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ABSTRACT

The recent closed-loop control scheme for a roll bending
system shows good performance at low feedrates, but there is
still an instability problem due to the workpiece vibration at
high feedrates. The objective of this research is to make a
model of the workpiece related to instability of the roll
bending system and to design an adaptive control system that
will stabilize the system.

A dynamic analysis of the workpiece in a roll bending process
is presented to show workpiece vibration, which causes
instability of the system. The workpiece is modelled as a
cantilever beam composed of a static section and a free
section. The maximum moment for roll bending results from the
static moment due to the point load and the dynamic moment due
to the lateral beam vibration. The first mode frequency is
used as the natural frequency of the workpiece dynamics, and
the damping ratio was obtained by a test using a dynamic
structural analyzer. The natural frequency was shown to be a
length-dependent parameter, and the roll bending system is
nonminimum phase due to the workpiece dynamics. The simulated
responses based on the workpiece model agree with the
experimental responses. As the workpiece length continuously
increases the system becomes unstable due to the increased
vibration and low frequency of the workpiece.

An adaptive control system is required to stabilize the
system and to obtain better performances. The typical adaptive
controls such as a Self Tuning Control(STC) or MRAC(Model
Reference Adaptive Cotrol) are not suitable for this system
because of the length-variant frequency and nonminimum phase.
Thus, a modified Scheduled Gain Adaptive Control(SGAC) is
proposed, using root-locus method and Tustin's approximation
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for the discrete-time controller. The simulated responses show
that the system can be stabilized regardless of the increased
length of the workpiece and that the feedrate can be increased
up to 25 inch/sec. A robust MRAC with a new adaptive law is
proposed for zero residual tracking errors in nonminimum phase
system. The simulation shows that the system behaves
satisfactorily up to about 3 seconds with a feedrate of 10
in/sec. The proposed control scheme represents a major
improvement in the roll bending system because of the stability
at increased feedrates.

Thesis Supervisor: Dr. David E. Hardt
Title: Associate Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION

1.1. Previous Research

Roll bending is widely used in the metal forming industry to

form continuous curvature shapes from long flat materials. It

can provide fast operations for circular shapes and high

dimensional accuracies of the workpiece. A pyramid three-roll

bending apparatus shown in Figure 1.1 is a typical

configuration of roll bending with a movable center roll and a

pair of fixed outer rolls. As the workpiece travels through

the rolls, the center roll is adjusted to produce a variable

bend along the length of the workpiece. In this way each point

can be given a specific maximum moment and a corresponding

permanent deformation.

Recently the roll bending process is sought to be automated,

because the manual reworking of the part to obtain the desired

precise shape is time-consuming and expensive. Control of roll

bending has been the subject of several investigations, but

none has yet addressed the central problem of stability and

productivity of the roll bending system because of the

workpiece vibration. The recent works by Hardt [1], Allison

[2], and Stelson [3] have shown that a material adaptive

control scheme can be developed for the brakeforming process

which will significantly improve productivity by explicitly
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accounting for material properties. The roll bending process

is a variation of the brakeforming process. Hansen [4] and

Cook et al. [5] designed an open loop controller for a roll

bending machine and demonstrated that good control of the final

shape is possible if the material properties including

springback are known beforehand. A closed loop control of the

system has been developed by Roberts [6], Hardt [7], and Hale

[8] to obtain a desired shape of the workpiece, using a servo

and output feedback. The advantage of this control scheme is

that no prior knowledge is required for controller

implementation. Although the control scheme works well in

theory, the process is limited to very low feedrates below 0.7

in/sec due to instability.

An improved control system using velocity feedback, which was

developed by Hale [9], showed that a desired shape was formed

at low feedrates of about 3.3 in/sec, without knowing workpiece

model. But the system was still unstable at high feedrates of

about 13 in/sec due to the effect of the unknown workpiece

vibration. Therefore it is essential to develop a reliable

model of the workpiece dynamics and design a controller that

will stabilize the system even at high feedrates for complete

automation.

I
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1.2. Thesis Overview

The static analysis and closed loop control of roll bending

has been developed for automatic roll bending control system,

but the model of the workpiece dynamics, which is related to

oscillation and instability, is yet unknown. In this research,

the dynamic analysis of the workpiece is presented and an

adaptive controller is designed for the system stability and

productivity.

The mechanics of the roll bending process is presented in

Chapter 2. The moment-curvature relationship and curvature-

roll position relationship are introduced, showing the

springback and nonlinearity as the characteristics of the

workpiece.

In Chapter 3, a workpiece model and a dynamic analysis of the

roll bending process are presented. The main parameters of

workpiece, natural frequency and damping ratio, are obtained by

theoretical analysis and a test using a dynamic analyzer.

These values determine the positions of poles and zeroes of the

workpiece on root-locus, which is used in the analysis of the

system and the design of a controller. The transfer function

between the center-roll position and the unloaded curvature is

obtained, including the workpiece dynamics. The simulated

responses are obtained to check the workpiece model with the

experimental responses.
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In Chapter 4, a Scheduled Gain Adaptive Control (SGAC) system

for system stability is proposed. A continuous-time controller

for SGAC is designed, based on the root locus method. It is

converted to a discrete-time controller for the real time

control, by using Tustin's Approximation method.

Chapter 5 provides the Model Reference Adaptive Control

(MRAC) applications to the proposed roll bending system. The

adaptive part is located around the plant and constructed prior

to a controller design. The NLV algorithm is used for the

stable MRAC system. A new adaptive law is also used for the

robust MRAC with zero residual tracking errors.

Chapter 6 contains the conclusions and some suggestions for

future research. The computer programs used for the

simulations are presented in the Appendix.
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CHAPTER 2

STATIC ANALYSIS AND CLOSED LOOP CONTROL

2.1. Introduction

A number of analyses of the bending mechanics have been

developed. The goal of these analyses is to predict the

unloaded curvature response of the workpiece with the given

initial geometry, constitutive law of the material, and the

applied moment. The term "curvature" used in this thesis

denotes the curvature of the natural plane unless otherwise

specified. In this chapter the static analysis of roll bending

mechanics is presented, considering the springback and

nonlinearity of the material.

The closed loop control system and the experimental responses

of a roll bending process, performed by Hale 9], are also

presented in this chapter. In the work presented by Hale [9],

only the static model of the workpiece was considered, and the

system became unstable at high feedrate due to the workpiece

vibration. In this chaper the same control system as the one

in [9] is reanalyzed, using the system block diagram. In the

next chapter modelling and simulation of the workpiece dynamics

will be presented to show the workpiece vibration. The same

control method used for the experiments in 9] will be used for

the simulation in order to check the workpiece model.
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2.2. Moment-Curvature Relationship

A workpiece in a three roll bending apparatus can be modeled

as a beam under three-point loading, as shown in Figure 2.1.

As beam is loaded, initially the material is stressed

elastically. If the stress in the loaded beam is below the

yield stress, the beam will recover its original shape by

springback when the beam is unloaded. However, if the beam is

loaded past the elastic limit, the beam is plastically deformed

and will be permanently deformed when unloaded. The

relationship between the stress state of workpiece and the

resulting curvature can be seen in the moment-curvature

relationship, which can be derived from the stress-strain

relationship.

As the workpiece moves through the rolls, the bending moment

of a point fixed in the workpiece increases progressively as it

approaches the center roll. If no more moment is generated

between the center and fixed outer rolls, the workpiece has the

maximum bending moment at the center roll contact point. Once

the workpiece passes the center roll, the moment decreases to

zero at the outer roll contact point. During the roll bending

process, the pinch roll is allowed to rotate about the center

of the drive roll. In this way, the pinch roll seeks the point

of zero rate-of-change or maximum moment location. Although

not strictly correct, it is assumed that the moment varies

linearly with arc-length of the workpiece, as shown in Figure
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2.2. The center roll contact position on the workpiece is not

necessarily mid-point between the outer rolls because of the

floating roll arrangement.

The moment-curvature diagram for a typical loading and

unloading of an initially flat workpiece is shown in Figure

2.3. In the elastic region below the yielding moment, the

workpiece deforms linearly to the original shape when unloaded.

However, if it is loaded beyond the proportional limit, both

the elastic and plastic deformation occurs. As the moment

begins to decrease, the workpiece will unload elastically along

the line almost parallel to the initial elastic line, until the

moment vanishes. At that point, the workpiece has a permanent

or unloaded curvature Ku. The workpiece springback K is

defined as the difference between the maximum loaded curvature

and the final unloaded curvature:

AK = KL - Ku (2.1)

where KL is the maximum loaded curvature and Ku is the

unloaded curvature. The springback can also be expressed in

terms of the moment. Since the unloading path is a linear

function of the moment, the springback can be defined by:

(2.2)A K(s) = M(s) / (dM/dK)
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where K is the springback at a location s associated with a

maximum moment M(s) at the same point and dM/dK is the slope of

the elastic loading line.

Several methods of determining springback are suggested by

this moment- curvature (M-K) relationship. In one method, the

M-K relationship is defined by a priori measurements such as

stress-strain data or force-displacement data during a static

bending operation. While this approach completely defines the

material constitutive relations during the bending operation,

it has a drawback of relying on measurements made prior to the

processing of the metal.

