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ABSTRACT

It has been demonstrated experimentally that departures
from local equilibrium at the interface do occur during rapid
solidification of zinc-cadmium alloys. The resulting solid
compositions are larger than the equilibrium solid compositions at
any temperature, including metastable equilibrium compositions
below the eutectic. This implies the solute chemical potential
increases during the freezing process. Non-equilibrium alloy
solidification theories of Jackson, Borisov, and Baralis cannot
predict an increase in solute chemical potential, and therefore are
invalid.

There is a group of theories that do predict an increase
in chemical potential during freezing. This set of theories as
well as the above set can both be derived from irreversible
thermodynamics. The two types of theories can best be understood
in the common framework of irreversible thermodynamics. Within this
common framework contradictory predictions can be made from
theories starting with identical assumptions. Therefore, the
validity of both groups of theories is in doubt, and irreversible
thermodynamics as currently applied is untrustworthy.

A kinetic theory is developed which indicates that if
solute atoms are adsorbed on the liquid-solid interface then their
chemical potential increases during the solidification process,
even at low interface velocities.

Thesis Supervisor: John W. Cahn
Title: Professor of Physical Metallurgy
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Chapter I

GENERAL INTRODUCTION

1.1 Introduction

The purpose of this chapter is to give the reader

the necessary background and a framework for understanding

succeeding chapters. Consequently, a number of distinct

concepts need mentioning, and for this reason the various

sections of this chapter may appear to be somewhat

unrelated.

An attempt will be made throughout the chapter to

show that the same principles which apply to interface

motion in solids, such as during recrystallization, can be

used to describe and explain liquid-solid interface motion

during solidification. The next section concerns itself

with interface motion in pure materials during solidifica-

tion and solid-solid transformations. A couple of

theories of both types of transitions will be discussed.

Section .5 will later extend these suppositions to

describe interface motion in binary systems. The key here

is to account for the additional variable of composition.

Sections .3 and .4 pertain to aspects of

interfaces which are vital prerequisites in understanding

boundary motion in binary alloys. The last section gives

a perspective view of the remainder of the thesis.
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1.2 Continuous Interface Motion in Pure Materials

Before attempting to understand binary interface

motion and the associated interface partitioning, a brief

treatise of interface migration in pure materials will be

given.

There are two general atomistic mechanisms of

crystal growth from the melt. (a) The first is when the

interface advances normal to itself. For this case the

nature of the interface is usually thought of as being

"rough" (1,2), or the driving force being sufficiently

large(3). Wilson(4) in 1899 was the first to propose a

kinetic theory to describe this type of freezing in pure

materials. His prediction is of the form

V = -MAG (1.1)

where V is the growth rate, M is an interface mobility

which is dependent on temperature, and AG is the change in

the molar free energy (equal but opposite in sign to the

driving free energy). This relationship is still popular

today.

(b) The second mechanism is when the interface

advances by lateral motion of steps or layers one or more

interatomic distances in height. There is no normal

advance of the interface, growth of an element of surface

advances only when a layer sweeps by. A possible genera-

tion of such steps has been proposed by Frank(5) to occur
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at screw dislocations. It was later shown by Hillig and

Turnbull(6) that the growth rate by such a mechanism is

V (AG) (1.2)

Interface motion by steps is believed to occur when the

liquid-solid interface is smooth(2), or when the driving

force is sufficiently small(3). Regardless of the fact

many materials are believed to solidify by this mechanism,

the remainder of this thesis will be committed to a study

of normal interface advancement. It will be called

"continuous interface motion."

The first theories of continuous interface motion in

solids were proposed by Turnbull(7) and Mott(8) for

recrystallization. They derived rates of motion of high-

angle grain boundaries by the use of absolute reaction-

rate theory. Turnbull bases his theory on the assumption

that the atoms traverse the interface individually. His

final conclusion is

kT AG aS a, ()
V = -e (-) ()exp (-RT) (1.3)

where e is the Naperian base, is the atomic jump

distance, h is Planck's constant, N is Avogadro's number,

AG is the molar free energy difference, AS is the entropy
a

of activation, R is the universal gas constant, Qa is the

activation energy and T is the absolute temperature in

Kelvin units.
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If the structure of the interface is always assumed

not to change then equation (1.3) can be written in the

form of equation (1.1).

Mott's approach differs in that he assumes the

interface transport process is one where groups of atoms

of the parent grain melt and then solidify as a group onto

the daughter grain. Mott's end result is of similar form

to that of Turnbull's

(kT) nAG nLm nLmV = -e (h--)R-,exp(RT-)exp(-R-T-) (1.4)
m

where n is the number of atoms in each group, Tm is the

melting temperature and Lm is the latent heat of fusion.

Experimental boundary migration rates by Aust and

Rutter(9), Rath and Hu(10), and Gordon and Vandermeer(ll)

show agreement with predictions of Turnbull's single-

process theory, while Mott's group-process theory predicts

a velocity of several orders of magnitude higher.

A similar approach to Turnbull's has been proposed

specifically for liquid to solid transformations in pure

materials by Jackson and Chalmers(12). This analysis is

more detailed, though, because it considers geometric

factors and the probability that an atom will be accommo-

dated by one of the phases at the interface. The essential

feature of the Turnbull theory that interface motion is the

result of an individual atomic process is retained.
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1.3 Equilibrium Segregation at Phase Boundaries

If theories similar to Turnbull's(7) are tested for

materials without ultra-high purity large disagreements

between theory and experiment result. The pre-exponential

term is found to be much too small(ll). Hence, impurities

or solute atoms influence interface motion significantly.

It is believed the solute retards the interface motion by

segregating to the interface. For this reason it is of

interest to digress temporarily to allow one to comprehend

the interaction of a solute species with an interface.

Before the role of solute on moving boundaries is

considered, an attempt will be made to convey that which

is known about segregation at stationary boundaries or

interfaces.

A means of characterizing equilibrium segregation at

boundaries will now be given. If one assumes the struc-

ture of the interface is different than the bulk phase or

phases and hence the affinity for solute atoms is also

unequal, then it is plausible to express the solute

chemical potential of the system in terms of a solute

interaction energy E(x) in dilute solution as

B
= kTZnC(x) + E(x) + constant (1.5)

The superscript B refers to the solute species. The

distance x is in a direction normal to the interface. At

equilibrium ( = constant), C and E will be constant in
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the bulk phase. But if the boundary is considered to have

a finite thickness, then C and E may vary with position in

the boundary to maintain = constant. In this thesis EB

will designate the value of E at the center of the

boundary.

An understanding of the solute interaction energy E

may be conceived by the following discussion. Consider

the addition of a solute species to a pure material while

keeping the addition small to minimize solute-solute

interactions. If there is an attractive or repulsive

force on the solute atoms in the vicinity of a boundary

then this force can be perceived as minus the gradient of

a potential energy. The solute interaction energy E is

this potential energy. One would expect a higher concen-

tration of solute where the interaction energy is lower.

In equation (1.5) the first term may be thought of as the

entropy contribution to and E the enthalpy contribution.

For a given , such as at equilibrium, the smaller the

solute interaction energy E the larger the composition C

will be.

At equilibrium, if one sets the solute chemical

potentials of the bulk phase a and of the boundary equal,

then the ratio of solute compositions is given by

CB(eq) E B
C (eq) = exp( ) (1kT6a)

C
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The subscript B refers to the boundary. From this

equation, it follows that if E > EB then CB(eq) > C (eq)

and the solute is surface active (adsorption of solute).

Conversely, if EB > E then solute interface desorption

exists at equilibrium.

Several methods of calculating the solute

interaction energy EB for large-angle grain boundaries in

single-phase systems have been reported(13,14). But if

one assumes that the disordered structure of a random

high-angle boundary resembles that of the liquid(15), then

a natural extension is to set EB = EL and CB(eq) = CL(eq)

for a given temperature. For this case, equation (1.6a)

may be rewritten as

CS(eq)
EB - ES= kTZn [c(eq = kTZn[K(eq)] (1.6b)B S L(eq)

where K(eq) is the equilibrium distribution coefficient

(not to be confused with k which is Boltzmann's constant).

K(eq) can be determined from the equilibrium phase diagram.

Turning our attention now to liquid-solid interfaces,

a plausible assumption for allowing one to estimate EB and

the corresponding boundary segregation might be to:

assume the liquid-solid boundary to be disordered and

similar to the liquid phase. Then EB EL and

CB(eq) CL (eq).

One possible means of experimentally determining EB,

at least semiquantitatively, for liquid-solid interfaces,
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is to utilize the famous Gibbs(16) adsorption isotherm

equation

B = _a (1.7)
=B T,P

or for when the solute composition is small

- - ( Da ) p(1.8)RT YnCTP

rB is the number of solute atoms adsorbed per unit inter-

face area, a is the surface free energy per unit area, and

Bp and C are the solute chemical potential and composition

present in the system that are being adsorbed. From this

equation it is seen that if raising the solute composition

or chemical potential causes a reduction in the work a

required to form a unit area of the surface, then rB is

positive and solute is adsorbed by the interface. If

addition of solute increases a then the solute species

will be rejected at the interface (desorption). Hence, if

a is experimentally measured as a function of (znC) then

rB can be found. But rB is the number of solute atoms

adsorbed per unit interface and not a composition at a

particular position in the interface. Nevertheless, from

FB the nature of the segregation can be determined and

also CB(eq) and EB (at the center plane of the interface)

can be estimated if one assumes a particular E = E(x) or

CB (eq) = C(x) for the boundary.

This method of characterizing solute equilibrium

segregation at interfaces by an interaction energy has



9

been used by Cahn(17) to develop a theory for boundary

motion during recrystallization (see Section .5).

