable
√
t (r̂t − r∗) of

LSTD converges to a Gaussian random variable N(0,Σ0). Then with probability 1 the
random variable

√
t (rt − r∗) of LSPE converges to the same random variable.

Proof: To prove the claim, we write
√
t+ 1(rt+1 − r∗) =

√
t+ 1

(
I + γB̄−1

t Āt

)
(rt − r̂t+1) +

√
t+ 1(r̂t+1 − r∗),

and thus it suffices to show that
√
t+ 1

(
I + γB̄−1

t Āt

)
(rt − r̂t+1) → 0 w.p.1.
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Consider a sample path for which both LSTD and LSPE converge. When t is sufficiently
large, ‖I + γB̄−1

t Āt‖ ≤ C for some constant C, so that∥∥√t+ 1
(
I + γB̄−1

t Āt

)
(rt − r̂t+1)

∥∥ ≤ C
√
t+ 1 (‖rt − r̂t‖+ ‖r̂t − r̂t+1‖) .

Since ‖r̂t − r̂t+1‖ ≤ C′

t for some constant C ′ (Lemma 11.3), the second term C
√
t+ 1‖r̂t −

r̂t+1‖ converges to 0. By Prop. 11.2, the first term, C
√
t+ 1‖rt − r̂t‖, also converges to 0.

The proof is thus complete. �

Remark 11.2. As has been proved, LSPE with any constant stepsize (under which LSPE
converges) has the same asymptotic optimal convergence rate as LSTD, i.e., the convergence
rate of LSPE does not depend on the constant stepsize. As the proof of the Lemma 11.4 and
the discussion after it show, the stepsize affects how closely (as reflected in the constant in εt)
and how fast (as reflected in ρ of the multiple-step contraction) rt tracks the solution −Ā−1

t b̄t
of the linear system. These, however, happen at the scale of O(t), while the convergence of
rt to r∗ is at the scale of O(

√
t). This explains why the constant stepsize does not affect

the asymptotic convergence rate of LSPE.

11.4 Summary

In this chapter we first proved the convergence of the average cost LSPE with a constant
stepsize by a slight modification of the proof for its discounted counterpart. We then
proved the optimal convergence rate of LSPE with a constant stepsize for both discounted
and average cost cases. The analysis also shows that LSTD and LSPE with a constant
stepsize converge to each other at a faster scale than they to the common limit.
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Chapter 12

Conclusions

In this thesis, we have addressed three main topics: lower cost approximations of the optimal
cost function for POMDP and POSMDP with various cost criteria and constraints, rein-
forcement learning-based approximation algorithms for POMDP and MDP, and properties
of the optimal solution to the average cost POMDP problem.

For lower cost approximation, using the special structure of hidden states in POMDP,
we establish a lower bound result which holds for POMDP and POSMDP in general. In par-
ticular, this result holds regardless of the existence of solutions to the optimality equations
in the average cost case, or the analytical difficulty in characterizing the optimal solutions
in the constrained case. We also address computational and convergence issues.

For reinforcement learning in POMDP, we propose and analyze a function approximation
approach to estimation of the policy gradient for POMDPs with finite-state controllers. As
an actor-critic type of method, our algorithm is an extension of the existing actor-only policy
gradient methods in POMDPs; and it also clarifies the view that reinforcement learning
methods for POMDPs are special cases of those for MDPs. For reinforcement learning in
MDP, we prove two convergence results for LSPE, a least squares TD algorithm for policy
evaluation. These are the convergence of the average cost LSPE(λ) with a constant stepsize,
and the asymptotically optimal convergence rate of LSPE with a constant stepsize for both
discounted and average cost cases.

For the average cost POMDP problem, besides constructing examples with non-constant
optimal cost functions, we give also a new necessary condition for the optimal liminf cost
to be constant. The result leads us further to prove for a finite space POMDP the near-
optimality of the class of finite-state controllers under the assumption of a constant optimal
liminf cost function. This provides a theoretical guarantee for the finite-state controller
approach.

As future work for POMDPs with the expected cost criteria, we consider two questions
that have central importance. One is the existence of solutions to the average cost optimality
equations of POMDPs, the understanding of which will greatly help algorithm design. The
other is incorporating model learning and approximate inference into decision making, a
necessary step for tackling large scale problems in which exact inference of the hidden states
is intractable.