An alternative method of determining springback is to

directly measure the necessary properties of the workpiece

during the process itself. By using the roll forces and

displacements, it is possible to construct an approximate M-K

diagram that can be used to calculate the springback for

process control. This method has been successfully applied to

control three-point bending where the M-K information is

derived from in-process measurement of die forces and die

displacements. However, a major source of error remains in the

estimation of sheet curvature because it is not directly

measured.

From the above two equations (2.1) and (2.2), the
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moment-curvature relationship can be expressed as:

Ku = KL - M / (dM/dK) (2.3)

This equation shows that t is possible to calculate the

unloaded curvature of the workpiece while the workpiece is in

the loaded condition if the moment and the loaded curvature at

the contact point under the center roller are known together

with the bending stiffness of the workpiece.

If predictive or open-loop control is applied in this

process, the M-K relationship should be precisely known. If K

is directly measured at the outlet side of the machine, the

data cannot be used to correct the error at that point, but can

only be used to eventually maintain a constant final curvature.

By contrast, the elastic bending properties of metals are well

behaved and can be exploited in a highly accurate closed-loop

control scheme. From Equation (2.3), it is apparent that we

can indirectly measure the unloaded curvature if we can measure

the loaded curvature, maximum moment, and the bending

stiffness, as mentioned before. Such a control scheme was

performed by Hardt et al. [7] and the block diagram of the

closed-loop roll bending control system is shown in Figure 2.4.
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2.3. Curvature-Roll Position Relationship

The static section of the workpiece, which is placed between

the center and outer rolls, can be modeled as a cantelever beam

with the clamp at the center roll contact point as shown in

Figure 2.5. The relation between the deflection of the beam at

any point x along the beam and the loaded curvature is derived

from static analysis:

= d2y F(. -x) (24)KL -24
dx2 EI

where EI is the bending stiffness of the workpiece. By

integrating Equation (2.4) twice with the boundary conditions!

y(O) = 0 and dy (0) = (2.5)
dx

the deflection, yx, of the workpiece at any point x along the

workpiece can be expressed below:

Y x ( _x - -) (2.6)
EI 2 6

Since maximum loaded curvature occurs at x=O, it can be

obtained from Equation (2.4):
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KL = (2.7)
EI

From Equation (2.6), F/EI can be obtained :

F = Yx _(2.8)

El (|#)x2 x3
2 6

Substituting Equation (2.8) into Equation (2.7) gives the

relation between the maximum loaded curvature and the

deflection of the beam.

K YX ~~~~~~~~~~(2.9)
KL = x (2.9)

Qx _ x3

2 6

This equation shows that the loaded curvature is a linear

function of the displacement of the workpiece at any point x.

At the end point of the workpiece, x = A, the deflection of the

workpiece is the displacement of the center roll. Then, the

loaded curvature can be expressed as a function of the center

roll displacement:
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KL = YP (2.10)
32

where yp is the center roll displacement. This equation

shows that the loaded curvature is not dependent on material

properties, and thus it is very useful for the static analysis

of the workpiece.

2.4. Closed Loop Control

A closed loop control system using a simple proportional

controller and proportional-plus-derivative feedback was

proposed by Hale [9). A velocity servo was used to introduce a

free integrator to the system for the zero steady-state error.

The workpiece model only considers the static relationship with

a nonlinearity between the unloaded curvature and the center

roll position, as mentioned before.

It is very difficult to measure the rate of change of

unloaded curvature. It is possible, however, to obtain a

reasonably good approximation of the rate of change of unloaded

curvature. Thus the derivative feedback, the rate of change of

unloaded curvature, was approximated by the rate of change of

the roll velocity, which is the control variable. The

estimated derivative feedback was derived from Equation (2.10):
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· 3 Yp
Ku = ( 2.11)

12

The form of the controller with the control scheme described

above is:

U = G [KUd - K - (G2) (KU) ] (2.12)

where U is the controller output, G is the controller gain,

and Ku is given by Equation (2.11). Here, G2 is used to

determine the location of zero.

Substituting Equation (2.11) into Equation (2.12) gives

another form of the controller for '~ instead of K.

2

U = G1 CKud - Ku (G ) ( 2 ) j (2.13)

Then the relationship between the roll velocity feedback

gain, Kv, and G2 can be obtained:

3 
KV= -~ ( G2) (2.14)

.1~~~~~~~~~2.)

Considering the servo model, static workpiece model, and
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closed loop control system with a proportional controller and

proportional-plus- velocity feedback using center roll

velocity, the system block diagram can be constructed as in

Figure 2.6.

In the experiments using the above control scheme 9], the

center roll velocity was used for the derivative feedback of

unloaded curvature, as proposed before. The unloaded curvature

was indirectly obtained, by measuring the loaded curvature and

maximum moment, as suggested in 6] and 7]. Figures 2.7 and

2.8 shows the experimental responses at 13 in/sec feedrate,

performed by Hale 9], where the input command is a step

curvature change of 0.01/in.

The experiments show that the workpiece vibration is a major

factor resulting in the system instability. As the controller

gain, G, increases and the roll velocity feedback gain, Kv, or

G2 decreases, the system becomes unstable more rapidly. Since

the workpiece vibration is the major factor which limits the

roll bending system response, it is necessary to study the

workpiece dynamics in order to analyze the vibration problem

and to stabilize the system.
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CHAPTER 3

MODELING AND DYNAMIC ANALYSIS

3.1. Workpiece Modeling

3.1.1. Workpiece Model

Workpiece dynamics is related to the stability of the rol

bending system. However, a satifactory analysis of the

workpiece dynamics is yet to be developed. As the workpiece

rolls through the roll bending machine, the workpiece vibration

increases and eventually leads to the system instability. Thus

it is essential to analyze the dynamics of the roll bending

system to model the workpiece and obtain the relationship

between the workpiece dynamics and the desired curvature.

Cook et al [5] performed experiments to determine an

appropriate model of a three roll bending system. They found

that a transfer function relating the center roll position to

the loaded curvature was well described by an underdamped

second oredr system. They then developed a state variable

feedback control system to regulate the sheet curvature and

succeeded in obtaining a good response. A model for workpiece

dynamics was suggested by Hardt et al [7], to show the effect

of workpiece dynamics on the closed loop control of the

workpiece shape. The workpiece was modelled as a cantilever

beam with a static section and a free section. The analysis of

the workpiece dynamics shows that the beam length continuously
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increases, and thus the free section clearly dominates the

workpiece dynamics as the workpiece rolls through. They then

found that the fundamental frequency of the workpiece vibration

determined the required system band limit.

General workpiece models have been suggested for the

automatic roll bending control system. However, none of the

models incorporates the workpiece dynamics related to vibration

in the transfer function relating the center roll position to

the unloaded curvature. In this chapter a workpiece model

including the workpiece dynamics is presented as well as the

system control.

It is assumed that each half of the workpiece is modelled as

a cantilever beam with a clamp at the center roll contact

point, a clamp joint with a point load at the outer roll

contact point, and a free section with a lateral beam vibration

beyond the outer roll, as shown in Figure 3.1. Such

configuration suggests that the workpiece mechanics can be

divided into a static section between the center roll and the

outer roll, and a dynamic section beyond the outer roll. The

maximum moment applied on the center roll contact point results

from the static moment due to the point load at the outer roll

point and the dynamic moment due to the vibration of the free

section.
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Since the loaded curvature can be expressed with the center

roll position from Equation (2.10), if the relationship between

the maximum moment and the center roll position is obtained,

the unloaded curvature can be expressed with the center roll

position from Equation (2.3). From this, the workpiece model

including the workpiece dynamics can be obtained.

3.1.2. Moment-Roll Position Relationship

The static moment can be obtained based on the workpiece

characteristics and the mechanics of the roll bending process

mentioned in Chapter 2 It is assumed that the workpiece is

made of an elastic-perfectly-plastic material with the

stress-strain relationship shown in Figure 32. Then, assuming

that the workpiece has a rectangular cross section which is

constant along the length, the relationship between the static

moment and leaded curvature can be described as below:

Ms=EI KL KL (KY (3.i)

3=yM 1.F KYj j KLŽKy (3.2)
2b T Y K))KIL > KY (3.2)

where M and K are the moment and loaded curvature at the

yield point of the workpiece. This equation means that the

static moment increases linearly with the constant beam

rigidity as the loaded curvature increases in the elastic
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region, but that the static moment has a nonlinearity with the

loaded curvature in the plastic region.

Sustituting Equation (2.8) into Equation (3.1) yields the

following relationship between the static moment and center

roll position:

3EIy
Mbe=My 2 Y <yy (3.3)

12

El y 2 (v1-2p ) Y.yY (3.4)2to 2 3 kyp ] Jy~y

To obtain a transfer function between the center roll

position and dynamic moment, it is assumed that the workpiece

is a lumped-parameter system with one-degree-of-freedom. Since

the first mode of the workpiece vibration dominates the

workpiece dynamics, the free section of the workpiece can be

modeled as a cantilever beam with the first mode frequency as

shown in Figure 3.3.