Cahn's approach will be extended in Chapter V to enable

the partitioning at moving interfaces to be expressed as a

function of growth velocity for binary alloy

solidification.

1.4 Driving Force for Interface Motion in
Binary Alloys

Before discussing interface motion in binary alloys

it is worthwhile to comprehend the thermodynamic funda-

mentals which allow such a process to take place. At

constant pressure for binary alloys the composition

variable in addition to the temperature must be taken into

account if the thermodynamics is to be understood. One

can then predict when such a process is energetically

possible and determine the driving force for the reaction

if it does occur. These driving forces will be illustrated

graphically.

In binary phases the chemical potentials (A and B)

of A and B are definedCl18

i i- (~G/3n) (1.9)
T,P,n

as the rate of change in the Gibbs free energy G when an

i-th component is added at constant temperature and

pressure. The two chemical potentials are related by the
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Gibbs-Duhem equation, which for constant T and P is

(1 - C)diA + Cd1B = 0 (1.10)

where C is the mole fraction of B. This equation permits

calculation of the chemical potential of one component

from a knowledge of the other. The molar Gibbs free

energy, Gm = G/(NA + NB), is related to the chemical

potentials by

Gm(C) = (1 - C) PA(C) + C (C) (1.11)

and by use of the Gibbs-Duhem equation

A _ - C( m= Gm C

(1.12)

B_
B Gm + (1 - C)(--)

Equation (1.9) expresses the important property of the

chemical potential. It is the increase in free energy of

the entire system when an infinitesimal amount of one

component is added reversibly (per mole added). From this

property we have the important condition that for equili-

brium the chemical potential must everywhere have the same

value. Equations (1.12) form the basis of the popular

graphical methods of tangents(19). They express the fact

that a tangent drawn to the molar free energy curve in

Figure 1.1 at the composition of interest intercepts the

C = 0 and C = 1 vertical axis at a value of Gm equal to
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the chemical potential of the component. Hence a common

tangent among two or more phases implies equality of

chemical potentials and equilibrium (see Figure 1.2). A

tangent to a Gm versus C curve also has an important mean-

ing for reactions of a phase with composition change. The

equation of a line tangent to Gm at C = C is

Gm(C,C ) = (1 - C)A (C ) + C (C a) (1.13)

If an infinitesimal amount of material of composition

C were to be added reversibly to of composition C , then

G (C,C ) would be the change in free energy of per molem

of material added as in Figure 1.3. Here C is the

composition of material added. It may be quite different

from C , the composition of a, which is the value of C

where the line is tangent to the free energy curve. The

free energy change AG per mole reacted for diffusionless

reactions of composition C from to is obtained

graphically in Figure 1.4 by reading the vertical distance

between tangents at C (incidently the distance between

tangents for the case coincides with the distance between

curve to curve at C 0). Analytically the free energy

changes per mole of B is

AG,, = (l-CH - ACO ) + C (B - B (1.14)
0 a a ~0 jB a

The free energy change AG per mole formed in a closed

system that transfer small amounts of components from a at
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composition C to at a different composition of C is

attained graphically in a similar way as before by reading

the vertical distance between tangents at C (see Figure

1.5). This free energy change per mole formed can be

expressed if C is changed to C in equation (1.14)

AG = (1 - C) ( - ) + C & - hB (1.15)

This substitution is necessary because the free energy

change desired is per mole formed and 1 is no longer of

composition C.

To inquire if a solid can form from a single-phase

liquid of composition C one draws a tangent to GL at C0

and sees if the free energy curve of any solid phase lies

below the tangent (see Figure 1.6).

The composition range over which G lies below the

tangent gives the range of composition of solid that can

form. At temperatures above the liquidus no solid can

form. At the liquidus one solid just touches the tangent.

It is the only solid that can form and it must form with

the equilibrium composition. At lower temperatures an

increasing range of solid compositions can form.

To take advantage of the isothermal aspects of the

graphical methods this same range of solid compositions

can be presented isothermally by varying the liquid

composition CL. At a given temperature the range of

thermodynamically possible solid compositions C that can
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form from a liquid of varying compositions CL, is shown

in Figure 1.7 as an area enclosed by the curve where

AG = 0 (OABEP). The right-hand most point on the curve E

depicts the equilibrium compositions. The tangent to the

liquid touches the solid only at one point (see tangent 1

in Figure 1.8). As the liquid composition moves to the

left (tangent 2) the range of possible solid compositions

at first increases and then decreases again.

The maximum solid composition(C(T o ) in Figure 1.7,

tangent 3 in Figure 1.8) is the composition where the two

free-energy curves cross. Only one liquid composition,

C(To), can give this solid. If the liauid is either more

or less supersaturated this maximum solid composition

ceases to be possible. Diffusionless transformations,

shown as a line OB of slope 1 in Figure 1.7, can only

occur if the liquid composition is below this crossover

composition(20). Following the useage in other transfor-

mations(21,22), we shall call the condition of equal free

energies the T condition and the composition C(To). On a

phase diagram T forms a line between the liquidus and

solidus lines. The line marks the upper limit to the

liquid compositions and temperatures for diffusionless

transformations. It also marks the upper limit to the

compositions and temperatures of solid that can form

isothermally from liquid of any composition.
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Two other curves of thermodynamic interest are shown

in Figure 1.7. These are the lines where chemical poten-

tials of a component are equal in liquid and solid. For

line E, APB = 0; for line PE, AA = 0. Where the two

lines cross we have equilibrium. These lines bound the

regions of the figure where a particular component

solidifies with a decrease in chemical potential. In the

triangular region OEP both components would experience a

decrease in chemical potential upon solidification. In

this joint composition range the line tangent to the solid

free energy versus composition curve lies everywhere below

the line tangent to the liquid. Both components

independently experience a decrease in free energy upon

solidification. Outside the triangular region but within

the AG = 0 curve the tangent lines cross and although the

overall free energy decreases upon solidification, one of

the components experiences an increase in chemical poten-

tial. Solidification in this domain can only occur if the

two species do not solidify completely independently of

one another. One species enters the solid with an increase

in its chemical potential because it is either passively

trapped by the advancing solidification front or because

it is a required participant in an independent solidifica-

tion reaction mechanism involving several species which

leads to an overall free energy decrease. In either case we

will define "trapping" of a component to occur at an
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interface when that species experiences an increase in

chemical potential there.

It is worthwhile to describe the above conditions

quantitatively for one simple case, that of dilute solution

for both liquid and solid. Then the chemical potentials

are given by Henry's Law for the minor component

B
=s B + RT n ys C (1.16)

B
L =BL + RT n yL CL (1.17)

where the B's and y's are related constants that depend on

temperatures and reference states. We may eliminate the

constants by noting that the chemical potentials are equal

at equilibrium when Cs = Cs (eq) and CL = CL(eq), then the

change in chemical potential across the solidification

front is

B B B Cs CL (eq)
AP PUs - L = RT n Cs (eq) (1.18)

s ~L

In terms of the distribution coefficient K at the inter-

face, defined as Cs/CL, and its equilibrium value,

K(eq) = Cs (eq)/CL(eq), this becomes

B
AP = RT n K/K(eq)] (1.19)

The minor component experiences no change in chemical

potential when

Cs = K(eq) CL (1.20)
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This is a straight line OE with slope K(eq) through the

origin in Figure 1.7. When K < K(eq), A B < 0. This is

the region below the line OE. The area above line OE

corresponds to "solute trapping". For the major component

Raoult's Law hold and

A (1 - C - C- CL (eq))
A = RT Zn (1 - C(eq)) (1 - C (1.21)

5 L

The major component experiences no change in chemical

potential when

[Cs (eq) - Cs] = [1 - C(eq)/ - C(eq)][CL(eq) - CL]

........ .(1.22)

This is a straight line PE of slope [1 - C(eq)]/[l - CL(eq) ]

= 1 through the equilibrium point [Cs(eq), CL (eq)] in

Figure 1.7. The regions above and below the PE corresponds

respectively to Ai A less than or greater than zero. Solvent

trapping would occur below PE.

The AG = 0 curve is given by

(1 - C) A + C ASB = 0 (1.23)
s s

This curve must pass through the points 0, B, E, and P.

1.5 Continuous Interface Motion in Binary Alloys

In Section 1.2 it was shown by Equation (1.1) that

the response of an interface in pure materials (one

component systems) to the conditions at the interface can
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be expressed by

V = -MAG (1.1)

or in general, in terms of the variables V and T

f(V,T) = 0 (1.24)

For binary systems the additional variable of

composition must be taken into account and two interface

response functions are needed to describe the interface

motion. For an a+- transformation these functions are

fl (Ca ,CV,T) = 0 (1.25)

f2 (Ca ,CV,T) = 0

where Ca and C are the solute interface compositions of

the and phases. Such response functions could equally

well be solved for the response, V and Ca, in terms of the

temperature T and interface composition C.

V = gl(T,C) (1.26)

Ca = g2 (T,C)

Such a form of the response functions are especially

valuable when considering a solid state transformation

under steady state conditions. For this case C is

equal to the overall solute composition C of the system

and the temperature T is the imposed variable.
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For steady state solidification te desired response

functions are

T = hl(V,C s ) (1.27)

CL = h2(V,C s)

since C = C and the growth velocity V is now a

conveniently controllable parameter. It should be noted

no matter which form of the response functions are chosen

they describe the same relationship and are equivalent.

From this view point it is readily evident that the

principles of solidification are equivalent to those of

interface motion during solid state transitions, and basic

approaches applicable to one should be satisfactory for

the other.