Finally, we note that efficient computational methods for large scale POMDPs are active
research fields, and there are many important approaches and issues that we have not
been able to address in this thesis. In particular, belief compression, approximate linear
programming, approximate value iteration, MDP-based model approximation, and kernel-
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based learning are promising methods for large scale problems, perhaps more efficient than
discretization-based methods. There are also problems with different cost criteria to be
considered, such as multi-objective and robust control in POMDPs.
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Appendix A

Analysis Based on the Weaker
Lower Bound Result

A.1 Average Cost POSMDPs

In Chapter 6, using the stronger lower bound result, Theorem 6.1, we have proved that
the optimal cost function of the modified SMDP problem associated with a lower cost
approximation scheme is a lower bound of the optimal cost function of the original POSMDP
problem. A question of our interest is what lower bound statement can we prove using the
weaker line of analysis based on the inequalities for the optimal cost functions.

Recall that for average cost POMDPs with finite space models, the weaker and stronger
lines of analysis give the same conclusion (see discussions preceding Theorem 5.1 in Sec-
tion 5.3), where the weaker one is based essentially on the inequalities for the optimal
finite-stage cost functions. For average cost POSMDPs with finite space models, however,
the random time length τN of a N -stage problem varies with the policy and initial distribu-
tion, therefore we cannot use the finite-stage inequalities to deduce the average cost lower
bound analogous to that for POMDPs.

Yet we still have the inequalities for discounted problems for all discounting rate α > 0,
so we can apply a vanishing discounting argument. This line of analysis, however, only
establishes at the end that the optimal average cost function of the modified problem is a
lower bound of the optimal limsup cost function J∗C+, while the stronger result says that
the same lower bound is a lower bound of J∗C−. Thus it seems to us that there is a technical
limitation in the weaker line of analysis.

Nonetheless, we provide in this appendix the proof of the weaker result for reference
and comparison. The notation and assumptions for POSMDPs are as in Chapter 6. We
assume that τn takes continuous values – the discrete case is easy to prove. The technique
of the proof is to discretize the time and then use Tauberian theorem.

The Weaker Statement and its Proof

First we clarify a subtlety. Recall that the per-stage cost g(s, u) depends on the discounting
rate α. However, it can be seen that the inequalities hold for any discounting rate α > 0
and g(s, u) defined at a different discounting rate α′, provided that g is bounded. So,
in particular, we can use the inequalities for discounted problems with the per-stage cost
defined as the per-stage cost in the average cost problem.
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Now, recall that in the modified belief SMDP associated with a discretized lower ap-
proximation scheme, J̃∗(ξ) = J̃∗C−(ξ). Furthermore, on the finite-state and control SMDP,
(similar and however different to the finite-state and control MDP), under certain condi-
tions, there exists a Blackwell optimal policy (Denardo [Den71]). Extend it to the entire
belief space and denote it by π̃∗. It is Blackwell optimal in the sense that for any ξ, there
exists αξ such that π̃∗ is optimal at ξ for discounted problems with α ∈ (0, αξ).

Indeed for proving the following lower bound, instead of the existence of a Blackwell
optimal policy, it suffices that for each initial distribution ξ there exists an average cost
optimal policy π̃∗ that is also optimal for a sequence of αk-discounted problems with αk ↓ 0.
It can be seen that there exists such a policy and such a sequence {αk} for each ξ, because
there is only a finite number of deterministic and stationary policies on SMDP with state
space {ξ} ∪ C.

Proposition A.1. For every initial distribution ξ, the optimal average cost of the modified
belief SMDP is less than the optimal limsup average cost of the original POSMDP:

J̃∗(ξ) ≤ J∗C+(ξ).

Proof: We first prove the case where all the per-stage costs are non-negative, (the proof
of the non-positive case is identical.) We then prove the case where the costs are arbitrarily
signed.
(i) Assume the costs g(s, u) are non-negative. Denote by Ẽπ̃

ξ the expectation and X the
belief states in the modified SMDP with policy π̃ and initial distribution ξ. Denote by
Eπ

ξ the expectation in the original POSMDP with policy π and initial distribution ξ. Let
π̃∗ be an average cost optimal policy for the modified problem that is either Blackwell
optimal or optimal for a sequence of discounted problems as in the discussion preceding the
proposition. Without loss of generality we assume it is Blackwell optimal, i.e., optimal for
all α-discounted problems with α < αξ, (in terms of the proof it is the same in the case of
taking a sequence of αk). By the inequality for the optimal discounted cost, Eq. (6.3) of
Chapter 6, we have for any α < αξ and any π,

Ẽπ̃∗
ξ

{ ∞∑
n=0

e−ατn ḡ(Xn, Ũn)

}
≤ Eπ

ξ

{ ∞∑
n=0

e−ατng(Sn, Un)

}
. (A.1)

We are going to discretize the time and use Tauberian theorem. According to Assump-
tion 6.1, there exist a > 0 and δ ∈ (0, 1) such that

sup
s,u

P (τ1 ≤ a | S0 = s, U0 = u) < δ.