The end position of workpiece (YL) related to the center roll

position(yp) is obtained by statics [10]:
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Y2(t) - YL(t)

Y(t) -Cyp(t)

2

S + 2wES + 2

where 2p" b/,

O B 

Fiqure 3.3 Model for Worpiece Free Section Dynamics

Y2(s)
Y1(s)



-39-

Ff ' (3L +22).
IL- 61

Ff3
YP = - ''P 3E-I'

Therefore,

3L +2i
YL = 2 YP

(3.5)

(3.6)

(3.7)

By the workpiece model shown in Figure 3.3, the dynamic

equation between the static end position (yL) and the dynamic

end position () can be written as below:

mu + b( - L) + k(yL - VL)= 0

n.i + bL + kYL = bL + kYL

(3.8)

(3.9)

Neglecting the y term since b k, the transfer function

between the static end position and the dynamic end position

can be written as below by performing a Laplace transform:

and
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yLd(s)

YL(S)

2
0)

n

2 2S + 2os + co2 (3.10)

whm 2, = bft

2
(on =ar

By the definition of dynamic moment, it can be obtained using

the acceleration of the end point of the workpiece:

Mb =Lxmjx (3.11)

By Laplace Transformation,

Mbd(s) = mLs 2 yl (3. 12)

From the above equations the transfer function between the

dynamic moment and the center roll position can be obtained:

Mw(s)

yp(s)

22
CmLoa2s2

s +2on + 
(3.13)

3L +2
where C =

�_ I _I



-41-

3.1.3. Curvature-Roll Position Relationship

As mentioned earlier, the total maximum moment at the

center-roll contact point is composed of the static moment and

the dynamic moment:

Mb = Mbs Mbd (3.i4)

By springback,

Ku = KL - Mb / EI (3.15)

Therefore the unloaded curvature can be expressed by the

total moment:

Ku = KL - (Mbs + Mbd) / EI (3.i6)

Using the relationship between moment and center roll

position, the unloaded curvature can be expressed with the

center roll position:

In the elastic region (y < y):

(3.17)Ku = 0
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In the plastic region (y > y):

U=~~~P4*ft(1~~~2)+)
K E M'4 (3.18)

3.2. Natural Frequency and Damping Ratio

3.2.1. Calculation of Natural Frequency

Natural frequency of the workpiece is an important factor in

the workpiece dynamics, because it affects the band limit of

the roll bending system and the system stability. Since the

first mode of the vibration is used in the workpiece dynamics,

the first mode frequency of a cantilever beam is used as the

natural frequency of the workpiece vibration.

Then, the natural frequency can be expressed by the

theoretical equation for free vibration of a cantilever beam

il):

El 1/2

xn=3.52 L4~ ~(3.19)m=3.52pAL 4

where EI = bending stiffness
= material density

A cross section area
L length of free section

For 1.0" x 0.25" 2024-T6 aluminum, the natural frequency can



-43-

be expressed with only the length of the free section of the

workpiece:

4.99 x 104

X=n 2 (3.20)
L

From the above equation, the natural frequency is shown to be

a length-dependent parameter. The graph for the natural

frequency as a function of the workpiece length is shown in

Figure 3.4. The steep slope in the range of the lengths

(4"-10") suggests that the frequency decreases rapidly at

relatively short lengths. This also results in rapid decrease

of the bandwidth of the roll bending system in that range of

lengths.

3.2.2. Measurement of Damping Ratio

Another important factor in the workpiece dynamics is the

damping ratio. This cannot be obtained precisely by a

theoretical calculation, because the values of damping ratio

differ with the equipment and condition of roll bending. By a

signal processing method using a structural dynamic analyzer,

as shown in Figure 3.5, a precise damping ratio can be

measured.

Impulse inputs are given to the material by using a

piezo-electric impulse hammer, and acceleration signal outputs

from the material are measured by an accelerometer. Then, the
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IMPULSE HAMMER

t

Figure 3.5 Experimental Set-up for Measurement
of Damping Ratio



-46-

two signals are sent to a HP 5423A structural dynamic analyzer

through a pre amplifier and an A/D converter respectively. The

frequency spectrum and damping ratio can be obtained

automatically by signal processing in the analyzer.

In this experiment, 2024-T6 aluminum with 1"x0.25"

rectangular cross section was used. The free section length of

the workpiece was 12". To measure the actual damping ratio,

the measurement was made for the same experimental equipment

used in 9], as shown in Figure 3.6. Ten impulses were given

for every test and the average value of the ten measured

outputs was used for te final response. A final response for

the frequency spectrum is shown in Figure 3.7. Twenty tests

with different impt:lse positions were performed with the same

exprimental set-up. The average value of the damping ratio of

the aluminum obtained is 0.011.

3.3. Dynamic Analysis and Simulation

3.3.1. System Control

The same control system used in the experiments on roll

bending in [9] is required in order to check the workpiece

dynamics with the simulated responses. Thus, the closed-loop

control system with a proportional controller and a position

and velocity feedback is used, assuming that the velocity of

the center roll can be used instead of the velocity of the

unloaded curvature. Since a linear control theory shows that a



cPr
L. -i -

Figure 3.6 Experimental Apparatus for Measurement
of Damping Ratio
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free integrator in the open-loop transfer function of the type

1 system guarantees zero steady-state error to a step input,

the velocity-servo model is used to introduce a free integrator

to the system. The block diagram for the proposed system is

shown in Figure 3.8. The plant of the system is composed of a

linear servo model and a nonlinear workpiece model.

The root locus method based on the open loop transfer

function is widely used for obtaining the desired poles to get

a better response with a proper controller gain in the

closed-loop control system [12]. Since this method is valid

only for the linear system, the nonlinearity between the center.

roll position and static moment is neglected in obtaining the

transfer function of the system.

Then, the transfer function of the workpiece can be expressed

as follows:

2 
3 CmLwn 2n 3(

K 2 El 2 2K ( 3c 121
= 2 + = W() (3.21)

YP s2 + 24 +2X

Thus, the open-loop transfer funcion of the controller and

servo with velocity feedback can be obtained for the controller

gain Kc. From the system block diagram shown in Figure 3.8,

the transfer function between the center roll velocity and the
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error can be obtained,

Yp(s)

E(s) 1

considering the velocity feedback:

Gc

:s+(1 +K K)
c v

Then, the open loop transfer function can be expressed as

GH =
KC W(s)

s(rs + (1 + KCKV))

the open loop transfer function for the controller gain

Kc can be obtained by the following steps:

+GH =1+
KC W(s)

s(?s + (1 + KtK,))
=0

s 2+(1+KcK)s+K W(s) =0

Ts +s+K(Ks+W(s))=0

1+
KC(Ks + W(S))

2
2;s +s

K¢(Kvs + W(s))

rs +s

(3.22)

Thus,

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Then,

(3.28)

I



-52-
Therefore,

G(s) H(s) 

r 4 I rJ ) c o 'I' ~~~264O 2 Ro
Ke |Kvs3+3 -2 CM'E + 24nKV--+ 2 2 +KVf'n S+-

_2 El j ki. (3.29)
s(es + 1)(s2 + 2cois + 2)

where KV=3G4

3L +21

The values of parameters for 2024-T6 aluminum with "x0.25"

rectangular cross section are:

9
E = 3.86x10 bm/in sec

2

4

I = 0.0013 in

3

0.1 bm/in

2

0.25 in

6 in

(3.30)

Since the natural frequency varies with length, the positions

of the poles and zeroes of the open loop transfer function for

the system change as shown in Figure 3.9. Figure 3.10 shows a

root locus at a length of 30 in of the workpiece. As shown

Figure 3.9, the system has a non-minimum phase because the

zeroes of the workpiece are placed on the right-half plane.

This makes the system unstable as the controller gain increses, -

as shown in Figure 3.10.
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When the workpiece length is short the system is stable for

the high gain, but the system becomes unstable even for the low

gain as the workpiece length increases, as expected in the

workpiece model. This is because the increased workpiece

length affects the system stability by shifting the poles of

the workpiece close to the instability region due to the

decreased natural frequency, as shown in Figure 3.9. The root

locus shown in Figure 3.10 represents that the proposed

workpiece dynamics is related to the system instability, and

therefore the proposed workpiece model may be used to represent

the unknown workpiece model.

3.3.2. Simulation and Discussion

The transfer function of the plant should be transformed into

the form of state equations for simulation. Since the

workpiece has a nonlinear term, as shown in the block diagram

(Figure 3.8), two state equations should be considered for the

plant. The center roll position is calculated from the servo,

and the unloaded curvature is obtained from the workpiece. The

transfer functions of the servo and workpiece are transformed

to the differential equations, and subsequently to the state

equations. The dead-band zone due to springback and the

nonlinearity between the center roll position and moment are

considered in the simulation.

