
Slivers:

Computational Modularity via
Synchronized Lazy Aggregates

by

Franklyn Albin Turbak

S.B., Massachusetts Institute of Technology (1986)
S.M., Massachusetts Institute of Technology (1986)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1994

) Massachusetts Institute of Technology 1994

Signature of Author J............
Department of Electrical Engineering and Computer Science

/r ---- ~ January 31, 1994

Certified by
~(3~ ~ Gerald Jay Sussman

Matsushita Professor of Electrical Engineering
- ', , Thesis Supervisor

Certified by'
David K. Gifford

Associate Professor of Computer Science and Engineering

t' t\ n \, (~')~Thesis Supervisor

Accepted b.. r.........................',, ADS "r'|) h Frederic R. Morgenthaler
(hirman, Depa mental Committee on Graduate Students

IaPk'I 9 j

:3

Slivers:

Computational Modularity via

Synchronized Lazy Aggregates

by

Franklyn Albin Turbak

Submitted to the Department of Electrical Engineering and (:olllputer Science
on January 31, 1994, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

,Slivers are a new, approach to expressing computations as combinations of mix-and-match
operators on aggregate data. Unlike other aggregate data models, slivers enable program-
mers to control fine-grained operational aspects of modular programs. In particular, slivers
can guarantee that networks of operators exhibit the desirable storage behavior and oper-
ation scheduling of intricate loops and recursions. For example, slivers can preserve the
space efficiency of a complex tree algorithm when it is expressed as the superposition of
simpler tree walks.

The sliver technique is based on a dynamic model of lock step processing that enables
coml)inations of list and tree operators to simulate the operational behavior of a single
recursive procedure. Operational control is achieved through synchronized lazy aggregates,
dynamically unfolding data structures that constrain how the processing of separate opera-
tors is interwoven. The key to the technique is the synchron, a novel first-class object that
allows a dynamically determined number of concurrently executing operators to participate
in a barrier synchronization. Slivers embody a notion of computational shape that speci-
fies how the operational patterns of a process can be composed out of the patterns of its
coul)ponents.

The utility of slivers is illustrated in the context of SYNAPSE, a simple language for
expressing linear and tree-shaped computations. SYNAPSE is built on top of OPERA, a
new concurrent dialect of Scheme that incorporates the concurrency, synchronization, and
non-strictness required by the lock step processing model. The semantics of OPERA are
explained in terms of EDG;AR, a novel graph reduction model based on explicit demand
propagation.

Thesis Supervisor: Gerald Jay Sussman
Title: Matsushita Professor of Electrical Engineering

Thesis Supervisor: David K. Gifford
Title: Associate Professor of (Computer Science and Engineering

4

Acknowledgments

Many people skip over the acknowledgments when they read a book. Not me. Every book

has a hidden story that isn't told by the main text. The acknowledgments give a glimpse

into the process by which the book was created - how the ideas took shape, who was

involved when, the emotional ups and downs of the author, and so on. In fact, you might

say that the process of writing a thesis has a shape - but that's another thesis.

What follows is a glimpse into the story of this thesis. First, my thesis committee:

Gerry Sussman (thesis co-supervisor) and Hal Abelson (thesis reader) are ultimately

responsible for this work. They created The Course (6.001, MIT's introductory computer

science course) arid wrote The Book (Structure and Interpretation of Computer Programs)

that changed my life. I wasn't planning to major in computer science as an undergraduate,

but after their course, I couldn't imagine doing anything else. A religious experience? You

might say that.

Their book said some crazy things about computations having shape. This planted

seeds in my head that germinated years later. I decided to try to make sense out of this

computational shape notion. This thesis represents a checkpoint in that process. There's

still a long way to go.

Gerry is the archetypical hacker, mastering everything from watch repair to solar system

dynamics. His unbounded energy, infectious enthusiasm, diverse interests, and good-natured

spirit recharged me again and again during the long haul of this research. Hal is simply the

finest teacher and technical writer I have ever known.

Together, Gerry and Hal are the Lennon and McCartney of Computer Science. They

would probably hate this title, since they'd like to be associated as little as possible with

5

6

computer science. (I'm not sure about their feelings on the Beatles.) After all, in 6.001,

don't they teach that computer science is not a science, and has very little to do with

computers? But like it or not, it's true. They have put out more high quality teaching and

research than anyone else I have ever seen. They are the kind of pair that inspire legends,

and about whom ballads are written. Everything they touch, they improve.

I learned from them that you really don't understand something unless you can boil it

down into a 6.001 problem set. I hope to spend a large chunk of the rest of my life boiling

things down in this manner.

David Gifford (thesis co-supervisor) got me hooked on semantics. He developed The

Other Course in my life (6.821, MIT's graduate programming languages course). I have

learned an immense amount about programming languages and systems while under Dave's

tutelage. Over the years, Dave has provided me with lots of support, encouraged me to

formalize my fuzzy ideas, and steered my thinking in more practical directions.

Dick Waters (thesis reader) has helped me more on particulars than anyone else. He

has spent many Thursday afternoons talking with me about both high level issues and nitty

gritty details. After many years of struggling to explain my ideas to others, it was exciting

and refreshing to talk shop with Dick. My only regret is that I added him to my thesis

committee at such a late stage!

David McAllester (thesis reader) engaged me in stimulating discussion, and was the

source of many neat ideas.

Now onto my family and friends:

First and most important is my best friend, the Love Of My Life, and my wife: Lisa

Savini. I don't know why, but for some reason wives almost always get relegated to the

last line of the acknowledgments. Lisa deserves better than that. Again and again, her

love has lifted me out the the depths of despair, her conversation has kept me sane, and

her tasty cooking has nourished me. Lisa gradually assumed all household duties while her

husband mutated into a zombified hermit. And in the homestretch, she proofread the entire

document. I look forward to getting to know her again!

I wouldn't have made it to the brink of doctorhood without the support of my family.

Mom and Dad raised me in an intellectually stimulating environment and gave me more

7

love and encouragement than any child deserves. They have been waiting for this document

for a long time! I am honored to join my father as another Dr. Turbak.

My brother, Stephen, my sister-in-law, Michelle, and my two nephews, Casimir, and

Darius, have strived to keep me in touch with reality during my long thesis journey. I am

ever so grateful that I finished my doctorate before Caz joined me here at MIT (he is now

almost five years of age).

My new family, the Savinis, provided me with large quantities of love and food (is there

a distinction?) throughout the past few years.

Jonathan Rees is one of my heroes. He has the uncanny ability to give crystal clear

explanations of most any topic in real time. I've learned more about programming language

design and good programming style from Jonathan than from any other source. When my

interest in my thesis waned, Jonathan convinced me that I was working on something

worthwhile. He also suggested many improvements to the organization of my dissertation.

His working in the office next door to mine during the final stages of my dissertation was a

godsend.

Brian Reistad became a Good Friend who provided detailed feedback about the docu-

ment, was always willing to listen about details, and checked up on me daily when I was

entombed in my office.

David Espinosa showed up in my life at just the right time. He renewed my excitement

in programming languages just when my enthusiasm was starting to flag. He also gave me

lots of feedback about my research and this document.

Jim O'Toole suggested many valuable improvements for restructuring the presentation

of my work.

Mark Sheldon (a.k.a. Eldo) helped to keep me afloat with his continually bubbly de-

meanor and his conversation, both technical and non-technical.

Alan Bawden introduced me to the nuances of graph reduction and taught me lots of

Cool Things.

Feng Zhao swapped thesis ideas with me on a weekly basis during the early stages of

my research. I am grateful for his friendship, and for being a sounding board for all my

fuzzy thoughts.

8

Mark Day shared my original vision about capturing the space/time behavior of pro-

cesses, and has provided valuable comments and suggests along the way.

Ziggy Blair was one of the few people who voiced appreciation for my research in the

early stages when most everyone else was giving me icy stares.

Bill Rozas tutored me in a wide range of computer science topics in the process of

answering gazillions of my questions.

The Switzerland crew - Hal and Gerry's group - are an amazing collection of incredibly

smart and helpful people with refreshing views on just about any topic you can imagine. In

addition to the folks listed above, Stephen Adams, Andy Berlin, Mark Friedman, Arthur

Gleckler, Philip Greenspun, Chris Hanson, Elmer Hung, Brian LaMacchia, Jim Miller,

Ognan Nastov, Jacob Katzenelson, Kleanthes Koniaris, Nick Papadakis, Thanos Siapas,

Pete Skordos, Rajeev Surati, and Henry Wu all help to make the fourth floor of Tech

Square a very exciting environment.

The Swiss graduates - Liz Bradley, Mike Eisenberg, Mitch Resnick, Ken Yip, and Feng

Zhao - awed and inspired me while they were here, and were good friends to boot. I miss

them all dearly.

For their feedback and encouragement on my thesis research, I am grateful to Andy

diSessa, Ian Horswill, Trevor Jim, Pierre Jouvelot, Jintae Lee, Nate Osgood, John Pezaris,

Roberto Segala, Ellen Spertus, and Julie Sussman.

Becky Bisbee, Jeanne Darling, and Marilyn Pierce helped me out by taking care of lots

of details pertaining to my thesis and my life as a graduate student.

I am indebted to Ignacio Trejos-Zelaya, who was able to track down Hughes's "Parallel

Functional Languages Use Less Space" in a forsaken file cabinet at Oxford when nobody

else in the world could seem to find a copy.

I am grateful to all the friends and family who refuse to give up on me yet even though

I've totally neglected them for a long time now. Special thanks to Douglas Massidda and

Fatima Serra for sharing the bounty of the ocean with Lisa and me; to David Chiang for

recharging our friendship every time he comes to Boston; to Robert Kwon for calling me up

from Japan every once in awhile; to Chablo Boyadjis, Mike Dawson, Nick Newell, and Jean

Spence for some great hiking trips; to Tina Katkocin and Christine Allan for checking up

9

on me; to Andy Litman, Debbie Utley, Ken & Ginny Grant, and Linda & Nitin Upadhyaya

for sharing their homes with Lisa and me; and especially to the Paulist Center's Wednesday

Night Supper Club for helping me find Lisa.

Finally, I would also like to acknowledge the inventor of acknowledgments, without

whom this section would not have been possible.

10

This report describes research done at the Artificial Intelligence Laboratory and the

Laboratory for Computer Science at the Massachusetts Institute of Technology. Support

for this research is provided in part by the Advanced Research Projects Agency of the

Department of Defense under Office of Naval Research contract N00014-92-J-4097, by the

National Science Foundation under grant number MIP-9001651, and by the Department of

the Army under contract DABT63-92-C-0012.

Note to the Reader

This dissertation will be revised and published as MIT Artificial Intelligence Laboratory

technical re)ort AI-TR-1466. Readers are encouraged to consult the technical report for

various extensions to, and simplifications of, the work described here.

11

12

Contents

1 Overview

1.1 The Problem

1.1.1 Modularity: Programming Idioms

1.1.2 ('ontrol: Computational Shape

1.1.3 The Signal Processing Style of Programming

1.2 Sliver Decomposition

1.2.1 The Basic Idea

1.2.2 Some Simple Examples

1.2.3 How it Works

1.3 Alternate Perspectives on This Research

1.4 Dissertation Road Map

2 Slivers

2.1 Linear Example: Database Manipulation

2.1.1 Overview.

2.1.2 Monolithic Style: Functional Paradigm .

2.1.3 Monolithic Style: Imperative Paradigm

2.1.4 Computational Shapes

2.1.5 Monolithic Programs Lack Modularity

2.2 Tree Example: Alpha Renaming

2.2.1 Overview.

2.2.2 Monolithic Style: Functional Approach.

13

19

20

21

22

23

28

28

33

37

39

42

45

46

46

47

48

48

51

56

56

59

................................

................

................

................

................

................

................

................

CONTENTS

2.2.3 Monolithic Style: Imperative Approach

2.3 Slivers (Capture F'rogramming Idioms

2.3.1 Two Approaches to)ecomposing (Computations

2.3.2 Procedural Slivers

2.3.3 Sliver I)iagrams

2.3.4 Operational Interpretation of Sliver D)iagrams

3 The Signal Processing Style of Programming

3.1 The Aggregate D)ata Approach

3.1.1 Database Example: A List Iplementation

3.1.2 D)atabase Example: An Array Implemlentation

3.1.3 Alpha Renaming Example: A

3.1.4 Some D)rawbacks

3.1.5 Partial Solutions

3.2 The (Channel Approach

3.2.1 (Coroutining Example

3.2.2 (Concurrent Process Example

3.3 Other Techniques

3.3.1 Higher Order Procedures . .

3.3.2 Looping Macros

3.3.3 Attribute Grammars

Tree nplementatio

.

. .o

. . .. ·

.

.. . . .o.. . . .

. o.. .

. . . .,.

.. . . . o.. . . .

.

.

.

.

.

.

.

.

.

n

.

.

..

.

.

.

.

.

3.4 Sulmmary

4 Computational Shape

4.1 Linear Shapes

4.1.1 Linear Tiles.

4.1.2 Linear Orientation . . .

4.1.3 Linear Shards .

4.1.4 An Operational Model .

4.1.5 Linear Tile Shapes . . .

4.1.6 Linear (Computations .

62

64

64

70

71

77

81

82

83

87

88

96

98

105

106

111

122

122

123

124

.. 125

129

130

130

132

132

136

1;38

138

14

..

.........................

.........................

.........................

.........................

.........................

CONTENTS

4.1.7 Wrinkles.

4.2 Tree Shapes

4.2.1 Binary Tiles

4.2.2 Binary Orientation

4.2.3 Binary Shards

4.2.4 Binary Tile Shapes

4.2.5 Binary)own Tiles and Non-strictness

4.2.6 Binary (:omputations

4.2.7 i)iscussion................

5 Synchronized Lazy Aggregates

5.1 A Lock Step Processing Model

5.1.1 Strict Calls Provide Control

5.1.2 I)istributing Strict Calls Loses (ontrol

5.1.3 Simulating Strict (Calls Regains Control

5.1.4 Lock Step Components

5.1.5 The)etails

5.2 Sliver I)ecomposition

5.2.1 Linear Subtiles.

5.2.2 Binary Subtiles

5.2.3 Subtile Shapes

5.2.4 Sliver (Computations.

5.2.5 Subtile (Comllpatibility

5.3 The Structure of Synchronized Lazy AggregatE

5.3.1 Overview.

5.3.2 Synquences and Syndrites

5.3.3 Synchrons

5.3.4 Slag D)ynamics

5.4 Slivers Revisited

5.4.1 Sliver (Classification

142

145

145

145

150

152

157

159

163

165

165

.166

. 167

1. 169

. 170

. 171

. 173

. 173

................. 181
................. 183
.184

.186

es 189
. 190

. 191

. 195

. 197

.200

.200

15

..................................

.................

.................

.................

.................

.................

.................

.................

(CONTENTS

5.4.2 Sliver Requirements

5.4.3 Sliver I)ynamics . .

5.5 Filtering

5.5.1 Gaps .

5.5.2 Gap (Conventions . .

5.5.3 Reusability

5.5.4 Up Synchronization

6 SYNAPSE: Programming with Slivers and Slags

6.1 Linear' Colmputations.

6.1.1 Iteration vs. Recursion

6.1.2 Expressive Power

6.1.3 Laziness.

6.1.4 Fan-in.

6.1.5 Fan-out.

6.1.6 Deadlock.

6.1.7 Filtering .

6.2 Tree (:ollputations.

6.2.1 Simple Examples.

6.2.2 Shape Combinations

6.2.3 Extended Example: Alpha Renaming . . .

7 OPERA: Controlling Operational

7.1 An Introduction to OPERA . . .

7.1.1 Strict Procedure Calls .

7.1.2 Concurrent Evaluation . .

7.1.3 Synchrons.

7.1.4 Excludons .

7.1.5 Non-strictnesss.

7.1.6 Graphical Bindings

7.2 Iplementing SYNAPSE

Behavior

. 0. o.

.

.. o. . . o

. . . . ,. . ,

.. .o.o.o

. . . ,.

., . 0. o.

. .. . ,.

201

204

206

208

209

213

218

221

222

223

237

242

247

253

255

265

269

274

278

285

295

295

299

299

302

314

315

320

323

16

..

...........................

...........................

...........................

...........................

...........................

............................

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

.

.

.

.

.

.

.

.

CONTENTS

7.2.1 Slag Conventions

Slag Abstractions

Unfiltered Synquences .

Filtered Synquences . .

Syndrites.

... 324

327

330

335

341

8 EDGAR: Explicit Demand Graph Reduction

8.1 The Basics of EDGAR

8.1.1 Snapshots.

8.1.2 Rewrite Rules

8.1.3 Garbage Collection.

8.1.4 Transitions.

8.1.5 Computation.

8.1.6 Behavior .

8.1.7 Global State

8.2 The Details of EDGAR................

8.2.1 Procedures

8.2.2 Synchrons

8.2.3 Excludons

8.2.4 Lazons and Eagons

8.3 Compiling OPERA into EDGAR

8.3.1 OK

8.3.2 I'ranslating OPERA to OK

8.3.3 Translating OK to EDGAR

8.3.4 Notes

8.4 Alternatives and Extensions

8.5 Related Work

347

... 348

... 348

352

356

357

359

361

362

364

364

366

370

372

372

373

373

379

386

387

389

9 Experience

9.1 Implementation Notes

9.1.1 EDGAR

393

393

393

7.2.2

7.2.3

7.2.4

7.2.5

17

..

.........................

.........................

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............

CONTENTS

9.1.2 OPERA

9.1.3 SYNAPSE

9.1.4 The DYNAMATOR

9.2 Testing

9.2.1 Outcomes

9.2.2 Computations

9.2.3 Space Requirements

9.3 Lessons

10 Conclusion

10.1 Summary

10.2 Contributions

10.3 Future Work.

10.3.1 Expressiveness

10.3.2 Pragmatics

10.3.3 Computational Shape

10.3.4 Synchronization . . .

10.3.5 Theoretical Directions

10.3.6 Pedagogy

... 399

... 400

... 400

... 404

... 405

... 405

... 407

... 417

423

... 423

... 425

.... 426

... 426

... 427

.... 430

.... 431

... 431

... 432

Bibliography 435

A Glossary

18

443

Chapter 1

Overview

,Slivers are a new approach to expressing computations as combinations of imix-and-match

operators on aggregate data. Unlike other aggregate data models, slivers enable program-

mers to control fine-grained operational aspects of modular programs. In particular, slivers

c(an guarantee that networks of operators exhibit the desirable storage behavior and oper-

ation scheduling of intricate loops and recursions. For example, slivers can preserve the

space efficiency of a complex tree algorithm when it is expressed as the superposition of

sinlpler tree walks.

The sliver technique is based on a dynamic model of lock step processing that enables

comlbinations of list and tree operators to simulate the operational behavior of a single

recursive procedure. Operational control is achieved through synchronized lazy aggregates,

dynamlically unfolding data structures that constrain how the processing of separate opera-

tors is interwoven. The key to the technique is the synchron, a novel first-class object that

allows a dynamically determined number of concurrently executing operators to participate

in a)arrier synchronization. Slivers embody a notion of computational shape that speci-

fies how the operational patterns of a process can be composed out of the patterns of its

comll) onents.

The utility of slivers is illustrated in the context of SYNAPSE, a simple language for

expressing linear and tree-shaped computations. SYNAPSE is built on top of OPERA, a

new concurrent dialect of Scheme that incorporates the concurrency, synchronization, and

non-strictness required by the lock step processing model. The semantics of OPERA are

19

CHAPTER 1. OVERVIEW

explained in terms of EDG(AR, a novel graph reduction model based on explicit demand

propagation.

1.1 The Problem

Ideally, programming languages should encourage programmlers to express their designs in

a modular fashion based on a library of mix-and-match components. But classic modular-

ity mechanisms are typically at odds with the desire of programmers to control important

operational aspects of their programs. These mechanisms help programmers build pro-

grams that have the desired functional behavior, but not necessarily the desired operational

behavior. As a result, programmers often eschew modularity in order to control the opera-

tional details of their programs. They manually interweave common processing idioms into

monolithic programs that do not exhibit the modular nature of the idioms.

In this research, I investigate the problem of decomposing programs into mix-and-match

parts that preserve the operational character of the original programs. I focus in particular

on decomposing loops and recursions. For instance, consider a single loop that computes

both the sum and the length of a numeric sequence. We would like to express such a loop as

the composition of two loops, one of which computes the sum of a sequence and the other

of which computes the length of a sequence. Similarly, consider decomposing a complex

single-traversal tree walk into separate components that propagate information top-down,

bottom-up, and left-to-right. We would like the resulting modular program to perform a

single tree traversal with the same time and space requirements as the original program.

While numerous techniques have been developed for factoring loops and recursions into

modular components, most fail to preserve olperational properties like time and space re-

quirements. Whereas a monolithic single-traversal tree walk often requires space proplor-

tional to the depth of the tree, it is common for the modular version to either walk the

given tree multiple times or store intermediate trees as large as the given tree. Practically,

the extra time or space overhead of the modular version mIlay be unacceptable. But more

fundamentally, the modularity techniques are unduly restricting the class of computations

that the programmer can describe.

20

1.1. THE PROBLEM

The tree walk example illustrates the two-edged sword of modularity. On the one hand,

modularity simplifies program design and modification by hiding all sorts of details behind

the narrow interfaces of components that are simple to reason about and combine. On the

other hand, modularity necessarily prevents the user of the components from controlling the

hidden details to improve behavior. The trick of good component design is to ensure that

the interface is wide enough to allow desirable behavior, but not so wide as to overwhelm

the user and overconstrain the implementer.

My thesis is that existing techniques for modularizing loops and recursions unneces-

sarily prevent the programmer from controlling the operational behavior of a network of

comi)onents. In this dissertation, I develop an alternate technique, sliver decomposition,

for breaking loops and recursions into components with operationally desirable comiposition

prol)erties. The key to sliver decomposition is widening the interface of traditional com-

ponents to include important synchronization control points. These control points enable

programmers to better express how a network of components should behave.

In the remainder of this section, I motivate issues of modularity and control addressed by

this work, and summarize the drawbacks of existing mechanisms for modularizing monolithic

loops and recursions.

1.1.1 Modularity: Programming Idioms

P'rograms are rarely written "from scratch". Existing code often serves as a template that

can be molded into a desired program component. Library routines free the programmer

from reimlplementing common functionality. But even in the case where programmers es-

chew existing code and library routines, they almost always make heavy use of programmling

patterns they have seen or written before. These common patterns of usage, often called

idioms or cliches, are central to programmlling. Recognizing idioms when reading code and

effortlessly integrating idioms when writing code are key abilities that distinguish expert

programmers from run-of-the-mill programmers.

Idioms are often not highlighted in the program text. For example, consider a running

sum idiom, in which a variable is first initialized to 0, and then is updated during a compu-

tation so that it holds a running total of certain numbers generated during the computation.

21

C2HAPTER 1. OVERVIEW

The declaration, initialization, and updating of the variable are typically spread throughout

the program text, rather than being localized to a single region. The distributed nature of

typical idioms makes them difficult for program readers to find and for program writers to

keel) in their heads.

Programming environments can help to programmers to manage idioms. One approach

is to provide tools, intelligent assistants, and special-purpose languages that aid the pro-

grammer in analyzing and synthesizing programs in terms of idioms. A good example of

this approach is Rich and Waters's Programmer's Apprentice project [RW90]. An alternate

approach to idiom management is to devise language constructs and mechanisms for en-

capsulating idioms as single entities within a general-purpose programming language. This

is a basic motivation for modularity and abstraction in programmling languages, and is the

approach taken here. In particular, I will focus on techniques for capturing idioms that

occur in loops and general recursive programs. Such idioms include components that gener-

ate, filter, map, and accumulate sequences and trees. While a program might not explicitly

manipulate list-structured or tree-structured data, the time-dependent values of variables

manipulated by the computation often naturally exhibit the structure of a sequence or tree

that unfolds over timue.

1.1.2 Control: Computational Shape

Programming would be a much simpler task if all that mattered about a program was

that it had the correct input/output behavior. In practice, programmers care a great deal

about how the outputs are computed from the inputs. They select algorithms and use

programming styles that make effective use of various resources. Sometimes this means

reducing program execution time and space or improving hardware utilitization. Other

times it means writing code that is quick to implement, easy to read, simple to maintain,

or decomposable in ways that effectively use the talents of all members of a programming

team.

I assume throughout this dissertation that an essential aspect of programming is control-

ling the way that computational processes unfold over time. I)etails of process evolution de-

termine the machine-based resources, such as time and space, required by a program. Even

22

1.1. THE PROBLEM

higher-level properties like program readability, writability, and modifiability are closely

tied to patterns of process evolution. Process patterns common enough to be considered

idioms are more easily programmed and recognized than idiosyncratic ones.

Following Abelson and Sussman [ASS85], I refer to patterns of process evolution as

comlputational shapes. Some examples of computational shapes are iterations in two state

variables, linear recursions, and left-to-right pre-order tree walks. Intuitively, a comlputa-

tional shape captures operational details like the relative ordering of operations and the

storage profile of a process during its evolution.

I also adopt the view set forth by Abelson and Sussman that a central activity of pro-

graimming is designing descriptions that give rise to imagined patterns of process evolution.

From this perspective, programmers are process potters who mold computational clay into

desired shapes. A goal of this dissertation is to support this view of programmlling by cap-

turing idiomatic process patterns as programming language entities that compose in the

"right way". Along the way, I will explain why existing techniques for expressing these

idioms fail to have satisfactory composability properties.

1.1.3 The Signal Processing Style of Programming

A natural way to decompose monolithic loops and recursions is to view them as signal

pIrocessing systems in which information flows through devices that generate, map, filter,

and accumulate data. I call this method of structuring programs the signal processing style

(S PS) of pIrogranming.

As a motivation for S'S, consider a program that lists the minimum, maximlum, and

average of the salaries of active employees from a given employee database. A modular

allproach is to write separate subprograms that accumulate the minimum, maximum, and

average of any sequence of numbers, and then hook these components up to another com-

pIonent that generates a sequence of salaries of active employees from the database. This

a)lproach is graphically depicted in Figure 1.1 by the box labelled SALARY-INFO.

Figure 1.1 also illustrates the hierarchical nature of this programming style. The salary

generator can itself be factored into parts that generate a sequence of records from a

database (GENERATE-RECORDS), weed out the records of inactive employees (FILTER-ACTIVE),

23

24 CHAPTER 1. OVERVIEW

SALARY-INFO

database ACTIVE MA LISTSALARIES

i: ...
: ACTIVE-SALARIES :

AVERAGE

GENERATE- FILTER- MAP-
RECORDS ACTIVE SALARY

--i LEG

.-----------------------------------
LENGTH

-MAP-ONE s u

........ ,

Figure 1.1: Structure of a modular rogram for comlputing the miniuinIm, maximum, and
average salaries for active employees from a given database.

1.1. THE PROBLEM

and extract the salary from every remaining record (MAP-SALARY). The averaging subpro-

graim can be expressed as the quotient of two other components, one that calculates the

suml of a numeric sequence (SUM) and another that calculates the length of any sequence

(LENGTH). Even the LENGTH component admits a decomposition into a sum of a sequence

of ones that is the same length as the input sequence. Because the parts depicted in the

figure are not only reusable but applicable in a wide range of contexts, they constitute the

basis of a powerful modular programming language.

The signal processing style of programming has a long history and is supported by

numerous mechanisms in a wide range of programming languages. This style was used at

least as far back as the early 1960's in the form APL's array operators and Lisp's higher-

order list manipulation procedures. Today, the signal processing style is supported by a

variety of mechanisms that I broadly classify into two approaches:

1. The aggregate data approach treats devices as operators that manipulate aggregate

data structures like lists, trees, and arrays. This approach includes functions on strict

and lazy data and data-parallel vector operators.

2. The channel approach treats devices as processes that communicate via some sort of

data channel. This approach includes communicating threads, file-processing pip)es,

producer/consumer coroutines, and dataflow techniques.

The sliver technique introduced in this dissertation augments the aggregate data approach

but mixes in some crucial features from the channel approach.

Existing SPS techniques suffer from various drawbacks that limit the range of compu-

tations that they can express:

Limited Shapes: In many SPS frameworks, devices are constrained to process a linear

stream of information in an iterative fashion. While linear iterative computations are

perhaps the most common computational shape, this limitation excludes more general

linear recursions and all tree recursions. 1

1 There are methods of encoding trees as linear streams, but manipulations of the resulting streams often
don't accurately reflect the tree-shaped nature of the corresponding monolithic computations.

25

CHAPTER 1. OVERVIEW

* Constrained Topologies: Some SPS techniques circumscribe the ways in which devices

can be connected. Many mechanisms in the channel approach only allow straight-line

networks - i.e., linear networks in which the output of each device can be connected

to the input of only one other device. However, many programs (SALARY-INFO, for

example) decompose into networks that exhibit fant-irn (where a device consumes muIl-

tiple inputs) and farn-out (where a device output is used in multiple places). Another

coImmon restriction prohibits cyclic paths from a device output back to one of its

inputs. Yet, some programs naturally decompose into standard parts connected by

cyclic paths.

· Excessive Space Overhead: SPS programs can require significantly more space than

their monolithic counterparts. (Consider the SALARY-INFO program described above.

If we assume that the records in the employee database are linearly accessible, then it

is easy to write the salary program as a monolithic loop that uses only constant space.

Yet, almost all aggregate data mechanisms, as well as channel-based mechanisms that

do not support fan-out, lead to modular programls that require space proportional to

the size of the database!

As explained in C(hapter 3, even techniques like laziness and fancy program trans-

formations do not ameliorate this storage disaster in general. The probleml has its

roots in a fundamental mismatch between demand-driven evaluation and the fa1n-out

of results from device outputs. As far as I know, only Waters [Wat91] and Hughes

[Hug83, Hug84] have provided partial solutions to this problem within aggregate data

approach. (In channel-based mechanisms that support fan-out, the space prol)lem is

often solved by bounded channels.)

· Excessive Time Overhead: For a variety of reasons, SPS programs can require signif-

icantly more time than their monolithic counterparts. Some of the time overhead is

due to the manipulation of intermediate aggregates or channels that are not present

in the monolithic version. I consider this overhead acceptable in the sense that it is a

reasonable cost for the benefits achieved by modularity. Furthermore, this overhead

can often be reduced by clever compilation strategies.

26

1.1. THE PROBLEM 27

On the other hand, time penalties due to a mechanism's lack of expressive power are

unreasonable. For example, when using a mechanism that does not support fan-out,

it is necessary to replicate devices whose results are used in more than one place (see

Figure 1.2); this leads to an unnecessary duplication of work. As another example,

zz•
Figure 1.2: In SPS techniques that do not allow fan-out, a device must be replicated.

mechanisms not supporting a delayed evaluation strategy can perform unnecessary

work. Consider the network in Figure 1.3; if the EVERY-OTHER device is a filter that

passes only the even-indexed elements, then the MAP-EXPENSIVE-FUNCTION should

ideally not perform any computation on the odd-indexed elements. (A corresponding

monolithic program would almost certainly avoid these unnecessary computations.)

Figure 1.3: A network for which many SPS techniques perform unnecessary work.

..

CHAPTER 1. OVERVIEW

1.2 Sliver Decomposition

Sliver decomposition is a new technique for modularizing loops and recursions. It enhances

the expressive power of SPS progranining by ameliorating the problemns of exisiting tech-

niques outlined above.

1.2.1 The Basic Idea

Sliver decomposition augments the aggregate data approach by extending the operators

and aggregates to handle a simple notion of computational shape. Shape is encoded in the

way that the operators interact with a shared synchronization structure comniunicated by

the aggregates. An abstract depiction of sliver decomposition appears in Figure 1.4. Here,

Monolithic
Computation

Sliver
Computation

Figure 1.4: I)ecoinposing a monolithic computation into a network of slivers.

a monolithic recursive computation is partitioned into a network of slivers (tall skinny

boxes) that conmmunicate via synchlronizcd lazy aggregates, or slags (thick arrows). The

major difference between this slivcr diagram and the other SPS diagrams encountered so

far is that the devices and wires exhibit some structure. Each horizontal dotted line is a

call boundary that represents one of the recursive calls made in a recursive computation.

2X

............................

1.2. SLIVER DECOMPOSITION

The area between two such lines represents the computation performed by one level of

the recursion. The decomposition distributes the recursive call structure of the monolithic

couiputation across each of the slivers. The striations of the slags are intended to suggest

that they transmlit a representation of the recursive call structure of one sliver to another.

A sliver network resulting from sliver decomposition is intended to satisfy two criteria:

1. Operational faithfulness: The network as a whole should preserve the operational

behavior of the monolithic computation. Here, operational behavior includes which

operations are performed by the mnonolithic computation, the relative order of these

operations, and the storage profile of the whole computation. The network is allowed

to employ additional operations and storage for management purposes as long as it

maintains the monolithic computation's order of growth in space and timne.

2. Reusability: The slivers should share a standard interface so that they can be recom-

bined in a mix-and-mlatch way to model a wide range of computations.

Reusability is achieved by representing slivers as procedures and slags as data structures.

These choices Imean that sliver networks can be exp)ressed by standard mechanisms for

l)rocedural coml)osition.

Operational faithfulness is achieved by a lock step processing model that guarantees

that corresponding call boundaries of the individual slivers are glued together to simulate a

call boundary of the monolithic computation. This gluing process is depicted in Figure 1.5.

(',ommunication events (arrows labelled C() occur between pairs of connected slivers, but

synchronization events (shaded barriers labelled S) are shared among all the slivers. The

idea is that every sliver computation locally must wait at the shared barrier until all the

other slivers in the network have reached the samle barrier. By tightly coupling the sliver

comllputations, the synchronization barriers propagated by the slags ensure that the network

as a whole behaves like a monolithic procedure.

In this context, "shape" describes the time-based relationships between the synchro-

nization barriers and how the slivers interact with these barriers. Each barrier is actually

associated with !wo events in a computation: calling a recursive procedure and returning

from a recursive procedure. A computation can be viewed as a path that crosses each bar-

29

CHAPTER 1. OVERVIEW

Figure 1.5: C(:ommunication events ((.,) and synchronization events (S) among the slivers in
a network.

30

1.2. SLIVER DECOMPOSITION

(a) Shape of a general linear recursion. (b) Shape of a linear iteration.

Figure 1.6: Some shapes for linear computations. Each horizontal line is a synchronization
barrier whose left half represents a call event and whose right half represents a return event.
Solid directed lines indicate a time ordering between events, while undirected dotted lines
connect simultaneous events. A chain of downward arrows represents the iterative (calling)
portion of a linear recursion. A chain of upward arrows represents the recursive (returning)
portion of a linear recursion. A chain of undirected dotted lines represents the non-returning
b1ehavior of tail alls.

rier in a synchronization structure twice: once for the call event, and once for the return

event. For example, Figure 1.6(a) is an abstract depiction of a general linear recursion.

Such a computation breaks cleanly into a down (call) phase and and up (return) phase.

An iterative linear computation is a special case in which each call is a non-returning tail

call [Ste77]; it exhibits no up phase, because all returns events effectively occur at the same

time (as indicated by the dotted lines in Figure 1.6(b)). These notions extend to tree

collmputations; Figure 1.7 is a gallery of some shapes for binary computation trees.

The shape of the computation defined by a network is derived from the shapes of its

comp)onent slivers. For example, if each linear sliver in a network is iterative, then the

network as a whole is iterative. But if one sliver has a non-trivial up phase, then so does

the whole network. Tree-shaped computations permit a wider and more interesting variety

r -

I

r
r . .

14

L

k

K--

--- l =

31

CHAPTER 1. OVERVIEW

(a) Parallel tree computation.

SA!~~~~~~~~~ m 1 I m

(b) Post-order tree computation.

I

o, .. o-.............

(: ,

~~: i = x :: :: :

(c) In-order tree computation. (d) Pre-order tree comiputation.

Figure 1.7: Some common shapes on a binary computation tree. Each call/return barrier
lies above the barriers for its two recursive subcalls. Shape (a) is the multi-threaded walk
of a parallel tree computation, while shapes (b)-(d) are variations on single-threaded left-
to-right walks of a sequential tree computation. Other binary shapes include right-to-left
versions of the left-to-right shapes.

D I DC I 1X I M IDOL MIDOLa& .--.- "

:32

1.2. SLIVER DECOMPOSITION

of shape combinations.

The fact that each sliver network corresponds to single recursive computation constrains

the kinds sliver combinations that make sense. There is a kind of shape calculus on slivers

that determines the compatibility of the slivers in a network. In a network of linear slivers,

for instance, the down phase of a sliver may consume the products of a preceding sliver's

down phase but not those of its up phase; the latter situation would not correspond to a

single-pass linear recursion. Some rules for binary computations are that parallel slivers

usually mix with the sequential ones, but left-to-right and right-to-left binary shapes are

always incompatible.

Sliver decomposition is intended not to replace other SPS techniques, but to be used in

conjunction with them. The lock step processing of sliver network is not appropriate for

many computations. However, sliver decomposition interfaces nicely with other aggregate

data mechanisms, so it is easy to flexibly mix the tight coupling of slivers with the loose

coupling afforded by other mechanisms.

1.2.2 Some Simple Examples

In this section, I present a few simple examples that give the flavor of sliver decomposition

and hint at its expressive power. (The examples in this section are necessarily brief and

simple. The reader is encouraged to explore the more interesting examples in (Chapter 6.)

First consider the time-worn, but still trusty, factorial procedure. A procedure for

calculating the factorial of n naturally breaks into two parts: a generator of the numbers

between 1 and n, and an accumulator that takes the product of these numbers. The sliver

diagrams in Figure 1.8 illustrate that this decomposition is supported by many different

colmputational shapes.

In (a), the FROM-N-TO-1 sliver generates the integers from the input down to (and

including) , while the DOWN-* iteratively accumulates these numbers. The downward arrows

annotating the slivers and the "DOWN" in DOWN-* indicate that both slivers have only a down

phase, so the resulting computation is a linear iteration. In contrast, the UP-* accumulator

of (b) has an up arrow because it stacks multiplication operations to be performed after the

last number is generated; the resulting computation is a non-iterative recursion. In both

33

(CHAPTER 1. OVERVIEW

number answer number answer

(a) Linear iterative factorial. (b) Linear recursive factorial.

number answer

SPLIT-RANGE BINARYUP-*

Ak\ n
(c) Left-to-right pre-order tree factorial. (d) Parallel tree factorial.

Figure 1.8: Various sliver decompositions of a factorial procedure.

(a) and (b), it would be possible to replace the generator by a FROM-1-TO-N sliver that

counted from 1 up to the input. This would yield two more operationally distinct versions

of factorial.

Factorial versions (c) and (d) describe tree-shaped computations. In both, the SPLIT-RANGE

generator takes a range specified by low and high bounds and creates a binary tree slag

whose leaves are the numbers in the range. Given a range that contains only a single ele-

ment, SPLIT-RANGE produces a leaf with that element; otherwise it produces a valueless tree

node whose left and right subtrees are trees for two balanced subranges that partition the

given range. The generator has a so-called "binary down" shape because range information

conceptually travels in parallel from a parent node down to both subnodes.

In (c), the product of the leaves is calculated by the left-to-right pre-order LR-PRE-*

accumulator, while in (d), the subtree products of the subtrees are conceptually evaluated

in parallel and then combined by the BINARY-UP-* accumulator. Due to the operational

faithfulness of slivers, the computation described by version (c) uses control space propor-

tional to the depth of the tree; at mIlost one branch of the tree really exists at any point in

time. However, in (d), the multi-threaded nature of a parallel computation implies that

34

1.2. SLIVER DECOMPOSITION

Figulre 1.9: The salary information program expressed as a sliver diagram. The thick cables
represent slags, while the thin lines represent non-slag data. The whole network behaves
like a monolithic iteration because each of the components is inherently iterative.

space proportional to the size of the whole tree may be required in the worst case. Of

course, there are many other strategies for generating a tree of numbers and finding their

product. The shape-based nature of slivers makes them a good language for describing and

colmparing various approaches to a problem.

Figure 1.9 presents a sliver diagram for the salary information program presented ear-

lier. Because all elements of the network have a down shape, the specified computation

is guaranteed to behave like a monolithic iteration in five state variables (current record,

current minimu:um, current maximum, current sun, and current count). This is an impor-

tant improvement over SPS techniques that disallow fan-out or would build up intermediate

storage proportional to the size of the list. Replacing any one of the slivers by a component

with up shape would specify a computation requiring a linear stack.

The sliver diagram in Figure 1.10 exercises some of the other kinds of linear slivers that

can be expressed:

* SPLAY-LIST converts a list into a linear slag.

35

¢

CHAPTER 1. OVERVIEW

thresshold

Figure 1.10: A sliver diagram introducing some new kinds of linear slivers.

· POWERS-OF-2 generates a conceptually infinite slag with elements 20, 2, 22,

* MAP2-* is a two-input mapper that performs elementwise multiplication. Its output

is only as long as its shortest input.

* DOWN-SCAN-+ performs an iterative sum accumulation, but returns a slag of the inter-

mediate sums rather than just the final answer.

* TRUNCATE-WHEN-> truncates the input slag after the first element greater than a given

threshold.

* LAST returns the last element of a given slag.

The program as a whole iteratively calculates the first sum in a running sum of scaled

powers of two that is greater than a particular threshold.

Finally, consider some simple tree examples. Figure 1.11 shows three tree slivers that

transform one tree-shaped slag into another. Each node of a tree slag is assumed hold

a number. Each of the slivers returns a new tree slag in which every node is annotated

with the intermediate sum maintained by a particular tree summation computation when it

processes the node. BINARY-DOWN-SCAN-+ returns at each node the sum of the numbers on

the direct path to the root; BINARY-UP-SCAN-+ returns at each node the sum of the numbers

in the subtree rooted at that node; and LR-PRE-SCAN-+ returns at each node the running

sum of a left-to-right pre-order summation. Following the terminology from data-parallel

programming, we refer to these slivers as scanners.

36

1.2. SLIVER DEC(OMPOSITION 37

BINARY- BINApY~- LR-PRE-UP-
SCAN-+ SCAN-+

/. +

Figure 1.11: Three tree scanners distinguished by shape.

Figure .12: A sequential composition of differently shaped tree scanners.

The tree scanners can be combined both sequentially and in parallel. For example,

Figure 1.12 returns the root value of the tree resulting from a sequential cascading of these

three scanners, while Figure 1.13 returns the maximum value of a given function applied

elementwise to a given tree and the results of the three scans on that tree. In both cases,

the computation described by the sliver diagram behaves like the single-traversal tree walk

of a corresponding monolithic recursive procedure.

Although these tree examples are contrived, the shapes involved suggest more practical

applications. Tree slivers can be used to manipulate tree-structured databases and abstract

syntax trees of programs. This makes it possible to express such programs as pattern-

matchers, deductive retrievers, interpreters, and compilers as networks of slivers.

1.2.3 How it Works

Sliver decomposition makes essential use of concurrency, synchronization, and laziness:

* (oncurrency: The demand-driven model underlying sliver decomposition is inherently

concurrent. The interaction between demand-driven evaluation and fan-out requires

some form of concurrency to prevent spurious storage leaks (see [Hug84]). Experi-

ence with sliver decomposition suggests that concurrency is an essential technique for

BINARY-
DOWN-
SCAN-+

A

-

CHAPTER 1. OVERVIEW

function

TREE -MAP4

Figure 1.13: A parallel composition of differently shaped tree scanners.

38

1.3. ALTERNATE PERSPECTIVES ON THIS RESEARCH

expressing programs in a modular fashion.

· Synchronization: The lock step processing of sliver networks is achieved by synchrons,

a novel synchronization technology. A sliver network dynamically "solves" a set of

time constraints between sliver operations and the call or return events represented

by a set of synchrons. An event represented by a synchron is only enabled when the

system can "prove" that no more computation can happen before the event. Locks, a

more traditional forms of synchronization for concurrent systems, are also supported.

· Laziness: The backbone of slags, as well as the elements attached to this backbone, are

handled lazily - i.e., they are only computed if and when they are needed. Laziness

helps to realize operational faithfulness by controlling the order of operations and

guaranteeing that no spurious operations are performed within a sliver network.

Slags transmit intermediate values and synchronization information between concur-

rently executing slivers. Each slag element represents the information produced or con-

sumed by one recursive layer of a sliver. Slags are realized as lazy data structures that

carry a pair of call/return synchrons for every lazily-held element. Slivers are realized as

procedures that consume and/or produce slags and also follow an important set of conven-

tions for manipulating the elements and sychronizing on the synchrons. The conventions

guarantee that sliver processing proceeds in lock step and that undesirable intermediate

storage does not accrue.

1.3 Alternate Perspectives on This Research

The main theme of this research is that it is possible to design modular programs with-

olt necessarily sacrificing control. However, there are some alternate perspectives that

characterize this work or portions thereof:

I. Operational Modularity: Traditional black-box abstraction techniques exhibit func-

tional modularity in the sense that they define the functional input/output behavior

of a modular component. This work explores the notion of operational modularity --

decomposing the complex operational behavior of a monolithic system into simpler

39

CHAPTER 1. OVERVIEW

parts. Sliver decomposition achieves a kind of operational modularity by widening the

interface of the traditional aggregate data approach to include operationally significant

synchronization information.

2. A Dynamic Model of Lock Step Processing: Numerous program transformations

and compilation techniques exist for removing intermediate data structures from ag-

gregate data programs [DR76, Dar82, Bac78, Bel86, Bir89a, Bir86, Bir88, GW78,

Bud88, Wad84, Wad85, Wad88, Chi92, GLJ93, Wat91]. Most of these compile-time

techniques are based on a high-level version of the loop fusion technique employed

by many optimizing compilers [ASU86]. Synchronized lazy aggregates are essentially

a mechanism for performing loop fusion at run-time. D)ue to their dynamic nature,

synchronized lazy aggregates enable a level of expressiveness that cannot be matched

by the static approaches.

3. Hybrid SPS Techniques: Sliver decomposition can be viewed as an answer to the

riddle "What do you get if you cross aggregate data with channels?" That is, it is an

attempt to combine the best aspects of a number of existing SPS techniques into a sin-

gle technique. Sliver decomposition extends lazy aggregates with the synchronization

of channel-based approaches.

4. Generalizing Series: Much of this research was inspired by Waters's extensive work on

loop decomposition [Wat78, Wat79, Wat84, Wat87, Wat90, Wat91]. Waters designed a

well-engineered mechanism for expressing loops in terms of networks of linear iterative

operators manipulating a kind of synchronized lazy data structure known as series.

In addition, he developed conditions and static analysis techniques guaranteeing that

a large class of series networks can be efficiently compiled into loops. These make

programs expressed in terms of series a practical alternative to loops.

The research described here is a first step towards extending series to handle general

linear recursion (not just loops) and general tree-shaped computations. Slags are

a generalization of series that support these more complex computational shapes.

But currently, slags are only explained in terms of a somewhat inefficient dynamic

synchronization model. In order to make sliver decomposition a practical alternative

40

1.3. ALTERNATE PERSPECTIVES ON THIS RESEARCH

to monolithic recursions, it will be necessary to develop series-like static analysis and

compilation techniques for sliver programs.

5. Abstracting Over Hughes's Ideas: In his dissertation [Hug83] and an important but

little-known paper [Hug84]2 , Hughes explains why concurrency and synchronization

are necessary for preserving the space characteristics of a monolithic program in a

modular SPS program. He introduces concurrency and synchronization constructs

that can be thought of as annotations for controlling the operational behavior of a

functional program. The concurrency and synchronization techniques used in sliver

decomposition are similar to ones introduced by Hughes, but they are organized into

abstractions that make them easier to program with and reason about.

6. First-class Synlchronizatioin Barriers: The Id programming language employs a syn-

chronization barrier construct as a means of controlling the non-functional features of

a mostly functional language [Bar92]. The synchrons introduced in this report can be

viewed as first-class synchronization barriers. Thus, one aspect of this research is ex-

ploring the gains in expressive power that can be achieved by making synchronization

barriers first-class objects.

7. A Pedagogically Viable Graphical Programminlg Model: In part, sliver decomposition

was motivated by a desire to develop a graphical evaluation model for the Scheme pro-

gramming language. Here, "graphical" is meant in two senses: (1) "graph-theoretic" -

i.e., is expressed in terms of vertices and edges; and (2) "visual" - i.e., takes advantage

of human visual perception skills. The goal was to develop a graphical model that:

(a) Explains all the important features of Scheme (e.g., first-class procedures, tail-

recursion, side-effects, continuations).

(b) Is straightforward enough to be automatically animated.

(c) Is simple enough to be understood by novice Scheme programmers.

(d) Is an effective pedagogical tool for teaching Scheme.

21 am indebted to Ignacio Trejos-Zelaya for tracking down this paper at Oxford and sending me a copy.

41

CHAPTER 1. OVERVIEW

The EDGAR model introduced in this dissertation satisfies the first two criteria; the

last two need to be empirically verified. A prototype iplementation of an EDGAR-

based graphical prograllmmling model has been implemented and shows promise as a

pedagogical tool. An unexpected benefit of this research is that the model is able to

explain important concurrency features that are not a part of standard Scheme.

