A COUNTEREXAMPLE TO A CONJECTURE OF SERRE
by
David Jay Anick
S.B., Massachusetts Institute of Technology
(1976)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE
DEGREE OF DOCTOR OF PHILOSOPHY IN

MATHEMATICS
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1980
(c) David Jay Anick 1980

The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part.

ARCHIVES

C-TEMntocy
Juin II 1080
Llbraries

A COUNTEREXAMPLE TO A CONJFCTURE OF SERRE
by

DAVID JAY ANICK

Submitted to the Department of Mathematics on May 7, 1980, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Abstract

Let X be a finite simply-connected $C W$-complex. Serre and others have conjectured that the Poincaré series of the loop space on x, $\sum_{n=0}^{\infty} \operatorname{Rank}\left(H_{*}(\Omega X ; Q)\right) Z^{n}$, would always be rational. In this thesis we present a counterexample to this conjecture.

There are three major results in this thesis. The first (Theorem 3.7) gives a formula relating the Poincaré series of 32 x and ΩY, where Y is the mapping cone of a map from a wedge of spheres to X. The second (Theorem 6.1) shows how to construct finitely presented Hopf algebras with transcendental Hilbert series. This result has as a corollary a counterexample to Serre's conjecture. The last (Example 7.1) gives a local ring with an irrational Poincaré series.

TABLE OF CONTENTS

Acknowledgement 4
INTRODUCTION AND SUMMARY 5
I. THE HOMOLOGY OF $\Omega\left(X U_{f} C \underset{i=1}{m} S^{d}\right)$ 11

1. The Adams-Hilton Construction 11
2. Computation of E^{2} 14
3. Computation of E^{∞} 17
II. FINITELY PRESENTED ALGEBRAS 23
4. The Homomorphism ϕ 23
5. Generalized Products 30
6. An Irrational Poincaré Series 38
7. The Serre-Kaplansky Problem 43
8. What Can $H_{*}(\Omega X)(Z) B e$? 44
REFERENCES 48

ACKNOWL_EDGEMENT

I would like to acknowledge formally several people whose assistance was invaluable in completing this thesis. I wish to express my appreciation to Franklin Peterson for his encouragement, friendship, and many suggestions over a three-year period as my thesis advisor. My thanks go also to Jim Milgram, John Moore, and Jan-Erik Roos for useful discussions which resulted in a considerable shortening of the finished work. Finally, I wish to mention Clas Löfwall, who first suggested Theorem 6.1 in its fullest generality.

Let X be a finite l-connected CW-complex. Is the Poincaré series $\sum_{n=0}^{\infty} \operatorname{Rank}\left(H_{n}(\Omega X ; Q)\right) Z^{n}$ a rational function of Z ?

This thesis answers this question negatively by exhibiting an explicit counterexample. The demonstration is divided into two major parts. The first part shows that a counterexample exists if a finitely presented Hopf algebra exists with an irrational Hilbert series. In the second part, we show how such algebras may be constructed and their series computed.

Let ${ }_{j=1}^{\mathrm{V}} S^{\mathrm{d}} \xrightarrow{f=V f_{j}} X \rightarrow Y$ be a cofibration, X simply connected, each $d_{j} \geq 2$. We are interested in expressing the Poincaré series of ΩY in terms of the series for ΩX. Let \mathcal{F} be any field and let $H_{\star}(\cdot)$ denote homology with coefficients in IF. $H=H_{k}(\Omega X)$ is a connected Hopf algebra over IF whose structure is assumed to be known.

Our starting point for the computation of $H_{*}(\Omega Y)$ is the cobar construction of Adams and Hilton [1]. This construction gives us a free differential graded algebra whose homology ring is identical to $H_{*}(\Omega Y)$. Let $\left(A_{0}, d_{0}\right)$ be the algebra corresponding to X and (A, d) the algebra corresponding to Y. Since X is a subcomplex of Y, it is possible to choose A to be a free extension of $A_{0}, A=A_{0}\left\langle\gamma_{1}, \ldots Y_{m}\right\rangle$, with d an extension of d_{0}. Here $R<x_{1}, \ldots x_{m}>$ denotes the free associative algebra over the ring R generated by $x_{1}, \ldots x_{m}$. In our case, the γ_{j} correspond to the attached cells with $\left|\gamma_{j}\right|=d_{j}$ and $d\left(\gamma_{j}\right) \varepsilon A_{0}$. We may express $H_{*}(A, d)$ as the homology of a double complex. We

compute the E^{l} term to find that $E^{l}=H<\gamma_{1} \cdots \gamma_{m}>$ and $d^{I}: E^{I} \rightarrow E^{l}$ satisfies $\left.d^{l}\right|_{H}=0$, and $d^{1}\left(\gamma_{j}\right)=\beta_{j} \varepsilon H$. The β_{j} are the images of the Hurewicz homomorphism applied to $\left[f_{j}\right]: s^{d_{j}-1} \rightarrow \Omega x$. Thus $E^{2}=$ $H_{*}\left(H<\gamma_{1}, \ldots \gamma_{m}>, \mathrm{d}^{l}\right)$.

The size of E^{2} can be computed explicitly if certain assumptions about the set $\beta=\left\{\beta_{1}, \ldots \beta_{m}\right\}$ and H are made. Let $H \beta H$ be the twosided ideal of H generated by B and let $N=H / H \beta H$ be the quotient Hopf algebra. If H has global dimension ≤ 2, or if $H \beta H$ is a free H-module, we get a formula for E^{2}.

For a graded module $M={ }_{n \geq 0}^{\oplus} M_{n}$, let $M(Z)$ denote the Hilbert series $\sum_{n=0}^{\infty} \operatorname{Rank}\left(M_{n}\right) z^{n}$. Let $\gamma(Z)$ denote $\left(\operatorname{Span}\left\{\gamma_{1}, \ldots \gamma_{m}\right\}\right)(Z)=j_{j=1}^{m} Z_{j}$. Under the above assumptions we obtain the formula

$$
\begin{equation*}
E^{2}(z)^{-1}=(1+z) N(z)^{-1}-z H(z)^{-1}-\gamma(z) . \tag{i}
\end{equation*}
$$

We can compute E^{2} another way. We construct an explicit set of generators for the subalgebra of E^{2} generated by the $E_{0, *}^{2}$ and $E_{1, *}^{2}$ columns. The d^{2} and higher differentials vanish on this subalgebra. If the same assumptions about H or β as above are made, we find that the Hilbert series of this subalgebra satisfies formula (i). That is, this subalgebra must be the whole of E^{2}. Thus all $d^{r}, r \geq 2$, vanish, and $H_{*}(\Omega Y) \approx E^{\infty}=E^{2}$.

We have proved
Theorem A. Suppose $H=H_{*}(\Omega X)$ has global dimension ≤ 2. For
example, suppose x is a suspension or a product of two suspensions. Or suppose that $H B H$ is a free H-module. Then

$$
\begin{equation*}
H_{*}(\Omega Y)(Z)^{-1}=(1+Z) N(Z)^{-1}-Z H(Z)^{-1}-Y(Z), \tag{ii}
\end{equation*}
$$

where $N=H / H B H$. In particular, if X is a finite wedge of spheres, then $H_{*}(\Omega Y)(Z)$ is rational if and only if $N(Z)$ is rational.

The last remark follows from the well-known fact [6] that $H=H_{*}\left(\Omega_{i} \stackrel{V}{V}_{1} S^{C_{i}}\right)=I F<\alpha_{1}, \ldots \alpha_{k}>$ with $\left|\alpha_{i}\right|=c_{i}-1$ and $H(Z)=$ $=\left(1-\sum_{i=1}^{k} Z^{C_{i}^{-1}}\right)^{-1}$ is rational.

The remainder of the thesis is dedicated to the construction of examples of finitely presented Hopf algebras N with $N(Z)$ irrational. All examples have $X=a$ wedge of spheres. By Theorem A, they immediately yield finite complexes whose loop spaces have irrational Poincaré series.

Let L be a free graded connected Lie algebra with generators $\left\{\alpha_{1}, \ldots \alpha_{k}\right\}$. We consider a homomorphism $\phi: U(L) \rightarrow L$, where $U(L)=$ $\mathbb{F}<\alpha_{1}, \ldots \alpha_{k}>$ is the universal enveloping algebra of $L . \quad \phi$ is defined by $\phi\left(\alpha_{i}\right)=b_{i} \alpha_{i}$ and $\phi\left(\alpha_{i_{1}} \ldots \alpha_{i_{n}}\right)=\left[\phi\left(\alpha_{i_{1}} \ldots \alpha_{i_{n-1}}\right), \alpha_{i_{n}}\right]$, where $b_{i} \varepsilon$ IF* are fixed constants. ϕ is surjective when char IF $\neq 2$ and it satisfies various nice formulas. The real importance of ϕ, however, is that under certain weak conditions it can be defined for a quotient Hopf algebra $H / H \beta H=U(L /[\beta])$, where $[\beta]$ is the Lie ideal of L generated by $a \operatorname{set} \beta=\left\{\beta_{1}, \ldots \beta_{m}\right\} \subseteq L$.

Let $L^{\prime}=L /[\beta]$ and $G=H / H \beta H . \quad \phi: G \rightarrow L^{\prime}$ is surjective if char $\mathrm{IF} \neq 2$. Furthermore, $\operatorname{let}\left\{\beta_{j}^{\prime}\right\}=\left\{\phi\left(\delta_{j}^{\prime}\right)\right\} \subseteq L^{\prime}$ be any subset. Then $\phi\left(\delta^{\prime} G\right)=G \beta^{\prime} G \cap L^{\prime}$.

For a graded module $M={ }_{n \geq 0}^{\oplus} M_{n}$, let $\hat{F}(M)$ denote the tensor product of the tensor algebra on $n \stackrel{\oplus}{\oplus}{ }_{0} M_{2 n}$ with the exterior algebra on $\underset{n \geq 0}{\oplus} M_{2 n+1}$. By the Poincaré-Birkhoff-Witt theorem,

$$
\begin{equation*}
\mathrm{G} / \mathrm{G} \beta^{\prime} \mathrm{G} \approx P\left(\phi(\mathrm{G}) /\left[\beta^{\prime}\right]\right)=P\left(\phi(\mathrm{G}) / \phi\left(\hat{0}^{\prime} \mathrm{G}\right)\right) . \tag{iii}
\end{equation*}
$$

if char $\mathbb{F} \neq 2$, and a similar formula holds if char $F=2$. Thus the problem of evaluating ($G / G \beta^{\prime} G$) (Z) is entirely reduced to the problem of determining the Hilbert series of the quotient module $\phi(G) / \phi\left(\delta^{\prime} G\right)$.

We can actually evaluate $\phi(\mathrm{G}) / \phi\left(\delta^{\prime} \mathrm{G}\right)$ fairly easily when G belongs to a class of algebras called "generalized products". A generalized product G is a semi-tensor product of two free Hopf algebras, $H_{1}=I F<T_{1}>$ and $H_{2}=I F<T_{2}>$. Letting $H=H_{1} H H_{2}$, G can be written as $H / H \hat{\beta}_{H}$, where $\hat{\beta}=\left\{\left[\alpha_{i}, \alpha_{j}\right]-h_{i j} \mid \alpha_{i} \varepsilon T_{1}, \alpha_{j} \varepsilon T_{2}\right.$, and $\left.h_{i j} \varepsilon \phi\left(H_{2}\right)\right\}$. G is isomorphic as a vector space to the ordinary tensor product $H_{1} \otimes H_{2}$. As an algebra, it is different in that each non-zero $h_{i j}$ introduces a "twist" in the multiplication.

An explicit calculation may be done for the following example:
Let $H_{1}=I F<\alpha_{1}, \alpha_{2}>, H_{2}=\mathbb{F}<\alpha_{3}, \alpha_{4}, \alpha_{5}>. H=H_{1} \Perp H_{2}$. All the
α_{i} 's have dimension 1.

$$
\begin{array}{rll}
& \beta_{1}=\left[\alpha_{1}, \alpha_{3}\right]-\left[\alpha_{3}, \alpha_{4}\right] & \beta_{2}=\left[\alpha_{1}, \alpha_{4}\right]
\end{array} \begin{array}{ll}
& \beta_{3}=\left[\alpha_{1}, \alpha_{5}\right] \\
\text { (iv) } \quad \beta_{4}=\left[\alpha_{2}, \alpha_{3}\right] & \beta_{5}=\left[\alpha_{2}, \alpha_{4}\right]
\end{array} \begin{array}{ll}
& \beta_{6}=\left[\alpha_{2}, \alpha_{5}\right]-\left[\alpha_{3}, \alpha_{4}\right] \\
& \beta_{7}=\left[\alpha_{3}, \alpha_{5}\right]
\end{array} \beta_{8}=\left[\alpha_{3}, \alpha_{3}\right] .
$$

6
Here $G=H / \sum_{j=1} H \beta_{j} H$ is a generalized product with $h_{13}=h_{25}=\left[\alpha_{3}, \alpha_{4}\right]$ and $h_{14}=h_{15}=h_{23}=h_{24}=0$. Also, $\left\{\beta_{7}, \beta_{8}\right\} \subseteq \phi\left(H_{2}\right)$, so $G /\left(G \beta_{7} G+G \beta_{8} G\right)$ can be computed with the help of the previous remarks.

Our conclusion is, for char $I F \neq 2$,

$$
\mathrm{H} / \mathrm{H} \beta \mathrm{H} \approx \mathrm{H}_{1} \otimes \mathrm{IF}<\alpha_{4}, \alpha_{5}>\rho^{p}\left(\left\{\phi\left(\alpha_{3}, \alpha_{4}^{\mathrm{k}}\right) \mid \mathrm{k} \geq 0\right\}\right)
$$

We deduce immediately

$$
N(Z)=\left(\frac{1}{1-2 Z}\right)\left(\frac{1}{1-2 Z}\right) p(Z)
$$

where

$$
\begin{equation*}
P\left(z^{d}\right)=\prod_{k=1}^{\infty}\left(\frac{1}{1-z^{2 k}}\right) \prod_{k=1}^{\infty}\left(1+z^{(2 k-1)}\right) \tag{v}
\end{equation*}
$$

A similar formula is valid when char $I F=2$.

The infinite products is a transcendental function. We have shown:

Theorem B. Let V be the complex obtained from ${ }_{i=1}^{5}\left(S^{2}\right)$ by attaching eight 4-cells corresponding to the Whitehead products given in (iv). Then ΩV has an irrational Poincaré series.

The so-called Serre-Kaplansky problem asks whether the Poincaré series $\sum_{n=0}^{\infty} \operatorname{Rank}\left(\operatorname{Tor}_{n}^{R}(I F, I F)\right) z^{n}$ of a local ring R is always rational, where R/ur $=$ IF. Jan-Erik Roos has recently demonstrated that this question when $\mu r^{3}=0$ is equivalent to the rationality of $H_{\star}(\Omega X)(Z)$ when dim $X \leq 4$. Our space V of Theorem B has dimension four. The equivalence of the two questions is through the cohomology ring of the offending complex.

Theorem C. Let $R=H^{*}(V ; I F)$, where V is the space of Theorem B. $R=I F\left(x_{1}, \ldots x_{5}\right) / J$, where J is the ideal generated by $h \mathcal{C}^{3}$ and the relations

$$
x_{1}^{2}=x_{2}^{2}=x_{4}^{2}=x_{5}^{2}=0 \text { and } x_{1} x_{2}=x_{4} x_{5}=x_{1} x_{3}+x_{3} x_{4}+x_{2} x_{5}=0
$$

Then $\sum_{n=0}^{\infty} \operatorname{Rank}\left(\operatorname{Tor}_{n}{ }^{R}(I F, I F)\right) z^{n}$ is a transcendental function.

This follows directly from Roos' work and our Theorem B. R is found explicitly by dualizing (iv).