The same values of the controller gain G1, the feedback gain

of Ku, G2 (or the velocity feedback gain Kv), and feedrate as
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in the experiments performed in [9] are used so that the

unknown workpiece model can be compared to the experimental

responses. The simulated responses are shown in Figures 3.11

and 3.12, where the input command is a step curvature change of

0.01/in. Since J = 6 in, the value of Kv is obtained from G2

by Equation (2.14):

1
Kv = - (G2) (3.31)

12

All the simulated responses have oscillations at high gains

as the workpiece length increases with time, as expected from

the workpiece model and the root locus analysis. When the

value of G2 or K is fixed, the system becomes unstable more

rapidly as the value of G1 (or Kc) becomes larger. This is

because the critical workpiece length for the stability becomes

shorter as G1 increases, as mentioned earlier on the

root-locus. When the value of G1 is fixed, the critical time

for stability becomes slightly shorter as G2 or Kv increases.

In conclusion, the simulated responses for the roll-bending

system with the suggested workpiece model agree with the

experimental responses shown in Figures 2.7 and 2.8.

Therefore, the proposed workpiece model can be used as the

unknown workpiece model including the vibration effects which

lead to system instability. Based on this workpiece model, an

adequate controller to stabilize the system can be designed.
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CHAPTER 4

SCHEDULED GAIN ADAPTIVE CONTROL

4.1. Introduction to Adaptive Control

In general, a control system design is based on the

mathematical model of the plant obtained by using physical laws

governing its operation and some assumptions. However, the

plant model cannot represent exactly the real plant because of

inherent uncertainties about the physical plant, the

environment, and the plant parameters. In addition, since

system nonlinearities and high frequency dynamics are often

neglected for the sake of simplicity, the knowledge about the

plant dynamics may be poor. Even if the plant dynamics ars

known, its parameters are likely to be unknown and/or

time-varing due to parameter measurement errors, changes in

environment conditions, and changes in operating conditions.

The control system should be adequately designed to ensure a

satisfactory plant performance despite the presence of

uncertainties.

There are several control schemes that can be used to deal

with the uncertainties. Among them, adaptive control is the

most powerful method for high performance control systems.

Landau 13] explains that adaptive control is needed to assure

high performance when large and unpredictable variations of the

plant dynamic characteristics occur. The popular adaptive -
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control techniques are the Self Tuning Control (STC) and the

Model Reference Adaptive Control (MRAC). The Scheduled Gain

Adaptive Control (SGAC) and the Linear Model Following Control

(LMFC) are also used in simple adaptive control applications.

The Self Tuning Control has been developed by Astrom and his

colleagues [14, 15, 16]. The STC system has facilities for

tuning its own parameters. The parameters of the regulator are

adjusted by a recursive parameter estimator and a design

calculation. In the MRAC sytem, the parameters of the

regulator are adjusted in such a way that the error between the

plant output and the model output becomes small. The key

problem is to determine the adjustment mechanism so that a

stable system, which brings the error to zero, is obtained.

The works of Whittaker [17], Monopoli [18], Narendra 19], and

Landau 13] have laid the foundation of MRAC algorithm. In

this chapter, a continuous-time SGAC and a discrete-time SGAC

are presented. The MRAC with a reduced order model will be

presented in Chapter 5. Since the STC was no' successful in

stabilizing the proposed roll bending system with the

nonlinearity and nonminimum phase, the result of its

application on this system is excluded in this thesis.
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4.2. SGAC Scheme

It is soutimes possible to find auxiliary process variables

that correlate well with the changes in process dynamics. It

is then possible to eliminate the influences of parameter

variations by changing the parameters of the regulator as

functions of the auxiliary variables. This approach is called

Scheduled Gain Adaptive Control because the system was

originally used to accommodate changes only in process gain.

The SGAC has the advantage that the parameters can be changed

quickly in response to process changes. The limiting factors

depend on how quickly the auxiliary measurements respond to

process changes.

In the proposed roll bending system, the system becomes

unstable due to two poles of the workpiece which are located

near the imaginary axis in the s plane. The control purpose is

to move these poles further to the left side for stability.

Since the locations of the workpiece poles are decided by

length-dependant natural frequencies, the controller should

adapt to the variations. A continuous-time controller with the

above control purpose can be designed in s domain by root locus

method.

Sometimes an analog-control system is replaced by a

computer-control system, simply because the hardware of the

latter is cheaper and more realistic. In such a case, it is
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natural to look for the method of converting an analog system

to a digital system with the same properties. A

straightforward way to solve this problem is to use a short

sampling interval and to make some discrete-time approximations

of the continuous-time controller.

The typical z-transform approximation methods are Euler's

method, backward different, and Tustin's approximation.

Tustin's approximation has the advantage that the left-half s

plane is transformed into the unit circle. With Euler's

method, the left-half s plane is transformed into the

half-plane Re z < 1. If Euler's method is used, a stable

continuous-time system may be approximated by an unstable

discrete-time system. But, if Tustin's approximation is used,

it will be still stable after the approximation. Therefore,

the continuous-time controller designed for the control purpose

will be converted to a discrete-time controller by using

Tustin's approximation.

4.3. Continuous-time SGAC

The Continuous-time Adaptive Controller on SGAC can be

designed for system stability based on the root locus method.

As mentioned before, the transfer function of the plant

contains two poles from the servo, one zero from the

servo-feedback, and two poles and two zeroes from the

workpiece. Since the two zeroes in nonminimum phase cannot be
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canceled out, the two workpiece poles should be moved to the

locations far from the imaginary axis.

Then, two zeroes of the controller are needed to pull the

poles. In a digital controller design, the number of poles

should be equal to or more than the number of zeroes for

up-date control. Thus, considering the hardware capacity of a

digital controller, it is recommended to choose two poles in

the analog controller design prior to the digital controller

design. The two zeroes should be placed near two workpiece

poles, with a fixed damping ratio and time-variant natural

frequency in order to adapt the two workpiece poles. Then, the

system can be stable and those workpiece poles do not become

dominant.

The transfer function of the analog controller can be

expressed as below:

2 2
K (s +24m.s+ + (4)

Go(s) = 4.
(s + a)2

Since the zeroes of the controller should be placed near the

workpiece poles, the values of damping ratio and natural

frequency of the controller were selected as below:

4= 0.35

and (4.2)
Ci) =06)

nC 
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Two poles of the controller are dummy for the real time

control, but they affect the movements of the other poles of

the root locus. If they are placed near the servo poles, they

push strongly the servo poles to enter rapidly the right-half s

plane. Considering the hardware capacity of the digital

controller, it is reasonable to place the poles at -100 on the

real axis. Figure 4.1 shows the root locus for L=30", based on

the above controller design scheme. As controller gain

increases, the two workpiece oles move to the two controller

zeroes but the two poles of servo and controller move to the

zeroes of workpiece. This can also make the system unstable

but we can choose the value of controller gain in the stable

region. Then, the dominant pole gives the fast settling time.

The simulated responses in Figures 4.2 and 4.3 show that the

system can be stable up to 20'/sec feedrate with the

appropriate controller gain value, and that the system becomes

unstable from 30"/sec regardless of controller gains values.

The system shows the best performance with Kc=300 and 20"/sec

feedrate. Therefore, the roll bending control system can be

improved due to the stability and increased feedrate, using the

proposed SGAC.
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4.4. Discrete-time SGAC

The transform variables z and s are related in some respects

by the function z=exp(sT). An approximation, which corresponds

to the Trapezoidal method for numerical integration, is:

sT 1+ sT/2 (43)
1 - sT/2

In digital control context, the approximation in Equation

(4.3) is often called the Tustin's approximation method, or

bilinear transformation. Then, the pulse transfer function

H(z) can be obtained by simply replacing the argument s in G(s)

by s' :

2z-1
S= T Z+ 1 (4.4)

The pulse transfer function of the discrete-time controller

can be obtained from the continuous-time controller, using

Equation (4.4).

K (4(z- 1)2+4co T(z- 1)(z+l)+cq T(z+1)2)
H(z) = , - (4.5)

((2+100T)z + (100T-2))

The. controller time step T is selected to be 0.01 sec.

Therefore, the pulse transfer function of the controller is
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expressed as below:

H K(z) (4(Z -2z+ 1)+0. con(z 2 1) + 1042(z2+2z + 1)

(3z- 1)2

In the simulation with the digital controller the hybrid

system, which is composed of continuous plant system and

discrete-time controller, was used. Figure 4.4 shows the

simulated responses at 10"/sec and 20"/sec. The adequate

values of Kc result in the system stability, as expected in the

analog control system. Figure 4.5 shows the responses for the

different values of Kc at 30"/sec. The system becomes unstable

as expected. Figure 4.6 indicates that the system can be

stable up to Kc=60 at 25"/sec. From the above responses, the

system has the best response with Kc=60 at 25"/sec, because of

the stability and fast settling time.

As mentioned earlier in this chapter, the plant model cannot

be exactly the same as the real plant due to uncertainties.