1.4 Dissertation Road Map

The remaining text of this dissertation is organized into three major segments:

I. BACKGROUND

The background segment gives a detailed motivation of the problem. Readers who

are eager to learn about the details of the sliver technique should skip ahead to the

next segment. There are two chapters in the background segment:

* Chapter 2: Slivers - A motivation for sliver decomposition in the context of

two monolithic programs: an employee database program and an alpha renaming

progral .

* Chapter 3: The Signal Processing Style of Programming - A detailed

analysis of why existing SPS techniques fail to express desirable operational char-

acteristics of programs.

II. SLIVER DECOMPOSITION

The sliver decomposition segment gives a detailed exposition of slivers and slags.

These are complex entities involving numerous subtleties. In order to suppress a flood

of potentially overwhelming details, they are presented in a top-down fashion over five

chapters:

* Chapter 4: Computational Shape - A presentation of a simple notion of

computational shape. Shapes are described in terms of the time-based ordering

induced on the call and return events in the execution of a recursive procedure.

42

1.4. DISSERTATION ROAD MAP

* Chapter 5: Synchronized Lazy Aggregates - An explanation of the lock

step processing model underlying the sliver technique. Synchronized lazy aggre-

gates are introduced as a mechanism for guaranteeing that networks of slivers

simulate the behavior of a corresponding monolithic procedure.

* Chapter 6: SYNAPSE: Programming with Slivers and Slags - An illus-

tration of the power of slivers and slags in the context of SYNAPSE, a simple

language for manipulating synchronized lists and trees.

* Chapter 7: OPERA: Controlling Operational Behavior - A presentation

of OPERA, the concurrent dialect of Scheme in which SYNAPSE is embedded. An

informal description of OPERA'S concurrency, synchronization, and non-strictness

features is followed by an explanation of how SYNAPSE is implemented in OPERA.

* Chapter 8: EDGAR: Explicit Demand Graph Reduction - An overview of

ED(AR, an explicit demand graph reduction model that provides an operational

semantics for OPERA. OPERA's concurrency, synchronization, and non-strictness

mechanisms are formally described here.

The top-down approach effectively manages complexity, but suffers a major draw-

back: the discussion of many concepts is distributed across several chapters. For in-

stance, crucial notions like demand-driven evaluation, concurrency, synchronization,

non-strictness, and tail-recursion are first introduced in an informal, almost hand-

waving, fashion; then their details are unravelled over several chapters. Readers who

prefer bottom-up presentations are encouraged to jump ahead to the detailed exposi-

tions in the later chapters. Skimming the SYNAPSE programs in (Chapter 6 and the

graphical rewrite rules in Chapter 8 may be particularly helpful for building intuitions.

III. WRAP-UP

The main text of the dissertation concludes with a wrap-up segment of two chapters

and an appendix:

* Chapter 9: Experience - A discussion of the experimental aspects of the

research, including the implementation and testing of EDGAR, OPERA, and

43

44 CHAPTER 1. OVERVIEW

SYNAPSE. This chapter also describes the DYNAMATOR, a graphical program

animator that proved invaluable in the development of the other systems.

* Chapter 10: Conclusion - A summary of the research, including contributions

and future work.

* Appendix A: Glossary - This dissertation introduces a large number of new

terms, and uses some existing terms in a non-standard way. The glossary is

provided to help the reader adjust to the terminology.

Chapter 2

Slivers

This chapter introduces a class of programming idioms that I call slivers. Slivers capture

the generating, mapping, filtering, and accumulating idioms commonly found in loops and

recursive procedures. Many programs can be visualized as sliver diagrams in which informa-

tion flows through a static network of slivers. This type of program organization is certainly

not new, and in the next chapter we will see how it is supported in various popular pro-

granimling paradigms. What is new is a dynamic framework for combining the operational

aspects of slivers in a reasonable way. I will only hint at that framework in this chapter,

-but will develop it in detail in Chapters 4 and 5.

I motivate slivers in the context of two extended examples:

1. Simple manipulations of a linearly-structured database. This example introduces

many of the issues relevant to modularity in the signal processing style of program-

mling.

2. Alpha renaming of lambda calculus terms. This tree-structured example illustrates

important issues and patterns of computation that do not arise in linear examples.

For the purpose of presentation, both examples have intentionally been kept simple. How-

ever, even though the examples are somewhat contrived, the issues they raise are very

real.

45

CHAPTER 2. SLIVERS

2.1 Linear Example: Database Manipulation

2.1.1 Overview

In this example, we consider sinmple programs manipulating an elmployee database. Suppose

that the interface to the database is the following set of procedures:1

* (first-record database-descriptor) returns the first record of the specified database.

* (next-record record) returns the database record following the given one.

* (end-of-database? record) tests for a distinguished database termination record.

* (record-get record field) retrieves the contents of the specified field from the given

record.

The first three procedures effectively make the database accessible as a linked list of records.

The record-get procedure is the means of extracting information from an individual record.

For the purposes of this example, we will assume that the records in every database are

sorted alphabetically by surname.

The procedural interface hides many details about how the database is implemented.

For all we know, the database records might be stored in a tree-like fashion; different fields

might be stored in distinct tables; or parts of the database may be stored remotely, perhaps

even distributed across several physical servers and sites. Even a bizarre scenario in which

every call to next-record initiates a request for a data entry operator to type in the next

employee record on the fly is consistent with this interface! These details do not affect the

values returned by the procedures, although they may show through in other ways (e.g.,

next-record may take a long time if records are stored remotely).

Below, we investigate two procedures describing computations on an employee database:

* (mean-age database-descriptor) returns the average age of employees in the specified

database.

1The procedure specifications have parentheses because they, like all programming examples in this dis-
sertation, are written in Scheme, a dialect of Lisp ([C'R+91], [ASS85]). I use Scheme because its support
for first-class procedures, side effects, and tail recursion permits concise expression of a wide range of pro-
gramming styles. However, the computational issues I am investigating are independent of the particular
language in which the examples are phrased.

46

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION

* (fat-cats threshold database-descriptor) returns a list (sorted alphabetically) of

the names of all employees in the specified database whose salaries are greater than

the given threshold.

These procedures will serve as a basis for comparing several styles of programming. We

will explore issues of modularity by considering the ease with which these procedures can

be modified and combined.

2.1.2 Monolithic Style: Functional Paradigm

In the monolithic style, the example programs are implemented as single recursive proce-

dlures that collect information during a traversal of the database. Here is a monolithic

implementation of mean-age written in the functional programming paradigm:2

(define (mean-agef,,,n database)

(define (loop record age-total count)
(if (end-of-database? record)

(/ age-total count)

(loop (next-record record)

(+ age-total (record-get record 'age))

(+ 1 count))))

(loop (first-record database) 0 0))

The internal loop procedure performs an iterative traversal of the database while main-

taining three state variables: record points to the current record, age-total names the

running sum of employee ages, and count names the number of records examined.

The monolithic functional version of fat-cats has a similar structure:

(define (fat-catsf,, threshold database)

(define (gather record)

(if (end-of-database? record)

(if (> (record-get record 'salary)

threshold)

(cons (record-get record 'name)

(gather (next-record record)))
(gather (next-record record)))))

(gather (first-record database)))

2Identifiers naming procedures (such as mean-age) will often be subscripted (in this case, with fun) to
distinguish different implementations of the same procedure. The subscript is not part of the identifier; it is
merely a convenient way to refer to a particular definition.

47

(CHAPTER 2. SLIVERS

The internal gather procedure traverses the entire database and collects into a list the

nanmes of the employees satisfying the salary predicate. The list collection strategy used

here, in which an enmployee nailme is prepended to the list resulting from a recursive call to

gather, preserves the relative ordering of the selected employees. Because the databases

are ordered alphabetically, so is the resulting list.

2.1.3 Monolithic Style: Imperative Paradigm

Both of the above procedures are written in the functional paradigil, which does not perimit

assignment. For comparison, Figure 2.1 presents monolithic versions of the two procedures

written in the imperative paradigmn. The iperative prograins are rather similar to their

functional counterparts. The nmain difference is that immutable formal parameters in the

functional versions become mutable state variables in the imperative version.

2.1.4 Computational Shapes

Following [ASS85], I carefully distinguishing procedures from the computations that they

specify.3 A procedure is just a specification for a computational process, whereas a comipu-

tation is the process that dynamically unfolds when the procedure is called.

Despite the fact that the functional and imperative versions of mean-age are written in

different styles, they specify computations with similar operational characteristics. In both

cases, even though the internal loop procedure is syntactically recursive, the tail-recursive

property of Scheme ([(-CR+911, [Ste77]) guarantees that loop executes iteratively, just as

if it had been written as a do, for, or while loop in other languages. And both loop

procedures iterate over the same three state variables, though in one case they are explicit

arguments and in the other case they are implicit. The operational behavior of fat-catsfu,

and fat-catsi,,p is likewise very similar.

On the other hand, even though mean-agef,, and fat-catsfu,, are both written in the

functional style, they specify computations that differ in fundamental ways. In addition to

the obvious fact that these programs performn different calculations, the gather procedure

3We use the term "computation" in place of the term "process" used by [ASS85]. We make this change
so that we can distinguish the standard usage of "process" in the concurrency community from the notion
for computational unfoldment presented in [ASS85].

48

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION

(define (mean-ageimp database)

(let ((record (first-record database))
(age-total O)

(count 0))

(define (loop)

(if (end-of-database? record)
(/ age-total count)

(begin

(set! age-total (+ age-total (record-get record 'age)))
(set! count (+ count 1))

(set! record (next-record record))
(loop))))

(loop)))

(define (fat-catsimp threshold database)

(let ((record (first-record database)))
(define (gather)
(if (end-of-database? record)

1()
(if (> (record-get record 'salary)

threshold)

(let ((name (record-get record 'name)))
(begin

(set! record (next-record record))
(cons name (gather))))

(begin

(set! record (next-record record))
(gather)))))

(gather)))

Figure 2.1: Imperative versions of the database procedures.

49

CHAPTER 2. SLIVERS

does not have the purely iterative character of loop. When the salary predicate is satisfied,

the implementation must "remember" to perform a pending cons operation upon returning

friom the recursive call to gather. Conceptually, such calls to gather push information on

an implicit control stack. Calls made to gather when the salary predicate is not satisfied

push no information on the stack (they act like gotos). The amount of control space

required to execute fat-cats is thus proportional to the number of names satisfying the

salary predicate.

We'd like some method of characterizing these sorts of operational similarities and differ-

ences between computations. One way of doing this is to adopt a standard evaluation model

that captures operational features. For example, [ASS85] uses an expresssion-rewriting

model to analyze procedures in terms of traces of their evaluation. Here is a summary of

such a trace of mean-agef ,, on a sample database (where the details of database and record

representations have been surpressed):

(mean-agef u, database)
(loop recordl O 0)
(loop record2 43 1i)
(loop record3 103 2)

(loop record4 125 3)
(loop record5 174 4)
(loop record6 202 5)

(loop record7 233 6)

On every line of the trace, the state of the computation is entirely captured in the values

of the three arguments to loop. Thus, mean-age/u~ exhibits the constant space behavior

of an iterative computation..

In contrast, here is a trace for fat-cats on a sample database:

(fat-catsf,,,, 250000 database)
(gather recordl)
(gather record2)
(cons "Raws P. Arrow" (gather record3))

(cons "Raws P. Arrow" (gather record4))

(cons "Raws P. Arrow" (gather recordS))

(cons "Raws P. Arrow" (cons "Gill Bates" (gather record6)))

(cons "Raws P. Arrow" (cons "Gill Bates" (gather record7)))

Some calls to gather simply rewrite to another call of gather on the next record. However,

when the salary predicate is satisfied, a call to gather rewrites to a cons application whose

50

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION

second argument is a call to gather. The rightward-growing "bulge" of the trace expressions

is due to the pending calls to cons, which textually encode the implicit control stack required

by the computation.

These examples show how the expression-rewriting model differentiates procedures ac-

cording to the pattern by which their computations evolve. In keeping with [ASS85], I will

refer to these patterns of computational evolution as shapes of computation. The notion

of shape is intended to capture operational features of a computation, such as time and

space complexity and the relative ordering of various events. The work described in this

repolrt was motivated by the desire to formalize the notion of computational shape and to

incorporate shape-based ideas into a programming language.

Certain patterns are so common that programmers give them names. For example,

mean-age is a linear iteration in three state variables while fat-cats is a linear recursion

in one argument. Both shapes are said to be linear because because each line of the trace

contains only a single recursive call. Later we will study more general tree shapes in which

several recursive calls are potentially active.

2.1.5 Monolithic Programs Lack Modularity

Mean-age and fat-cats exhibit several common idioms for linear computations. D)e-

spite the differences in their shape and what they compute, both procedures generate all

the records of the database in succession, and accumulate information from each record.

Mean-age uses two instances of a running sum idiom, in which a numeric variable initialized

to 0 is used to accumulate a sum. Fat-cats uses a filtering idiom to eliminate unwanted

recor(ls, a mapping idiom to find the name in each record, and a list accumulation idiom to

collect information in a list. These kinds of idioms (generate, map, filter, accumulate) arise

repeatedly in manipulation of linear data. For example, Waters found that 90% of the code

in the Fortran Scientific Subroutine Package could be expressed wholly in terms of these

idioms [Wat79].

A major problem with the above procedures is that the idioms are not localized in the

program text. For example, the database enumeration idiom is spread out across each

proce(lure body in the calls to first-record, next-record, and end-of-database?. Si-

51

CHAPTER 2. SLIVERS

ilarly, the running sum idiom conceptually consists of the declaration, initialization, and

update of a variable that maintains the sum. However, in mean-agefu,, these three parts of

the running sum idiom are textually separated from each other. The situation is marginally

better in mean-ageimp, where the declaration and initialization occur together.

The problem with non-localized idioms is that they are hard to read, write, and modify.

Idiom recognition is hampered when the programmer has to hunt for fragments of an idiom

in different parts of the code. First, it is necessary to make sure that all the right pieces

are present, and then it is necessary to become convinced that the rest of the code doesn't

prevent the idiom from working as expected. Reasoning is similarly complicated when

writing or modifying code; the programmer has to mentally juggle pieces from various idioms

and guarantee that they don't adversely interact. The non-locality forces the programmer

to wade through details unrelated to the idiom.

With non-localized idioms, the author of a programs may very well be guided by mental

notions of such idioms, and an attuned reader of programs can recognize the idioms. But

the idioms are only implicit. A fundamental principle of modularity in programming is that

idioms should be made explicit. When idioms are captured and named, programs can be

expressed by explicitly composing program fragments embodying the idioms. The above

procedures are said to be monolithic because they are expressed as densely interwoven idiom

fragments rather than as compositions of reusable idiom components.

Programs written in the monolithic style are difficult to combine and modify. For

example, suppose we want to compute the average age of employees earning more than a

given salary. Intuitively, we would like to connect fat-cats and mean-age in series. But

the result of fat-cats is a list of names, and mean-age expects a database. Even if we

reach inside the procedures, we do not find a common interface through which they can be

connected. Instead, the monolithic style forces us to construct an entirely new procedure

from scratch:4

4 Here, and throughout the rest of this section, we will only consider procedures written in the functional
style. However, all the analyses and conclusions hold for the imperative style as well.

52

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION

(define (fat-cat-agef,, threshold database)
(define (loop record age-total count)

(if (end-of-database? record)
(/ age-total count)
(if (> (record-get record 'salary)

threshold)

(loop (next-record record)
(+ age-total (record-get record 'age))
(+ 1 count))

(loop (next-record record)
age-total

count))))
(loop (first-record database) 0 0))

Almost all of the expression fragments used in the resulting procedure are taken from

the two original functional procedures. But we cannot point to single entities that represent

the salary filtering, the running total for ages, or the running count of filtered employees.

As before, these idioms are smeared throughout the (new) loop procedure. The work that

went into implementing these idioms in the original procedures must be repeated because

the monolithic style does not create reusable language artifacts embodying the idioms.

An interesting feature of fat-cat-agefm is that it is iterative, even though it is partially

derived the non-iterative fat-catsfu,, procedure. Examination of that procedure reveals

that the stacking behavior is due only to the list accumulation idiom. Since fat-cat-agefur

does not use that idiom, it does not require a procedure call stack. This example suggests

that we should be able to associate shapes of computation with individual idioms and then

determine the shape generated by a program from the shapes of the idioms out of which it

is constructed. Later, we will explore this idea in depth.

As another example, consider a procedure that returns both the fat cats and the average

employee age for a given database. Here we want to connect mean-age and fat-cats in

parallel. In the simplest approach, we can just encapsulate the two existing computations

within one procedure:

(define (fat-cats&mean-agenice threshold database)
(list (fat-cats threshold database)

(mean-age database)))

This extremely simple means of combination is a key advantage of the black-box modularity

offered by procedures. This procedure works regardless of the styles in which fat-cats and

mean-age happen to have been written.

53

CHAPTER 2. SLIVERS

Unfortunately, while this procedure computes the desired values, it doesn't necessarily

compute them in the desired way. In particular, the calls to fat-cats and mean-age will

each traverse the entire database independently. This means that next-record will be

called twice for every record in the database - once by fat-cats and once by mean-age.

The overhead of calling next-record twice for every record may be deemed unacceptable,

especially in the case where calls to next-record are particularly expensive (e.g., when the

database is stored remotely).

An alternative is to merge the computations of fat-cats and mean-age such that the

database is traversed only once. Here is the merged version for the functional implementations: 5

(define (fat-cats&mean-agef,, threshold database)

(define (both record age-total count)

(if (end-of-database? record)
(list '() (/ age-total count))

(if (> (record-get record 'salary)

threshold)

(mlet (((rest-names avg)

(both (next-record record)

(+ age-total (record-get record 'age))

(+ 1 count))))

(list (cons (record-get record 'name) rest-names) avg))

(both (next-record record)

(+ age-total (record-get record 'age))
(+ 1 count)))))

(both (first-record database) 0 0))

Here, the internal both procedure performs a single traversal of the database, during which

it accumulates both a list of names and an average age. It returns the two results as a two-

element list. Since this procedure does use the linearly-recursive list accumulation idiom,

its shape is a linear recursion rather than a linear iteration.

Although fat-cats&mean-agef,, is "better" than fat-cats&mean-ageice in terms of

execution time, it is a whole lot worse in terms of understandability and modifiability. The

idioms here are exactly the same as those used in fat-cat-age, but their interleaving makes

5I assume that Scheme has been extended with a pattern matching version of let called mlet. A inlet
expression has the same form as a let expression, except that the name position of a binding may contain
a name pattern rather than just a single name. A name pattern is any list structure whose atomic elements
are names. The name pattern is matched against the value of the binding expression, and the resulting
name/value associations are accessible in the body of the mlet. It is an error if a name pattern does not
match the binding value.

It is possible to dispense with mlet by instead using explicit selectors or Scheme's multiple value return
mechanism. However, I find both of these alternatives too unwieldy for expository purposes.

54

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION

them even harder to recognize. Additionally, the program is complicated by the details of

managing two return values rather than one. For example, the fact that the calculation of

the average age is still effectively iterative is obscured by the inherently recursive nature of

the name collection.

As a final example, we consider a modification to the original fat-cats procedure. By

a clever trick based on mutable pairs, it is possible to transform the linear recursive version

into a linear iteration. The original version generates a recursive computation because no

pair is allocated for cons until both of its subexpressions are fully evaluated. This means

that the pairs composing the spine of the returned list are actually allocated in order from

back to front, requiring the implementation to maintain a stack of pending conses.

The trick is to allocate the pairs from front to back by using side effects. Here is a

procedure that embodies this trick:6

(define (fat-cats-itermi,,ed threshold database)

(let ((ans-pair (cons 'ignore 'ignore)))

(define (gather! record prev-pair)

(if (end-of-database? record)

(begin

(set-cdr! prev-pair '())

(cdr ans-pair))

(if (> (record-get record 'salary)

threshold)
(let ((next-pair (cons (record-get record 'name)

'ignore)))

(begin

(set-cdr! prev-pair next-pair)

(gather! (next-record record) next-pair)))

(gather! (next-record record) prev-pair))))

(gather! (first-record database) ans-pair)))

The iterative gather! procedure takes the previously allocated pair in addition to the

current record. Every time a record satisfies the condition, it bashes the cdr of the previous

pair to point to a newly allocated pair, and then passes the new pair to the recursive call.

The initial pair passed to gather! is a dummy whose cdr will ultimately be the final answer

list; gather! returns this answer list when the end of the database is reached.

This trick, which I will call cdr-bashing list collection, is clearly handy in many list

processing programs. However, the monolithic approach does not allow us to package

6The resulting procedure is annotated with a mixed subscript because it combines aspects of both the
functional and imperative styles.

55

CHAPTER 2. SLIVERS

this trick into a component that can be used elsewhere. In fact, the convoluted structure

of fat-cats-iter,,,i,,d makes it difficult to even notice that it has been obtained from

fat-cats by applying a trick!

2.2 Tree Example: Alpha Renaming

2.2.1 Overview

All the programs considered thus far generate linear computations. In this section, we will

study a program that generates a tree-structured computation. Tree-shaped computations

are important because, in the absence of control features like non-local exits and continua-

tions, the procedure calls dynamically executed in any program can naturally be arranged

in a tree. Linear computations are trivially a subset of tree computations. Moreover, we

will see that tree-shaped computations support a richer set of evolution patterns than do

linear computations.

The program we consider is alpha renaming, an operation on abstract syntax trees that

is common in interpreters and compilers. Alpha renaming is one of the simplest practical

programs that involves combining different shapes of tree walks in a nontrivial way.

Alpha renaming is a mechanism for consistently renaming the variables in a program so

that each variable has a unique name.7 This transformation is especially useful in lexically

scoped languages, which permit the same identifier to name different logical variables within

a single program. Many other expression transformations (e.g., substitution) are easier to

perform on an expression that has been alpha renamed.

For simplicity, I will initially present alpha renaming in the context of an extremely

simple language, the lambda calculus. The syntax of lambda calculus terms E is given by

the following grammar:

7Technically, alpha renaming is any renaming transformation that maintains the same "connectivity" of
variable declarations and references within a program. It does not necessarily imply making all variable
names unique. However, in practice, the term is typically used to indicate that the resulting variable names
are all distinct.

56

2.2. TREE EXAMPLE: ALPHA RENAMING

E :: Iuse [Variable reference]

(lambda Idef Ebody) [Abstraction]

(call Erator Erand) [Application]

I :: ai b I c ... aa Iab ...

For our purposes, it is acceptable to view the lambda calculus as a restricted Lisp dialect

where all procedures take exactly one argument and applications are tagged with an explicit

call keyword. The only detail that matters for the present example is that the identifier Idef

introduced by a lambda term declares a variable that can be referenced anywhere within

Ebody (as long as there is no intervening declaration of another variable with the same

In amIIe).

The lambda calculus is about as spartan as a programming language can be. Later, we

will consider extending it with extra features that make it more palatable to program in.

We will see that a good test of the modularity of an alpha-renaming program is how little

it needs to be changed in order to accomodate such features.

As an example of alpha renaming, consider the lambda calculus term:

(lambda x
(lambda y

(call (lambda x x)

(call (lambda y x)

(call (lambda x y)

z)))))

In this term, there are three logically distinct variables named x, two named y, and one

named z. Variable references that occur within the scope of a declaration are said to be

bound; those, like z, that are not in the scope of a declaration are said to be free.

The following is an alpha renamed instance of the above term:

(lambda x_i

(lambda y_2
(call (lambda x_3 x3)

(call (lambda y_4 x_1)
(call (lambda x_5 y_2)

z)))))

Here, all declared variables and bound references have been consistently renamed by ex-

tending the original name with a unique number. (The free variable reference z cannot

57

(CAHAPTER 2. SLIVERS

been renamed.) Any other method for consistent renaming that guarantees distinct names

for distinct logical variables would also be acceptable.

The standard technique for alpha renaming can be visualized as the superposition of

three tree-walking computations, as sketched in Figure 2.2:

0- volt, Name Generator

#t , .. 0

Figure 2.2: Sketch suggesting the different shapes the computations involved in alpha-
renaming.

1. A name generator that creates a fresh name for every declared variable. To guarantee

distinctness among the fresh names, the generator must conceptually carry with it

some history of the names generated so far. Since the history at any point in time

depends on the history at the previous point in time, the name generation compu-

tation effectively traces out a single-threaded dependence path through the syntax

tree specified by the term. Whether the generator walks the term tree left-to-right,

right-to-left, or by soIml e other route is iImaterial as long as the path is a single thread..oo · "o
~11 1i ii iiiiii iiIiiiiiiii iIiiiiiiiii~i iiIiiii llll IiII I iIIiII I III111

right-to-left, or by some other route is immaterial as long as the path is a single thread.

58

2.2. TREE EXAMPLE: ALPHA RENAMING

2. An environment propagator that transmits the fresh name for each declared variable

down to all references of that variable. Since both subterms of an application see the

same set of old-name/new-name bindings, the environment computation conceptually

fanlls out into independent subcomputations at each call node. This downward fan

shape contrasts with the single-threaded nature of the name generator.

:3. A renamler that makes a copy of the term tree in which variable declarations and

references have been replaced by the appropriate fresh name passed down by the

environment propagator. The renaming computation conceptually starts at the leaves

of the term tree and builds a new term on its way up the tree.

Although the above algorithm is standard, the form of the description - a decomposi-

tion into superposed computations - is not. One of the main themes of this dissertation is

that conceptualizing programs in terms of interacting processes is essential to good modular-

ity regardless of whether or not the programs are actually run on multi-processor machines.

Each of the computations described above is a natural modular unit. Such computations

are valuable building blocks for other programs; for example, environment propagating com-

pIltations crop up all the time in interpreters and static analyzers. And such computations

have the interchangeability usually associated with modules; for instance, in some contexts

it, might be worthwhile to replace a left-to-right name generator with a right-to-left one.

From this perspective, it seems reasonable to judge alpha-renaming programs by how

well they reflect the modular structure described above. Unfortunately, the typical mono-

lithic implementations exhibit little of this structure.

2.2.2 Monolithic Style: Functional Approach

Figure 2.3 presents an alpha renaming procedure written in the functional paradigm. The

internal walk procedure takes three arguments: the term to be renamed; an environment

that associates original variable names with their new names; and a positive integer repre-

senrting a counter that is incremented every time a new variable declaration is encountered.

The integer is used as an argument to fresh-name, which is responsible for generating

59

CHAPTER 2. SLIVERS

unique names.8 Walk returns two results: the alpha-renamed term, and the current value of

the counter. Appropriate procedures for environment manipulation, fresh name generation,

and syntactic abstraction (e.g., lambda?, make-call) are straightforward and have been

omitted.

The alpha-renamef,, procedure exhibits ?none of the modular structure suggested by

Figure 2.2. Namle generation, environment propagation, and construction of the renamed

term are all inextricably intertwined in the single walk procedure. There is no handle for

reusing one of the computations in a different program, or for easily modifying one of these

comnplutatations independently of the others. For example, the name generator hidden in the

above program performs a left-to-right walk over the tree. What changes would be required

to yield a right-to-left walk?9 Answering this question requires consideration of the whole

program rather than just a name generation piece. Furthermore, when making the changes,

we must be careful to maintain the integrity of the other conceptual computations.

Finally, consider how alpha-renamef,,, would have to be modified in response to ex-

tending the base language with the conditional term (if Etest Ethen Eelse) The dispatch

within walk would need to be extended with a clause like the following:

((if? exp)
(milet (((new-test numi) (walk (test exp) env num)))

(mlet (((new-then num2) (walk (then exp) env numi)))

(milet (((new-else num3) (walk (else exp) env num2)))

(list (make-if new-test new-then new-else) num3)))))

This is an awfully complicated mess for something as simple as a conditional! The problem

is that the bookkeeping details associated with returning both the renamed term and the

updated counter obscure the following essential facts:

* The counter flows in a left-to-right fashion through the three subterms of the if.

* The environment flows unchanged into the three subterms of the if.

8 For alpha-renamef,, to be correct, it is necessary to assume that fresh-name returns a name disjoint
from the set of free variables of the term.

91n the alpha renaming program, the order of traversal doesn't affect the correctness of the result.
However, it's easy to imagine similarly structured programs in which some traversal orders are more desirable
than others.

60

2.2. TREE EXAMPLE: ALPHA RENAMING

(define (alpha-renamef,, exp)

(define (walk exp env num)
(cond

((variable? exp)

(list; (env-lookup exp env) num))

((lambda? exp)

(let ((old-formal (formal exp)))

(let ((new-formal (fresh-name old-formal num)))
(mlet (((new-body numi) (walk (body exp)

(env-extend old-formal
new-formal

env)

(+ num 1))))
(list (make-lambda new-formal new-body) numl)))))

((call? exp)

(mlet (((new-rator numi) (walk (rator exp) env num)))
(mlet (((new-rand num2) (walk (rand exp) env numl)))

(list (make-call new-rator new-rand) num2))))

))

(mlet (((new-exp final-num) (walk exp env-standard 0)))
new-exp))

Figure 2.3: Monolithic version of an alpha renamer written in the monolithic style.

61

CHAPTER 2. SLIVERS

Since these are the default flows associated with the name generation and environment

computations, we would prefer a mIodularization in which we didn't have to specify them

explicitly for the if case at all! After all, one of the measures of good modularity is the

localizability of changes - internal modifications to one module shouldn't require changing

connected modules.

2.2.3 Monolithic Style: Imperative Approach

Judicious use of side effects can improve the modularity of the alpha renaming program.

Consider the alpha-rename,7op procedure in Figure 2.4. The key difference between this

(define (alpha-renameimp exp)

(define gensym!

(let ((num 0))

(lambda (name)

(let ((new-name (fresh-name name num)))

(begin (set! num (+ num))

new-name)))))

(define (walk exp env)

(cond

((variable? exp) (env-lookup exp env))

((lambda? exp)

(let ((old-formal (formal exp)))

(let ((new-formal (gensym! old-formal)))

(make-lambda new-formal
(walk (body exp)

(env-extend (formal exp)

new-formal

env))))))

((call? exp)

(make-call (walk (rator exp) env)

(walk (rand exp) env)))

(walk exp env-standard))

Figure 2.4: Monolithic version of an alpha-renamer written in the monolithic style.

procedure and the previous one is that most of the name generation computation has been

captured in the gensym! procedure. The gensym! procedure owns a local state variable

(num) that maintains the counter which was spread throughout the entire walk procedure

62

2.2. TREE EXAMPLE: ALPHA RENAMING

within alpha-renamef,,,. Because the single threading of the name generation computation

is now being managed implicitly by side-effects rather than explicitly by data flow, the

interface to the walk procedure is much simpler: it takes one less argument and returns

one less result than in the functional version. This makes the resulting code easier to read

and extend. For example, an if term can be handled by extending walk with the following

clause, which is far simpler than the solution for the functional version:

((if? exp)

(make-if (walk (test exp) env)

(walk (then exp) env)

(walk (else exp) env)))

This example underscores the importance of state and side effects as a technique for

modularizing programs. This point is certainly not new and is elegantly argued elsewhere

([ASS85], [Bar92]). However, it is worth emphasizing that side effects are an important tool

that cannot be neglected in our goal of modularizing programs.

In spite of the improvements, alpha-rename1mp fails to achieve modularity in some

implortant ways:

* The notion of a downward-flowing environment computation is still intertwined with

the tree-construction computation in the single walk procedure. This means that the

environment computation is not an entity that can be reused elsewhere. Furthermore,

this organization forces the if handler to explicitly indicate that the environment is

passed unchanged to each recursive call to walk on the subterms of the if. In an

ideal scenario, this default flow shouldn't have to be explicit.

* More subtly. while most of the name generation computation has been localized to

gensym, not all of it has. The order in which name generation visits the nodes of the

term tree is inherited from the order in which the implementation language visits the

arguments to a procedure call. In Scheme, where the order of argument evaluation

is unspecified, no particular order can be relied upon. If for some reason we want to

guarantee that the name generator visits subterms in left-to-right order, it is necessary

to rewrite the call handler as:

63

CHAPTER 2. SLIVERS

((call? exp)

(let ((new-rator (walk (rator exp) env)))

(let ((new-rand (walk (rand exp) env)))

(make-call new-rator new-rand))))

Here, Scheme's (strict) let construct forces the operator walk to be performed before

the operand walk. A similar approach would have to be used for for cases like if.

Again, the order of the name generator doesn't matter in this particular problem, but

traversal order does matter in other problems with a similar structure. In general, we

would like a mechanism by which we can easily choose from options like left-to-right,

right-to-left, and don't-care. A modularity technique providing finer control over the

ordering of side effects (when it matters) is preferable to one that offers no control.

We have given numerous examples demonstrating that the monolithic approach fails to

capture an important class of programming idioms in an effective way. It is obviously de-

sirable to consider program organizations in which such idioms can be captured as modular

units.

2.3 Slivers Capture Programming Idioms

2.3.1 Two Approaches to Decomposing Computations

We have seen that procedures like mean-age, fat-cats, and alpha-rename are conceptually

composed out of many idiomatic units. But what is the nature of these units, and how are

they combined to yield a program?

Viewing computations graphically gives some insight into these questions. Figure 2.5

shows a computation diagram for fat-cats. A computation diagram is a kind of circuit

diagram for computations. In the diagram, every procedure application is represented as a

labelled rectangular device, except for calls to fat-cats and gather, which have been ex-

panded in terms of their definitions.' 0 (Procedure calls represented by devices will be called

unexpanded, while those replaced by the structure of their bodies will be called expanded.)

Triangles pointing into a device are input ports that represent the procedure's arguments,

10°n the diagram, salary and name are abbreviations for calls to record-get.

64

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS

while triangles pointing out of a device are output ports for the procedure's results. Devices

are connected by wires that specify the data dependences between procedures. Values can

be thought of as flowing along the wires in the direction of the arrows.

This picture is similar to graphical depictions of dataflow programs [)en75, D)K82]

except that here the devices can compute only once, and the wires can transmit only a

single value token before they are "used up". A computation diagram can be viewed as

a dataflow diagram unwound so that every spatial entity is also associated with a unique

point of time during the execution of the program. We will have much more to say about

the static and dynamic properties of such computation diagrams in Chapter 8. For now,

we will focus on ways in which the diagram can be decomposed into modular units.

The dashed boxes in Figure 2.6 indicate a layer decomposition of the computation di-

agram for fat-cats. Each box, called a layer, represents an expanded procedure call:

the topmost box represents a call to fat-cats, while the other boxes represent calls to

gather. Each layer contains devices for the unexpanded subcalls in the procedure's body,

and sits on top of the layers for the expanded subcalls in the procedure's body. Layers

are glued together by wires that pass arguments down to sublayers and receive results up

from sublayers. Some of the arguments are explicit in the code (e.g., the results of the

next-record devices correspond to the record parameter of gather) while others are im-

plicit (the threshold "bus" down the middle of the diagram indicates that lexical scoping

effectively makes threshold an implicit argument of gather).

Figure 2.7 shows a so-called sliver decomposition of the same diagram. Here the dashed

boxes, called slivers, parse the diagram into vertical components rather than horizontal

ones. The slivers are glued together by cables, collections of wires that pass information in

and out of the sides of the slivers.

The rules for what comprises a legal sliver are very loose. The only real requirement is

that if a sliver contains one instance of a device corresponding to a particular call in the

procedure underlying the diagram, then it must contain all such instances. But beyond

that, there are just some general guidelines for choosing slivers. The slivers are typically

chosen to encapsulate repeated units of related functionality while minimizing the structure

of the cables between them. All instances of the three devices for database manipulation

65

Figure 2.5: (:Comlputation diagram for fat-cats.

66 CHAPTER 2. SLIVERS

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 67

database threshold

Figure 2.6: Layer decomposition of fat-cats.

fist
record

:------- .
end-of- ifdatabase?r

salary >r n~~~~if

namer · cons

record
:------

end-of
dataae

salary >r nif~~~~~~

nex
Irecord

end-of-L
database?r

I I

Inill

salary

next
record

.. w..J

(CHAPTER 2. SLIVERS

GENERATE-
RECORDS

FILTER-
SALARY

Figure 2.7: Sliver decomposition of fat-cats.

MAP- STACKING-
NAME COLLECT-

LIST

68

2.3. SLIVERS (CAPTURE PROGRAMMING IDIOMS

a-re bundled into the sliver labelled GENERATE-RECORDS, while the devices responsible for list

collection are packaged up into STACKING-COLLECT-LIST. (The term "stacking" is intended

to indicate that the sliver builds the resulting list from bottom up.) It would be possible to

decompose these slivers up even further, say by factoring the end-of-database? devices or

the nil devices into their own separate slivers, but this did not seem particularly desirable

in this case. The devices within a sliver often form a single connected component of the

computation diagram, but slivers like FILTER-SALARY and MAP-NAME consist of repeated

connected comp)onents, all of which are mutually disjoint.

The most remarkable feature of the sliver decomposition in Figure 2.7 is that the in-

dividual slivers correspond closely to the kinds of idioms mentioned in the discussion of

mean-age and fat-cats. The GENERATE-RECORDS sliver takes a database and spits out

the individual records of the database in succession, along with a boolean termination flag

indicating whether the database termination record has been found. Conceptually, this

component occurs in both mean-age and fat-cats. The STACKING-COLLECT-LIST sliver

accumulates elements into a list from the bottom up; elements are conditionally included in

the resulting list depending on the value of an associated boolean presence flag. This can

be made into a general linear recursive accumulator by abstracting the cons and nil to be

any binary operator and base value. FILTER-SALARY effectively filters the records based on

salary by providing the presence flag to the list collector, while MAP-NAME simply extracts

the names fiom each record.

A host of other idioms can be depicted as slivers. For example, running sum and cdr-

bashing list collection are two linear iterative accumulators that can be encapsulated into

slivers. And the three tree-traversal idioms for alpha-rename sketched in Figure 2.2 can

also be fleshed out into tree-shaped slivers.

What feature of sliver decompositions allows it to capture so many idiomls? Whereas

a layer decomposition focuses on the recursive pattern of a computation, a sliver decoml-

position focuses on recursionless operators. In effect, the recursion has been distributed

over the slivers rather than being the main organizational principle for the program. The

sliver-based organization directs attention away from the structural details of recursion and

towards a more functional view of how program units fit together.

69

CHAPTER 2. SLIVERS

The notion of distributing loops over program components to enhance modularity is an

old one. It has its origins in Lisp's higher-order list operators and APL's array operators,

and is now used extensively as a technique in data parallel languages, functional and mostly

functional languages, concurrent languages, and stream-based languages. We will study

many of these techniques in detail in Chapter 3.

The new idea in slivers is to provide decompositions for a more general class of recursive

computations than those handled by existing techniques. We shall see that most of the

techniques alluded to above are limited to expressing linear iterative computations. Even

the techniques that handle more general computations exhibit other limitations that con-

strain the class of decomposable computations. The goal of slivers is to express general

tree-structured computations as compositions of mix-and-match parts. The strategy is to

gain insight into the nature of these parts by studying sliver decompositions of monolithic

computations that contain them.

Before we go on, it is worth pointing out that the sliver decomposition of Figure 2.7 is

not an ideal modular decomposition. The problem is that the list collection sliver "knows"

about the filtering sliver in the way that it handles the presence flag. In a sliver decompo-

sition for a program that lists all employees, the list collection sliver would not handle any

presence flags at all; for a similar program with two filtering predicates, the list collection

sliver might need to handle two presence flags per record. It is clearly unreasonable to

require different list collection slivers for each of these situations. In some sense, the in-

stances of if that manipulate the presence flag really belong in the filtering sliver. But this

change would greatly complicate the wiring between the filtering and accumulation slivers;

it would add a cable loop between the slivers, and the clear upward flow of information

in STACKING-COLLECT-LIST would disappear. In Chapter 5, we will investigate various

methods for enhancing the modularity of computations that involve filtering.

2.3.2 Procedural Slivers

Just as it is important to distinguish procedures from the computations they specify, it

is necessary to distinguish procedural slivers from computational slivers. A computational

sliver is what we have simply been calling a sliver up to this point: a repeated pattern of

70

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS

devices in a computation diagram that embodies a programming idiom. A procedural sliver

is a specification of this repeated pattern. Intuitively, it is that fragment of a procedure

that encapsulates the idiom.

How can such a fragment be specified? Investigating answers to this question is one of

the main goals of this report. For the moment, the following approach may be helpful for

envisioning procedural slivers. Imagine starting with the text of a procedure and erasing

all the program structure that is not relevant for generating a given computational sliver.

Then what's left over is a crude kind of procedural sliver.

Figure 2.8 shows the descriptions that result from using this approach for three of the

computational slivers of fat-cats. The resulting procedural slivers don't make much sense

individually, and certainly aren't executable. However, a sensible program like fat-cats

can be constructed by textually overlaying its component procedural slivers. In computation

space, the textual overlaying of procedural slivers corresponds to combining computational

slivers in a side-by-side manner to yield the computation diagram for the entire procedure.

The challenge is to develop a programming model in which the specification and combination

of procedural slivers is no harder than procedure specification and combination.

For the remainder of this report, we will loosely use the term sliver for both computa-

tional slivers and procedural slivers when the meaning is clear from context or the distinction

doesn't matter. The modifiers "computational" and "procedural" will only be sprinkled in

when we wish to emplhasize the distinction.

2.3.3 Sliver Diagrams

Sliver decompositions can be abstracted into sliver diagrams that summarize the sliver

and cable interconnections while suppressing many details. Figure 2.9 shows one possible

diagram for the fat-cats sliver decomposition. Each sliver is represented as a box, while

ca)les are replresented as thick, directed conduits between slivers. Individual devices and

wires are represented as before.

The sliver diagram in Figure 2.9 is a very literal interpretation the sliver decomposition

in Figure 2.7 in the sense that the slivers and cables are assumed to have exactly the

structure shown in the decomposition. For example, in Figure 2.9, the input cable to the

71

(CHAPTER 2. SLIVERS

;;; Fragment responsible for GENERATE-RECORDS

(define (fat-cats database)

(define (gather record)

(end-of-database? record)

(gather (next-record record)))

(gather (first-record database)))

;;; Fragment responsible for FILTER-SALARY.
;;; (The fragment for MAP-NAME is similar)

(define (fat-cats threshold

(define (gather)

(> (record-get record

threshold)

'salary)

(gather

(gather

;;; Fragment responsible for STACKING-COLLECT-LIST

(define (fat-cats)

(define (gather)

(if

(if

(cons

(gather

(gather

(gather

)

)

Figure 2.8: Procedural fragments approximating the procedural slivers that generate the
computational slivers of fat-cats. These are obtained by "whiting out" structure that
does not appear in a given computation sliver. The original program can be obtained by
textually overlaying all of its component fragments.

72

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS

Figure 2.9: A sliver diagram summarizing the sliver decomposition for fat-cats.

MAP-NAME sliver is assumed to carry three types of wires:

1. Termination wires that transmit a boolean indicating whether the end of the database

has been reached.

2. Presence wtires that transmit a boolean indicating whether the filter has passed the

associated record.

3. Element wires that transmit the current record when the corresponding terminations

and presence wires both transmit a true value.

The output cable of the MAP-NAME sliver also carries the same three types of wires. MAP-NAME

passes the termination and presence wires unchanged, but transmits a string rather than a

record on the element wire.

However. not every wire that happens to pass across a vertical dotted box in a sliver

decomposition need be considered part of that sliver. Figure 2. 10 depicts a sliver diagram for

a different perspective on the sliver decomposition of fat-cats. Here, the cable produced

by the recor(l generator fans out and feeds both FILTER-SALARY and MAP-NAME, while the

list collector now takes two input cables:

1. A cable of presence wires from the salary comparison.

2. A cable of element wires from the name mapper.

(P'resumably one or both of these cables also carries the termination wires.) It is easy to

imagine yet other diagrams in which each type of wire is carried by a distinct cable. Of

course, the interfaces to the abstracted slivers depends on the chosen interpretation. The

73

CHAPTER 2. SLIVERS

challenge is to design the diagrams to maximize the reusability of the abstracted slivers.

We will discuss this in detail later; for now, we will choose Figure 2.9 as the "standard"

sliver diagram for fat-cats.

Figure 2.10: An alternate sliver diagram for fat-cats.

Sliver diagrams underscore the advantages of capturing idioms in modular units. They

provide a convenient framework in which to understand and compare programs. For exam-

ple, the block diagram in Figure 2.11 elucidates the structure of mean-age. The fact that

there are two running sums is obvious from the structure of the diagram. The MAP-ONE

sliver maps every input record into the constant 1; summing these is up gives the employee

count. From the sliver diagrams, it is easy to see that mean-age uses the same database

enumeration strategy as fat-cats.

Figure 2.11: A sliver diagram for mean-age.

Perhaps the biggest advantage of sliver diagrams is that they promote the notion that

programs should be organized out of mix-and-match parts. For example, Figures 2.12

74

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS

and 2.13 support the intuition that the fat-cat-age and fat-cats&mean-age procedures

are essentially series and parallel combinations of fat-cats and mean-age. 1 Replacing the

recursive STACKING-COLLECT-LIST sliver in Figure 2.9 with the iterative CDR-BASHING-COLLECT-LIST

sliver (Figure 2.14) represents the constant-space computation generated by the fat-cats-iter

procedure. It is apparent from the diagrams that the iterative version is obtained from

the recursive one by a simple modification; moreover, that modification is encapsulated

in a way such that it can easily be plugged in elsewhere. Components like RUNNING-SUM,

STACKING-COLLECT-LIST, and CDR-BASHING-COLLECT-LIST are especially reusable because

they do not depend on particular details of the database example. 12

Figure 2.12: A sliver diagram for fat-cat-age.

As a final example, Figure 2.15 shows a sliver diagram for the tree-based alpha-rename

coimlputation. Here, each cable transmits tree-structured information between the slivers.

The name generation, environment propagation, and renaming computations have each

been encapsulated in their own sliver. There are some additional slivers, though. The

FILTER-FORMALS sliver finds the names of the declared variables; this has been factored out

of the name generation computation so that the names can be supplied to the environment

computation as well. And the TERM->TREE and TREE->TREE slivers provide conversions

between concrete terms and the "exploded" versions of their abstract syntax trees that are

1 "Figure 2.12 is somewhat misleading, since it uses versions of MAP-AGE, MAP-ONE, and RUNNING-SUM that
must handle the presence flag produced by FILTER-SALARY. Yet, the corresponding slivers in Figure 2.11 do
not manipulate a presence flag. This is another instance of the problems inherent in filtering that we will
need to deal with later.

12Modulo the above-mentioned issues of filtering.

75

CHAPTER 2. SLIVERS

Figure 2.13: A sliver diagram for fat-cats&mean-age.

Figure 2.14: A sliver diagram for fat-cats-iter.

76

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS

transmitted via the cables.'3

Figure 2.15: A sliver diagram for alpha-rename.

A key property of sliver diagrams is that they explicitly show only the flow of data,

not of control. As noted above, an upshot of modularizing the kinds of idioms discussed

above is that loops and recursions are distributed over individual devices rather than being

the main organizing principle for programs. This approach directs attention away from the

often complex details of control flow and towards a more functional view of how program

units fit together. Reasoning about control is localized to the implementations of individual

devices, where it is much more tractable.

2.3.4 Operational Interpretation of Sliver Diagrams

The previous examples demonstrate that it's easy to combine slivers in imix-and-lnatch ways.

But the operational behavior of the programs specified by the resulting sliver diagrams is

rather amblliguous. Suppose we presented the sliver diagrams in Figures 2.9 - 2.15 to other

programmers and described the high-level purpose of each box but did not explain how

the diagrams were derived from monolithic programs. Then the programmers could easily

construct many distinct but consistent stories about the meaning of these diagrams that

were different from our intended meaning. Here are some alternate interpretations:

1. The boxes are procedures that take and return aggregate data structures.

"3This is only true as long as there are no circularities in the data dependencies implied by the cables.
While such "data loops" can be be useful programming techniques (e.g. [Bir84]), they can also complicate
reasoning about programs by requiring programmers to think in terms of fixed points.

77

CHAPTER 2. SLIVERS

2. The boxes are demand-driven agents that request individual values from and return

individual values to their neighbors.

3. The boxes are data-driven processes that concurrently consume and produce values

sent over communicating channels.

These interpretations correspond to some of the classical techniques for achieving modularity

by distributing loops across programming idioms.

But the existence of so many interpretations means that sliver diagrams fail to nail down

important operational characteristics of computations. In the case where sliver diagrams are

derived from monolithic procedures, we'd like the resulting diagrams to specify operational

behavior similar to the original procedures. And when the diagrams aren't derived from a

single procedure, but are pieced together from existing slivers, we want a theory that defines

how the operational behavior of the composite structure is determined from the operational

behavior of the parts.

Exactly what is meant by "similar operational behavior" will necessarily remain vague

until we present a formal model of computation (Chapter 8). But here we can at least give

a few examples of what we have in mind:

* The monolithic mean-age and fat-cat procedures perform a single traversal over

the database, while the monolithic alpha-rename procedure performs a single traver-

sal over its argument expresssion. We would like the computation described by the

corresponding sliver diagrams to maintain this single-traversal property.

* The monolithic mean-age procedure generates a computation that requires constant

data and control space. The corresponding sliver diagram should also specify a

constant-space computation.

* The monolithic fat-cats procedure does not compute the name for a record that does

not pass the salary filter. In this case, the name computation is trivial, but it's easy to

imagine cases where it is important to avoid computations on items that do not pass

a filter. It is desirable for the computations specified by the sliver diagrams in both

Figures 2.9 and 2.10 to avoid unnecessary operations. (The fan-out in Figure 2.10

makes it tricky to implement this behavior.)