We close with a brief discussion of just what the possibilities are for $H_{\star}(\Omega X)(Z)$. We have given an example of a finitely presented Hopf algebra whose Hilbert series was a rational function times $\mathcal{P}(\overline{\operatorname{IF}(y)})(Z)$, where $|y|=1 . \mathscr{P}(\bar{M})(Z)$ will be an infinite product like (v) for any connected module M. In general, however, there are exponents equal to Rank (M_{k}) instead of unity on the individual factors of the product. It turns out that we can construct an N for which $N(Z)$ is a rational multiple of $\rho(\bar{M})$ whenever M is a finitely presented connected (not necessarily Hopf!) algebra. Thus the possibilities for $N(Z)$ are quite rich and can be highly transcendental.
I. THE HOMOLOGY OF $\Omega\left(X \mathrm{U}_{\hat{i}}=\underset{i=1}{\mathrm{~V}} \mathrm{~S}^{\mathrm{d}} \mathrm{i}^{\mathrm{i}}\right)$

Let $\underset{i=1}{\mathrm{~V}} \mathrm{~S}^{\mathrm{d}} \underset{\rightarrow}{f} \mathrm{X} \rightarrow \mathrm{Y}$ be a cofibration, with each $\mathrm{d}_{i}>1$ and X a simply connected CW-complex. In Part I we will analyze the homology of $\Omega \mathrm{Y}$. Under suitable conditions we give a formula for the Poincaré series of ΩY in terms of the series for ΩX and for a certain quotient algebra depending on f. In particular, our formula will hold whenever X is a suspension or a product of two suspensions.

Let IF denote any field. $H_{*}(\cdot)$ will denote homology with coefficients in \mathbb{F}. All tensor products will be over $I F$. Let $H=H_{*}(\Omega X)$. H is a Hopf algebra with commutative coproduct Ψ. In general, H will be non-commutative. Let $|\cdot|$ denote "dimension of" for elements of a graded module. Let $[$,$] denote the usual [x, y]=x y-(-1)|x| \cdot|y|_{y x}$. Finally, let $R<\alpha_{1}, \ldots \alpha_{n}>$ denote the free associative non-commutative algebra over the ring R with generators $\alpha_{1} \ldots \alpha_{n}$.

1. The Adams-Hilton Construction

Our starting point for the study of λY is the cobar construction first described by P.J. Hilton and J.F. Adams [1,2]. We assume that X has a CW structure with a single 0-cell and no 1-cells. The cobar construction gives us a graded differential algebra (A, d) whose homology ring is identical with $H_{*}(\Omega Y)$. We may assume that X is a subcomplex of Y. By a remark [l, p. 310] we may choose A to be an extension of the differential graded algebra A_{0}, where A_{0} is the differential graded algebra constructed for $X . H_{*}\left(A_{0}, d\right)=$ $=H_{*}(\Omega X)$ and $H_{*}(A, d)=H_{*}(\Omega Y)$.

Let $\left\{e_{i}\right\}{ }_{i \varepsilon I}$ be the set of positive-dimensional cells of x. We may take $\left\{e_{i}\right\}_{i \varepsilon I} \cup\left\{\hat{e}_{j}\right\}_{l \leq j \leq m}$ to be the positive-dimensional cells of Y, where the $\left\{\hat{e}_{j}\right\}$ are the cells attached to X by f. The algebra A_{0} is the free associative algebra over \vec{r} with generators $\left\{\alpha_{i}\right\}_{i \varepsilon I}$ in one-to-one correspondence with the $\left\{e_{i}\right\}_{i \varepsilon I}$. Their dimensions are given by $\left|\alpha_{i}\right|=\operatorname{dim}\left(e_{i}\right)-1$. Likewise, $A=\mathbb{F}<\left\{\alpha_{i}\right\}_{i \varepsilon I} \cup\left\{\gamma_{j}\right\}_{1 \leq j \leq m}>$, where the $\left\{\gamma_{j}\right\}$ correspond to $\left\{\hat{e}_{j}\right\}$ and satisfy $\left|\gamma_{j}\right|=d_{j}$. Note that $A=A_{0}\left\langle\gamma_{1}, \ldots \gamma_{m}\right\rangle$.

The differential d is defined on all of A. d satisfies the product rule

$$
d\left(a_{1} \ldots a_{n}\right)=\sum_{i=1}^{n}(-1)\left|a_{1} \ldots a_{i-1}\right|_{a_{1}} \ldots d\left(a_{i}\right) \ldots a_{n}
$$

so it is enough to specify d on the generators. Let $\beta_{i}=d\left(\gamma_{i}\right)$. Since each of the cells \hat{e}_{j} is attached directly to X, we have $\beta_{i} \varepsilon A_{0} . d^{2}=0$ on A means that each β_{i} is a cycle in ($\left.A_{0}, d\right)$ with $\left|\beta_{i}\right|=d_{i}-1$. We will use the same symbol β_{i} to denote the corresponding cycle in $H_{*}\left(A_{0}, d\right)$ and $H_{*}(\Omega x)$.

Let $f_{i}: S^{d_{i}}=S\left(S^{d_{i}^{-1}}\right) \rightarrow \underset{d_{i}-1}{ }$ be the attaching map for $\hat{e}_{i} \cdot f_{i}$ may be identified with $\left[f_{i}\right]: S^{d_{i}-1} \rightarrow \Omega x$, which may be sent via the Hurewicz homomorphism to a cycle $\beta_{i} \varepsilon H_{d_{i}-1}(\Omega \mathrm{x})$. Up to sign, these two definitions of β_{i} agree. The ambiguity of sign will not matter for our purposes and may be cleared up by orienting each $S^{d_{i}}$ suitably. Since β_{i} is the image under $\left[f_{i}\right]$ of the generator of the homology of the sphere $S_{i}{ }^{-1}$, we know that β_{i} is primitive as an element of the Hopf algebra $H=H_{*}(\Omega X)$.

We define a filtration on A by setting $A_{0}=A_{0}$ and $A_{p+1}=\sum_{j=1}^{m} A_{0} \gamma_{j} A_{p} . A_{p}$ is generated additively by those monomials
of A which include precisoly y_{j}^{\prime} 's (and any number of α_{i}^{\prime} s). We obtain a bigrading by specifyjng that a $\bar{C} A_{p q}$ if and only if a εA_{p} and $|a|=p+q$. Note that as F-modules, $A=\underset{p \geq 0, q \geq 0}{\oplus} A q^{\prime}$. Let $d^{\prime}: A_{p q} \rightarrow A_{p, q-1}$ be the extension of $\left.d\right|_{A_{0}}$ to A which satisfies the product rule and $d^{\prime}\left(\gamma_{j}\right)=0$. Let $d^{\prime \prime}: A_{p q} \rightarrow A_{p-1, q}$ be defined by $\left.d^{\prime \prime}\right|_{A_{0}}=0, d^{\prime \prime}\left(\gamma_{j}\right)=\beta_{j}$, and the product rule. Then $d=d^{\prime}+d^{\prime \prime}$.

Using this bigradation we may construct a spectral sequence which converges to $H_{*}(A, d)$ (see, e.g., [3], pp. 330-332). As this spectral sequence is suggested by the work of Eilenberg and Moore [5] (or see [14], chapter 3), we will refer to it as the "EilenbergMoore spectral sequence for $3 \mathrm{Y} "$, or simply, the "E-M s.s.". We know that $E_{p, q}^{0}=A_{p q}$ and that $p+\oplus+{ }_{p+q}^{\oplus} E_{p q}^{\infty}=H_{n}(A, d)$. Our next task is to evaluate the E^{1} and E^{2} terms.

We compute the $\mathrm{E}^{\text {l }}$ term by taking the d^{\prime} homology first. We obtain $E_{p q}^{l}=\left(H_{*}\left(A_{p}, d^{\prime}\right)\right)_{q} .\left(A_{p}, d^{\prime}\right)$ may be identified with the complex $\oplus \underbrace{A_{0} \otimes \ldots A_{0}}_{p+1 A_{0}^{\prime} s}, d_{p}^{\prime}$), where the set s consists of all p-tuples $\left(\gamma_{i_{1}}, \ldots, \gamma_{i_{p}}\right)$ with $1 \leq i_{j} \leq m$. The identification is given by $\theta\left(a_{0} \otimes \ldots \otimes a_{p}\right)=a_{0} \gamma_{i_{1}} a_{1} \ldots \gamma_{i_{p}} a_{p}$ and $d_{p}^{\prime}\left(a_{0} \otimes \ldots \otimes a_{p}\right)=$ $\sum_{j=0}^{p}(-1)\left|a_{0} \gamma_{i_{1}} \cdots \gamma_{i_{j}}\right| a_{0} \otimes \ldots \otimes d\left(a_{j}\right) \otimes \ldots \otimes a_{p}$. It is well known
 pp. 64-69). Let $\hat{\mathrm{H}}=\mathrm{H}<\gamma_{1}, \ldots \gamma_{m}>$ and let $\hat{d}: \hat{H} \rightarrow \hat{H}$ be given by $\hat{d}(H)=0, \hat{d}\left(\gamma_{i}\right)=\beta_{i}$, and the product rule. Let \hat{H}_{p} be spanned by those monomials of \hat{H} containing exactly $p \gamma_{j}^{\prime} s$. Then

Thus $E_{p q}^{1}=\left(\hat{H}_{p}\right)_{q}$.
The E^{2} term is found by taking the homology of $E_{p q}^{1}$ with respect to the $d^{"}$ differential. It is clear that the induced $d^{\prime \prime}$ on E^{l} agrees with the \hat{d} we have already defined on \hat{H}. Thus
$E_{p, q}^{2}=H_{*}(\hat{H}, \hat{d})_{p, q}$. We have proved
Theorem 1.1. Let y be the mapping cone of a finite wedge of spheres, $Y=X U_{f} C \underset{i=1}{V} S^{1}$, where $d_{i} \geq 2$ and X is l-connected. Let $H=H_{*}(\Omega X)$. Then there is a first quadrant homology spectral sequence $E_{p q}^{r}$ such that $\mathrm{E}^{2}=H_{*}(\hat{H}, \hat{\mathrm{~d}})$ and $\underset{\mathrm{p}+\mathrm{q}=\mathrm{n}}{\oplus} \mathrm{E}_{\mathrm{pq}}^{\infty}=H_{\mathrm{n}}(\Omega Y)$.

2. Computation of E^{2}

Our natural next step is to try to say something stronger about $E^{2}=H_{*}(\hat{H}, \hat{d})$. In this section we show that E^{2} can be computed explicitly if one additional assumption is made.

Let $K=\operatorname{ker} \hat{d}, B=\operatorname{im} \hat{d}$. For M a submodule of \hat{H}, let γM denote $\sum_{j=1}^{m} Y_{j} M$ and let $H Y M$ denote $\sum_{j=1}^{m} H Y_{j} M$; likewise for $B M$ and $H B M$. Let $\mathrm{C}=\mathrm{HBK}$. Let N be the quotient algebra $\mathrm{H} / \mathrm{HBH}$. We are interested in finding a formula for $\mathrm{E}^{2}=\mathrm{K} / \mathrm{B}$.

To simplify notation we let \tilde{R} be the $\operatorname{vector}\left(\beta_{1}, \ldots \beta_{m}\right)$ and $\tilde{\gamma}$ the vector $\left(\gamma_{1}, \ldots \gamma_{m}\right) \cdot \sum_{j=1}^{m} \beta_{j} a_{j}$ will be denoted as the dot product $\tilde{\beta} \cdot \tilde{a}$, where $\tilde{a}=\left(a_{1}, \ldots a_{m}\right)$; likewise for $\tilde{\gamma} \cdot \tilde{a}$.

Lemma 2.1. There is an isonombism

$$
\eta: N \otimes \gamma B \underset{\rightarrow}{\approx} B / C
$$

given by $\eta(\bar{a} s \tilde{\gamma} \cdot \hat{d}(\tilde{b}))=\overline{a \hat{a}(\tilde{\gamma} \cdot \tilde{b})}$.
Proof. To begin with, $C \subseteq B$ because any $x=a \tilde{\beta} \cdot \tilde{b}$, where $\tilde{\beta} \cdot \tilde{b} \quad \varepsilon \beta K$, can be written as $x=(-1)|a| \hat{d}(a \tilde{\gamma} \cdot \tilde{b}) \varepsilon B$.

To see that η is well-defined, suppose $\bar{a}=0$. Then a $\varepsilon H \beta H$, so $a \hat{d}(\tilde{\gamma} \cdot \tilde{b}) \varepsilon H B H B=H \beta B \subseteq H \beta K=C$. We must also show that the definition of η does not depend upon our choice of \tilde{b}. This entails verifying that $a \hat{a}(\tilde{\gamma} \cdot \tilde{b}) \in C$ if each component of \tilde{b} lies in K. This holds because then $a \hat{d}(\tilde{y} \cdot \tilde{b})=a \tilde{\beta} \cdot \tilde{b}+a \tilde{y} \cdot(\pm \hat{a}(\tilde{b}))=a \tilde{p} \cdot \tilde{b} \varepsilon H \beta K$, where the " \pm " symbol is introluced to indicate the otherwise cumbersome $Y_{j} \mid$
η is onto by definition of B. To check that η is one-to-one, let $\left\{a_{j}\right\} \subseteq H$ be chosen so that their images $\left\{\bar{a}_{j}\right\}$ in N form a basis for N as an F-module. Suppose $x=\sum_{j} \bar{a}_{j} \otimes \tilde{\gamma} \cdot \hat{d}^{\left(\tilde{b}_{j}\right)} \varepsilon$ ker η for some
 Because $\left\{a_{j}\right\}$ are linearly independent of each other and of $H \beta H$ in H, we must have each $\left(\pm \hat{d}\left(\tilde{b}_{j}\right)\right)=0$. But this means that $\hat{d}^{(}\left(\tilde{b}_{j}\right)=0$ and $\mathrm{x}=0$ to begin with, i.e., ker $\eta=0$.

Lemma 2.2. Suppose K is a free left H-module or H H is a free right H-module. Then as E -modules, $\mathrm{C} \otimes \mathrm{H} \approx \mathrm{H} \mathrm{H} \boldsymbol{H} \otimes \mathrm{K}$.

Proof. If K is free, let $\phi: H \geqslant K^{\prime} \rightarrow K$ be the given isomorphism of left H-modules. $C=H \beta K=H \beta\left(\phi\left(H \otimes K^{\prime}\right)\right)=\phi\left(H \beta H \otimes K^{\prime}\right)$. Since ϕ is one-to-one, it is one-to-one when restricted to $H B H \otimes K^{\prime}$, giving $H B H \otimes K^{\prime} \approx C$ and $H \beta H$ \& $K \approx H B H \otimes H \otimes K^{\prime} \approx H \otimes H P H \otimes K^{\prime} \approx H Q C$.

If $H \beta H$ is free, let $\phi: S \otimes H \rightarrow H B H$ be the isomorphism of right H-modules. $\hat{\phi}: S \otimes \hat{H} \rightarrow H \beta \hat{H}$ is an isonorphism since \hat{H} is a free left H-module. The restriction $\hat{\phi}_{\mathrm{K}}: \mathrm{S} \otimes \mathrm{K} \rightarrow \mathrm{H} \beta \mathrm{H}$ is also an isomorphism of $S \otimes K$ with im $\hat{\phi}_{\mathrm{K}}=\mathrm{H} \beta \mathrm{K}=\mathrm{C}$. We obtain $\mathrm{H} \beta \mathrm{H} \otimes \mathrm{K} \approx \mathrm{S} \otimes \mathrm{H} \otimes \mathrm{K} \approx \mathrm{S} \otimes \mathrm{K} \otimes \mathrm{H}$ $\approx \mathrm{C} \otimes \mathrm{H}$.

Notation. For a graded module $M=\underset{n>0}{\oplus} M_{n}$, let $M(Z)$ denote the series $M(Z)=\sum_{n=0}^{\infty} \operatorname{Rank}{ }_{F^{\prime}}\left(M_{n}\right) Z^{n}$. When a module has more than one gradation, the series is taken with respect to the dimension grading. Let $\gamma(Z)=\sum_{j=1}^{m} z^{d}$.