Assuming that the major parameters of the workpiece model,

natural frequency, and damping ratio may be different from the

real values, it is necessary to check the system responses with

the different values. Figures 4.7 shows the simulated

responses performed using different natural frequencies and

damping ratios from the ones used in Figure 4.6 (a). The

system responses are nearly same even if the value of the
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damping ratio decreases up to 0.001. However, if the value of

natural frequency are decreases up to 70 %, the system shows a

long settling time. It indicates that the proposed SGAC system

is not affected by the uncertain damping ratio but it is very

sensitive to the uncertain natural frequency. This is because

the natural frequency determine the required system band limit.

Therefore, if the actual frequencies of the system stay within

the range of about 80 % of the calculated natural frequency,

the proposed SGAC system will be very useful in constructing a

main digital controller to adapt to the variation of the plant

parameters.
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CHAPTER 5

MODEL REFERENCE ADAPTIVE CONTROL

5.1. Introduction

The MRAC is one of the most popular methods of adaptive

control. It reduces the effects of poor knowledge of plant

dynamics by using a reference model and assures satisfactory

performance in the presence of unpredictable vibrations of

plant dynamics by using adaptive mechanism. Since its first

introduction by Whittaker [17], MRAC has been a simulating

field of research aiming at a variety of important

applications. The works of Monopoli [18], Narendra [19, 20],

Landau [13], Ioannou [21], and Goodwin et al. [22], have laid

the foundation of globally stable algorithms for the

deterministic adaptive control algorithm.

The stability proofs of these algorithm require the knowledge

of the structure of the plant, which is assumed to be linear.

If this assumption holds, one can then measure the parametric

error distance through the conditioning of an error signal

which is obtained by comparing the plant output to the output

of a model with the same structure as the plant. However, this

assumption cannot hold in most cases, because it is usually

very difficult if not impossible, to model the real plant

exactly. Recently much effort has been devoted to the

robustness of MRAC algorithms in the presence of unmodelled -
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dynamics. The works of Ioannou 21], Rohrs et al. 23, 24],

and Papadoulos 25] have shown that if this assumption does not

hold, MRAC algorithms may lead to instabilities, making MRAC

impractical. Since the proposed plant of the roll bending

system has a dead zone nonlinearity, a nonminimum phase, and a

high order dynamics with a time-variant parameter whose

frequency decreases as the workpiece rolls through, it is more

difficult to adapt the plant to the desired model. The works

of Orlicki 26] and Ioannou 27] have shown that MRAC with new

adaptive laws can adjust a dead zone nonlinearity and a

nonminimum phase system to guarantee smaller bounds for the

residual tracking error which reduces to zero, when the fixed

plant parameters are used. In this chapter, the MRAC systems

for the proposed roll bending process are presented.

5.2. MRAC Scheme

The most basic approach to the adaptive algorithm problem has

its roots in stability considerations. This is essential

because adaptive control systems are highly nonlinear and

difficult to analyze. Techniques that ensure global stability

are preferable because they remove the burden of stability

analysis and allow the designer to concentrate on algorithm

parameter selection. In general, it is assumed that the plant

is exactly known in terms of its structure and parameters. If

the plant does not contain any non-minimum zeroes, it is

possible to design a compensator for appropriate pole and zero
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placements. However, if the plant parameters are unknown, this

will not be possible. By placing the poles and zeroes, we want

to achieve a prescribed performance. This can be described by

a model which is set in parallel with the closed loop plant. A

satisfactory performance is then obtained when the ganeralized

error is zero.

For the proposed plant of roll bending system, it is

difficult to apply the general concept of MRAC since the system

has non-minimum zeroes as mentioned before. It is thus

suggested that the adaptive part is located only around the

plant and constructed prior to a controller design, as shown in

Figure 5.1. A satisfactory performance is obtained when the

generalized error e=x-xm is zero. If it is not zero, it is fed

into the MRAC adaptation mechanism which adjusts the

compensator gains until e is driven to zero. What remains is

to design an algorithm that will drive the compensator

parameters towards the right direction.

The hyperstability design is one of the stability approaches

in MRAC. It relies on the hyperstability theorem developed by

Popov and is presented by Landau 13]. In order to use the

hyperstability theorem, the error derivative e shoud be known.

However, it is very difficult to measure the precise error

derivatives in the real case because of the characteristics of

the roll bending system. The Narendra, Lin and Valavani (NLV)
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algorithm has been proposed for the stable MRAC system. This

is an iproved globally stable algorithm. The basic difference

with Monopoli's algorithm is that in this case auxiliary

signals inproving the stability are included. For a first

order system, we can present the governing equations:

x

Xm

= - ax + bu

=- a x + b r
m m' X1 m

(5.1)

(5.2)

(5.3)- Cr,x]

= [Kr , Kx ]

e = x - x

£ = e+e

e = -a e - bKe(r 2 + x2 )(e + e )n M e

e

u

= -(am + bmKe(r 2

: Krr+ KxX

+ xz))e - b K (r 2 + x2)e

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)Kr = Ka rc

Kx a K a X (5.11)
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where is the augmented error. First, the MRAC system using

NLV algorithm is applied on the plant to check NLV algorithm on

the roll bending system. Next, the MRAC system is applied to

the plant with the following two cases of the workpiece model.

In the first case, it is assumed that the dynamic workpiece

model is neglected because in general plants cannot be exactly

modelled. In the second case, the dynamic workpiece model is

considered but the reference model is made to follow only the

servo part. This is because the workpiece model is so

complicated that it is difficult to construct an exact

reference model for the workpiece.

5.3. MRAC using NLV Algorithm

The purpose of MRAC application to the plant without the

workpiece model is to check if the suggested MRAC algorithm

works for the nonlinear system such as the proposed roll

bending system. The basic MRAC structure is the same as the

one shown in Figure 5.1. The simulated responses with Ka=Ke=l,

Kro=l, Kxo=O, and am =bm =50 are shown in Figure 5.2. The

responses show that the RAC system using NLV algorithm only

for the servo is satisfactory.

Next, the MRAC system is applied to the plant with the servo

and static workpiece model in order to check the nonlinearities

of the workpiece such as dead zone and the nonlinear

relationship between the center roll position and the static
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moment in the plastic region. The nonlinearities due to the

material characteristics is neglected in the same structure as

the one shown in Figure 5.1., but in the simulation it is

considered not only in the plant but also in the model. A

proportional controller is used for the second order system.

The simulated responses of the system with Ka=Ke=l, Kro=Kxo=l,

and am=bm=50 are shown in Figure 5.3. The responses show that

the MRAC system for the plant with the static workpiece is also

satisfactory regardless of the nonlinearities.

Finally, the MRAC system is applied to the complete plant

with the dynamic workpiece model. Since the workpiece model is

complex and results in the system instability, it is

recommended that the plant follows only the second order model

to reduce the effects of the workpiece dynamics. The new model

is then a reduced order model, compared to the fourth order

system of the plant. A proportional controller is used for the

control system. Figure 5.4 shows the MRAC system with the

reduced order model and NLV algorithm. Figure 5.5 shows the

responses of the full-order plant and the reduced-order model

to a unit step input with Ka=-l, Ke=l, Kro=-l, Kxo=l, and am=bm

=24. The responses show that the error e becomes larger at 10

in/sec feedrate and the system becomes unstable at 20 in/sec as

the workpiece length becomes large. This is because the

unmodelled workpiece dynamics which causes the instability

dominates the system response as the workpiece frequency
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becomes very low due to the long workpiece length.

1.4. Robust MRAC for Zero Residual Tracking Errors

A new adaptive law for the second order nonminimum phase

plant with one dominant and one parasitic mode is suggested by

Ioannou [27]. The new adaptive law guarantees smaller bounds

for the residual tracking error which reduces to zero when the

parasitics disappear. Here, the law is applied to this roll

bending system in order to reduce the residual tracking errors

which can be seen in Figure 5.5. The new adaptive law using a

new auxiliary parameter for the adaptive parameter Kx can be

expressed as below:

u = - Kx x + r (5.12)

Kx = -OKx + Ka x (5.13)

where 6 = 0.5 if IKx > Ko

= 0 otherwise

where Ko is a positive constant. The augmented error is

still used. Figure 5.6 shows the simulated responses with

Ka=Ke=l, Kxo=-l, K=O.01, am=bm=50, and Kc=100. The residual

tracking error is evidently reduced to be almost zero with 10

in/sec, but the system still becomes unstable with a feedrate

of 20 in/sec. The simulated responses with Kc=150 shown in

Figure 5.7 show that the system has a faster rising time but



-87-

10E-3

8

6

4

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

TIME (SEC]

12E-3

10

8

6

4

2

0E-3
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

TIME (SEC)

Figure 5.6 Simulation of
with Kc=10O

Robust MRAC Syatem

Z.1

:D
v

0z
-4

c -n



-88-

12E-3

10

I-

5 8z
0-*

6

D 4

2

0,.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4- 1.6 1.8

TIME (SEC)

12E-3

10

8

6

4

2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

TIME (SEC)

Figure 5.7 Simulation of Robust MRAC System
with Kc=150

M0z
-i

D

0IlL. '

0.0



-89-

becomes unstable more rapidly with a feedrate of 20 in/sec than

the responses with Kc=100 in Figure 5.6. This suggests that by

using the new adaptive law the error can be reduced but the

system still has the instability problem. Figure 5.8 indicates

that the system becomes unstable after about 3 seconds even

with a feedrate of 10 in/sec. However, if he roll bending

process can be completed within 3 seconds with a feedrate of 10

in/sec, the MRAC system using the new adaptive law will be

useful for the automation of the roll bending process.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1. Conclusions

The simulated responses in Chapter 3 correspond very well to

the experimental responses. As the workpiece length

continuously increases, the system becomes unstable due to the

increased vibration. Although there is a little difference in

initial shapes during rising period, the oscillation shapes and

frequencies are nearly identical. This indicates that the

workpiece model is satisfactory in analyzing the workpiece

dynamics and system instability. Therefore, this workpiece

model can be used as the unknown workpiece model including

vibration, and the model will be very useful in the design of

an adaptive control system to stabilyze the system.