78

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 79

In a truly modular approach to these operational concerns, the operational behavior of

a computation should be derivable from operational behavior of its component parts. In

order to capture operational nuances, it will be necessary to include operational details in

the interfaces to slivers. We have done this to some extent in terms of the names of the

list collection slivers; STACKING-LIST-COLLECT and CDR-BASHING-LIST-COLLECT have the

same input/output behavior, but the first requires a control stack while the second does

not. We'd like to have a method of reasoning about these kinds of space issues based on the

structure of the slivers. (Chapters 4 and 5 develop such a method. But first, in Chapter 3, we

will explore what's wrong with existing methods for expressing sliver diagrams as programs

80 CHAPTER 2. SLIVERS

Chapter 3

The Signal Processing Style of

Programming

The signal processilg style (SPS) of programming is a label for the class of techniques that

organize programs like the sliver diagrams introduced in the previous chapter. In this style,

colmputations are are expressed as networks of computational devices that generate, map,

filter, and accumulate data transmitted over directed cables. This style encompasses a

wide range of progralmming techniques used in functional, imperative, object oriented, and

concurrent languages. The name "signal processing style" is suggested by the resemblance

between sliver diagrams and signal processing block diagrams.

This chapter explores the tension between modularity and control in the signal process-

ing style of prografmming. It elucidates two key points about this style:

* The signal processing style is a powerful means of decomposing programs into modular

units that encapsulate important programming idioms.

* (lassical techniques for programming in the signal processing style often preempt the

programmer -from controlling important operational aspects of programs expressed in

this style (e.g., execution time, space complexity, operation scheduling).

The remainder of this dissertation explores ways of reducing the tension between modularity

and control. In particular, the lock step processing model developed later is able to achieve

81

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

modularity while preserving space complexity and operation scheduling (it does not address

the control of execution time).

I will classify SPS techniques into two categories according to how they represent the

slivers and cables in a sliver diagram:

1. The aggregate data approach represent slivers as operators that manipulate aggregate

data (e.g., lists, streams, arrays, trees) and cables as the aggregate data structures

themselves.

2. The channel approach represent slivers as communicating processes and cables as the

communication channels between processes.

The lines between these approaches are not rigid; we will encounter techiques that exhibit

characteristics of both.

In the following sections, we study these two approaches in the context of the database

and alpha renaming examples. We will also consider several other techniques that resist

classification into the above two categories. We will see that each of the standard SPS

techniques is a two-edged sword: it helps the programmer subdue complexity, but it also

either (1) prevents the programmer from controlling important operational behavior or (2)

unduly limits the class of programs that can be expressed.

3.1 The Aggregate Data Approach

A common technique for encoding sliver diagrams is to represent slivers as procedures

that manipulate aggregate data structures. Then the slivers can be wired together simply

by the usual methods for procedural composition. For example, the following procedures

are the textual encodings of the sliver diagrams for fat-cats (Figure 2.9) and mean-age

(Figure 2.11):

82

3.1. THE AGGREGATE DATA APPROACH

(define (fat-cats database)
(stacking-collect-list

(map-name

(filter-salary threshold

(generate-records database)))))

(define (mean-age database)
(let ((records (generate-records database)))

(/ (running-sum (map-age records))
(running-sum (map-one records)))))

Here we assume that each procedure called in the body corresponds to the similarly-named

sliver. Note how the wire connections are represented by the natural data dependences of

nested subexpressions; in some sense, the aggregate values are the cables. Cable fan-out is

handled by let, whose bindings allow the same aggregate value to be used by more than

one procedure.

The aggregate data style has its roots in Lisp's list manipulation routines (as epito-

mized by mapcar) and APL's array operators. Today, the aggregate data approach is the

main organizing principle for data parallel languages (e.g., Fortran 90 [Ame89], (C* [RS87],

NESL [Ble92], paralations [Sab88]). It is also a commonly used technique in many other

languages. especially functional and mostly functional ones (e.g., Haskell [HJW+92], Id

[AN89], Common Lisp [Ste9O], Scheme [(:CR+91], ML [MTH90]).

3.1.1 Database Example: A List Implementation

For the linear database example, lists are an obvious choice for the type of aggregate data

structure. Figure 3.1 shows how each of the slivers can be represented as a list-manipulation

procedure.

Expressing mean-age and fat-cats as combinations of parts that share a standard

interface (lists) is a powerful strategy because the parts are reusable in a mix and match way.

Even though the code size for the aggregate data versions of these two programs (including

the definitions of their subroutines) is much larger than the size of the monolithic versions,

this increased size is offset by the modularity of the structure and the fact that the size of

the subroutines should be be amortized over all the places where those subroutines will be

used. Parts like those in Figure 3.1 are likely to be used pervasively in database applications.

And parts like map-onelist and running-suiist have even broader applicability, since they

83

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

;;; Generators

(define (generate-recordslist database)

(define (gen record)

(if (end-of-database? record)

,()

(cons record (gen (next-record record)))))
(gen (first-record database)))

;;; Mappers

(define (map-agelist records)

(if (null? records)

'()
(cons (record-get (car records) 'age)

(map-agelist (cdr records)))))

(define (map-onelist list)

(if (null? list)

'()
(cons 1 (map-onelist (cdr list)))))

(define (map-namelit records)

(if (null? records)

'()
(cons (record-get (car records) 'name)

(map-agelit (cdr records)))))

;; Filters

(define (filter-salarydatabase threshold records)

(cond ((null? records) '())
((> (record-get (car records) 'salary) threshold)

(cons (car records)

(filter-salarydatabase threshold (cdr records))))

(else (filter-salarydatabase threshold (cdr records)))))

;; Accumulators

(define (running-sumlist list)

(define (accum 1st sum)
(if (null? lst)

sum

(accum (cdr lst) (+ (car lst) sum))))

(accum list 0))

(define (stacking-collect-listlist lst) lst) ; Already a list!

Figure 3.1: List-based implementation of the slivers used by mean-age and fat-cats.

84

3.1. THE AGG(RE(GATE DATA APPROACH

will work on any linear structures, not only databases. This underscores the key advantage

of the aggregate data approach: aggregate data operators constitute a language for working

in a domain.

Using higher-order procedures, it is possible to obtain modular pieces boasting even

greater reusability. Figure 3.2 introduces higher-order procedures that capture the essence

of generation, mapping, and iterative accumulation. The mean-age subroutines are just

instances of these more general abstractions (Figure 3.3).

(define (generatelit done? next current)
(if (done? current)

'()
(cons current (generatelit done? next (next current)))))

(define (maplist function lst)
(if (null? lst)

'()
(cons (function (car lst))

(maplit function (cdr lst)))))

(define (filterlist predicate lst)

(cond ((null? st) '())

((predicate (car st))
(cons (car lst) (filterit predicate (cdr lst))))

(else (filterlit predicate (cdr lst)))))

(define (iter-accumulatelist operator identity list)
(define (acuum 1st ans)

(if (null? lst)

ans

(accum (cdr lst) (operator (car lst) ans))))

(accum list identity))

Figure 3.2: Higher-order list-manipulation procedures.

It is worth noting how the list-based implementation finesses the modularity problems

with filtering for the sliver decomposition of Figure 2.7. A list representing a cable does not

explicitly represent any presence flags. Rather, any element whose associated presence flag

is false is simply not included in the list. This compression technique enhances modularity

because there is no need to have different procedures for handling filtered vs. unfiltered

data. Unfortunately, the compression trick does not extend to the tree-structured case;

removing an element from a list leaves a list, but removing an element from a tree does not

85

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (generate-recordslist database)

(generate/list end-of-database? next-record (first-record database)))

(define (map-agelist records)

(map/list (lambda (rec) (record-get rec 'age)) records))

(define (map-onelist list)

(map/list (lambda (rec) 1) list))

(define (running-sumlit list)

(iter-accumulate/list + 0 list))

Figure 3.3: Implementations of the mean-age subroutines in terms of the higher-order list-
manipulation procedures.

leave a tree! Later, we will see how to deal with this problem.

As an aside, it should be mentioned that the list-based programs are really only sill-

ulating the sliver diagrams for mean-age and fat-cats. Indeed, each of the procedures

in Figure 3.1 can be described by its own sliver diagram! For example, the structure of

fat-catslist is really as shown in Figure 3.4. Here, each of the four component proce-

dures is associated with a dotted box containing the sliver diagram for that procedure. The

core slivers (GENERATE-RECORDS, FILTER-SALARY, MAP-NAME) are wrapped in instances of

SPLAY-LIST and GLOM-LIST that convert between the standard external list representation

and the internal cable representation: SPLAY-LIST is a generator that, given a list, spits out

its elements in order to a cable; GLOM-LIST is just a synonynm for STACKING-LIST-COLLECT.

(SPLAY-LIST and GLOM-LIST are the analogues of buffers in electrical systems that present

standard impedances to the rest of a circuit.) Each dotted box simulates the input/output

blehavior of the corresponding sliver in Figure 2.7, while each wire between dotted boxes

carries a list that encodes an entire cable structure between slivers.

It is possible to imagine doing algebra on slivers. For example, SPLAY-LIST and GLOM-LIST

act as inverses, so it should be possible to treat any juxtaposition of these two slivers

as an identity. Using this fact in conjunction with the equivalence of GLOM-LIST and

STACKING-LIST-COLLECT, it is easy to show that the diagram in Figure 3.4 is "equiva-

lent" to the diagram in Figure 2.9. But this notion of equivalence only captures the in-

put/output behavior of fat-cats. It does not capture how fat-catsist builds and takes

86

3.1. THE AGGREGATE DATA APPROACH 87

ENERATE LO SPLAY FILTER LOM SPLAY MAP GLOM
RECORDS LIST LIST SALARY LIST LIST NAME LIST

.......................... r..

generate-records filter-salary map-name stacking-
collect-

list

Figure 3.4: Sliver diagram for the list-based implementation of fat-cats. Each of the
clotted boxes corresponds to the procedure whose name appears below it.

aparts intermediate lists that do not exist in fat-catsf,,,. Nor does it capture how (in

Scheme) fat-catslit performs all generation steps before any filtering steps (in contrast,

fat-catsfun interleaves the steps from these stages).

3.1.2 Database Example: An Array Implementation

Lists are not the only data structure that can be used to implement the database examples

in the aggregate data style. In a data-parallel language, the natural representation for

cables would be some sort of array. In such a language, the basic strategy for the database

examples would be to fill an array with all the database records and then use appropriate

data-parallel array operators to derive a result.

A notable feature of data-parallel operators is that they tend to operate in an elemen-

twise fashion on the input array. In this paradigm, a natural way to do filtering is to first

compull)te a boolean array containing presence flags for the corresponding elements of an

input array, and later use the presence flags to select the array indices at which an opera-

tion will be performed. We will call this approach the gap technique of filtering, because

it models the absence of an element with an explicit marker indicating that the element is

not there. Via the selection mechanism, all array operators are equipped to handled filtered

data at all times; unfiltered data is just the special case where all indices are selected. Thus,

modularity is enhanced in the gap technique by having every sliver handle filtered data.

C8CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

3.1.3 Alpha Renaming Example: A Tree Implementation

Significant gains in modularity can be achieved by expressing alpha renaming as an SPS

program. The sliver diagram in Figure 2.15 is easy to express in the aggregate data ap-

proach:

(define (alpha-renametree exp)

(let ((exp-tree (splay-tree exp)))

(let ((def-tree (filter-formals exp-tree)))

(glom-tree (rename exp-tree

(environment def-tree

(fresh-names def-tree)))))))

Since each of the conceptual processes involved in alpha renaming is some sort of tree

walk, it is natural to use trees as the common currency through which the slivers commu-

nicate. To simplify the implementation, all of the intermediate trees have a common form.

They are instances of a tree data abstraction in which every tree node is an immutable

structure maintaining a single value (the datum) and a list of subtrees. The tree construc-

tor takes a datum and list of subtrees and returns a newly constructed tree node with this

information; the tree-datum and tree-subtrees selectors extract information from a tree.

Here is a straightforward implementation of this abstraction that we will assume in our

examples.

(define (tree value subtrees) (cons value subtrees))

(define (tree-datum tr) (car tr))

(define (tree-subtrees tr) (cdr tr))

The datum stored at a tree node can be any value. Multiple values can be stored at a tree

node by packaging them up into a single compound datum. A tree whose subtree list is

empty is called a leaf.

Figures 3.5 - 3.7 present the tree-based implementations of the subroutines used by

alpha-renamet,,. Although lambda calculus terms have an inherent tree structure, it is

still necessary to convert them into the common tree format used by the other operations.

We will refer to the original syntactic form as an term and the converted one as a node tree.

The conversion between terms and node trees is handled by splay-tree and glom-tree, as

shown in Figure 3.5. The datum of an node tree, called a node, is a list of a term type and

88

3.1. THE AGGRE(ATE DATA APPROACH

(define (splay-tree exp)

(cond

((variable? exp)

(tree (list 'variable exp) '()))

((lambda? exp)

(tree (list 'lambda (formal exp))

(list (splay->tree (body exp)))))
((call? exp)

(tree (list 'call)

(list (splay->tree (rator exp))

(splay->tree (rand exp)))))

))

(define (glom-tree tr)
(let ((exp (tree-datum tr))

(subexps (tree-subtrees tr)))
(case (first exp)

((variable) (second exp))

((lambda)

(make-lambda (second exp)

(glom-tree (first subexps))))

((call)

(make-call (glom-tree (first subexps))

(glom-tree (second subexps))))

)))

(define (filter-formals exp-tree)

(let ((exp (tree-datum exp-tree))

(subexps (tree-subtrees exp-tree)))

(if (eq? 'lambda (first exp))

(tree (second exp)

(list (filter-formals (first subexps))))

(tree '() ; No names declared at this node.

(map filter-formals subexps)))))

Figure 3.5: Subroutines for the alpha-renamer, part I.

89

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

extra information relevant to that type. The subtrees of an node tree are just the converted

subtermls.

For instance, consider the following sample term:

(define a-term

'(lambda x

(lambda y
(call (lambda x

x)

(lambda y

The node tree corresponding to a-term is given below:

(splay-tree a-term)

((lambda x)

((lambda y)

((call)

((lambda x)

((variable x)))

((lambda y)

((variable x))))))

The filter-formals procedure (see Figure 3.5) highlights the locations of the declared

names in an expression tree. It returns a name tree with the same shape as its input in

which every lambda node has been mapped to its formal parameter and every non-lambda

node has been mapped to nil. This is an example of the gap technique of filtering applied

to trees; here, a gap is explicitly represented by a nil. For example,

(filter-formals (splay-tree a-term))
eval

(x

(y

(()
(x

(()))
(y
(())))))

The name generator, fresh-names (see Figure 3.6), is the most complicated component

in this decomposition. It transforms a given name tree into a new name tree in which all

the names are distinct. It does this in two stages. First, it performs a left-to-right preorder

walk over the given name tree, in which it increments a counter every time it encounters a

name. This process returns a number tree with the same shape as the name tree in which

90

3.1. THE AGGREGATE DATA APPROACH 91

every node is decorated with the value of the counter from the walk. Second, it maps a

new-symbol generator over the name tree and the number tree to get a tree of fresh names.

For example:

(lr-pre-number (filter-formals (splay-tree a-term) 0))

(o
(0(1

(2

(2

(3))

(3

(4)))))

(fresh-names (filter-formals (splay-tree test)))
eval

(xO
(yl

(()
(x_2
(()))

(y_3
(())))))

It is worth noting that lr-pre-number works on any tree, not only name trees.

The environment procedure (Figure 3.7) takes a name tree and a value tree and creates

a tree of environments that has the same shape as the two input trees. The environment

datum at every node in the resulting tree is the environment of the parent node extended by

a binding between the corresponding name and value. When there is no corresponding name

(i.e., the name tree has a nil at a node), the environment is passed down unchanged from

above. If we assume that environments are implemented as association lists (where earlier

bindings take precedence over later ones), then environment has the following behavior on

our test expression:

(let ((defs (filter-formals (splay-tree a-term))))
(environment defs

(fresh-names defs)))

(((x . x_O))
(((y . y1) (x . x_))
(((y . yA) (x. x.0))
(((x . x_2) (y . yl) (x . xO))

(((x . x_2) (y . y_i) (x . x_))))
(((y . y.3) (y . y_1) (x . xo))

(((y . y_3) (y . y_1) (x . x_)))))))

CHAPTER :3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (fresh-names name-tree)

(map-fresh name-tree

(lr-pre-number name-tree 0)))

(define (lr-pre-number tr num)

;; Create a number tree for the given tree

;; by a left-to-right preorder walk.

(define (walk tr num)

;; Returns a list of a new tree and a new num

(mlet (((num-subtrees numi)

(walk-trees (tree-subtrees tr)

(if (null? (tree-datum tr))

num

(+ num 1)))))

(list (tree num num-subtrees)

numi)))

(define (walk-trees trs num)

;; Returns a list of a new tree list and a new num

(if (null? trs)

(list '() num)

(mlet (((first-tree numi) (walk (car trs) num)))

(mlet (((rest-trees num2) (walk-trees (cdr trs) numl)))

(list (cons first-tree rest-trees)

num2)))))

(car (walk tr O)))

(define (map-fresh name-tree num-tree)

(let ((name (tree-datum name-tree))

(num (tree-datum num-tree)))

(tree (if (null? name)

()
(fresh-name name num))

(map map-fresh

(tree-subtrees name-tree)

(tree-subtrees num-tree)))))

Figure 3.6: Subroutines for the alpha-renamler, part II.

92

3.1. THE AGCGREGATE DATA APPROA(;CH

(define (environment name-tree val-tree)
;; Assume ENV-IDENTITY binds each name to itself

((env-down env-identity) name-tree val-tree))

(define (env-down env)

(lambda (ntree vtree)

(let ((name (tree-datum ntree))

(val (tree-datum vtree)))
(let ((new-env (if (null? name)

env

(env-extend name val env))))
(tree new-env

(map (down new-env)

(tree-subtrees ntree)
(tree-subtrees vtree)

))))))

(define (rename exp-tree env-tree)

(let ((exp (tree-datum exp-tree))

(env (tree-datum env-tree)))

(tree (case (first exp)

((variable)

(list 'variable (env-lookup (second exp) env)))
((lambda)

(list 'lambda (env-lookup (second exp) env)))

(else exp))

(map rename

(tree-subtrees exp-tree)
(tree-subtrees env-tree)))))

Figure 3.7: Subroutines for the alpha-renaimer, part III.

The final component of the decomposition is the rename procedure (Figure 3.7). It

takes a node tree and an environment tree and returns a new expression tree in which all

lalmbda-bound variables and variable references are renalled according to the corresponding

environment. In the case of our running example:

93

94 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(let ((exp-tree (splay-tree a-term)))

(let ((defs (filter-formals exp-tree)))

(rename exp-tree

(environment defs

(fresh-names defs)))))
eval

((lambda x_O)

((lambda y_1)
((call)

((lambda x_2)

((variable x2)))
((lambda y_3)

((variable x_O))))))

Putting all the components together yields the complete alpha renamer, which works as

advertised on the test term:

(alpha-rename a-term)

(lambda x_O

(lambda y_1

(call

(lambda x_2

x_2)

(lambda y_3

x_O))))

The signal processing organization for the alpha renaming program has numerous mod-

ularity advantages over the monolithic approaches:

* The tree-manipulation procedures can be designed, implemented, and debugged inde-

pendently. In the monolithic versions, it was impossible to perform any of these tasks

on only one of the subprocesses since they all were intertwined.

* Many program modifications can be made by local changes to the tree-manipulation

procedures. For example, in order to make a name generator that walks right-to-

left rather than left-to-right, it is only necessary to replace the lr-pre-number within

fresh-names by an appropriately defined rl-pre-number. Such a modification is

entirely local; no other module need be changed.

* The tree-manipulation procedures are reusable. Structurally, they share a standard

interface (trees) that makes them easy to mix and match. More importantly, the

modules can be designed to make minimal assumptions about the contexts in which

3.1. THE AGGREGATE DATA APPROACH

they are to be used, thereby broadening their range of applicability. For example, the

environment procedure embodies a downward flow of binding information for any

tree of names and any tree of values, as long as they have the same shape. More

context-dependent modules, such as filter-formals and rename (both of which

contain references to lambda-calculus specific details like the lambda keyword) can be

generalized to make them more widely applicable.

* Many of the tree-manipulation procedures share a common structure that can be cap-

tured by higher-order tree-manipulation procedures. For example, filter-formals

and rename are both instances of a more general tree-mapping process in which each

datum of a result node only depends on data of the argument nodes. Environment,

glom-tree, and lr-pre-number are instances, respectively, of more general processes

that accumulate information down a tree, up a tree, and threaded through a tree. We

will consider such generalizations in depth in Chapter 6.

· The modules can capture default behavior in a way that facilitates extensions. Ex-

tending the alpha renamer to deal with an if construct only requires adding new

handlers to the conversion routines splay-tree and glom-tree:

(define (splay-tree exp)
(cond

((if? exp)

(tree (list 'if)

(list (splay-tree (test exp))

(splay-tree (then exp))

(splay-tree (else exp)))))

95

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (glom-tree tr)

(let ((exp (tree-datum tr))

(subexps (tree-subtrees tr)))

(case (first exp)

((if) (make-if (glom-tree (first subexps))

(glom-tree (second subexps))

(glom-tree (third subexps))))

)))

In particular, the core modules of the alpha renaIer - name generation, environment,

renaming - need not be changed at all to handle the if construct! The reason is that

these modules all have appropriate defaults built in. For example, at any node where

a name is not supplied, environment simply passes the current environment down to

all the subexpressions. This default captures essential behavior of "environmentness"

that need be specified in only one place.

To be fair, it is worth noting that adding a new name declaration construct would not

be as easy as adding if. The problem is that the notions of name declaration and

scope are too closely tied to details of the lambda calculus within filter-formals

and rename. However it is possible to generalize these modules so that even new

binding constructs are easy to add to the base language.

3.1.4 Some Drawbacks

Unfortunately, the aggregate data approach suffers from some important drawbacks that

detract from the benefits of modularity. Chief among these is the overhead of manipulating

the aggregate data. (Consider mean-age. The monolithic version of mean-age creates no

aggregate data structures, but the list-based version of mean-age creates five intermediate

lists during its execution. There is a time overhead associated with building these lists

and taking them apart. Even more debilitating is the space overhead used to compute and

store these lists. Under the standard Scheme evaluation model, memory must contain a

list the size of the entire database whenever map-age, map-one, and down-accumulate-sum

are applied. Furthermore, whenever the base case is reached in any of the computations

96

3.1. THE AGGREGATE DATA APPROACH

specified in Figure 3.1, the size of the implicit control stack must be on the order of the

database size as well. These problems plague any program representing cables by lists or

trees.

The time overhead is very annoying but not devastating. It increases the running time of

the monolithic mean-age by a constant multiplicative factor. In many cases it is reasonable

to pay this price in order to reap the benefits of modularity. For example, because the

modular version makes better use of the programmer's time (since it is easier to write,

modify, and debug), it may actually be more cost-effective than a faster program that is

harder to write.

The space overhead can be a more serious problem. Whereas the time requirements

differed in a constant factor, the space requirements can differ in order of growth. The

monolithic version of mean-age executes in constant space, while the list-based version

requires both stack and heap space linear in the size of the database. A sufficiently large

database can exhaust available memory in the list-based version, causing the program to

fail. This is an unreasonable price to pay for modularity. Even though standardly available

computer memories will continue to grow larger at a rapid pace, it is likely that the standard

size of information chunks will grow at an even faster pace. The storage pitfalls of the

aggregate data approach will become more problematic over time, not less so.

Furthermore, the straightforward aggregate data technique fails totally in cases where

the aggregate structures are conceptually infinite. Infinite data structures can be a powerful

way to modularize programs (see [ASS85]). An excellent example [Hug90O] is decomposing

a game program into a part that generates a game tree, and a part that examines the

game tree. This supports modularity because the game tree generator can be designed as

an independent unit without regard to the particular ways in which it will examined. But

since game trees are typically infinite, this decomposition can stretch the above storage

overhead problem beyond the capabilities of any finite memory.

Finally, although time and space overheads are the most important problems with the

aggregate data approach, they aren't the only ones. Sometimes it is desirable to control the

scheduling of operations from different slivers. For example, if two different slivers use I/O

operations, we might want these interleaved in a certain fashion, or we might want all the

97

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

operations in one sliver to happen before those in another. The aggregate data language is

not powerful enough by itself to express such constraints. More generally, there are questions

of how to combine the computational shapes of individual idioms to yield a desired shape

for the composite. It is often possible to manually interweave several linear iterations into

a single linear recursive computations, but the standard aggregate data approach does not

allow us to talk in these terms.

3.1.5 Partial Solutions

There are a number of techniques for ameliorating the problems outlined above in special

cases, but none is satisfactory in general.

Cdr-bashing

The cdr-bashing trick can be used to reduce the control space associated with list manip-

ulations. Replacing every instance of GLOM-LIST with CDR-BASHING-LIST-COLLECT would

remove the need for implicit stacks in all of the database examples. A similar trick, in con-

junction with pointer reversal, could remove implicit stacks from the tree problems as well.

But these tricks ultimately convert implicit stacks to explicit ones. They do not address the

more fundemental problem of the space taken by the intermediate aggregate structures.

Lazy Data Structures

Lazy data structures are often suggested as a solution to the space problems described

above, but this technique does not work in all cases. l A data structure is lazy when the

computation of each of its components is delayed until it is required (if ever). In SPS

programs based on aggregate data, lazy data can reduce space overhead and permit infinite

data structures by effectively allowing a limited kind of coroutining between the slivers.

In some SPS programs, lazy data can eliminate the order-of-growth space overhead

associated with the intermediate aggregate structures. For example, consider the following

1Lazy data structures are not to be confused with the more general strategy of lazy evaluation. Lazy
evaluation introduces many space problems of its own (such as the dragging tail problem [Pey87]) that will
not be detailed here.

98

3.1. THE AGGREGATE DATA APPROACH

procedure -for counting the number of employees who earn more than a given amount:

(define (fat-cat-count threshold database)
(running-sum

(map-one
(filter-salary threshold

(generate-records database)))))

Rather than manipulating lists, suppose that the subroutines manipulate Scheme streams,

a form of lazy lists described in [ASS85]. A stream implementation of these subroutines

appears in Figure 3.8.

(define (generate-recordsstream database)
(define (gen record)

(if (end-of-database? record)
the-empty-stream

(cons-stream record (gen (next-record record)))))

(gen (first-record database)))

(define (filter-salarystream threshold records)

(cond ((empty-stream? records) the-empty-stream)
((:> (record-get (head records) 'salary) threshold)
(cons-stream (head records)

(filter-salarystream threshold (tail records))))
(else (filter-salarystream threshold (tail records)))))

(define (map-onestream str)

(if (empty-stream? str)

the-empty-stream
(cons-stream (map-onestreamn (tail str)))))

(define running-sumstream

(let ()
(define (accum str sum)

(if (empty-stream? str)

sum

(accum (tail str) (+ (head str) sum))))
(lambda (stream) (accum stream 0))))

Figure :3.8: A stream-based implementation of the parts used by fat-cat-count.

The stream-based version of fat-cat-count executes in constant control and data space.

This is a remarkable result: the space behavior of a monolithic version of fat-cat-count

is achieved in a modular aggregate data program without any explicit concurrency or side

effects. The operations of the subroutines are interleaved as a result of the delayed eval-

nation of the second argument of cons-stream. This interleaving enables the garbage

99

100 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

collector to reclaim the intermediate storage allocated for each record by the time the next

one is processed.2 The side effects necessary for the cdr-bashing trick aren't needed here

because they are effectively hidden by the memoization employed by streams to avoid the

recomputation of delayed values [ASS85].

Unfortunately, lazy data is not a silver bullet. The subtle interactions between laziness

and garbage collection can make it hard to predict the storage requirements of a program.

As one example of the subtlety, compare the running-sumstreanl Figure 3.8 with the more

straightforward version below:

(define (running-sumstream stream)
(define (accum str sum)

(if (empty-stream? str)

sum

(accum (tail str) (+ (head str) sum))))

(accum stream 0))

If the more straightforward version of running-sumstrean is used in fat-cat-count, then

constant space behavior cannot be guaranteed! 3

Even worse, lazy data doesn't always interact well with fan-out. Consider a stream

implementation of mean-age, which exhibits fan-out by using the records generated from

the database in two places:

(define (mean-aget,,ream database)

(let ((records (generate-recordsstream database)))

(/ (running-sumtream (map-agestream records))

(running-sumstream (map-onestream records)))))

Because Scheme evaluates procedure arguments in some sequential order, there is a point

in the computation when one of the arguments to / has been completely evaluated but

evaluation of the other has not yet begun. Due to the memoization of stream elements,

2 The garbage collector may not actually reclaim the intermediate storage after every record is processed.
But the fact that the storage can be reclaimed at any future point means that it not charged to the
computation in space analysis.

3Here's why: Under the usual environment model of Scheme evaluation (see [ASS85]), the stream argu-
ment to running-sut,,,,rm is accessible from the environment in which accum is evaluated. Even though
stream is never referenced within accum, its value can't be garbage collected until accum returns. But in the
case of fat-cat-count, stream will be holding onto the stream created by map-onet,,am, whose size is the
number of fat cats in the database. So fat-cat-count is no longer constant space.

There are implementation strategies and alternate evaluation models under which accum won't unneces-
sarily hang onto stream. In these cases, fat-cat-count would still be constant space. However, the language
doesn't guarantee this behavior.

3.1. THE AGGREGATE DATA APPROACH

memory must contain an intermediate data structure corresponding to the entire database

at this point. If streams were not memoized, then there would be no storage overhead, but

the database would have to be traversed twice. This latter case is equivalent to manually

removing the fan--out from mean-age:

(define (mean-agenofan-out database)
(/ (running-sum (map-age (generate-records database)))

(running-sum (map-one (generate-records database)))))

In either case, lazy data does not help.

Hughes's Approach

Hughes improved the lazy data approach by supplying mechanisms that can guarantee de-

sirable space behavior even for networks exhibiting fan-out [Hug83, Hug84]. He observed

that in programs like mean-age, a constant space computation can only be achieved if the

arguments to / are somehow computed together in lock step. That is, generate-records

should not produce a new record until all the inappers and summers have completely pro-

cessed the previous one; this way, no handle on the previous record needs to be stored.

Hughes showed that in functional languages with sequential argument evaluation it is

impossible to express this kind of lock step evaluation in a modular way. To overcome the

limitations of sequential argument evaluation, Hughes introduced mechanisms for parallel

evaluation (par) and synchronization (synch). These are summarized in Figure 3.9.4

Using Hughes's par and synch constructs, the stream-based version of mean-age can

be forced to exhibit constant space behavior as follows:

4 Hughes originally posed his mechanism in a lazy functional language, so these versions have to be suitably
modified to make sense in Scheme. Hughes's (synch E) actually returned a pair both of whose components
held the value of E; but each component could only be accessed when both components had been requested.

101

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

Figure 3.9: Scheme renditions of Hughes's par and synch constructs.

(define (mean-agehughes database)

(let ((records (synch-stream (generate-recordsstream database))))

(/ (par (running-sumtream

(map-agestream

(map-stream demandi records))))

(par (running-sumtream

(map-onestream
(map-stream demand2 records)))))))

(define (synch-stream str)

(if (empty-stream? str)

(synch the-empty-stream)

(cons-stream (synch (head str))

(synch-stream (tail str)))))

(define (map-stream f str)

(if (empty-stream? str)

the-empty-stream

(cons-stream (f (head str))

(map-stream (tail str)))))

Mean-agehughes uses synch-stream to associate a synchronization point with every database

record and par to evaluate the operands of / concurrently. Since the age computation uses

demandl to access a record and the length computation uses demand2, neither computation

can race ahead of the other. It's as if both computations must pass through a series of locked

doors, each of which has two locks, and each computation has they key to only one of the

locks. As in the case of fat-cat-count, constant space behavior is once again guaranteed.

Hughes's technique is a good mechanism for controlling space behavior, but it has a few

* (par E) returns immediately with a placeholder for the result of the evaluation of
E. The evaluation of E proceeeds concurrently with the rest of the computation.
Any context requiring the actual value of the placeholder will wait until the value is
available. Par is equivalent to the future construct provided by many Lisps [Hal85,
Mil87, For91].

* (synch E) returns an object that suspends the computation of E. Demandl and
demand2 are procedures that demand such an object to return the value of its sus-
pended computation, but the computation is only initiated when both demandl and
demand2 have been called on the object. Once computed, the value of E is memlo-
ized. Synch is similar to Scheme's delay, except that there are two different forcing
functions, both of which must be invoked before the delayed expression is computed.

102

3.1. THE AGGREGATE DATA APPROACH

drawbacks:

* Lack of abstraction: The technique requires extending the sliver diagram for mean-age

with two instances of par and three slivers that manage synchronization (synch-stream

and two instances of map-stream). It would be preferable to somehow abstract over

these parallelization and synchronization operations so that the original network struc-

ture could be maintained. Unfortunately, they are difficult to capture in a reusable

fashion. For example, synch-stream can't simply be inserted into the definition of

generate-recordsstreaL because other applications of this procedure might exhibit

a fan-out other than two. Without extra support from the language, programmers

are required to manage par and synch-stream explicitly - an error-prone prospect,

especially since since synch raises the specter of deadlock.5

* Weak syncihronization: Using synch-stream to replace every instance of fan-out in

a sliver diagram does not force all the slivers in the diagram to compute in lock

step. Since synchronization is local, not global, there may be a lag between two sliver

comlputations that's related to the number of synch-streams that appear between

them. This is usually not very important, but can be troublesome if tighter operator

interleaving is desired.

The concurrency and synchronization mechanisms underlying my technique are closely re-

lated to Hughes's par and synch except that they address the two drawbacks above. In

particular, my technique makes it possible to hide the mechanisms inside of sliver abstrac-

tions so that the programmer does not have to deal with them.

Program Transformations and Compilation Techniques

There are a large number of program transformations and compilation techniques that

can elimlinate some intermediate data structures from aggregate data programs by fusing

connected slivers. They are all essentially high-level versions of the classic low-level loop

' Deadlock is a state in which a computation can make no progress. Deadlock can arise in the presence of
synch if demand2 cannot be applied until the successful return of demandl, or vice versa.

103

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

fusion technique performed by many optimizing compilers [ASU86]. As a typical example

of these techniques, the Scheme expression

(map f (map g 1))

could be replaced by

(map (lambda (x) (f (g x))) 1).

The later expression is preferable because no list is constructed for the ouput of g.

The problem with existing transformation and compilation techniques is that they either

provide no guarantees or they only work on a limited class of programs. Algebraic transfor-

mation techniques [DR76, Dar82, Bac78, Bel86, Bir89a, Bir86, Bir88] perform transforma-

tions like the above map removal, but systems that automatically apply these transforma-

tions do not guarantee that all intermediate data will be removed. Because programmers

cannot depend on the transformations, they must seek other methods of controlling the

space behavior of their programs. APL compilation techniques [GW78, Bud88] suffer from

the same problem.

The listlessness [Wad84, Wad85] and deforestation [Wad88, Chi92, GLJ93] techniques

pioneered by Wadler do provide guarantees, but they are rather limited in applicability.

Listlessness handles a subclass of list programs, but no trees. Deforestation can eliminate

both lists and trees, but only in networks that exhibit no fan-out.

The most impressive of the transformation approaches is Waters's series technique

[Wat91, Wat90O]. Series is a linear datatype that corresponds to a sequence of the val-

ues assumed by a state variable during an iteration. The series compiler can transform a

large class of series networks, including those with fan-in, fan-out, and filtering, into efficient

loops. The most important aspect of series is that there is an explicit set of easy-to-check

restrictions that the programmer can verify to determine whether a given network can be

efficiently compiled. The compiler generates a warning when these restrictions are violated.

Alas, series is limited to the expression of linear iterative computations. It cannot

handle tree-shaped computations, or even linear recursions. Cyclic data dependencies are

104

3.2. THE CHANNEL APPROACH

not allowed, even though these are sometimes useful for program decomposition. 6 Finally,

because it is based on static analysis, series requires that the network of series operators

be determinable at comlpile-time. This limits expressiveness by outlawing the dynamic

configuration of the network at run-time. The lock step processing technique developed in

(Chapter 5 is the basis for dynamic version of series that addresses all of these issues.

The problem with all of the transformations described in this section is that they are

too restrictive (e.g., can't handle tree-shaped data, fan-out, or recursion) and/or they fail

to provide provide the programmer with sufficient guarantees about improvements. The

upshot is that programmers often shun the aggregate data approach and instead embrace

the fine-grained control of the monolithic style.

The storage overhead problem is a classic example of how modularity can preclude

a, programmer from expressing desired behavior. The aggregate data approach hides the

operational details of the slivers inside of procedures specified wholly in terms of their

input/output behavior. The programmer has no hook into how the procedures work, and

therefore cannot express details like lock step evaluation.

3.2 The Channel Approach

In the channel approach, SPS networks are viewed as interconnected processes that com-

municate via data channel defined by the cables. Whereas the focus in the aggregate data

approach is the data transmitted on a cable, the focus in the channel approach is the process

that sends and receives data from the channel. A characteristic of the channel approach is

that the collection of elements transmitted across a channel is not treated as a single en-

tity. In the channel approach, processes are usually assumed to be independent threads of

control. They may be executing concurrently, or they may be coroutining in some fashion.

The channel approach is supported by numerous languages and systems. Hoare's CSP

is the canonical version of this approach [Hoa85]; Unix pipes [KP84] is one of the most

widely used. Other examples of the channel approach include: communicating threads

6 Waters argues that such cycles make programs harder to understand, and therefore should be avoided
at all costs.

105

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

[Bir89b, CM90], producer/consumer models (CLU iterators [L+79], Id's I-structures and

M-structures [ANP89, Bar92], Linda [CG89]) and dataflow ([Den75], [WA85], [DK82]).

Below, we explore both coroutining and concurrent versions of the channel approach.

We will see that the channel approach can provide reasonable control over space behavior

but that it is not a very good approach for expressing linear recursions and tree shaped

computations.

3.2.1 Coroutining Example

As a demonstration of coroutining, consider a simple organization in which each sliver is

represented as an state-maintaining object that keeps track of the source object for each of

its input cables (this is the representation of the "channel"). (C:omputation will be performed

in a demand-driven fashion. If an object receives a request for the next value on one of its

output cables, it may in turn request values from its input cables in order to satisfy the

request .7

Figures 3.10 and 3.11 present encodings of the database idioms under this organization.

Every object (except for record generators) has a source variable that indicates the source of

its input wire. Each object is represented as a thunk (parameterless procedure) that returns

its next output every time it is called. The demand! procedure enhances the readability of

this usage pattern:

(define (demand! object) (object))

When an object runs out of values to produce, it returns a distinguished done value:8

(define done '(*done*))

(define (done? obj) (eq? obj done))

A detail: the set! s used within the accumulators guarantee that they will return done after

producing the accumulated value.

Here's a version of the fat-cats program in this approach:

71n more complex organizations, objects might also keep track of the targets of their output cables, and
computation might exhibit both data-driven and demand-driven aspects.

8An alternate approach is for every object to handle both an "are you done?" message and a "give me
your next value" message. It turns out that this alternate approach unduly complicates the filtering idiom
in this style (try it and see!).

106

3.2. THE CHANNEL APPROACH

(define (make-record-generatoror database)
(let ((record (first-record database)))

(lambda ()

(if (end-of-database? record)
done

(let ((val record))

(set! record (next-record record))
val)))))

(define (make-running-summercor source)
(define (accum sum)

(let ((next (demand! source)))
(if (done? next)

(begin (set! accum (lambda (x) done))
sum)

(accum (+ next sum)))))
(lambda () (accum)))

(define (make-stacking-list-collectorcor source)
(define (accum)

(let ((next (demand! source)))

(if (done? next)

(begin (set! accum (lambda () done))

'())
(cons next (accum)))))

(lambda () (accum)))

Figure 3.10: Generating and accumulating idioms for the database example in the corou-
tining technique.

107

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (make-mapper-makeror fun)

(lambda (source)

(lambda ()
(let ((next (demand! source)))

(if (done? next)

done

(fun next))))))

(define make-age-mappercor

(make-mapper-makeror (lambda (r) (record-get r 'age))))

(define make-name-mappercor
(make-mapper-makeror (lambda (r) (record-get r 'name))))

(define make-1-mapperor
(make-mapper-makercor (lambda (r) 1)))

(define (make-salary-filteror threshold source)

(define (next)

(let ((record (demand! source)))

(cond ((done? record) done)

((> (record-get record 'salary)

threshold)
record)

(else (next)))))

(lambda () (next)))

Figure 3.11: Filtering and mapping idioms fort the database example in the coroutining
technique.

108

3.2. THE CHANNEL APPROACH

(define (fat-catsor, threshold database)

(demand! (make-stacking-list-collectoror

(make-name-mappercor
(make-salary-filtereor threshold

(make-record-generatoror database))))))

This resembles the aggregate data approach in the way that the interconnecton of slivers is

specified by nesting expressions. However, no intermediate aggregate structures are created.

Instead, demand and values pass back and forth between the objects in a coroutining

fashion. This computational pattern closely resembles the evaluation of a lazy data version

of fat-cats.

The mean-age program is harder to express in this approach due to fan-out. The naive

approach, shown below, fails to work as desired:

;;; Doesn't work because of fan-out!

(define (mean-agecor-wrong database)

(let ((generator (make-record-generatorcor database)))
(/ (demand! (make-running-summmercor

(make-age-mapper/dist generator)))
(demand! (make-running-summmeror

(make-l-mapper/dist generator))))))

Because requesting a record from generator changes its state, the two mappers connected

to generator receive different record sequences!

To avoid this problem without traversing the database twice, it is necessary to buffer

values produced by the generator until both mappers have consumed them. This can be

done in general by the using the copycOr routine shown in Figure 3.12 to represent cable

fan-out in a sliver diagram. CopycOr uses a buffer to effectively return two copies of a single

object. Using this routine, mean-age can be correctly implemented as:

(define (mean-age,,, database)

(mlet (((geni gen2) (copyco, (make-record-generator/dist database))))
(/ (demand! (make-running-summercor

(make-age-mapper,,, geni)))

(demand! (make-running-summeror

(make-1-mapperor gen2))))))

Introducing buffering makes it possible to handle fan-out, but it brings with it the

same space overhead problems that hamper the aggregate data approach. In a language

with sequential argument evaluation, the mean-agecor procedure will end up buffering the

entire database at some point. As in the aggregate data approach, the problem with the

109

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (copycor source)

(let ((queue (make-queue))

(slowpoke 0)) ; 0 = neither copy behind;

; 1 = first copy behind;

; 2 = second copy behind.

(define (make-copy my-id other-id)

(lambda ()

(if (= my-id slowpoke)
;; If I'm behind, get next value from queue.

(let ((head (dequeue! queue)))

(if (queue-empty? queue)

(set! slowpoke 0))

head)

;; If I'm not behind, get next value from source and queue it.

(let ((next (demand! source)))

(begin

(enqueue! next queue)

(set! slowpoke other-id)
next)))))

;; Return a list of two thunks that act like SOURCE.

(list (make-copy 1 2) (make-copy 2 1))))

Figure 3.12: A routine that returns two copies of a given object. The procedures
make-queue, enqueue!, dequeue!, and queue-empty? ilplement a queue abstraction that
is not detailed here.

110

3.2. THE CHANNEL APPROACH

coroutining technique is that the modules preclude the programmer from expressing fine-

grained control. In both cases, some form of concurrency and synchronization are required

to express desired control.

A new problem exhibited by coroutining is that tree-shaped computations are hard to

handle. Using demands to request the next value from an input cable is fine when the values

are arranged linearly in sequences, but is problematic when they are arranged as trees. How

would alpha-rename be coded in the coroutining technique? There are several approaches,

none of which is entirely satisfactory:

* Encode the tree as a linear sequence of its contents along with extra information

indicating the shape of the tree. This kind of encoding is used all the time to transmit

structured information over physical wires. Yet, a programmer doesn't want to have to

think in these terms; at the very least, there need to be abstractions for the encoding

and decoding process.

* Associate with each request an address that indicates the desired element. This com-

plicates both requestor and requestee by requiring them to keep track of address

information,.

* Have each object respond to demand! by returning subtree objects in addition to the

usual value. The requester then can explicitly choose which subobject to demand!

next. This complicates each requester by forcing it to manage the subobjects.

3.2.2 Concurrent Process Example

We address the concurrency problem of the coroutining technique by considering a model

in which the sliver processes are concurrent. The processes need not actually be running

in parallel on separate physical processors; for our purposes, simulated concurrency on a

single processor is perfectly adequate.

The Database Example

Versions of mean-age and fat-cats written in the concurrent process technique are shown

in Figure 3.13. They make use of the idioms presented in Figures 3.14 and 3.15. In this code,

111

CHAPTER 3. THE SIGNAL PROC'ESSING STYLE OF PROGRAMMING

we assume that Scheme has been extended with some constructs that support concurrency:9

* (cobegin expl exp2 ...) evaluates each of the subexpressions in its own concurrent

thread. Evaluation of the subexpressions may be arbitrarily interleaved. Cobegin

returns only when all component thunks have returned; its return value is a list of the

subexpression values.

* (make-channel) returns a new channel object, which acts as a FIFO communication

queue between concurrently executing threads.

* (send! channel value) tacks value on the end of the channel queue and returns value.

* (receive! channel) removes the first value from the channel queue and returns it. If

the queue is empty, then receive! blocks until a value is available to read.

Channels are assumed to be buffered communication queues in which sends and receives

are performed by side effect, but there are many other communication models that could

have been chosen. As in the coroutining technique, done and done? are used to indicate

the termination of a value sequence.

In mean-ageconc and fat-cats,,,,,, each cable is represented explicitly as a channel

object, and each sliver is represented as a channel-manipulation procedure. The cobegin

allows the slivers conceptually to execute in parallel, though on a sequential machine their

computations are actually interleaved. Most slivers wait for values from their input channels,

and then produce values on their output channels. The blocking behavior of receive! on

an empty channel is a synchronization mechanism that forces slivers to wait for values to

become available on their input channels before proceeding. This results in a data-driven

model of evaluation that stands in contrast with the demand-driven evaluation of the lazy

data technique and the coroutining technique.

The rationale behind the copyconc is the same as that for copyor in the previous example.

Since receive! works by side effect, two consumers sharing the same channel will not see

the same sequence of values. opying the values to two separate channels decouples the

9Except for a few cosmetic changes changes, these constructs are the ones described in [J(T89].

112

3.2. THE CHANNEL APPROAC(H

(define (mean-ageconc database)

(let ((gen->copy (make-channel))
(copy->map-age (make-channel))

(copy->map-one (make-channel))
(map-age->suml (make-channel))

(map-one->sum2 (make-channel)))

(mlet (((_ _ _ _ suml sum2)

(cobegin

(generate-recordscon, database gen->copy)
(copyconc gen->copy copy->map-age copy->map-one)
(map-ageconc copy->map-age map-age->sumi)
(map-oneconc copy->map-one map-one->sum2)
(running-sumonc map-age->suml)
(running-sumconc map-one->sum2))))

(/ suml sum2))))

(define (fat-catscO,,c threshold database)
(let ((gen->filter (make-channel))

(filter->map (make-channel))

(map->list (make-channel)))

(mlet ((_ _ _ name-list)
(cobegin

(generate-records0onc database gen->filter)
(filter-salaryc,,,,, threshold gen->filter filter->map)
(map-nameconc filter->map map->list)

(stacking-list-collecteon¢ map->list))))
name-list)))

Figure 3.13: Versions of mean-age and fat-cats in the concurrent process technique. The
mlet construct is the pattern matching version of let introduced earlier; the underscore
character '_' is used in patterns to indicate unnamled slots.

113

THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (generate-recordsconc database out)

(define (gen record)
(if (end-of-database? record)

(send! out done)

(begin
(send! out record)

(gen (next-record record)))))
(gen (first-record database)))

(define (running-sumonc in)

(define (sum ans)

(let ((next (receive! in)))

(if (done? next)

ans

(sum (+ next ans)))))
(sum))

(define (stacking-list-collect,,,nc in)

(define (accum)

(let ((next (receive! in)))

(if (done? next)

(cons next (accum)))))

(accum))

Figure 3.14: Generating and accumulating idioms for the database example in the concur-
rent process approach.

114 C"HAPTER 3.

3.2. THE CHANNEL APPROACH

(define (make-map,,,, f)

(define (map in out)

(define (loop)

(let ((next (receive! in)))

(if (done? next)

(send! out done)

(begin

(send! out (f next))

(loop)))))
(loop))

map)

(define map-age,,,,n (make-map,,,,nc (lambda (r) (record-get r 'age))))

(define map-name¢onc (make-mapconc (lambda (r) (record-get r 'name))))

(define map-oneconc (make-map,,,, (lambda (x) 1)))

(define (filter-salary,,,, threshold in out)

(define (loop)

(let ((next (receive! in)))

(if (done? next)

(send! out done)

(begin

(if (> (record-get next 'salary)

threshold)

(send! out next))

(loop)))))

(loop))

(define (copyconc in outi out2)

(define (loop)

(let ((next (receive! in)))

(begin

(send! outl next)

(send! out2 next)

(if (not (done? next)) (loop)))))

(loop))

Figure 3.15: Mapping, filtering, and copying idioms for the database example in the con-
current process approach.