Proposition 2.3.
(la) $\mathrm{K}(\mathrm{Z})+\mathrm{ZB}(Z)=\hat{\mathrm{H}}(\mathrm{Z})$.
(1b) $\hat{H}(Z)=H(Z)(1-\gamma(Z) H(Z))^{-1}$.
(lc) $N(Z) \gamma(Z) B(Z)=B(Z)-C(Z)$.
If K is H -free or HBH is H -free we also have
(Id) $\quad C(Z)=K(Z)\left(1-N(Z) H(Z)^{-1}\right)$.
Proof. (a) From the exact sequence $0 \rightarrow K \rightarrow \hat{H} \rightarrow B \rightarrow 0$, in which ヘ d lowers dimension by one.
(b) Because $\hat{H} \approx H \oplus H \gamma \hat{H}$, giving $\hat{H}(Z)=H(Z)+H(Z) \gamma(Z) \hat{H}(Z)$. Solve for $\hat{H}(Z)$.
(c) From 2.1.
(d) From 2.2. Solve for $C(Z)$, using $(H \beta H)(Z)=H(Z)-N(Z)$.

Proposition 2.4. Suppose K or $H B H$ is H-free. Then
(2)

$$
E^{2}(Z)^{-1}=(1+Z) N(Z)^{-1}-Z H(Z)^{-1}-\gamma(Z)
$$

Formula (2) is valid if and only if $C \otimes H \approx H \beta H \otimes K$ as $I F$-modules.
Proof. We think of (la) through (ld) as a system of four linear equations in the four unknowns K, B, \hat{H} and C, where H, γ, and N are "known". The system is non-degenerate and easily solved by substitutions.

Inverting $\mathrm{K}(Z)$ - $\mathrm{B}(\mathrm{Z})$ gives formula (2).

For the converse, we note that (1d) can be obtained as a consequence of the relations (la), (1b), (lc), and (2).

Corollary 2.5. Suppose H has global dimension ≤ 2. Then K is H-free, and formula (2) holds.

Proof. Note that \hat{H} is free over H and consider the projective resolution of \hat{H} / B which starts

$$
\ldots \rightarrow M \rightarrow \hat{\mathrm{H}} \rightarrow \hat{\mathrm{~d}} \rightarrow \hat{\mathrm{H}} / \mathrm{B} \rightarrow 0
$$

for a suitable M. $\operatorname{Tor}_{3}{ }^{H}(\mathbb{F}, \hat{H} / B)$ must vanish because gl.dim. $(H) \leq 2$. It follows that the resolution may be constructed to be zero beyond M. Then $M=$ ker $\hat{d}=K$. But M is projective, hence free, because H is connected, and K is free.

3. Computation of E^{∞}

In Section 3 we determine a generating set for a subalgebra of E^{2}. We show that the E-M.s.s. degenerates when Formula (2) holds.

Formula (2) is then also a formula for $H_{\star}(\Omega Y)$.
Let $K_{p}=K \cap \hat{H}_{p}=\operatorname{ker}\left\{\hat{d}: \hat{H}_{p} \rightarrow \hat{H}_{p-1}\right\}$ and $B_{p}=B \cap \hat{H}_{p}=\hat{d}\left(\hat{H}_{p+1}\right)$. Let $\rho: N \rightarrow H$ denote any right-inverse to the projection $\pi_{N}: H \rightarrow N$. As F -modules, $\mathrm{H} \approx \rho(\mathrm{N}) \oplus \mathrm{H} \beta \mathrm{H}$.

Lemma 3.1. (a) There is a surjection $\Sigma^{2}: N \otimes \beta I E \otimes H \rightarrow H \beta H$ given $b y\left(a \otimes \beta_{j} \otimes b\right)=\rho(a) \beta_{j} b . \quad(b) . \quad B=\hat{d}(\rho(N) Y \hat{H})$.

Proof. (a) Clearly $H_{0} \beta H=\beta H \subseteq$ im ζ. Suppose inductively that $H_{i} \beta H \subseteq i m \zeta$ for $i<n$. We want to siow that $h \beta j b$ im ζ if $|h|=n$. Let $a=\pi_{N}(h)$. Note that $\pi_{N}(h-f(a))=a-\pi_{N} \rho(a)=0$, so $h-\rho(a) \varepsilon$ HBH. $h-\rho(a) \varepsilon \sum_{i<n} H_{i} \beta H$ and $h \beta_{j} b-\rho(a) \beta_{j} b \varepsilon \sum_{i<n} H_{i} \beta H \subseteq i m \zeta$.

Since $\rho(a) \beta_{j} b=\zeta\left(a \otimes \beta_{j} \otimes b\right)$, we have $h \beta_{j} b \varepsilon$ im ζ_{j}, as desired,
(b) Let $x \in B$ and write $x=\hat{d}(y)$. Let $y=y_{1}+y_{2}$, where $y_{1} \varepsilon \rho(N) \gamma \hat{H}$ and $y_{2} \varepsilon H B H \gamma \hat{H} . \quad y_{2}$ is a sum of terms of the form $\rho(a) \tilde{\beta} \cdot \tilde{b} \tilde{\gamma} \cdot \tilde{h}$, by part
(a). Any such term may be written as (-1) $|a| \hat{d}(\rho(a) \tilde{\gamma} \cdot \tilde{b}) \tilde{\gamma} \cdot \tilde{h}=$ $=(-1)|a| \hat{d}(\rho(a) \tilde{\gamma} \cdot \tilde{b} \tilde{\gamma} \cdot \tilde{h}) \pm \rho(a) \tilde{\gamma} \cdot \tilde{b} \hat{d}(\tilde{\gamma} \cdot \tilde{h}) . \quad \hat{d}\left(y_{2}\right)$ is a sum of terms of the form (-1) $|a|_{\hat{d}} \hat{d}(\rho(a) \tilde{\gamma} \cdot \tilde{b} \tilde{\gamma} \cdot \tilde{h}) \pm \hat{d}(\rho(a) \tilde{\gamma} \cdot \tilde{b} \hat{d}(\tilde{\gamma} \cdot \tilde{h}))$. Since $\hat{d} \hat{d}=0$, we have shown that $\hat{d}\left(y_{2}\right) \in \hat{d}(\rho(N) \gamma \hat{H})$. Thus $x=\hat{d}\left(y_{1}\right)+\hat{d}\left(y_{2}\right) \varepsilon \hat{d}(\rho(\mathbb{N}) \gamma \hat{\mathrm{H}})$, as desireत.

Choose a set $\left\{g_{i}\right\} \subseteq H Y H$ such that $\left\{\hat{d}\left(g_{i}\right)\right\}$ is a basis for HBH as a free IF-module. By 3.1 we may do this with each $g_{i} \varepsilon \rho(N) \gamma H$. Let $D_{0}=\operatorname{Span}\left\{g_{i}\right\} \subseteq H \gamma H$ and let $D_{1}=\hat{d}\left(D_{0} \gamma\right) \subseteq B_{1} \subseteq K_{1}$. Note that $D_{1} \approx H B H Y$ as $I F$-modules. Using this isomorphism we see easily that $D_{1} \otimes H \approx D_{1} H \subseteq K_{1}$. Thus $D_{1} H$ is a free H-submodule of $B_{1} \subseteq K_{1}$. Let $\mathrm{D}_{2}=(\rho(\mathbb{N}) \gamma \mathrm{H}) \cap \mathrm{K}_{1}$.

Lemma 3.2. $K_{1}=D_{2} \oplus D_{1} H$.
Proof. $D_{1} \cap(\rho(\mathbb{N}) \gamma H)=0$, so $D_{2} \cap D_{1} H=0$. We need only show that $K_{1}=D_{2}+D_{1}$ H. Let $x \varepsilon K_{1}$ and write $x=x_{1}+x_{2}$, where $x_{1} \varepsilon \rho(N) \gamma H$ and $x_{2} \varepsilon$ HßH γH. Write x_{2} as a $\operatorname{sum} x_{2}=\sum_{i} \hat{d}\left(g_{i}\right) \tilde{\gamma}^{\bullet} \cdot \tilde{b}_{i}$, where $\left\{g_{i}\right\}$ is the set described above. Let $y=\hat{d}\left(\Sigma g_{i} \tilde{\gamma}^{i} \cdot \tilde{b}_{i}\right)$ and note that $x_{2}-y=\sum_{i}(\pm) g_{i} \hat{d}\left(\tilde{\gamma} \cdot \tilde{b}_{i}\right) \varepsilon \rho(N) \gamma H . \quad y \varepsilon D_{1} H \subseteq K_{1}$ and $x \varepsilon K_{1}$, so $\mathrm{x}-\mathrm{y} \varepsilon \mathrm{K}_{1} \cdot$ But $\mathrm{x}-\mathrm{y}=\mathrm{x}_{1}+\left(\mathrm{x}_{2}-\mathrm{y}\right) \varepsilon \rho(\mathrm{N}) \gamma \mathrm{H}$, so $\mathrm{x}-\mathrm{y} \varepsilon \mathrm{D}_{2}$. Thus $x=(x-y)+y \varepsilon D_{2}+D_{1} H$. Since $x \varepsilon K_{1}$ was arbitrary, $K_{1}=D_{2} \oplus D_{1} H$.

If K_{1} is a free right H-module, 3.2 implies that D_{2} is projective; H is connected, so D_{2} is free. Let $W \subseteq D_{2}$ be a right H-basis for D_{2}, i.e., $D_{2}=W H \approx W \otimes H$. Then $K_{1}=D_{2} \oplus D_{1} H \approx(W \otimes H) \oplus\left(D_{1} \otimes H\right) \sim$ $\approx\left(W \oplus D_{1}\right) \otimes H_{1}$, so $W \oplus D_{1}$ is a right H-basis for K_{1}.

For the next four results (3.3 to 3.6) assume K_{1} is right-H-free. Let $\left\{w_{j}\right\}_{j \varepsilon J}$ be a basis for W. Note that $W \subseteq D_{2} \subseteq \rho(N) \gamma$.

Lemma 3.3. Let $\left\{x_{j}\right\}_{j \in J} \subseteq \hat{H}$. (a) $\sum_{j} w_{j} x_{j}=0$ implies each $x_{j}=0$. (b) $\sum_{j} w_{j} x_{j} \in B$ implies each $x_{j} \varepsilon B$.

Froof. (a) This follows from the fact that K_{1} is free, hence $W \otimes H \approx W H$ in \hat{H}_{1}. It follows that $W \otimes \hat{H} \approx W \hat{H}$ which is the stated result.
(b) We may assume that the x_{j} 's are all in the same $\hat{\mathrm{H}}_{\mathrm{p}}, \mathrm{p} \geq 0$. By 3.1 write $\sum_{j} w_{j} x_{j}=\hat{d}(y)$, where $y \varepsilon p(N) \hat{\gamma}_{p+1}$. Write $y=\sum_{i} z_{i} \tilde{\gamma}^{\prime} \cdot \tilde{b}_{i}$, where $z_{i} \varepsilon \rho(N) \gamma H$ and $\tilde{\gamma} \cdot \tilde{b}_{i} \varepsilon \gamma \hat{H}_{p}$. By combining z_{i} 's if necessary we may assume that the $\tilde{\gamma} \cdot \tilde{b}_{i}$ are linearly independent in $\gamma \hat{H}_{p}$. $\sum_{j} w_{j} x_{j}=\hat{d}(y)=\sum_{i} \hat{d}\left(z_{i}\right) \tilde{\gamma} \cdot \tilde{b}_{i}+\sum_{i}(-1)^{\left|z_{i}\right|}{ }_{z_{i}} \hat{d}\left(\tilde{\gamma} \cdot \tilde{b}_{i}\right) . \quad$ since $\sum_{j} w_{j} x_{j} \varepsilon w \hat{H}_{p} \subseteq$
 we must have $\underset{i}{ } \hat{d}\left(z_{i}\right) \tilde{\gamma} \cdot \tilde{D}_{i}=0$. Because the $\tilde{\gamma} \cdot \tilde{b}_{i}$ are linearly independent, however, this can only happen if each $\hat{d}\left(z_{i}\right)=0$, implying $z_{i} \varepsilon K_{1}$. Because $z_{i} \varepsilon \rho(\mathbb{N}) \gamma H$ as well, we have $z_{i} \varepsilon D_{2}=W H$. Write $z_{i}=\sum_{j} w_{j} h_{i j}$ for suitable $h_{i j} \varepsilon$ H. Thus $\sum_{j} w_{j} x_{j}=\hat{d}\left(\sum_{i} z_{i} \tilde{\gamma} \cdot \tilde{b}_{i}\right)=\sum_{i j} \sum_{j}(-1)^{\left|z_{i}\right|}{\underset{w}{j} h_{i j}}^{\hat{d}}\left(\tilde{\gamma} \cdot \tilde{b}_{i}\right)=\sum_{j}^{w_{j}(-1)} \sum_{i}^{\left|w_{j}\right|} \hat{d}_{i}\left(h_{i j} \tilde{\gamma} \cdot \tilde{b}_{i}\right)$. By part (a) this can only happen if each $x_{j}=(-1)\left|w_{j}\right|_{i} \underset{d}{ }\left(h_{i j} \tilde{\gamma} \cdot \tilde{b}_{i}\right) \& B$. Proposition 3.4. The map $K: W \otimes(K / B) \rightarrow K / B$ given by $k\left(w_{j} \bar{x} \bar{x}\right)=\overline{w_{j} x}$ is monomorphic.

Proof. $W \subseteq K_{1} \subseteq K$, K is an algebra, and $K \bullet B \subseteq B$, so the map is well-defined. For injectivity, note that $\sum_{j} w_{j} \otimes \bar{x}_{j} \varepsilon$ ker k would require $\sum_{j} w_{j} x_{j} \in B$. By $3.3(b)$ this would mean that each $x_{j} \in B$, or $\bar{x}_{j}=0$. Thus ker $k=0$.

Proposition 3.5. There is an embedding of modules $\xi:$ TW $N \rightarrow$ $\rightarrow E^{2}$, where $T W$ denotes the tensor algebra on W. ξ preserves the left action of $T W$ and the right action of N on each module. Furthermore, all the higher differentials d^{r}, for $r \geq 2$, vanish on im ξ.

Proof. Recall that $K_{0} / B_{0}=H / H \beta H=N$. By 3.4 and induction

$\xi: \quad T W \otimes N \rightarrow K / B$ exists and is monomorphic.
ξ preserves left multiplication by elements of W, so we know that $\operatorname{im} \xi$ is generated multiplicatively by $N=K_{0} / B_{0}$ and $\xi(W) \subseteq K_{1} / B_{1}$. But these generators lie in the $0^{\text {th }}$ and $1^{\text {st }}$ columns of the spectral sequence for E^{2}, and $d^{r}, r \geq 2$, vanishes on these first two columns. Since d^{r} obeys the product rule, d^{r} vanishes on all of $i m$.

Proposition 3.6. $(T H \geqslant N)(z)^{-1}=(1+z) N(z)^{-1}-z H(z)^{-1}-\gamma(z)$.
Proof. By 3.2 and the remarks immediately before and after it,

$$
\begin{aligned}
& W(z)=D_{2}(z) H(z)^{-1}=K_{1}(z) H(z)^{-1}-D_{1}(z) . \\
& D_{1}(z)=(H \beta H \gamma)(z)=(H(z)-N(z)) \gamma(z) .
\end{aligned}
$$

From the exact sequence $0 \rightarrow K_{1} \rightarrow H \gamma H \xrightarrow{\hat{d}} B_{0}=H \beta H \rightarrow 0$, we have $K_{1}(z)=H(z) \gamma(z) H(z)-z(H(z)-N(z))$. Together, we obtain $W(z)=\gamma(z) N(z)-z\left(1-N(z) H(z)^{-1}\right)$.

$$
\begin{aligned}
(T W \otimes N)(z)^{-1} & =T W(z)^{-1} N(z)^{-1}=N(z)^{-1}(1-W(z)) \\
& =N(z)^{-1}\left[1-\gamma(z) N(z)+z\left(1-N(z) H(z)^{-1}\right)\right] \\
& =N(z)^{-1}-\gamma(z)+z N(z)^{-1}-z H(z)^{-1} \\
& =(1+z) N(z)^{-1}-z H(z)^{-1}-\gamma(z), \text { as desired. }
\end{aligned}
$$

Theorem 3.7. Suppose K or H iti is H-free. Then the E-M.s.s. degenerates and $\xi: T W \otimes N \rightarrow H_{*}(\Omega Y)$ is an isomorphism preserving the left action of TW and the right action of N. Furthermore,

$$
\begin{equation*}
\mathrm{H}_{\star}(\Omega \mathrm{Y})(z)^{-1}=(1+z) N(z)^{-1}-z H(z)^{-1}-\gamma(z) \tag{3}
\end{equation*}
$$

If $H(z)$ is rational, then $H_{*}(\Omega Y)(z)$ is rational if and only if $N(z)$ is rational.