Suppose we discretize time into length ρ < a intervals. Define random variables c̃k and ck
by

c̃k =
∑

n:τ̃n∈[kρ,(k+1)ρ)

ḡ(Xn, Ũn), ck =
∑

n:τn∈[kρ,(k+1)ρ)

g(Sn, Un). (A.2)

For any interval, let events Am = {m decision epochs happened in the interval}. The event
Am is contained in the event that τj − τj−1 < ρ for (m − 1) consecutive decision epochs.
Hence we have

P (Am) ≤ δm−1
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and

Eπ
ξ {ck} ≤

∞∑
m=0

P (Am)mL ≤ L

(1− δ)2
.

The same bound holds for Ẽπ̃
ξ {c̃k}.

For any ε > 0, we pick some ρ < a. There exists ᾱξ such that for all α < ᾱξ

1− e−αρ <
ερ

2 L
(1−δ)2

, eαρ − 1 <
ερ

2 L
(1−δ)2

,

thus, for all k and α ∈ (0, ᾱξ)

(1− e−αρ)Ẽπ̃
ξ {c̃k} <

ερ

2
, (eαρ − 1)Eπ

ξ {ck} <
ερ

2
.

We have,

Ẽπ̃∗
ξ

{ ∞∑
n=0

e−ατ̃n ḡ(Xn, Ũn)

}
≥ Ẽπ̃∗

ξ

{ ∞∑
k=0

e−αρk c̃ke
−αρ

}
=

∞∑
k=0

e−αρkẼπ̃∗
ξ

{
c̃ke

−αρ
}
,

where in the equality the interchange of expectation and summation is justified by monotone
convergence theorem. Since

Ẽπ̃∗
ξ

{
c̃ke

−αρ
}

= Ẽπ̃∗
ξ {c̃k} − (1− e−αρ)Ẽπ̃∗

ξ {c̃k}

≥ Ẽπ̃∗
ξ {c̃k} −

ερ

2
,

we have

Ẽπ̃∗
ξ

{ ∞∑
n=0

e−ατ̃ng(Xn, Ũn)

}
≥

∞∑
k=0

e−αρkẼπ̃∗
ξ {c̃k} − (1− e−αρ)−1 ερ

2
.

Similarly we have

Eπ
ξ

{ ∞∑
n=0

e−ατng(Sn, Un)

}
≤

∞∑
k=0

e−αρkEπ
ξ {ck}+ (1− e−αρ)−1 ερ

2
.

It then follows from Eq. (A.1) that for all α ∈ (0, ᾱξ)

(1− e−αρ)
∞∑

k=0

e−αρkẼπ̃∗
ξ {c̃k} ≤ (1− e−αρ)

∞∑
k=0

e−αρkEπ
ξ {ck}+ ερ, (A.3)

By a Tauberian theorem we have, from the left-hand side of Eq. (A.3),

lim inf
α→0

(1− e−αρ)
∞∑

k=0

e−αρkẼπ̃∗
ξ {c̃k} ≥ lim inf

K→∞

1
K + 1

Ẽπ̃∗
ξ

{
K∑

k=0

c̃k

}
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and from the right-hand side of Eq. (A.3),

lim inf
α→0

(1− e−αρ)
∞∑

k=0

e−αρkEπ
ξ {ck} ≤ lim sup

K→∞

1
K + 1

Eπ
ξ

{
K∑

k=0

ck

}
.

Since |ḡ(X,u)| < L,

1
ρ(K + 1)

J̃ π̃∗
C (ξ, ρ(K + 1)) ≤ 1

ρ(K + 1)

(
Ẽπ̃∗

ξ

{
K∑

k=0

c̃k

}
+ L

)

⇒ ρ J̃∗(ξ) = ρ lim inf
T→∞

1
T
J̃ π̃∗

C (ξ, T ) ≤ lim inf
K→∞

1
K + 1

Ẽπ̃∗
ξ

{
K∑

k=0

c̃k

}
,

and similarly,

1
ρ(K + 1)

Eπ
ξ

{
K∑

k=0

ck

}
≤ 1
ρ(K + 1)

Jπ
C (ξ, ρ(K + 1))

⇒ lim sup
K→∞

1
K + 1

Eπ
ξ

{
K∑

k=0

ck

}
≤ ρ lim sup

T→∞

1
T
Jπ

C(ξ, T ),

it follows that

ρ J̃∗(ξ) ≤ ρ lim sup
T→∞

1
T
Jπ

C(ξ, T ) + ερ ⇒ J̃∗(ξ) ≤ inf
π∈Π

lim sup
T→∞

1
T
Jπ

C(ξ, T ) + ε.

Because ε is arbitrarily small, we conclude that J̃∗(ξ) ≤ J∗C+(ξ).