115

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

consumers from each other. An alternate approach would be to share a single channel but

provide each consumer with its own pointer into the channel queue.

Storage Overhead

The concurrent process technique offers the possibility of better storage behavior than the

other approaches, but does not guarantee it. Consider mean-age,,,,,c. If all of the component

processes are operating in lock step, then no channel queue ever contains more than one

element and the program as a whole uses only constant space. However, at the other

extreme, the map-ageo,,,,,c process might send all database ages to its output channel before

the running-sumo,nc at the other end of the channel receives the first one. In this case, the

map-age->suml channel requires storage linear in the size of the database.

(Channel storage requirements can be reduced by constraining the unbounded nature of

channel queues. The problem with unbounded channels is that they allow a producer to

race arbitrarily far ahead of one of its consumers. A common solution is to limit the number

of values that the channel can buffer.

In the most restrictive approach, channels aren't allowed to buffer any values; instead,

the processes at the ends of the channel engage in a rendezvous in which a send! does not

return in the sending process until a receive! has been executed in the receiving process.

This is the approach adopted by (CSP [Hoa85]. A rendezvous-based version of mean-ageco,~c

would be guaranteed to require only constant space.

A less restrictive approach is a bounded queue, in which there is an upper limit on the

size of a queue; when the queue reaches this limit, a send! blocks until the queue gets

smaller. mean-ageco,,,,, would also use only constant space under this approach, though the

constant would be larger than in the rendezvous case. The bounded queue approach is a

standard means of implementing flow control between independent processes [Bir89b].

Why not simply adopt a policy in which all the channel queues are bounded? The

problem with this is that there are problems that require unbounded queues. Consider an

append 0 7o1c process with two input channels and one output channel that first copies all

elements from the first input channel to the output channel and then copies all elements

from the second input channel to the output channel (Figure 3.16).

116

3.2. THE CHANNEL APPROACH

(define (append,,,, inl in2 out)

(define (copyl)
(let ((next (receive! in)))

(if (done? next)

(copy2)

(begin (send! out next)

(copyl)))))
(define (copy2)

(let ((next (receive! ini)))

(if (done? next)

(send! out next)

(begin (send! out next)

(copy2)))))
(copyl))

Figure 3.16: A procedure that sends to its output channel the result of appends the values
from its two input channels.

If append,07,c is used in the following twice procedure,

(define (twice in out)

(milet (((cl c2) (copyconc in)))

(appendconc cl c2 out)))

then the second input channel c2 to appendco,,c requires a queue whose size is the number

of elements in the in channel. Since this size may be arbitrarily large, bounded queues do

not suffice in general.

A reasonable compromise is to let the programmer choose between bounded and un-

bounded channels. In addition to the unbounded (make-channel), the language could also

provide a (make-bounded-channel nunm) constructor that creates a channel whose queue

length is bounded by um. Then for cases like mean-age, the programmer has a means

of expressing the constant-space nature of the computation while maintaining the modular

SPS structure. Its ability to support both modular decomposition and some means of con-

straining control distinguishes the concurrent process technique from the other techniques

we have studied.

Deadlock

While the concurrent process technique has some nice properties, there are a number of

issues that detract from it. Foremost among these is that concurrent programs can somle-

117

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

times enter a wedged state called deadlock in which processes aren't done executing, but

none can make any progress. Here is a simple example of a program that deadlocks:

(let ((cl (make-channel))

(c2 (make-channel)))

(cobegin

(begin (receive! c2) (send cl 19))

(begin (receive! cl) (send c2 23))))

Each of the two processes created by the cobegin attempts to receive a value from the

other process before it sends a value to the other process. Since neither process can make

headway, the program is stuck and no value is returned.

The problem with the above example is that the sequential ordering constraints implied

by the begins are too strong and cannot be satisfied. Deadlock can often be avoided by

removing spurious ordering constraints. For instance, the above example can be made to

work by changing the begins to cobegins:

(let ((cl (make-channel))

(c2 (make-channel)))

(cobegin

(mlet (((_ ansi)

(cobegin (receive! c2) (send! cl 19))))

ansi)

(mlet (((- ans2)

(cobegin (receive! cl) (send! c2 23))))

ans2)))

: (19 23)

This change is reasonable because the send! s do not depend on the values of the receive !s.

However, when there is an inherent dependency loop, deadlock is unavoidable and indicates

a program bug. Here is a deadlocking expression containing such a loop:

(let ((cl (make-channel))
(c2 (make-channel)))

(cobegin

(send cl (receive! c2))

(send c2 (receive! cl))))

The above examples are contrived, but spurious deadlocks are easy to come by in prac-

tice. Avoiding them requires a defensive programming style that relaxes unnecessary order-

ing constraints. For instance, the unnecessary ordering of send! s in the copyc,,o procedure

from Figure 3.15 can insidiously lead to deadlock in some contexts. This procedure can be

written more robustly by decoupling the send!s with a cobegin:

118

3.2. THE CHANNEL APPROACH

(define (COpYconc-better in outl out2)
(define (loop)

(let ((next (receive! in)))

(begin

(cobegin ; Relax ordering of SEND!s
(send! outi next)

(send! out2 next))
(if (not (done? next)) (loop)))))

(loop))

In the presence of bounded channels, deadlock is even more of a threat because it can be

caused simply by choosing a bound that is lower than actually required.

I)eadlock complicates the concurrent processing approach to SPS by requiring the pro-

grammer to reason more carefully about sliver composition than in other styles. In the

other approaches, the meaning of a network is easy to determine from the meaning of the

parts; as long as there are no directed loops between slivers, there are no surprises. However,

in the concurrent processing style, deadlock can arise from undirected loopsl0 or channels

whose buffers aren't big enough. The extra reasoning necessary to show that a program

does not have deadlock is part of the price of additional control.

Other Issues

i)eadlock is not the only issue that complicates SPS programs written in the concurrent

processing style. Here are some others:

* Synchronization: Deadlock arises from overconstrained control. But underconstrained

control also leads to problems, usually involving side effects. Consider the following

version of copy:

(define (COpyconc-worse in outl out2)
(define (loop)

(let ((next (receive! in)))

(cobegin

(send! outl next)

(send! out2 next)

(if (not (done? next)) (loop))))) ; ***

(loop))

'(An undirected loop between slivers is formed by any two distinct paths from one to another.

119

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

This differs from COpyconc-better in that the starred line appears inside the cobegin.

This allows the next value to be received in parallel with sending the current value.

Unfortunately, it also allows the next value to be sent before the current value is sent.

This changes the input/ouput behavior of copy in a major way.

Underconstrained control is a classic problem whenever concurrent processes commu-

nicate via shared mutable data. The solution is to introduce extra constraints in the

form of synchronization. Typical synchronization mechanisms include locks [Bir89b],

semaphores [Dij68], monitors [Hoa74], I-structures [ANP89], M-structures [Bar92],

and Hughes's synch construct [Hug83, Hug84].

* Termination: A cobegin does not return until all its subprocesses have returned; this

kind of behavior is typical of fork/join parallelism. But getting all the subprocesses

to terminate can be tricky. Iagine an accumulator that only consumes the first

few values of a long or unbounded sequence produced by a generator. The accumu-

lator returns quickly; but what forces the generator to stop and return? For these

kinds of situations, the concurrent process technique often requires a special means of

terminating processes.

An alternate approach is to allow a process to return before it terminates. This

decoupling is employeed in so-called eager or lenient evaluation strategies ([Tra88,

Ha185, Mil87]) in which computations may continue to execute after a final answer

has been returned. Some means of garbage-collecting these superfluous computations

is necessary to avoid wasting resources.

* Tree-shaped Data: Like the coroutining technique, the concurrent process technique

has difficulty expressing tree-shaped computations. The same circumventions sug-

gested for coroutining work here as well. But a more satisfying approach is to mix

aspects of the data aggregate approach and the concurrent process approach. For

example, rather than transmitting a tree over a single channel, why not transmit a

tree over a tree of channels, where each channel transmits exactly one element? This

is the approach taken by languages, such as Id [AN89] and Linda [CG89], that exhibit

producer/consumer parallelism. These languages support non-strict data structures

120

3.2. THE CHANNEL APPROACH

that can be manipulated by a program before their components have been computed.

Any attempt to reference an uncomputed component results in a computation that is

blocked until the component is actually there. Thus, components of a non-strict data

structure are essentially channels that can communicate only a single element before

being "used up".

* Unnecessary Computation: Data-driven evaluation can often perform unnecessary

operations. As a simple example, imagine a network where an expensive mapper

precedes a filter that passes only every other element:

......

MAP-
GENERATE EXPENSI'

FUNCTIO

...............--- ----- ----------------------

In this case, much of the work being done by the mapper is for naught. This contrasts

with demand-driven evaluation, in which only those operations necessary for the final

result are performed. An obvious fix is to swap the components, but the mapper may

be packaged together with other slivers in a way that makes this infeasible.

In systems that provide real parallelism (i.e., many physical processors), it is often

possible to -reduce overall computing resources by wasting or repeating some compu-

tation. (The data parallel techniques discussed in [HS86a] are an excellent example

of this phenlomenon.) In such systems, demand-driven techniques can reduce per-

formance rather than improving it. However, in systems providing only simulated

parallelism (i.e., a single processor), demand-driven techniques may still be advanta-

geous. Pingali and Arvind show how demand-driven computation can be simulated

within a dataflow model [PA85], [PA86].

· Overconstrained Operationl Order: The linearity of channels sometimes overconstrains

the order in which operations are applied. Consider the mapping routines in Fig-

ure 3.15. These routines force the mapped function to be applied to each record

in the order in which it appears in the database. Compare this behavior with the

mapping functions for the aggregate data approach. In the latter case, the maplped

121

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

function can happen in any order with respect to the recursive mapping. This un-

specified order can increase the modularity of components like mappers, which can

then be used in contexts that constrain the order in different ways. It is unwise to

specify operation scheduling too early!

3.3 Other Techniques

Here we discuss a few common modularity techniques that are clearly relevant to the ex-

pression of loops and recursions, but can't easily be characterized within the aggregate data

approach or the channel approach.

3.3.1 Higher Order Procedures

In a programming language that supports higher-order procedures, it is natural to capture

general loops and recursions as procedures. For example, here are Scheme procedures

encapsulating iteration and linear recursion:

(define (iterate initial-state done? down final)

(define (iter state)

(if (done? state)

(final state)

(iter (down state))))

(iter initial-state))

(define (recur initial-state done? base down up final)

(define (rec state)

(if (done? state)

(base state)

(up state (rec (down state)))))

(final (rec initial-state))))

While this is an elegant and powerful strategy for capturing control constructs, it does

not provide the kind modularity supported by the signal processing style. 1 ' For example,

implementing mean-age via iterate requires the programmer to manually interweave the

done? parts of the component slivers, the down parts of the components, and the final

parts of the components. This is hardly an improvement over the monolithic approach! The

llAnother problem is that general tree walkers are considerably more complex than the simple linear
examples shown here.

122

3.3. OTHER TECHNIQUES

prol)lem is that the looping control structure is still centralized in loop rather than being

distributed over components.

Modularity could be achieved in this approach by representing an iterative sliver as

a record of procedures that described the sliver's contribution to each of the arguments

of the abstracted control structure. For example, an iterative sliver would be a record of

initial-state, done?, down, and final components. However, it would also be necessary

to define an appropriate means of combination for such records, which would be complicated

in general. While this approach may not be reasonable for programmers, it can be good idea

for compilers. Indeed, the notion of gluing together corresponding fragments of different

slivers is at the heart of Waters's series compiler [Wat91].

3.3.2 Looping Macros

Many versions of Lisp have supported complex macros that capture certain looping idioms.' 2

For examplle, in (C:ommon Lisp [Ste90O], the mean-age procedure can be written as follows:

(defun mean-age (database)

(loop for record = (first-record database)
then (first-record (next-record record))

until (end-of-database? record)
sum (record-get record 'age) into total
count record into length
finally (return (/ total length))))

Here, for, until, sum, count, and finally all introduce clauses into the occurence of the

loop looping macro. Each clause is intended to express a common iterative processing idiom

in a convenient syntax.

As with the higher-order procedure approach, looping macros suffer modularity prob-

lems. Again, there is a centralized control structure that is not distributed over the com-

ponents. There is no way to abstract over a collection of clauses to reuse therm in other

occurrences of loop. While some clauses concisely capture an idiom (e.g., the sum and

count clauses), other idioms are spread over several clauses (e.g., record generation). This

approach is essentially an alternate syntax for writing a monolithic iteration.

12As far as I know, there are not any similar macros that capture the idioms of tree recursions. Designing
such a macro would be an interesting project.

123

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

3.3.3 Attribute Grammars

Attribute grammars are a formalisml invented by Knuth [Knu68] for declaratively specify-

ing the decoration of tree nodes with namled attributes. Though originally intended for

describing the semantics of programming languages based on their grammars, today they

are mainly used for syntax-directed compilation techniques (see [DJL88] for an overview).

Attribute grammars are related to slivers because (1) they are a language for describing

a class of tree computations (2) they support a crude notion of shape. Attribute grammars

specify computations on a tree (typically a parse tree) by indicating how an attribute at

one node in a tree is calculated from attributes at the current node, its parent node, or its

children nodes. Attributes are classified according to dependency information: an attribute

computed from parent nodes is said to be inherited, while one computed from children nodes

is said to be synthesized. "Inherited" and "synthesized" roughly correspond to parallel down

and parallel up computation shapes. Indeed, it is possible to view attribute grammars as

defining recursive functions [Joh87] or procedures [Kat84].

Classical attribute grammars suffer from a lack of modularity because they distribute the

specification of attribute computations across all the different types of tree nodes. However,

in recent years, there has been a flurry of activity on modular attribute grammars, which

strive to group all the computations of a given attribute into a modular unit [D(:C90, Ada91,

FMY92, KW92, Wat92].

While attribute grammars can be a powerful declarative framework for specifying tree

computations, they do not seem to be good languages for controlling the behavior of these

computations:

* As far as I can tell, most of the attribute grammar frameworks assume that the entire

tree being decorated resides in memory. This is an exponential difference in space

complexity for monolithic tree-recursive procedures that require space proportional

only to the depth of the tree.

* Attribute grammars don't supply a means of expressing tail recursion. To return a

result from the leaf of a tree, it is necessary to pass it through all the intermediate

nodes back to the root, even if there are no pending computations to be performed

124

3.4. SUMMAR.Y

on it.

* The declarative nature of attribute grammars can make it difficult to predict how

many passes the attribute computation will make over the tree. (There are some

frameworks, such as one-pass attribute grammars [Kos84], that do limit the number

of passes).

* Attribute grammlar formalisms are usually not designed to express general tree coim-

putations; they are typically tied to parsing technology and are used mainly to specify

language implementations.

* Modular attribute grammar formalisms typically involve ad hoc mechanisms for spec-

ifying component connectivity. (connections are much more natural to express in the

aggregate data and channel approaches.

3.4 Summary

We have examined in detail issues of modularity and control for a linear and tree-based

examlple. The following themes stand out:

* Modularity arguments suggest that some programs can be structured like signal pro-

cessing networks of mix and match slivers that embody idiomatic loops and recursions.

This approach is called the signal processing style of programming.

* The modularity of slivers is enhanced when their specification leaves open certain

details that can be filled in by the context in which they are used. Examples of this

theme include:

- Higher-order procedures capture general patterns while allowing parameters to

be supplied where they are used.

- Lazy data permits the specification of potentially infinite data. structures, but

these are only computed to the extent required by the context in which they're

used.

125

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

- Concurrency allows operations in different slivers to be interleaved, subject to

the ordering constraints that result from their connection. The reusability of

concurrent processes is increased when spurious ordering constraints on their

computations are removed.

- UIlspecified sequential evaluation of arguments gives a limited form of operator

interleaving.

* Side effects are a crucial mechanism both for achieving modularity and specifying

fine-grained control. They aid modularity by localizing computation and reducing

the interfaces between parts. They permit fine-grained control of space resources and

operation order, as in the cdr-bashing list collection example.

* Traditional forms of implementing input/output modularity often preclude the pro-

grammer from controlling operational details of a program at a fine-grained level. Such

details include time and space complexity, operation order, and limiting unnecessary

computations.

* Standard techniques for SPS programming have benefits and drawbacks along various

dimensions:

- Storage requirements and operation scheduling are difficult to control in the ag-

gregate data and coroutining techniques. They are easier to control in presence

of concurrency, but then it is necessary to contend with issues such as deadlock

and termination.

- Fan-out in the cables of sliver diagrams causes no problems for the aggregate

data style, but requires special handling in the channel techniques. Undirected

cycles (formed by fan-out in combination with fan-in) can also lead to deadlock

in the concurrent process technique.

- Unnecessary computation can be avoided by using demand-driven evaluation.

This form of evaluation is natural in the lazy aggregate data style and the

demand-driven coroutining approach. However, it is in conflict with the nat-

ural data-driven evaluation of concurrent programs.

126

3.4. SUMMARY 127

- Tree-shaped data is easy to handle in the aggregate data approach, but is prob-

lemiatic in the channel approaches.

128 CHAPTER, 3. THE SIGNAL PROC(ESSING STYLE OF PROGRAMMING

Chapter 4

Computational Shape

The goal of slivers is to decompose monolithic recursive procedures into networks of mix-

and-match parts that preserve the operational character of the original procedure. But

what is meant by the "operational character" of a recursive procedure?

Intuitively, operational character describes how the computations specified by a pro-

cedure unfold over time. Fine-grained aspects of this unfolding include the relative order

of particular operations and the profile of the storage consumed by the computation as a

fiunction of time. But unfoldings also display coarser-grained patterns that appear again

and again. The iterative nature of computations generated by a tail-recursive procedure are

one example of such a pattern. Other patterns include nested loops, mutual recursions, and

different classes of tree walks. These patterns are important enough to programmers that

they will spend often expend considerable energy to construct a program that generates a

desirable computational pattern.

This chapter describes the computational patterns generated by recursive procedures. I

call these patterns computational shapes. Computational shapes provide a basis for describ-

ing some of the important operational characteristics of computations that are preserved

by the sliver technique.

129

CHAPTER 4. COMPUTATIONAL SHAPE

4.1 Linear Shapes

4.1.1 Linear Tiles

Figure 4.1 shows the abstract structure of a simple linear recursion. It is a stack of repeated

boxes that grow increasingly shorter on the way down. I call this ladder-like structure a

linear trellis. Although the figure suggests an infinite regress, any terminating computation

will populate only a finite prefix of the trellis.

Figure 4.1: Trellis that depicts the structure of a simple linear recursion.

Each T-labeled box in the trellis, called a linear tile, represents the computation per-

formed by one layer of the recursion. The interface to a tile is shown in Figure 4.2. The

top line of a tile, called the call boundary, corresponds to the recursive procedure call that

initiates the computation in the tile. The bottom line of a tile, called the subcall bound-

ary, corresponds to the single recursive subcall that a tile computation is allowed to make.l

Within a linear trellis, the subcall boundary of one tile coincides with the call boundary of

the tile below it.

'A tile computation might not make any subcall; in fact, a linear recursion will terminate only if some tile
in the trellis does not make a subcall. Also, a tile computation is allowed to have several potential subcalls
as long as it is guaranteed to actually call at most one of them.

T
-

130

4.1. LINEAR SHAPES

ARGUMENTS RESULTS

CALL BOUNDARY

TILE
ARMY

Atom

I M

SUCALL BOUNDARYTILE

SUBCALL BOUNDARY

-" it

SUBARGUMENTS SUBRESULTS

Figure 4.2: Interface to a linear tile. Each shaded arrow designates the transmission of zero
or Ilore values.

A tile receives arguments and passes results across the call boundary. Additionally,

it may pass subarguments and receive subresults across the subcall boundary. Each of

these actions (receiving/passing arguments/results) corresponds to an event that the tile

computation may participate in:

i. Call initiation marks the beginning of the tile computation. Since all argument values

must be available before call initiation, the call boundary is said to be strict.

2. ,S'ubcall initiation marks the beginning of the subcall's computation. Due to the strict-

ness of the subcall boundary, all subargument values must be computed before subcall

initiation.

3. Subcall return marks the end of the subcall's computation. After this point, the result

values of the subcall are available.

4. Call return marks the end of the tile computation. The result values returned by the

call must be available before this point.

These four events are ordered linearly in time (Figure 4.3). A tile computation that peforms

no operations between the subcall return and call return events is said to be tail-recursive.

In this case, the two events are considered to temporally coincide.

131

CHAPTER 4. COMPUTATIONAL SHAPE

Time - l....................l . .subcall '
Time initiation initiation return return

(a) General tile

Time

(b) Tail-recursive tile

Figure 4.3: Time ordering of linear tile events.

4.1.2 Linear Orientation

Operations performed by a tile computation can be classified according to when they can

be performed with respect to the subcall:

1. A down operation must be performed between call initiation and subcall initiation.

2. An up operation must be performed between subcall return and call return.

3. An across operation is unordered with respect to subcall initiation and return. It

must be performed within the call, but may be performed before, during, or after the

subcall.

This classification will be called the orientation of an operator. The timing constraints on

the three orientations are summarized by Figure 4.4.

4.1.3 Linear Shards

Because the tinting constraints are mutually exclusive, they partition a tile's computation

into into disjoint collections of operations, which I will call shards. The partitioning of a tile

132

4.1. LINEAR SHAPES

Figure 4.4: Tillling constraints that define the orientation of an operation within in a linear
tile.

into shards is graphically depicted in Figure 4.5. The down shard computes subarguments

ARGUMENTS RESULTS

SUBARGUMENTS SUBRESULTS

Figure 4.5: (Computational shards within a linear tile.

from arguments, while the up shard computes results from subresults. Arguments and

intermediate values mnay be transmitted via so-called intermediates from the down shard,

through the across shard, and to the up shard. In a tail-recursive tile, both the across and

up shards are trivial - they contain no operations. The down shard usually has a control

arm interposed between the up shard and the results; this will be explained shortly.

Tiles for some simple computations are shown in Figure 4.6.

The tiles are arranged in pairs of iterative (left) and recursive (right) approaches to the

same problem. Tiles (a) and (b) calculate the sum of the squares of the integers between

CONTROL ARM

INTER- INTER-

.°ACROSS

........ ...:.......

133

C HAPTER 4. COMPUTATIONAL SHAPE

num sum result num sum

subnum subsum subresult

(a) Iterative sum of squares

num sum result

subnum subsum

(b) Recursive sum of squares

num sum

subnum subsum subresult subnum subsum

(c) Iterative sum of squared evens (d) Recursive sum of squared evens

Figure 4.6: (Part I) Sample tiles from some linear recursive computations.

134

4.1. LINEAR ,SHAPES

num prev

135

result

subnum subprev subresult

(e) Iterative list of squares

num

sub

sum result

inum subsum subresult

(g) Iterative even/odd

Figure 4.6: (Part II) Sample tiles from

subnum sublist

(f) Recursive list of squares

num sum

subnum subsum

(h) Recursive even/odd

some linear recursive computations.

num list

zei~ if
I e]

DOWN UP,-:-$.~................,....., ..~~~~~~~~~I Ift

CHAPTER 4. COMPUTATIONAL SHAPE

1 and n. Tiles (c) and (d) calculate the sum of the squares of the even integers between

1 and n. Tiles (e) and (f) list the squares of the integers between 1 and n. Tiles (g) and

(h) calculate the nth term of the even-odd sequence eo defined as follows:

eoo = 0

1 + eoil if i > 0, eoi_l even
eoi = {

2eoil if i > 0, eoi-1 odd

In each case, the tile is the computational unit repeated by the corresponding loop or

recursion. For now, issues of initialization (how arguments for the top-level call are specified)

and finalization (what is done with the results from the top-level call) will be ignored.

4.1.4 An Operational Model

Building intuitions about tiles and shards requires some understanding of how their compu-

tational innards work. The precise details concerning the interpretation of computational

elements like those pictured in Figure 4.6 won't be spelled out until the exposition of the

EDGAR model in Chapter 8. For now, assume that computation proceeds in a demand-

driven fashion as follows:

* (Computation within in a tile is initiated by the request of its results. The computation

returns only when values are available for all results.

* A requested operator node (e.g. zero?, -+, set-cdr!) requests all of its subnodes,

which are then evaluated concurrently. When values for all subnodes are available,

the operator is performed (computes a result).

* A requested if node first requests the value of its test subnode. When the test value

is available, the if is performed by rerouting the request for its value to either its then

subnode or its else subnode, as appropriate.

* A requested seqn node first requests the value of its left subnode. When the left value

becomes available the seqn is performed by rerouting the request for its value to its

right subnode. (The value of the left subnode is ignored).

136

4.1. LINEAR SHAPES

A request for a subresult produced by a subcall first propagates requests to all of the

subargument nodes, which are then evaluated concurrently. Subcall initiation occurs

only after all subresults have been requested and all subargument values are available;

i.e., the subcall is strict in all of its arguments. At this point, the subresult requests

are allowed to propagate across the subcall boundary to the computation of the tile

below.

Based on the above operational model in mind, here are some observations about the

sample tiles in Figure 4.6:

* The demanid-driven handling of conditionals accounts for the control arm of the down

shard. Any ifs that appear in this arm are performed before the subcall, so they

belong in the down shard. (I assume that an if is always performed in the same shard

as the operation that determines its test value.) The name "control arm" derives from

the fact that these conditionals control the rest of the tile's computation. An if can

appear outside the control arm when its test is determined by an up operation, as in

tile (h).

* The operator nodes and subcall boundary represent only potential computation, not

actual computation. For example, when the upper-left if in any of the sample tiles

tests true, the subcall and most of the tile nodes are not performed.

* The up shard may be a trivial computation that contains wires but no operations

(e.g., tiles (a), (c), (e), and (g)). This signifies a tail-recursive tile computation.

Intuitively, a tail-recursive tile never returns any results because there is no up com-

putation to be performed. Instead, requests for the results of a tail-recursive tile are

simplly rerouted to become requests for the subresults.

* Some tiles (e.g., tile (d)) have both trivial and non-trivial paths through an up shard.

I call such tiles conditionally tail-recursive. Since the tail-recursive property must be

known before subcall initiation, any condition on which tail-recursion depends must

be tested in the down shard.

137

CHAPTER 4. COMPUTATIONAL SHAPE

* The square operations in tiles (b), (d), and (f) are across operations because they

must be performed during the tile computation but can be performed before, during,

or after the subcall. In contrast, the corresponding square operations in tiles (a), (c),

and (e) are down operations because subargument evaluation requires their results.

I)ue to such dependencies, tail-recursive tiles cannot have an across shard. Across

shards that are empty or trivial (i.e., only wires) are simply omitted from tile diagrams.

* In tile (g), the seqn node serves to control the order of the side-effects performed

by the set-cdr! operator. The value returned by the tile doesn't actually matter

because the finalizer for the tile (not shown) is responsible for maintaining a pointer

to the result.

4.1.5 Linear Tile Shapes

It is useful to characterize tiles according to their shards. In the case of linear tiles, the

main distinguishing feature is whether or not the up and across shards are trivial. A tile

with trivial up and across shards will be said to have a down shape because it consists of

only a down component. A computation with a non-trivial up component will be said to

have an up shape. For now, "down shape" and "up shape" can be treated as synonyms for

"tail-recursive" and "non-tail-recursive". But we will soon encounter other computational

patterns that extend the shape notion beyond tail-recursion.

4.1.6 Linear Computations

Individual tiles are stacked together to represent a whole computation. For now, I will only

consider computations that can be expressed by replicating the same tile throughout the

linear trellis of Figure 4.1. This defines the class of unitilable computations.

For example, a recursive sum-of-squares computation on 3 would be constructed out

of four instances of tile (b) from Figure 4.6 (three for the non-zero cases, and one for the

zero case). Operationally, we can imagine that new tiles are dynamically appended to the

bottom of a stack only when a subcall is initiated.

A terminating computation uses only a finite number of tiles. Some computations,

however, conceptually require an infinite number of tiles. For example, a sum-of-squares

138

4.1. LINEAR SHAPES

computation on a negative input would require unlimited instances of tile (b) because the

zero? test would never be true. Some tiles can only generate infinite computations; for

example, both tiles in Figure 4.7 give rise to computations that are guaranteed never to

return, regardless of their inputs.

input count result input count
V A

1+ :

,DOWN ,

sub- sub- sub- sub- sub-
input count result input count

Figure 4.7: Two tiles that generate infinite computations regardless of input.

A particular computation can be classified according to the timing relationships induced

among all the call events that occur during the computation. Figure 4.8 shows some timing

configurations for linear computations. Each pair of circles represents the initiation (I) and

return (R) events for a single call boundary. A solid directed line from event A to event

B indicates that A must happen before B. It is also assumed that every initiation event

must occur before its paired return event. A dotted line connecting two events indicates

that they occur simultaneously; this is used to represent tail-recursion.

The configurations in the Figure differ in the relationships among the return events.

All returns in configuration (a) occur at the same time, indicating that all of its calls

are tail-recursive. In contrast, in configuration (c), every subcall return occurs before the

corresponding call return; this means that no calls are tail-recursive. Configuration (b)

exhibits both tail-recursive and non-tail-recursive calls.

The timing diagrams suggest that the computation performed within a linear trellis can

naturally be divided into down and up phases. In the down phase, the down shards of the

tiles are performed in a top to bottom order. In the up phase, the stack of pending up shards

are performed in bottom to top order. Across operations may happen at any time (subject

to data dependencies) between the point where the down phase enters the tile computation

--- ---- -------1

.qOWNj L 6PJ

l

r-

I
I
I

I

L..

I

, L

...... 1

II

I

UP., L...
.L I , A

139

CHAPTER 4. COMPUTATIONAL SHAPE

I R

I R

I R

I R

DOWN SHAPE

I R _IR

UP SHAPE

UP SHAPE

Figure 4.8: Three possible tilning configurations for a linear computation.

and the point where the up phase leaves it.

If all the tiles in a linear computation prove to be tail-recursive, the up phase will be

trivial (i.e., will perform no operations). In this case, the entire linear computation is a

pure iteration and is said to have a linear down shape. If a linear computation has one or

more tiles that turns out not be tail-recursive, then it exhibits some stack-pushing behavior

and is said to have a linear up shape.

These computational shapes are dynamic properties of running computations. In con-

trast, the tile shapes defined earlier are static properties of tile structure. The shape of a

tile gives a conservative approximation of the shape of a computation generated by that tile.

A tile with down shape necessarily generates a computation with down shape. However, a

tile with up shape doesn't necessarily generate an up-shaped computation. For example,

a conditionally tail-recursive tile has up shape, but for some inputs may generate iterative

computations. In fact, there are up-shaped tiles that always generate down-shaped compu-

tations; Figure 4.9 gives one such example. Nevertheless, in practice, tile shape tends to be

a good predictor computation shape.

DOWN
PHASE

_ZR

5s

UP
PHfS

SS

140

4.1. LINEAR SHAPES

input
l

ne:

answer
A

subinput
A

I 'U'
subanswer

Figure 4.9: A tile with up shape that always generates a computation with down shape.
Because the result of pred is tested by both if nodes, the then branch of the lower if node
can never be taken.

|~~~~~~~~~~~~

I

141

red i

DOWN.......

; --2
II

1.
--------- I-------

r lc
I ...

:I

-- -

142 CHAPTER 4. (COMPUTATIONAL SHAPE

4.1.7 Wrinkles

Deadlock

There are a few extra issues to discuss before leaving linear shapes. First is the issue of

computational fate. So far, we have studied computations that terminate with a result and

computations that don't terminate. There is a third possibility: computations that get

stuck. Figure 4.10 depicts a tile that generates such a computation. The problem is that op

input answer

Figure 4.10: A tile that gives rise to a comutation that deadlocks.

requires the subresult value in order to compute the subargument value. But the subresult

value is not available until the subcall returns, and the subcall cannot be initiated until the

subargument is available. This cyclic dependency halts the computation dead in its tracks;

the resulting state is called deadlock. Deadlock will play an important role in the lock step

processing model develop ed in Chapter 5.

As with computational shape, it is often possible to predict whether or not a computation

will deadlock based on the structure of its generating tile. An operation that can be classified

in both the down and up components of a tile (like op in the example) is a leading candidate

for causing deadlock. But, like most interesting properties, deadlock is uncomputable in
for causing deadlock. But, like most interesting properties, deadlock is uncomputable in

4.1. LINEAR SHAPES

general. As an added complication, it turns out that in the presence of non-strict operators,

not all cyclic dependencies result in deadlock. I will return to these issues later.

Multiple Potential Subcalls

Second, it is worth mentioning that not all tile diagrams are as tidy as the ones in Fig-

ure 4.6. For example, consider a tile (Figure 4.11) that models the following exponentiation

procedure:

(define (fast-exptre¢ base power)

(if (zero? power)
1

(if (even? power)

(square (fast-exptrec base (/ power 2)))
(* base (fast-exptrec base (- power 1))))))

A different power argument is computed in each of the branches determined by the even?

test. So there are two potential subcalls, at most one of which can be taken. This is

represented in the tile diagram by two subcall boundaries with an OR separator. This is an

ad hoc and awkward way of "sharing" several subcalls along the subcall boundary lines. This

situation could be improved by decomposing the conditional into split and join operations

(e.g., see [I)en751) that would enable the tile to share a single subcall boundary among

several potential calls. However, this "problem" is purely an issue of visual presentation;

in terms of the computational model, all that matters is that a tile computation make at

most one subcall.

Initialization and Finalization

Third, the notion that many recursive computations can be constructed by replicating

a single tile ignores important issues of initialization and finalization. For example, the

down-shaped tiles (a), (c), and (e) from Figure 4.6 nowhere specify that the initial suim

accumulation value should be 0. Similarly, the cdr-bashing list accumulation tile ((g)) does

not spell out; the important details of how to start and finish the computation. For these

purposes, I will assume the existence of unreplicated interface tiles that sit between trellis

tiles and the rest of a computation. Figure 4.12 illustrates interface tiles for the summation

and cdr-bashing examples.

143

COMP UTATIONAL SHAPE

power base result

V V i UDL LL IJVUULL.1 OUD Lj;tLL

Figure 4.11: A tile with two potential subcalls, at most one of which can be initiated.

result

num prev result

(b) Interface tile for the cdr-bashing tile.

Figure 4.12: Interface tiles to a summation iteration and a cdr-bashing copying routine.

num

initial initial final
num sum result

(a) Interface tile for iterative summing tiles.

144 CHAPTER 4.

4.2. TREE SHAPES

More Complex Recursion Patterns

Finally, I have only described a very narrow range of linear recursions - namely those that

can be represented by the replication of a single tile. More complex linear computations,

like mutual recursions and nested loops, can have structures that are composed out of

several different kinds of tiles (see Figure 4.13). For now, I will continue to ignore these

complexities and stick to the simple unitilable case. Nevertheless, the sliver technique based

on this theory of shape will be able to handle more complex patterns of recursion.

4.2 Tree Shapes

The shape concepts developed for linear computations generalize to tree-structured com-

p-utations. For simplicity, I will only consider binary computation trees for now. However,

the concepts developed here can be extended to more general computation trees in which

the branching factor is a non-uniforml function of each tree node.

4.2.1 Binary Tiles

Figure 4.14 depicts a binary trellis that shows the structure of a simple recursive tree

computation populated with instances of the binary tile labelled T. The interface to a

binary tile is shown in Figure 4.15. The chief difference between binary tiles and linear tiles

is that a binary tile may make up to two subcalls whereas a linear tile can make at most

one. This leads to an interface with left and right subcall boundaries. The AND separator

in Figure 4.15 indicates that both subcalls may be initiated. In contrast, the OR separator

mentioned in the previous section indicates that at most one subcall may be initiated.

Associated with the computation of a binary tile are initiation and return events for

the call boundary and each of the two subcall boundaries. These six events exhibit the

branching time partial order illustrated in Figure 4.16.

4.2.2 Binary Orientation

Since an operation has a down, across, or up orientation with respect to each of the two

subcall boundaries, there are nine distinct orientations for a binary tile operator. These are

145

COMP UTATIONAL SHAPE

(a)

B
B-

MEEE ar

(b)

Figure 4.13: Some linear trellises constructed from two tiles. (a) is intended to suggest
mutual recursion between A and B, while (b) is intended to suggest an inner loop of Bs
nested within an outer loop of As.

lB
MINE-i m

146 (;'HAPTER 4.

4.2. TREE SHAPES

Figure 4.14: Trellis that depicts the structure of a simple tree recursion.

ARGUMENTS

,&-
RESULTS

CALL BOUNDARY

BINARY TILE

LEFT SUBCALL BOUNDARY AI RIGHT SUBCALL BOUNDARY

LEFT
SUBARGUMENTS

LEFT
SUBRESULTS

RIGHT
SUBARGUMENTS

RIGHT
SUBRESUL TS

Figure 4.15: The interface to a binary tile.

T T
T T T T

TI T T IT I T T IT TT T
T T I T I TIT I IlT IT T ITI T I TIT IT ITITI

-T,1,- -1I III

147

Am Mt

CHAPTER 4. COMPUTATIONAL SHAPE

Time

Figure 4.16: Time ordering of binary tile events.

enumerated in table 4.1. Distinguishing nine orientations may seem like overkill, but we will

see that it provides us with a terse vocabulary for describing some important operational

traits.

Figure 4.17 graphically summarizes the timling constraints for the nine binary orien-

tations. The down-both orientation involves three events because an operation with this

orientation must occur after call initiation but before both subcall initiations. The up-both

orientation is similar in this regard. In contrast, the down-left orientation involves only two

events. This indicates that a down-left operation not only must occur before initiation of

the left subcall, but also must be unordered with respect to the right subcall. Otherwise it

would be classified as down-both or between-RL. Similar remarks hold for the down-right,

up-left, and up-right orientations. The binary across orientation has the same meaning as

the linear one; an across operation can be performed at any point within the duration of

the tile computation.

Sometimes it is convenient to use a less detailed vocabulary for talking about binary

orientations. Here are a few helpful abstractions:

* between-LR and between-RL will be classified as between orientations.

* down-both, down-left, and down-right will be classified as down orientations.

1483

.. :)

4.2. TREE SHAPES

Left Subcall Right Subcall Binary
Orientation Orientation Orientation
down down down-both
down across down-left
down up between-RL
across down down-right
across across across
across up up-left
up down between-LR
up across up-right
up up up-both

Table 4.1: The nine orientations of an operation within a binary tile computation.

Figure 4.17: Tining constraints that define the orientation of an operation within in a
binary tile. The two-headed down-both and two-tailed up-both arrows indicate constraints
that involve three events.

149

CHAPTER 4. COMPUTATIONAL SHAPE

* up-both, up-left, and up-right will be classified as up orientations.

Down and up for tree orientations can be viewed as generalizing their meaning for linear

orientations. Context will distinguish whether linear or tree orientations are intended.

4.2.3 Binary Shards

As in a linear tile, the operations within a binary tile can be partitioned into shards according

to their orientation. Different possibilities for dataflow between the two subcall boundaries

lead to three patterns for binary tile computations (Figure 4.18):

1. A parallel tile allows no dataflow between subcalls. Due to the concurrency inherent

in the computational model sketched earlier, the subcalls can be evaluated in parallel.

2. A left-to-right tile allows the right subargumlents to depend on the left subresults. Due

to the strictness of a subcall boundary, this means that the left subcall must return

before the right subcall is initiated.

3. A right-to-left tile is symmetric with the left-to-right one.

The fourth possibility, a mutually dependent tile in which the left and right subcalls depend

on each other, is disallowed because the cyclic dependencies would lead to deadlock.2 The

left-to-right and right-to-left tiles are classified as sequential tiles because they force one

subcall to return before the other is initiated.

Note that each of the three patterns in Figure 4.18 is necessarily missing several shards.

The between-LR and between-RL shards are mutually exclusive because they imply that the

subcalls happen in different orders. Clearly, no tile can contain both of these shards; and a

parallel tile, whose subcalls must be unordered, can contain neither of them. A left-to-right

tile invariably forces every operation that happens before the left subcall to also happen

before the right subcall as well. In this case, a down-left shard is impossible because its

2I am assuming here that all operations performed in a tile computation are themselves strict. In the
presence of lazy operators, cyclic dependencies are not only possible but often desirable (e.g., see [Bir84],
[Joh87]). Later, I will introduce a form of laziness that, if used indiscriminantly, would invalidate the
claims made about the impossibility of mutually dependent tiles and the execution order of sequential tiles.
However, I will carefully restrict laziness in order to preserve these claims.

150

4.2. TREE SHAPES

(a) Parallel Tile

(b) Left-to-right Tile

ARGUMENTS RESULTS I

(c) Right-to-left Tile

Figure 4.18: Three general shard patterns for a binary tile computation.

ARGUMENTS
RESULTS

ARGUMENTS RESULTS

I J

151

ARGUMENTS RESULTS

CHAPTER 4. COMPUTATIONAL SHAPE

operations would have to be unordered with respect to the right subcall; an up-right shard

can similarly be discounted. Symmetric remarks hold for the right-to-left tile.

Some sample binary tiles appear in Figure 4.19. All of them share a generating fragment

(consisting of the doubler 2* and the incrementer 1+) that creates a "virtual" binary tree

of a given size in which each non-leaf node is numbered with its position in a left-to-right

breadth-first traversal. I will call this a breadth index tree (see Figure 4.20).

The breadth index tree is virtual in the sense that it never exists as a bona fide data

structure; rather, its elements are created and used by the tree-structured computation.

Tile (a) is a parallel accumulator that collects the virtual tree elements into a tree-shaped

data structure in which every node is represented as a list of its element and its left and right

subtrees; nil represents the empty subtree. Tile (b) ((c), (d)) collects a list of elements

visited during a left-to-right pre-order (in-order, post-order) walk of the virtual tree. 3

Several shards in the tile patterns of Figure 4.18 have control arms. In general, a control

arm can be exhibited by any shard that must occur before some subcall - i.e., down-both,

down-left, down-right, between-LR, and between-RL shards. For example, Figure 4.21

shows a tile with a control arm on both the down-both and between-LR shards. These allow

the accumulation to terminate on entry to the call as well as between the two subcalls. A

subtle constraint is that while down-left and down-right shards may have control arms in a

parallel tile, they may not have control arms in a sequential tile.

4.2.4 Binary Tile Shapes

It is helpful to give names to special cases of the binary tile patterns introduced above. As

in the linear case, these will be called shapes. A listing of important binary shapes appears

in table 4.2.

Binary up tiles are a generalization of linear up tiles. These are tiles that simply combine

the results of two independent subcalls; Figure 4.19(a) is an example. Binary down tiles

3 Note that because cons builds the list from the end, the resulting list contains the elements in reverse
left-to-right pre-order. A left-to-right pre-order list of tree elements can be generated by cons-accumulating
elements in a right-to-left post-order walk of the tree. Alternately, the cdr-bashing strategy can be used to
collect the list in pre-order during a pre-order walk. Similar remarks hold for the in-order and post-order
cases.

152

4.2. TREE SHAPES

num limit

out

tree
out

out

(a) A tile collecting the elements of a virtual tree into a tree-shaped data structure.

list
in

list
outnum limit

IISI num limit IisI IISI num limit IiST
in out in out

(b) A tile collecting a list of elements during a pre-order walk over a virtual tree.

Figure 4.19: (Part I) Sample binary tiles.

153

(COMP UTATIONAL SHAPE

list
in

list
outnum limit

list num limit list list
in out in

num limit list
out

(c) A tile collecting a list of elements during a in-order walk over a virtual tree.

list
in num limit

list num limit list list num limit liSt
in out in out

(d) A tile collecting a list of elements during a post-order walk over a virtual tree.

Figure 4.19: (Part II) Sample binary tiles.

..........t D W N- .BOTH.................................

list
out

(HAPTER 4.154

4.2. TREE SHAPES

Figure 4.20: A breadth index tree with six elements.

Shape J] Binary Pattern Restrictions

binary down parallel up-both, up-left and up-right trivial
binary up parallel up-both non-trivial
LR pre left-to-right between-LR and up-both trivial
LR in left-to-right between-LR non-trivial and up-both trivial
LR post left-to-right up-both non-trivial
RL pre right-to-left between-RL and up-right trivial
RL in right-to-left between-RL non-trivial and up-both trivial
LR post right-to-left up-both non-trivial

Table 4.2: Shapes of binary tiles.

155

(CHAPTER 4. COMPUTATIONAL SHAPE

sum

in tree out in tree out

Figure 4.21: A tile in which both the down-both and between-LR shards have control arms.
The leaf? operator tests for an elementless leaf node; the elt, left, and right operators
return, respectively, the element, left subtree, and right subtree of a non-leaf node. If all
the tree elements are non-negative, the tile generates a computation that returns their sum.
However, if some of the elements are negative, the tile generates a computation that returns
the first negative element encountered in a left-to-right pre-order traversal of the tree.

156

4.2. TREE SHA PES

are more difficult to exhibit, and I postpone them for the moment.

In a pre tile, all operations are performed before the first subcall. An in tile allows

operations between the two calls, while a post tile permits operations after the second call.

Tiles (b), (c), and (d) in Figure 4.19 are examples, respectively, of pre, in, and post tiles.

The shape names were chosen to reflect the kind of tree walk implied by the computations.

Since the walks can be performed in either a left-to-right or right-to-left direction, the shape

names are parameterized by this direction.

The sequential shapes can be ordered by specifity as follows:

pre < in < post

The shapes are defined so that every sequential tile has a unique most specific shape. These

extend the simple down < up ordering for linear tiles. In fact, note that both pre and in

tiles are effectively tail-recursive in the second subcall.

Binary tile shapes essentially specify the dependencies between different parts of a tree

computation. In this respect, they resemble attribute grammars, a declarative formalism

in which programs can be specified in terms of the information dependencies between the

nodes of a grammar-induced tree [DJL88]. (See Section 3.3.3 for a discussion of attribute

grammars.)

4.2.5 Binary Down Tiles and Non-strictness

We now return to the notion of binary down tiles. These are tiles whose up-both, up-left

and up-right shards are all trivial. But using the simple operations introduced so far, it

is impossible to construct a binary tile with these properties! Intuitively, the only way to

propagate requests to both of the subcalls is through a binary operator. But all the binary

operators seen so far would have to be placed in the up-both shard because they cannot be

peformed until their input values are available.

This problem can be circumvented by introducing a special binary node, fork2. A

fork2 node responds to a request by propagating requests to its two subnodes and then

immediately returning the boolean true value (#t) without waiting for a result from either

subnode. The tile in Figure 4.22 shows a simple use of fork2 to print the elements of a

157

CHAPTER 4. COMPUTATIONAL SHAPE

tree. The seqn forces a node's element to be printed before any elements in either of its

tree done

sub- done sub- done
tree tree

Figure 4.22: A tile with binary down shape that prints the elements of a tree. The print
operator prints its input and then returns #t. Seqn forces a node's element to be printed
before any element in its subtrees. Fork2 returns after initiating both subcalls without
waiting for their results.

subtrees. The fork2 initiates the printing (in parallel) of the left and right subtrees.

Fork2's strategy of evaluating arguments in parallel with returning a result is called

eager evaluation. Eager evaluation is an example of a non-strict evaluation strategy, so

called because the operator is performed before its arguments are completely evaluated.

Another form of non-strictness is lazy evaluation, in which argument evaluation is suspended

until it is required. The lazy data technique introduced in Section 3.1.5 is an example of

the lazy evaluation strategy.

The non-strict behavior of fork2 can change the timing constraints among the call and

subcalls. A call to the tree-printing tile may return at any time with respect to the initiation

158

4.2. TREE SHAPES

or return of the subcalls (see Figure 4.23). This implies that tree elements may continue to

print after the top-level call to the tree-printing tile has returned!

Time

Figure 4.23: The use of the non-strict fork2 operator changes the timing diagram for the
events in a binary tile.

The ability of a non-strict computation to return before completing its computation is a

powerful feature for expressing parallelism and speculative computation (see [Tra88, Hal85,

Mil87]). Indeed, we will see in (Chapter 7 that non-strictness is an essential technique for

modularizing computations. However, because it can change timing relationships among

calls and other operations, non-strictness complicates reasoning about programs (e.g., see

[HA87]). For example, consider a sequential tile in which a non-strict operator links the

result of one subcall to the argument of the other subcall. Then it is no longer true that

the first subcall must return before the initiation of the second subcall! Due to these kinds

of complications, I restrict the use of non-strict operators. Except for if and seqn (which

are non-problematic instances of non-strict operators), I will assume that tile computations

do not contain any non-strict operators.

4.2.6 Binary Computations

Under the unitilable assumption, a binary computation can be generated by dynamically

replicating a binary tile throughout a binary trellis. As in the linear case, the resulting

159

CHAPTER 4. COMPUTATIONAL SHAPE

computations can be classified by computational shape - i.e., according to the timing

relationships induced on their call events.

Figure 4.24 shows the three canonical shape configurations for a computation generated

by a left-to-right sequential tile. These differ according to which events must happen si-

multaneously. Strings of events connected by dotted lines indicate paths along which no

computation is allowed; all the events on the path occur at the same time. In a preshaped

computation, every return must be connected by such a path to either an initiation event

for a right subcall or the return even of the top-level call. A computation with in shape

additionally forces at least one left subcall return to precede a right subcall initiation, while

a post-shaped computation is characterized by a subcall return that precedes a call return.