Proof. K being free includes K_{l} being free as a special case (right- and left-free agree here), so the results 3.3 to 3.6 are valid. If $H \beta H$ is free, K_{1} is automatically free because it appears in the resolution $0 \rightarrow K_{1} \rightarrow \hat{H}_{1} \xrightarrow{\hat{d}} \mathrm{HBH}$ and \hat{H}_{1} is free. By 2.4 and 3.5 and 3.6 , ξ is a monomorphism between two modules of equal rank in each dimension, hence an isomorphism. By 3.6 , the $d^{r}, r \geq 2$, vanish on all of E^{2}, hence $E^{\infty}=E^{2}$. Formula (3) follows at once, as does the statement
about the rationality of $H_{*}(\Omega Y)(z)$. In general, there is no guarantee that $H_{*}(A, d)=E^{\infty}$ as algebras. In this case, however, each w_{j} corresponds to a cycle in A. Using this correspondence we may check easily that ξ has the stated properties.

Corollary 3.8. Suppose $H=H_{*}(\Omega X)$ has global dimension ≤ 2. For example, suppose X is a suspension or a product of two suspensions. Then 3.7 and Formula (3) apply.

Proof. This follows from 2.5. $H_{*}\left(\Omega S X_{1}\right)$ is known to be free [6], hence, has global dimension one. A product $H_{*}\left(\Omega\left(S X_{1} \times S X_{2}\right)\right)=$ $=H_{*}\left(\Omega S X_{1}\right) \otimes H_{*}\left(\Omega S X_{2}\right)$ has global dimension ≤ 2.

Proposition 3.9. Assume $\beta=\left\{\beta_{1}, \ldots \beta_{m}\right\}$ is a linearly independent set. Then the following are equivalent.
(a) $\mathrm{H} \approx \mathrm{N}\langle\mathrm{B}\rangle$ as Ir-monules
(b) The surjection ζ of 3.1 is an isomorphism
(c) Theorem 3.7 applies and $H_{*}(\Omega \mathrm{Y})=N$
(d) $K_{p}=B_{p}$ for all $p>0$
(e) $K_{1}=B_{1}$.

Proof. (a) iff (b). $N<\beta>\approx N \otimes T(\beta I F \otimes N)$, so
$N<\beta>(z)=N(z)(1-\beta(z) N(z))^{-1}$, where $\beta(z)=\sum_{j=1}^{m} z_{j}^{d_{j}^{-1}}=z^{-1} \gamma(z)$.
The next five lines are equivalent statements.
Condition (a)
$H(z)=N(z)(1-\beta(z) N(z))^{-1}$
$H(z)-H(z) \beta(z) N(z)=N(z)$
$H(z) \beta(z) N(z)=H(z)-N(z)=(H \beta H)(z)$
$(H \otimes \beta I F \otimes N) \approx H \beta H$ as $I F$-modules.
Since ζ is always a surjection, the last statement is equivalent to ζ being an isomorphism.
(b) implies (c). ऽ itself demonstrates HBH to be free, so 3.7 applies. By the above, $H(z)=N(z)\left(1-z^{-1} \gamma(z) N(z)\right)^{-1}$. Substituting this into Eq. (3) gives $H_{*}(\Omega Y)(z)=N(z)$. Since N is a subalgebra of $H_{*}(\Omega Y)$ by 3.7, we must have $H_{*}(\Omega \mathrm{Y})=\mathrm{N}$.
(c) implies (b). By formula (3) we obtain

$$
N(z)^{-1}=(1+z) N(z)^{-1}-z H(z)^{-1}-\gamma(z),
$$

which is equivalent to

$$
H(z)=N(z)\left(1-z^{-1} \gamma(z) N(z)\right)^{-1} .
$$

(c) implies (d). We have $K / B=E^{2}=E^{\infty}=N=K_{0} / B_{0}$. Thus $K_{p} / B_{p}=0$ for $p>0$, i.e., $K_{p}=B_{p}$.
(d) implies (e). Obvious.
(e) implies (c). Constract a free furesolution of N which begins $\ldots \rightarrow \hat{H}_{3} \oplus(M \otimes H) \xrightarrow{(\hat{d} Q \mu)} \hat{H}_{2} \xrightarrow{\hat{d}} \hat{H} \xrightarrow{\hat{a}} H \rightarrow N$. Here $M \otimes H$ is any right-free H-module for which $\mathrm{B}_{2}+i m \mu=\mathrm{K}_{2}$. Condition (e) assures us of exactness at \hat{H}_{1}. Use this resolution to compute $\operatorname{Tor}_{2}{ }^{H}$ (N, IF). $\operatorname{Tor}_{p}^{H}(N, \mathbb{F})$ is given by the homology of the chain complex $\ldots \hat{H}_{2} \gamma \oplus M \xrightarrow{\hat{d}_{I F} \oplus \mu_{I F}} \hat{H}_{1} \gamma \xrightarrow{\hat{d}_{I F}} \mathrm{H} \gamma \xrightarrow{(0)} I{ }^{(0)}$, where $\hat{\mathrm{d}}_{I F}(\tilde{\mathrm{a}} \cdot \tilde{\gamma})=$ $=\hat{a}_{\text {IF }}(\tilde{a}) \cdot \tilde{\gamma} \cdot \operatorname{Tor}_{2}{ }^{H}(N, \mathbb{F})=\operatorname{ker}\left(\hat{a}_{I F}\right)_{1} /\left(\operatorname{im}\left(\hat{d}_{\text {IF }}\right)_{2}+\operatorname{im} \mu_{\mathbb{F}}\right)=K_{1} \gamma / B_{1} \gamma=0$. $\operatorname{Tor}_{1}{ }^{H}(H \beta H, I F)=\operatorname{Tor}_{2}{ }^{H}(N, F F)=0$, implying that $H \beta H$ is free. 3.7 applies with $W=0$ because $K_{1} / B_{1}=0$.

Results 3.8 and 3.9 extend work done previously by Lemaire. Theorem 3.8 when X is a suspension may be deduced easily from Lemaire's thesis [7]. Lemaire also considered in [8] the question of when $H_{*}(\Omega Y)=N$ for $m=1$ (only one attaching cell).

II. FINITELY PRESENTED ALGEBRAS

In Part II we construct a class of finitely presented non-commutative algebras whose Poincaré series can be computed fairly easily. Examples where the Poincaré series is irrational exist and may be used to construct counterexamples to Serre's conjecture. We conclude with a consideration of the question of just what kinds of Poincare series can be expected from such complexes.

4. The Homomorphism ϕ

Our goal in Section 4 is to establish the properties of a homomorphism ϕ whose range is the underlying Lie algebra of a primitive

Hopf algebra. ϕ will be an important tool when we want to calculate quotient algebras later.

If L is a Lie algebra, let $U(L)$ denote the universal enveloping algebra of L. Let $H=H_{k}\left(\underset{j=1}{k} S_{j}^{C_{j}^{+1}}\right)=\mathbb{F}<\alpha_{1}, \ldots, \alpha_{k}>$, where $\left|\alpha_{j}\right|=$ $=c_{j} \geq 1$. Let L be the free Lie algebra generated by $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$; then $H=U(L)$. There is a standard basis S for H consisting of monomials in the $\left\{\alpha_{i}\right\}$. Let $\ell: S \rightarrow \mathbb{Z}_{+} \cup\{0\}$ give the length of a monomial, i.e., $\ell\left(\alpha_{i_{1}} \ldots \alpha_{i_{n}}\right)=n$.

Definition. A function $g: S \rightarrow$ will be said to be additive if $g(x y)=g(x)+g(y)$. We say that $x \in H$ is homogeneous with respect to ("w.r.t.") g if $x \in \operatorname{Span}\left(S \cap g^{-1}(n)\right)$ for some n. In such a case we also write $g(x)=n$.

Let g be any additive function on S such that $g\left(\alpha_{j}\right) \neq 0$ for each j. Define a homomorinism $\phi: H \rightarrow$ L by defining it recursively on S, as follows. $\phi(1)=0 . \quad \phi\left(\alpha_{j}\right)=g\left(\alpha_{j}\right) \alpha_{j} . \quad$ For $n>1$, $\phi\left(\alpha_{j_{1}} \ldots \alpha_{j_{n}}\right)=\left[\phi\left(\alpha_{j_{1}} \ldots \alpha_{j_{n-1}}\right), \alpha_{j_{n}}\right]$.

This definition is inspired by a homomorphism Φ which Serre uses in [13, p. LA. 415] to prove the Baker-Campbell-Hausdorff formula.
ϕ will give us a way to get a handle on the elements of the free Lie algebra L. In practice, the additive function g will usually agree with either length (ℓ) or dimension (|), but for now it is best to keep things general.

Recall the Jacobi identities
(4a)

$$
[a, b]+(-1)|b| \cdot|a|_{[b, a]=0}
$$

(4b)(-1) $|a| \cdot|c|[[a, b], c]+(-1)|b| \cdot|a|[[b, c], a]+(-1)|c| \cdot|b|[[c, a], b]=0$.

Lenma 4.1. For $a, b \in \bar{H}, \phi(a \phi(b))=[\phi(a), \phi(b)]$.
Proof. It is enough to prove this when $a, b \varepsilon S$, since both sides are bilinear in a and b . Use induction on $\ell(\mathrm{b})$. If $\ell(\mathrm{b})=1$, the lemma holds by definition of ϕ. Suppose the lemma holds for $\ell(\mathrm{b})<\mathrm{n}$ and take $\ell(\mathrm{b})=\mathrm{n}$. Write $\mathrm{b}=\mathrm{uv}$, where $\ell(\mathrm{v})=1$, $\ell(u)=n-1$. We have $\phi(a \phi(b))=\phi(a \phi(u v))=\phi(a[\phi(u), v])=$ $\phi(a \phi(u) v)-(-1)|u||v|_{\phi(\operatorname{av\phi }(u))}$.

By our inductive assumption this becomes

$$
\begin{aligned}
\phi(a \phi(b)) & =[[\phi(a), \phi(u)], v]-(-1)|u| \cdot|v|_{[\phi(a v), \phi(u)]} \\
& =[[\phi(a), \phi(u)], v]-(-1)|u| \cdot|v|_{[[\phi(a), v], \phi(u)]} \\
& =(b y(4 a))[[\phi(a), \phi(u)], v]+(-1)|u| \cdot|v|+|a| \cdot|v|_{[[v, \phi(a)], \phi(u)]} \\
& =(b y(4 b))(-1)|u| \cdot|a|+|a| \cdot|v|_{[[\phi(u), v], \phi(a)]} \\
& =(b y(4 a))[\phi(a),[\phi(u), v]]=[\phi(a), \phi(u v)]=[\phi(a), \phi(b)] .
\end{aligned}
$$

Lemma 4.2. If a is homogeneous w.r.t. g, then $\phi(\phi(a))=g(a) \phi(a)$.
Proof. It is enough to prove this for a ε S. If $\ell(a)=1$, the lemma holds. Suppose the lemma holds for $\ell(a)<n$ and that $\ell(a)=n$. Write $a=u v$, where $\ell(v)=1, \ell(u)=n-1$. Then $\phi(\phi(a))=\phi(\phi(u v))$

$$
\begin{aligned}
& =\phi([\phi(u), v])=\phi(\phi(u) v)-(-1)|u| \cdot|v|_{\phi(v \phi(u))} \\
& =[\phi(\phi(u)), v]-(-1)|u| \cdot|v|_{[\phi(v), \phi(u)]} \\
& =(b y(4 a))[\phi(\phi(u)), v]+[\phi(u), \phi(v)] .
\end{aligned}
$$

By the inductive assumption this becomes

$$
\begin{aligned}
\phi(\phi(a)) & =g(u)[\phi(u), v]+g(v)[\phi(u), v]=(g(u)+g(v))[\phi(u), v] \\
& =g(u v) \phi(u v)=g(a) \phi(a) .
\end{aligned}
$$

Lemma 4.3. $\phi: H \rightarrow L$ is surjective if char $I F \neq 2$. If char $E=2$, then $L=i m \phi+(i n \phi)^{2}$.

Proof. Im ϕ contains each α_{j} because each $g\left(\alpha_{j}\right)$ is a unit in IF. By 4.1, im ϕ is closed under brackets. Thus im $\phi=\mathrm{L}$ if char IF $\neq 2$.

If char $\mathrm{FF}=2$, L comes with a squaring operation on odddimensional elements as well as a bracket operation. A span for L consists of everything we obtain by a sequence of brackets and squarings. Because $\left[x^{2}, y\right]=[x,[x, y]]$, however, we may assume that the squarings occur only at the end of a sequence of operations. Furthermore, since only odd-dimensional elements may be squared, at most one such squaring can occur. Thus $L=i m \phi+(i m \phi)^{2}$.

Lenma 4.4. Let I be any two-sided ideal of H. If $\phi(a) \varepsilon I$, then $\phi(a b) \varepsilon I$ for any $b \varepsilon H$.

Proof. By induction on $\ell(b)$. If $\ell(b)=1, \phi(a b)=[\phi(a), b] \varepsilon$ ε IH $+\mathrm{HI}=\mathrm{I}$. For $\ell(\mathrm{b})>1$ write $\mathrm{b}=$ uv with $\ell(\mathrm{v})=1$. $\phi(a b)=\phi$ (auv). By the inductive assumption $\phi(a u) \varepsilon I . \quad$ By the above, then, $\phi(a b)=\phi(a u v) \varepsilon I$ as well.

We are concerned next with extending these results to the case where H is a quotient algebra of a free algebra.

Lemma 4.5. Let $\beta=\left\{\beta_{j}\right\} \subseteq$ im ϕ and suppose that each β_{j} is homogeneous w.r.t. g. Let N be the quotient algebra $H / H \beta H$ and let $\pi_{N}: H \rightarrow N$ be the natural projection. Let L_{N} denote the quotient Lie algebra $L /(L \cap H \beta H)$. Then $N=U\left(L_{N}\right)$ and there is a well-defined $\underline{\text { homomorphism }} \phi_{N}: N \rightarrow L_{N}$ satisfying $\phi_{N}\left(\pi_{N}(x)\right)=\pi_{N}(\phi(x))$ for all $x \varepsilon \mathrm{H}$.

Proof. That $N=U\left(L_{N}\right)$ is easy to check. To show ϕ_{N} well-defined we need only confirm that $x \in$ ker π_{N} implies $\phi(x) \varepsilon$ ker π_{N}. Write $\beta_{j}=\phi\left(\delta_{j}\right)$. Because $g\left(\beta_{j}\right)$ exists for each β_{j}, we may assume that each δ_{j} is homogeneous w.r.t. g and that $g\left(\delta_{j}\right)=g\left(\beta_{j}\right)$.

Ker $\pi_{N}=H \beta H=\beta H+\bar{H} \beta H$. Any $x \varepsilon \bar{H} \beta H$ is a sum of terms of the form $a \beta_{j} b . \phi\left(a \beta_{j} b\right)=\phi\left(a \phi\left(\delta_{j}\right) b\right)=-(-1)|a| \cdot\left|\delta_{j}\right|_{\phi\left(\delta_{j} \phi(a) b\right)} \quad$ HRH by using 4.1 and 4.4 if a $\varepsilon \bar{H}$. So $\phi(\overline{\mathrm{H} \beta H}) \subseteq H \beta H .4 .2$ yields $\phi\left(\beta_{j}\right)=\phi\left(\phi\left(\delta_{j}\right)\right)=g\left(\delta_{j}\right) \phi\left(\delta_{j}\right)=g\left(\delta_{j}\right) \beta_{j}$, so $x \varepsilon \beta H \operatorname{implies} \phi(x) \varepsilon H \beta H$ by 4.4. $\phi(H \beta H)=\phi(\bar{H} \beta H)+\phi(\beta H) \subseteq H B H$, as desired.