(ii) Now we consider arbitrary signed bounded costs. We follow the same steps as in the
proof above. First we define random variables:

g+
n = max { g(Sn, Un) , 0 }, g−n = −min { g(Sn, Un) , 0 }.

For almost surely all sample paths the infinite summation

∞∑
n=0

e−ατng(Sn, Un) =
∞∑

n=0

e−ατng+
n −

∞∑
n=0

e−ατng−n

is well-defined and bounded. We have

Eπ
ξ

{ ∞∑
n=0

e−ατng(Sn, Un)

}
= Eπ

ξ

{ ∞∑
n=0

e−ατng+
n

}
− Eπ

ξ

{ ∞∑
n=0

e−ατng−n

}
,

and similarly defining g̃+
n and g̃−n in the modified problem, we have

Ẽπ̃∗
ξ

{ ∞∑
n=0

e−ατ̃ng(Xn, Ũn)

}
= Ẽπ̃∗

ξ

{ ∞∑
n=0

e−ατn g̃+
n

}
− Ẽπ̃∗

ξ

{ ∞∑
n=0

e−ατn g̃−n

}
.

We then discretize time into length ρ intervals, define random variables c+k , c−k , c̃+k , c̃−k for
the corresponding sequences {g+

n } {g−n } {g̃+
n } {g̃−n }, respectively. For α sufficiently small,
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we thus have

(1− e−αρ)

( ∞∑
k=0

e−αρkẼπ̃∗
ξ

{
c̃+k
}
−

∞∑
k=0

e−αρkẼπ̃∗
ξ

{
c̃−k
})

≤ (1− e−αρ)

( ∞∑
t=0

e−αρkEπ
ξ

{
c+k
}
−

∞∑
t=0

e−αρkEπ
ξ

{
c−k
})

+ 2ερ,

⇒ (1− e−αρ)
∞∑

k=0

e−αρkẼπ̃∗
ξ

{
c̃+k − c̃−k

}
≤ (1− e−αρ)

∞∑
t=0

e−αρkEπ
ξ

{
c+k − c−k

}
+ 2ερ,

where, to derive the second equation, we have used the fact that Eπ
ξ

{
c±k
}
, Ẽπ̃∗

ξ

{
c̃±k
}

are
bounded. Due to this same fact we can apply Tauberian theorem to both sides of the
equation to have, defining ck = c+k − c−k and c̃k = c̃+k − c̃−k :

lim inf
K→∞

1
K + 1

Ẽπ̃∗
ξ

{
K∑

k=0

c̃k

}
≤ lim sup

K→∞

1
K + 1

Eπ
ξ

{
K∑

k=0

ck

}
+ 2ερ.

Following the same line of argument as in (i), we then conclude that J̃∗(ξ) ≤ J∗C+(ξ). �

A.2 Constrained Average Cost POMDPs

In Chapter 9, using the stronger lower bound result, Theorem 3.2, we obtain as an immediate
consequence that the constrained optimal cost function of the modified belief MDP is a lower
bound of the constrained optimal cost of the original POMDP. For finite-space POMDPs and
modified MDPs that are essentially finite, the same lower bound claim can also be proved
using the weaker lower bound result that depends on the DP mapping of the modified
problem. As a reference, we provide such a proof for the case where the modified problem
is unichain (compare with Section 9.2.1), and the multichain case is similar.

The notation is the same as in Section 9.2.1. The unichain LP for the modified problem
is:

J̃∗c = min
q≥0

∑
s∈C,u∈U

ḡ0(s, u) q(s, u) (A.4)

Subj.
∑
u∈U

q(s′, u)−
∑

s∈C,u∈U

p(s′|s, u) q(s, u) = 0, ∀s′ ∈ C (A.5)

∑
s∈C,u∈U

q(s, u) = 1, (A.6)

∑
s∈C,u∈U

ḡk(s, u) q(s, u) ≤ ck, k = 1, . . . , n. (A.7)

Proposition A.2. Suppose the original constrained POMDP problem is feasible. If the
modified belief MDP is unichain, then the constrained modified problem is feasible and its
optimal average cost J̃∗c , a constant, satisfies

J̃∗c ≤ J∗c (ξ), ∀ξ ∈ P(S).
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Proof: First we prove that if the original problem is feasible, then the constrained mod-
ified problem is feasible. We prove it by showing that a maximization problem dual to
the LP (A.4) has bounded value. Consider the Lagrangian formed by relaxing the con-
straints (A.7) in the LP (A.4), and the corresponding dual function is

F (λ) =min
q≥0

∑
s∈C,u∈U

ḡ0(s, u) q(s, u) +
n∑

k=1

λk

 ∑
s∈C,u∈U

ḡk(s, u) q(s, u)− ck

 (A.8)

Subj. constraints (A.5) and (A.6)

for any non-negative λ = (λ1, . . . , λn). It is the LP (modulo a constant term, −
∑

k λkck,
in the objective) of an unconstrained average cost MDP with the combined per-stage cost
ḡ0 +

∑n
k=1 λkḡk. Denote the optimal average cost of this MDP problem, (a constant, due

to the unichain condition), by J̃∗(λ). Thus

F (λ) = J̃∗(λ)−
n∑

k=1

λkck.