For solidification, due to the high diffusivities in

the liquid and the usual comparatively small growth

velocities, it is customary to assume the liquid and solid

interface compositions are not substantially different

from equilibrium compositions. Such a condition is called

"local equilibrium" at the interface. The significance of

this assumption is that the interface compositions are now

independent of growth velocity V and dependent oly on

interface temperature T. For any temperature the liquid

and solid compositions can be read from the liquidus and

solidus lines on the equilibrium phase diagram; hence the

response functions are known.
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If the above assumption is not made two common

approaches have been used to determine the response

functions for the solidification process: Absolute

reaction rate theory and irreversible thermodynamics.

A theory for determining the response functions for

binary solidification using the absolute reaction rate

approach has been developed by Jackson(23). It is an

extension of the work by Jackson and Chalmers(12) to two

component systems. Such an extension can easily be made

since an inherent assumption of the previous work is that

the atoms traverse the phase boundary individually. Hence

the following convenient assumption of the Jackson theory

was a natural one: the rate at which j atoms of each

species leave a phase and traverse the interface is propor-

tional to the mole fraction of the species in that phase.

This assumption allows Jackson to develop an analysis which

lends itself readily to physical interpretation. Details

of this theory will be given in the next chapter.

The more popular approach to the problem for binary

solidification has been through the use of irreversible

thermodynamics. The starting point for these theories is

by assuming a relationship similar to equation (1.1) for

each atomic species, that is the flux of each species

across the phase boundary is linearly proportional to the

gradient of its chemical potential. A thorough analysis of

these theories will be given in Chapter IV.
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Since it is well known even traces of a second atomic

species retards interface motion during recrystallization,

Cahn(17) has formulated a theory to account for the inter-

face drag of a second species on interface motion. It is

assumed when the material is pure equation (1.1) is valid.

When a solute species is present its drag on the interface

is determined and in turn the resulting response functions

can be found. The nature of the above solute effect

depends on the magnitude of the solute interaction energy

EB relative to the interaction energy in the bulk phase.

These are the same equilibrium solute interaction energies

as found in equations (1.5) and (1.6a). An extension of

this Solute Drag Theory to binary solidification is given

in Chapter V. The necessity of this alternate approach to

determine the interface partitioning during binary solidi-

fication was found to be needed since there are defects in

the previous two methods. These deficiencies will be

covered in Chapter IV.

1.6 Scope and Objective of Thesis

The purpose of this investigation is to make a

detailed examination of the response of a solid-liquid

interface to various conditions at the interface.

Specifically, this study has been made to gain insight

into the relationships between solute partitioning (solid

and liquid interface compositions), the interface
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temperature, and the growth rate during binary alloy

solidification. Such relationships are called "response

functions."

A knowledge of the response functions is of utmost

importance in the field of solidification since they are

needed boundary conditions to differential equations which

are capable of describing the kinetics of solidification.

Such a mathematical analysis in turn can help in

predicting and controlling cast alloy properties.

If it is assumed that the interface is highly mobile,

then even for small deviations from equilibrium the inter-

face velocity is expected to be large. For this case it

is expected that the solute partitioning should be a

function of only the interface temperature and not

dependent on the growth rate. Such a condition where the

interface compositions are close to the equilibrium

compositions is called "local equilibrium." Since most

solidification studies are carried out at low velocities

the condition of local equilibrium has gained wide

acceptance as a valid form for the response functions. The

first objective of this investigation is to test the valid-

ity of local equilibrium under extreme solidification condi-

tions. In Chapter II it will be shown that compositions of a

resulting solid after freezing were found to be larger than

the stable or metastable solidus composition at any tempera-

ture and therefore a departure from local equilibrium at the
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liquid-solid interface occurred. This investigation was

performed by studying the zinc-rich solid phase in zinc-

cadmium alloys after splat cooling. Chapter III will then

concern itself with thermodynamics aspects of solidifica-

tion when the solid composition lies in various regions of

the equilibrium phase diagram.

With the above experiments in mind, previous theories

on non-equilibrium partitioning are examined in Chapter IV.

With the aid of the experimental results in the zinc-

cadmium work, serious deficiences have been found in each

of these theories. Since most of these theories are

irreversible thermodynamic in nature, special attention is

given to this type of method and surprising conclusions are

drawn. Chapter V will be concerned with attempting to

overcome the above shortcomings by using the solute drag

approach.

Before proceeding to the next chapter it should be

noted that the major portion of Chapters II*, III**, and

IV** have been published.

J. C. Baker and J. W. Cahn, Acta. Met., 17, 575,
(1969) .

** J. C. Baker and J. W. Cahn, "Solidification," Amer.
Soc. for Metals (1970) .
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Chapter II

SOLUTE TRAPPING BY RAPID SOLIDIFICATION

II.1 Introduction

Equilibrium between solid and liquid phases of metal

alloys implies that the position of the phase boundary is

fixed, i.e. the net rate of growth, V, is zero and that

both phases are of uniform composition, but the compositions

of the solid and melt are usually different. These equili-

brium compositions are dependent on temperature; the

possible compositions of solid and liquid correspond to two

lines on the phase diagram, the solidus, below which in

Figure 2.1 the solid is stable and the liquidus, above which

the liquid is stable.

If the liquid-solid interface is allowed to move at a

small rate (Vsmall), the solid and liquid phases need not be

of uniform composition. But for all practical purposes, the

solid phase at the interface can be assumed to be in equili-

brium with the liquid at the interface (Cs(i) = C(eq) and

CL(i) = CL(eq)). In this thesis the above condition at the

liquid-solid interface will be referred to as "local

equilibrium."

For large growth rates it is questionable if the

condition of local equilibrium at the interface holds.

Consequently, the objectives of the investigation of this

chapter are: Cl) to obtain high growth rates by the method
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of splat quenching and (2) to ascertain if there is a

detectable departure from local equilibrium at the inter-

face for the case of large growth rates.

If we measured the temperature at the liquid-solid

interface during rapid solidification we would know the

equilibrium composition of solid from the phase diagram for

that temperature. Then we could check the validity of local

equilibrium at the interface by comparing this equilibrium

composition with the actual composition of the resulting

solid. But it is a major experimental problem to determine

the temperature at the crystallization front. If this

temperature is unknown during the solidification, then for

most alloy systems any observed solute redistribution can

be rationalized from the assumption of local equilibrium at

the interface, since the composition of the solid can be

made to match a stable or metastable equilibrium solid

composition by choosing the appropriate solidification

temperature above or below the eutectic as indicated in

Figure 2.2.

It is possible to avoid this problem of temperature

determination by selecting an alloy system with a retrograde

solidus (see Figure 2.3). The reasoning is as follows:

since a retrograde system has a maximum in the solidus

[Cs(eq max) > C(eq)], if a composition of the actual solid

can be measured which is greater than the retrograde maximum

in the equilibrium solid composition Cs(i) > C(eq max)], a
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positive departure from local equilibrium at the interface

must have occurred Cs(i) > Cs(eq)]. Hence, for this case

we can measure a departure from local equilibrium without

the temperature being known.

II.2 Experimental

The zinc-cadmium system was chosen for this

investigation (see Figure 2.3). The solidus of the zinc-

rich end of this alloy phase diagram was reported to be

retrograde by Owen and Davies(24). The retrograde solidus

was confirmed by the present author using X-ray lattice

parameters to measure solid compositions at various tempera-

tures. High-purity zinc (99.99%) and high-purity cadmium

(99.99%) were sealed in an argon atmosphere in vpyrex tubing,

melted together, and quenched in water. Portions of these

master alloys were then remelted and splat cooled to -196 0 C.

The shock-tube method of splat quenching of Duwez et

al(25) was utilized. This technique employs a shock wave to

eject liquid metal through a small hole in a crucible,

atomizing the liquid in process. The liquid globules are

rapidly spread on a copper substrate.

The resulting metal foils were kept at -196° 0C and

analyzed on an X-ray diffractometer. Unit cell volumes

(0.866 a2c) of the zinc--rich phase were calculated and

plotted versus weight per cent cadmium of the initial liquid

from zero to 5% (see Figure 2.4).
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II.3 Discussion

The unit cell volume of the zinc-rich phase in Figure

2.4 can be considered as a measure of the concentration of

cadmium in solid solution. Since we find that the unit

cell volume is linear with respect to the composition of

the initial liquid, we conclude that solid of compositions

up to 5 wt. % cadmium have formed. The maximum composition

of equilibrium solid in accordance with the retrograde

phase diagram is 2.6 wt. % cadmium. Consequently, the solid

solubility has been increased beyond the maximum solidus

composition and a positive departure from local equilibrium

at the liquid-solid interface has occurred in the solid

composition, i.e. C(i) > C(eq).

We are now in a position to compare the result of

increasing the actual solid composition beyond the

equilibrium composition of the solid with present theories.

There are two basic types of theories that are shown invalid

by this experiment; one by Jackson(23) is based on reaction

rate theory, the second by Borisov(26) is a thermodynamic

approach.

Let us first consider Jackson's kinetic description

of alloy solidification. It is developed on the basis of

two assumptions: (1) reaction rate theory can be applied

independently to each species, and (2) the rate at which j

atoms of each species leave a phase and traverse the
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interface is proportional to the mole fraction of the species

in that phase. From these two assumptions Jackson attains

the equations for each atomic species

Vj = KJ C(i)m m S

(2.1)
VD = K3 CD(i)F FL

where V is the rate at which atoms of the j species crossm

the interface to join the liquid, V is the rate at which j

atoms cross the interface to join the solid, and

Kj = AGjvNJV j exp(-QJ/RT) (in the notation of the cited

paper) is a function of temperature but not of composition.