I)ue to the conditional nature of tiles, a post tile might actually generate any of the three

computational shapes. However, a pre tile necessarily generates only pre computations,

while an in tile can may generate only in and pre computations.

Two possible parallel shapes are illustrated in Figure 4.25. These are distinguished by

the relationships among the return events. In a binary down computation, all return events

are totally unconstrained with respect to each other, while in a binary up computation,

some subcall returns are required to precede the return of the corresponding call. Note

that the assumption that tiles do not contain non-strict operators effectively eliminates the

binary down shape for tiles. However, by judicious use of non-strictness, it is possible to

design computations having this shape.

Unlike linear computations, binary computations do not decompose nicely into single

down and up phases. In the sequential case, after a computation walks down one branch

of the event tree, it must generally walk back up the branch in order to get to the next

branch. In the parallel case, the concurrent evaluation of subcalls means that down-both

operations in one branch may be interleaved with up-both operations in another branch.

The timing diagrams in Figures 4.24 and 4.25 underscore the difference between sequen-

tial and parallel computations. At the coarse-grained resolution of the timing diagrams,

sequential shapes constrain time to follow a single path through the computation. 4 Because

4A finer-grained analysis of individual operations might expose local branching of time. For example,
an across operation in a call can be interleaved with any operations in both subcalls. The timing diagrams
supress this level of detail.

160

4.2. TREE SHAPES

(a) Computation having pre shape.

(b) Computation having in shape.

(c) (Computation having post shape.

Figure 4.24: The timing configurations for sequential computations exhibit a single-threaded
structure.

161

CHAPTER 4. C(OMPUTATIONAL SHAPE

(a) Computation having binary down shape.

(b) Computation having binary up shape.

Figure 4.25: The timing configurations for parallel computations exhibit a multi-threaded
structure.

162

.4.2. TREE SHAPES

such a computation effectively has a single locus of control, it is said to be single-threaded.

Since the branching time nature of parallel computations permits multiple loci of control,

they are said to be multi-threaded.

While the potential for evaluating subcalls in parallel makes multi-threaded computa-

tions attractive candidates for execution on parallel hardware, I will not explore this avenue.

Instead, I will focus on fundamental behavioral issues that arise from the branching time

nature of multi-threading. In particular, I will be concerned with the following two issues:

1. Non-Determinism7: In the presence of side-effects, multi-threaded computations may

be non-deterministic. Different interleavings of mlutation operators can give rise to

different results. Various atomicity and synchronization techniques (e.g., [Bir89b,

[)ij68, Bar92]) may be required to appropriately constrain behavior.

2. ,Storage Requiremenlts: Multi-threaded computations have the potential for consuming

much more storage than single-threaded ones. Since a single-threaded computation

populates atl most one branch of a binary trellis at any time, the space consumed

by a single-threaded computation is linear in the depth of the trellis. In contrast, a

worst-case mlulti-threaded computation can populate the entire trellis at once - this

leads to space exponential in the depth of the trellis. This problem c(an be addressed

by dynamic strategies (e.g., [BL93]) or by giving the programmer fine-grained control

over parallelism (e.g., [GM84]).

Although they permit parallelism, multi-threaded computations do not require it. It

is always possible to sequentialize a multi-threaded computation by adding additional con-

straints that one subcall return before another initiates. For example, many languages

require procedural arguments to be evaluated in a particular order even when they have no

side-effects. I will eschew these spurious constraints and only pay attention to constraints

explicity specified by the programmer.

4.2.7 Discussion

Although we have only studied binary tree computations, the notions developed here gener-

alize to tree colputations where the branching factor can be node-dependent. In the more

163

164 CHAPTER 4. COMPUTATIONAL SHAPE

general setting, binary down and binary up shapes become parallel down and parallel up

shapes. Sequential shapes need to be extended to handle the fact that any permutation of

the subcalls defines a possible sequential ordering. Except for the new orderings, pre and

post shapes remain essentially unchanged. However, in shapes must be extended to express

the fact that an in operation may happen between any pair of subcalls consistent with a

given sequential walk.

Dropping the unitilable assumption would also greatly increase the number of computa-

tions that can be expressed. Then it would be possible for a single in tile, say, to have pre,

post, and binary up tiles for its subcalls. However, for reasons of simplicity, I will stick to

the unitilable assumption for tree computations throughout the remainder of this report.

Chapter 5

Synchronized Lazy Aggregates

In Chapter 3, we saw how existing techniques for programming in the signal processing

style exhibit tensions between modularity and control. This chapter introduces a new

technique, synchronized lazy aggregates, that relaxes some of these tensions. This technique

makes concrete the notion, first presented in Chapter 2, that slivers are slices through a

monolithic recursive computation.

5.1 A Lock Step Processing Model

Synchronized lazy aggregates are based on a model of processing in which slivers compute

in a lock step manner to simulate the behavior of monolithic recursive procedure. Here I

present a brief motivation for and overview of the lock step model. The rest of the chapter

fleshes out the details of how lock step processing can be achieved.

The lock step model is designed to satisfy two important goals:

1. Operational faithfulness: A sliver network as a whole should simulate the operation

scheduling and space behavior of a monolithic computation. A mechanism may use

additional operations and storage for management purposes as long as it maintains

the monolithic computation's order of growth in space and time.

2. Reusability: The slivers should share a standard interface so that they can be recom-

bined in a mix-and-Imatch way to model a wide range of computations.

165

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

We begin by considering the following question: Why is it so difficult to model the storage

behavior and operation scheduling of a monolithic procedure using exisiting SPS techniques?

To answer this question, we first need to see how operational control is achieved in monolithic

procedures. Then we can investigate what goes wrong in the modular case. Finally, based

on our analysis, we can propose a fix.

5.1.1 Strict Calls Provide Control

The desirable operational properties of monolithic recursive procedures are due to strict

procedure calls. Strictness means that all argument values must be computed before the

procedure is applied. Every strict call defines a barriers that clearly delineates the operations

that must be performed before the application from the operations that must be performed

after the application. For instance, in the monolithic versions of mean-age (see Chapter 2),

strictness guarantees that each iteration of the loop will read the next record from the

database, add the age of the current record to the running sum, and increment the running

length. The operations of the next iteration cannot be performed until all the operations

of the current one have been completed. In this way, strictness effectively manages the

interleaving of operations from separate idioms.

In contrast, non-strict strategies (lazy and eager evaluation) decouple the time-based

ordering of the argument computations from the time of the procedure application (see

[HA87]). While non-strictness is a powerful and useful language feature ([Hug90O, Tra88,

Hal85, Mil87]), the lack of effective barriers thwarts efforts to reason about operational

details like storage requirements and operation order. For example, both lazy and eager

strategies give rise to insidious space leaks and introduce new complexities in programs with

side-effects.

It is important to note that non-tail calls define two barriers. The down barrier is the

barrier described above that delineates argument computation from the computation of the

procedure body. The up barrier delineates the computation of the procedure body from

the computation that uses the results of the call. In the tile diagrams of Chapter 4, a call

boundary represents both the down and up barriers.

Up barriers can constrain the order of operations performed in the up phase of a com-

166

5.1. A LOCK STEP PROCESSING MODEL

putation. For example, consider the following procedure:

(define (sum&list-squares lst)
(if (null? lst)

(list O '())

(mlet ((sq (square (car st)))

((sum sqrs) (sum&list-squares (cdr lst))))

(list (+ sq sum) (cons sq sqrs)))))

(Given an input list, the procedure returns two results (packaged as a list): (1) the sum of

the squares of the numbers in the input list and (2) a list of the squares of the numbers in

the inputs list. I the down phase of a computation generated by sum&list-squares, each

call is preceded by one occurrence each of null?, car, cdr, and square. In the up phase

of the computation, each return is preceded by one occurrence each of list 1 , cons, and +.

Here the up barrier of the recursive call forces the list collection and summation idioms to

proceed in lock step.

5.1.2 Distributing Strict Calls Loses Control

The main problem with decomposing a monolithic procedure into slivers is that this elimli-

nates the barriers that provide control. (Consider Figure 5.1, which depicts the computations

associated with a monolithic program and the associated sliver program. Each dotted hor-

izontal line represents a call boundary. The decomposition process splits each monolithic

call boundary into one boundary for each sliver (the labels emphasize which boundaries

match up).

The control supplied by the monolithic call are lost when it is distributed over the slivers.

Whereas the down and up barrier of the monolithic call forces the idioms to work in lock

step, the corresponding barriers of the slivers are only loosely coupled. Modulo dataflow

dependencies, nothing prevents one sliver from racing ahead of its neighbors. For example,

sliver S1 may cross the down barriers of A, B, C, and D before S2 has even crossed A. The

lack of a shared barrier results in two problems:

I. Unsynchronized Operations: In the sliver computation, the corresponding operations

of different idioms are no longer guaranteed to be synchronized. It is no longer possible

to rely on properties that depend on the synchronized order.

'In actuality, list performs some conses, but we'll treat it as a primitive for now.

167

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

---------------------- --------------------

D-..................... a
I......................

S4

MONOLITHIC
COMPUTATION

S7

------ "It ------

..... a ----- I

I.----- - ----..... Z--- ..--- . 1--..-- ----.--- .

168

-- ..&--- -------A------

- -----a-----I

-------A------

S 2 S 3

%.I,·D---

------A

I......D-----·

.......A

..... fe l,,

....D ...

------A -----I

....a

......c

...... ------

...... A

......

-VI

S 6

S 9

.......

I------D-----

..... A ...

S 5

==

w

S8

SLIVER
COMPUTATION

Figfure 5.1: Decomposing a mnonolithic computation into a network of slivers.

5.1. A LOCK STEP PROCESSING MODEL

2. Buffering of Intermediate Results: If a producing sliver races ahead of a consuming

sliver, then the values produced by the producing sliver must be buffered somewhere

until the consuming sliver consumes them. This buffering requires storage beyond

that inherently implied by the computation.

In practice, the problem of buffering is far more serious than whether operations are syn-

c(hronized. But the two problems are closely related. If the operations are not synchronized

appropriately, then buffering will be required.

The space of possible operation schedules (i.e., orderings of operations) that are con-

sistent with the sliver computation are generally much larger than the schedules consistent

with the monolithic computation. Each of the SPS techniques studied in Chapter 3 picks a

particular schedule from this larger set. For example, a strict aggregate approach chooses to

perform all operations in one sliver before moving on to another one. None of the techniques

is guaranteed to pick a schedule that is consistent with the monolithic computation. While

the concurrent approaches (e.g., the concurrent channel technique and Hughes's par/synch

technique) may pick a monolithic schedule, they are not guaranteed to.2

5.1.3 Simulating Strict Calls Regains Control

Intuitively, the lock step processing model guarantees desirable behavior for a sliver network

by gluing the corresponding call boundaries of the slivers together so that they simulate

the call boundaries of the monolithic call. Each sliver call boundary locally provides down

and up barriers for the operations performed within the sliver. If the corresponding call

boundaries were aligned so that all calls occurred at the same time and all returns occurred

at the same time, then the sliver network would be forced to follow an operation schedule

consistent with the monolithic computation. This approach clearly solves the problem of

unsynchronized operations; and as long as the gluing process itself does not consume an

unreasonable amount of storage, it solves the unwanted buffering problem as well.

An important wrinkle on the gluing idea concerns the handling of tail calls. Some of

the sliver call boundaries may locally be tail calls. We want to guarantee that the gluing

2 It's still possible to guarantee good space behavior without following one of the monolithic schedules.

169

(0CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

process does not force a sliver to push stack when there is no pending work to be done. In

particular, if all the corresponding call boundaries are tail calls, we want to guarantee that

the entire network effectively performs a monolithic tail call. This behavior makes it possible

to compose iterative computations out of iterative slivers, and has desirable consequences

for general tree-recursive computations as well.

The notion of gluing together the corresponding call boundaries of networked slivers is

very simple. The hard part is designing a mechanism that accomplishes it. We can argue

from first principles the important properties that such a mechanism must possess:

* Concurrency: As Hughes has shown, any sequential evaluation strategy is insufficient

for achieving desired space behavior in certain networks with fan-out [Hug83, Hug84].

The lock step model requires that the slivers are somehow executing concurrently.

* Syntchronization: (oncurrency allows the desired behavior but it doesn't necessarily

guarantee it. Some form of synchronization is required to get the effect of gluing

the call boundaries together. This form of synchronization must be more stringent

than the synchronization associated with the other concurrent techniques we have

studied. For the sliver computation diagram in Figure 5.1, for instance, both Hughes's

technique and the concurrent channel technique allow sliver ,SK to be at the call labelled

D while S9 is at the call labelled A. The lock step model requires that no sliver can

reach a call labelled B until all have passed through the call labelled A.

* Non-strictness: To simulate demand-driven evaluation in a monolithic computation,

the lock step model requires that the values produced by a sliver are not computed

unless they are actually needed by the consuming sliver. This implies that the model

supports some form of laziness.

5.1.4 Lock Step Components

The lock step processing model is fine for simulating a single monolithic recursive procedure.

But a typical computation is specified by many monolithic procedures. It is not appropriate

for the slivers corresponding to one procedure to be acting in lock step with the slivers from

another procedure. To deal with this situation, the model assumes that the slivers of a

170

5.1. A LOCK STEP PROCESSING MODEL

computation are partitioned into lock step components, where each lock step component

consists of slivers that are intended to proceed in lock step.

Lock step components can be wired together to yield a loosely coupled network of tightly

coupled parts. Such a network is depicted in Figure 5.2. The figure contains four lock step

colllponents, which are denoted by dotted outlines. Each component consists of slivers

that are connected by thick cables, while the components themselves are connected by thin

wires. Henceforth, a cable connecting two slivers shall be taken as a declaration that they

are in the same lock step component. All other communication is accomplished by wires.

As indicated by the figure, non-sliver computational devices (X, Y, and Z) may be attached

to the wires.

5.1.5 The Details

The remaining sections of this chapter describe the details by which the lock step model

outlined above can be achieved. The presentation consists of the following parts:

* Sliver Decomposition: Based on the ideas introduced in Chapter 4, this section de-

scribes how to decompose a monolithic computation into a network of slivers.

* The Structure of ,5ynchronized Lazy Aggregates: This section motivates the require-

ments for a data structure that supports the lock step processing model. Most illpor-

tantly, it introduces a novel synchronization technology, the synchron, that permits

call boundaries to be glued together.

* Slivers Revisited: Synchronized lazy aggregates provide the raw materials for gluing

call boundaries together, but the slivers are responsible for hooking everything up in

the right way. This section describes the details of the gluing process.

* Filtering: One of the trickiest aspects of synchronized lazy aggregates is handling

filtering. This section explains how it's done.

171

CHAPTER 5. SYNC(HRONIZED LAZY AGGREGATES

Figure 5.2: A network consisting of four lock step components. Slivers connected by thick
cables form a lock step component. Lock step components are connected by thin wires.

172

I I
le--

5.2. SLIVER DECOMPOSITION 173

5.2 Sliver Decomposition

(hapter 2 introduced sliver decomposition as a way of decomposing monolithic computa-

tions into slivers. Here, I use the shape concepts developed in (chapter 4 to describe sliver

lecomlllposition more precisely. As in Chapter 4, I will limit the discussion to unitilable

monolithic recursions.

Without the synchronization supplied by synchronized lazy aggregates, it will not be

possible to guarantee lock step behavior for the result of the decomposition. This section

describes the first in a series of approximations to the final model.

5.2.1 Linear Subtiles

Figure 5.3 suggests a simple strategy for decomposing a unitilable monolithic computation

into slivers: break the tile for the monolithic computation into communicating fragments

called subtiles, and then replicate each subtile to reflect the structure of the monolithic

complutation. Although the figure shows a linear computation whose slivers communicate

"rl-nmemIJ/

T
-

-- off-

A
14_
-Wamftft

B
B

C
C -

, 1'-

D>

D
L- .C C_,

Figure 5.3: A simple strategy for sliver decomposition. If a tile (T) can be decomposed
into communicating subtiles (A, B, C, and D), then the computation corresponding to the
replicated tiles can be decomposed into the slivers corresponding to the replicated subtiles.

�1�1 1*

--O

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

in a straight line, the strategy applies to tree computations and sliver networks that exhibit

fan-in and fan-out.

A subtile is a generalization of a tile that can communicate horizontally with other

subtiles in addition to communicating vertically with copies of itself (see Figure 5.4). The

ARGUMENTS
I

RESULTS
A,|

CONSUMPTS

L

SUBARGUMENTS

(a) Linear
SUBRESUL TS

subtile.

ARGUMENTS RESULTS

CONSUMPTS PRODUC

LEFT LEFT RIGHT RIGHT
SUBARGUMENTS SUBRESULTS SUBARGUMENTS SUBRESULTS

(b) Binary subtile.

Figure 5.4: Subtile interfaces.

horizontal inputs are called consumpts and the horizontal outputs are called products. As

indicated by Figure 5.3, each subtile instance within a trellis can communicate horizontally

only with instances of other subtiles at the same trellis location. A tile can be viewed as

special kind of subtile whose consumpts and products are both empty.

Figure 5.5 illustrates a first cut at using this strategy to modularize the recursive sum-of-

squared-evens tile from Figure 4.6. The tile is decomposed into four subtiles that correspond

LINEAR SUBTILE .---PRODUCTS

ITS

m II

174

_ . ._

5.2. SLIVER DECOMPOSITION

num

175

sum

subnum subsum

DECOMPOSE

L!.T..._L=lr

TERMINATION

PRESENCE

Fl FARIT

FILTER-EVEN MAP-SQUARE

Figure 5.5: A naive decomposition of the sum-of-squared-evens tile into four subtiles.

TERMINA TION

F FMFINT

TERMINA TION

PRESENCE

Fl FM:AAIT

-+
TO-1

A,

UP-+

0 >
O

X,
II

UP

| 1 ? n - _~_~_ ~ __

. ___.,._. . . 4-ar I I
m

,
"""" Y "'" " ."-""'''

IW I I

_ _

-1

r

+eri:

d.. L

� """" '

-. L

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

to common programming idioms:

1. TO-1 generates a sequence of integers from a given integer down to 1 (inclusive).

2. FILTER-EVEN is a sequence filter that passes only the even numbers from its input to

its output.

3. MAP-SQUARES squares each of the elements in the input sequence.

4. UP-+ performs a recursive sum accumulation on a sequence.

The subtiles communicate information horizontally via three classes of wires:

1. Termination wires transmit a boolean that indicates whether or not the end of the

sequence has been reached.

2. Presence wires transmit a boolean that indicates whether the associated element has

been passed by a filter.

3. Element wires transmit the current element of the sequence.

Unfortunately, the decomposition depicted in Figure 5.5 suffers from two very important

problems:

1. Non-standard interfaces: Reusability is hindered because the components don't all

share the same interface. In particular, some subtiles handle presence wires, while

others do not. For instance, FILTER-EVEN produces a presence wire even though

it does not consume one. Two such filters cannot be cascaded - a disaster for

composability. Naive decompositions for other tiles presented earlier can easily lead

to subtiles in which some of the three wires are absent or duplicated.

2. Inadequate control: Operational faithfulness is threatened by the inadequate specifi-

cation of when subtile operations or subcalls are performed. For example, the simple

operational rules outlined previously dictate that, within the tile, the -1+ is performed

only after the subresult has been requested. However, in the decomposed version, dif-

ferent subtiles have different subcall boundaries. How does the TO-1 tile know when

176

5.2. SLIVER DECOMPOSITION

to perform -1+? Similarly, the MAP-SQUARE subtile does not explicitly specify that

the square operation is performed only on even integers; yet this is clear in the tile.

And none of TO-i, FILTER-EVEN, and MAP-SQUARE indicate wheln a subcall should be

initiated. Since slivers are supposed to mimic the operational behavior of a monolithic

comllputation, this underspecification of control is disconcerting.

The improved tile decomposition in Figure 5.6 addresses some of these concerns. First,

all of the subtiles share a standard interface in which each sequence element is represented

by a triple of termination, presence, and element wires. The presence wire is manipulated

byv all subtiles in a composable way: the generator initializes the presence wire to a true

value (#t); the filter combines it with local filtering information; the mapper passes it along

untouched; and the accumulator uses it to control accumulation. The subtiles also maintain

the invariant that when the presence wire carries the false value, the element wire carries

a distinguished gap value (written #g). The gap value indicates a position in the sequence

where an element has been filtered out.

Second, control details are much more explicit in the subtiles of Figure 5.6 than those

of Figure 5.5. Each subtile has its own copy of the termination control assembly from the

tile's control arm. The generator, filter, and mapper are all assumed to ultimately return

the boolean truth value (#t) just so that the request for this value can be used as a means

of specifying local control. For example, the -1+ operation in the TO-1 tile will only be

performed after its local subresult has been requested. The fact that MAP-SQUARE's square

operation is guarded by a test of the presence wire is another example of control being made

explicit.

The more sophisticated decomposition still leaves some important control problems un-

solved. The subcall boundary of the whole tile effectively synchronizes all subresult requests

with all subargumlent evaluations. When the subcall boundary is distributed across subtiles,

one sliver can easily race ahead of another. For example, nothing prevents the sophisticated

TO-1 sliver from merrily generating all the numbers in the sequence before any of the other

slivers have processed the first one. This would imply the need for storage buffers between

the components, which is exactly the kind of behavior the lock step model is supposed to

avoid. We will see shortly how synchronized lazy aggregates solve this problem. Until then,

177

SYNCHRONIZED LAZY AGGREGATES

num sum

subnum subsui

DECOMPOSE

m

TO-1 FILTER-EVEN MAP-SQUARE UP-+

Figure 5.6: A sophisticated decomposition of the sum-of-squared-evens tile into four subtiles.

178 CHAPTER 5.

5.2. SLIVER DECOMPOSITION

we will assume that connected slivers magically compute in a synchronous manner.

Another drawback of the sophisticated decomposition is that the four subtiles obviously

do more total work than the single tile. Some examples:

* The termination test is performed once by the tile, but four times by the subtiles.

* Manipulating presence wires in a standard way requires extra if and and operations.

* The communication and synchronization between subtiles (introduced later) will un-

doubtedly require additional overhead as well.

It is possible that executing the slivers on multiple physical processors could reduce these

overheads. But this is unlikely3 and, more relevant, unimportant. Most any attempt to

provide standard interface within a given system is bound to result in overheads. These

are often justified by a significant gain in simplicity. The kinds of overhead enumerated

above can I)e insignificant when compared to the mental overhead of having to express

computations in a non-modular way. The real benefit of sliver decompositions is that they

suggest new ways of analyzing and synthesizing computations.

A wide range of useful subtiles can be designed with the standard three-wire-per-element

interface introduced above. Figure 5.7 illustrates some more linear subtiles. Subtile (a) is

an iterative accumulator; if the UP-+ subtile of Figure 5.6 were replaced by an instance

of this down accumulator, the network would correspond to an iterative sum-of-squared

evens rather than a recursive one. Subtiles (b) and (c) are scanners that emit as products

the intermediate accumulated values in a down or up accumulation. 4 Note that a scanner

product is always present even if the corresponding consumpt was not present. Subtile (d)

is a truncater that terminates a sequence as soon as pred is true of an element; the (short-

circuit) and prevents pred from being applied to a gap. Subtile (e) is a shifter that moves

non-gap elements down to the next non-gap rung in a linear trellis. Subtile (f) maps a

'3Since the slivers do so little computation between communication and synchronization events, parallel
execution of slivers is likely to offer few practical performance benefits.

4 There are two very different meanings of "scan" in the literature on the signal processing style of
programming. In the data parallel literature, "scan" refers to a partial accumulator [Ble90, Sab88, GJSO92].
In Waters's series package, though, "scan" refers to a kind of generator [Wat90O]. I adopt the former meaning
here.

179

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

(a) DOWN-ACCUMULTE (b) DOWN-SCAN (c) UP-SCAN

(d) TRUNCATE (e) SHIFT (f) MAP2

Figure 5.7: A gallery of linear subtiles.

180

5.2. SLIVER DECOMPOSITION

finction fun over the elements of two consumpts to give a single product. The termination

wires of MAP2 are joined with an or so that the product terminates as soon as one of the

input terminates. The presence wires of MAP2 are joined with and so that the product is

only present (i.e., the function is only applied) if both consumpts are present.

The visual complexity of subtile diagrams has limited this discussion to very simple

sliver networks. Examples of more complex networks specified in a textual form appear in

C, hapter 6.

5.2.2 Binary Subtiles

The kinds of subtile decompositions introduced above extend naturally to tree-shaped coIm-

putations. Figure 5.8 shows some sample binary subtiles. As in the linear case, each tree

node is represented by a triple of termination, presence, and element wires. Conceptually,

the BREADTH-INDEX generator (subtile (a)) can be combined pairwise with the four accumu-

lating subtiles ((c) - (f)) to yield the tiles in Figure 4.19. Accumulating the squares of the

elements of a breadth index tree could be accomplished by inserting the BINARY-MAP-SQUARE

tile between generator and accumulator.

Perhaps the biggest surprise in Figure 5.8 is the presence of the non-strict fork2 node

in both BREADTH-INDEX and BINARY-MAP-SQUARE. Neither of these subtiles naturally accu-

mulates any meaningful value. The duty of the done port in both cases is not to return a

value but to propagate requests to the subcalls. In order to maintain the essential parallel,

non-accumulating character of these subtiles, it is imperative to propagate requests in a

way that both (1) does not specify the order of the subcalls and (2) does not leave behind a

pending operation. to be performed. Single-threading the request through the two subcalls

would satisfy (2) but not (1). On the other hand, the eager, parallel behavior of fork2 fits

the bill perfectly. So while we will not permit whole tiles to use fork2, we will use fork2

in a restricted way to represent subtiles with a binary down character. 5

The only other surprise is COLLECT-TREE's treatment of gaps. Note that the presence

wire is never checked! When performing a parallel up accumulation on a tree with gaps,

'(:onceptually, when subtiles are glued together to form tiles, there will necessarily be some subtile with
an accumulation component that renders the fork2s unnecessary. So no tile composed out of subtiles requires
a fork2.

181

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

list out

IIsL

out out

(a) BREADTH-INDEX

list
in

list
out

(b) BINARY-MAP-SQUARE

list
in

list
out

(c) COLLECT-TREE

list
in

list
out

(d) BINARY-PRE-CONS (e) BINARY-IN-CONS (f) BINARY-POST-CONS

Figure 5.8: Sample binary subtiles.

182

5.2. SLIVER DECOMPOSITION

it is generally necessary to specify two accumulators: one for the case where the current

element is present, and one for the case where it is not. COLLECT-TREE makes the sim-

plifying assumption that it's alright to include a gap value in the returned tree. But if a

sum accumulation were being performed instead, the innards of the sliver would be mlore

colmplex.

5.2.3 Subtile Shapes

Subtiles can be classified by a notion of shape similar to that for tiles. As with tiles, the

operations of subtiles can naturally be partitioned into shards according to their relationship

with subcall initiation and return. For example, such shards are labelled in the subtiles of

Figures 5.6 - 5.8.6

The subtile shards stand out from tile shards in several ways:

* In Figure 5.6, the down shards of FILTER-EVEN, MAP-SQUARE, and UP-+ consist purely

of control arms. In contrast, the down shards from all the linear tile examples pre-

sented thus far have all been connected to the subcall boundary via a subargument

wire. Similar remarks hold for the down-both shards of BINARY-MAP-SQUARE and

COLLECT-TREE in Figure 5.8.

* Subtiles can have a shape different from that of the tile from which they are derived.

For example, the TO-1 subtile in Figure 5.6 has a fundamentally down shape even

though the tile as a whole has an up shape. This captures the intuition that the

generator fragment of the tile works in a fundamentally iterative way. Similarly, the

BREADTH-INDEX subtile in Figure 5.8 has a fundamentally binary down shape even

though none of the tiles in Figure 4.19 (page 154) has binary down shape.

* I)ue to horizontal communication, subtiles support patterns that are not possible for

whole tiles. For example, FILTER-EVEN and MAP-SQUARE in Figure 5.6 each has non-

trivial down and across shards but a trivial up shard. This pattern is not possible

in a tile because the results of the across shard would necessarily be consumed by

6For simplicity, trivial shards have been omitted in these and subsequent figures.

183

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

a non-trivial up shard. In subtiles, an across shard can find an alternate outlet as

subtile products. We shall use the term across shape to refer to a linear subtile that

consists only of an across shard in addition to a simple termination-controlling down

shard. Similarly, BINARY-MAP-SQUARE will be said to have a binary across shape.

Except for the across shapes mentioned above, subtile shapes are determined in a manner

similar to tile shapes. For example, the shape definitions in Table 4.2 (page 155) hold for

binary shapes.

An interesting feature of across subtiles is that their operational behavior is context

dependent. Consider the three different uses of the MAP-SQUARE subtile in Figure 5.9:

1. In network (a), MAP-SQUARE feeds a down accumulator that forces the squaring oper-

ation to be performed before subcall initiation.

2. In network (b), MAP-SQUARE's position between a down generator and an up accumu-

lator leaves the squaring operation unconstrained with respect to the subcall.

3. In network (c), MAP-SQUARE is wedged between an up scanner and an up accumulator,

which force the squaring operation to occur after the subcall returns. 7

These examples illustrate that an across subtile operation does not necessarily act like an

across operation in a network of subtiles; its behavioral fate is determined by the surround-

ing context. In contrast, down and up subtile operations are unaffected by context. So

while cascading two linear subtiles always yields another linear subtile, it may require the

relabelling of across shards.

5.2.4 Sliver Computations

Just as replicating a tile throughout a trellis gives rise to a monolithic computation, repli-

cating a subtile throughout a trellis conceptually generates a sliver computation. Like

monolithic computations, sliver computations have a dynamic shape property determined

by the time structure of their call events.

7There is actually a nasty technical problem lurking in network (c) that will be discussed in Section 5.5.

184

5.2. SLIVER DECOMPOSITION

MAP-SQUARE DOWN-+

(a) MAP-SQUARE's across shard forced down.

TO-1 MAP-SQUARE UP-+

(b) MAP-SQUARE's across shard unconstrained.

UP-SCAN MAP-SQUARE UP-+

(c) MAP-SQUARE's across shard forced up.

Figure 5.9: Exampl)les
subtile.

showing the context-dependent nature of across operations within a

185

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

I)ue to consumpts and products, sliver computations within the same lock step compo-

nent can be viewed as consuming and producing horizontally transmitted values. Because

of the demand driven nature of the components out of which they are built, no product is

computed unless it is actually needed by a consuming sliver. Thus, this version of the sliver

decomposition technique is operationally faithful in this detail.

5.2.5 Subtile Compatibility

While subtiles share a standard interface, not all combinations of subtiles make sense. First

of all, there are some obvious structural constraints:

* Connected subtiles must have the same number of subcalls. It doesn't make sense to

mix linear and binary subtiles.8

* Connections are only allowed between result/argument ports and between product/consumpt

ports. It is illegal to wire a result port to a consumpt port or a product port to an

argument port.

A product/consumpt connection is only legal if the termination/presence/element

ports are correspondingly wired. That is, a triple of termination, presence, and ele-

ient ports is treated as a single connection point.

All of these are local constraints that can be simply checked between any pair of subtiles.

More subtly, there are some important non-local constraints. Consider the subtile net-

work in Figure 5.10, in which an up-multiplying scanner feeds an down-summing accumula-

tor through a square mapper. According to the operational model, the + must be performed

before subcall initiation in DOWN-+, and the * can only be performed after subcall return

in UP-*. But the subcall boundaries of connected slivers are conceptually glued together

to form a single boundary. So the shaded path indicates a dependency circularity in the

subtile network that will cause deadlock in any computation based on this network. This

circularity is non-local because it cannot be discovered by considering any connected pair

of subtiles.

8 Actually, this isn't quite true. It is possible to imagine subtiles that "convert" between linear and tree
slivers.

186

5.2. SLIVER DECOMPOSITION

UP-SCAN MAP-SQUARE DOWN-+

Figure 5.10: This network of subtiles is non-sensical because the corresponding tile is guar-
anteed to deadlock.

Another way to view the deadlock problem of Figure 5.10 is in terms of up and down

phases. Recall that every unitilable linear computation has a single down phase followed

(optionally) by a single up phase. The problem with any computation based on the sample

network is that it attempts to force a second down phase to occur after the up phase.

Intuitively, this cannot be done in a single recursive pass; it requires two recursive passes

communicating via an aggregate data structure. By design, lock step components model

only computations with one recursive pass, so no single subtile network can represent the

intended computation. (However, it is possible to encode the computation as two lock step

components.)

There are two basic approaches for detecting deadlock within a subtile network:

I. D)ylamic deadlock detection: In a dynamic approach, deadlock is only detected during

the execution of the computation generated by a subtile network. Deadlock is detected

by the execution engine when no progress can be made on a computation that has

not terminated.

187

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

2. Static deadlock detection: In a static approach, a subtile network is analyzed for

potential deadlocks before it is executed. Deadlock is detected by the analyzer when

it discovers a potential dependency circularity.

These approaches exhibit the classic tradeoffs found in other dynamic/static dichotomies

(e.g. dynamic vs. static type-checking). Static deadlock detection is helpful for finding log-

ical errors as early as possible. However, it requires the conceptual overhead of developing

a theory of deadlock and inventing a sound deadlock detection algorithm. Moreover, dead-

lock is an undecidable property (see below), so any sound static deadlock analysis will

conservatively ascribe deadlock to some deadlock-free computations.

In contrast, dynamic deadlock detection offers simplicity and expressibility. The existing

operational model is already powerful enough to detect deadlock. And by delaying deadlock

detection as long as possible, the dynamic approach finds no spurious deadlocks. On the

other hand, this approach provides no guarantees that a program is deadlock-free. And

while a system can provide debugging information on a deadlocked state, it can be difficult

to trace the deadlock back to its source.

Since shapes encode dependency information, it should be possible to develop a form of

static deadlock detection based on subtile shapes. For example, in the case of linear subtiles,

we expect that an up tile feeding a down tile can cause deadlock, but we know that it is

always safe for a down subtile to feed another down subtile. Similarly, with binary subtiles,

we expect that left-to-right and right-to-left subtiles never mix (because this would imply

incompatible traversals of the computation tree). However, binary down subtiles should be

able to precede any binary subtile, while binary up subtiles should be able to follow any

binary subtile. We shall refer to this shape-based approach for deadlock detection as shape

checking, in analogy to type checking.

Although the possibility of shape checking is alluring, I have not yet developed an elegant

formulation for it. While the combination rules mentioned in the previous paragraph are

helpful heuristics, the notion of subtile shape defined earlier is too coarse for handling the

nuances of deadlock in a reasonable way. Presumably, something more like the circularity

detection analysis of attribute grammars [DJL88] is required here, but I will not explore

this avenue. For simplicity, I will assume dynamic deadlock detection throughout the rest

188

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES

of this document.

I conclude this section with the sketch of a proof that deadlock is undecidable. Consider

the simple computation diagram sketched in Figure 5.11. It contains a single-argument

procedure F, not (the boolean negation operator), and two copies of an EITHER-SCAN-+

sliver. The EITHER-SCAN-+ sliver is designed to behave like DOWN-SCAN-+ if its argument is

Figure 5.11: A network used to illustrate the undecidability of deadlock detection.

true, but behaves like UP-SCAN-+ if its argument is false. Assuming that F is deadlock-free,

the network can only exhibit a deadlock when the output of F is false. So the question

of whether the network exhibits deadlock is reducible to the question of whether a given

procedure is identically true for all inputs. The latter is obviously undecidable in general.

5.3 The Structure of Synchronized Lazy Aggregates

Subtiles are an abstract solution to the problem of partitioning a monolithic recursive

complutation into reusable fragments. There are many concrete questions they do not

address:

* How is the computational pattern specified by a subtile replicated to generate a sliver

comlputation?

* How are the products of one subtile communicated as consumpts to another subtile?

189

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

* What synchronization mechanism glues the corresponding call boundaries of con-

nected subtiles together?

All of these issues are resolved by synchronized lazy aggregates (abbreviated as slags) a novel

class of lazy data structures that carry explicit synchronization information:

* Since it represents a fragment of a monolithic recursive procedure, a sliver is naturally

implemented as a recursive procedure that manipulates slags. The usual recursion

mechanism accounts for subtile replication.

* As an aggregate data structure, a slag is well-equipped to communicate termination,

presence, and element information from one sliver to another. The lazy nature of slags

guarantees that communication happens in a demand-driven manner that faithfully

models the operational behavior of a corresponding monolithic procedure.

* The synchronization information carried by a slag manages the lock step computation

of connected slivers. Every sliver that abides by the rules of a synchronization contract

is guaranteed not to race ahead or lag behind its compatriots.

5.3.1 Overview

We know from (Chapter 3 that aggregate data is an elegant and easy-to-use technique for

communicating values between sliver-like program components. We will adapt the technique

to solve the problem of gluing together the corresponding call boundaries of all the slivers

in a lock step component. The call boundaries influence the aggregate data approach in

two fundamental ways:

1. Synchronization: In order for slivers to engage in lock step processing, the aggregate

data structures connecting them must transmit some sort of synchronization tokens

that represent the down and up barriers of the desired composite call boundary. I will

call these tokens synchrons.

2. Laziness: Elements computed above a call boundary will have to be successfully

communicated between slivers before elements below the call boundary have been

190

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES

computed. This means that an aggregate connecting two slivers is generally only

partially determined at a given point in time. A form of laziness will be used to

represent the time-unfolding nature of the aggregate.

We will use the term synchronized lazy aggregate (abbreviated slag), to refer to an aggregate

structure that addresses these two issues. Slags are a particular implementation of the cables

that appear in sliver diagrams.

Intuitively, a slag is a data structure that represents the values of a program variable

over time. Waters uses the term temporal abstraction [Wat78] to refer to this notion. In

fact, his series data structure [Wat90, Wat91] is a particular instance of the more general

synchronized lazy aggregates. Whereas a series represents the successive values of the state

variable of a loop, synchronized lazy aggregates can represent the conceptual tree of values

taken on by an ilentifier within an arbitrary recursive procedure. Another way to say this

is that series corresponds to a register while synchronized lazy aggregates correspond to a

register plus a stack.

Slags can fruitfully be viewed as a hybrid between lazy aggregates and synchronous com-

munication channels for concurrent processes. Like lazy aggregates, slags are compound,

Ipotentially tree-shaped, data structures whose parts are not computed until they are re-

quired. Like synchronous communication channels, slags synchronize separate threads of

control and manage inter-process storage resources. (However, unlike many other synchro-

nization models (e.g. [Hoa85, Mil89]), slags decouple communication and synchronization.)

5.3.2 Synquences and Syndrites

For simplicity, we will focus on two particular kinds of slags: sytlquences and syndrites. A

synquence (synchronized sequence) is a synchronized lazy list while a syndrite (synchronized

dendrite) is a synchronized lazy tree. Synquences represent the cables between linear sliv-

ers, while syndrites represent the cables between tree-shaped slivers. While trees generally

subsume lists as a special case, we distinguish the two structures because synchronized lists

have important properties that not shared by synchronized trees. In particular, synchro-

nized lists permit forms of iteration and filtering that are not supported by synchronized

trees.

191

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

Intuitively, a synquence is a linear chain of value-bearing nodes linked together by point-

ers annotated with synchronization information. Figure 5.12 compares the structure of a

traditional list to the structure of a synquence. In a traditional list (a), the component

values (2, 3, and 5) hang off of a chain of skeletal nodes consisting of three pairs and a nil.

The synquence structure (b) is similar, except that each pointer to a skeletal node in (a)

has been replaced by a compound structure holding onto two synchrons: a down synchron

representing the down barrier of a call boundary, and an up synchron representing the up

barrier of a call boundary. Structure (c) is an abbreviation of the synquence (b) that

emphasizes how the synchronization information has essentially annotated the pointers of

the list structure. A barrion stands for the pair of down and up synchrons.

A pointer annotated with a barrion will be called a synchronized pointer, or synter for

short. The term "synquence" refers not to a skeletal node, but to a synter that points

to a skeletal node. Synters only connect the skeletal nodes that form the backbone of

the aggregate; component values hanging off of the backbone are held by unannotated

pointers. A valueless nil node terminates a finite synquence; an unterminated synquence

is conceptually infinite in length.

In a synquence, the structure between two synters encodes the information in one triple

of termination, presence, and element wires. The termination boolean is represented by

whether or not the skeletal node is nil. The presence boolean and element are assumed to

be encoded in the value held by a non-nil node.

The structure of syndrites is similar to the structure of synquences (see Figure 5.13).

The two main differences are:

1. Syndrite nodes are connected by synters to multiple children rather than just one.

2. A finite branch of a syndrite is terminated by a leaf node that has a value but zero

children. In contrast, the nil node terminating a synquence carries no value.

At first glance, representing leaves by value-bearing nodes may seem at odds with the

termination/presence/element model. However, experience suggests that in a large percent-

age of tree-shaped computations, subtiles transmit/receive elements when the corresponding

termination boolean is true. The essence of termination in tree computations is not a value-

192

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES

(a) (b) (c)

Figure 5.12: (Conlparison of list structure and synquence structure. (a) is a list of three
elements. (b) is a synquence of three elements. (c) is an abbreviation of synquence (b).

DOWN UP

193

SYNCHRONIZED LAZY AGGREGATES

'r n....

Figure 5.13: Structure of a sample syndrite.

194 CHAPTER 5.

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES

less node, but a childless node. Trees with null leaves (like the one pictured in Figure 4.20)

are represented as syndrites whose leaves carry null or gap values (Figure 5.14(a)). The

common case of trees with valued leaves but valueless internal nodes is handled by syndrites

with gaps at the non-leaf nodes (Figure 5.14(b)).

(a) A tree with valueless leaves. (b) A tree with valueless internal nodes.

Figure 5.14: Using gaps (#g) to represent valueless nodes.

5.3.3 Synchrons

A synchron is an entity that represents the down or up barrier of a call boundary. It is

the fundamental mechanism by which slivers synchronize with each other to achieve lock

step processing. We assume that synchrons are propagated in such a way that all slivers

in the same lock step component share access to the same synchron for the same call or

return event. For example, Figure 5.15 indicates the sharing of synchrons (represented by

barrions) in a simple sliver network. We shall see shortly how this sharing is achieved.

Right now we concentrate on what must be true of the synchrons themselves.

Synchrons support the following operations:

* Create makes a new synchron from scratch. This operation is invoked by generating

slivers when constructing a slag.

* Unifty glues two synchrons together so that they become the same synchron. Slivers

with fan-in invoke this operation on the corresponding synchrons of their inputs. This

195

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

Figure 5.15: Barrion sharing in a simple linear computation. Two intermediate synquences
share the same synchrons, permitting all four slivers to synchronize with each other.

196

5.3. THE STRUUC(TURE OF SYNCHRONIZED LAZY AGGREGATES

guarantees that synchrons generated independently in different parts of the same lock

step component will eventually come to denote the same barrier.

* Wait is called by a sliver on a synchron when it is ready to participate in a rendezvous

with all the other slivers in the network. The rendezvous occurs when all the slivers

in a lock step component have called wait on a shared synchron. It is only possible

to rendezvous once at a given synchron. The details of how a rendezvous is deter-

mined are rather subtle; they are expanded on in Chapter 7 and formally described

in Chapter 8.

* Precede declares that the rendezvous at one synchron must occur before the ren-

dezvous at another synchron. It turns out that this operation is necessary to ensure

that up synchrons rendezvous in the proper order in the presence of filtering.

5.3.4 Slag Dynamics

The slag diagrams in Figures 5.12, 5.13, and 5.15 are somewhat misleading because they

don't accurately portray the time-dependent nature of slags. For example, in Figure 5.15,

neither synquence ever exists as a complete entity at any point in time. Instead, a synquence

grows downward only as new elements are demanded; meanwhile, it shrinks from above

because slivers eagerly drop references to skeletal nodes as soon as they can. In fact, at

most one skeletal node of a synquence actually exists at any point in time! 9

Figure 5.16 presents a selected sequence of snapshots that illustrate how the synquences

from Figure 5.15 actually unfold over time. The dotted boxes containing question marks

replresent suspended synquence computations that do not resume until after a rendezvous

has taken place on the down synchron of the barrion. The snapshots indicate how the lazy

nature of slags leads to a constant storage requirement for this example.

Suppose we modify the two accumulators from the previous example to have up shape

rather than down shape. Figure 5.17 shows a snapshot of the modified computation when it

first reaches the end of the list. Even though the intermediate synquences have disappeared,

9(larification: By "exists" I mean "is accessible". I assume throughout that inaccessible structures that
will be reclaimed by the garbage collector do not count towards the space consumed by a computation.

197

(CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

(7,)

(

(

(

Figure 5.16: A "movie" showing how syinquences unfold over time.

Ii i

198

(V

(/

(_

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES

UP-+
SLIVER

UP-*
SLIVER

Figure 5.17: A snapshot illustrating how parts of a synquence can be stacked by slivers.

199

CHAPTER 5. SYN(HRONIZED LAZY AGGREGATES

each of the accumulating slivers maintains its own stack of values and up synchrons. This

means that the modified computation requires space linear in the length of the list argument.

The up synchrons shared by the stack couple the remaining + and * operations so that they

will be performed in lock step as the stacks are popped.

(C:onmputations involving syndrites are trickier to analyze. In computations that corre-

spond to sequential tiles, a syndrite at any point in time is unfolded only along the branch

currently being explored; branches previously explored have disappeared and those not yet

explored are suspended. For computations that correspond to parallel tiles, a syndrite may

in the worst case be completely unfolded. Although undesirable, this accurately models the

space consumption of a monolithic tree-parallel computation. The storage requirements in

this case can be greatly reduced by sequentializing the parallel computation.

5.4 Slivers Revisited

5.4.1 Sliver Classification

Slivers are just slag-manipulation procedures that observe some important local structural

and behavioral constraints (described later). The slags consumed and produced by a sliver

correspond a subtile's consumpts and products; the non-slag inputs and outputs of a sliver

correspond to a subtiles arguments and results. To maintain these distinctions, we will

say that a sliver consumes input slags, produces output slags, takes arguments, and returns

results.

Slivers are classified into three categories according to how they manipulate slags:

1. Generators. A generator is a sliver that consumes no slags but produces one or

more slags. Sample generators include a sliver that produces a synquence of integers

between two limits and a sliver that converts a tree into a syndrite. Generators are

responsible for creating fresh synchrons for the slags that they produce.

2. Transducers. A transducer is a sliver that both consumes and produces slags. A

transducer with multiple slag inputs must unify the corresponding synchrons of its

inputs and use the unified synchrons in its outputs. Colmmlon transducers include:

200

5.4. SLIVERS REVISITED

* Mappers that apply a function elementwise to a slag.

* Filters that selectively replace slag elements by gaps. (We will see below that,

due to technicalities, filters cannot simply be represented as mappers.)

* Scanne(-rs that produce output slags containing the intermediate values of an

accumulation over inputs slags.

* Truncaters that produce potentially truncated versions of their input slags.

3. Reducers. A reducer is a sliver that consumes input slags but returns results instead

of producing output slags. Reducers include accumulators that accumulate a value

from a slag and selectors that select an element from a slag. For instance: a sliver

that sums the elements of a synquence, a sliver that collects syndrite elements into a

tree, and a sliver that returns the last element of a synquence.

5.4.2 Sliver Requirements

Not every procedure that manipulates slags has what it takes to be a sliver. In order to be

a sliver, a slag-manipulation procedure must observe some important local structural and

behavioral requirements. Here we describe the requirements and discuss the behavior that

that they engender.

A sliver can be viewed as a fragment of a monolithic recursive procedure in which every

access to the next slag (via a synter) coincides with a recursive procedure call. We will

associate each recursive call in a sliver with the down and up synchrons annotating the

current consumpt and product slags.

Every sliver must obey the following requirements:

1. Synchron propagation. A sliver must ensure that all of its output slags use the same

synchrons (in the same order) as any of its input slags (as in Figure 5.15). This

guarantees that all slivers in a lock step component share the same synchrons. If

a sliver has no input slags, it generates fresh synchrons that are then shared by its

output slags. If a sliver has multiple input slags (which may have been produced by

independent generators) it uses the synchron unify operation to combine the input

synchrons into a single output synchron.

201

(CHAPTER 5. SYNC(HRONIZED LAZY AGGREGATES

2. Down synchronization. As a part of making a local recursive call, a sliver must

wait for a rendezvous at the down synchron with all the other slivers in the lock step

component. This rendezvous simulates the down barrier of a monolithic recursive call.

After the rendezvous, the slivers compute independently (modulo data dependencies)

until the next rendezvous.

3. Up synchroinization. If a sliver returns from a local recursive call, then it must wait for

a rendezvous at the up synchron with all the other slivers that return from their calls.

This rendezvous simulates the up barrier of a monolithic recursive call. However, a

sliver that makes a tail-recursive call never returns, so it will not rendezvous with

the other slivers. Thus, a lock step component of linear slivers only exhibits stacking

behavior when at least one of its slivers has up shape. When all the slivers have

down shape, the entire lock step component acts as an iterative computation. In this

important case, slivers behave like the series procedures in Waters's series package.