Since the original constrained POMDP problem is feasible, there exists a policy π such
that Jπ

k,+ ≤ ck, k = 1, . . . , n. Due to the fact

lim sup
i→∞

(ai + bi) ≤ lim sup
i→∞

ai + lim sup
i→∞

bi

and the non-negativity of λ, it follows that for the combined per-stage cost, the limsup
average cost of π, denoted by Jπ

+(λ, ξ), satisfies

Jπ
+(λ, ξ) ≤ Jπ

0,+(ξ) +
n∑

k=1

λkJ
π
k,+(ξ) ≤ Jπ

0,+(ξ) +
n∑

k=1

λkck, ∀ξ ∈ P(S).

By the lower bound property of the unconstrained POMDP (Theorem 5.1),

J̃∗(λ) ≤ Jπ
+(λ, ξ), ∀ξ ∈ P(S).

Hence for all λ,

F (λ) ≤ Jπ
0,+(ξ) ≤ max

s∈S,u∈U
g0(s, u),

⇒ max
λ≥0

F (λ) ≤ Jπ
0,+(ξ) ≤ max

s∈S,u∈U
g0(s, u). (A.9)

Thus the dual problem maxλ≥0 F (λ) has finite value, and it follows from the strong duality
of LP that the primal LP (A.4) is feasible, and furthermore, J̃∗c = maxλ≥0 F (λ).

To show J̃∗c ≤ J∗c , notice that the inequality (A.9) holds for any policy π in the feasible
set Πf of the original problem. Thus

J̃∗c = max
λ≥0

F (λ) ≤ inf
π∈Πf

Jπ
0,+(ξ) = J∗c (ξ), ∀ξ ∈ P(S).

This completes the proof. �
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Appendix B

Entropy Rate of Non-Stationary
Hidden Markov Sources

In this appendix, we provide proofs for two propositions in Section 8.2, which state the
convergence of the entropy rate and the convergence of the conditional entropy of a non-
stationary hidden Markov source. We will restate the propositions for convenience.

Proposition B.1. Suppose the Markov chain {Sn} is irreducible. Then

H(Y ) = lim
n→∞

1
n
H(Y n; ξ), ∀ξ ∈ P(S).

Proof: First we prove the case where the Markov chain is aperiodic. For every initial
distribution ξ, by the chain rule of entropy,

H(Y n; ξ) = H(Sn, Y n; ξ)−H(Sn | Y n; ξ).

Because {(Sn, Yn)} is jointly a Markov chain, it is easy to show that under the aperiodicity
condition the term 1

nH(Sn, Y n; ξ) converges to the same limit for all initial distribution ξ.
So we only need to show that 1

nH(Sn | Y n; ξ) converges to the same limit for all ξ.
We have,

H(Sn | Y n; ξ) = H(S1 | Y n; ξ) +
n∑

k=2

H(Sk | Y n, S1 . . . Sk−1; ξ)

= H(S1 | Y n; ξ) +
n∑

k=2

H(Sk | Yk, . . . , Yn, Sk−1; ξ),

where the first equality is due to the chain rule of entropy, and the second equality is
due to the conditional independence of Sk and (Y k−1, Sk−2) given Sk−1. The conditional
probability p(Sk | Yk, . . . , Yn, Sk−1) does not depend on ξ, therefore we can write for k ≥ 2,

H(Sk | Yk, . . . , Yn, Sk−1; ξ) = −E {E{log p(Sk | Yk, . . . , Yn, Sk−1) | Sk−1} | ξ}

= E{fk−1(Sk−1) | ξ} =
∑

s

ξk−1(s)fk−1(s),

where
fk−1(s) = −E{log p(Sk | Yk, . . . , Yn, Sk−1) | Sk−1 = s}
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and ξk−1 is the marginal distribution of Sk−1 when the initial distribution is ξ. The function
fk(s) is non-negative and bounded by some constant C1 for all s and k – in fact it is bounded
by the entropy of Sk given Sk−1 = s.