The net rate of growth of each species is equal to the

difference between V and V and is given by the equationm

Vj = VF - V (2.2)
F m

From equations (2.1) and (2.2) it can be shown Jackson's

analysis predicts a negative deviation in local equilibrium

for the solid at the interface, C(i) < C(eq), which is

contrary to the results of this investigation. The proof is

as follows. For species B at equilibrium V= 0 and equation

(2.2) becomes

B = VBV = V (2.3)F m
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Combining equations (2.3) and (2.1)

Km CS (eq)m 
B

= KF C (err)F L

VB is positive for solidification and is given by

equation (2.2)

vB = VBV =V

(2.4)

(2.5)- VBm

Combining equations (2.1) and (2.5) gives

B B B
V K C (i) - K C (i)

F L m S (2.6)

and substituting for K from equation (2.4)m

B CL(i) CS (i)
L= C(eq)K F [ () CS(eq) (2.7)

For solidification we must have a decrease in free

energy, hence it can be easily shown any deviation from

local equilibrium in the liquid composition is such that

the liquid composition at the interface is less than the

liquidus composition

CL(i) < CL (eq) (2.8)

Equations (2.7) and (2.8) yield

C S (i) < C s (eq) (2.9)

Hence, Jackson's theory predicts the wrong direction for the

deviation from local equilibrium and the theory is invalid.

VB
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We now turn to Borisov's theory, which makes the

thermodynamic assumption for a binary system that the

chemical potentials of both species must decrease during

solidification, i.e. the values of the chemical potentials

at the interface must satisfy the following condition:

A ( i) < 0
USL

(2.10)

PB(i) - BL(i) < 0

Equations (2.10) will now be shown to be inconsistent

with the experimental results, C(i) > C(eq), hence making

Borisov's theory also incorrect.

At equilibrium for species B

B (211
1L(eq) = ps(eq) (2.11)

Except at critical unmixing points and spinodals we have

the following condition for each species in any stable or

metastable phase

, (i)/C (i) > 0 (2.12)

For solidification with a decrease in free energy equation

(2.8) holds true and when combined with equation (2.12) gives

L(eq) > vL(i) (2.13)

From our experimental result, C(i) > Cs(eq), and

equation (2.12)
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US(i) > vS (eq) (2.14)

Combining equations (2.11), (2.13), and (2.14)

-B(i) _ p(i) > 0 (2.15)
S L

Therefore, the assumption of equations (2.10) and Borisov's

theory are invalid.

It should be pointed out that equations (2.10) are

not necessary thermodynamic conditions for solidification.

The thermodynamic requirement is AG < 0 for the overall

transition. This permits A > 0 for one of the species.

It is now of interest to see why theories like

Jackson's and Borisov's fail to agree with our experimental

result. Both types of theories make the inherent assumption

that some spontaneous activity is required of each species

during solidification. The atoms that do not traverse to

the solid are inactive. Thus each species must lower its

free energy on solidification. Experimentally we find that

the cadmium atoms experience an increase in chemical

potential. This means that if the cadmium atoms could act

independently they would attempt to avoid the solid. During

the time the cadmium's potential is being raised it must be

passive. The cadmium is trapped in the solid by the

solidification front and if it could have been active it

would have remained in the liquid.
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There is one atomistic theory which has in it the

basic passivity of the solute and which therefore predicts

the correct deviation in solid composition from local

equilibrium. This is Chernov's theory(27) for the trapping

of surface active solute atoms. These solute atoms seek

the interface and are subsequently buried as the next layer

of the crystal grows. It is during the burying that they

are passive and their chemical potential is raised. If

they can diffuse they attempt to remain in the surface.

The author believes Chernov predicts the correct

departure because it is inherent in his beginning assump-

tions and not a product of the solution to his diffusion

equation. The disputed assumption is: the initial composi-

tion of the new solid layer is identical to the interface

layer from which it formed. Any later change in composition

of this solid is then due to diffusion in the solid. Hence,

for a surface active solute species this total initial

capture of solute atoms is independent of the layer's

lateral growth and neglects solute escape by interface

diffusion ahead of the moving layer (the author feels this

may be an important effect especially at small layer growths).

An analysis believed to be more realistic than the one

above is given in Chapter V. It also predicts a positive

deviation in solid composition from local equilibrium when

the solute atoms are surface active.
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II.4 Appendix

A. Verification of the Retrograde Solidus in
Zinc-Cadmium

The validity of the conclusion of this experiment

requires that the solidus including its metastable extension

below the eutectic never exceeds the composition value at

the retrograde maximum. But theoretical and experimental

tests were performed to check that the solidus indeed has a

maximum, and the metastable extension was shown theoreti-

cally to continue to decrease monotonically.

The various equilibrium solidus compositions were

calculated by utilizing available thermodynamic data from

the literature(28) and the following expression derived by

Thurmond and Struthers(29).

(A + LB)--B ABkn C (eq) (AHf +HL) s AfA2B
C (e q )

] = T CL (eq) RT - -RT (2.16)L

Both the liquid and solid solutions are assumed to be

regular solutions. AHf and ASf are the heat of fusion and

entropy of fusion at the melting point of solute B, AH- and
s

-B
AHL are the differential heat of solutions of the solute in

the solid and liquid phases. For regular solutions the

B
above three AH's and ASf are constant. For the zinc-rich

side in the Zn-Cd system they are(28):
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AHcd = 201530 cal.
Afif~ ~ ~~ = 153 cal.-Cf ~~~~~~L

Cd
ASf = 2.58 cal/°. TCs = 6904 cal.

Using CL(eq) values from the phase diagram, Cs(eq)

values have been calculated at the temperature where the

experimentally determined phase diagram predicts a

maximum (600° K) and at the eutectic temperature (539° 0 K).

The two calculated solidus compositions are 1.30 at/o (at

600°K) and 1.23 at/o (at 539°K). Hence, these two

composition values predict a retrograde solidus, and are

in close agreement with the equilibrium hase diagram

values(24) of 1.39 at/o and 1.20 at/o.

Let us now study equation (2.16) in detail for the

Zn-Cd system. Whenever

-B B -B
AHs >> (AHf + AH) (2.17)

the right-hand side of equation (2.16) is always negative

and increases in absolute magnitude as the temperature T

decreases. The above implies n[Cs(ea)/CL(eq)] + -A and

Cs(eq) 0 as the temperature T tends toward zero degrees

Kelvin. For the zinc-cadmium system expression (2.17) is

obeyed strongly. So strongly that heat capacity differences

cannot produce appreciable changes in it. Hence, below the

eutectic temperature the metastable equilibrium solidus

compositions will continue to decrease with decreasing

temperature.
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For a maximum to occur in the stable portion of

-Ba solidus, it is desired that AH and ETA - Ts m (eutectic)

be large. For systems where AHS < (AHf + AHL) the

solidus cannot have a retrograde maximum at any temperature.

The maximum in the solidus was checked experimentally

by X-ray lattice parameter measurements. First, alloys of

3.5 w/o Cd were heated into the two phase liquid-solid

phase diagram region and were allowed to equilibrate at

the supposed temperature where C (eq) is a maximum and at
5

a lower temperature. Both specimens were quenched in

water and examined by X-ray lattice parameter measurements

at -196°C. It was found that the specimen with the

higher equilibration temperature had a larger unit cell

volume at -196°C and hence was of higher composition. This

in turn supports the retrograde nature of the solidus.

B. Verification of Presence of Only a Single
Solid Phase

The second precaution was to examine the various

splat cooled alloys by transmission electron microscopy.

The test was to determine if only the zinc-rich phase in

Figure II.3 was present as indicated by X-ray analysis,

or if the cadmium-rich phase was also present in small

amounts. If the s-phase is the only phase resent when

alloy compositions greater than C (eq) maximum are splat
s

cooled, then all the cadmium is in solution in the ~ phase

and Cs > C (eq). This is what was found by thes '
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transmission electron microscopy (see Figure II.5). Only

one phase appears to be present and the grain boundaries

are clean.

If a phase particles had been found, it does not

invalidate the experimental conclusion that Cs > Cs(eq).

But the actual finding of no phase present does support

the conclusion that the composition of cadmium in solution

is greater than the equilibrium composition.

One would expect if the cooling rate was decreased

sufficiently, the system would tend toward equilibrium

during the freezing process and form both and a phases.

The necessary segregation needed for the formation of

these two phases most likely would occur by dendritic

solidification. Figure II.6 is a micrograph of a

replica of the surface of a Zn-3.5 w/o Cd alloy cooled

by the piston and anvil technique(30). The specimen

appears to consist of dendrites and a interdendritic

particles. The rate of cooling in the piston and anvil

technique(30) is believed to be 105(°C/sec), where as

the splat cooling methods leads to a cooling rate of

approximately 107(°C/sec).
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Figure II-5. Electron micrograph of Zn -3.5w/o Cd which was splat
quenched to -196°C. 130,000X@
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Chapter III

THERMODYNAMIC ASPECTS OF SOLIDIFICATION PROBLEMS

III.1 Introduction

The mathematical analysis of an N-component

solidification problem with one solid phase consists of

setting up 2N differential equations; 2 for heat flow and

(2N-2) for interdiffusion in the two phases. In addition

the initial conditions and the boundary conditions must

be given. Of these, (2N+2) boundary conditions pertain

to the liquid-solid interface. The reason this number of

boundary conditions are needed is that the interface is

not at a fixed position and additional conditions are

needed to specify the interface velocity. The interface

boundary conditions are:

(1) Continuity of temperature. It is believed

that the heat transfer across the interface is sufficiently

rapid that even in the most extreme heat fluxes tempera-

ture remains continuous across the interface.