But slivers also preserve the shape aspects of tree computations as well. For example,

a sequential tree computation built only out of slivers with pre shape has the tail-

recursive characteristics of a pre-order accumulation (see Figure 4.24 on page 4.24).

4. Lazy elements. The demand-driven nature of the underlying computational model

implies that an element wire does not transmit a value unless it is requested. In

other words, while the call boundaries of subtiles are strict, the side-to-side prod-

uct/consumpt boundaries are non-strict. Operational faithfulness dictates that slivers

must delay the computation of every slag element so that the element value is never

computed if it is never requested.

5. Aggressive reference dropping. In order to preserve expected storage behavior, slivers

must aggressively drop references to slags, as well as to the values and synchrons

held by slags, when they can no longer be referenced. For example, if a sliver only

requires one component of a slag, it must extract that component as soon as possible

so that the other components become inaccessible (and therefore garbarge-collectible).

Aggressive extraction is required not only for preserving desirable space requirements,

but also for avoiding spurious deadlock (see the deadlock discussion in Chapter 7).

202

.5.4. SLIVERS REVISITED

6. Appropriate treatment of gaps. Due to the presence of filters, a sliver may sometimes

discover a gap - a token indicating that the element at the given position has been

filtered out. The sliver must handle the gap in a reasonable way. The conventions for

handling gaps will be discussed in Section 5.5.2.

In practice, it is challenging to write procedures that embody all of the sliver require-

ments listed above. The sources of difficulty will be discussed in Chapter 7. However, it

is possible to express a wide range of common sliver patterns as instances of a handful of

carefully written sliver templates. The SYNAPSE language described in Chapter 6 is an

example of this approach.

Note that the sliver requirements do not include any rule that corresponds to the uniti-

lable assumption invoked in the discussion of tiles and subtiles. This assumption was made

purely to simplify the presentation. As long as slivers obey the above requirements, nothing

prevents them from being implemented in terms of nested loops or mutual recursions.

A rendezvous between slivers resembles interprocess synchronization in many models of

concurrent processes (e.g., [Hoa85, Mil89, CM90]). However, there are several aspects that

distinguish sliver synchronization from these other models.

* With slivers. communication and synchronization are decoupled. C(:ommunication is

achieved by referencing a data structure, while synchronization is achieved by applying

wait to a synchron. This approach contrasts with models in which every communica-

tion event synchronizes sender and receiver.

* Slivers engage in a multiway rendezvous that involves all the slivers in a lock step coI1-

ponent. Most synchronous communication models support only a two-way rendezvous.

While (CSP [Hoa85] supports a multiway rendezvous, it is limited to communication

between a single sender and multiple receivers.

* Since slags carry both down and up synchrons, slivers can naturally express computa-

tions (including tree-shaped ones) that can rendezvous upon return from a call return

as well as initiaion of the call. This contrasts with the linear iterative nature of many

concurrent process models.

203

C0HAPTER 5. SYNCHRONIZED LAZY AGGREGATES

5.4.3 Sliver Dynamics

The synchronization requirements obeyed by slivers constrains them to work together in a

way that mimics the behavior of a monolithic procedure. As a simple example, consider an

iterative list-averaging program expresssed as a sliver network:

Figure 5.18: Sliver diagram for a program that iteratively computes the average of a list.

SPLAY-LIST converts a list to a synquence; DOWN-+ iteratively sums a synquence of numbers;

and DOWN-COUNT finds the length of a synquence. Each of the slivers maintains one state

variable of the iteration (current list, current sum, and current count). The diagram exhibits

fan-out because the synquence output of SPLAY-LIST is use as an input to both DOWN-+ and

DOWN-COUNT.

A "movie" of selected computation snapshots for the network on the input list (7 2 6)

appears in Figure 5.19. As indicate by the snapshot movie, average-list is indistinguish-

able in behavior from a constant-space iteration in three state variables. This is remarkable

because, as explained in (Chapter 3, classical lazy data techniques would build up space lin-

ear in the size of the input for this example. In contrast, synquence version is guaranteed to

use constant space due to the way that slivers make use of the synchronization information

supplied by synchronized lazy aggregates.

Indeed, although slivers are composed in the aggregate data style, they behave more

like concurrent processes communicating via unbuffered channels. However, as discussed in

204

5.4. SLIVERS REVISITED

B

A

O nil SPLAY-IST DOWN-+ I DOWN-COUNT

205

7

B A

.X X ...
6 SPAY-LIST DOWN- DOWN-CO cdr car Gnill SPLAY-LISTI DOWN- + DOWN-COUNT

B A

7 cons

O nil

Figure 5.19: A stylized "movie" of snapshots from the sliver-based down computation of the
average of the list (7 2 6). Assume that A has requested the result. The dotted horizontal
lines represent a down synchron shared by the slivers. The list is represented as the result
of cons operators (see Chapter 8). The internal details and connectivity of the three slivers
have been suppressed. Garbage collection of the input list structure is not shown because
in general it might be accessible from some other point B in the program.

A

B i i
1 *-.I....7 Mconsl cdr car + 1+

2 |cons SPLAY-LIST DOWN-+ DOWN-COUNT

0 i

A

B

7 cons 7

2 MconsI cdr IIcar + i

T *------......t...
6 conslI SPLAY-LIST DOWN-+ I DOWN-COUNT I

O nil

B A

2

A

B T
I SPLAY-LISTJ DOWN-+ DOWN-CON

A

B

Y -
I cSPLAY-LISTI DOWN-+ DOWN-COUN

O i

I
bj-

I

B A~~~~

b~cona IGPLY-LTG DOWN-+ DOWN-COUN

O)Ii
I I ~ ~ ~ ~

----L�

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

the previous chapter, the channel-based approach would require some sort of copy process

to fan the result of the generator out to the two accumulators. Slags make it is possible to

express sliver networks via the same mechanisms used to express other data dependencies

in a given language.

We can modify the two down accumulators in the list-averaging problem to be up accu-

mulators. Then the resulting network behaves like a recursive procedure of one argument

(current list) that returns two results: the sum of the numbers in the current list, and the

length of the current list. Figure 5.20 shows a snapshot movie for the modified computa-

tion. The movie indicates how the computation cdrs down the list in down phase, and then

processes the two results in lock step in its up phase.

Of course, we could also modify the list-averaging network so that only one of the down

accumulators were changed to an up one. The resulting computation would have an up

shape, but would exhibit characteristics of both of the previous examples.

Tree computations and more interesting linear computations have too high a "visual

complexity" to illustrate their dynamics in the movie format. We will study such coIm-

putations through a text-based interface in Chapter 6. I have also developed a dynamic

program animator (the DYNAMATOR) that automatically animates computations using a

visual representation similar to that in Figures 5.19 and 5.20. The animator is described in

Chapter 9.

5.5 Filtering

The model of sliver decomposition presented so far glosses over a few important complica-

tions. All of these complications are related to filtering, which is surprisingly difficult to

handle in both an operationally faithful and reusable manner. Here we discuss filtering in

more detail and extend the sliver decomposition technique to handle the complications that

it introduces.

206

5.5. FILTERING

Figure 5.20: A snapshot movie of an up computation of the average of the list (7 2 6).
The long horizontal dotted lines represent shared down synchrons. The short horizontal
dotted lines represent shared up synchrons. Note how the up synchrons force the otherwise
independent stacks of pending operations to pop in lock step.

B

A

I

A

nsB

B

207

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

5.5.1 Gaps

A filter is a transducer that passes to the output slag only those elements from the input

that satisfy a given predicate. Elements that do not satisfy the predicate are said to be

blocked.

There are two basic approaches to filtering:

1. In the compaction approach, the output of a filter contains only the passed elements.

For example, a compacting version of a filter that passes odd numbers would trans-

duce the input list (8 3 2 4 7) into the shorter output list (3 7). The compacting

approach to filtering is commonly employed in aggregate data techniques for linear

structures and in channel-based techniques.

2. In the gap approach, the output of a filter contains not only the passed elements,

but also "holes" indicating where the blocked elements used to be. A gap version of

an odd number filter would transduce the input list (8 3 2 4 7) into the output list

(#g 3 #g #g 7), where #g is a distinguished entity that represents the lack of a value.

Gap filtering is used in situations where the location of elements is important. For

example, languages with array-based or data-parallel features (e.g., [Ive87, Ame89,

GJSO92, Sab88, le90, RS87, Ble92]) present models in which elements reside at a

particular location in an data structure. Compaction filtering is typically not the

default in these approaches because (1) elements are often indexed by their location

and (2) moving an element between locations may be expensive (e.g., it may require

interprocessor communication). Instead, blocked locations either hold a distinguished

value, or they are tagged so that they do not participate in calculations.

The compaction approach is straightforward for linear structures, but does not natu-

rally extend to more complex structures like trees and multi-dimensional arrays. Using

compaction to filter out an internal node of a tree or two-dimensional array requires the

other elements to be rearranged in arbitrary and non-trivial ways. In contrast, the gap

approach works for structures with arbitrary topology since the filter always preserves the

connectivity of the input.

208

5.5. FILTERING

Sliver decomposition employs the gap approach to filtering primarily because of the lock

step nature of sliver processing. A synquence element not only appears at a particular index

in the corresponding a sequence (or tree) of values, but it also appears at a location in the

synquence that is conceptually bounded by a pair of barrions. Since all slivers in a lock

step component share the same barrions, every location of an input synquence to a filter

must be preserved in its output. In particular, even the locations of elements blocked by a

filter must appear in the output. The location-dependent nature of synquences makes the

gap approach the natural choice. In addition, gapped filtering easily generalizes to the tree

structure of syndrites.

A SYNAPSE filter inserts a distinguished gap value (written #g) at every location cor-

responding to a blocked input element (see Figure 5.21). In terms of the subtile model

introduced in Section 5.2.1, a gap corresponds to a triple of wires in which the termination

wire and presence wire are both false but the element wire is unconstrained (i.e., its value

doesn't matter).

5.5.2 Gap Conventions

Slivers must be carefully designed to handle gaps in an appropriate manner. Since gaps

stanId in for elements that have been blocked by a filter, a sliver should treat them as if they

aren't there. This suggests that the functional arguments of a sliver should not be applied

to gap values, and leads to two rules of thumb for handling gaps:

1. Gap contagion: Transducers should treat gaps in a contagious manner. Mappers,

filters, truncaters, and shifters should map every location with an input gap to an

output gap. For transducers that take more than one input slag, an output location

should hold a gap if any of the corresponding input locations hold a gap.

2. Gap apathy: Linear and sequential tree reducers should ignore all gal) positions when

accumulating or selecting a result. For example, a length accumulator for the gapped

list (#g 3 #g #g 7) should return 2, not 5. The second element of this list is 7,

not 3. For reducers that take more than one input slag, all input location should be

ignored if any of the corresponding input locations hold a gap.

209

SYNCHRONIZED LAZY AGGREGATES

Figure 5.21: Distinguished gap values fill the locations in a synquence that correspond to
elements blocked by a filter.

210 CHAPTER 5.

5.5. FILTERING

Unfortunately, these heuristics don't handle some important situations:

* Scanners are an important exception to the gap contagion principle for tranducers.

Recall that a scanner annotates every node of a slag with the current value of an

accumulator when an accumulator processes the node. Since the accumulator has

a value even when a gapped node is reached, it is meaningful to annotate gapped

nodes as well. In fact, several examples in Chapter 6 require scanners to provide this

capability. By default, then, scanners produce slags that contain no gaps. If desired,

it is always possible to reintroduce gaps by applying a two-input mapper to the input

and output of the scanner (see Figure 5.22).

#g.

3

#g

#g

7

I

DOWN-
SCAN- +

J l

0

3

3

3

E1
MAP-
FIRST

#g
X
#g
#g

ES

-LV

Figure 5.22: Scanners do not obey the gap contagion principle. However, the contagion
property of two-input mappers can be used to reintroduce gaps into the result of a scan.
He-re, MAP-FIRST is a mapper that returns the elements from its top input.

* In certain situations it is desirable for the functional arguments to slivers to be able

to manipulate gaps with the same status as other elements. For example, consider a

numerical slag A that is filtered into three slags B, C, and D that contain, respectively,

its positive, zero, and negative elements. Suppose we want to design an accumulator

that takes B, C, and D as inputs and performs an operation at each location that

==fr
% 31,-----~ ---8`~~~~

,--..-- .

]

I - ·

PI'

211

I

(2tHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

depends on which slag has a non-gap element at that location. Since two of the inputs

will have a gap at any given location, the gap apathy rule implies that no operation

can be performed at any location! This is clearly absurd.

We will employ two methods for addressing this problem:

1. One approach is to provide mechanisms for reifying otherwise implicit gaps into

explicitly manipulable gaps and unreify the explict gaps back into implicit ones.

When necessary, higher order sliver functions can be designed to test for reified

gaps. For instance, in the positive/negative/zero example, the accumulator could

b)e applied to gap-reified versions of B, C, and D, and it could test for the

presence of explicit gaps in order to determined which operations to perform.

2. An alternative is to design classes of slivers that handle gaps in special ways.

For example, given a list of slags, a commonly desired processing pattern is to

(1) check the slags in turn until one is found that has a (non-gap) element at

the current position and (2) perform an action that may depend on which slag

provided the element. This pattern could be captured by a specially designed

sliver that ignores the gap apathy heuristic. Such a sliver would be able to handle

the positive/negative/zero example described above.

The reify/unreify approach is general, but leads to sliver programs that have a brute

force character. The special-purpose sliver approach leads to more elegant sliver

programs, but is more ad hoc.

* Parallel tree reducers are trickier to handle than their sequential counterparts. C(on-

sider the behavior of a binary up accumulator at the node of a binary syndrite. Sup-

pose that that the accumulated values from the left and right branches are I and

r, respectively. If the node holds a non-gap value v, then the accumulator needs to

combine three values: v, 1, and r. But if the node holds a gap, there are only two

values to combine: I and r. Since the same combiner cannot work for both cases, it

is necessary to specify two combiners for a parallel tree accumulator.

212

5.5. FILTERING

How to handle selection for a gapped syndrite is less clear. In a gapped synquence,

an element is specified by a single index, and gaps can simply be ignored in finding

the (ungapl)ed) element at the give index. However, a syndrite element is generally

specified by a path that describes what branches to make at each node of the tree. If

a node on the path holds a gap, the node cannot readily ignored because it generally

will have more than one branch; which should be followed? If we just use the path

information to choose a branch at every gapped node, then the path may ultimately

terminate at a gapped node. In this case, what is the value of the selector supposed

to be? Because of these difficulties, we provide no parallel tree selectors.

5.5.3 Reusability

Why aren't filters just a particular kind of map? The above discussion on gap conventions

provides a partial reason: since gaps are "holes" in a slag, it's desirable for mapping functions

never to deal with gaps at all. In particular, they shouldn't take them as arguments or return

them as results; this eliminates expressing filter as a kind of map. But this explanation is

somewhat unsatisfying because the gap reifying/unreifying mechanism introduced above

could be invoked for the special case of filters.

The real reason that filters aren't just maps is that the reusability goal for slivers requires

filtering to be a more involved process than suggested by the simple gap model presented

above. Using this model, it is impossible to design transducers and reducers that exhibit

expected space behavior in every shape-compatible context. We demonstrate this fact via

somIe concrete examples.

Consider the two sliver diagrams shown in Figure 5.23. In both diagrams, an UP-CONS

sliver consumes the synquence produced by the FILTER-ODD sliver. Here is the behavior we

expect for the diagrams:

1. The computation described by diagram (a) should return a list of the odd elements

in the input list. It should test all of the list elements for oddness in the down phase.

At the completion of the down phase, the space required by the computation should

be proportional to the number of odd elements in the input list. In particular, if

213

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

(a)

(b)

Figure 5.23: Two sliver diagrams in which UP-CONS follows FILTER-ODD. As explained in

the text, it is hard to design FILTER-ODD and UP-CONS so that both diagrams give rise to
the expected computations.

214

5.5. FILTERING

the input list contains only even numbers, the up phase should require no space for

pending computations, since there shouldn't be any.

2. The computation described by diagram (b) should return a list of the odd numbers

resulting from a upward sum scan of the input list. Since the inputs to the filter are

computed in the up phase, all of the tests for oddness must be performed in the up

phase. At the completion of the down phase, there must be a pending if for every

element produced by up-scan-+. The computation always requires space linear in

the length of the list at this point, even if the input list contains only even numbers.

Using the standard sliver implementations developed earlier in this chapter for these

two examples leads to the subtile diagrams in Figure 5.24. Unfortunately, the shaded path

in subtile diagralm (b) indicates the presence of deadlock. The problem is that the lower

if in UP-CONS is a down operation that must perform its test before the subcall, but the

test depends on the value of the result of the subcall of UP-SCAN-+.

It is possible to fix the deadlock in example (b) by modifying UP-CONS to perform the

test of the lower if after the subcall has returned rather than before it. Figure 5.25 depicts

the UP-CONS-TEST-UP sliver that results from this modification. UP-CONS-TEST-UP uses a

seqn node to force the subcall to precede the test performed by the lower if." m Replacing

UP-CONS with UP-CONS-TEST-UP in Figure 5.24(b) yields a specification for a computation

with the desired behavior.

Unfortunately, if UP-CONS-TEST-UP replaces UP-CONS in subtile diagram (a), the wrong

behavior results. UP-CONS-TEST-UP guarantees that oddness tests are only performed in the

up phase of the computation. This means that the resulting computation always requires

space linear in the length of the input list at the completion of the down phase, even if the

list contains only even numbers. This is inconsistent with the expected behavior of example

(a).

This example illustrates a tension between operational faithfulness and reusability. Op-

erational faithfulness requires us to have accumulators like UP-CONS that preserve the tail-

'°Recall that a requested seqn node first requests the value of its left input wire, and only when that wire
has returned a value does it reroute its request to the right input wire. In this example, the request on the
left subwire forces the subcall to occur before a request is propagated to the if.

215

SYNCHRONIZED LAZY AGGREGATES

SPLAY-LIST FILTER-EVEN UP-CONS

(a)

SPLAY-LIST UP-SCAN-+ FILTER-EVEN UP-CONS

(b)

Figure 5.24: The details of the two filtering problems from Figure 5.23. The shaded path
in (b) indicates the presence of deadlock.

216 CHAPTER 5.

5.5. FILTERING

UP-CONS-TEST-UP

Figure 5.25: UP-CONS-TEST-UP results from the addition of a seqn operation to the UP-CONS.
The seqn changes the lower if from a down operation to an up operation by forcing the
subcall to return before the if is tested.

recursive nature of filtering and accumulators like UP-CONS-TEST-UP that can handle filters

performed in the up phase. But reusability suggests that we should have only one up

accumulator for cons, not two. This leaves us with a choice:

1. The two-up approach: Accept two versions of every up accumulator: one which per-

forms gap tests in the down phase, and one of which performs gap tests in the up

phase.

2. The one-up approach: Redesign filtering so that a single up accumulator suffices in

both situations.

The two-up approach might seem simpler, but it leads to a disaster. The problem is

that the prospects for reusability in the presence of filtered up scanners are even grimmer

than indicated by this particular example. The result of a filtered up scan is essentially a

different "type" of slag than the one used in all the other subtile decompositions. For every

across or up sliver S that takes an input of the original slag type, the two-up approach

requires developing a new sliver ,S' that takes an input of the new type. The situation is

217

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

even worse for multi-input slivers: if a sliver takes n7 slag inputs, it is necessary to have 2
'

different versions of the sliver to account for all combinations of argument types. (Usual

i)olymorphismn mechanisms are of no help here because each of the potential combinations

actually works in a different way.) Finally, even this brute force fails to accurately model

the expected behavior of computations like the one pictured in Figure 5.26. The problem

in this case is that an ideal UP-CONS should only perform gap testing in the up phase for

those slag locations at which the result of SPLAY-LIST had odd elements. Neither UP-CONS

nor UP-CONS-TEST-UP is sophisticated enough to exhibit this behavior.

Figure 5.26: Sliver diagram whose expected behavior is difficult to model in the two-up
approach.

The numerous problems with the two-up approach suggest that the one-up approach is

a better tack. In Section 7.2.4, I describe a design for a one-up approach that works for

synquences. The details of a one-up approach for syndrites have not yet been figured out.

5.5.4 Up Synchronization

Preserving operational faithfulness for the up phase of a computation in the presence of

filtering turns out to be rather challenging. We would like to achieve the following two

goals:

1. Operation order: The up synchrons of a synquence or syndrite have a natural time

ordering from bottom up. Operations should respect this time ordering.

2. Tail calls: If all the slivers in a lock step component locally make tail calls at cor-

responding call boundaries, the entire lock step component should behave as if a

218

I

5.5. FILTERING 219

monolithic tail call were made. In particular, no pending operations or stack space

should be associated with such a call.

Unfortunately, filtering makes it difficult to satisfy both of these goals. Figure 5.27 illustrates

various approaches to a computation with two up slivers accumulating f and g. Due to

filtering performed in the down phase, there are many locations at which accumulations do

not have to be performed. 1l

(a) (b) (c)

Figure 5.27: Different approaches to handling up synchronization in the presence of filtering.

Figure 5.27(a) illustrates a naive approach in which each sliver keeps track of all of

the up synchrons of the computation. This makes it easy to satisfy the operation order

goal, but tail recursion is lost. No pending operations are performed between up synchrons

U2 and u3 or between u:3 and 4 , so no space should be allocated for these two locations.

However, the up synchrons themselves (and the pending management operations needed to

process them) take up space!

Figure 5.27(b) illustrates an alternate approach, in which each sliver locally keeps track

of only those up synchrons immediately below a pending accumulation. This satisfies the

i"The configuration depicted in the figure can also arise for reasons other than filtering. However, in
practice, the problem is most commonly exhibited due to filtering.

U271

.
I i i ..

U: : : i

......

.'"""' .

U2

U1

U2

__��__�___�____� _______________ I I
I------------I ------..------- e---.......... _

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

tail recursion goal (no space is needed for u3 and U 4), but operation order is lost. Since

the f sliver does not have a handle on u 2, nothing forces f to be performed before g. The

problem is that local tail calls do not keep track of global ordering information.

Figure 5.27(c) depicts an approach that satisfies both goals. For each pending accumu-

lation, a sliver locally keeps track of the up synchrons both immediately above and below

it. This bounds the time in which the accumulation must take place. In addition, a global

precedence ordering (arrows labelled P) is maintained between all the up synchrons that

forces the rendezvous on themn to occur in the expected order. The synchron precede oper-

ator is used to specify this ordering. This approach is able to eliminate up synchron u:3 but

not U4 . However, the space associated with u4 can be charged to the accumulation f in such

a way that the space required by up phase is proportional to the number of accumulations

that need to be performed.

It is challenging to implement approach (c) in such a way that the management of

synchron precedence doesn't destroy the desired space behavior. The discussion of the

formal semantics of synchrons in Section 8.2.2 explains how this can be achieved.

220

Chapter 6

SYNAPSE: Programming with

Slivers and Slags

SYNAPSE 1 is a language that provides a collection of operators (slivers) for manipulating

synchronized lazy lists and trees (slags). The language shows the utility of slivers and slags

while suppressing their implementation details. While SYNAPSE does not exhibit the full

range of expressiveness implied by the sliver technique, it is rich enough for investigating

the power and limitations of slivers.

According to Abelson and Sussman, a language has three parts: primitives, means of

combination, and means of abstraction [ASS85]. For SYNAPSE, the primitives are a set of

higher-order procedures that manipulate synchronized lazy lists and trees. hese procedures

are carefully implemented so that they obey all of the sliver requirements discussed in

Section 5.4.2. The means of combination and means of abstraction for synapse are simply

inherited from OPERA, the dialect of Scheme in which SYNAPSE is embedded. Thus, the

SYNAPSE "language" is just a library of OPERA procedures.

Ideally, we would like to characterize synchronized lazy lists and trees as abstract data

types. An abstract data type is a method of defining a data structure in terms of the

functions that manipulate it. For example, a pair data type can be defined in terms of

a constructor cons that builds a pair from two components; selectors car and cdr that

1SYNchronized Aggregate Programming Structures Environment.

221

Ct2HAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

extract the left and right elements of a pair; and a pair? predicate that determines whether

a given entity is a pair. The functions defining an abstract data type are usually required

to satisfy certain relationships. For example, for any version of pairing it should be the case

that (car (cons A B)) is equivalent to A, (cdr (cons A B)) is equivalent to B, and

(pair? (cons A B)) is equivalent to #t.

Unfortunately, the functional nature of abstract data types is at odds with the op-

erational nature of synchronized lazy aggregates. Because their operational handling is

intricately intertwined with their structure, synchronized lazy lists and trees resist being

characterized as abstract data types. I have been unable to distill the essence of slags into

an concise axiomatic theory. Instead, I have taken a more experimental approach. I have

developed a suite of higher order slag procedures (slivers) that have proven useful in a wide

variety of simple applications. Below, I describe these slivers and illustrate their use.

All of the examples described here are written in OPERA, a dialect of Scheme supporting

the concurrency, synchronization, and laziness features motivated in Section 5.1.3. For the

most part, it is not necessary to understand the details of OPERA in order to appreciate

the examples; for this reason, the discussion of OPERA is deferred until (Chapter 7. The one

detail that is important to the present discussion is that the default evaluation strategy of

OPERA evaluates all subexpressions of a procedure call in parallel.2 This parallel evaluation

strategy accounts for the concurrency exhibited by the examples.

6.1 Linear Computations

SYNAPSE supports linear computations through a suite of slivers (procedures) that mianipu-

late synquences (synchronized lazy lists). The core procedures are summarized in Figures 6.1

and 6.2. The core is neither minimal (some slivers can be defined in terms of the others)

nor complete (not all useful synquence slivers can be defined in terms of the core). Rather,

the core is a set of standard slivers that are useful in many situations. The higher order

nature of many of the slivers (i.e., they accept functional arguments) allows them to be

tailored to a wide variety of problems. The choice of core procedures was influenced by the

2This evaluation strategy is not allowed in standard Scheme [CR+91], which requires that the subexpres-
sions be evaluated in some sequential order.

222

6.1. LINEAR COMPUTATIONS 223

list operations of Lisp [Ste90O, C(R+91] and Haskell3 [HJW+92], the array operations of APL

[Ive27], the vector operations of FX [GJS092], and Waters's series operations [Wat90O].

In the remainder of this section, we will employ the core procedures to illustrate various

properties of sliver decomposition within SYNAPSE.

6.1.1 Iteration vs. Recursion

Using the slivers in Figures 6.1 and 6.2, it is easy to define both iterative and recursive

procedures in a modular fashion. A combination of slivers behaves iteratively if all of its

con)ponents have down or across shape. If any component has up shape, the computation

may behave recursively. We now consider a series of examples that illustrate the basic

behavior of slivers.

Factorial

We begin with the time worn, but still trusty, factorial function. Here are iterative and

recursive versions of a factorial procedure expressed in SYNAPSE:

(define (fact-iter num)
(downQ 1 * (genQ num -1+ zero?)))

(define (fact-rec num)

(upQ 1 * (genQ num -1+ zero?)))

Both definitions use a generator that delivers the numbers from the input down to (but not

including) zero. The definitions differ only in the shape of the product accumulator.

The iterative nature of fact-iter is demonstrated by the following trace of a sample

fact-iter application:4

3It is worth noting that S NAPSE'S upQ and up-scanQ are equivalent to Haskell's foldr and scanr, but
that S NAPSE's downQ and down-scanQ are not equivalent to Haskell's foldl and scanl. In particular, the
op parameter to downq and down-scanQ takes its arguments in the opposite order from the corresponding
parameter of the Haskell functions. The reason for the discrepency is that the higher order procedural
arguments to the S NAPSE procedures all take their arguments in the same order; this facilitates changing
between down and up accumulators and scanners. The argument order for the higher order procedure in
Haskell are intended to faciliate transformations and proofs.

'This and all subsequent traces were automatically produced verbatim by the OPERA interpreter. In some
cases, illustrating certain behavior required tuning the relative probabilities of particular operators before
running the example. (See the discussion of task selection strategies in Section 9.1.1.) Different examples
were executed with different tuning parameters. Tuning affects only the probability of observing a particular
trace; it does not change the set of possible traces.

C(HAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

Generators:

(genQ init next done?) [down]
Generates a synquence whose first element is init and each of whose subsequent elements
is determined from the previous by next function. The synquence terminates when done?
function is true of the current element (which is not included in the synquence).

(produceQ initial-state andler) [down]
G(enerates a synquence whose element values are computed from a "state" that is passed
down the synquence in a down fashion. At every synquence node, handler is applied to three
arguments: a current state, a binary yielding procedure, and a nullary terminating procedure.
Calling the yielding procedure on a value v and a new state s produces v as the current
synquence element and uses s as the next state. C(alling the terminating procedure terminates
the synquence.

Reducers:

(downQ init op synq) [down]
Returns the result of iteratively accumulating the elements of synq using the combiner op and
the initial value init. If synq has elements el ... e, downQ computes:

(op e (... (op e2 (op e init) ...)))

(upQ init op synq) [up]
Returns the result of recursively accumulating the elements of synq using the combiner op
and the initial value init. If synq has elements el ... en, upQ computes:

(op el (op e2 ... (op e init) ...))

(glom-stream synq) [down]
Returns an OPERA stream of the non-gap elements iteratively collected from synq. (Note:
this cannot be defined in terms of downQ.)

(down-nthQ index synq) [down]
Returns the result of iteratively calculating the indexth element (O-based) of a synquence. An
error is signalled if index is greater than the length of the synquence.

(up-nthQ index synq) [up]
Returns the result of recursively calculating the indexth element (O-based) of a synquence.
An error is signalled if index is greater than the length of the synquence.

(down-lastQ index synq) [down]
Returns the last (non-gap) element of a synquence. An error is signalled if synq contains no
elements.

(up-firstQ index synq) [up]
Returns the first (non-gap) element of a synquence. An error is signalled if synq contains no
elements.

Figure 6.1: A summary of SYNAPSE'S core synquence generating and reducing slivers. The
shape of each sliver appears in brackets to the right of each form.

224

6.1. LINEAR COMPUTATIONS

Transducers:

(mapQ fun synq) [across]
Returns the synquence resulting from the elementwise application of fun to synq.

(map2Q fun synq synq2) [across]
Returns the synquence resulting from the elementwise application of fun to corresponding
elements of' synql and synq2. An output element is a gap if either input element is a gap.
The length of the output synquence is the shorter of the length of the two input synquences.

(filterQ pred synq) [across]
Returns a synquence with the same structure as synq in which every element satisfying pred
is mapped to itself and all other elements are mapped to gaps.

(reifyQ obj sync,) [across]
Returns a synquence that maps every gap of synq to obj and every ungapped element to
itself.

(unreifyQ obj synq) [across]
Returns a synquence that maps every instance of obj in synq to a gap and every other element
to itself.

(down-scanQ init op synq) [down]
Returns the synquence of intermediate accumulated values in the iterative accumulation of
synq using combiner op and initial value init.

(up-scanQ init o) synq) [up]
Returns the synquence of intermediate accumulated values in the recursive accumulation of
synq using combiner op and initial value init.

(truncateQe pred synq) [down]
Returns the prefix of synq up to, but not including, the first element for which pred is true.
(The e at the end of the name stands for "exclusive".)

(truncateQi pred synq) [down]
Returns the prefix of synq up to, and including, the first element for which pred is true. (The
i at the end of the name stands for "inclusive".)

(prefixQ len synq) [down]
Returns a synquence consisting of the first len elements of synq. An error is signalled if len is
greater than the length of synq

(down-shiftQ init synq) [down]
Returns a synquence with the same size and gap locations as synq, but in which every element
has been shifted down to the next ungapped element location. The resulting synquence uses
init for the first ungapped element location.

(up-shiftQ init synq) [up]
Returns a synquence with the same size and gap locations as synq, but in which every element
has been shifted up to the next ungapped element location. The resulting synquence uses init
for the last ungapped element location.

(appendQ synql s,nq2) [down]
Returns a synquence formed by appending the elements of synql to those of synq2.

Figure 6.2: A summary of SYNAPSE'S core synquence transducing slivers.

225

26 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (fact-iter 3)
----------------------- :down[A,O]
(zero? 3) -- > ()
(* 3 1) --> 3

(-1+ 3) --> 2

----------------------- :down[A,1]
(zero? 2) -- > ()
(-l+ 2) --> 1

(* 2 3) --> 6
----------------------- :down[A,2]
(zero? 1) -- > ()
(* 1 6) --> 6
(-1+ 1) -- > o
-----------------------:down[A,3]

(zero? O) -- > #t
; Value: 6

The trace begins with the expression and ends with its value. The intervening lines of text

correspond to various events in the program's execution. Lines of the form

(prinop argl ... argn) --> result

are primop events that indicate the performance of the primitive operation primop on the

listed args.5 A dotted line is a barrier event that represents a rendezvous of all the slivers

in a lock step component at the down or up barrier of a barrion. In this case, the fact that

all dotted lines are labelled :down indicates that the computation is iterative - it never

returns through any up barriers. The information following the :down label (e.g., [A,2])

consists of a generator label (A) and a barrion index (2). All barrions generated by the

same call to genQ share the same generator label, but have a unique barrion index. These

automatically generated pieces of information make it easier for humans to parse complex

traces into meaningful parts.

Barrier events partition traces into episodes of primlop events. In the fact-iter exam-

ple, each episode contains a zero test and decrement from the genQ sliver and a multiplica-

tion from the downQ sliver.6 The interleaving of primitive operations from genQ and downQ

illustrates the concurrent evaluation that is fundamental to the sliver technique.

50Only operators that have been declared traceable produce printed operator events. S NAPSE has a
mechanism for specifying which operators are traceable. In the examples, only the "interesting" operators
are traced.

6The zero? procedure is always performed first, because the other operations will only be performed if
the test fails. However, as suggested by the trace, the * and -1+ are unrelated by data dependence and may
be performed in either order.

226

6.1. LINEAR COMPUTATIONS

The barriers are important in this example because they they guarantee that fact-iter

behaves like a monolithic iterative factorial procedure even though it is constructed out of

two slivers. The corresponding monolithic factorial could be written as:

(define (fact-iter-mono num)
(define (loop n acc)

(if (zero? n)

acec

(loop (-1+ n) (* n acc))))

(loop num 1))

Each of the barriers depicted in the fact-iter trace corresponds to one of the calls to

loop in the computation of (fact-iter-mono 3). Except for the absence of dotted lines,

the following sample trace of fact-iter-mono is indistinguishable from a possible trace of

fact-iter:

OPERA> (fact-iter-mono 3)

(zero? 3) --> ()

(-1+ 3) --> 2

(* 3 1) --> 3

(zero? 2) --> ()

(-1+ 2) -->

(* 2 3) -- > 6

(zero? 1) --> ()

(* 1 6) --> 6

(-1+ 1) -- >

(zero? O) --> #t
; Value: 6

This is not just a lucky coincidence. Barriers guarantee that the possible traces of fact-iter

on any given input are exactly the same as the possible traces of fact-iter-mono. In fact,

the whole purpose of the barriers is to simulate the behavior of strict, monolithic procedure

calls in a computation distributed over several slivers.

The fact-rec procedure gives rise to a computation with a very different trace:

227

C2'HAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (fact-rec 3)
-----------------------: down [A,0]
(zero? 3) --> ()
(-1+ 3) -- > 2
----------------------- :down[A,1]
(zero? 2) --> ()

(-1+ 2) -- > 1
-----------------------:down[A,2]

(zero? 1) --> ()

(-1+ 1) -- >
-----------------------:down[A,3]

(zero? O) -- > #t
…-----------------------:up[A,3]

(* 1 1) -- > 1

-----------------------:up[A,2]

(* 2 1) -- > 2
-----------------------:up[A,1]

(* 3 2) -- > 6
-----------------------:up[A,O]

; Value: 6

The presence of up barriers indicates that the computation is not an iteration, but a general

recursion. Zero tests and decrements are still performed in the down phase (because genQ

has down shape), but all the multiplications are performed in the up phase - exactly what

we expect for a recursive factorial computation. The barrion indices help) us match an up

barrier with the corresponding down barrier; barriers with the same index are from the

same barrion.

The components of the factorial procedures are likely to be used again, so it is a good

idea to name them:

(define (to-1 num) (genq num -1+ zero?))

(define (down-* synq) (downQ 1 * synq))

(define (up-* synq) (upQ * synq))

The above factorial procedures can be rewritten in terms of these new abstractions without

changing the behavior exhibited by the traces:

(define (fact-iter num) (down-* (to-1 num)))

(define (fact-rec num) (up-* (to-1 num)))

It is also possible to represent factorial procedures that count up towards the input

number rather than counting down from it:

228

6.1. LINEAR COMPUTATIONS

(define (fact-iter2 num) (down-* (from-to 1 num)))

(define (fact-rec2 num) (up-* (from-to 1 num)))

(define (from-to start stop)
(genQ start 1+ (lambda (n) (> n stop))))

These versions would yield traces different from the ones illustrated above.

Sum of Squares

As another simple example, consider SYNAPSE programs for summing the squares of the

elements in a list:

(define (sum-squares-iter lst)

(down-+ (mapQ square (splay-list lst))))

(define (sum-squares-rec lst)

(up-+ (mapQ square (splay-list lst))))

;; Utilities

(define (splay-list lst)

(mapQ car (splay-sublists lst)))

(define (splay-sublists lst)

(genQ 1st cdr null?))

(define (down-+ synq) (downQ 0 + synq))

(define (up--+ synq) (upQ 0 + synq))

Here, splay-sublists generates the successive sublists of a list, while splay-list gener-

ates the successive elements of a list. The two versions of the sulmling program are identical

except for the shape of the accumulator.

Sample traces for these two programs appear in Figure 6.3. As expected, the first trace

shows how shared barriers and down-shaped slivers force sum-squares-iter to behave as

if it were a monolithic loop. In the second trace, the + operations in the up phase are

expected, but; car and square operations in the up phase might seem a little surprising.

Since both of these are mapping operations that occur between a down sliver and an up

sliver, they have an across orientation (see Section 5.2.3). Recall that it is permissible to

performn an across operator any time after call initiation but before call return. The sample

trace obeys these constraints.

229

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (sum-squares-iter '(2 3 5))

-----------------------:down[A,O]

(null? (2 3 5)) --> ()

(cdr (2 3 5)) --> (3 5)

(car (2 3 5)) --> 2

(square 2) --> 4

(+ 4 0) --> 4
----------------------- :down [A, 1]

(null? (3 5)) --> ()

(cdr (3 5)) --> (5)

(car (3 5)) --> 3

(square 3) --> 9

(+ 9 4) --> 13

-----------------------:down[A,2]

(null? (5)) --> ()

(cdr (5)) --> ()

(car (5)) --> 5

(square 5) --> 25

(+ 25 13) --> 38
-----------------------:down[A,3]

(null? ()) --> #t

; Value: 38

OPERA> (sum-squares-rec '(2 3 5))

-----------------------: down [A, O]
(null? (2 3 5)) --> ()
(cdr (2 3 5)) --> (3 5)

-----------------------: down[A, 1]

(null? (3 5)) --> ()

(cdr (3 5)) --> (5)

-----------------------: down[A,2]

(null? (5)) -- > ()
(cdr (5)) --> ()

-----------------------:down[A,3]

(null? ()) --> #t

-----------------------:up[A,3]

(car (2 3 5)) --> 2

(square 2) --> 4

(car (5)) -->

(square 5) --> 25

(+ 25 0) --> 25
-----------------------:up[A,2]

(car (3 5)) --> 3

(square 3) --> 9

(+ 9 25) --> 34
-----------------------: up[A,l]

(+ 4 34) --> 38

----------------------- :up[A,O] ; Value: 38

Figure 6.3: Traces of iterative and recursive programs for summing the squares of elements
in a list.

230

6.1. LINEAR C(OMPUTATIONS

This example underscores that mapQ behaves differently in different contexts. In general,

this flexibility enhances the reusability of the mapQ sliver. (See Section 6.1.3 for specific

examples.) However, in the case of sum-squares-rec, the fact that across operators can

exhibit up behavior may be undesirable. Delaying the car operators until the up phase

means that sum-square-rec maintains a pointer to the list argument until it returns a

final result, which can unnecessarily prevent the list cells from being garbage collected

sooner.

The default behavior can be overridden by explicitly specifying that the cars performed

by splay-list should be down operators. The following force-down sliver uses the data

dependencies implicit in down-scanQ to force all elements of a synquence to be computed

in the down phase:

(define (force-down synq)

(down-scanQ 'ignore

(lambda (current previous) current)

synq))

Using force-down, it is easy to rewrite splay-list so that it always performs car opera-

tions as early as possible, rather than as late as possible:

(define (splay-list lst)

(force-down (mapq car (splay-sublists lst))))

The post-modification trace in Figure 6.4 shows that the change has the desired effect. A

similar change could force the multiplications to happen in the down phase as well. The

moral of this example is that slivers permit control aspects of a program to be fine-tuned

in a modular fashion.

List Accumulation

It is instructive to consider computations where the direction of accumulation makes a

difference to the final answer. Here are down and up accumulators for pairing, the canonical

non-associative, non-comlutative binary operator :7

(define (down-cons synq) (downQ '() tcons synq))

(define (up-cons synq) (upQ '() tcons synq))

7Tcons is a variant of the usual pairing procedure, cons. It is use here for a technical reason explained
in Section 6.1.3.

231

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (sum-squares-rec '(2 3 5))
----------------------: down[A,O]
(null? (2 3 5)) -- > ()

(cdr (2 3 5)) --> (3 5)

(car (2 3 5)) --> 2

-----------------------:down[A,1]

(null? (3 5)) -- > ()

(car (3 5)) --> 3

(cdr (3 5)) --> (5)

-----------------------:down[A,2]

(null? (5)) -- > ()
(cdr (5)) -- > ()
(car (5)) --> 5

-----------------------: down[A,3]

(null? ()) --> #t
-----------------------:up[A,3]

(* 5 5) --> 25
(+ 25 0) --> 25

-----------------------:up[A,2]

(* 3 3) -- > 9

(+ 9 25) --> 34
-----------------------:up[A,1]

(* 2 2) -- > 4
(+ 4 34) --> 38
-----------------------:up[A,O]
; Value: 38

Figure 6.4: Sample trace of sum-squares-rec after splay-list has been modified to per-
form all cars in the down phase.

232

6.1. LINEAR C(OMPUTATIONS

Figure 6.5 shows traces of computations in which these slivers are applied to the synquence

produced by (from-to 1 3). The traces show that up-cons returns a list of the synquence

elements in the order in which they were generated (smallest to largest), while down-cons

returns the elements in the reverse order. As indicated by the down and up barriers, the

order-preserving version requires a linear control stack, while the order-reversing version

uses only constant control space.

The fact that up-cons preserves the order of elements is one of the main motivations

to use recursion (vs. iteration) in procedures that produce lists. One alternate approach to

preserving element order is to use down-cons to produce the list, and then iteratively reverse

this result. Another alternative, as discussed in Section 2.1.5, is to employ a cdr-bashing

technique that maintains the element order and uses constant control space.8 Figure 6.6

shows the definition a cdr-bashing pairing accumulator and a sample trace of its execution.

The ability to code down-cons ! as an independent sliver that has the "right" behavior when

composed with other slivers illustrates the power of SYNAPSE.

Iterated Scans

We conclude this section with a less trivial example. The problem is to compute from a list

it;s nth down (or ulp) scan. The zeroth scan of a list is the list itself; the first scan is a list

of the intermediate results from accumulating the list in the specified direction; the second

scan is the result of scanning the first scan; and so on. The goal is to write general th

scanning procedures that simulate the behavior of individually crafted monolithic verions

for each n.

Figure 6.7 gives sliver-based solutions to the problem. The solutions employ a higher-

order repeated procedure that returns the n-fold composition of a given procedure f. As

indicated by the sample traces in Figures 6.8 and 6.9, successive scans are synchronized with

each other even though they are dynamically glued together by the higher-order repeated

procedure. Note how the use of down-cons! ensures that nth-down-scan generates an

8 Waters has recently shown that the reversal technique and the cdr-bashing technique are practically
indistinguishable in terms of efficiency [Wat]. In light of this result, he argues for using the simpler one -
i.e., the reversal approach. However, in a language like S NAPSE, where the cdr-bashing technique can be
expressed as a modular component, cdr-bashing may actually the "simpler" approach.

233

234 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (down-cons (from-to 1 3))

-----------------------:down[A,O]

(> 1 3) -- > ()

(1+ 1) -- > 2

(tcons 1 ()) -- > (1)
-----------------------:down[A,1]

(> 2 3) -- > ()
(1+ 2) -- > 3
(tcons 2 (1)) -- > (2 1)
-----------------------:down[A,2]

(> 3 3) -- > ()

(1+ 3) -- > 4
(tcons 3 (2 1)) -- > (3 2 1)
-----------------------:down[A,3]

(> 4 3) -- > #t

; Value: (3 2 1)

OPERA> (up-cons (from-to 1 3))

----------------------: down[A,O]
(> 1 3) -- > ()

(1+ 1) -- > 2
----------------------: down[A,1]
(> 2 3) --> ()
(1+ 2) --> 3

-----------------------:down[A,2]

(> 3 3) -- > ()

(1+ 3) -- > 4
-----------------------: down[A,3]

-----------------------:up[A,3]

(tcons 3 ()) -- > (3)
-----------------------:up[A,2]

(tcons 2 (3)) --> (2 3)
----------------------- :up[A,1]
(tcons 1 (2 3)) -- > (1 2 3)
----------------------- :up[A,O]
; Value: (1 2 3)

Figure 6.5: Sample down and up accumulations of a pairing operator.

6.1. LINEAR COMPUTATIONS

(define (down-cons! default-cdr synq)
(let ((dummy (cons 'ignore default-cdr)))

(begin

(downQ dummy
(lambda (val pair)

(let ((new (tcons val default-cdr)))

(begin

(set-cdr! pair new)

new)))

synq)

(cdr dummy))))

OPERA> (down-cons! '() (from-to 1 3))

(cons ignore ()) --> (ignore)
----------------------- :down[A,O]

(> 1 3) -- > ()

(1+) --> 2

(tcons 1 (0) --> (1)
(set-cdr! (ignore) (1)) -- > #t
------------------------ :down[A,1]
(> 2 3) -- > ()

(1+ 2) --> 3

(tcons 2 ()) -- > (2)

(set-cdr! (1) (2)) -- > #t
-----------------------:down[A,2]

(> 3 3) -- > ()

(1+ 3) --> 4

(tcons 3 ()) --> (3)

(set-cdr! (2) (3)) -- > #t
-----------------------:down[A,3]

(> 4 3) --> #t

(cdr (ignore 1 2 3)) --> (1 2 3)

; Value: (1 2 3)

Figure 6.6: A cdr-bashing list accumulator, down-cons!, along with a sample execution
trace.

235

SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

(define (nth-down-scan num init combiner list)

(down-cons! ((nth-down-scanQ num init combiner) (splay-list list))))

(define (nth-down-scanQ num init combiner)

(repeated (lambda (synq) (down-scanQ init combiner synq))
num))

(define (nth-up-scan num init combiner list)
(up-cons ((nth-up-scanQ num init combiner) (splay-list list))))

(define (nth-up-scanQ num init combiner)

(repeated (lambda (synq) (up-scanQ init combiner synq))
num))

(define (repeated f n)

(if (= n O)

identity

(compose f (repeated f (- n 1))))

(define (compose f g)

(lambda (x) (f (g x))))

(define (identity x) x)

Figure 6.7: Sliver-based code for computing the nth iterated down and up scans of a list.

f236 CHAPTER 6.

6.1. LINEAR COMPUTATIONS

iterative computation. For nth-up-scan, the up orientation of the accumulation operations

requires an up list collector (up-cons).

6.1.2 Expressive Power

Before we investigate more advanced synquence features, it is worthwhile to step back

for a moment and comment on how slivers and synquences enrich the expressive power

of a language. Consider the sliver implementations of some standard list utilities (see

Figure 6.10). It may seem somewhat odd to convert lists into synquences just to perform

some simple synquence manipulations. And in fact, in straightforward implementations of

slivers, synquence manipulation would incur sufficient overhead to discourage programmers

from actually writing the list utilities as indicated in Figure 6.10. However, as I will argue

later, it is likely that techniques similar to those used by Waters in his series package [Wat91]

can be used to compile such definitions into efficient code. More important, the kinds of

decomlpositions shown in Figure 6.10 have many expressiveness advantages that transcend

issues of efficiency:

* Synquences are a common currency in which to express a wide range of linear iterations

and recursions. Using a standard collection of synquence slivers in conjunction with

conversion routines makes it unnecessary to reimplement common functionality for

different datatypes. For example, mapping a function over a vector can be expressed

by sandwiching mapQ between vector analogs of splay-list and up-cons.

* Synchronized lazy lists are a more suitable common currency than other standard

linear structures (lists, vectors, files, lazy lists) for expressing operational notions like

lock step processing and the distinction between iteration and recursion. The synchro-

nized nature of synquences guarantees that each of the modular procedures defined in

Figure 6.10 behaves like the standard monolithic implementations. Furthermore, the

use of downQ in the definitions of reverse and reverse! indicates that these generate

iterative processes, while the upQ in the other definitions indicates recursive processes.