Since {Sn} is irreducible and aperiodic, there exists a constant C2 and a positive number
β < 1 such that

‖ξk − ξ̄‖∞ ≤ C2β
k,

where ξ̄ is the equilibrium distribution. Therefore, using the relation

|H(S1 | Y n; ξ)−H(S1 | Y n; ξ̄)| ≤ 2 max
ξ̃∈P(S)

H(S1; ξ̃) ≤ C3,

for some constant C3, it follows that∣∣∣∣ 1nH(Sn | Y n; ξ)− 1
n
H(Sn | Y n; ξ̄)

∣∣∣∣ = 1
n

n∑
k=2

∑
s

|ξk(s)− ξ̄(s)|fk(s)

+
1
n
|H(S1 | Y n; ξ)−H(S1 | Y n; ξ̄)|

≤ 1
n

n∑
k=2

C1C2β
k +

1
n
C3

≤ 1
n

C1C2

1− β
+

1
n
C3 → 0,

i.e., 1
nH(Sn | Y n; ξ) converges to the same limit for all initial distribution ξ.

We now prove the case where the Markov chain is periodic. Let the period be d.
Applying the common technique in dealing with periodic chains, we consider a block of d
consecutive states as one state random variable S̄ and their observations as one observation
random variable Ȳ . The Markov chain {S̄m} is now aperiodic. By the preceding proof, we
have 1

mH(Ȳ m; ξ) → H(Ȳ ),1 the entropy rate of {Ȳm}. Since

H(Ȳ bn/dc; ξ) ≤ H(Y n; ξ) ≤ H(Ȳ bn/d+1c; ξ),

and
1
n
H(Ȳ bn/dc; ξ) → 1

d
H(Ȳ ),

1
n
H(Ȳ bn/d+1c; ξ) → 1

d
H(Ȳ ),

we have 1
nH(Y n; ξ) → 1

dH(Ȳ ), i.e., 1
nH(Y n; ξ) converges to the same limit for all ξ. The

proof is complete. �

Proposition B.2. Suppose the Markov chain {Sn} is irreducible and aperiodic. Then

lim
n→∞

H(Yn | Y n−1; ξ) = H(Y ), ∀ξ ∈ P(S).

Proof: First we show that lim supn→∞H(Yn | Y n−1; ξ) ≤ H(Y ). By the property of
conditional entropy, we have for any k < n,

H(Yn | Y n−1; ξ) ≤ H(Yn | Yk+1, . . . , Yn−1; ξ) = H(Ym | Y m−1; ξk),

1Note that the initial distribution of S̄1 is determined by ξ, the initial distribution of S1. Therefore we
can still write the distribution parameter in H(Ȳ m; ξ) as ξ.
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where m = n − k and ξk(·) = P (Sk ∈ ·|S1 ∼ ξ). As k → ∞, ξk → ξ̄ the equilibrium
distribution. Hence, if we fix m and define k(n) = n−m, then we have

lim sup
n→∞

H(Yn | Y n−1; ξ) ≤ lim
n→∞

H(Ym | Y m−1; ξk(n)) = H(Ym | Y m−1; ξ̄).

Since m is arbitrary, it follows then

lim sup
n→∞

H(Yn | Y n−1; ξ) ≤ lim
m→∞

H(Ym | Y m−1; ξ̄) = H(Y ),

where the last equality is a known fact of stationary hidden Markov sources (Theorem 4.2.1
of [CT91]).

Next we show that lim infn→∞H(Yn | Y n−1; ξ) ≥ H(Y ). By the property of conditional
entropy, we have for any k < n,

H(Yn | Y n−1; ξ) ≥ H(Yn | Y n−1, Sk; ξ) = H(Yn | Yk+1, . . . , Yn−1, Sk; ξ),

where the equality follows from the Markovian property. Let ξk(·) = P (Sk ∈ ·|S1 ∼ ξ).
Then, the right hand side of the preceding equation can be written as

H(Yn | Yk+1, . . . , Yn−1, Sk; ξ) = H(Ym | Y m−1, S1; ξk),

where m = n − k. Fix m and define k(n) = n − m. Since when k → ∞, ξk → ξ̄, the
equilibrium distribution, we have

lim
n→∞

H(Ym | Y m−1, S1; ξk(n)) = H(Ym | Y m−1, S1; ξ̄),

which implies for any fixed m,

lim inf
n→∞

H(Yn | Y n−1; ξ) ≥ H(Ym | Y m−1, S1; ξ̄).

Since m is arbitrary, it follows that

lim inf
n→∞

H(Yn | Y n−1; ξ) ≥ lim
m→∞

H(Ym | Y m−1, S1; ξ̄) = H(Y ),

where the last equality is a known fact for the stationary hidden Markov source (Theorem
4.4.1 of [CT91]). �
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Appendix C

Differentiability of Average Cost

Consider a family of finite-state Markov chains parameterized by θ ∈ Θ with a common
state space X = {1, 2, . . . , k}, and denote a chain with parameter θ by {Xθ

t }. Denote its
transition probability matrix by Pθ, and its stationary distribution by πθ, which satisfies
π′θPθ = π′θ. The average cost ηθ =

∑
i∈X πθ(i)gθ(i), where gθ(i) is the expected cost per-

stage at state i. Thus the question of differentiability of ηθ with respect to θ becomes,
assuming gθ is differentiable, the question of differentiability of the stationary distribution
πθ. The following result is well-known. We provide a proof which is quite short.