Consider the diagram

which cormutes by the way ϕ_{N} was defined. All results obtained so far can be extended to N and ϕ_{N}, as we now observe.

Proposition 4.6. Let $\beta^{\prime} \subseteq$ im ϕ be a set of elements homogeneous with respect to g . Let $G=H / H \beta^{\prime} \mathrm{H}$ and $L_{G}=L /\left(L \cap H \beta^{\prime} H\right)$ and $\pi_{G}: H \rightarrow G$ be the natural quotients and projection. Then Lemmas 4.1 through 4.5 still hold if H, L, and ϕ are replaced everywhere by G, $L_{G^{\prime}}$ and ϕ_{G}.

Proof. We use diagram (5) for $N=G$. The fact that π_{G} is surjective means that any statement about elements of G can be lifted to a corresponding statement about H. After applying the appropriate lemma in H we project back down to G.

For the next three lemmas, let H be a free algebra and $G=H / H \beta^{\prime} H$, where each $\beta_{j}^{\prime}=\phi\left(\delta_{j}^{\prime}\right)$ is homogeneous with respect to g.

Lemma 4.7. Let $\beta=\left\{\theta_{j}\right\} \subseteq$ im $\hat{\beta}_{G}$ and write $\beta_{j}=\phi_{G}\left(\delta_{j}\right)$. $L_{G} \cap G \beta G=\phi_{G}(\delta G)$ if char $I F \neq 2$ and $L_{G} \cap G \beta G=\phi_{G}(\delta G)+\phi_{G}(\delta G)^{2}$ if char $I F=2$.

Proof. Let I be the Lie ideal of L_{G} generated by β. That is, I is the smallest Lie ideal of L_{G} which contains $\beta . G / G \beta G=U\left(L_{G} / I\right)$ because $G / G \beta G$ has the requisite universal property. since $L_{G} / I \rightarrow$ \rightarrow G/GßG is an embedding and $L_{G} \cap$ G3G is in the kernel of the composition $L_{G} \rightarrow L_{G} / I \rightarrow G / G \beta G$, we must have $L_{G} \cap G \beta G \subseteq$ I. I¢ $L_{G} \cap G \beta G$, so $I=L_{G} \cap G \beta G$.

When char IF $\neq 2,{\oint_{G}}^{(\delta G)}$ is a Lie ideal by 4.1 and 4.3. Since $\phi_{G}(\delta G) \subseteq I, I=\phi_{G}(\delta G)$. When char $I F \neq 2$, I must be closed under squares as well as brackets with elements of $L_{G} \cdot \phi_{G}(\delta G)+\phi_{G}(\delta G)^{2} \subseteq I$. $\phi_{G}(\delta G)+\phi_{G}(\delta G)^{2}$ is a Lie ideal by $4.1,4.3$ and the rule $\left[x^{2}, y\right]=$ $[x,[x, y]]$. Conclude that $I=\phi_{G}(\delta G)+\phi_{G}(\delta G)^{2}$.

Lemma 4.8. If char $I F=2, L_{G}=\phi_{G}(G) \oplus \phi_{G}(G)^{2}$ and ()$_{G}^{2}: \quad\left(\phi_{G}(G)\right)_{o d d} \rightarrow \phi_{G}(G)^{2}$ is an isomorphism which doubles degrees.

Proof. If H is free, $\phi(H) \cap \phi(H)^{2}=0$ and $L=\phi(H) \oplus \phi\left(H^{2}\right)$. Recall that $G=H / H \beta^{\prime} H$, where $\beta_{j}^{\prime}=\phi\left(\delta_{j}^{\prime}\right) . \phi\left(\delta^{\prime} H\right) \cap \phi\left(\delta^{\prime} H\right)^{2} \subseteq$ $\subseteq \phi(H) \cap \phi(H)^{2}=0$, so $\phi\left(\delta^{\prime} H\right)+\phi\left(\delta^{\prime} H\right)^{2}=\phi\left(\delta^{\prime} H\right) \oplus \phi\left(\delta^{\prime} H\right)^{2}$. Using 4.7 and $4.3, L_{G}=L /\left(L \cap H \beta^{\prime} H\right)=\left(\phi(H) \oplus \phi(H)^{2}\right) /\left(\phi\left(\delta^{\prime} H\right) \oplus \phi\left(\delta^{\prime} H\right)^{2}\right)=$ $=\left(\operatorname{im} \phi_{G}\right) \oplus\left(\operatorname{im} \phi_{G}\right)^{2}$.

If $y \in L_{G}$ has $y^{2}=0$, pull back to any $x \in L$ with $\pi_{G}(x)=y$. $x^{2} \varepsilon \phi\left(\delta^{\prime} H\right)^{2}$. Since ($)^{2}$ is an isomorphism in H, this requires $x \varepsilon \phi\left(\delta^{\prime} H\right)$, i.e., $y=\pi_{G}(x)=0$. Thus ()$_{G}^{2}$ is an isomorphism as well.

Let M be a graded IF-module. If char IF $\neq 2$, let $\mathscr{F}(M)$ denote the commutative algebra generated by M. That is, $P_{(M)}$ is the tensor product of an excerior algebra on a basis for odd-dimensional :1
with a tensor algebra on a basis for even-dimensional M. If char $\mathbb{F}=2, \vartheta(M)$ denotes the tensor algebra on a basis for M.

In Lemma 4.9 we drop the subscripts on ϕ_{G} and L_{G} and associate ϕ and I with the quotient algebra G.

Lemma 4.9. As graded IF-modules, there is an isomorphism $G \approx P(\operatorname{im} \phi) \cdot$ Furthermore, suppose $\beta=\left\{\beta_{j}\right\}^{\prime}, \beta_{j}=\phi\left(\delta_{j}\right)$. Then as F-modules, $G / G \beta G=\hat{\rho}(\phi(G) / \phi(\delta G))$.

Proof. First take char $I F \neq 2$. That $G \approx \hat{\rho}(\operatorname{im} \phi)=\hat{\rho}(L)$ is simply the graded version of the Poincaré-Birkhoff-Witt theorem [4]. Let $N=G / G \beta G$. The same theorem indicates that $N \approx \mathcal{P}\left(L_{N}\right)=$ $=\boldsymbol{P}(L /(L \cap G \beta G))$. By 4.7 this may be written as $N \approx \mathcal{P}(L / \phi(\delta G))=$ $\rho(\phi(G) / \phi(\delta G))$.

For char $\mathbb{F}=2$, let $L_{1}=(\operatorname{im} \phi)_{\text {odd }}$ and $L_{2}=(\operatorname{im} \phi)_{\text {even }}$ By 4.8, $L=L_{1} \oplus L_{2} \oplus L_{1}^{2}$ and ()$^{2}: L_{1} \rightarrow L_{1}^{2}$ is an isomorphism. Let $E(\cdot)$ denote an exterior algebra on a basis and $T(\cdot)$ a tensor algebra. $G \approx E\left(L_{\text {odd }}\right) \otimes T\left(L_{\text {even }}\right) \approx E\left(L_{1}\right) \otimes T\left(L_{1}^{2}\right) \otimes T\left(L_{2}\right) \approx T\left(L_{1}\right) \otimes T\left(L_{2}\right)=$ $T\left(L_{1} \oplus L_{2}\right)=T(i m \phi)$. Finally, using 4.7 and $4.8, N=G / G \beta G \approx$ $\approx E\left(\left(L_{N}\right)\right.$ odd $) \otimes T\left(\left(L_{N}\right)\right.$ even $)$ $\approx E\left(L_{1} / \phi(\delta G)_{\text {odd }}\right) \otimes T\left(L_{1}^{2} / \phi(\delta G)\right\}^{2} \otimes T\left(L_{2} / \phi(\delta G)_{\text {even }}\right)$ $\approx T\left(L_{1} / \phi(\delta G)_{\text {odd }}\right) \otimes T\left(L_{2} / \phi(\delta G)_{\text {even }}\right)$ $\approx T(\phi(G) / \phi(\delta G))$, as desired.

Remarks. We will find Lemma 4.9 very useful when we do Poincaré series computations.

Lemmas 4.1 through 4.6 will simpljfy our work considerably when evaluating $\phi(G)$ and $\phi(\delta G)$. The only "loose end" is the somewhat unusual constraint that each β_{j}^{\prime} be homogeneous w.r.t. g. Since β_{j}^{\prime} will always be homogeneous w.r.t. dimension anyway, we can generally take $g=\pi_{\mathbb{F}} \cdot|\cdot|$, where $\pi_{\mathbb{F}}: \mathbb{Z} \rightarrow \mathbb{F}$ is the canonical map of rings.

This approach always works if char $I H^{\prime}=0$. However, it fails if char $I F=p \neq 0$ and there is a generator α_{j} whose dimension is divisible by p. Then $\phi\left(\alpha_{j}\right)=0$, and $\operatorname{im} \phi\left(\right.$ or $\operatorname{im} \phi+(\operatorname{im} \phi)^{2}$) is no longer all of L .

Using $\pi_{\text {IF }} \circ \ell$ for g always results in a suitable ϕ, but there is no guarantee that each β_{j} will be homogeneous w.r.t. π IF ${ }^{\circ}$ \&. (Of course, this may be true in individual cases, such as when all the generators have the same dimension.) for these reasons we have done everything with the flexibility afforded by an arbitrary additive g.

5. Generalized Products

In general, the problem of precisely determining the Lie elements or the Poincaré series of a finitely presented algebra is very difficult. In Section 5 we define a class of such algebras, called "generalized products", whose algebraic structures are particularly well-behaved. At the same time, there is sufficient freedom in the definition to allow quotient algebras of these generalized products to have very interesting properties.

We begin with a discussion of semi-tensor products as described by Massey and Peterson [9] and by Smith [15]. Let H_{1} and H_{2} be connected algebras over $\mathrm{IF}_{\mathrm{H}} \mathrm{H}_{1}$ a Hopf algebra. Let $\mathrm{X}: \mathrm{H}_{1} \otimes \mathrm{H}_{2} \rightarrow \mathrm{H}_{2}$ make H_{2} into an algebra over H_{1} (see [15], p. 18). The multiplication $\mu_{2}: \mathrm{H}_{2} \otimes \mathrm{H}_{2} \rightarrow \mathrm{H}_{2}$ is a morphism of H_{1}-modules. Writing $\psi(x)=\sum_{x} x^{\prime} \otimes x^{\prime \prime}$, where ψ is the coproduct of H_{1}, this means that
(6a)

$$
\sum_{x}(-1)^{\left.\left|x^{\prime \prime}\right|\left|y_{1}\right| x\left(x^{\prime} \otimes y_{1}\right) \times\left(x^{\prime \prime} \otimes y_{2}\right)=x\left(x \otimes y_{1} y_{2}\right)\right) ~(x)}
$$

must hold for all $\mathrm{x} \in \mathrm{H}_{1}$ and all $\mathrm{y}_{1}, \mathrm{y}_{2} \in \mathrm{H}_{2}$.
Let $H=H_{1} \Perp H_{2}$ be the free product or "coproduct" of rings as described by Smith ([14], p. 124). H has a universal property based on its being the push-out of the pair of maps $I F \rightarrow H_{1}$, $\mathrm{IF} \rightarrow \mathrm{H}_{2}$. Any module over H_{1} and H_{2} is a module over H .

Let M be a module over both H_{1} and H_{2}, with $\lambda_{i}: H_{i} \otimes M \rightarrow M$ giving the actions for $i=1,2$. By the above remark, this is the same as saying that M is an H-module. In ([15], P. 22) Smith defines M to be an $\left(H_{2}, H_{1}, X\right)$-module if λ_{2} is a morphism of H_{1}-modules, i.e., if
(6b) $\left.\sum_{x}(-1)^{\mid x}| | y\right|_{\lambda_{2}}\left(x\left(x^{\prime} \otimes y\right) \otimes \lambda_{1}\left(x^{\prime \prime} \otimes z\right)\right)=\lambda_{1}\left(x \otimes \lambda_{2}(y \otimes z)\right)$
for all $x \in H_{1}, y \in H_{2}, z \varepsilon M$.
Lastly, the semi-tensor product of H_{1} and H_{2}, denoted H_{2} © H_{1}, is defined to be an object isomorphic with $\mathrm{H}_{2} \mathrm{H}_{1}$, as an IF-module. Its algebraic structure, however, is given by $\mu:\left(\mathrm{H}_{2} \odot \mathrm{H}_{1}\right) \otimes\left(\mathrm{H}_{2} \odot \mathrm{H}_{1}\right) \rightarrow$ $\rightarrow \mathrm{H}_{2}$ ○ H_{1}, where
$(6 c) \mu\left(\left(y_{1} \odot x_{1}\right) \otimes\left(y_{2} \odot x_{2}\right)\right)=\sum_{x_{1}}(-1)^{\left|x_{1}^{\prime \prime}\right|\left|y_{2}\right|} y_{1} x^{\prime}\left(x_{1}^{\prime} \otimes y_{2}\right) \circ x_{1}^{\prime \prime} x_{2} \cdot$
Theorem 5.1. Let H_{1}, H_{2} be as above, with H_{1} primitive. Let T_{i} be a set of multiplicative generators for $H_{i}, i=1,2$. For $(a, b) \varepsilon T_{1} \times T_{2}$, let $h_{a b}=\chi(a \otimes b) \varepsilon H_{2}$. Let $\hat{\beta}_{a b}=[a, b]-h_{a b} \varepsilon H=$ $=H_{1} \Perp H_{2}$ Let $\hat{\beta}=\left\{\hat{\beta}_{a b} \mid(a, b) \varepsilon T_{I} \times T_{2}\right\}$ and let $G=H / H \hat{B} H$. Then an H-module M is an $\left(H_{2}, H_{1}, X\right)$-module if and only if it is a G-module.

Proof. We notate the actions of λ_{1} and λ_{2} simply by juxtaposition. First suppose M is an $\left(H_{2}, H_{1}, \chi\right)$-module. Taking $x=a$, $y=b$ in (6b) we get $h_{a b} z+(-1)|a||b|_{b a z}=a b z$ for $a \varepsilon T_{1}, b \varepsilon T_{2}$, $z \varepsilon$ M. Then $\hat{\beta}_{a b} z=\left(a b-(-1)|a||b|_{b a}-h_{a b}\right) z=0$, so M is a module over G as well.

Conversely, assume Formula (6b) holds for (a,b) $\varepsilon T_{1} \times T_{2}$. We must show that it holds for any $(x, y) \varepsilon H_{1} \times H_{2}$. First we show that it holds for any $(a, y) \& T_{1} \times H_{2}$. It is enough to show that (6b) holds for $\left(a, y_{1} y_{2}\right)$ given that it holds for $\left(a, y_{1}\right)$ and (a, y_{2}). Since a is primitive, (6b) becomes

$$
x\left(a \otimes y_{1} y_{2}\right) z+(-1)^{|a|\left|y_{1} y_{2}\right|} y_{1} y_{2} a z=a y_{1} y_{2} z
$$

By (6a), $x\left(a \otimes y_{1} y_{2}\right)=x\left(a \otimes y_{1}\right) y_{2}+(-1)^{|a|\left|y_{1}\right|} y_{1} x\left(a \otimes y_{2}\right) \cdot$ We wish to verify that

$$
\left(x\left(a \otimes y_{1}\right) y_{2}+(-1)^{|a|\left|y_{1}\right|} y_{1} x\left(a \otimes y_{2}\right)+(-1)^{|a|\left|y_{1} y_{2}\right|} y_{1} y_{2} a-a y_{1} y_{2}\right) z=0
$$

Since (6b) is valid for $\left(a, y_{2}\right)$, the second and third terms may be combined, giving

$$
\begin{aligned}
& \left(x\left(a \otimes y_{1}\right) y_{2}+(-1)|a|\left|y_{1}\right|\right. \\
& \left.y_{1} a y_{2}-a y_{1} y_{2}\right) z=0, \quad \text { or } \\
& \left(x\left(a \otimes y_{1}\right)+(-1)^{|a|\left|y_{1}\right|} y_{1} a-a y_{1}\right) y_{2} z=0 .
\end{aligned}
$$

But this last equation follows from the fact that (6 b) holds for (a, y_{1}). We have shown that (6b) is valid for any (a,y) $\varepsilon \mathrm{T}_{1} \times \mathrm{H}_{2}$.