* Sliver-based decompositions highlight the structural similarities and differences be-

tween procedures. For example, Figure 6.10 suggests insights like the following:

237

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (nth-down-scan 4 0 + '(1 20 300))

(= 4 0) -- > ()
(- 4 1) -- > 3

(= 3 0) --> ()
(- 3 1) -- > 2

(= 2 0) -- > ()
(-2 1) -- >1
(= 1 0) -- > ()
(-1 1) -- > O
(= 0 0) --> #t
(tcons ignore ()) -- > (ignore)

----------------------: down[A,O]
(null? (1 20 300)) -- > ()
(car (1 20 300)) -- > 1
(cdr (1 20 300)) -- > (20 300)
(+ 1 0) -- > 1
(+ 1 0) -- > 1
(+ 0) -- > 1
(+ 1 0) -- > 1
(tcons 1 ()) -- > (1)

(set-cdr! (ignore) (1)) -- > #t

-----------------------:down[A,1]

(null? (20 300)) -- > ()
(car (20 300)) -- > 20
(+ 20 1) --> 21

(+ 21 1) --> 22

(+ 22 1) --> 23

(+ 23 1) --> 24

(cdr (20 300)) --> (300)

(tcons 24 ()) -- > (24)
(set-cdr! (1) (24)) -- > #t

-----------------------:down[A,2]

(null? (300)) -- > ()
(car (300)) --> 300

(+ 300 21) --> 321

(+ 321 22) --> 343

(+ 343 23) -- > 366

(+ 366 24) -- > 390

(cdr (300)) -- > ()
(tcons 390 ()) --> (390)

(set-cdr! (24) (390)) --> #t

-----------------------:down[A,3]

(null? ()) --> #t

(cdr (ignore 1 24 390)) --> (1 24 390)

; Value: (1 24 390)

Figure 6.8: Sample trace of the fourth additive iterative scan of the list (1 20 300).

238

6.1. LINEAR COMPUTATIONS

OPERA> (nth-up-scan 4 0 + '(1 20 300))

(= 4 0) -- > ()
(- 4 1) -- > 3

(= 3 0) -- > ()
(- 3 1) -- > 2

(= 2 0) -- > ()
(- 2 1) --> 1
(= 1 0) -- > ()
(-1 1) -- > 0
(= 0 0) --> #t
-----------------------:down[A,O]

(null? (1 20 300)) --> ()

(cdr (1 20 300)) -- > (20 300)

(car (1 20 300)) -- > 1

----------------------- : down [A, 1]

(null? (20 300)) -- > ()
(cdr (20 300)) -- > (300)

(car (20 300)) -- > 20

----------------------- :down [A,2]

(null? (300)) --> ()
(cdr (300)) --> ()

(car (300)) --> 300

------------------------: down [A,3]
(null? ()) --> #t

------------------------ :up[A,3]

(+ 300 0) ---> 300
(+ 300 0) ---> 300
(+ 300 0) ---> 300
(+ 300 0) -- > 300
(tcons 300 ()) -- > (300)
----------------------- :up[A,2]
(+ 20 300) --> 320
(+ 320 300) -- > 620
(+ 620 300) -- > 920

(+ 920 300) -- > 1220

(tcons 1220 (300)) -- > (1220 300)

…------------------------:up[A, 1

(+ 1 320) --> 321

(+ 321 620) -- > 941
(+ 941 920) -- > 1861

(+ 1861 1220) -- > 3081

(tcons 3081 (1220 300)) -- > (3081 1220 300)
… …----------------------- : up [A,O]

; Value: (3081 1220 300)

Figure 6.9: Sample trace of the fourth additive iterative scan of the list (1 20 300).

239

240 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

;; A recursive computation of the length of a list

(define (length lst)

(upQ 0

(lambda (ignore count) (1+ count))

(splay-list lst)))

;;; A recursive computation that returns a list containing (in order) the

;;; elements of the two given lists. LST1 is copied; LST2 is not.

(define (append lstl lst2)

(upQ lst2 tcons (splay-list lstl)))

;; A recursive computation returning a new list with the same elements

;;; as the given one.

(define (copy lst)

(up-cons (splay-list lst)))

;; An iterative computation that returns a new list whose

;; elements are in reverse order from the given list

(define (reverse lst)

(down-cons (splay-list st)))

;;; An iterative computation that performs a destructive

;;; reversal of the pairs in a given list.

(define (reverse! lst)

(downQ '()

(lambda (pair prev)

(set-cdr! pair prev)

pair)

(splay-sublists lst)))

;; An iterative computation that returns the last pair of LST; or nil

;;; if it's empty

(define (last-pair lst)

(downQ '()

(lambda (pair prev) pair)

(splay-sublists lst)))

;; A recursive computation that returns a new list each of whose elements

;;; is the result of applying F to the corresponding element of the original.

(define (map f lst)

(up-cons (mapQ f (splay-list lst))))

;; A recursive computation that returns a new list each of whose elements

;;; is the result of applying F to the corresponding sublist of the original.

(define (map-list f lst)

(up-cons (mapQ f (splay-sublists lst))))

Figure 6.10: Expressing some standard list utilities in terms of slivers.

6.1. LINEAR C(OMPUTATIONS

- Append, copy, and reverse are all cons accumulations on a list; copy differs

from reverse only in the direction of accumulation, while it differs from append

only in the initial value.

- Reverse! and last-pair procedures are surprisingly similar; both iterate over

the su1llists of the given list and return the last pair, but reverse! additionally

resets cdr pointers on the way down.

- Map can naturally be viewed as a generalization of copy.

- Map and map-list differ only in the choice of generator.

* Expressing procedures in terms of slivers suggests alternate ways to implemient a

procedure. For examl)le, various classes of up accumulations can be changed to down

accumulations. For any binary accumulator f such that (fa(fbc)) = (fb(fac)) for all

a, b, and c, it is always possible to replace upQ by downQ. In the length procedure,

the function denoted by (lambda (elt count) (1+ count)) satisfies this condition,

so length can be changed to an iterative procedure by substituting downQ for upQ.

Another valid recursive to iterative transformation is to use the cdr-bashing trick to

replace (upQ init tcons synq) by (down-cons! init synq). This technique could

be used to make iterative versions of append, copy, map, and map-list. A host of

other transformations from the literature on program transformation [I)R76, Dar82,

Bac78, Bel86, Bir89a, Bir86, Bir88, Coh83, Str71, WS73, Pet84] find a convenient

expression in terms of slivers.

The above points indicate that, regardless of their appropriateness as an implementation

language, slivers are a powerful way to design, specify, reason about, and explain programs.

They form a basis of "subprocedural particles" into which many common procedures can be

easily decomposed; as such, they have excellent prospects for reusability. Although other

aggregate structures share many of these advantages, slivers additionally allow the program-

mier to express finer-grained control over the resultant computation when it's important to

(lo so. In this sense, it is possible to view the definitions in Figure 6.10 as specifications

for the operational behavior of the procedures; that they are executable specifications is an

added bonus.

241

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

6.1.3 Laziness

In the case of synquences, the 'lazy" in "synchronized lazy aggregates" means that neither

the element nor the tail of a synquence is computed until it is actually needed. (In compar-

ison, Scheme streams have lazy tails but not lazy elements.) Additionally, both elements

and tails are memoized [ASS85, Hug85] so that they are only computed once if they are

computed at all.

Laziness leads to two important features of synquences:

1. Synquences may be conceptually infinite.

2. An element is not computed if it never used.

Infinite Synquences

An easy way to generate an infinite synquence is to use genQ with a done? predicate that

is never true. The following sliver, which produces the successive powers of a base (starting

with the zeroth power), is based on this idea:

(define (powers base)

(genQ i

(lambda (prev) (* prev base))
(lambda (prev) #f)))

For example, the expression (powers 3) produces a conceptually infinite synquence with

elements 1, 3, 9, 27, 81, ..

In order to observe the initial elements of an infinite synquence, it is handy to define a

down-print sliver that prints out the successive elements of a synquence:

(define (down-print synq)

(for-eachQ output synq))

(define (for-eachQ proc synq)

(downQ 'ignore
(lambda (current ignore) (proc current))

synq))

For-eachQ is a higher-order sliver for iteratively performing a given procedure proc on

every element of a synquence. Output is an OPERA primitive for printing a given element

on a separate line preceded with OUTPUT:. Here is a sample use of down-print on the

powers-of-three synquence:

242

6.1. LINEAR COMPUTATIONS 243

OPERA> (down-print (powers 3))

------------------------: down [A,O]
(* 1 3) -- > 3

OUTPUT: 1

------------------------: down [A, 1]
OUTPUT: 3

(* 3 3) -- :> 9
-----------------------:down[A,2]
OUTPUT: 9

(* 9 3) -- > 27
…------------------------:down[A,3]

OUTPUT: 27
(* 27 3) ---> 81
-----------------------: down[A,4]
(* 81 3) ---> 243

OUTPUT: 81

----------------------- :down[A,5]

(* 243 3) ---> 729

Within each episode, the current power is printed and the next one is computed (in some

arbitrary order).

Most practical manipulation of infinite synquences requires somle means of truncating

the synquence o selecting elements from it. Here are some simple examples of infinite

synquence manipulation using some of the truncaters and selectors defined in Figures 6.1

and 6.2 (tracing has been turned off in these examples):

OPERA> (down-+ (truncateQe (lambda (n) (> n 10)) (powers 3)))

; Value: 13

OPERA> (down-+ (truncateQi (lambda (n) (> n 10)) (powers 3)))

; Value: 40

OPERA> (down-+ (prefixQ 4 (powers 2)))

; Value: 15

OPERA> (down-nthQ 10 (powers 2))

; Value: 1024

Infinite synquences can help us use the nth-down-scanQ procedure from Section 6.1.1
to compute Pascal's triangle. As depicted in Figure 6.11, the elements of Pascal's triangle
can be generated as the intermediate results of iteratively scanning an infinite sequence of
ones. Here is a procedure that produces the element at a given position in the array of
elements suggested by the figure:

(2CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

ones scan-+ scan-+ scan-+

Figure 6.11: One way to organize the computation of the elements of Pascal's triangle. The
circled numbers are the computed elements.

(define (pascal row column)

;; ROW and COLUMN are zero-based indices

(down-nthQ row

((nth-down-scanQ column 0 +) (ones))))

(define (ones)

(genQ 1 (lambda (x) x) (lambda (x) #f)))

Lazy Elements

The second feature of laziness (lazy elements) is more subtle. The computation of an

element is delayed until it is needed; if it is never required, it is never computed.

(Consider the contrived-sum sliver in Figure 6.12, which collects the current element if

the accumulated value is even but ignores it (and adds 1) if the accumulated value is odd.

As shown in the accompanying trace, the squaring operation is not performed on the even

numbers generated by (to-1 5) because that value is not required by the accumulator.

Although the savings is minimal in this case, it can be much larger if the mapped function

is expensive to compute.

Lazy elements serve the goal of operational faithfulness by modelling the kinds of con-

244

l

6.1. LINEAR COMPUTATIONS 245

(define (contrived-sum synq)

(downQ 0

(lambda (current sum)
(if (even? sum)

(+ current sum)

(1+ sum)))

synq))

OPERA> (contrived-sum (mapq square (to-1 5)))

-----------------------:down[A,O]

(zero? 5) -- > ()
(-1+ 5) -- :> 4

(square 5) -- > 25
(+ 25 0) -- > 25
-----------------------:down[A,1]

(zero? 4) -- > ()
(-1+ 4) --:> 3
(1+ 25) -- :> 26
----------------------- :down[A,2]
(zero? 3) -- > ()
(-1+ 3) -- :> 2
(square 3) -- > 9
(+ 9 26) ---> 35
---------- …------------- :down[A,3]

(zero? 2) --> ()
(-1+ 2) -- > 1
(1+ 35) -- > 36
------------------------ :down[A,4]
(zero? 1) ---> ()

(-1+ 1) -- > 0
(square 1) -- > 1
(+ 1 36) ---> 37
------------------------ :down[A,5]

(zero? O) ---> #t

; Value: 37

Figure 6.12: An example illustrating the laziness of sliver elements. Note that square is
not performed on even elements.

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

ditional computations found in monolithic recursions. The above example corresponds to

the following monolithic procedure:

(define (contrived-sum-mono n)
(define (loop num sum)

(if (zero? num)
sum

(if (even? sum)

(loop (-1+ num) (+ (square num) sum))

(loop (-1+ num) (1+ sum)))))

(loop n sum))

In this procedure, the evaluation of (square num) is controlled by the (even? sum) test.

In conjunction with a demnand-driven model of evaluation, lazy elements make it possible

to express this conditionalization in a modular fashion.

Sometimes it is desirable to override the default laziness of elements. (Consider what

happens if we collect the results of a map using cons:

OPERA> (downQ '() cons (mapQ square (to-1 2)))

-----------------------: down[A,O]
(zero? 2) -- > ()
(-1+ 2) --> 1

(cons lazon:50 ()) -- > (lazon:50)
----------------------: down[A,1]
(zero? 1) -- > ()
(-1+ 1) -- > 0

(cons lazon:51 (lazon:50)) --> (lazon:51 lazon:50)

…-----------------------:down[A,2]
(zero? 0) --> #t

; Value: (lazon:51 lazon:50)

In OPERA, cons does not require the values of its operands. If an operand to cons is a lazy

element, it appears as a lazon object that represents the delayed computation. Each of the

lazons in the above example represents a suspended squaring computation. If our goal is to

model a loop in which a squaring is performed each iteration, then the above computation

fails to meet this goal.

The computation suspended within a lazon is initiated by touching the lazon. A lazon

is automatically touched if it appears in a context that requires the value of the suspended

comp)utation.9 The touch procedure can be used to explicitly touch a lazon. Here is

9 Automatic touching distinguishes lazons from Scheme's delayed objects [ASS85], whose suspended com-
putations can only be explicitly touched via the force procedure.

246

6.1. LINEAR COMPUTATIONS

a modified version of the list collection example in which the first argument to cons is

explicitly touched:

OPERA> (downQ '()

(lambda (elt lst)

(cons (touch elt) lst))

(mapQ square (to-i 2)))

-----------------------:down[A,O]
(zero? 2) --> ()
(-1+ 2) -- > 1
(square 2) -- > 4
(cons 4 ()) -- > (4)
-----------------------: down[A,1]
(zero? 1) -- > ()
(-1+ 1) -- > 0
(square 1) -- > 1

(cons 1 (4)) -- > (1 4)

…-----------------------:down[A,2]
(zero? 0) -- > #t
; Value: (1 4)

Because of the touch, the squarings are performed in lock step with the creation of the

resulting list. The tcons procedure introduced in Section 6.1.1 is just a synonym for the

lambda expression in the above example.

We emphasize-! that the synquence processing model uses laziness and strictness to han-

dle different kinds of communication between program parts. Communication of arguments

and results across the barrier between a sliver call and its subcalls is strict by default. This

strictness models the behavior of strict call within a monolithic recursion. (:ommunication

of elements between one sliver and another is lazy by default to model the demand-driven

comlutation associated with one layer of a monolithic recursion. In the terminology of

Chapter 5, argument/result communication is strict, while consump/product communica-

tion is lazy (see Figure 5.4). Since these default mechanisms are not appropriate for every

situation, there are mechanisms for overriding the defaults.

6.1.4 Fan-in

The slivers examined up to this point take at most one input synquence. Many situations

require slivers that accept multiple input synquences. Such slivers are said to exhibit fan-in.

An inner product; sliver that computes the sum of the pairwise products of two synquences

is an example of a sliver with fan-in. According to the barrion preservation requirement

247

(CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

(see Section 5.4.2), a sliver with two synquence inputs must somehow combine each pair of

corresponding input barrions into a single output barrion. None of the slivers introduced

so far has this capability.

Fortunately, a single higher-order sliver is able to handle most forms of fan-in. This

sliver, map2Q, is just a generalization of mapQ that applies a given binary function to the

respective elements of two input synquences. The length of the result is the length of the

shorter input synquence. This property is particularly helpful when one synquence is finite

but the other is infinite.

With map2Q, an inner product sliver can be defined as:

(define (inner-product synql synq2)

(down-+ (map2Q * synql synq2)))

Figure 6.13 shows an execution trace for an application of inner-product in which the

first argument is finite and the second is infinite. The unmatched elements of the second

synquence are ignored because of the truncation property of map2Q.

Even in the presence of fan-in, each epsiode is still framed by a single pair of down

barriers. Each of the two generators (splay-list and powers) creates independent barrions

for each synchronization event, but map2Q unifies these into a single barrion. The lock step

processing of the slivers in the inner product example crucially depends on the sharing of

synchronization information entailed by barrion propagation and unification.

Like mapQ, map2Q has an across shape because its behavior is determined by context.

In the inner-product example, map2Q participates in an iteration, but it works in other

configurations as well. For example, Figure 6.14 illustrates how the mapped function is

forced to happen in the up phase when map2Q is wedged between two up scanners and an

up accumulator. It is important to note that truncation property of map2Q limits the length

of the result synquence, but does not prevent the extra up processing that must be done on

the longer input synquence. In a monolithic recursion, the same behavior could be obtained

by breaking the computation up into two stages: one in which the corresponding elements

of both inputs are processed, and one in which the "overflow" elements of the second inputs

are processed. The sliver approach is a decidedly simpler way of expressing this sort of

complex, staged recursion.

248

6.1. LINEAR COMPUTATIONS

OPERA> (inner-product (splay-list '(2 3 4)) (powers 10))

-:down[A,0]
(null? (2 3 4)) --> ()
(* 1 10) -- > 10
(car (2 3 4)) --> 2

(* 2 1) --> 2

(+ 2 0) --> 2

(cdr (2 3 4)) --> (3 4)

-----------------------: down[A,1]

(null? (3 4)) --> ()

(* 10 10) --> 100
(cdr (3 4)) --> (4)

(car (3 4)) --> 3

(* 3 10) --> 30

(+ 30 2) --> 32

-----------------------: down[A,2]

(null? (4)) --> ()

(* 100 10) -- > 1000
(car (4)) --> 4
(* 4 100) --> 400
(+ 400 32) --> 432

(cdr (4)) --> ()
----------------------- :down[A,3]
(null? ()) --> #t

; Value: 432

Figure 6.13: Sample execution trace of list-inner-product, a procedure that obtains
fan-in via map2Q.

249

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (up-cons (map2Q max

(up-scanQ 0 + (to-1 4))
(up-scanQ 1 * (splay-list '(7 5)))))

---------------------- :down [A,O]

(null? (7 5)) --> ()

(zero? 4) --> ()
(-1+ 4) --> 3

(cdr (7 5)) --> (5)

(car (7 5)) --> 7

-----------------------:down[A,1]

(zero? 3) --> ()

(null? (5)) --> ()
(-1+ 3) --> 2

(car (5)) --> 5

(cdr (5)) --> ()

-----------------------:down[A,2]

(null? ()) --> #t
(zero? 2) --> ()

(-1+ 2) -- >
-----------------------:down[A,3]

(zero? 1) --> ()

(-1+ 1) -- >
----------------------- :down [A,4]
(zero? O) --> #t
-----------------------:up[A,4]

(+ 1 0) --> 1
…----------------------:up[A,3]

(+ 2 1) --> 3

----------------------- :up[A,2]
(+ 3 3) --> 6

(* 5 1) --> 5

(max 6 5) --> 6

(tcons 6 ()) --> (6)

-----------------------:up[A,1]
(+ 4 6) --> 10

(* 7 5) --> 35

(max 10 35) --> 35

(tcons 35 (6)) --> (35 6)
-----------------------:up[A,O]
; Value: (35 6)

Figure 6.14: An example underscoring the across nature of map2Q. It is challenging to write
a monolithic recursion that exhibits this behavior.

250

6.1. LINEAR COMPUTATIONS 251

;;; Return a synquence of pairs of the corresponding elements of inputs.

;;; This is handy for constructing other slivers with fan-in.
(define (zipQ synql synq2)

(map2Q cons synql synq2))

;;; Mapper on three input synquences.
(define (map3Q f synql synq2 synq3)

(map2Q (lambda (eltl elt2&elt3)

(f eltl (car elt2&elt3) (cdr elt2&elt3)))
synql

(zipQ cons synq2 synq3)))

;;; Iterative accumulator over two input synquences. FUN is a ternary function
;;; that maps two elements and an accumulator value to a new accumulator value.
(define (down2Q fun synql synq2)

(downQ (lambda (pair acc)

(f (car pair) (cdr pair) acc))

(zipQ synql synq2)))

Figure 6.15: Many slivers that exhibit fan-in can be defined in terms of map2Q.

Figure 6.15 shows how map2Q can be used to construct some other slivers that accept

multiple synquence arguments. With the down2Q sliver defined there, inner-product could

be rewritten as:

(define (inner-product synql synq2)
(down2Q 0

(lambda (eltl elt2 sum) (+ (* eltl elt2) sum))
synql

synq2))

Not all slivers exhibiting fan-in can be defined in terms of map2Q. Consider the appendQ

sliver, whose blehavior is exhibited in Figure 6.16. AppendQ only begins processing its

second input synquence after completely processing the first. Note how the barrion label

associated with the synquence generated by to-1 (A) differs from the label associated with

synquence generated by splay-list (B). Because the two synquences are not processed in

lock step, the corresponding barrions are never unified. Because map2Q processes both inputs

in lock step, it cannot be used to define appendQ or other slivers with special processing

requirements for n.ultiple synquence inputs.

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (down-+ (appendq (to-1 2) (splay-list '(7 5))))
----------------------- :down[A,O]
(zero? 2) -- > ()
(-l+ 2) -- > 1
(+ 2 0) --> 2

-----------------------:down[A,1]
(zero? 1) --> ()

(-1+ 1) -- > O
(+ 1 2) --> 3

-----------------------:down[A,2]

(zero? O) -- > t
-----------------------:down[B,O]

(null? (7 5)) -- > ()
(cdr (7 5)) -- > (5)

(car (7 5)) -- > 7

(+ 7 3) --> 10
-----------------------:down[B,1]

(null? (5)) --> ()

(cdr (5)) --> ()

(car (5)) -- > 5

(+ 5 10) --> 15
-----------------------:down[B,2]

(null? ()) -- > #t
; Value: 15

Figure 6.16: A sample trace of appendQ.

252

6.1. LINEAR COMPUTATIONS

6.1.5 Fan-out

The lock step behavior and laziness illustrated in many of the examples up to this point is

not very remarkable. In most cases, similar behavior could be obtained using standard lazy

data structures (e.g., Scheme streams). The advantages of synquences over lazy lists are

best illustrated by sliver programs that exhibit fan-out. In this case, fan-out means either

that (1) a single synquence produced by one sliver is consumed by multiple slivers elsewhere

in a sliver network or (2) a sliver produces more than one synquence.

A simplle example of fan-out is a program that iteratively computes the average of a list

of numbers (see the sliver diagram in Figure 5.18 on page 5.18). Each of the three slivers

mailtntas one state variable of the iteration (current list, current sum, and current count).

The diagram exhibits fan-out because the synquence output of SPLAY-LIST is use as an

inplut to both DOWN-SUM and DOWN-COUNT.

A SYNAPSE program for the list averaging problem, along with a sample execution trace,

appears in Figure 6.17. The trace, which corresonds to the snapshot movie in Figure 5.19,

clearly shows that the network as a whole behaves like a monolithic iteration. In contrast,

a version using lazy lists rather than synquences could build up space linear in the size

of the input list. The synchronization information propagated by slags guarantees that

all the slivers work in concert; one cannot race ahead or lag behind the others. In this

respect, synquences resemble interprocess communication channels with bounded buffering.

Waters [Wat91] and Hughes [Hug84] also extend the aggregate data approach with forms

of synchronization in order to achieve this effect.

One advantage of slivers over the channel-based approaches and the other aggregate

data extensions is the ease with which recursion is handled in networks exhibiting fan-

out. (A more important advantage is the handling of tree-structured compuations, to be

discussed in Section 6.2.) For example, the list-averaging example can be turned into a

recursive process by changing one or both of the accumulating slivers to have up shape.

Figure 6.18 contains an example that corresponds to the snapshot movie in Figure 5.20.

The up barriers guarantee that the accumulations of the up phase proceed in lock step.

This accurately models the behavior of a monolithic recursion that takes a list and returns

253

254 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

(define (average-list-iter lst)

(let ((nums (splay-list lst)))

(/ (down-+ nums)

(down-length nums))))

; DOWN-+ as before

(define (down-length synq)

(downQ 0

(lambda (ignore count) (1+ count))

synq))

OPERA> (average-list-iter '(7 2 6))

-----------------------:down[A,O]

(null? (7 2 6)) --> ()
(cdr (7 2 6)) --> (2 6)
(1+ 0) --> 1

(car (7 2 6)) --> 7

(+ 7 0) --> 7
----------------------- :down[A,1]
(null? (2 6)) --> ()
(cdr (2 6)) --> (6)

(car (2 6)) --> 2

(+ 2 7) --> 9

(1+ 1) --> 2
…-----------------------:down [A,2]

(null? (6)) --> ()
(cdr (6)) --> ()
(car (6)) --> 6

(+ 6 9) --> 15

(1+ 2) --> 3

----------------------: down[A,3]
(null? ()) --> #t

(/ 15 3) -- > 5
; Value: 5

Figure 6.17: An iterative list averaging program and sample trace. The trace corresponds
to the snapshot movie in Figure 5.19.

6.1. LINEAR COMPUTATIONS

both its sum and its length.10

The lock step behavior of slivers extends to any shape-compatible network of slivers

arranged in a directed acyclic graph (DAG). Figure 6.19 shows a complex network exhibiting

fan-in, fan-out, and undirected cycles (i.e., slivers between which there are multiple paths).

The corresponding trace in Figure 6.20 illustrates the iterative behavior of the network.

6.1.6 Deadlock

In all of the examples presented above, slivers networks behaved like monolithic recursions

only because the slivers were carefully connected in shape-compatible ways. But not all

arrangements of slivers are shape-compatible. Consider the following example, which is

based on the arrangement shown earlier in Figure 5.10:

OPERA> (down-+ (mapQ square (up-scanQ 1 * (splay-list '(7 2 6)))))
------------------------: down[A,O]
(null? (7 2 6)) -- > ()
(car (7 2 6)) -- > 7

(cdr (7 2 6)) -- > (2 6)
+++++++++++++++++++++++++++++++++

DEADLOCK! -- pcall:38
+++++++++++++++++++++++++++++++++

The down-+ sliver requires synquence elements in the down phase of the computation,

but the upQ sliver does not produce any elements until the up phase. The upshot is that

computation reaches a deadlock state from which no progress can be made. In the above

trace, this state is marked by the DEADLOCK! indicator. (The information following the

indicator is debugging information that we will ignore.)

SYNAPSE employs a dynamic deadlock detection strategy. This means that a computa-

tion may be able to make some progress before deadlock is signalled. In the above example,

the splay-list generator is able to perform some list operations before a deadlock state is

reached. I)ynamlic deadlock detection also means that a program may deadlock for some in-

puts but not for others. If we make the input list empty in the above example, the resulting

comlputation will terminate normally because the circular dependency is never discovered:

t Lock step processing in the up phase is not always desirable. It is possible to design slivers that
synchronize in the down phase but not in the up phase, but I do not include examples of such slivers in this
report.

255

256 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

(define (average-list-rec lst)

(let ((nums (splay-list lst)))

(/ (up-+ nums)
(up-length nums))))

(define (up-+ nums)

(upQ 0 + nums))

(define (up-length nums)

(upQ o

(lambda (ignore count) (1+ count))

synq))

OPERA> (average-list-rec '(7 2 6))

-----------------------:down[A,O]

(null? (7 2 6)) -- > ()

(cdr (7 2 6)) -- > (2 6)

(car (7 2 6)) -- > 7

----------------------- :down[A, 1

(null? (2 6)) -- > ()
(cdr (2 6)) -- > (6)
(car (2 6)) -- > 2

-----------------------:down[A,2]

(null? (6)) -- > ()
(car (6)) -- > 6

(cdr (6)) -- > ()
-----------------------:down[A,3]

(null? ()) --> #t
-----------------------:up[A,3]

(1+ 0) -- > 1
(+ 6 0) -- > 6
-----------------------:up[A,2]

(+ 2 6) -- > 8
(1+ 1) -- > 2

-----------------------:up[A, 1]
(+ 7 8) --> 15
(1+ 2) --> 3
-----------------------:up[A,O]

(/ 15 3) --> 5

; Value: 5

Figure 6.18: A recursive list averaging program and sample trace. The trace corresponds
to the snapshot movie in figure 5.20.

6.1. LINEAR COMPUTATIONS

Figure 6.19: Complex sliver network exhibiting fan-in, fan-out, and undirected cycles. Since
all the components are iterative, the network will generate an iterative computation.

257

....

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (let ((numsl (from-to 10 11))

(nums2 (from-to 100 102))

(nums3 (from-to 1000 1003)))

(list (down-cons (map2Q max

(map2Q -

(mapQ square numsl)

numsl)

nums2))

(down-cons (map2Q + nums2 nums3))))
----------------------- :down[A,0]
(> 100 102) --> ()

(> 1000 1003) --> ()

(> 10 11) -- > ()
(1+ 1000) --> 1001

(1+ 100) --> 101
(+ 100 1000) --> 1100
(tcons 1100 ()) --> (1100)
(1+ 10) -- > 11
(square 10) --> 100

(- 100 10) --> 90

(max 90 100) --> 100

(tcons 100 ()) --> (100)

-----------------------:down[A,1]

(> 11 11) --> ()

(> 1001 1003) --> ()

(> 101 102) --> ()

(1+ 101) --> 102

(1+ 1001) --> 1002

(+ 101 1001) --> 1102

(tcons 1102 (1100)) --> (1102 1100)

(1+ 11) -- > 12

(square 11) --> 121

(- 121 11) --> 110

(max 110 101) --> 110

(tcons 110 (100)) --> (110 100)

-----------------------:down[A,2]

(> 1002 1003) --> ()

(> 12 11) --> t

(> 102 102) --> ()

(1+ 102) --> 103

(1+ 1002) --> 1003

(+ 102 1002) --> 1104

(tcons 1104 (1102 1100)) --> (1104 1102 1100)

-----------------------:down[A,3]

(> 1003 1003) --> ()

(> 103 102) --> #t

(cons (1104 1102 1100) ()) --> ((1104 1102 1100))

(cons (110 100) ((1104 1102 1100))) --> ((110 100) (1104 1102 1100))

; Value: ((110 100) (1104 1102 1100))

Figure 6.20: Sample trace generated by a computation specified by a complex sliver network.

258

6.1. LINEAR COMPUTATIONS

OPERA> (down-+ (mapQ square (up-scanQ 1 * (splay-list '()))))

------------------------ :down[A,O]

(null? ()) --> #t

----------------------- :up[A,O]

; Value: 0

From a high-level perspective, the source of the deadlock in the first example above is

that the computation defined by any sliver network is only allowed to buffer information

in a single stack. In the down phase, the computation is certainly capable of buffering the

outputs of splay-list and stacking the pending * operations. But the program additionally

requires the up phase of the computation to buffer the outputs of the up-scanQ sliver and

stack the pending + and square operations. Intuitively, this behavior requires two stacks,

and cannot be expressed with the single stack that characterizes a monolithic recursion.

The deadlock of this example is not a blemish, but is dictated by the goal of operational

faithfulness.

Since the order of summation does not matter in the example, deadlock can easily be

avoided by using up-+ rather than down-+ to accumulate the sum. More generally, however,

deadlock cannot be fixed with so simple a change. (Consider the following down-up-scan-+

procedure:

(define (down-up-scan-+ st)
(down-cons! '()

(down-scanQ 0 +
(up-scanQ 0 +

(splay-list lst)))))

A correct result for this procedure requires that the order of the up and down summations

are preserved. However, as written, the procedure will clearly deadlock on a non-empty

input.

It is almost always possible to circumvent deadlocks in sliver networks by explicitly

buffering intermediate data."1 Here is the definition of a simple buffer that first collects all

of the elements of a synquence into a list and then generates a new synquence from that

list:

(define (list-buffer synq)

(splay-list (up-cons synq)))

1] Buffering techniques cannot circumvent deadlocks due to unresolvable circularities in which the input
to a. primitive operator fundamentally depends on its output.

259

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

Figure 6.21 shows how a list-buffer sliver can be used to avoid deadlock by breaking the

single lock step component of down-up-scan-+ into two such components. Each component

to an independent lock step processing stage of the computation. The non-deadlocking

version of down-up-scan-+ and a sample trace appear in Figure 6.22.

Figure 6.21: A LIST-BUFFER sliver can be used to split a single lock step component (shaded
blob) into two lock step components.

Specifying explicit buffers may seem annoying, but it is the cost of the space consump-

tion guarantees provided by sliver decomposition. The implicit buffering provided by other

aggregate data approaches makes it hard to control the storage profiles of modular pro-

grams. Existing list and tree removal techniques (such as listlessness [Wad84, Wad85],

deforestation [Wad88, Chi92, GLJ93], and other transformations [Bel86, Bir89a]) automat-

ically remove some intermediate data structures, but they either are limited to restricted

network topologies or do not guarantee that all intermediate structures go away. In con-

260

6.1 i. LINEAR C(OMPUTATIONS 261

;;; A non-deadlocking version of the DOWN-UP-SCAN-+ presented in the text.

(define (down-up-scan-+ lst)

(down-cons! '()

(down-scanQ 0 +
(list-buffer

(up-scanQ 0 +
(splay-list lst))))))

OPERA> (down-up-scan-+ '(i 20))

---------------------- :down[A,O]
(null? (1 20)) -- > ()
(car (1 20)) -- > 1
(cdr (1 20)) --> (20)

-----------------------:down[A,1]

(null? (20)) --> ()
(car (20)) -- > 20
(cdr (20)) -- > ()
-----------------------:down[A,2]

(null? ()) -- > #t
------------------------ :up[A,2]
(+ 20 0) ---> 20
(tcons 20 ()) -- > (20)
------------------------ :up[A, 1]

(+ 1 20) ---> 21

(tcons 21 (20)) --> (21 20)

------------------------:up[A,O]

(cons ignore ()) --> (ignore)
------------------------:down[B,O]

(null? (21 20)) -- > ()
(car (21 20)) -- > 21

(+ 21 0) -- > 21

(cdr (21 20)) -- > (20)

(tcons 21 ()) -- > (21)
(set-cdr! (ignore) (21)) -- > #t

----------- …------------ :down[B,1]

(null? (20)) --> ()

(car (20)) --> 20

(+ 20 21) -- > 41

(cdr (20)) -- > ()
(tcons 41 ()) -- > (41)

(set-cdr! (21) (41)) -- > #t
-----------------------:down[B,2]

(null? ()) -- > #t

(cdr (ignore 21 41)) -- > (21 41)

; Value: (21 41)

Figure 6.22: Deadlock can often be avoided by using explicit buffering. Here list-buffer
resolves the shape incompatibility between up-scanQ and down-scanQ.

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

trast, slivers provide a framework in which programmers manipulate shaped components

to avoid or insert buffering. This is an approach similar to that embraced by Waters's se-

ries package, except that series only support linear, iterative computations whereas slivers

support recursions and tree-shaped computations.

In linear computations, deadlock is typically induced by an attempt to use in the down

phase a result computed in the up phase. But there are other dependencies that can

lead to deadlock. For instance, since appendQ begins processing its second argument only

after it completes processing of its first argument, a deadlock will be induced if the two

arguments share synchronization information. The following expression deadlocks because

the to-1 generator can't both immediately produce elements to feed the first argument of

appendQ but delay producing the same elements until the second argument is needed (see

Figure 6.23):

(let ((nums (to-1 3)))

(down-+ (appendQ nums nums)))

This deadlock can be removed by wrapping a list-buffer around the second argument.

Figure 6.23: An example of deadlock involving appendQ.

Another source of deadlock is wiring the non-slag output of one reducer to the non-slag

input of another sliver in the same network. Here are two expressions of this sort that give

rise to deadlock (see Figure 6.24):

(let ((nums (to-1i 3)))
(downQ (upQ 1 * nums) + nums))

(let ((nums (to-i 3)))

(upQ (downQ 1 * nums) + nums))

Due to the strict nature of call boundaries, both downQ and upQ require values for all

arguments before proceeding. But each example requires the final value of processing a slag

262

6.1. LINEAR COMPUTATIONS

to be availble before processing on the slag begins! This is a recipe for deadlock. Explicit

buffering can be used to avoid deadlock in both cases.

(a) Non-slag dataflow from up to down. (b) Non-slag dataflow from down to up.

Figure 6.24: Two examples of deadlock caused by non-slag dataflow.

The deadlocking network in Figure 6.24(b) can be fixed by a non-buffering method.

Since the initial value of the upQ isn't really required until the beginning of the up phase,

there's no intrinsic reason why that value can't be supplied by a down computation (which is

guaranteed to return before the up phase begins). The deadlock in this example is actually

a spurious one caused by the strictness convention of call boundaries. In this case, it is

safe to override the convention by introducing explicit non-strictness. Figure 6.25 shows

how wrapping an eagon around the result of the downQ allows the computation to proceed

without deadlock. Eagon is an OPERA special form that starts computing its argument

expression but immediately returns a placeholder for its result.l 2 While its value is being

conmputed, the placeholder can be passed into and returned from procedures, and stored

into and selected from data structures. Any operation that actually needs to examine the

placeholder's value must wait for its computation to complete. Using eagon in the example

"fools" the call boundary into "believing" that a value is available when it really isn't.

But this is fine, since the placeholder's value isn't required until after the down phase is

complete, by which time the placeholder value will be computed.

12Those familiar with futures will recognize that eagon is just another name for future. See the discussion
of eagons in Chapter 7.

263

264 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (let ((nums (to-1 3)))

(upQ (eagon (downQ 1 * nums)) + nums))

-----------------------:down[A,O]

(zero? 3) --> ()

(-1+ 3) -- > 2
(* 3 1) -- > 3
-----------------------:down[A,1]

(zero? 2) --> ()

(-1+ 2) -- > 1

(* 2 3) -- > 6
-----------------------:down[A,2]
(zero? 1) -- > ()
(-1+ 1) -- > 0
(* 1 6) -- > 6
-----------------------:down[A,3]

(zero? O) -- > #t
-----------------------:up[A,3]

(+ 1 6) -- > 7
-----------------------:up[A,2]

(+ 2 7) --> 9

-----------------------:up[A,1]

(+ 3 9) --> 12

-----------------------:up[A,O]

; Value: 12

Figure 6.25: OPERA'S non-strict eagon form can be used to fix a spurious deadlock.

6.1. LINEAR COMPUTATIONS

6.1.7 Filtering

Synquence slivers are designed to handle filtering in a reusable manner (see Section 5.5.3).

Gaps are introduced into a synquence by the filterQ sliver and are propagated by all

transducers except for scanners and reifyQ.

The following trace shows a simple example of a filtering:

OPERA> (downQ 0 + (mapQ square (filterQ even? (to-1 3))))

----------------------- :down[A, 1

(zero? 3) -- > ()
(even? 3) -- > ()
(-1+ 3) --> 2

----------------------- :down[A,2]
(zero? 2) -- > ()
(even? 2) -- > #t
(square 2) -- > 4

(+ 4 0) --> 4

(-1+ 2) --> 1

-----------------------: down[A,3]
(zero? 1) -- > ()
(even? 1) -- > ()
(-1+ 1) -- > O

…----------------------- :down[A,4]

(zero? 0) --- > #t

The computation sums the squares of all the even numbers in a given synquence. As

indicated by the trace, the mapper and summer ignore the slots associated with the odd

inputs.

A scanner fills a gapped slot with the current value of its accumulator:

265

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (downQ 0 + (down-scanQ 1 max (mapQ square (filterQ even? (to-1 3)))))
…-----------------------:down[A, 1

(zero? 3) --> ()
(even? 3) --> ()
(+ 1 0) -- > 1
(-1+ 3) --> 2
-----------------------:down[A,2]

(zero? 2) --> ()
(even? 2) --> #t

(square 2) --> 4

(max 4 1) --> 4

(+ 4 1) --> 5

(-1+ 2) --> 1

----------------------- :down[A,3]
(zero? 1) --> ()

(even? 1) --> ()

(+ 4 5) --> 9

(-1+ 1) --> 0
----------------------- :down[A,4]

(zero? O) --> #t

; Value: 9

Although the max operation of the scanner is only performed in the second slot, the output

of the scanner is a synquence of the elements 1, 4, and 4. These are summed by downQ to

yield a 9.

Sometimes it is desirable for a scanner to preserve the gaps of its inputs. This can be

accomplished with the help of the handy preserving-gaps procedure:

(define (preserving-gaps scanner)

(lambda (init op synq)

(map2Q (lambda (a b) a)

(scanner init op synq)

synq)))

Preserving-gaps maps a given scanner into a gap-preserving scanner using the gap-

preserving properties of the map2Q sliver (see Figure 5.22). If this procedure is used in

the above example, the synquence consumed by the summer will contain a 4 wedged be-

tween two gaps:

266

6.1. LINEAR (COMPUTATIONS

OPERA> (downQ 0 +
((preserving-gaps down-scanQ)

1

max

(mapQ square (filterQ even? (to-1 3)))))
---------- …------------- :down[A,1]
(zero? 3) ---> ()
(even? 3) ---> ()
(-1+ 3) --> 2
------------------------: down[A,2]
(zero? 2) ---> ()
(even? 2) ---> #t

(square 2) --> 4

(max 4 i) --> 4

(+ 4 0) --> 4

(-1+ 2) --> 1

-----------------------:down[A,3]
(zero? 1) -- > ()
(even? 1) -- > ()
(-1+ 1) -- >
-----------------------:down[A,4]
(zero? O) --> #t

; Value: 4

267

Up accumulators and scanners exhibit the desirable behavior of aggresively testing for

gaps in the down direction. In the following trace, there is no pending stack frame corre-

sponding to the the 2 input because a upQ effectively makes a tail call for that input:

OPERA> (upQ 0 + (filterQ odd? (to-1 3)))
-----------------------: down[A,1]
(zero? 3) --> ()

(odd? 3) --> #t

(-l+ 3) --> 2

…-----------------------:down[A,2]
(zero? 2) --> ()
(odd? 2) -- > ()
(-1+ 2) --> 1

-----------------------:down[A,3]

(zero? 1) ---> ()

(odd? 1) --:> #t

(-1+ 1) -- > 0
-----------------------: down[A,4]
(zero? O) ---> #t
------------------------ :up[A,41
(+ 0) -- > 1
-----------------------:up[A,2] ; *** Missing frame here
(+ 3 1) --> 4
------------------------ :up[A,1]
; Value: 4

268 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

This desirable behavior is even exhibited by parallel combinations of slivers that indepen-

dently filter a shared input. For example, the computation in Figure 6.26 is a parallel

combination of a filtered up sum accumulator and a filtered up product accumulator. Note

a stack frame is pushed in the resulting computation only if one of the accumulators has

a pending operation to perform in that frame. No frame is pushed for slots in which both

accumulators process a gap (e.g. the slot for which to-1 produces 2).

OPERA> (let ((nums (to-1 4)))

(cons (upq 0 + (filterQ odd? nums))

(upQ 1 * (filterQ (lambda (x) (> x 2)) nums))))

…-----------------------:down[A,1]

(zero? 4) --> ()
(> 4 2) --> #t

(odd? 4) --> ()

(-1+ 4) --> 3
…-----------------------:down[A,2]

(zero? 3) --> ()

(> 3 2) --> #t

(odd? 3) --> #t

(-1+ 3) --> 2

----------------------- :down[A,3]
(zero? 2) --> ()

(odd? 2) --> ()

(> 2 2) --> ()

(-l+ 2) -->

----------------------- :down [A, 4]
(zero? 1) --> ()
(odd? 1) --> #t

(> 1 2) --> ()

(-l+ 1) -- >
------------------------ :down[A,5]

(zero? O) --> #t
---------------------- :up [A,5]
(+ 1 0) -- > 1
-----------------------:up[A,3] ; *** Missing frame here
(+ 3 1) --> 4
(* 3 1) --> 3
-----------------------:up[A,2]

(* 4 3) --> 12
----------------------- :up [A, 1]

(cons 4 12) --> (4 . 12)

; Value: (4 . 12)

Figure 6.26: Trace illustrating the proper interleaving of independently filtered parallel up
computations. Note that there is no up frame for the slot where both filter tests fail.

6.2. TREE COMPUTATIONS6

Despite the apparent aggressive testing in the down phase, upQ and up-scanQ still deal

appropriately with gaps that are determined in the up phase. Figure 6.27 shows a trace of

a computation w-ith filtering in both the down and up phases (the computation is similar to

that of the sliver diagram depicted in Figure 5.26). The odd? tests that occur in the down

phase determined that there are only three stacked frames. The even? tests are required to

occur' in the up phase. Only one * operation is performed because only one output of the

scanner is even.

Achieving these kinds of expected fine-grained operational behavior for filtered syn-

quences is one of the technical triumphs of SYNAPSE. See Section 7.2.4 for an explanation

of how it all works.

6.2 Tree Computations

SYNAPSE supports tree computations through a suite of slivers that manipulate syndrites

(synchronized lazy trees). These are summarized in Figures 6.28 - 6.30.

Syndrite slivers are natural extensions to the synquence slivers presented in the previ-

ous section. Syndrite generators, mappers, and filters are just tree-shaped versions of the

corresl)onding syn.quence operators. However, syndrite accumulators and scanners support

a much richer shape vocabulary than their linear cousins. For example, tree nodes can be

processed in parallel either down or up the branches of a tree; or they can be processed in

a wide variety of sequential traversals.

We will only consider sequential traversals that follow the same node-processing strategy

at each node. Such traversals can be characterized by two properties:

I. The order of a sequential traversal specifies when the element of a node is processed

relative to the processing of its children. There are three classes of orders:

(a) pre-order: an element of a node is processed before any of its children's elements.

(b) in-oirder: an element of a node is processed after some of its children's elements

but before other of its children's elements.

(c) post-order: an element of a node is processed after all of its children's elements.

269

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (upQ 1 * (filterQ even? ((preserving-gaps up-scanQ)
0

(filterQ odd? (to-1 5)))))

-----------------------:down[A,1]
(zero? 5) --> ()

(odd? 5) --> #t

(-1+ 5) --> 4
-----------------------:down[A,2]

(zero? 4) --> ()

(odd? 4) -- > ()
(-1+ 4) --> 3

-----------------------:down[A,3]

(zero? 3) --> ()
(odd? 3) -- > #t
(-1+ 3) --> 2
-----------------------:down[A,4]

(zero? 2) --> ()
(odd? 2) -- > ()
(-1+ 2) -- > 1
----------------------- :down[A,5]
(zero? 1) --> ()
(odd? 1) --> #t
(-1+ 1) -- > 0
-----------------------:down[A,6]

(zero? O) -- > #t
----------------------:up [A,6]
(+ 1 0) -- > 1

(even? 1) --> ()
-----------------------:up[A,4]

(+ 3 1) -- > 4

(even? 4) --> #t
(* 4 1) --> 4
-----------------------:up[A,2]

(+ 5 4) -- > 9

(even? 9) --> ()
-----------------------:up[A,1]
; Value: 4

Figure 6.27: Trace illustrating the desirable properties of synquence filtering.

270

6.2. TREE (VO.MPUTATIONS

Generators:

(genDi initial-state element&next-states) [parallel down]
Generates a syndrite whose element values are computed from a "state" that is passed down
the tree in a parallel down fashion. At every syndrite node, the node element and child states
are determined by the element&next-states procedure, which takes the current state of the
node and a two-argument receiver, and calls the receiver on the desired element and a list of
child states. A syndrite branch terminates when the list of child states is empty.

(genDe initial-state element&next-states done?) [parallel down]
Like genDi, except applies done? to the node state before calling elenlenlt&next-states. If
done? returns true, then the current branch is terminated with a gap element; otherwise
element&next-states is used to compute the element and next states.

Figure 6.28: A sullmary of SYNAPSE'S syndrite generating slivers.

The pre and post sliver shapes indicate the pre-order and post-order strategies, re-

spectively. The in shape of syndrite slivers corresponds to processing a node element

after the processing the first child but before processing the rest of the children. This

is only one instance of the in-order strategy, but it has the nice property that for

binary syndrites it corresponds to the traditional notion of in-order processing on

binary trees [Knu73].

2. The direction of a sequential traversal specifies the order in which a node's children

are processed. If the children are assumed to have a default left-to-right ordering, then

the direction can be specified as a permutation on this ordering. Any permutation

is allowed, but in our examples, we will only consider the identity permuation (a

left-to-right traversal) and a reversing permutation (a right-to-left traversal).

In SYNAPSE, the direction argument to various sequential transducers and reducers

is expected to be a pair of procedures: a list permutation and its corresponding

inverse permutation. The inverse permutation is used by transducers to reconstruct

the original ordering of children after permuting them. Here's how the two standard

directions are defined:

271

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

Reducers:

(upD op gap-op synd)
Recursively accumulates the elements of
element is not a gap, op is applied to the
for each child. At a node whose element is
results for each child.

[parallel up]
synd using op and gap-op. At every node whose
node element and a list of the accumulated results
a gap, gap-op is applied to a list of the accumulated

(preD direction init op synd) [direction pre]
Starting with init, uses op to accumulate the elements of synd in a pre-order walk over the
syndrite. A pre-order walk processes the element at a node before processing and children.
At every node, op is applied to the element and the current accumulated value. Direction
specifies the direction of the walk (e.g., left-to-right, right-to-left); see the text to see how
directions are specified.