Assumption C.1. For all θ ∈ Θ, the Markov chain {Xθ
t } is recurrent and aperiodic.

Proposition C.1. Under Assumption C.1, if the transition probability matrix Pθ is differ-
entiable, then the stationary distribution πθ is differentiable.

Proof: We use the following result from non-negative matrices (see Seneta [Sen73] pp. 5,
proof of Theorem 1.1 (f)): Under Assumption C.1, each row of the matrix Adj(I −Pθ) is a
left eigenvector of Pθ corresponding to the eigenvalue 1.

Thus, denoting the first row of Adj(I − Pθ) by qθ = (qθ(1), . . . , qθ(k)), we have πθ(i) =
qθ(i)P
j qθ(j) . Since Adj(I − Pθ) is differentiable when Pθ is differentiable, consequently πθ is

differentiable. �

The preceding proof also shows that the bias function hθ is differentiable under the same
assumption. This is because under the recurrence and aperiodicity condition of the Markov
chain, the bias function is equal to, in matrix notation,

hθ = (I − Pθ + P ∗
θ )−1(I − P ∗

θ ) gθ,

where P ∗
θ is the matrix with every row identical to πθ (see Appendix A of Puterman [Put94]).

Using these facts, one can thus derive gradient expressions simply by differentiating both
sides of the optimality equation ηθ + hθ = gθ + Pθhθ.
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Appendix D

On Near-Optimality of the Set of
Finite-State Controllers

Proposition 2.3 in Section 2.4.3 states that a necessary condition for a constant optimal
liminf average cost function is the existence of history dependent near-liminf optimal poli-
cies. We now use Prop. 2.3 and the same line of analysis in its proof to prove that for a
finite space POMDP, the set of finite-state controllers contains a near-optimal policy.

First we prove a lemma that will allow us to truncate at some finite stage a certain history
dependent randomized policy that is near-liminf optimal, and form another sufficiently good
policy that only uses the finite stage control rules of the former policy.

Recall that Π is the set of history dependent randomized policies. Each π ∈ Π is a col-
lection of conditional control probabilities {µt}t≥0, where µt maps the history ht consisting
of past observations and controls up to time t, to a measure on the control space. Recall
also that the k-stage cost Jπ

k (ξ) of policy π is a linear function of ξ.
We define a set of state distributions. For all s ∈ S, let es ∈ P(S) be the distribution

that assigns probability 1 to state s, i.e., es({s}) = 1. Abusing notation, we use J∗− to
denote the constant function value of J∗−(·), when the latter is constant.

Lemma D.1. Assume a finite state space S. If J∗−(·) is a constant function, then for any
ε > 0, there exists a policy π0 ∈ Π and an integer k0 (depending on π0) such that

| 1
k0
Jπ0

k0
(ξ)− J∗−| ≤ ε, ∀ξ ∈ P(S).

Proof: Pick an arbitrary ξ̂ in the relative interior of P(S), and let Cξ̂ be defined as in
Lemma 2.1.

For any ε > 0, let δ = ε
3Cξ̂

< ε/3. By Prop. 2.3, we can choose a policy π ∈ Π such that

Jπ
−(ξ) ≤ J∗− + δ, ∀ξ ∈ P(S). (D.1)

Since S is finite and by definition Jπ
−(·) is the pointwise liminf of the functions { 1

kJ
π
k |k ≥

1}, there exists K1 such that

1
kJ

π
k (es) ≥ Jπ

−(es)− δ ≥ J∗− − δ, ∀s ∈ S, k ≥ K1.

Since Jπ
k is a linear function, it follows that

1
kJ

π
k (ξ) ≥ J∗− − δ, ∀ξ ∈ P(S), k ≥ K1. (D.2)
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For the ξ̂ that we picked at the beginning, by the definition of Jπ
−(·) and Eq. (D.1), there

exists K2 > K1, and a k0 ≥ K2 such that

1
k0
Jπ

k0
(ξ̂) ≤ Jπ

−(ξ̂) + δ ≤ J∗− + 2δ. (D.3)

By our choice of k0 and Eq. (D.2), 1
k0
Jπ

k0
(ξ) − J∗− + δ is a concave (since it is linear) and

non-negative function. Therefore, applying Lemma 2.1, we have

1
k0
Jπ

k0
(ξ)− J∗− + δ ≤ Cξ̂(

1
k0
Jπ

k0
(ξ̂)− J∗− + δ) ≤ 3Cξ̂δ ≤ ε, ∀ξ ∈ P(S),

where the second inequality is due to Eq. (D.3) and the third inequality due to our choice
of δ. Combining the above relation with Eq. (D.2), we thus have

J∗− − ε ≤ 1
k0
Jπ

k0
(ξ) ≤ J∗− + ε, ∀ξ ∈ P(S).