(2) Conservation of heat. This condition includes

a term for the latent heat of fusion L and thus involves

the velocity V

Ks(VT.n) - KL (VT .n)L = L V (3.1)
sm
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(3) N conservation of mass equations; one for each

component

Ds (VC.n)s - DL(VC.n)L = (Cs - CL )V (3.2)

These also contain the velocity.

(4) N "response" functions which describe the

response of the interface to the conditions at the

interface. These would give N quantities, e.g. the

velocity of the interface and the composition of the solid,

in terms of the instantaneous conditions; the interface

temperature, the composition of the liquid, and the orienta-

tion and defect structure of the interface. This section

will consider the thermodynamic aspects of these response

functions.

For a single component system if we ignore the last

three factors, such a response function would be

f(V, AT) = 0 (3.3)

or equivalently when solved for either V or AT

V = g(AT)

(3.4)

AT = h(V)

All three equations express the same relationship and

should be fully equivalent. If we impose a velocity and

note the interface temperature and then in another
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experiment apply this AT we should observe that the system

responds with the same V.

For a binary system the two response functions

would be

fl(CL Cs, V, T) =

f2 (CL, Cs, V, T) =

0

(3.5)
0

which might be solved for the response, V and C, in terms

of the interface temperature T and CL

V = gl(T, CL)

(3.6)
C
S = g2 (T, CL)

Such a response function could equally well be expressed in

terms of the compositions that would be found for a given T

and V.

C
S

= m1(T, V)

(3.7)
CL = m2(T, V)

As we shall see this form is convenient from a thermodynamic

point of view. Another way of expressing the respone

functions would be to express the temperature T and CL in

terms of a given V and C



53

T = h1 (V, C)

(3.8)
CL = h2(V, Cs)

This is a valuable form for steady state solidification.

These four ways of expressing the response function are

fully equivalent to each other and an experimental determina-

tion of one form should be adequate for reexpression in all

the other forms. Because they are boundary conditions to

differential equations one form or another may be convenient

for a particular experimental geometry but for a particular

system the relations should be universal.

Thermodynamics places only general restriction on the

response functions. It does not specify them. For the

single component it specifies that the sign of V be related

to the sign of AT. For the binary system it specifies only

that for a given T, solidification (V > 0) requires that C
5

and CL lie inside or on the boundary of the curve OABEP of

Figure 1.7. For purposes of mathematical analysis such a

general restriction is insufficiently precise. We have to

know more about the response functions.

Because these response functions are boundary

conditions to a solidification problem it is difficult to

perform experiments that isolate them sufficiently clearly.

Ideally interface compositions, temperature, and velocity

should be measured directly. Even in the single component
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system the interface temperature is often inferred from

bath temperatures with or without a heat flow correction.

In multicomponent systems as we shall discuss, equilibrium

at the interface is usually assumed(31) without even an

attempt at experimental verification.

III.2 The Assumption of Local Equilibrium

If we assume that the boundary is so mobile that V

is large for any deviation from equilibrium, the response

functions become the conditions for local equilibrium,

of which there also are N in number. Hence, for one

component

AT = 0 for all V (3.9)

and for two components the compositions at the interface

are

Cs = Cs (eq) = m1 (T, 0)

(3.10)

CL = CL (eq) = m2 (T, 0) for all V.

The assumption is valid whenever the deviation from

equilibrium, expressed as AT, Cs - Cs (eq), or CL - CL(eq)

is small compared to the total temperature and composition

ranges in the problem. Although the velocity V no longer

appears in these conditions, it still appears in the conser-

vation conditions (2) and (3), and the mathematical analysis

can proceed.
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The popularity of local equilibrium as an

assumption rests on its expected widespread validity for

most solidification problems which involve rather low

interface velocities, and the fact that it gives a form

to the response function that permits one to begin calcula-

tion of solidification problems. The test of the validity

of the assumption could come from two kinds of experiments:

the simultaneous measurement of all the interface variables

or checking the applicability of predictions of calculations

made using the assumptions. The former test has never been

made and the latter test is most usually made qualitatively.

Qualitative predictions from the assumption can only

show consistency or inconsistency. For instance we can, by

using the assumption of local equilibrium, predict an

enhancement of solid solubility in a eutectic beyond the

maximum phase diagram value simply by invoking the assump-

tion that the eutectic has been suppressed and solidifica-

tion proceeds on metastable liquidus and solidus extensions

below the eutectic. (Figure 3.1) However unless we

simultaneously measure the interface temperature, we will

not know whether we produced a deviation from local

equilibrium or actually suppressed the eutectic reaction.

Thus even the enhanced solubility produced by rapid

solidification is by itself inadequate to prove that a

significant deviation from local equilibrium was produced

because the metastable solidus usually continues to
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increase in composition. In the Zn-Cd system which has a

retrograde solidus, the equilibrium solid solubilitv has

a true maximum and the metastable extension continues to

lower compositions. The maximum was exceeded by rapid

solidification indicating that under extreme conditions

the significant deviations from local equilibrium can

be produced as shown in Chapter II.

It is interesting to note another case where local

equilibrium ceases to exist during solidification. Even

though the equilibrium shape of a crystal may be faceted,

when originated during solidification the faceting is

usually a result of the growth kinetics. Since such

shapes are not solutions to the differential equations, the

condition of local equilibrium at the interface does not

hold. For instance, Glicksman and Vold(32) found faceting

during the freezing of Bi at small velocities, but rounding

of the interface during melting at small growth rates;

this indicatesan inconsistency with the condition of

local equilibrium at the interface.

III.3 Steady-State Binary Solidification

Of the various experimental and theoretical methods

of dealing with solidification the steady-state plane-

front condition is an exceptionally useful one. We impose

a velocity V on the system and assume that after an initial
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transient the temperature and composition profiles and

the position of the interface will move with the

velocity V. Under these conditions the composition of the

solid C must be equal to the alloy's overall composition

C
0

C = C (3.11)

Because C = C the process has some aspects of

"diffusionless" solidification, but it is highly likely

that there will be a diffusional layer ahead of the inter-

face and the composition of liquid at the interface CL will

differ from C . Under steady-state conditions this layer

remains unchanged with time and may be hard to detect. It

will have a thickness of order DL/V, or less than 11 when

V exceeds 1 cm/sec.(33).

A study of steady-state solidification thus permits

us to fix V and C and if we determine experimentally the

value of T and CL at the interface we would be evaluating

the response functions. The functions although evaluated

by a steady-state experiment should be universally valid

for other geometries in that system. If in a non-steady

state experiment the interface found itself with the same

value of T and CL as found in the steady-state experiment,

it should respond with the same V and Cs.

Figure 3.2 shows Figure 1.7 redrawn for purposes

of steady-state solidification. The horizontal line
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represents the alloy composition that is equal to Cs.

The possible values of CL are those that lie on the

horizontal line but within the curve OABEP appropriate

for that temperature. The OABEP curves are given for the

various temperatures, each representing a temperature

lying within three distinct regions of the phase diagram

given in Figure 3.3. Let us now examine steady-state

solidification of an alloy of composition C = Cs and

investigate the possibilities and the phenomena that

we would encounter in the three temperature regions.

Region I < CL(eq); To < T < TL(C );

Point B below C0

From the steady-state condition C = Cs implies

Cs > C(To). As can be seen in Figures 3.2 and 1.8 steady-

state solidification cannot occur in this region, because

AG > 0 for all possible values of CL. Only non-steady-

state solidification can occur in this region(20) with a

solid composition in the allowed range of Figure 3.2,

C < C . The rejection of solute enriches the liquid with
s 0

a likely drop in solidification temperature or a breakdown

of the plane front(34).

Region II C (eq) < C< C(T ); T (Co ) < T < T OCseq 0 0o o 0

Co lies between B and E
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In this region steady-state solidification is

possible provided that the composition of liquid remains

in the range depicted in Figure 3.2. The solid formed

is metastable with respect to partial remelting.

There is possible diffusional instability in such

solidification as indicated by the down arrow in Figure

3.2. If momentarily the composition of the solid drops

below C, conservation of mass requires that the liquid

be enriched in the minor component. Thus a downward

fluctuation from the horizontal line (C = C ) should
s 0

result in a shift to the right (CL increasing). If a

system finds itself at a point F in the vicinity of EII

it cannot reestablish steady-state (climbing to the

horizontal line) without decreasing CL. But because the

system is at F, the solid that is forming is below the

average composition C0 and the excess is rejected into

the liquid making a reduction in CL unlikely. Thus steady-

state cannot be reestablished at this temperature and

since we impose a velocity on the system the plane front

interface again either breaks up or lags back to a lower

temperature.

Steady-state solidification in region II is thus

thermodynamically possible, but has difficulty in starting

from equilibrium and could be diffusionally unstable. It

also leads to a metastable solid, which might in turn

partially remelt.
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Regardless of whether we have steady-state or not

the solute experiences an increase in chemical potential

upon solidification when C > C (eq) and solute traDpingupon~~~~~ soldfcto hnC 
occurs. As we shall see in Chapter IV, this type of

solidification is prohibited by various theories. The

experimental finding of Zn-Cd in Chapter II indicates

that solidification when C > C (eq) does occur.
5 5

Region III C < C (eq); T < T ; C lies below E

Like region II steady-state growth of the solid is

thermodynamically possible in this region. But unlike

region II the resulting solid is stable. In addition the

diffusional problem appears to be stable(22). If the

system starts at point EIII, Cs will be greater than Co

and the liquid will be depleted of excess solute. Thus

the system spontaneously leaves the point EIII and will

settle somewhere on the horizontal line C = C in Figure
5 0

3.2 for steady-state solidification.