Since the plant natural frequency is a time-variant

parameter, an adaptive control technique is needed for the

system stability and better performance. The typical adaptive

control such as the Self Tuning Control(STC) or Model Reference

Adaptive Control(MRAC) is not suitable to this system because

of the length-variant frequency and nonminimum phase. Thus, a

modified Scheduled Gain Adaptive Control was proposed, using

root locus method and Tustings approximation method for the

discrete- time control system.
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The simulated responses with the SGAC scheme in Chapter 4

show that the system can be stabilized regardless of workpiece

vibration. The best performance of the system without

oscillation and instability can be obtained with a feedrate of

25"/sec. By using a digital controller and an adaptive control

scheme, the simulation becomes more realistic. The simulated

responses for a robust MRAC scheme with a new adaptive law in

Chapter 5 represent that the residual tracking errors are

reduced and the system shows satisfactory performances up to

about 3 seconds with a feedrate of 10 in/sec.

Therefore, by using the proposed workpiece model and adaptive

control schemes, the quality and productivity of the roll

bending system can be improved due to the stability at

increased feedrates, and the manufacturing cost can be

decreased by the successful automation of the roll bending

process.

6.2. Future Research

Roll bending process experiments using the adaptive control

systems are needed in order to check the proposed control

schemes. The adaptive control system may need further

modifications according to the experimental results. Other

adaptive control techniques such as STC and MRAC can also be

considered with some modifications for the nonminimum phase

system. A typical STC with a least square method and
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input-output pole-placement method was applied to the roll

bending system, but it was not successful because of the

workpiece model with dead-zone nonlinearity and nonminimum

phase. A modified MRAC with reduced-order model and a new

adaptive law for nonminimum phase system was also applied to

the system. Then, the system was stable up to about 45 of

workpiece length, but became unstable at larger lengths due to

the dominant workpiece dynamics at low natural frequencies.

Modelling and Control of three-dimensional roll bending is

recommended for the wide applications. Adaptive and

closed-loop control of three-dimensional roll bending can lead

to on-pass forming of arbitrary workpiece shape. This would

not only increase the productivity of the current roll bending

process, but also greatly increase the versatility of the

process. In addition to three-dimensional roll bending,

automation of the roll bending systems for other parts would be

studied. This would also increase the versatility and lead to

complete automation of roll bending system.
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APPENDIX

COMPUTER PROGRAMS

This appendix provides a listing of basic computer programs

used in the workpiece modeling, the SGAC scheme, and the MRAC

scheme.

The main programs are listed as follows:

1. ROLBEND

2. ADAPCON

3. NEWMRAC

- Workpiece Modeling

- Discrete-Time SGAC

-- Robust MRAC
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PROGRAM ROLBEND
C
C ******************************************************
C * ROLL BENDING MODELING PROGRAM WITH WORKPIECE MODEL *
C ******************************************************
C

COMMON /VAR/F(5),Y(5),FF(5),YY(5),M,XKU,COM,DT
COMMON /CON/XL,WN,Z
DIMENSION X(10,550),POS(4)
CHARACTER*40 XLABEL,YLABEL

C
C PARAMETER
C

XSL=6.
Z=0.011
XYY=0.48
XKY=0.04
EI=5020000.
DT-0.01
INT=1
XKU=0.
Y(1)=0.
Y (2)=0.
Y(3)=0.
Y(4)=O.
COM=0.

C
TYPE *, 'ENTER DESIRED UNLOADED CURVATURE ; Kud'
ACCEPT *, XKUD
TYPE *, 'ENTER INITIAL W/P LENGTH ; Lo'
ACCEPT *, XLO
TYPE *, 'ENTER CONTROLLER GAIN ; GI'
ACCePT *, GA
TYPE *, 'ENTER ZERO PLACEMENT ; Kv=(G2)/12'
ACCEPT *, GB
TYPE *, 'ENTER FEEDRATE ; FR'
ACCEPT *, FR
TYPE *, 'ENTER TIME INTERATION ; NT=FT/DT (100*FT)'
ACCEPT *,NT

C
C INITIALIZE THE DISCRETE CONTROLLER
C

ERROR=XKUD-XKU-GB*Y(2)
COM=ERROR*GA

C
C CALCULATE THE PARAMETERS FOR TIME STEP
C

ICOUNT=0
DO 100 IT=1,NT
ICOUNT=ICOUNT+1

C
C SERVO MODEL
C

K=1
N=2



-96-

C
DO 10 M=1,4
CALL STATIC
CALL DER(N,K)

10 CONTINUE
C
C WORKPIECE MODEL
C
80 XKL= 3. *Y(1)/(XSL**2)

IF(XKL.GT.XKY) GO TO 30
XMBS=XKL

GO TO 40
C
C STATIC MOMENT
C
30 XMBS=((4.5*XYY)/(XSL**2) ) *(1.-( ((XYY/Y(1)) **2)/3. ) )
C
C DYNAMIC MOMENT
C
40 XL=XLO+FR* (IT*DT)

WN=49900./ (XL**2)
K=3
N=4
DO 20 M=1,4
CALL DYNAMIC
CALL DER(N,K)

20 CONTINUE
XM=0.025*XL
XC= (3. *XL+2. *XSL) / (2.*XSL)
XMBD= (Y ( 3 ) +XM*XL* (WN**2) *XC*Y (1) )/EI

C
C TOTAL MOMENT
C

XMB=XMBS+XMBD
C
C CALCULATE UNLOADED CURVATURE
C

XKU=XKL-XMB
C
C CALCULATE DISCRETE CONTROLLER
C

IF(Y(1).GT.XYY) GO TO 150
XKU=O.

150 .IF(ICOUNT.NE.INT) GO TO 50
ICOUNT=0
ERROR=XKUD-XKU-GB*Y ( 2 )
COM=ERROR*GA

C
C STORE DATA
C
50 DO 60 I=1,2

X(I, IT) =Y(I)
60 CONTINUE
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X ( 5, IT) =XKU
X ( 6,IT) =XKL
X(7, IT) =XMBS
X(8, IT)=XMBD
X (9, IT) =XL
X (10, IT) =IT*DT

CONTINUE
DO 110 I=1,NT
WRITE(5,90) X(1,I)
FORMAT(2X, 5F)
CONTINUE

,X(5,I),X(6,I),X(7,I),X(8,I)

C DRAW FIGURES
C

LABEL=4
POS(1)=120
POS (2)=120
POS (3) =700
POS (4) =550
XLABEL= ' TIME (SEC) '
YLABEL=' KU (1/INCH)'
CALL QPICTR(X,10,NT,QY(5),QX(10),QMOVE(00),QPOS(POS),

QLABEL(LABEL), QXLAB(XLABEL), QYLAB(YLABEL))
STOP
END

100

90
110
C
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SUBROUTINE STATIC

COMMON /VAR/F(5), Y (5),FF(5),YY(5),M,XKU,COM,DT
COMMON /CON/XL,WN,Z
F (1) =Y(2)
F(2)=24.*COM-24. *Y (2)
RETURN
END

SUBROUTINE DYNAMIC

COMMON /VAR/F(5),Y(5),FF(5),YY(5),M,XKU,COM,DT
COMMON /CON/XL,WN,Z
XM=O. 025*XL
XC=(3.*XL+12.)/12.
DA=2. *Z*WN
DB=WN* * 2
DC=(4. * (Z**2) -1. ) * (XM*XL* (WN**4))
DD=2. *XM*XL*Z* (WN**3)
F(3) =Y (4) -DD*Y (1) *XC
F ( 4 ) =DC*Y(1) *XC-DA*Y(4) -DB*Y ( 3 )
RETURN
END

SUBROUTINE DER(N,K)

COMMON /VAR/F(5),Y(5),FF(5),YY(5),M,XKU,COM,DT
COMMON /CON/XL,WN,Z
GO TO (10,30,50,70),M
DO 20 J=K,N
YY(J)=Y(J)
FF(J)=F(J)
Y (J) =YY (J) +0.5*DT*F (J)
CONTINUE
GO TO 90
DO 40 J=K,N
FF(J) =FF(J) +2. 0*F(J)
Y(J)=YY(J)+0.5*DT*F(J)
CONTINUE
GO TO 90
DO -060 J=K,N
FF (J) =FF (J) +2.0*F(J)
Y (J) =YY (J) +DT*F (J)
CONTINUE
GO TO 90
DO 80 J=K,N
Y (J) =YY (J)+ (FF (J)+F (J)) *DT/6 .0
CONTINUE
RETURN
END

C

C

C

10

20

30

40

50

60

70

80
90

L -IYt l-r YIILL(-~
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PROGRAM ADAPCON
C
C *************************************
C * DISCRETE-TIME SGAC SYSTEM PROGRAM *
C *************************************
C

COMMON /VAR/F(5),Y(5),FF(5),YY(5),M,XKU,COM,DT
COMMON /CON/XL,WN,Z
DIMENSION X(10,550),POS(4),U(1000),E(1000)
CHARACTER*40 XLABEL,YLABEL

C
C PARAMETER
C

XSL-6.
XYY=0.48
XKY=0.04
EI=5020000.
XKU=0.
Y(1)=0.
Y(2)=0.
Y(3)=0.
Y(4)=0.
E(1)=0.
U(1)=0.