Now let $x_{1}, x_{2} \in H_{1}$ and suppose that ($6 b$) holds for (x_{1}, y) and $\left(x_{2}, y\right)$ for any $y \in H_{2}$. We now show that ($6 b$) holds for ($x_{1} x_{2}, y$). From this it will follo:: that (6 b) is valid for all $(\mathrm{x}, \mathrm{y}) \in \mathrm{H}_{1} \times \mathrm{H}_{2}$.

We wish to check that

$$
\sum_{x_{1} x_{2}}(-1)^{\left|\left(x_{1} x_{2}\right)^{\prime \prime}\right||y|} x\left(\left(x_{1} x_{2}\right)^{\prime} \otimes y\right)\left(x_{1} x_{2}\right)^{\prime \prime} z=x_{1} x_{2} y z
$$

By the usual formula,

$$
\sum_{x_{1} x_{2}}\left(x_{1} x_{2}\right)^{\prime} \otimes\left(x_{1} x_{2}\right)^{\prime \prime}=\sum_{x_{1}} \sum_{2} x_{2}(-1)^{\left|x_{1}\right|\left|x_{2}^{\prime}\right|} x_{1}^{\prime} x_{2}^{\prime \prime} x_{1}^{\prime \prime}
$$

Using this, our expression becomes

$$
\sum \sum(-1)^{\left.\left|x_{1}^{\prime \prime}\right|\left|x_{2}^{\prime}\right|_{(-1)}\left|x_{1}^{\prime \prime} x_{2}^{\prime \prime}\right||y|_{X\left(x_{1}^{\prime} x_{2}^{\prime}\right.}^{\prime} \otimes y\right) x_{1}^{\prime \prime} x_{2}^{\prime \prime} z=x_{1} x_{2} y z .}
$$

$$
x_{1} \quad x_{2}
$$

Since $X\left(x_{1}^{\prime} x_{2}^{\prime} \otimes y\right)=X\left(x_{1}^{\prime} \otimes X\left(x_{2}^{\prime} \otimes y\right)\right)$, we may obtain
$\sum \sum \sum(-1)^{\left.\left|x_{1}^{\prime}\right|\left|x_{2}^{\prime}\right|_{(-1)}\left|x_{2}^{\prime \prime}\right||y|_{(-1)}\left|x_{1}^{\prime \prime}\right||y|_{\chi\left(x_{1}^{\prime}\right.}^{\prime} \otimes x\left(x_{2}^{\prime} \otimes y\right)\right) x_{1}^{\prime \prime \prime \prime} x_{2}^{\prime \prime}=x_{1} x_{2} y z, ~}$ $x_{2} x_{1}$
which in turn becomes

$$
\sum_{\sum_{2}(-1)}\left|x_{2}^{\prime \prime}\right||y| \sum_{x_{1}}(-1)\left|x_{1}^{\prime \prime}\right|\left|x_{2}^{\prime} \otimes y\right|^{\prime} x\left(x_{1}^{\prime} \otimes x\left(x_{2}^{\prime} \otimes y\right) x_{1}^{\prime \prime}\right] x_{2}^{\prime \prime} z=x_{1} x_{2} y z
$$

Because (6b) is valid for each $\left(x_{1}, \chi\left(x_{2}^{\prime} \otimes y\right)\right)$, the expression in the bracket can be replaced by $x_{1} \chi\left(x_{2} \otimes y\right)$. We obtain

$$
x_{1} \sum_{x_{2}}(-1)^{\left|x_{2}^{\prime \prime}\right||y|} x\left(x_{2}^{\prime} \otimes y\right) x_{2}^{\prime \prime} z=x_{1} x_{2} y z
$$

This last equation follows from our assumption that (6b) holds for (x_{2}, y). Corollary 5.2. Under the conditions of 5.1, $G=H_{2} \odot H_{1}$.

Proof. By ([15], Prop. 2.2), the semi-tensor product is an H-module and is universal among ($\mathrm{H}_{2}, \mathrm{H}_{1}, X$-modules. By 5.1 , then, $\mathrm{H}_{2} \odot \mathrm{H}_{1}$ is the universal G-module. The universal module for any ring is the ring itself, hence, $\mathrm{H}_{2} \odot \mathrm{H}_{1}=\mathrm{G}$.

For the remainder of Section 5 we will assume that $H_{1}=\mathbb{F}<T_{1}>$ and $H_{2}=\mathbb{F}\left\langle T_{2}>\right.$. Let $h_{a b} \varepsilon H_{2}$ be arbitrary for (a,b) $\varepsilon T_{1} \times T_{2}$, subject only to the condition $\left|h_{a b}\right|=|a|+|b|$. For each a εT_{1}, let $\xi_{a}: H_{2} \rightarrow H_{2}$ be defined by $\xi_{a}(1)=0, \xi_{a}(b)=h_{a b}$ for $b \varepsilon T_{2}$, and $\xi_{a}\left(y_{1} y_{2}\right)=\xi_{a}\left(y_{1}\right) y_{2}+(-1)|a|\left|y_{1}\right|_{y_{1} \xi_{a}\left(y_{2}\right)}$. Because H_{2} is free, ξ_{a} is well-defined. Define an action $X: H_{1} \otimes H_{2} \rightarrow H_{2}$ by $\chi\left(a_{1} \ldots a_{n} y\right)=\xi_{a_{1}} \circ \ldots \circ \xi_{a_{n}}(y)$. Because H_{1} is free, X is well-defined.

Proposition 5.3. X makes H_{2} into an algebra over H_{1} -
Proof. Considering the similarity between (6a) and (6b), H_{2} is an algebra over H_{1} if it is an ($\left.\mathrm{H}_{2}, \mathrm{H}_{1}, \mathrm{X}\right)$-module. We would like to apply 5.1. In the proof of 5.1 we assumed only that (6a) holds for $\mathrm{x}=\mathrm{a} \varepsilon \mathrm{T}_{1}$. This assumption follows in this case from ξ_{a} being a derivation. We need only check that H_{2} is a G-module. This means verifying that $X(a \otimes b z)=(-1)|a||b|_{b X}(a \otimes z)+h_{a b} z$ for any a εT_{1}, $\mathrm{b} \varepsilon \mathrm{T}_{2}, \mathrm{z} \varepsilon \mathrm{H}_{2}$. This is the same as the claim
$\xi_{a}(b z)=(-1)^{|a||b|} b \xi_{a}(z)+h_{a b} z$, or $\xi_{a}(b z)=\xi_{a}(b) z+(-1)|a||b|_{b \xi_{a}}(z)$.
This last expression follows directly from the derivation rule also.
Lemma 5.4. View H_{2} as a submodule of $G=H_{2} \odot H_{1}$. Then $\xi_{a}=a d(a)$.
Proof. There is a unique homomorphism $\lambda: H_{2} \rightarrow H_{2}$ satisfying
$\lambda(1)=0, \lambda(b)=h_{a b}$ for $b \varepsilon T_{2}$, and $\lambda\left(y_{1} y_{2}\right)=\lambda\left(y_{1}\right) y_{2}+(-1)|a|\left|y_{1}\right|_{y_{1}} \lambda\left(y_{2}\right)$.
Because $[a, b]=a d(a)(b)=h_{a b}$ in G, both ξ_{a} and $a d(a)$ satisfy these conditions.

Proposition 5.5. Let $\beta \subseteq H_{2}$ be any subset. Let $N=H_{2} / H_{2} X\left(H_{1} \otimes \beta\right) H_{2}$. Then N is an algebra over H_{1}, and $N \odot H_{1}=H /(H \hat{\beta} H+H \beta H)$.

Proof. Let $G=H / \hat{B} H$. The action of H_{1} on N is inherited directly from $X: \mathrm{H}_{1} \otimes \mathrm{H}_{2} \rightarrow \mathrm{H}_{2}$. Let $\mathrm{I}=\mathrm{H}_{2} X\left(\mathrm{H}_{1} \otimes \beta\right) \mathrm{H}_{2}$. We must verify that $X(x \otimes y) \varepsilon I$ if $y \varepsilon I$ for any $x \in H_{1}$. It is enough to check that $\xi_{a}(y) \varepsilon I$ if $y \in I$ for each a εT_{I}. This follows from the derivation property for ξ_{a}.

To obtain $N \odot H_{1}=H /(H \hat{\beta} H+H \beta H)$, we show that $N \odot H_{1}=G / G \beta G$.
From 5.2, $\mathrm{N} \odot \mathrm{H}_{1}$ is a quotient of $\mathrm{H}=\mathrm{H}_{1} \Perp \mathrm{H}_{2}$ and the set $\hat{\beta} \cup X\left(H_{1} \otimes \beta\right)$ generates all the relations. We must show that any relation $\chi\left(x \otimes \beta_{j}\right)=0, x \in H_{1}$, is a consequence of the relations $\hat{\beta}=0$ and $\beta=0$ in H. Factoring through $G, X\left(H_{1} \otimes \beta\right) \subseteq G \beta G$ by 5.4. Thus $N \odot H_{1}=G / G \beta G$.

Recall the homomorphism $\dot{\psi}$ of Section 4, defined for an additive function 9 . Choose such a ϕ for the free algebra $H=\mathbb{F}_{1}<T_{1} \cup T_{2}>$. Definition. Suppose each $h_{a b} \varepsilon \phi\left(H_{2}\right)$; write $h_{a b}=\phi\left(\hat{\delta}_{a b}\right)$. Suppose also that each $\hat{\beta}$ ab is homogeneous w.r.t. g, i.e., that $g(a)+g(b)=g\left(\hat{\delta}_{a b}\right)$ for each $(a, b) \varepsilon T_{I} \times T_{2}$. Then $G=H / H \hat{\beta} H$ is called a generalized product.

By 4.5, ϕ_{G} is defined on G. We henceforth drop the subscrint on ϕ_{G} and associate ϕ with G.

Define an action $\sigma: \mathrm{H}_{1} \otimes \mathrm{H}_{2} \rightarrow \mathrm{H}_{2}$ by $\sigma(\mathrm{x} \otimes 1)=0$ for $\mathrm{x} \varepsilon \mathrm{H}_{1}$ and $\sigma(a \otimes b y)=g(b) \hat{\delta}_{a b} y+(-1)|a||b|_{b \xi_{a}}(y)$ for $a \varepsilon T_{1}, b \varepsilon T_{2}, y \varepsilon H_{2}$. H_{2} is a module, but not an algebra, over H_{1} via σ.

Proposition 5.6. Let G be a generalized product. Suppose $\delta \subseteq \mathrm{H}_{2}$ is any set and let $\beta_{j}=\phi\left(\delta_{j}\right)$. Let $\Delta=\sigma\left(\mathrm{H}_{1} \otimes \delta\right)$. Then $\phi(\Delta)=X\left(\mathrm{H}_{1} \otimes \beta\right)$. Furthermore, as \mathbb{F}-modules,

$$
\begin{equation*}
G / G \beta G \approx H_{1} \otimes P\left(\phi\left(H_{2}\right) / \phi\left(\Delta H_{2}\right)\right) \tag{7}
\end{equation*}
$$

Proof. Let S be the standard basis of monomials for H_{1}. We prove that $\phi\left(\sigma\left(x \otimes \delta_{j}\right)\right)=\chi\left(x \otimes \beta_{j}\right)$ by induction on $\ell(x)$ for $x \varepsilon S$. To begin with, $\phi\left(\sigma\left(1 \otimes \delta_{j}\right)\right)=\phi\left(\delta_{j}\right)=\beta_{j}=x\left(1 \otimes \beta_{j}\right)$, so the formula holds for $x=1$, i.e., when $\ell(x)=0$. Now suppose that it has been verified for $\ell(x)<n$ and that $u \varepsilon S$ has $\ell(u)=n$. Write $u=a x$, where $a \varepsilon T_{I}$ and $\ell(x)=n-1$. We wish to verify that

$$
\phi\left(\sigma\left(a x \otimes \delta_{j}\right)\right)=\chi\left(a x \otimes \beta_{j}\right)
$$

By the inductive hypothesis and 5.4 and 5.1 the right-hand side is $\chi\left(a x \otimes \beta_{j}\right)=\xi_{a}\left(\chi\left(x \otimes \beta_{j}\right)\right)=\left[a, \phi\left(\sigma\left(x \otimes \delta_{j}\right)\right)\right]$. Since the left-hand side is $\phi\left(\sigma\left(a x \otimes \delta_{j}\right)\right)=\phi\left(\sigma\left(a \otimes \sigma\left(x \otimes \delta_{j}\right)\right)\right)$, our formula will follow if we show that $\phi(\sigma(a \otimes b y))=[a, \phi(b y)]$ for any by $\varepsilon \bar{H}_{2}$. (Here we are replacing $\sigma\left(x \otimes \delta_{j}\right)$ by a sum of terms of the form by).

This last equation can readily be confirmed. In fact, it is what motivated the rather unusual definition of σ. Starting with the fact that $[a, b]=\phi\left(\hat{\delta}_{a b}\right)$ in G, we have

$$
\left.\phi(b a)=g(b)[b, a]=-(-1)|a||b|_{g(b)[a, b]=-(-1)}|a||b|_{g(b) \phi(\hat{\delta}}^{a b}\right)
$$

and

$$
\begin{aligned}
& g(b) \phi\left(\hat{\delta}_{a b} y\right)=-(-1)|a||b|_{\phi(b a y)} \text { for any } y \varepsilon H_{2} \text {. } \\
& \phi(\sigma(a \otimes b y))=\phi\left(g(b) \hat{\delta}_{a b} y+(-1)|a||b|_{b \xi_{a}}(y)\right) \\
& =-(-1)|a||b|_{\phi(b a y)}+(-1)|a||b|_{\phi(b[a, y])} \\
& =-(-1)|a||b|_{\phi(b a y}-b a y+(-1)|a||y|_{b y a} \\
& =-(-1)|a||b|_{(-1)}|a||y|_{\phi(b y a)} \\
& =-(-1)|a||b y|_{[\phi(b y), a]} \\
& =[a, \phi(b y)] \text { as desired. }
\end{aligned}
$$

To obtain Formula (7), $G / G B G=N \oplus H_{1} \approx N \otimes H_{1}$ by 5.5, so we must show that $\mathrm{N} \approx \rho\left(\phi\left(\mathrm{H}_{2}\right) / \phi\left(\Delta \mathrm{H}_{2}\right)\right)$. This follows from 4.9 and the now-established relation $\phi(\Delta)=x\left(H_{1} \otimes \beta\right)$.

Remarks. Formula (7) simplifies the work of computing G/GßG immensely. We need only to find a basis for $\phi\left(\mathrm{H}_{2}\right) / \phi\left(\Delta \mathrm{H}_{2}\right)$. This simplification makes quotients of generalized products especially favorable objects to study when we are looking for finitely presented algebras with prescribed properties. The task before us now is to construct one with an irrational Poincaré series. To be sure this will give us what we want, however, we need:

Lemma 5.7. Let G be a generalized product. Let $\delta \subseteq H_{2}$ be any subset. Let S be the standard basis of monomials for $H=I F<T_{1} \cup T_{2}>$. Suppose that each $\hat{\delta}_{a b}$ and each δ_{j} is a finite sum of the form
$\sum_{\varepsilon_{S}} c_{x} x$, where the coefficients C_{x} and $\operatorname{im}(g)$ are in the image of the natural map $\pi_{I F}: \quad \mathbb{Z} \rightarrow$ IF. Let $\tilde{\beta}=\hat{\beta} \cup \phi(\delta)$. Then there is a complex Y which is the mapping cone of two wedges of spheres whose homology is described in 3.7 with $H=H_{*}(\Omega X)$ and $N=G / G \beta G$. If T_{1}, T_{2}, and δ are finite, then Y is finite and $H_{*}(\Omega Y)(Z)$ is a rational function of ($G / G \beta G$) (Z).