Solute trapping occurs to the left of the inter-

section of line C with line OE. The diffusionless0

transformation (line OB) requires solute trapping and

hence is not predicted by theories that forbid solute

trapping. To the right of line OE no solute trapping is

required, but to the right of PE solvent trapping begins.

The equilibrium liquid concentration lies outside the
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domain of the possible compositions in all regions except

when T = T.

Local equilibrium. When the velocity V is very

small but finite we must come close to the condition of

local equilibrium. This means T Ts and the system is

close to the point E. It is important to point out that

the immediate vicinity of the point E could place the

system either in region II or in region III. Conditions

of solute trapping, solvent trapping, or no trapping at

all are also infinitesimally close to the point E.

Therefore one cannot argue a priori that because the

system must approach E at low velocities that it comes

to rest in any of these domains.
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Chapter IV

IRREVERSIBLE THEP4ODYNAMICS
OF INTERFACE PROCESSES

IV. 1 Introduction

In this chapter we will describe methods of applying

irreversible thermodynamics to interface processes during

solidification and obtaining the interface response func-

tions. The means of choosing the fluxes and thermodyna-

mic forces for the various interface reactions will be

examined. Four current theories using this approach will

then be analyzed and compared with existing experimental

results. Special attention will be focused on the

following most often used assumptions and principles:

the assumptions of independent reactions at the inter-

face (no coupling of processes), the Onsager reciprocal

relationships, and the principle of minimum entropy

production. The section will be concluded by summarizing

what has been learned about the validity of various

aspects of the irreversible thermodynamic theories and

where the field now stands.

IV.2 General Principles

The heart of irreversible thermodynamicsC35,36,37)

is that it proposes much needed relationships between

rates of reactions and thermodynamic quantities. When

applying it to the interface processes during
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non-equilibrium solidification, the usual assumption is

that the fluxes, Jir across the interface and the conjugate

thermodynamic forces, X are related linearly. In other
J

words a phenomenological relation of the form

J. = EL..X. (4.1)1 .J13JJJ

is assumed for the interface reactions. The kinetic

coefficients, Lij, are phenomenological quantities to be

determined for any given temperature. If there are only

two processes occuring at the interface then equation

(4.1) becomes

J1 = LlX1 + L12X2

(4.2)

J2 = L21X1 + L22X2

In equation (4.2) the coefficients Lll and L22 relate each

flux to its conjugate force. The cross coefficients, L12

and L21, give the coupling interaction of the two

processes. If the processes are independent, L12 and L21

are zero and

J1 = LllX11 L11X1

(4.3)

J2 = L22 X2

There is, as we shall see, considerable freedom about

the choice one may make for the independent fluxes and

forces. Generally each flux-force pair is chosen such that
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its product is a separate term satisfying the entropy

production relationshipS38}

Ta = J1X1 + J2X2 (4.4)

where - is the rate of entropy production. For example, a

proper choice of flux-force pairs should not lead to a

cross-term J1X2. Because T cannot be negative, if we

define our flux-force pairs to satisfy equation (4.4), then

the L matrix of equation (4.2) is required by thermodynamics

to be positive definite(39) (or positive indefinite if there

are infinitely large kinetic barriers to some of the

reactions). This is

L 1> 0
11 -

L22 > 0 (4.5)

L L L L

12L 21 < LllL22

For isothermal processes Ta = - dG/dt and for binary

solidification at steady state

Ta = -pV[CsA +(l C)Ap (4.6)

We will define two sets of flux-force pairs that

satisfy equation (4.4) for the interface process in binary

systems. Either of these are therefore equally valid

variables for developing a theory of irreversible inter-

face processes. Both have been used with some modification.
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We can choose the J's to be the net fluxes across the

interface of the two species during steady-state growth

= A= = pV( - C)
J15

(4.7)
= B= = VC2 s

and the forces to be the chemical potential changes across

the interface

X Ax1 ' = -AU

(4.8)

X 2' = -AB

i 2i i
where Ap = (is - iL). Alternatively we might choose J to

be a total solidification flux without regard to composition

change and J2 to be what has been called a redistribution

flux

J1 =J, ~ PV
(4.9)

J2
1w = pV(Cs - CL )

Then we must choose

XI" = -(1 - CL) AA - C AXi L L~

(4.10)

X2 " = AU - AB
2

X1 is the free energy change if components of the liquid

add to the solid in the ratio in which they are in the

liquid at the interface. It might be considered a driving

force averaged according to the interface composition of



69

the liquid. The first reaction by itself (J2 " = 0)

would lead to solidification without a composition change.

X2" is the driving force for the composition change across

the interface. Together J and J2describe any solidifi-

cation reaction.

The reader may verify that both sets satisfy equation

(4.4) algebraically. For the single primed set it is easily

demonstrated graphically as well. For the double primed

set, Figure 4.1 shows how the molar free energy change is

apportioned among the flux-force pairs. AGI is the free

energy change due to the interface process when a mole

solidifies at steady-state. AG is the free energy change

due to the first flux-force air and the difference in the

slopes of the tangents times the composition difference is

the free energy change due to the second flux-force pair.

Two ways of finding the independent processes have been

given and for each process the proper driving force has been

found. In the first set the fluxes of each secies is tied

to the thermodynamic driving force for that species. In

the second the overall solidification rate is tied to an

overall driving force which is the average of the driving

force experienced by the atoms in the liquid, and the extent

of redistribution is tied to the driving forces between the

species. Either set is as complete as the other. They

both give identical free energy changes.

A well-known condition in irreversible thermodynamics

is the Onsager reciprocal relationships(40). It states
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that L12 = L21. We invite the reader to assume the

relationship holds true in one of the primed sets and then

substitute into the other set. It is immediately apparent

that the Onsager relationship does not hold in the other

set. It is often stated(41) that if the flux-force pairs

are chosen to satisfy equation (4.4), the Onsager relation-

ships are automatically guaranteed. This has been

criticized(42) and the present example shows that this

criticism is valid. The contradiction the reader will have

found proves the Onsager relationships are not guaranteed

by choosing our flux-force pairs to satisfy equation (4.4).

It is also tempting to assume that the fluxes are

independent and set L12 = L21 = 0. However, in the examples

above it is sobering to consider that if we make this

assumption when using one set of flux-force pairs, the

independence does not hold in the other set. For example

if we assume

J1 = Lll X1

(4.11)

J2 22 2

then

X (1 CL)X1 + CLX2

(4.12)

2 2 1

Or solving for X's,
X1' - X" 

X1 CLX 2

C4.131
XI + (l CL)X2X2 = X 1 2
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And substitution leads to

Tilt = J I = L !"2X XI LXT, T2 '1 2 /']X
(4.14)

IT- c)z, : ( :s- ' -c7 z ' ) 2'
Now not only would these fluxes be coupled, but the off-

diagonal terms are comparable to the diagonal. If

L2 = 0 implies L = 0,
122

and

L21 = 0 implies either L = 0

or L2 = 0.22

In addition we note that again

12 r 21

What this proves is that if the first set of flux-

force pairs are assumed independent, the second set

cannot be, and must appear coupled. We cannot assert a

priori that because the flux-force pairs are chosen from

equation (4.4) that they are uncoupled. Even though there

is no contribution from J1X2 or J2X1 to T we have no

guarantee that there is not a contribution to J1 from X2

or vice versa. In fact the example shows the coupling can

be quite large in one set when it was assumed absent in

the other. Thus a perfectly simple flux-force relationship

becomes very complicated wahen expressed in terms of another

flux-force pair. It must be stressed that in going from

the primed set to the double primed set no new physical
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assumptions were made. The two sets of equations express

the same physical behavior in different but compatible

language, in that any experimental outcome can equally well

be described in either set. The errors are introduced when

someone makes a theoretical assertion about the L's.

Which of these two sets of flux-force pairs is the

correct choice is not at issue. Both are capable of

describing the same phenomenon. Of importance however is

if we wish to assume that coupling between fluxes is weak

and set cross terms equal to zero we must be careful.

Compatability with equation (4.4) is not a sufficient

condition to insure the chosen fluxes and forces are

independent, and does not guarantee that the Onsager's

Reciprocal Relations (L12 = L21) hold for the coupling terms.

Another principle that is commonly invoked is that at

steady-state there is minimum entropy productionC43,44,45).

This can be used as a principle for obtaining relations

among the L's but has often been criticized(42,46) on

theoretical grounds as invalid. We shall show below that

it leads to a result that contradicts solidification

experiments.

Quite apart from these considerations, the assumption

of linearity may not be valid when applied to the interface

response. Several mechanisms of solidification, nucleation

and lateral growth of new layers, and the spiral disloca-

tion ramp would not lead to linear laws.
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IV.3 Solidification Theories

The four irreversible thermodynamic theories to be

discussed now are by Borisov(47), Baralis(43), Aptekar-

Kamenetskaya(48), and Jindal-Tiller(49). The theories

differ in the way the flux-force pairs are chosen.

Another theory by Jackson(23) is of interest and will be

discussed although it is not an irreversible thermodynamic

theory. With minor differences the first two theories use

the primed flux-force set, while the second two use the

double primed set. Since additional assumptions are made

about the L's, it is apparent the validity for both groups

of theories is questionable. We will now consider the

theories individually.