Take the policy π0 in the claim to be π, and the proof is complete. �

Suppose π0 = {µt}t≥0. Let us form another policy π1 = {µ′t}t≥0 by repeating the
control rules of π0 from the start for every k0-stage interval as follows. For any t, define
k̄(t) = mod(t, k0), and define

µ′t(ht, ·) = µk̄(t)(δk̄(t)(ht), ·),

where δk̄(t) : Ht → Hk̄(t) maps a length-t history ht to a length-k̄(t) history by extracting
the last length-k̄(t) segment of ht.

By Lemma D.1, the k0-stage average cost of π0 is uniformly “close” to the optimal J∗−.
Hence, the liminf average cost Jπ1

− of π1 is also, evidently, uniformly close to the optimal
J∗−.

Corollary D.1. Assume a finite state space S. If J∗−(·) is a constant function, then for any
ε > 0, there exists an integer k0 (depending on ε), and an ε-liminf optimal policy π1 ∈ Π
such that the control rule of π1 at each stage depends functionally only on the history of the
most recent k0 stages.

The above conclusions hold for finite state space models. We now consider finite space
models, i.e., POMDPs with finite state, observation and control spaces. The controller π1

has a finite-length of history window. So for finite space POMDPs, π1 is equivalent to a
finite-state controller with its internal state memorizing the current stage number modulo
k0 and the most recent length-k sample path with k ≤ k0. In a finite space POMDP
governed by a finite-state controller, it is easy to see that the state and observation of the
POMDP, and the internal state of the controller jointly form a time-homogeneous Markov
chain. Thus by the MDP theory, for any initial distribution es, the liminf average cost and
the limsup average cost are equal: Jπ1

− (es) = Jπ1
+ (es).

The function Jπ1
+ (·) is convex (see Remark 2.2).1 Hence for any initial distribution ξ,

Jπ1
+ (ξ) ≤

∑
s∈S

ξ(s)Jπ1
+ (es) =

∑
s∈S

ξ(s)Jπ1
− (es) ≤ J∗− + ε.

1In fact in this case Jπ1
+ (·) = Jπ1

− (·) and both are equal to a linear function, as can be easily shown, either
by the convexity of Jπ1

+ and concavity of Jπ1
− , or by the MDP theory.
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Thus we have established that

Jπ1
+ (ξ) ≤ J∗− + ε, ∀ξ ∈ P(S),

which not only implies that π1 is both ε-liminf and ε-limsup optimal, but also implies that
the optimal limsup cost function J∗+(·) is constant and J∗+ = J∗−. As a summary, we have
the following theorem.

Theorem D.1. Assume a finite space POMDP and that J∗− is constant. Then J∗+ = J∗−,
and for any ε > 0 there exists a finite-state controller that is both ε-liminf and ε-limsup
optimal.

Remark D.1. From the preceding discussion, one can see that it is also possible to have
conclusions analogous to Theorem D.1 for the more general case of a finite state space,
and possibly infinite observation and control spaces, provided that one can establish that
Jπ1
− (es) = Jπ1

+ (es) for the infinite-state Markov chain induced by the controller π1 that has
infinite number of internal states.

Remark D.2. When the constant average cost DP equation admits a bounded solution, or
when it admits unbounded solutions in the sense defined and analyzed by [FGAM91], it is
known that J∗− and J∗+ are constant and equal. Then, by Theorem D.1, the class of finite-
state controllers contains near-optimal policies. The conclusion of Theorem D.1 is stronger
than this. Platzman [Pla80] showed an example (see Example 2.3 of Section 2.4.3), in which
there is no solution to the DP equation while the optimal average cost is constant, and the
optimal policy that is deterministic, is non-stationary. One can demonstrate trivially that
there is an ε-optimal finite-state controller for Platzman’s example.2

2Consider the following finite-state controller for Platzman’s example. During the first N stages, it applies
action 3 and accounts the number of times that observations 1 and 2 occurred. At time N , if more ‘1’s than
‘2’s have been observed, then it applies action 1 for the rest of the time; otherwise, it applies action 2 for
the rest of the time. By the law of large number, clearly for any ε > 0, there exists an N sufficiently large
such that the policy is ε-optimal.
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