Proof. Under the given conditions, each $\hat{\beta}_{a b}$ and each $\beta_{j}=\phi\left(\delta_{j}\right)$ can be realized by a sum of repeated Whitehead products of generators. Thus we can actually construct a map \tilde{f} from a wedge of spheres to x which gives rise to $\tilde{\beta} \subseteq H_{*}(\Omega X)=H$. If T_{1} and T_{2} are finite, $H(Z)$ is rational and $\hat{\beta}$ is finite. Theorem 3.7 applies because X is a wedge of spheres.

6. An Irrational Poincaré Series

We next consider a fairly specific type of generalized product for which we can do an explicit calculation. As a corollary we obtain a finite complex whose loop space has an irrational Poincaré series. At the same time, we illustrate various ideas and methods which can be used to compute the $\phi\left(\mathrm{H}_{2}\right) / \phi\left(\Delta \mathrm{H}_{2}\right)$ of Formula (7).

Let M be any finitely presented connected (not necessarily Hopf!) algebra. Write $M=W / W r W$, where $W=I F<W_{1} \ldots W_{n}>$ and $W r W$ is the twosided ideal of W generated by the set $r=\left\{r_{1}, \ldots r_{m}\right\}$.

Our generalized product is constructed as follows. Let T_{2} consist of $\left\{w_{1}, \ldots w_{n}\right\} \cup\left\{u_{1}, \ldots u_{n}\right\} \cup\{s\}$. Their dimensions are given by $\left|u_{j}\right|=\left|w_{j}\right|$ and $|s|$ is arbitrary as long as $|s|<2 \min \left\{\left|w_{j}\right|\right\}$. Let $U=I F<u_{1}, \ldots u_{n}>$. Note that $H_{2}=I F<T_{2}>$ has various free subrings, including W, $W\langle S\rangle, U$, and $W H$. Let T_{1} consist of $\left\{p_{1} \ldots p_{n}\right\} U$ $\cup\left\{q_{i j} \mid 1 \leq i, j \leq n\right\}$. These should satisfy $\left|p_{j}\right|=\left|w_{j}\right|$ and $\left|q_{i j}\right|+|s|=$ $=\left|w_{i}\right|+\left|w_{j}\right|$.

The action of H_{1} on H_{2} is determined by the set $\left\{\hat{\delta}_{a b}\right\}$ for $(a, b) \varepsilon T_{1} \times T_{2} \cdot \hat{\delta}$ has $\#\left(T_{1}\right) \#\left(T_{2}\right)=(2 n+1)\left(n^{2}+n\right)$ elements, but a great simplification is achieved because most of them will be zero. Define $\hat{\delta}_{a b}=0$ with the following exceptions:

$$
\begin{aligned}
& \hat{\delta}_{p_{i} u_{j}}=u_{i} w_{j} \text { for } 1 \leq i, j \leq n \\
& \hat{\delta}_{q_{i j} s}=u_{i} w_{j} \text { for } 1 \leq i, j \leq n
\end{aligned}
$$

Let $g=\pi_{\text {IF }} \circ$ 2, i.e., specify that g (any generator) $=1$. We obtain a non-trivial ϕ and each $\hat{\beta}_{a b}$ is homogeneous w.r.t. g. Indeed, each $g\left(\hat{\beta}_{a b}\right)=2$. Thus $G=H_{2} \circ H_{1}$ is a generalized product.

Submodules of H_{1} and H_{2} will be denoted according to our usual conventions, for example, uW denotes the subset of H_{2} spanned by all $u_{i}{ }^{w_{j}}{ }_{l} \ldots W_{j}$ and $H_{l} q_{1}$ is the two-sided ideal of H_{1} generated by the $\left\{q_{i j}\right\}$.

Next we specify the set $\beta=\phi(\delta) \subseteq H_{2}$ which we divide out by. Let us denote the set $\left\{u_{i} s\right\}_{1 \leq i \leq n}$ and uu denote $\left\{u_{i} u_{j}\right\}_{1 \leq i, j \leq n}$. Define $\operatorname{a} \operatorname{map} \theta: \bar{W} \rightarrow u W$ by $\theta\left(w_{j_{i}} \ldots w_{j_{k}}\right)=u_{j_{1}}{ }^{w_{j_{2}}} \ldots w_{j_{k}} . \quad \theta$ is an isomorphism of right W-modules. Let $\delta=$ us \cup uu $U \theta(r)$, where we recall that $r \subseteq \bar{W}$ is our original set of relations used in defining M.

Theorem 6.1. Let $M, H_{1}, H_{2}, G, \delta$ be as above. Then as IF-modules,

$$
\begin{equation*}
\mathrm{G} / \mathrm{G} \beta \mathrm{G} \approx \mathrm{H}_{1} \otimes \mathrm{~W}\langle\mathrm{~S}\rangle \otimes \ominus(\overline{\mathrm{M}}) \tag{8}
\end{equation*}
$$

Proof. By 5.6 we must show that $\mathcal{P}\left(\phi\left(\mathrm{H}_{2}\right) / \phi\left(\Delta \mathrm{H}_{2}\right)\right)=W<s>\otimes \hat{\mathcal{P}}(\overline{\mathrm{M}})$, where $\Delta=\sigma\left(\mathrm{H}_{1} \otimes \delta\right)$. The proof is given in a series of lemmas.

Lemma 6.2. $\sigma\left(\mathrm{H}_{1} \otimes \theta(r)\right)=\theta(W r)$.
Proof. Note that $\xi_{p_{i}}(W<s>)=0$ and consequently $\sigma\left(p_{i} \otimes \theta(x)\right)=$ $=\theta\left(w_{i} x\right)$ for $x \in W . \quad \xi_{q_{i j}}(x)=0$ and $\sigma\left(q_{i j} \otimes x\right)=0$ for $x \varepsilon W H$ U. Thus $\sigma\left(\mathrm{H}_{1} \mathrm{qH}_{1} \otimes \theta(r)\right)=0$ and $\sigma\left(\mathrm{H}_{1} \otimes \theta(r)\right)=\theta(W r)$.

Lemma 6.3. $\sigma\left(\mathrm{H}_{1} \otimes(u s W+u u W)\right)=u W s W+u W u W$.
Proof. Let $I=u W s W+u W u W$. Recall our formulas for ξ_{a} and σ. $\sigma\left(p_{i} \otimes u W s W\right) \subseteq u W s W . \quad \sigma\left(q_{i j} \otimes u W s W\right) \subseteq u W \xi_{q_{i j}}(s) W \subseteq u W u W$. $\sigma\left(p_{i} \otimes u W u W\right) \subseteq \hat{\delta}_{p_{i}} u W u W+u W \xi_{p_{i}}(u) W \subseteq u W u W . \quad \sigma\left(q_{i j} \otimes u W u W\right)=0$.
From these four inclusions we deduce that $\sigma\left(H_{1} \otimes I\right) \subseteq I$.
It remains to show that all of I can be obtained by starting
with usW and uuW. $\sigma\left(p_{i} \otimes u_{j} x s y\right)=u_{i} w_{j} x s y$ for $x, y \in W$.
uWsW $\subseteq \sigma\left(\mathrm{H}_{1} \otimes u s W\right)$ by induction on $\ell(x)$.

To obtain uWuN $\subseteq \sigma\left(\mathrm{H}_{1} \otimes(u s W+u W N)\right.$ is more difficult. Let $J=\sigma\left(H_{1} \otimes(u s W+u u W)\right)$. Let $y \varepsilon W$ and let x belong to the standard basis for W. If $\ell(x)=0 ; u_{i} x u_{j} y \in J$ because uuW $=\sigma(1 \otimes u u W) \subseteq J$. Suppose that $u_{i} x_{1} u_{j} y \in J$ is known for all y and for all monomials x_{1} shorter than x. Write $x=x_{1} w_{k}$ and start with the assertion, proved above, that $u_{i} x_{1} s y \in J . \quad \sigma\left(q_{j k} \otimes u_{i} x_{1} s y\right)=\left.(-1) q_{j k}| | u_{i}\right|_{u_{i} x_{1}} \phi\left(u_{j} w_{k}\right) y=$ $= \pm u_{i} x_{l} u_{j} w_{k} y \pm u_{i} x_{1} w_{k} u_{j} y$, where each " \pm " denotes an appropriate sign. $\pm u_{i} x_{l} u_{j} w_{k} y \pm u_{i} x u_{j} y \in J$ and $u_{i} x_{l} u_{j}\left(w_{k} y\right) \varepsilon J$ by the inductive assumption, so $u_{i} x_{j} y \in J$, as desired.

Lemma 6.4. $\phi\left(\mathrm{H}_{2}\right) / \phi\left(\Delta \mathrm{H}_{2}\right)=\phi(W<s>) \oplus(\phi(u W) / \phi(\theta(W r W)))$.
Proof. $\phi\left(\mathrm{H}_{2}\right)=\phi(W<s>) \oplus \phi\left(\mathrm{H}_{2} \mathrm{uH}_{2}\right)=\phi(W<s>) \oplus \phi\left(u H_{2}\right)=$ $=\phi(W<s>) \oplus \phi(u W) \oplus \phi\left(u W s H_{2}+u W u H_{2}\right)$.

$$
\phi\left(\Delta H_{2}\right)=\phi\left(\Delta W H_{2}\right)=\phi\left(\theta(W r) H_{2}\right)+\phi\left(\sigma\left(H_{1} \otimes(u s \cup u u)\right) W H_{2}\right)
$$

Because σ is a right W-morphism, this becomes

$$
\phi\left(\Delta H_{2}\right)=\phi(\theta(W r) W)+\phi\left(\theta(W r) W u H_{2}+\theta(W r) W s H_{2}\right)+\phi\left(u W s H_{2}+u W u H_{2}\right)
$$

Since $\theta(W r) \subseteq u W$, the second summand is contained in the last, yielding

$$
\phi\left(\Delta \mathrm{H}_{2}\right)=\phi(\theta(W r) W)+\phi\left(u W s H_{2}+u W u H_{2}\right)
$$

θ is a right W-morphism and $\theta(W r W) \subseteq u W$. We obtain

$$
\phi\left(\mathrm{H}_{2}\right) / \phi\left(\Delta \mathrm{H}_{2}\right)=\phi(W\langle s\rangle) \oplus(\phi(u W) / \phi(\theta(W r W))) \oplus(0)
$$

Lemma 6.5. $\phi \circ \theta: \bar{W} \rightarrow \phi(u W)$ is an isomorphism.
Proof. $\phi \circ \theta$ is immediately surjective. For injective we refer the reader to $[16, \mathrm{pp} .15-16]$. One possible basis for the free Lie algebra $\phi\left(\mathrm{H}_{2}\right)$ is the basis of Chen-Fox-Lyndon. Choose an ordering on T_{2} which satisfies $u_{i}<w_{j}$ for all i and j. For any basis monomial $x \in \bar{W}, \theta(x)$ is one of the "basic products" of H_{2} which correspond to a basis for $\phi\left(H_{2}\right)$. $\{\phi(\theta(x)) \mid x$ a basis monomial of $\bar{W}\}$ is a subset of the Chen-Fox-Lyndon basis for $\phi\left(\mathrm{H}_{2}\right)$. This set is therefore linearly independent, implying ker $\phi \circ \theta=0$.

Lemma 6.6. $P\left(\phi\left(\mathrm{H}_{2}\right) / \phi\left(\Delta \mathrm{H}_{2}\right)\right) \approx W\langle s\rangle 9 \mathcal{P}^{\prime}(\overline{\mathrm{M}})$.
Proof. By 6.4, $\hat{\mathcal{V}}\left(\phi\left(\mathrm{H}_{2}\right) / \phi\left(\Delta \mathrm{H}_{2}\right)\right)=\boldsymbol{P}(\phi(W\langle s\rangle)) \otimes$
$\otimes Q(\phi(u W) / \phi(\theta(W r W)))$. By 4.9 the first factor isomorphic with $\mathrm{W}\langle\mathrm{s}\rangle$. By 6.5 the second factor is isomorphic with $\hat{O}(\phi \circ \theta(\bar{W} / \mathrm{WrW})) \approx$ $\approx \vartheta(\overline{\mathrm{M}})$. This completes the proof of Theorem 6.1.

Example 6.7. Take M to be a polynomial ring on one generator. $M=W=\mathbb{F}<W_{1}>$ with no relations. Take $\left|p_{1}\right|=\left|q_{11}\right|=\left|u_{1}\right|=\left|w_{1}\right|=$ $=|s|=1$. (This is the simplest possible case of 6.1). Because there is only one generator of each type, we drop the subscripts and write $H=I F<p, q, u, w, s>$. Let G be the generalized product obtained from H by dividing out by the six relations

$$
\begin{array}{lll}
\beta_{1}=[p, u]-[u, w] & \beta_{2}=[p, w] & \beta_{3}=[p, s] \\
\beta_{4}=[q, u] & \beta_{5}=[q, w] & \beta_{6}=[q, s]-[u, w]
\end{array}
$$

Let $N=G / G B G$ be the quotient algebra obtained by dividing further by $\beta=\left\{\beta_{7}, \beta_{8}\right\}$, where

$$
\beta_{7}=[u, s] \quad \beta_{8}=[u, u]
$$

Then $N(Z)$ is not a rational function of Z.
Proof. By 6.1, $N(Z)=H_{1}(Z) \cdot W\langle s\rangle(Z) \cdot P(\bar{M})(Z)$. The first
factor is $H_{1}(Z)=(1-2 Z)^{-1}$ because $\left.H_{1}=I F<p, q\right\rangle$ is free with $|p|=|q|=1$. The second factor is also $(1-2 Z)^{-1}$ because $W\langle s\rangle=I F\langle w, s\rangle$ is free with $|w|=|s|=1$.

The last factor is $\mathcal{P}(\overline{I F<w>})(Z)$. A basis for $\overline{I F<w>}$ consists of $\left\{w^{j} \mid j \geq 1\right\}$ and hence has one element in each dimension $1,2,3, \ldots$ Let $P_{2}(z)=\prod_{j=1}^{\infty}\left(1-z^{j}\right)^{-1}$ and $P_{0}(Z)=\prod_{j=1}^{\infty}\left(\frac{1+z^{2 j-1}}{1-z^{2 j}}\right)$. We have shown that

$$
N(Z)=\left\{\begin{array}{l}
(1-2 Z)^{-2} P_{2}(Z) \text { if char } F=2 \tag{9}\\
(1-2 Z)^{-2} P_{0}(Z) \text { if char } F \neq 2 .
\end{array}\right.
$$

The proof of 6.7 will be complete when we show that $P_{2}(Z)$ and $P_{0}(Z)$ are not rational. For this we have

Lemma 6.8. $P_{2}(Z)$ and $P_{0}(Z)$ are not rational functions of Z. Proof. First note that both infinite products converge for $|z|<1$. From the inequality $e^{x} \geq 1+x$ for real x, conclude $x \geq 1+\log (x) . \quad$ Set $x=\frac{1}{1-|z|^{j}}$ to obtain $\frac{|z|^{j}}{1-|z|^{j}} \geq-\log \left(1-|z|^{j}\right)$.
Then $\left|\log P_{2}(z)\right|=1-\sum_{j=1}^{\infty} \log \left(1-z^{j}\right) \mid \leq-\sum_{j=1}^{\infty} \log \left(1-|z|^{j}\right) \leq$ $\leq \sum_{j=1}^{\infty} \frac{|z|^{j}}{1-|z|^{j}} \leq \sum_{j=1}^{\infty} \frac{|z|^{j}}{1-|z|}=\frac{|z|}{(1-|z|)^{2}}<\infty$, so $P_{2}(z)$ converges for $|z|<1$. For $P_{0}(Z)$ simplify each factor of the infinite product by $\left|\frac{1+z^{2 j-1}}{1-z^{2 j}}\right| \leq \frac{1+|z|^{2 j-1}}{1-|z|^{2 j}} \leq \frac{1+|z|^{j}}{1-|z|^{2 j}}=\frac{1}{1-|z|^{j}}$ for each $j \geq 1$, so $\left|P_{0}(Z)\right| \leq P_{2}(|z|)$, and $P_{0}(Z)$ also converges for $|Z|<1$.