1. Borisov Theory

Borisov assumes the net fluxes of each atomic species

traversing the interface is independent

JA = LAAXA

(4.15)

JB = LBBXB

Since the above flux-force set is the primed set mentioned

previously

J pVCl - Co) = -LAA LA 0~~ AA CJs 

(4.16)

JB pVC0 - L CB, B B)
B BB s L
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By equations (4.5) LAA and LBB are always positive

quantities. And since pV(l - C and pVC° are positive

for solidification, Borisov's theory yields the following

condition:

A A <0
Ds - HL < 0

(4.17)
B B
s L < 0

This limits the allowed processes to the triangle OEP of

Figure 1.7 and implies no trapping of either atomic species

is possible during solidification. For uncoupled reactions

each species must traverse the interface only when it is

thermodynamically favorable. This prediction is contrary

to the Zn-Cd experimental result of solute trapping in

Chapter II.

2. Jackson Theory

Unlike the other four theories, the Jackson theory

is not an irreversible thermodynamic theory, but a kinetic

description of alloy solidification. It is of interest

since his resulting relationships have been put into the

thermodynamic language of Borisov's. When doing so, the

theory is seen to be equivalent to Borisov's(50). Jackson

develops the theory on the basis of two assumptions:

(i) reaction rate theory can be applied independently for

each species during solidification to determine the net

flux of each type of atomic species across the interface,

and (ii) the rate at which each atomic species leave a phase anJ
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Borisov assumes the net fluxes of each atomic species

traversing the interface is independent

JA = LAAXA

(4.15)

JB = LBBXB

Since the above flux-force set is the primed set mentioned

previously

J = pVl - Co) = -LAAs A AL
~A 0 AA s - 3~ (4.16)

(4.16)

JB = pVCo
B B

BB( - L)
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traverse the interface is proportional to the mole

fraction of the species in that phase. Assumption (i)

necessarily leads to equation 4.17) and limits the theory

to the triangle OEP of Figure 1.7.

3. Baralis Theory

Like Borisov, Baralis assumes the primed flux-force

pairs, but he doesn't assume independent fluxes; i.e.,

= PV1 C - IA _'A L _B _ )JA= pV(1 - Co ) = -LA (NA - L- LABA 0 AA s L AB(s EL)

(4.18)

and J = pVC0 = LBA (A - A) L (B _ pB)

Equations (4.18) are general and allow for coupling, which

in turn permits the possibility of one of the species

chemical potentials to increase upon solidification.

He assumes Onsager's Relationship, LAB = LBA, for the

coupling coefficients. In addition he assumes that the

rate of entropy production is a minimum for steady-state

growth. In applying the latter assumption he arrives at

the conclusion that

A A < 
s - DL

B B
s - L < 0

Hence, this analysis also limits the processes to the

triangle OEP of Figure 1.7 and is contradicted by the

Cd-Zn experiment. Even though the theory allows for
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interaction of the two atomic-fluxes the principle of

minimum entropy production" restricts the coupling and

forbids the possibility of trapping.

4. Aptekar-Kamenetskaya Theory

The interface processes assumed in this theory are

equivalent to the double primed flux-force set, that is a

total solidification reaction and redistribution reaction

which are independent. The total solidification flux-force

relationship is of a slightly different form, though, than

for the double primed set, because of the dissimilarity in

other assumptions. This treatment does not assume steady-

state growth, but assumes the diffusivities in the liquid

and solid phases are infinite (this implies the unlikely

circumstance of the two phases having uniform composition

at any instant of time). The above condition for most

growth rates leads to a variation of liquid and solid

compositions at the interface with solidification time,

which in turn corresponds to a driving force across the

interface that is a function of time. As a result, there

is a subtle distinction between the two expressions of

driving force for the total solidification reaction. It

also should be added that this treatment is not a complete

theory since the number of unknown quantities exceeds the

number of equations. Regardless of the above serious

shortcomings, Aptekar and Kamenetskaya do predict the

possibility of solute trapping, s - _L > 0.
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5. Jindal-Tiller Theory

In principle, this theory also assumes the double

primed set, although the only reactions considered in

detail are the redistribution reactions

JB B B B (4.19)
J R = - C - L- )RV(C5 L R s L(4.19)

A - A A A
J = pV(CL = L(Ps _L (4.20)

B aAIf LR and LR are chosen to be the interdiffusion kinetic
R R~~~ 

coefficients, then L = LA and combining equations (4.19)cfeR R

and (4.20) yield the double primed redistribution relation

JR = pV(Cs - CL) = LR(APA - AB) (4.21)

where LR = LB/2. Comparison of equations (4.19) and (4.20)

shows that AA and APB always have opposite signs. Thus

this theory restricts the process to lie outside the

triangle OEP but inside the curve OABEP where trapping

always occurs.

It should be noted that the expression for the total

solidification flux-force pair should be solved simultaneously

with equations (4.19) and (4.20), otherwise the various values

of the growth rate V may be unrealistic. Also it is not

certain that equation (4.4) is satisfied since no expression

for the total solidification reaction was given. A major

deficiency of this theory is that Cs/CL does not equal K(eq)
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when V = 0, but (2Y7K(eq) - 1). (See their Figure 6.)

A limiting condition for all correct theories should be

Cs/CL = K(eq) when V = 0.

IV.4 Discussion of Theories

It has been shown earlier from classical thermodynamics

that for solidification the compositions of the solid and

liquid at the interface must be inside the OABEP curve of

Figure 1.7. In this section it has been shown that

irreversible thermodynamics is unreliable in attempts to

restrict the two compositions further. Theories using

similar assumptions can arrive at contrary results. For

example, Borisov assumes his flux-force pairs are uncoupled

and finds trapping to be impossible, where as Jindal and

Tiller make the same assumption for their flux-force pairs

and find trapping always occurs. The basic difference in

the two approaches is that they choose different coordinate

systems for the atomic fluxes, JA and JB' which are propor-

tional to AA and AB. Borisov uses the one moving with the

interface which gives a constant flux of material for

steady-state for the minor component

B = VPCs '

while Jindal and Tiller chooses a substantial or laboratory

coordinate system imbedded in the liquid which differs by

VpCL

= VQCC - CL)
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For the usual case where C > Cs the two JB 's have

opposite signs and, if uncoupled, lead to opposite signs

Bin 4 .

We should also point out that all four irreversible

thermodynamic theories have serious deficiencies. New

principles are required in this field or tighter restric-

tions for applying the old principles are necessary. But

most of all, there is a need for experiments to study the

deviations from local equilibrium and coupling effects.
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Chapter V

AN ALTERNATE APPROACH TO INTERFACE
PARTITIONING DURING SOLIDIFICATION

V.1 Introduction

In the previous chapter it was found that the method

of irreversible thermodynamics as applied to the study of

interface processes during solidification leads to values

of interface distribution coefficients that were

questionable. The present chapter is devoted to overcoming

this shortcoming by using a different approach to the

problem. The method of Solute Interface Drag will be

applied. Specifically, an attempt to solve for the liquid

and solid interface compositions for an imposed and

specified velocity is made when the moving interface is

represented by a potential well in motion. It is assumed

in regard to the solute species, that the interface at a

given temperature can be characterized by a solute inter-

action energy E(x) and a diffusion coefficient D(x). Both

E(x) and D(x) are functions of an arbitrarily chosen plane

in the interface.

V.2 Diffusional Solution

Let us assume dilute solution everywhere, then the

chemical potential of the solute species is given by

equation (I.5)

= kT.nC(x) + E(x) + constant (5 . 1)
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where E for the liquid and solid are related by

.Cs (eq)
(EL - Es) = kTZn CL (e q ) (5.2)

Now define the interdiffusion coefficient as

D(x) = - JkT/ (d - (5.3)

2

where J is the flow of atoms per cm. per sec. measured in

a co-ordinate system fixed in the liquid phase. Volume

changes are neglected. Combining equations (5.1) and (5.3)

the flux becomes

-J =kj DC iD = D C + DC DE (5.4)kT Dx ax kT x (54)

The first term on the right-hand side of this equation is

the well known fickian flux, and the second term is the

flux resulting from the interfacial potential gradient

9E/Dx. However, a fixed co-ordinate system relative to the

interface is mathematically desired and for this new

co-ordinate system the flux relationship becomes

-J = D -C + DCkT ax + VC (5.5)

With regard to this new co-ordinate system, the conservation

equation becomes

aC a 2 [V aD D DE C C D E + 32E
a~ = D --x + [Iv + x + kT ] x + kT x x a+ -]

...... . (5.6)
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This relationship at any instant in time must be

satisfied at each point in the system, the composition C

being a function of both position x and time t. It has to

be solved for given initial and boundary conditions.