C
TYPE *, 'ENTER DESIRED UNLOADED CURVATURE ; Kud'
ACCEPT *, XKUD
TYPE *, 'ENTER INITIAL W/P LENGTH ; Lo'
ACCEPT *, XLO
TYPE *, 'ENTER TIME INTERVAL ; DT'
ACCEPT *, DT
TYPE *, 'ENTER TIME STEP ; INT'
ACCEPT *, INT
TYPE *, 'ENTER PARAMETERS ; Z, Zc, XWN'
ACCEPT *, Z, ZC, XWN
TYPE *, 'ENTER CONTROLLER GAIN ; GI'
ACCEPT *, GA
TYPE *, 'ENTER ZERO PLACEMENT ; Kv=(G2)/12'
ACCEPT *, GB
TYPE *, 'ENTER FEEDRATE ; FR'
ACCEPT *, FR
TYPE *, 'ENTER TIME INTERATION ; NT=FT/DT'
ACCEPT *,NT

C

C INITIALIZE THE DISCRETE CONTROLLER
C

E(1)=XKUD-XKU-GB*Y(2)
U(1)=E(1)*GA*2.

C

C CALCULATE THE PARAMETERS FOR TIME STEP
C

ICOUNT=0
DO 100 IT=1,NT
ICOUNT=ICOUNT+ 1
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c
C SERVO MODEL
C

K51
N=2

C
COM=U (IT)
DO 10 M=1,4
CALL STATIC
CALL DER(N,K)

10 CONTINUE
C
C WORKPIECE MODEL
C
80 XKL=3. *Y ( 1) /(XSL**2)

IF(XKL.GT.KYY) GO TO 30
XMBS=XKL

GO TO 40
C
C STATIC MOMENT
C
30 XMBS=((4.5*XYY)/(XSL**2) ) * (1.-( ((XYY/Y (1)) **2)/3. ) )
C
C DYNAMIC MOMENT
C
40 XL=XLO+FR* (IT*DT)

WN=XWN/(XL**2)
K=3
N=4
DO 20 M=1,4
CALL DYNAMIC
CALL DER(N, K)

20 CONTINUE
XM=0. 025*XL
XC=(3. *XL+2. *XSL)/ (2. *XSL)
XMBD=(Y(3)+XM*XL*(WN**2)*XC*Y (1))/EI

C
C TOTAL MOMENT
C

XMB=XMBS+XMBD
C
C CALCULATE UNLOADED CURVATURE
C

XKU=XKL-XMB
C -

C CALCULATE DISCRETE CONTROLLER
C

IF(Y(1).GT.XYY) GO TO 150
XKU=0.

C
150 KT=IT+1

IF(ICOUNT.NE.INT) GO TO 50
ICOdNT=0
WN1=0.04*ZC*WN
WN2=0. 0004*WN*WN
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1

A1=4 +WN1+WN2
A2=-8.+2.*WN2
A3=4. -WN1+WN2
E (KT) =XKUD-XKU-GB*Y (2)
U(KT)=(6. *U(KT-1) -U(KT-2)+GA* (A1*E(KT)

+A2*E(KT-1)+A3*E(KT-2)) )/9.

STORE DATA

50 DO 60 I=1,2
X(I,IT)=Y(I)

60 CONTINUE
X(5,IT)=XKU
X ( 6,IT)=XKL
X (7, IT) =U(IT)
X(8, IT) =E (IT)
X(9,IT)=XL
X (10, IT) =IT*DT

100 CONTINUE
DO 110 I=1,NT
WRITE(5,90) X(1,I)

90 FORMAT(2X, 5F)
110 CONTINUE
C
C DRAW FIGURES
C

1

LABEL=4
POS(1)=120
POS (2) =120
POS (3)=700
POS (4) =550
XLABEL='TIME (SEC) '
YLABEL=' KU (1/INCH) '
CALL QPICTR (X, 10, NT, QY (5)

QLABEL (LABEL)
STOP
END

,X(5,I) ,X(6,I),X(7,I),X(8,I)

,QX(10) ,QMOVE(00) ,QPOS(POS),
,QXLAB(XLABEL), QYLAB(YLABEL))

C
C
C
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PROGRAM NEWMRAC
C
C *********************************************
C * ROBUST MRAC PROGRAM WITH NEW ADAPTIVE LAW *
C *********************************************
C

COMMON /VAR/F(10),Y(10),FF(10),YY(10),M,XKU,COM,DT
COMMON /CON/XL,WN, Z, Z C
DIMENSION X(10,550),POS(4)
CHARACTER*40 XLABEL, YLABEL

C
C PARAMETER
C

DATA XSL/6./Z/0.011/XYY/0.48/XKY/0.04/EI/5020000./
1 INT/1/XKU/0./COM/0./UA/0./
2 Y(1),Y(2),Y(3),Y(4),Y(5),Y(6)/6*O./

C
TYPE *, 'ENTER DESIRED UNLOADED CURVATURE ; Kud'
ACCEPT *, XKUD
TYPE *, 'ENTER TIME INTERVAL ; DT'
ACCEPT *, DT
TYPE *, 'ENTER INITIAL W/P LENGTH ; Lo'
ACCEPT *, XLO
TYPE *, 'ENTER CONTROLLER GAIN ; Kc'
ACCEPT *, GA
TYPE *, 'ENTER MODEL GAIN ; Am, Bm'
ACCEPT *, AM, BM
TYPE *, 'ENTER ADAPTIVE MECH. GAIN ; Ka, Ke'
ACCEPT *, XKA, XKE
TYPE *, 'ENTER INITIAL Kx, Ko, Co'
ACCEPT *, Y(9), XKO, XCO
TYPE *, 'ENTER FEEDRATE ; FR'
ACCEPT *, FR
TYPE *, 'ENTER TIME INTERATION ; NT=FT/DT'
ACCEPT *, NT

C
C CALCULATE THE PARAMETERS FOR TIME STEP
C

ICOUNT=0
DO 100 IT=1,NT
ICOUNT=ICOUNT+ 1

C
C ----------------
C CONTROLLER DESIGN
C -.- _ --.,,-
C

K=6
N=6
DO 250 M=1,4
F(6) =GA* (XKUD-XKU)
CALL CONDER(N,K)

250 CONTINUE
UA=Y(6) -XKU*Y(9)



-i03-

C
C - - - - - - ----- ______ -

C CONTINUOUS PROCESS SYSTEM
C -------- ---- ---- ---- ----
C

C SERVO MODEL
C

K=1
N=1

C
DO 10 M=1,4
F(1)=24. *UA-24.*Y(1)
CALL CONDER (N, K)

10 CONTINUE
C
C WORKPIECE MODEL
C
80 XKL=3.*Y(1)/(XSL**2)

IF(Y(1).GT.XYY) GO TO 30
XMBS=XKL
XKUP=3.*F(1)/(XSL**2)

GO TO 40
C
C STATIC MOMENT
C
30 XMBS=((4.5*XYY)/(XSL**2) ) *(1.-( ( (XYY/Y(1))**2)/3. ) )

XKUP=3.*F(1) *(1.-(XYY/Y(1)) **3)/(XSL**2)
C
C DYNAMIC MOMENT
C
40 XL=XLO+FR* (IT*DT)

WN=49900./ (XL**2)
K=3
N=4
DO 20 M=1,4
CALL MODYNA
CALL CONDER (N, K)

20 CONTINUE
XM=0. 025*XL
XC=(3 .*XL+2.*XSL)/ (2.*XSL)
XMBD=(Y ( 3 ) +XM*XL*(WN**2)*XC*Y (1))/EI

C
C TOTAL MOMENT
C

XMB=XMBS+XMBD
C
C CALCULATE UNLOADED CURVATURE
C

XKU=XKL-XMB
C
C NON-LINEARITY BY SPRINGBACK
C
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IF(Y(1).GT.XYY) GO TO 300
XKU=0.