Both $P_{0}(Z)$ and $P_{2}(Z)$ are analytic functions which converge for $|z|<1$. If they were rational, they could be extended to analytic functions with a pole of at most finite order at $z=1$. But
$\lim _{Z \rightarrow 1^{-}}(Z-1)^{k} P_{2}(Z)$ and $\lim _{Z \rightarrow 1^{-}}(Z-1)^{k} P_{0}(Z)$ do not exist for any $k--$ contradiction: So $P_{2}(Z)$ and $P_{0}(Z)$ are not rational functions.

Corollary 6.9. Let V be the four-dimensional complex obtained from ${ }_{j=1}^{5} s^{2}$ by attaching eight cells corresponding to the Whitehead products of Example 6.7. Then $H_{*}(\Omega V)(Z)=\sum_{n=0} \operatorname{Rank}\left(H_{n}(\Omega V ; \mathbb{F})\right) Z^{n}$ is not a rational function of z.

Proof. This follows directly from 5.7 and 6.7.

Remarks. V has only thirteen cells (in addition to a base point) and $\operatorname{dim} V=4$. If char $\mathbb{F}=2$, the last cell (corresponding to β_{8}) can be omitted since $[u, u]=0$. In fact, over a field of characteristic different from two, β_{8} can be omitted from the description and $N(Z)$ will still be irrational. With this change Eq. (9) would be modified by an additional factor of $\left(1-z^{2}\right)^{-1}$ in front of $P_{0}(Z)$.

7. The Serre-Kaplansky Problem

Let R be a local Artin ring with maximal ideal lut and residue field $I F=R / u r$. Is the Poincaré series of $R, P_{R}(Z)=$ $=\sum_{n=0}^{\infty} \operatorname{Rank}\left(\operatorname{Tor}_{n}^{R}(\mathbb{F}, \mathbb{F})\right) z^{n}$, a rational function of Z ?

Jan-Erik Roos [11] has recently shown that this question, known as the Serre-Kaplansky problem, ties in closely with the question of the rationality of the Hilbert series for a finitely presented Hopf algebra. In particular, suppose $N=H / H \beta H$, where $H=J F<\alpha_{1} \ldots \alpha_{n}>$ with each $\left|\alpha_{i}\right|=1$ and $\beta=\left\{\beta_{1}, \ldots \beta_{m}\right\} \subseteq \phi(H)$ is linearly independent with each $\left|\beta_{j}\right|=2$. Then Roos shows [11, pp. 298-301] that there is a local ring R with n generators and $\mu t^{3}=0$ satisfying

$$
\begin{equation*}
P_{R}(Z)^{-1}=\left(1+z^{-1}\right) N(Z)^{-1}-z^{-1}\left(1-n z+m z^{2}\right) \tag{10}
\end{equation*}
$$

Thus $P_{R}(Z)$ is a rational function of $N(Z)$. Example 6.7 therefore allows us to answer the Serre-Kaplansky problem in the negative. To make this specific, we have

Example 7.1. Suppose char IF $\neq 2$. Let K be the local ring $R=I F\left(x_{1}, \ldots x_{5}\right) / J$, where J is the ideal generated by $\mu \mu R^{3}$ and
the relations

$$
\begin{gathered}
x_{1}^{2}=x_{2}^{2}=x_{4}^{2}=x_{5}^{2}=0 \\
x_{1} x_{2}=x_{4} x_{5}=x_{1} x_{3}+x_{3} x_{4}+x_{2} x_{5}=0
\end{gathered}
$$

If char $\mathbb{F}=2$, include $x_{3}{ }^{2}=0$ in J as well. Then $P_{R}(Z)$ is not rational.

Proof. R is found by dualizing Example 6.7, with β_{8} being omitted if char $I F=2$.
$P_{R}(Z)$ may be computed explicitly from formulas (9) and (10). In (9), take $n=5$ and $m=8$ if char $\mathbb{F} \neq 2$ and take $n=5$ and $m=7$ if char $\mathbb{F}=2$.
8. What Can $H_{*}(\Omega X)(Z) B e$?

Let $C=\left\{H_{*}(\Omega X)(Z) \mid x\right.$ a simply-connected finite CW-complez $\}$. We have seen that C includes more than just rational power series. Is there some other easily characterized, countable set of power series which contains \mathbb{C} ? We do not have a complete answer, but in this section we take some steps toward a description of C.

Lemma 8.1. Let $H(Z)=H_{*}(\Omega X)(Z) \varepsilon C$, where X is not homotopically trivial. As a power series in $Z, H(Z)$ has a radius of convergence Ω about $z=0$, where $0<\kappa \leq 1$.

Proof. Let $H(Z)=\sum_{i=0}^{\infty} c_{i} z^{i}$ and $H_{*}(X)(Z)=\sum_{i=0}^{\infty} d_{i} z^{i}$. Use the Serre spectral sequence of the fibration for $\Omega \mathrm{X}$. Since X is finite and not homotopy equivalent to a point, there are infinitely many dimensions in which $c_{i} \geq 1$. So $H(1)$ does not converge, i.e., $\ell \leq 1$.

From the same spectral sequence we have $c_{i} \leq \sum_{j=1}^{\infty} d_{j+1} c_{i-j}$,
with $c_{0}=1, c_{i}=0$ for $i<0$. Let $\left\{b_{i}\right\}$ be the coefficients satisfying $\left(1-\sum_{i=1}^{\infty} d_{i} z^{i-1}\right)^{-1}=\sum_{i=1}^{\infty} b_{i} z^{i} \cdot b_{0}=1, b_{i}=0$ for $i<0$, and $b_{i}=\sum_{j=1} d_{j+1} b_{i-j}$. By induction on i, conclude that $0 \leq c_{i} \leq b_{i}$ for all i. Because $d_{i}=0$ for $i>\operatorname{dim} X_{r}$ $\left(1-\sum_{i=1}^{\infty} d_{i} z^{i-1}\right)^{-1}$ is a rational function of Z. X simply connected means $d_{1}=0$, so this function is continuous and non-zero in a neighborhood of $Z=0$. In particular, it has a positive radius of convergence. There is an $\mathscr{\varkappa}_{0}>0$ such that $\sum_{i=0}^{\infty} b_{i} \mathscr{M}_{0}^{i}<\infty$, which implies $\sum_{i=0}^{\infty} c_{i} \Re_{0}^{i}<\infty$ as well. Thus $\boldsymbol{\mu} \geq \mu_{0}>0$.

Lemma 8.2. If $\operatorname{dim} x \leq 3$, then $H_{*}(\Omega X)(Z)$ is rational.
Proof. Any simply connected finite X of dimension three may be written as the mapping cone of a map between two wedges of $s^{2} s$. It follows that X is the suspension of a finite complex $X_{1} \cdot H_{*}(\Omega X)(Z)=$ $=\left(1-\vec{H}_{*}\left(X_{1}\right)(Z)\right)^{-1}$ is rational.

Thus four is the minimum dimension X can have for $H_{*}(\Omega X)(Z)$ to be irrational. In 6.9, the complex V has this minimal dimension.

Let $\mathscr{M}=\{N(Z) \mid N=H / H B H$, where $H=I F<T>$ and T is finite and $\beta \subseteq \phi(H)$ is finite\}. By 3.7 , each member of η is a rational function of something in C. By 9.1, each $N(Z) \varepsilon \eta$ has a positive radius of convergence.

Definition. Let A, B be power series in Z with leading coefficient unity. The wedge $A \vee B$ of A and B is given by $(A \vee B)^{-1}=A^{-1}+B^{-1}-1$.

This terminology is suggested by the fact that $H_{*}\left(\Omega X_{1}\right)(Z) V$ $\vee H_{*}\left(\Omega X_{2}\right)(Z)=H_{*}\left(\Omega\left(X_{1} \vee X_{2}\right)\right)(Z)($ see $[14], p .130)$.

Lemma 8.3. C and η are each closed under wedges and products.
Proof. For $\left(P\right.$, let $A=H_{*}(\Omega X)(Z), B=H_{*}(\Omega Y)(Z)$. We have $A \vee B=H_{*}(\Omega(X \vee Y))(Z)$ and $A B=H_{*}(\Omega(X \times Y))(Z)$. For q, let $H_{i}=$ $I F<T_{i}>$ and $N_{i}=H_{i} / H_{i} \beta_{i} H_{i}$ for $i=1,2 . \quad N_{1}(Z) V N_{2}(Z)=N(Z)$, where N is the free product of N_{1} and N_{2}. Specifically, $H=\mathbb{F}<T_{1}$ \& $T_{2}>$, $\beta_{0}=\beta_{1} \Perp \beta_{2}$, and $N=H / H \beta_{0} H$. Lastly, the product $N_{1}(Z) \cdot N_{2}(Z)=$ $=\left(N_{1} \otimes N_{2}\right)(Z)$, and $N_{1} \otimes N_{2}=H / H \beta H$, where $\beta=\beta_{0} \Perp\left\{\left[\alpha_{i}, \alpha_{j}\right] \mid \alpha_{i} \varepsilon T_{1}\right.$, $\left.\alpha_{j} \varepsilon T_{2}\right\}$.

Definition. Let $P\left(z^{d}\right)$ denote $\left(1-z^{d}\right)^{-1}$, if d is even or char $I F=2$ and let $P\left(Z^{d}\right)=1+Z^{d}$ if d is odd and char $I F \neq 2$. Define a function P from power series with leading coefficient zero to power sexies with leading coefficient unity by $\boldsymbol{P}(\bar{M}(Z))=$ $=P(\bar{M})(Z)$, or $P\left(\sum_{i=1}^{\infty} a_{i} z^{i}\right)=\prod_{i=1}^{\infty} P\left(z^{i}\right)^{i}$. \boldsymbol{P} takes the coefficients of a power series and uses them as exponents in an infinite product.

Proposition 8.4. Let $N(Z) \varepsilon \neq$. Write $N=H / H \beta H$, where $H=I F<\alpha_{1}, \ldots \alpha_{n}>, \quad$ Set $\alpha(Z)=\sum_{i=1}^{n} z^{\left|\alpha_{i}\right|}$. Then

$$
\left(1-\alpha(z)-z^{-1} \alpha(Z)^{2}\right)^{-1}(1-z-\alpha(z))^{-1} P(N(z)-1) \varepsilon \mathcal{Y}
$$

Proof. This is a direct consequence of Theorem 6.1. Let $M=N$ and take $|s|=1$ for simplicity. $H_{1}(Z)=\left(1-\alpha(Z)-z^{\left.-|s| \alpha(Z)^{2}\right)^{-1}, ~}\right.$ and $W<s>(Z)=\left(1-Z^{|s|}-\alpha(Z)\right)^{-1}$ are rational functions of Z. Our hypotheses could actually be weakened in that $N(Z)$ could be the Hilbert series of any finitely presented algebra.

Proposition 8.4 shows that any set containing C or η will have to be fairly complicated. For any $N \in \mathscr{Y}, \mathcal{l}$ contains a rational function of $P(N-1)$. Thus η contains rational functions of $\Pi^{\infty} P\left(Z^{i}\right)^{a}{ }_{i}$, where a_{i} can be a polynomial in i, a geometric series, $i=1$ or defined by many other finite recursions. Furthermore, these irrational series can themselves be subjected to the operation \mathcal{P}, and so on. In this way we obtain some very highly transcendental functions as the Hilbert series of finitely presented Hopf algebras.

To apply these results to local rings, let $C_{1}=$ $\left\{H_{*}(\Omega \mathrm{X})(\mathrm{Z}) \in \mathcal{C} \mid \operatorname{dim} \mathrm{X} \leq 4\right\}$ and $\eta_{1}=\left\{(\mathrm{H} / \mathrm{H} \beta \mathrm{H})(\mathrm{Z}) \in \eta \mid \mathrm{H}=\mathrm{F}<\alpha_{1}, \ldots \alpha_{k}>\right.$ and $\beta=\left\{\beta_{1}, \ldots \beta_{m}\right\}$, where each $\left|\alpha_{i}\right|=1$ and each $\left.\left|\beta_{j}\right|=2\right\}$.
proposition 8.5. C_{1} is closed under wedges. η_{1} is closed under wedges and products. Also, 8.4 still holds if η is replaced by η_{1} throughout.

Proof. The proofs from 8.3 are still valid. In the proof that η is closed under products, the only new relations we introduced are commutators of generators, which always have dimension two in \mathcal{Z}_{1}. Also, in the proof of 6.1, all relations introduced have dimension two because each $\left|w_{j}\right|=1=|s|$ and each $\left|r_{j}\right|=2$.

Our research has left several questions unanswered, and we close with just one conjecture about the class C. Recall that a complex X is said to have category $\leq \mathrm{n}$ if X can be written as the union of n contractible closed subsets. If cat $\mathrm{X} \leq \mathrm{n}$, then any cup products in $\overline{\mathrm{H}}^{*}(\mathrm{X})$ involving n or more factors must vanish.

Conjecture 8.6. Let x be finite with cat $x=n>1$ and let $H(Z)=H_{\star}(\Omega X)(Z)$ Let \mathcal{K} be the radius of convergence of H, as in 9.1. Then $r+O i$ is a pole of $H(Z)$ whose order is $\leq n-1$.

REFERENCES

1. Adams, J.F. and Hilton, P.J., "On the chain algebra of a loop space", Comm. Math. Helv. 30 (1958), 305 - 330.
2. Adams, J.F., "On the cobar constructions", Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 409-412.
3. Cartan, H. and Eilenberg, S., Homological Algebra, Princeton University Press, Princeton, N.J., 1956.
4. Cohen, F.R., Moore, J.C., and Neisendorfer, J.A., "Torsion in homotopy groups", Annals of Math. 109 (1979), 121-168.
5. Eilenberg, S. and Moore, J.C., "Homology and fibrations I", Comm. Math. Helv. 40 (1966), 199-236.
6. James, I.M., "Reduced product spaces", Annals of Math. 62 (1955), $170-197$.
7. Lemaire, J-M., "Algèbres Connexes et Homologie des Espaces de Lacets", Lecture Notes in Mathematics 422, Springer-Verlag, Berlin, 1974.
8. Lemaire, J-M., "Autopsie d'un meurtre dans l'homologie d'une algèbre de chaines", Ann. scient. Ec. Norm. Sup., 4^{e} série, Vol. 11 (1978), pp. 93 - 100.
9. Massey, W.S. and Peterson, F.P., "The cohomology structure of certain fiber spaces - I", Topology, Vol. 4, No. 1 (1965), pp. 47-66.
10. Milnor, J. and Moore, J.C., "On the structure of Hopf algebras", Annals of Math. 81 (1965), 211 - 264.
11. Roos, J-E., "Relations between the Poincaré-Betti series of loop spaces and of local rings", Lecture Notes in Mathematics 740, pp. 285 - 322, Springer-Verlag, Berlin, 1979.
12. Serre, J-P., "Algèbre Locale, Multiplicitês", Lecture Notes in Mathematics 11, Springer-Verlag, Berlin, 1965.
13. Serre, J-P., Lie Algebras and Lie Groups, "1964 Lectures given at Harvard University", W.A. Benjamin, Inc., New York, 1965.
14. Smith, L., "Lectures on the Eilenberg-Moore Spectral Sequence", Lecture Notes in Mathematics 134, Springer-Verlag, Berlin, 1970.
15. Smith, L., "Split extensions of Hopf algebras and semi-tensor products", Mathematica Scandinavia 26 (1970), pp. 17-41.
16. Viennot, G., "Algèbres de Lie Libres et Monoïdes Libres", Lecture Notes in Mathematics 691, Springer-Verlag, Berlin, 1978.