Relative to the interface fixed co-ordinate system and

under steady-state conditions, the composition everywhere

remains unchanged with respect to time. Therefore

DC/3t = 0 and J = constant, and equation (5.6) may be

expressed as

_ _ C DC ~E0 = x (-D DC kC E - VC) - x (J) (5.8)

This is a necessary result for the satisfaction of steady-

state conditions where J is a constant. Integration from

-a to x yields

x Dj x
o = f a-a dx = f dJ = J(x) - J(--) (5.9)

-00 -00

or

~C DC DE0 = [-D - kT Dx- VC] + VC (5.10)

Rewriting the above equation

DC + [ DE + V] C V (5.11)
ax kT x D- D Co

It is readily seen that the above equation is a linear

differential equation of the first order and can be solved

in general terms without determining separately homogeneous
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and particular solutions. The form of the equation is

+ P(x)y = Q(x)
~x (5.12)

which can be solved by using a standard integrating factor

(51)

I.F. = ex[/fP(x)dx] (5.13)

The solution of equations o the form (5.12) is obtained by

the following integration:

1
Y = (I.F.)

x=x
f (I.F.)Q(x)dx (5.14)

Hence, the solution of equation (5.11) becomes

E~~~~~~~~~x)C (x) =VC exp{ E(x) _ dn } (§) + dn0 ~~~ ~~~kT V i' ) x-[k D (n) ]x c-o Xo o

.. (5.15)

The above relationship is the exact solution to equation

(5.11) , and is completely general as long as the assumptions

in equations (5.1) and (5.3) hold. It describes the

comosition everywhere for any imposed velocity at steady-

state for arbitrary E(x) and D(x). The limiting conditions

of equation (5.15) are difficult to determine. But it can

be easily shown from equation (5.1) that the ratio of the

interface compositions of the solid and liquid is given by

C (i) E - E
_s (L5.16?CL (i) = exp kT ) = K(eq) (5.16)L
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when V = 0. This is a necessary limiting condition for

any valid theory. Later in the section it will be shown

that equation 5.15) reduces to condition (5.16) when

V = 0 and to another limiting condition

C (i)
C 5 1 i(5.17)CL (i) -

when V + 

V.3 Graphical Representation

As pointed out above, equation (5.15) describes the

composition profile at steady-state for an arbitrary E(x)

and D(x). This relationship then not only yields the

desired interface compositions but also the compositions

everywhere else. Nevertheless this section will focus only

on understanding the nature of the interface partitioning.

To represent graphically some of the properties of equation

(5.15), D(x) and E(x) are assumed to be functions of x as

shown in Figure 5.1. For such a model, equation (5.15) can

be reduced to yield the following expression for the

interface partitioning:

CL (i) CL (i) ES - EL
C(i) C= exp( kT ) {exp( V )exp(-5D +Cs (i) CO f D 

-is B S) L s
SV( kT

1 EL - s EBEL 

~ [exp --kV ] [ _ ex- -- )exp(-)lL ~ ~ ~ ~ ~ E D S][ - xD(E - kLT - VD (L )ep]1+ LL ][exp kT l e
1 + (V) (.kT

...... ...(5.18)
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as shown in the appendix. In terms of the equilibrium

distribution coefficient, Keq), equation 5.18) becomes

CL i) CLCi) _ F1 -X-Y + -Y K(ec) (-X)
"~~~~~~~~~~~Cs i) CO KCeq) - + ( An)e ) K BC)-e )

s 0i1 KB(eq) 
1+

1 e-Y
+ ( lnK (eq)(Keq))C(l-K (eq))] (5.19)

1+ .
Y

where KB(eq), X, and Y are defined as in the appendix. For

the case where Keq) is a constant this kinetic result

(equation 5.19) is only dependent on the imposed velocity

and not on the interface temperatures.

The graphical representation of equation (5.19) for a

-1typical K(eq) = 10 is given in Figure 5.2. The various

curves are for different assumed values of KB(eq) or (EL-EB).

Curves 1 and 2 show the nature of the dependence of the

interface partitioning on the growth velocity when the

solute species is surface desorbed at equilibrium. Curves 5

and 6 are for the case when the solute species is surface

active (surface adsorption at equilibrium). Curves 3 and 4

show the partition when the equilibrium interface composition

is equal to the equilibrium solid and liquid compositions.

Let us now consider in detail the case when the solute

atoms are surface inactive curves 1 and 2). The initial

deviations from local equilibrium are negative, K < KCeq),

that is for a given steady-state solid composition the liquid

interface composition increases with growth velocity. Since



87

EB ? EL the solute species attempt to remain in the liquidB L

and avoid the moving interface; this leads to an increase

in the liquid interface composition as the velocity

increases because the diffusion distances in the liquid

relative to the interface per unit time are decreasing with

increasing interface velocity. One can then conclude since

K < K(eq), the solidification must take place when C and T

lie in the single-phase solid region on the equilibrium

phase diagram to allow CL(i) < CL(eq) which is a thermo-

dynamic requirement.

At higher growth velocities we see curves 1 and 2 pass

through a maximum and then log (CLCi)/CS) converges

continuously to zero. The reason for this behavior is that

the solute species has increasing difficulty remaining in

the liquid by diffusing ahead of the interface at these

higher steady state velocities. When log (CL(i)/Cs) becomes

zero the transformation may be considered as diffusionless.

From the above reasoning one can conclude that if the

diffusivity in the liquid were larger than for the case in

Figure 5.2, the maximum in curves 1 and 2 would be shifted

to a larger velocity. The same is true for the velocity

needed for a diffusionless transition.

It is also of interest to analyze curves 1 and 2 in

terms of solute trapping, K > KCeq). From Figure 5.2 it is

necessary for log Y > 0 for solute trapping to occur, or

V > 102 cm/sec. Such large velocities may be physicallyV > 10 cm/sec. Such large velocities may be physically
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unrealistic and hence solute trapping is most likely

impossible when EB > EL.

Turning now to the case where the solute atoms are

surface activez EB < EL and curves 5 and 6, it is observed

that any deviation from local equilibrium is positive.

Hence solidification in the two phased region, C > Cs(eq),

is possible and solute trapping will always result no

matter in what region of the phase diagram the solidification

occurs. This behavior is rationalized because during

freezing the solute atoms rush to the interface from the

liquid when EB < EL and then are captured in solid such that

K > K(eq) even though EB < ES The reason for this is

because the diffusivity of the interface is changing from DL

on the liquid side to a smaller value, D, on the solid side.

Such a phenomena also allows it to be kinetically possible

to have C(i) > CL(i) at large velocities, but which are

smaller than those necessary for a diffusionless

transformation.

Similar to the above, the intermediate cases, curves 3

and 4, result in positive departures from local equilibrium

at high velocities because of the difference in diffusivity

across the interface. But C(i) > CL(i) is not possible

because the solute species does not rush to the interface as

in the previous case. The solute species in the liquid is

more or less not affected by the interface potential since

ES < EB ELS - B -L
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As noted in Section .3 of the first chapter, the

most plausible assumption concerning the nature of the

interface is to assume it to be disordered and similar to

the liquid phase. Then EB = EL and the partitioning is

represented by curve 4 of Figure 5.2. For this probable

case solute trapping will always occur during steady-state

solidification and CL Ci) will monotonically decrease from

C0/K(eq) to C with increasing growth velocity. Curve 4
0 o 0

shows the condition of local equilibrium at the interface

to be a good assumption for velocities of millimeters per

second or smaller. The transformation becomes diffusion-

less with velocities larger than centimeters per second.

It should be kept in mind that these estimates are for the

particular model developed in the appendix.
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V.4 Appendix

In this section equation (5,15) will be integrated for the

case where D(x) and E(x) are assumed to be functions of x as shown

in Figure 5.1. The origin of the x-axis is taken as the solid side

of the interface. The center of the interface x = is where

E = EB. The liquid side of the interface is at x = 2, The

interdiffusion coefficient is assumed to change from DS to DL at

x - L

Equation (5.15) will be integrated from - to 2 since

the interface liquid composition is desired for determining the

interface partitioning. Equation (5.15) is now rewritten.

73f LTvb&.,I (5.15)
D ' J D(f)

The second integral in equation (5.15) is broken up into the sum

of the following three integrals.
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Chapter VI

SUMMARY AND GENERAL CONCLUSION

VI.1 Summary

We have seen that classical thermodynamics is useful

and rigorous in determining free energy differences between

various states of a system, thus indicating if certain

changes of state are possible or not. Also thermodynamics

is approximate but very useful when the condition of local

equilibrium can be applied. But for the case of binary

solidification it has been shown in Chapter II that the

condition of local equilibrium at the interface does not

always hold. And when the condition of local equilibrium

at the interface is not valid for binary solidification,

thermodynamics restricts the domain of the possible but it

may still be so large that thermodynamics is inadequate in

predicting what will happen.

The need to specify what will occur for situations

similar to the above case has led to the development of

the Theory of Irreversible Thermodynamics. The author has

shown that this theory as currently applied is not

rigorous or trustworthy, especially when applied to the

interface processes during solidification. It predicts

interface response functions which are of questionable

validity. It is unreliable in attempts to restrict the

liquid and solid interface compositions further than
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classical thermodynamics has done as illustrated in

Figure 1.7.

Due to the shortcomings in the ability of

irreversible thermodynamics to predict correctly the

interface response functions during solidification, the

author has choosen an alternate method to the solution of

the problem (Chapter V). By applying Solute Drag Theory,

an expression has been found which relates the liquid and

solid interface compositions to the imposed growth

velocity. The analysis predicts solute trapping will

always occur if the solute is surface active at the

liquid-solid interface; otherwise it most likely will not

occur.

The prediction of solute trapping during binary

solidification is experimentally verified for Zn-Cd

alloys in Chapter II.

VI.2 Suggestions for Future Work

The previous chapter concerned itself with deriving

an expression for the interface partitioning during binary

alloy solidification as a function of imposed steady-state

velocity. But to describe "completely" the response of

the interface in terms of the conditions at the interface

another relationship involving the interface temperature

T is needed. For a binary system two response functions

are needed for a complete description. The author can

think of a possible approach for determining this necessary
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second relationship, but what may be first needed is

additional experiments to study the deviations from

local equilibrium, and to show whether or not there is

interaction between various interface rocesses. An

excellent experiment would be one which determines the

exact direction of deviations in CL(i) and C (i) in
L ~s

Figure 1.7 from their equilibrium values. Such an

experiment would give much needed information on the

nature of the interface processes; this would hel in

tightening restrictions for applying old rinciples or

in developing new ones. Hence, better guidance would

be available for formulating an expression for the

second response function.
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