C XKUP=-O.
C
C - - - - - - - - -

C REFERENCE MODEL
C ----- _
C
300 K=5

N=5
DO 200 M=1,4
F(5) =-AM*Y (5) +BM*Y(6)
CALL CONDER(N, K)

200 CONTINUE
XKLM=3. *Y (5) / (XSL**2)
IF(Y(5).GT.XYY) GO TO 210

XMBM=XKLM
C XKUMP=3. *F (5) / (XSL**2)

GO TO 150
210 XMBM=((4.5*XYY)/(XSL**2))*(1.-( ((XYY/Y(5))**2 )/3 ) )
150 XKM=XKLM-XMBM
C
C --------------
C PARAMETER ADJUSTMENT: NEW ADAPTIVE LAW
C ---------------
C

E=XKU-XKM
C

K=2
N=2
DO 550 M=1,4
AB=XKE*((XKU*XKU)+Y(6)*Y(6))
AA=AM+BM*AB
BB=BM*AB
F(2)=-AA*Y(2) -BB*E
CALL CONDER (N, K)

550 CONTINUE
C

EPS=E+Y ( 2 )
C

IF(ABS(Y(9)).GE.XKO) GO TO 600
C=0.

GO TO 650
600 C=XCO
C
650 K=9

N=9
DO 350 M=1,4
F ( 9 ) =XKA*EPS*XKU-C*Y ( 9 )
CALL CONDER(N, K)

350 CONTINUE
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STORE DATA

X(1, IT) =Y (1)
X(2, IT) =Y(5)
X(3, IT) =EPS
X ( 4, IT) =XKM
X ( 5, IT) =XKU
X ( 6,IT)=XKL
X(7,IT)=Y (6)
X(8, IT) =Y (9)
X (10, IT) =IT*DT

CONTINUE

DO 110 I=1,NT
WRITE(5,90) X(1,I)
FORMAT(2X, 6F)
CONTINUE

,X(10,I),X(3,I),X(4,I),X(5,I),X(8,I)

DRAW FIGURES

LABEL4
POS (1) =120
POS (2) =120
POS (3)=700
POS (4) =550
XLABEL='TIME (SEC) '
YLABEL='KU &KUM (1/INCH) 
CALL QPICTR(X,10,NT,QY(4,

QLABEL (LABEL)
STOP
END

5),QX(10) ,), QMOVE(00) ,),QPOS(POS),
,QXLAB(XLABEL) ,QYLAB(YLABEL))

C
C

C
C
C
50

100
C

90
110
C
C
C
C
C

1
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SUBROUTINE MODYNA

COMMON /VAR/F(10),Y(10),FF(10),YY(10),M,XKU,COM,DT
COMMON /CON/XL,WN,Z, Z C
XM=0.025*XL
XC=(3.*XL+12. )/12.
DA=2. *Z*WN
DB=WN* * 2
DC=(4. * (Z**2) -. ) * (XM*XL* (WN**4))
DD=2. *XM*XL*Z* (WN**3)
F(3)=Y(4) -DD*Y(1) *XC
F (4) =DC*Y (1) *XC-DA*Y ( 4 ) -DB*Y ( 3 )
RETURN
END

SUBROUTINE CONDER(N, K)

COMMON /VAR/F(10),Y(10),FF(10),YY(10),M,XKU,COM,DT
COMMON /CON/XL,WN, Z, ZC
GO TO (10,30,50,70),M
DO 20 J=K,N
YY(J)=Y(J)
FF(J)=F(J)
Y(J)=YY(J)+0.5*DT*F(J)
CONTINUE
GO TO 90
DO 40 JK,N
FF(J)=FF(J)+2.0*F(J)
Y(J)=YY(J)+0.5*DT*F(J)
CONTINUE
GO TO 90
DO 60 J=K,N
FF(J) =FF(J) +2. 0*F (J)
Y (J) =YY (J) +DT*F (J)
CONTINUE
GO TO 90
De-80 J=K,N
Y(J)=YY(J)+(FF(J)+F(J)) *DT/6.0
CONTINUE
RETURN
END

C

C

10

20

30

40

50

60

70

80
90



-107-

REFERENCES

1. Hardt, D.E., "Shape Control in Metal Bending Processes:
The Model Measurement Tradeoff", editor, D.E. Hardt,
Information Control Problems in Manufacturinq Technology,
1982, Fourth IFAC/IFIP Symposium, pp. 35-40.

2. Allison, B.T. and Gossord, D.C., "Adaptive Breakforming",
Proc. 8th North American Manufacturinq Research Conference
May 1980, pp. 252-256.

3. Stelson, K.A., "The Adaptive Control of Breakforming using
In-process Measurement for the Identification of Workpiece
Material Characteristics", Ph.D. Thesis, MIT., Oct., 1981

4. Hansen, N.E. and Jannerup, O.E., "Modelling of
Elastic-Plastic Bending of Beams using a Roller Bending
Machine", Trans. of ASME, Journal of Engineering for
Industry, Vol. 101, No. 3, August 1979, pp. 304-310.

5. Cook, G., Hansen, N.E., and Trostmann, E., "General Scheme
for Automatic Control of Continuous Bending of Beams",
Trans. of ASME, Journal of Dynamic Systems, Measurement
and Control, Vol. 104, No. 2, June 1982, pp. 173-179.

6. Roberts, M.A., "Experimental Investigation of Material
Adaptive Springback Compensation in Roller Bending",
M.S. Thesis, MIT., August 1981.

7. Hardt, D.E., Roberts, M.A., and Stelson, K.A., "Closed-
Loop Shape Control of a Roll-Bending Process", Trans.
of ASME, Journal of Dynamic System, Measurement and
Control, December 1982, Vol. 104, No. 4, pp. 317-322.

8. Hardt, D.E. and Hale, M.B., "Closed Loop Control of a
Roll Straightening Process", Annals. of the CIRP,
Vol. 33, No. 1, August 1984, pp. 137-140.

9. Hale, M.B., "Dynamic Analysis and Control of a Roll
Bending Process", M.S. Thesis, MIT., June 1985.

10. Crandall, S.H., Dahl, N.C., and Lardner, T.J., editors,
An Introduction to the Mechanics of Solids, 2ed,
McGraw-Hill, New York, 1959.

11. Crandall, S.H., Karnopp, D.C., et al, Dynamics of
Mechanical and Electromechanical Systems,
McGraw-Hill, New York, 1968.

12. Ogata, K., Modern Control Engineering, Prentice-Hall,
Englewood Cliffs, N.J., 1970.



-108-

13. Landau, Y.D., Adaptive Control: The Model Reference
Approach, Marcel Dekker, New York, 1979.

14. Astrom, K.J., Borissou, L.L., and Wittenmark, B.,
"Theory and Applications of Self-Tu-n½a Regulators",
Autometica, Vol. 13, 1977, pp. 457-476.

15. Astrom, K.J. and Wittenmark, B., "Self-Tuning
Controllers based on Pole-Zero Placement",
IEEE Proc., Vol. 127, No.3, May 1980, pp. 120-130.

16. Astrom, K.J. and Wittenmark, Computer Controlled
Systems: Theory and Design, Prentice-Hall, Eaglewood
Cliffs, 1984

17. Whittaker, H.P., Yamron, J., and Keezer, A., "Design
of Model Reference Control System for Aircraft",
MIT Instrument Lab Report, R-164, 1959.

18. Monopoli, P.V., "Model Reference Adaptive Control
with an Augumented Error Signal", IEEE Trans.
Automatic Control, AC-19, October 1974.

19. Narendra, K.S. and Valavani, L.S., "Stable Adaptive
Controller Design-Direct Control", IEEE Transactions
on Adaptive Control, Vol. AC-23, 1978.

20. Narendra, K.S., Liu, Y.H., and Valavani, L.S.,
"Stable Adaptive Controller Design, Part II: Proof
of Stability", IEEE Transaction on Adaptive Control,
Vol. AC-25, 1980.

21. Ioannou, P.A. and Kokotovic, P.V., "Singular Perturbation
and Robust Redesign of Adaptive Control", Proc. 21st IEEE
Conference on Decision and Control, Orlando, 1980.

22. Goodwin, G.C., Ramadge, P.L., and Caines, P.E., "Discrete
Time Multivariable Adaptive Control", IEEE Transaction
on Adaptive Control, Vol. AC-25, 1980.

23. Rohrs, C.E., Valavani, L.S., and Athans, M., "Robustness
of Adaptive Control Algorithm in the Presence of
Unmodelled Dynamics", Proc. 21st IEEE conference on
Decision and Control, 1982, pp. 3-11.

24. Rohrs, C.E., Adaptive Control in the Presence of
Unmodelled Dynamics, Ph.D. Thesis, MIT., Sep. 1982

25. Papadoulos, E.G., An Investiqation of MRAC Alqorithm
for Manufacturinq Processes: Problems and Potentials,
S.M. Thesis, M.I.T., 1983.

26. Orlicki, D.M., Model REference Adaptive Control System



-109-

using a Dead Zone Non-linearitY, Ph.D. Thesis, MIT.,
April i985.

27. Ioannou, P., "Robust Adaptive Controller with Zero
Residual Tracking Errors", Proc. of 24st Conference
on Decision and Control, December 1985, pp. 135-140.