(inD direction init op synd) [direction in]
An in-order sequential accumulation over synd. An in-order walk processes the element at a
node after processing the first child but before processing the other children.

(postD direction illit op synd) [direction post]
A post-order sequential accumulation over synd. A post-order walk processes the element at
a node after processing all of the children.

(up-firstD synd) [parallel up]
Returns the top element of a syndrite. Signals an error if the top element is a gap.

(pre-lastD direction synd) [direction pre]
Returns the last (non-gap) element processed in a direction pre-order walk over synd. Signals
an error if no element is found.

(in-lastD direction synd)
In-order version of pre-lastD.

(post-lastD direction synd)
Post-order version of pre-lastD.

(pre-nthD direction index synd)
Returns the indexth (non-gap) element processed in a direction pre-order
Signals an error if synd does not contain index elements.

(in-nthD direction index synd)
In-order version of pre-nthD.

(post-nthD direction index synd)
Post-order version of pre-nthD.

[direction in]

[direction post]

[direction pre]
walk over synd.

[direction in]

[direction post]

Figure 6.29: A summary of SYNAPSE's syndrite reducing slivers.

272

6.2. TREE COMPUTATIONS

Transducers:

(mapD full synd) [across]
Returns the! syndrite resulting from the elementwise application of full to synd.

(map2D fun syndil synd2) [across]

Returns the! syndrite resulting from the elementwise application of full to corresponding ele-
ments of syndl and synd2. An output element is a gap if either input element is a gap.

(filterD pred synd) [across]
Returns a syndrite with the same structure as synd in which every element satisfying pred is
mapped to itself and all other elements are mapped to gaps.

(reifyD obj synd) [across]
Returns a syndrite that maps every gap of synd to obj and every ungapped element to itself.

(unreifyD obj snd) [across]
Returns a syndrite that maps every instance of obj in synd to a gap and every other element
to itself.

(down-scanD init op synd) [parallel down]
Returns the syndrite of intermediate accumulated values in an iterative accumulation of each
branch of synd using combiner op and initial value init.

(up-scanD op galp-op synd) [parallel up]

Returns the syndrite of intermediate accumulated values in a parallel recursive accumulation
of synd using the combiner op at ungapped nodes and the combiner gap-op at gapped nodes.

(pre-scanD direction init op synd) [direction pre]
Returns the syndrite of intermediate accumulated values in a sequential direction pre-order
accumulation of synd using combiner op and initial value init.

(in-scanD direction iit op synd) [direction in]
In-order version of pre-scanD.

(post-scanD direction init op synd) [direction post]
Post-order ve rsion of pre-scanD.

(down-shiftD init synd) [parallel down]
Returns a syndrite with the same structure at synd, but in which every ungapped element
location has the value of the first ungapped element found on the path from the parent of the
location to the root. If there is no ungapped element on the path to the root, init is used.

Figure 6.30: A summary of SYNAPSE'S syndrite transducing slivers.

273

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

;;; The direction abstraction

(define (make-direction permute unpermute)

(cons permuter unpermuter))

(define permuter car)
(define unpermuter car)

;;; Left-to-right direction

(define l->r

(make-direction (lambda (lst) lst) (lambda (lst) st)))

;;; Right-to-left direction

(define r->l

(make-direction reverse reverse))

6.2.1 Simple Examples

Before investigating applications of the syndrite slivers, we first exercise them in some simple

situations. The examples will employ the following routines, which represent one way to

convert between s-expressions (parenthesized tree notation) and syndrites:

(define (splay-tree top-sexp)

(genDi top-sexp

(lambda (sexp return)

(if (pair? sexp)

(return (car sexp) (cdr sexp))

(return sexp '())))))

(define (glom-tree synd)

(upD (lambda (elt subtrees)

(if (null? subtrees)
elt

(cons elt subtrees)))

(lambda (subtrees)

(if (null? subtrees)

'*gap*

(cons '*gap* subtrees)))

synd))

Let A stand for an atom (non-pair) and Si stand for any s-expression. Then splay-tree

treats A as a syndrite leaf node whose element is A and (So SI ... S,) as an syndrite inter-

mediate node whose element is So and whose children are the recursive results of converting

S, ... S,,. The element structure of the syndrite resulting from applying splay-tree to

(a (b c d) e (f (g h))) is shown in Figure 6.31. Glom-tree performs the inverse con-

version, but fills any gapped positions with the symbol *gap*.

274

6.2. TREE COMPUTATIONS

Figure 6.31: The tree corresponding to the syndrite created by
(splay-tree '(a (b c d) e (f (g h)))).

Splay-tree gives one example of the use of a syndrite generator. Here are two more

examples, which underscore the difference between genDi and genDe:

(glom-tree (genDi 1

(lambda (n return)

(if (> n 4)

(return n '())
(return n (list (* 2 n) (+ 1 (* 2 n))))))))

Value: (1 (2 (4 8 9) 5) (3 6 7))

(glom-tree (genDe 1

(lambda (n return)

(return n (list (* 2 n) (+ 1 (* 2 n)))))
(lambda (n) (> n 4))))

; Value: ((2 (4 *gap* *gap*) *gap*) (3 *gap* *gap*))

Both examples produce a breadth index tree (see page 155), in which the number at each

node is doubled before being passed to the left subtree, and is doubled and incremented

before being passed to the right subtree. The genDi version terminates the tree when a

number larger than 4 is encountered, but includes the number in the tree. The genDe

version excludes numbers larger than 4 by putting gaps in their positions.

Figure 6.32 illustrates the different syndrite accumulation strategies by performing cons

accumulations over the syndrite created by (splay-tree '(a b c)). A cons accumulation

with upD is similar to glom-tree except that the leaves of the resulting tree are parenthe-

sized. (Also, the no-gaps gap accumulator is used to indicate that no gaps are expected

in the input.) Left-to-right and right-to-left versions of preD, inD, and postD give all six

possible permutations of a three element list. In the sequential accumulation examples, the

275

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

numbers are listed in the reverse order that they are processed because later elements are

prepended to the list of elements processed earlier. By using the cdr-bashing technique, it

is possible for the accumulators to construct a list of the elements in the order visited.

OPERA> (define (sample-syndrite) (splay-tree '(a b c)))

OPERA> (define (no-gaps lst)

(error "NO-GAPS: found a gap where none expected."))

OPERA> (upD cons no-gaps (abc))

; Value: (a (b) (c))

OPERA> (preD l->r '() cons (abc))

; Value: (c b a)

OPERA> (preD r->l '() cons (abc))

; Value: (b c a)

OPERA> (inD l->r '()

; Value: (c a b)

OPERA> (inD r->l '()

; Value: (b a c)

OPERA> (postD l->r '
; Value: (a c b)

OPERA> (postD r->l '
; Value: (a b c)

cons (abc))

cons (abc))

() cons (abc))

() cons (abc))

Figure 6.32: Examples of different shapes of syndrite accumulation.

Examples of syndrite scanning appear in Figure 6.33. In each case, the result is a tree

of intermediate cons accumulations. The length of the list in each tree position indicates

the order in which the nodes are visited. For example, the result ((a c b) (b) (c b))

indicates that the b node was visited first, the c node was visited second, and the a node

was visited last.

Syndrite mapping and filtering operations are across operators that simply perform

elementwise application:

276

6.2. TREE COMPUTATIONS

OPERA> (glom-tree (down-scanD '() cons (abc)))

; Value: ((a) (b a) (c a))

OPERA> (glom-tree (up-scanD cons no-gaps (abc)))
; Value: ((a (b) (c)) (b) (c))

OPERA> (glom-tree (pre-scanD l->r '() cons (abc)
; Value: ((a) (b a) (c b a))

OPERA> (glom-tree (pre-scanD r->l '() cons (abc)
; Value: ((a) (b c a) (c a))

OPERA> (glom-tree (in-scanD l->r '() cons (abc))
; Value: ((a b) (b) (c a b))

OPERA> (glom-tree (in-scanD r->l '() cons (abc))

; Value: ((a c) (b a c) (c))

OPERA> (glom-tree (post-scanD l->r '() cons (abc
; Value: ((a c b) (b) (c b))

OPERA> (glom-tree (post-scanD r->l '() cons (abc
; Value: ((a b c) (b c) (c))

Figure 6.33: Examples of different shapes of syndrite scanning.

)

)

277

))

))

)))

)))

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

(define (sample) (splay-tree '(1 (2 3 4) 5 (6 (7 8)))))

OPERA> (glom-tree (mapD square (sample)))

; Value: (1 (4 9 16) 25 (36 (49 64)))

OPERA> (glom-tree (filterD even? (sample)))

; Value: (*gap* (2 *gap* 4) *gap* (6 (*gap* 8)))

In an ungapped tree, syndrite shifting moves each node element one level down every branch

from the node. In the presence of gaps, an element replaces the next element accessible

down each branch:

OPERA> (glom-tree (down-shiftD 17 (big-synd)))
; Value: (17 (1 2 2) 1 (1 (6 7)))

OPERA> (glom-tree (down-shiftD 17 (filterD even? (big-synd))))

; Value: (*gap* (17 *gap* 2) *gap* (17 (*gap* 6)))

6.2.2 Shape Combinations

Perhaps the most important feature of syndrite slivers is that their process shapes combine

in a reasonable way. We will present a series concrete examples of traces to help build

intuitions about these combinations.

We consider operations on a simple binary tree:

(define (binary) (splay-tree '(1 (2 3 4) (5 6 7))))

Figure 6.34 shows sample traces of left-to-right pre-order and post-order accumulations on

binary. 1 3 Because of the way the tree is structured, the barrion index labelling a dotted

barrier corresponds to the numeric element held by the syndrite with that barrion. For

the pre-order case, the barriers indicate that accumulation of element n7 always happens

immediately after the down rendezvous at the barrier labelled n. In the post-order case,

the accumulation of element n occurs directly before the up rendezvous at the barrier

labelled n.

The barriers also indicate that the pre-order accumulator makes some tail calls while the

post-order accumulator does not. In the post-order case, every down barrier has a matching

up barrier, signifying a post-order tree walker must return from every call. However, in

'3 The traces only show instances of the + and * operators.

278

6.2. TREE COMPUTATIONS 279

OPERA> (preD l->r 1 * (binary))
…-----------------------:down[A,]

(* 1 1) -- > 1

-----------------------:down[A,2]

(* 2 1) --> 2

----------------------- :down[A,3]

(* 3 2) --> 6

----------------------- :up[A,3]
----------------------- :down [A,4]
(* 4 6) -- > 24
----------------------- :up[A,2]

----------------------- :down[A,5]
(* 5 24) --> 120

-----------------------: down [A,6]

(* 6 120) ---> 720
---------- …------------- :up[A,6]

…-----------------------:down[A,7]

(* 7 720) ---> 5040
; Value: 5040

OPERA> (postD l->r 0 + (binary))

------------------------ :down[A,1]
------------------------: down[A,2]

------------------------ :down[A,3]

(+ 3 0) -- > 3
…-----------------------:up[A,3]

-----------------------: down[A,4]

(+ 4 3) -- > 7
____-------------------:up[A,4]

(+ 2 7) -- > 9
------------------------ :up[A,2]

…----------------------- :down[A,5]

…-----------------------: down [A, 6]

(+ 6 9) -- > 15
----------------------- :up[A,6]
----------------------: down[A,7]
(+ 7 15) -- > 22

… :____----------------- :up[A,7]
(+ 5 22) -- > 27
___------------------- :up[A,5]
(+ 1 27) -- > 28
----------------------- :up[A,1]

; Value: 28

Figure 6.34: Traces of left-to-right pre-order and post-order accumulations of a binary tree.

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

the pre-order case, there are only three up barriers for the seven down barriers. These up

barriers correspond to cases where the tree walker must return from a call, while the missing

ones indicate calls for which the tree-walker does not return. In particular, the pre-order

accumulator returns to top-level immediately after processing 7 because there is no work

left to be done. In constrast, the post-order accumulator still needs to pop a stack of two

pending accumulations after it processes 7.

Combining the above two processes in parallel retains the character of the individual

processes. Figure 6.35 shows the trace of a sample parallel combination. Every operation

still appears at the same relative location. The combined process returns from every call

because one of the components does. If we instead combine two pre-order accumulators,

the result is guaranteed to look like a single pre-order process (Figure 6.36). If we change

the directions of the two accumulators to be incomlpatible, a deadlock results:

OPERA> (let ((bin (binary)))
(cons (preD 1->r 1 * bin)

(postD r->l 0 + bin)))
-----------------------:down[A,1]

(* 1) -- > 1
+++++++++++++++++++++++++++++++++

DEADLOCK! -- prim-cons:52
+++++++++++++++++++++++++++++++++

Using scanners, different tree walking processes can be combined in series. Figure 6.37

shows the trace of a series combination of a pre-order scanner and a post-order accumulator.

The trace inherits its post-order shape from the accumulator. In contrast, a pre-order shape

results from the series combination of a pre-order scanner and a pre-order accumulator

(Figure 6.38). As expected, incompatible series combinations will lead to deadlock. For

example, a pre-order accumulator would require the result of a post-order scanner sooner

than the scanner could produce it:

OPERA> (preD 1->r 1 *
(post-scanD l->r 0 +

(binary)))

-----------------------: down [A, 1]
++++++++++++++++++++++++++++++++++++

DEADLOCK! -- pcall:54
+++++++++++++++++++++++++++++++++

280

6.2. TREE COMPUTATIONS 281

OPERA> (let ((bin (binary)))

(cons (preD l->r 1 * bin)
(postD l->r 0 + bin)))

----------------------- :down [A, 1]
(* 1 1) -- >
----------------------- :down[A,2]
(* 2 1) -- > 2

…-----------------------:down[A,3]

(* 3 2) -- > 6
(+ 3 0) -- > 3

:-----------------------:up[A,3]

------------------------ :down[A, 4]
(+ 4 3) -- > 7

(* 4 6) -- > 24
------------------------ :up[A,4]
(+ 2 7) -- u, 9
------------------------ :up[A,2]

------------------------ :down[A,51
(* 5 24) -- > 120
-----------------------:down [A,6]
(+ 6 9) --> 15

(* 6 120) -- > 720
------------------------ :up[A,6]

…-----------------------:down[A,7]

(* 7 720) -- > 5040
(+ 7 15) --> 22

-----------------------:up[A,7]

(+ 5 22) -- > 27
----------------------- :up [A,5]
(+ 1 27) -- > 28
----------------------- :up[A,1]
; Value: (5040 . 28)

Figure 6.35: Trace of a parallel combination of pre-order and post-order accumulators.

282 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (let ((bin (binary)))

(cons (preD l->r 1 * bin)
(preD l->r 0 + bin)))

----------------------- :down [A, 1]
(+ I 0) -- > 1
(* 1 1) -- > 1
-----------------------:down[A,2]

(+ 2 1) --> 3
(* 2 1) -- > 2

-----------------------:down[A,3]

(* 3 2) -- > 6
(+ 3 3) -- > 6
-----------------------:up[A,3]

----------------------- :down[A,4]
(+ 4 6) --> 10
(* 4 6) --> 24
-----------------------:upEA,2]

---------------------- :down[A,5]
(* 5 24) -- > 120
(+ 5 10) --> 15
-----------------------:down[A,6]

(* 6 120) -- > 720
(+ 6 15) -- > 21
-----------------------:up[A,6]

-----------------------:down[A,7]

(+ 7 21) --> 28
(* 7 720) -- > 5040
Value: (5040 . 28)

Figure 6.36: Trace of a parallel combination of two pre-order accumulators.

6.2. TREE COMPUTATIONS 283

OPERA> (postD l->r 0 +

(pre-scanD l->r 1 *

(binary)))
----------------------- :down [A,1]

(* 1 1) -- > 1
------------------------:down[A,2]

(* 2 1) -- > 2

------------------------ :down [A, 3]

(* 3 2) -- > 6

(+ 6 0) -- > 6
------------------------ :up[A,3]
------------------------ :down[A,4]
(* 4 6) -- > 24
(+ 24 6) ---> 30
------------------------ :up[A,4]
(+ 2 30) ---> 32

…------------------------:up[A,2]

…------------------------:down [A,5]

(* 5 24) -- > 120
-----------------------:down[A,6]
(* 6 120) --> 720
(+ 720 32) -- > 752
------------------------ :up[A,6]
------------------------ :down [A, 7]
(* 7 720) -- > 5040
(+ 5040 752) -- > 5792
------------------------ :up[A,7]
(+ 120 5792) -- > 5912
----------------------- :up[A,5]

(+ 1 5912) --> 5913
----------------------- :up [A, 1]
; Value: 5913

Figure 6.37: Trace of a series combination of a pre-order scanner and a post-order accumu-
lator.

284 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (preD 1->r 0 +

(pre-scanD l->r 1 *

(binary)))

-----------------------:down[A,1]

(* 1 1) -- > 1
(+ 1 0) -- > 1

----------------------- :down [A, 2]
(* 2 1) -- > 2

(+ 2 1) -- > 3

----------------------- :down[A,3]

(* 3 2) -- > 6
(+ 6 3) -- > 9
-----------------------:up[A,3]

-----------------------:down[A,4]

(* 4 6) -- > 24
(+ 24 9) --> 33
-----------------------:up[A,2]

----------------------- :down[A,5]
(* 5 24) -- > 120
(+ 120 33) -- > 153
----------------------- :down[A,6]
(* 6 120) -- > 720
(+ 720 153) -- > 873
-----------------------:up[A,6]

-----------------------:down[A,7]

(* 7 720) -- > 5040
(+ 5040 873) -- > 5913
; Value: 5913

Figure 6.38: Trace of a series combination of a pre-order scanner and a pre-order accumu-
lator.

6.2. TREE COMPUTATIONS

Mappers, filters, up accumulators, and parallel down and up scanners have malleable

shapes that depend on the context in which they are used. For instance, Figure 6.39 shows

how a down scanner conforms to shape constraints supplied by other slivers. When used in

conjunction with a left-to-right accumulator, down-scanD is guaranteed to perform accu-

mulations in a left-to-right order. However, with a right-to-left accumulator, down-scanD

will perform its accumulations in a right-to-left order. If combined with a parallel up accu-

mulator, the operations of down-scanD can happen in any order consistent with the data

dependencies.

The final trace in Figure 6.39 illustrates an important fact about parallel tree shapes.

If a lock step complonent contains only slivers with parallel down and up shapes, then

the entire component has a parallel shape. This means that independent branches can be

processed concurrently. For example, the sample trace shows that the processing of the

2 and 3 elements is interleaved. While such parallel processing can lead to more efficient

execution times in the presence of multiple processors, it can also lead to much greater

storage consumlption. In the uniprocessor environment we have been assuming, the time

efficiency vanishes but the space inefficiency remains. A programmer wishing to control

space behavior must explicity add sequentiality to a parallel-shaped tree process in order

to obtain desirable space behavior.

6.2.3 Extended Example: Alpha Renaming

As a practical example of syndrites, we show how the monolithic alpha renaming program

introduced in Section 2.2 can be expressed as a modular SYNAPSE program. We also consider

some extensions that are easily supported by the modular program.

A Sliver-based Alpha Renamer

Figure 6.40 is a sliver diagram for alpha renaming. TERM->SYNDRITE and SYNDRITE->TERM

convert terms represented as s-expressions into syndrites. FILTER-FORMALS is a filter that

passes only the formal parameters of abstraction nodes. UNIQUE-NAMES returns a tree of

names such that the ungapped positions of its input map to unique outputs. Given a tree

of names and a tree of values, BIND returns a tree of environments, where each environment

285

286 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

OPERA> (define (tiny) (splay-tree '(1 2 3))) ; Value: tiny

OPERA> (preD l->r 1 * (down-scanD 4 + (tiny)))
-----------------------: down[A,1]
(+ 1 4) -- > 5
(* 5 1) -- > 5
-----------------------: down[A,2]
(+ 2 5) -- > 7
(* 7 5) -- > 35
-----------------------:up[A,2]

-----------------------:down[A,3]

(+ 3 5) -- > 8
(* 8 35) --> 280

; Value: 280

OPERA> (preD r->l 1 * (down-scanD 4 + (tiny)))
-----------------------: down[A,1]
(+ 1 4) -->

(* 5 1) --> 5
-----------------------: down[A,2]
(+ 3 5) --> 8

(* 8 5) -- > 40
-----------------------:up[A,2]

-----------------------:down[A,3]

(+ 2 5) --> 7

(* 7 40) -- > 280
Value: 280

OPERA> (upD (lambda (elt lst) (* elt (*-list lst)))
no-gaps
(down-scanD 4 + (tiny)))

-----------------------:down[A,1]

(+ 1 4) -- > 5
----------------------- :down[A,2]
-----------------------: down [A,3]
(+ 2 5) --> 7

(* 7 1) -- > 7

(+ 3 5) --> 8

---------------------- : up[A,2]
(* 8 1) --> 8
-----------------------:up[A,3]
(* 8 1) -- > 8
(* 7 8) --> 56
(* 5 56) -- > 280
-----------------------: up[A,1]
; Value: 280

Figure 6.39: Traces illustrating the malleable nature of down-scan.

6.2. TREE COMPUTATIONS

is a set of name/value bindings. At every position, an environment extends the bindings of

its parent with the name and value at that position. RENAME takes a syntax tree and a tree

of environments and returns a similarly shaped syntax tree in which each occurrence of a

namIe (formal parameter and variable reference) is replaced by the corresponding value in

the environment at the same position.

original
lambda
term

x ,/\ x

.'1I i

1 X,2 2.13 .1,4

2 /,@ 4
3 1

................................. .,..

final
lambda

term

1

/1\ ,2\
1 2 3

I I
2 /3\

4

4

/ X=1\
x=1 x=2

x=2

x= l

y=3, x=4
x=1 I

x=4
y=3,

/x= 1\
y=3, y=3,

Figure 6.40: A signal processing style view of alpha renaiming.

In the figure, each of the slags is annotated with a tree that represents the syndrite

transmitted by the slag for sample input:

(lambda x
(call (call x

(lambda x x))

(call (lambda y (call y x))

(lambda x x)))))

x

i X Y X

i~ b Jo

287

I X

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

The empty boxes in the output of FILTER-FORMALS indicate gaps. The names produced by

UNIQUE-NAMES in this case are numbers that result froll a left-to-right pre-order scan of an

incrementer over the tree of formals.

The structure of the sliver diagram translates directly into a SYNAPSE program:

(define (alpha-rename term)

(let ((nodes (term->syndrite term)))

(let ((formals (filter-formals lambdrite)))

(syndrite->term

(rename nodes

(bind formals

(unique-names formals)))))))

Each of the slivers used by alpha-rename can be easily constructed out of the SYNAPSE

primitives. Term->syndrite transforms a term represented as an s-expression into a syn-

drite of nodes tagged with the type and contents of the corresponding position in the

abstract syntax tree of the term:

(define (term->syndrite term)

(genDi term

(lambda (tm return)

(cond

((variable? tm)

(return (var-node (name tm))

'()))
((abstraction? tm)

(return (lambda-node (formal tm))
(list (body tm))))

((application? tin)

(return (call-node)
(list (rator tm) (rand tm))))))))

Name, formal, rator, etc. are selectors on terms, while var-node, lambda-node, and

call-node are constructors for the syndrite elements. The inverse transformation is per-

formed by syndrite->term:

288

6.2. TREE (COMPUTATIONS

(define (syndrite->term nodes)

(upD

(lambda (node subaccs)

(cond

((var-node? node)
(variable (node-name node)))

((lambda-node? node)
(abstraction (node-formal node) (first subaccs)))

((ca:Ll-node? node)

(application (first subaccs) (second subaccs)))))
no-gaps

nodes))

(define (no-gaps lst) (error "Shouldn't happen"))

Here, node-name and node-formal are selectors on the syndrite nodes, while variable,

abstraction, and application are term constructors.

Converting between terms and syndrites is the messy part; the slivers at the heart of

the alpha renamer are remarkably elegant. Filter-formals is just a simple application of

filtering and mapping:

(define (filter-formals nodes)
(mapD node-formal

(filterD lambda-node? nodes)))

Unique-names is easily implemented as a pre-order scanner that increments the accumulator

every time it encounters a name in its input tree:

(define (unique-names names)
(pre-scanD left-to-right

0

(lambda (x n) (1+ n))

names))

Bind is a trivial application of a two-argument down scanner:

(define (bind names vals)

(down-scan2D env-empty
env-bind

names

vals))

(define (down-scan2D init combine syndl synd2)
(down-scanD init

(lambda (pair acc)
(combine (car pair) (cdr pair) acc))

(map2D cons syndl synd2)))

289

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

Here, env-empty is an empty environment and env-bind is a procedure that extends a

given environment with a name/value binding. Finally, rename can be implemented as a

two-input mapper that discriminates on node type:

(define (rename nodes envs)
(map2D (lambda (node env)

(cond

((var-node? node)

(var-node (env-lookup (node-name node) env)))

((lambda-node? node)
(lambda-node (env-lookup (node-formal node) env)))

(else node)))

nodes

envs))

Behaviorally, the important feature of alpha-rename is its space consumption. Define

the working space of an alpha renaming process to be the maximal space required by the

process excluding the space required by the input and output terms. Let n be the depth of

abstract syntax tree associated with the input term. Then alpha-rename has working space

linear in n7. This is the same order of growth as the working space required by the monolithic

versions presented in Section 2.2. In contrast, traditional aggregate data implementations

of alpha-rename would exhibit space exponential in n. (See Section 9.2 for experimental

results confirming this claim.)

Moreover, disregarding the slag management operations, the fine-grained operational

behavior of alpha-rename closely resembles that of the functional monolithic version. The

lock step nature of SYNAPSE interweaves the processing of the individual slivers into a

single left-to-right traversal of the input term. A minor difference between the modular and

monolithic processes is that the modular version does an environment lookup for formal

parameters as well as variable references; the modular version only performs the lookup

for variable references. This difference could be removed by directly wiring a slag from

unique-names to rename and modifying rename to use the additional input in the case of

lambda nodes.

The Benefits of Modularity

While the sliver-based alpha renamer exhibits important operational characteristics of the

monolithic version, it also supports the advantages of modularity. Without these advan-

290

6.2. TREE COMPUTATIONS

tages, the work needed to construct all the little pieces that comprise the alpha renamer

would be wasted. The real benefit of modularity is that it encourages us to explore alter-

natives and extensions in a way that the monolithic approach never would. We will now

explore a few examples of how modularity and the notion of shape free us to think about

the alpha renaming problem from fresh perspectives.

What changes would be required to alpha-rename in order to handle lambda terms

with extended syntax? The case of handling an if construct (see Section 2.2) would be

particularly easy: only term->syndrite and syndrite->term would have to extended with

clauses for the new term. Rename would not have to be changed since its else clause is the

appropriate default for simple expressions like if. Adding a naming construct like let or

letrec is more challenging. In these cases, rename would have to be modified. In addition,

the nodes would have to provide bind with information indicating in which subtrees the

declared namle(s) are bound.

The existence of the unique-names sliver in the sliver diagrams suggest that there may

be many ways to compute unique names. And indeed there are. We can trivially modify

the above definition of unique-names to visit the formals in a right-to-left direction rather

than a left-to-right one. As noted in Section 2.2, such a change can be far from trivial in a

monolithic organization.

As a more interesting change, the fact that the name generator is the only sliver in the

diagram without a parallel shape suggests that we should consider parallelizing it.1 4 One

approach to a parallel name generator is to employ the binary tree numbering technique of

doubling a number down one branch and doubling and incrementing down the other. This

strategy would lead to the following tree for the particular example considered above:

14Although we have argued before that networks of purely parallel slivers are probably not a good idea in
S -.NAPSE, they may be very good idea for other language models. The power of thinking in terms of shapes
extends beyond their particular realization in SNAPSE!

291

CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

.....................................

1

/4, /5

8 9 10 11
I I I

18 j,0\ 22
40 41----------.-------.----...---.-.-----.

If the branching factor is at most two (as it is in the case of lambda terms), the numbers

generated down different branches are guaranteed to be unique, and so they can be cal-

culated in a parallel down fashion. While the down-scan sliver is not appropriate for this

purpose, it would not be hard to construct a parallel down primitive that is.

Another approach to parallel name generation would be to use down-scan with an

accumulator that employed a mutable name generator. Of course, the name generator

would have to be carefully constructed in order to guarantee atomicity. This is the sort of

strategy that is encouraged by Id's M-structures [Bar92].

The alpha renaming network is useful for program manipulations other than alpha

renaming. A deBruijn numbering program labels variables in a lambda term with a number

indicating the level of the lambda that introduces them [Pey87]. Such a program can be

trivially obtained from the alpha renamer by changing the naming strategy from a pre-order

scan to a down scan:

(define (debruijn names)
(down-scanD 0

(lambda (x n) (1+ n))

names))

Furthermore, starting with the deBruijn numbering program, it is easy to obtain a

lexical depth compiler. The lexical depth of a variable name is a number indicating how

many lambdas to go up the abstract syntax tree in order to find the one that introduces the

name. This number can be computed for each variable reference by subtracting the number

found by looking up its name in the environment from the current value of the debruijn

scanner at variable reference position in the tree. This change requires only (1) an extra

slag path between the name generator and rename and (2) a modification of the variable

reference clause in rename.

292

6.2. TREE COMPUTATIONS 293

The fact that the structure of the alpha renamer makes it easy to envision such a

wide variety of alternatives, extensions, and related programs is a testament to benefits of

modularity. The hope is that the operational control provided by slivers will make such

modular organizations even more alluring.

294 CHAPTER 6. SYNAPSE: PROGRAMMING WITH SLIVERS AND SLAGS

Chapter 7

OPERA: Controlling Operational

Behavior

As noted in the exposition of Chapter 5, the sliver technique depends crucially on three

language features: concurrency, synchronization, and non-strictness. Concurrency permits

the processing of the slivers to be interleaved, synchronization guarantees lock step pro-

cessing, and non-strictness mechanisms allow fine-grained control over evaluation order in

an otherwise strict language. In this chapter, we present OPERA, a particular language

that supports these features, and show how they can be used to implement slivers and

synchronized lazy aggregates. OPERA is a dialect of Scheme that combines classical mnecha-

nislms for concurrency, mutual exclusion, laziness, and eagerness with a novel form of barrier

synchronization based on the synchron, a new first-class synchronization object.

We begin with an informal introduction to the OPERA language (a formal semantics

is deferred until (Chapter 8). Then we explore how the features of OPERA can be used to

impllement the SYNAPSE slivers and slags illustrated in (Chapter 6.

7.1 An Introduction to OPERA

OPERA is a dialect of Scheme [ASS85, CR+91] that supports various mechanisms for control-

ling the fine-grained operational details of programs. Figure 7.1 summarizes the syntax of

the language and the primitive operations it supports. Both syntactically and semantically,

295

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

Kernel Grammar:

P E Program
E E Expression
I C Identifier
L E Literal

S E Symbolic Expression

P ::= (program Ebody (define Inae Edef)*) [program]

L
I
(lambda (Iforal*) Ebody)

(pcall Eproc Earg*)

(pletrec ((I,a,,ne Edef)*) Ebody)

(if Etest Ethenl Eelse)

(set! Inalne Eval)

(quote Stext)

(lazon Ebody)
(eagon Ebody)
(exclusive Eexcl Ebody)

(nex ((I,,ae Edef)*) Ebody)
(nexrec ((Iname Edef)*) Ebody)

[literal expression]
[variable reference]
[abstraction]
[parallel application]
[parallel recursive bindings]
[conditional]
[assignment]
[quoted expressions]
[suspension]
[future]
[mutual exclusion]
[graphical bindings]
[graphical recursive bindings]

I ::= usual Scheme identifiers
L ::= usual Scheme literals
S ::= usual Scheme quotable expressions

Syntactic Sugar Grammar:

Esugar ::= (cond (Etest Eaction*)*) I (begin Esequent*) ... usual Scheme sugar
(Eproc Eargs*) I (let ((Iname Edef)*) Ebody) I (letrec ((Iname Edef)*) Ebody)

I (plet ((Inae Edef)*) Ebody) I (seq E*) I (seql E*) I (seqn E*)

Primitives:

OPERA supports the usual Scheme primitive operations on numbers, booleans,
procedures, symbols, characters, strings, pairs, vectors, and ports, but it does
not support continuations. In addition, it also supports the following objects
and operations:

,Synchrons: (synchron), (wait Esy,,), (simul! Esync1 Esync2),
(precede! Ebefore Eafter), (synchron? Ebj)

Excludons: (excludon), (excludon? Ebj)

Cells: (cell Eval), (cell-ref Ecel), (cell-set! Ecell Eew), (cell? Eob)

Figure 7.1: OPERA summary

E

296

7.1. AN INTRODUCTION TO OPERA

OPERA is a close cousin of Scheme. The key differences are as follows:

* C(folCUrrency: OPERA supports two forms of concurrency:

1. concurrent evaluation of the subexpressions of a procedure call expression.

2. eager evaluation via the eagon special form.

Here we briefly describe the concurrent evaluation strategy for procedure calls; eagons

are described in the bulleted item on non-strictness.

Both OPERA and Scheme have strict procedure calls, but they use different strategies

for evaluating the subexpressions of a procedure application expression: OPERA eval-

uates the subexpressions in parallel, while Scheme requires that the subexpressions be

evaluated in a way that is consistent with some sequential order. The explicit pcall

(parallel call) keyword in OPERA'S kernel application form is intended to emphasize

this difference. However, since the explicit keyword is cumbersome, we will abbre-

viate (pcall Eproc Earg*) as the more familiar (Eproc Earg*). OPERA'S concurrent

evaluation strategy extends to the bindings of plet and pletrec, parallel versions of

Scheme's let and letrec. To simplify comparisons between the languages, OPERA

treats let and letrec as synonyms for plet and pletrec.

While OPERA programs are designed to look like Scheme programs, OPERA'S con-

current evaluation strategy can lead to behaviors that would not be exhibited by a

Scheme interpreter. In particular, the concurrency can give rise to new kinds of non-

determninisnm. For this reason, it is important to clearly specify whether a program in

Scheme syntax is to be evaluated with respect to OPERA or to Scheme.

We emphasize that OPERA supports concurrency purely for the purpose of modularity,

not for efficiency. Multi-tasking on a single physical processor is a sufficient form of

concurrency for our purposes.

* Synchronization: OPERA supports two first-class synchronization objects: synchrons

and excludons. Synchrons are the key to the lock step processing model on which

slivers and synchronized lazy aggregates are based. They provide barrier synchro-

297

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

nization in a system where the number of processes participating in a rendezvous is

determined dynamically.

Excludons are just standard lock objects [Bir89b] that support mutual exclusion via

the exclusive special form. Excludons are used to enforce atomic actions by elimi-

nating the undesirable nondeterminism introduced by concurrency.

· Non-strictness: OPERA supports lazy and eager evaluation via the (lazon Ebody)

and (eagon Ebody) special forms. Both forms create a placeholder object that stands

for the result of evaluating Ebody. In the case of lazons, evaluation of Ebody is delayed

until the lazon appears in a context that requires its value. Lazons are like the delayed

objects described in [Hen8O] and [ASS85] except that they are implicity forced rather

than explicitly forced; we shall see how this difference enhances modularity. In the case

of eagons, evaluation of Ebody proceeds in parallel with the rest of the computation;

any context requiring the value of Ebody must wait until it is available. Eagons are the

same as the futures used in various parallel Lisp implementations ([Hal85], [Mil87]),

except that in OPERA we do not assume the existence of physical parallelism. We use

the name "eagon" only for symmetry with "lazon".

· Other differences: OPERA supplies a few additional features that add no new power

to the language but simplify the expression of some programs. OPERA introduces two

new binding forms: nex and nexrec. These are versions of let and letrec that do not

evaluate the binding expressions before evaluating the body. Instead, they resemble

the "graphical" lets and letrecs of a lazy functional language (e.g., see [Pey87, pages

233-234]). In addition to the usual Scheme syntactic sugar, OPERA provides a few new

derived special forms. There are three sequencing forms: (seq E*), (seql E*), and

(seqn E*). All evaluate their subexpressions in left-to-right order, but they return

different results: seq returns the boolean true value, seqi returns the value of the

first subexpression, and seqn returns the value of the last subexpression (i.e., it is

a synonym for begin). In addition to the usual Scheme datatypes and operations,

OPERA supports mutable one-slot data structures called cells. These correspond to

the reference structures of ML [MTH90] and FX [GJSO92].

298

7.1. AN INTROD(UCTION TO OPERA

OPERA does not support Scheme's continuations. In principle, OPERA should ulti-

mately be able to support continuations, but the details of how continuations interact

with OPERA'S fine-grained concurrency have not yet been worked out.

The summary in Figure 7.1 gives the form of an OPERA program as:

(program Ebody (define Iname Edef)*)

In our OPERA examples below, we will not use the program form directly. Instead, in the

usual Scheme style, we will treat every expression as a program by appropriately packaging

it with all the definitions encountered so far.

The following sections explore the features of OPERA in more depth.

7.1.1 Strict Procedure Calls

As in Scheme, the procedure call of OPERA is strict. This means that the evaluation of

the p)rocedure body does not begin until the evaluation of the arguments has completed.

Because it provides natural barrier between the computation of the arguments and the

computation of the body, OPERA's strict procedure call serves as a basic mechanism for

controlling operational behavior. Lazons and eagons are mechanisms for overriding the

strictness of a procedure call.

7.1.2 Concurrent Evaluation

To permit the concurrent evaluation of slivers, OPERA embraces a concurrent evaluation

strategy for the subexpressions of a procedure application. Synchrons and excludons are

mechanisms for controlling the concurrency introduced by this strategy.

In this context, "concurrent" does not imply parallel execution of a program on multiple

physical processors. It merely indicates a partial ordering on the operations performed in

the evaluation of the subexpressions of a procedure call. That is, the evaluation steps of

a procedure call's subexpressions may be arbitrarily interleaved. (A precise model of the

allowed interleaving is provided in Chapter 8.) Whether the interleaving results from multi-

tasking on a single processor or from evaluating the subexpressions on different processors

299

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

is irrelevant for our purposes. We use concurrency not to make programs run faster, but to

make them more modular. In fact, this work clearly supports the notion that concurrency

is an important modularity mechanism. Although orchestrating a program on a parallel

machine fits into the general theme of controlling the operational behavior of modular

programs, it is beyond the scope of this work.'

As indicated in the overview, the concurrent evaluation strategy is a fundamental feature

distinguishing OPERA from Scheme. To compare the languages, consider the following

definitions:

(define (par a b) #t)

(define (test-order)
(par (par (display 1)

(display 2))

(par (display 3)

(display 4))))

The par procedure ignores the values of its two arguments and returns the boolean true value

(#t). In both Scheme and OPERA, argument expressions are always evaluated regardless

of whether their values are actually used by the procedure. So (par El E2) has the effect

of evaluating both El and E2. Test-order is a procedure that tests argument evaluation

order by using par in conjunction with display, a printing procedure. 2

Because OPERA evaluates all application subexpressions in parallel, there are no con-

straints on the execution order of the displays within test-order. Evaluating (test-order)

in OPERA may print the numerals 1 through 4 in any of the 24 possible orderings. In Scheme,

on the other hand, the possible behaviors of this expression are more limited. Scheme evalu-

ates all subexpressions of an application in some (unspecified) sequential order. This means

that one of the arguments of test-order's outermost par must be completely evaluated

before evaluation of the other is begun. For example, 1 may be printed before both the 3

and 4 or after both the 3 and 4 but never between the 3 and 4. Scheme allows only eight

possible orderings for the numbers displayed by (test-order):

'See [HS86b] for work along these lines.
2For simplicity, we will often illustrate issues of evaluation order with contrived examples that involve

I/O or assignment. However, in practice, we are more interested in the relative order of purely functional
operations. This order provides a window on the space consumed by pending operations.

300

7.1. AN INTRODUCTION TO OPERA

1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321

It is worth noting that OPERA is not as concurrent as it could be. Although it exhibits

concurrency in argument evaluation, there is no concurrency between the evaluation of a

procedure's arguments and the evaluation of the procedure's body. So OPERA, like Scheme,

is a strict language - i.e., it requires all arguments to be evaluated before the body is

evaluated. For example, consider the following:

(define (ignore a) (display 2))

(define (test-strict) (ignore (display 1)))

The call (test-strict) is guaranteed to print 1 before 2 in both OPERA and Scheme.

Strictness effectively defines a barrier between the evaluation of the arguments and the

evaluation of the body. This barrier is crucial for controlling the behavior of OPERA pro-

grams. We'll see shortly how non-strict behavior can be obtained in OPERA with lazons,

and eagons.

Concurrent evaluation and strictness characterize OPERA'S let (= plet) and letrec

(= pletrec) constructs as well. That is, in both cases the binding expressions are evaluated

in parallel, but all of these must be completely evaluated before the body is evaluated.

A final subtlety is the extent to which a language implementation must exhibit permit-

ted evaluation orderings in practice. For example, a particular Scheme implementation is

not required to exhibit all eight of the possible orderings for the (test-order) example. In

fact, a typical Scheme interpreter follows a fixed ordering that is consistent with the "some

sequential order" rule. The rule is more often exploited by Scheme compilers, which can

perillute the argument evaluation order as convenient. In fact, a Scheme implementation

may actually interleave evaluation of arguments as long as it can prove that the result-

ing behavior is consistent with the "some sequential order" rule (e.g., when the argument

expressions have no side effects).

What about OPERA? In the presence of synchronization mechanisms like synchrons and

excludons, artificially limiting the range of evaluation orders can prevent a program from

301

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

terminating with an expected result via one of the permitted orderings. So any restricted

set of evaluation orders is generally unacceptable. Nevertheless, an implementation may

restrict the evaluation order in contexts where it can prove that the restriction will not

affect normal termination of a program.

7.1.3 Synchrons

Concurrency alone does not guarantee that slivers networks will exhibit desirable space

profiles and operation orderings. After all, a producing sliver might race ahead of one of

its consumers, requiring the generated elements to be buffered. To avoid this situation, the

sliver technique is based on a lock step processing model. Lock step processing is achieved

via synchrons.

Synchronization Model

A synchron is a first-class object that represents a point in time. Computational events

can be constrained to happen before or after this point in time, or left unordered with

respect to it. Synchrons are used to express control in a concurrent system by limiting the

allowable orderings between computational events. Intuitively, synchrons express a set of

time constraints that are solved by OPERA.

The lock step model of the sliver technique implies that slivers are concurrently execut-

ing recursive procedures that participate in a barrier synchronization at every corresponding

call and return. In traditional barrier synchronization [Axe86], the number of participating

processes is known in advance, and synchronization can easily be implemented by a counter.

However, due to the dynamic configurability of sliver networks, the number of slivers par-

ticipating in a barrier synchronization cannot generally be predicted from the text of the

program. For example, the number of slivers created by the pascal procedure on page 243

depends on the values of its column argument.

Synchrons solve this problem by tying barrier synchronization to automatic storage

management. Pointers to a synchron are classified into two types: waiting and non-waiting.

When a process wishes to rendezvous at a synchron, it enters a waiting state that refers to

the synchron with a distinguished waiting pointer. For all other manipulations, a process

302

7.1. AN INTRODUCTION TO OPERA

holds a synchron with a non-waiting pointer. A rendezvous occurs at a synchron only when

all of the pointers to it are waiting pointers. This means that any non-waiting pointer to

a synchron effectively blocks a rendezvous. The automatic storage manager is responsible

for determining when a rendezvous has been achieved at a synchron and resuming the

waiting processes once the rendezvous has occurred. Because all processes lose access to

the synchron upon resumption, there can only be one rendezvous per synchron.

The rendezvous protocol of synchrons sets it apart from other synchronization struc-

tures (e.g., semaphores [Dij68], locks [Bir89b], synchronous messages [Hoa85], I-structures

[ANI'89], and M--structures [Bar92]). Synchronization typically involves some processes

waiting in a suspended state for a shared synchronization entity to be released by the pro-

cess that currently owns it. Traditional protocols supply explicit wait and release operations.

With synchrons, only the wait is explicit; the release is implicitly handled by the automatic

storage manager when a global rendezvous state is achieved. In this respect, synchrons

resemble weak pairs [Mil87] and populations [RAM83], data structures whose behavior is

tied to storage management.

Although developed independently, synchrons are closely related to Hughes's synch

construct [Hug83., Hug84]. (See Section 3.1.5 for a discussion of synch.) Both synch

and synchrons involve objects that define a rendezvous point. Hughes's objects serve as

a rendezvous for exactly two requests for a value. It is possible to build a tree of synchs

that act as a rendezvous point for a given number of requests, but these trees must be

explicitly managed by the programmer. It is unclear how synchs could be used to handle

a dynamically determined number of requests; I doubt that they can be used for this

purpose. In contrast, synchrons serve as a rendezvous point for a dynamically determined

number of processes. Because they automatically manage the barrier synchronization of an

arbitrary number of processes, synchrons are superior to synch for building synchronization

abstractions. Furthermore, the additional unification and precedence operations supported

by synchrons (see below) are crucial for implementing important aspects of the lock step

processing model.

303

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

Synchron Operations

Figure 7.2 summarizes the procedural interface to synchrons. The nullary synchron pro-

cedure creates a new synchron. Since synchrons are first-class objects, they can be named,

passed as arguments to procedures, returned as results from procedures, and stored in data

strucutures. The synchron? predicate tests whether an object is a synchron.

Figure 7.2: The procedural interface to synchrons.

The key operation on synchrons is the wait procedure. (Calling wait on a synchron sync

suspends the current computation until a rendezvous occurs at sync. After the rendezvous,

all computations waiting on the synchron are resumed with the return of #t to each of the

wait calls.

A wait call holds the argument synchron with a distinguished waiting pointer; all other

references to the synchron are non-waiting pointers. The rendezvous occurs when the syn-

chron is held only by waiting pointers. Since the return from wait drops all of the waiting

pointers, a synchron is inaccessible after a rendezvous and its storage may be reclaimed.

The simul! procedure declares that the rendezvous of one synchron must occur si-

multaneously with the rendezvous of another synchron. (Conceptually, simul! extends the

notion of unifying logic variables [Rob65] to unifying the points in time represented by two

(synchron)

(Creates a new synchron.

(synchron? obj)
Returns a boolean value indicating whether obj is a synchron.

(wait sync)
Waits for a rendezvous at the synchron sync. Returns #t after the rendezvous has
occurred.

(simul! syncl sync2)
Unifies synchrons syncl and sync2 to be the same synchron. Returns the unified
synchron.

(precede! synci sync2)
Dictates that a rendezvous at the synchron sync must occur before a rendezvous at
the synchron sync2. Returns #t.

304

7.1. AN INTRODUCTION TO OPERA

synchrons. The simul! procedure forces its two argument synchrons to be equivalent (as

determined by OPERA'S eq? predicate); it returns the unified synchron as its result.

The precede! procedure declares that a rendezvous on one synchron must precede a

rendezvous on another synchron. Precede! is an explicit method of imposing an ordering

on the points in time represented by synchrons. (Synchrons can also be ordered implicitly

bv the context in which they are used.)

Wait, simul !. and precede! can be viewed as specifying a set of ordering constraints on

the events of a computation. OPERA "solves" the set of constraints by dynamically finding

an event ordering that satisfies the constraints. Sometimes the constraints are incompatible

and no solution exists. For example, no ordering of events can satisfy the declaration that

a synchron a precedes itself, or that a precedes b and b precedes a. If OPERA is forced to

resolve an incolmpatible set of constraints, it halts in a deadlock state.

Synchron Examples

We illustrate the basics of synchrons through a series of simple examples. As in our dis-

cussion of the concurrent evaluation strategy, we will consider only examples involving the

ordering of simple I/O operations. The discussion of the SYNAPSE implementation in Sec-

tion 7.2 provides more realistic examples of synchron use.

We begin with the test-order procedure from Section 7.1.2:

(define (test-orderinitial)
(par (par (display 1)

(display 2))

(par (display 3)

(display 4))))

In OPERA, (test-orderin7itial) prints out the numerals 1 through 4 in arbitrary order; there

are 24 possibile orderings.

Suppose we want to specify the constraint that 3 must be printed before 2. We can

achieve this effect by rewriting the procedure as:

(define (test-orderreorganize)
(par (display 1)

(par (seq (display 3) (display 2))
(display 4))))

305

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

The sequencing of seq implements the desired constraint. 3 However, this approach forces

us to significantly reorganize the structure of the original procedure.

An alternate approach for expressing the constraint is to use a synchron:

(define (test-orderynchron:3->2)
(let ((a (synchron)))

(par (par (display 1)

(seq (wait a) (display 2)))

(par (seq (display 3) (wait a))

(display 4)))))

The (synchron) call returns a new synchron object, which is named a in this example.

The two (wait a) expressions inserted into the program implement the desired constraint

by requiring 3 to be printed before the rendezvous on a and 2 to be printed after the

rendezvous.

The advantage of the synchron approach over the approach taken in test-orderreoTga7 ize

is that the basic structure of the procedure (a par of two pars) is unchanged. The creation

of the synchron and the insertions of the seqs and waits are essentially annotations that

have been added to the original structure. This annotation-like character of synchrons is

used to preserve modularity while expressing control.

As another example, imagine constraining test-orderi,,itial to print 4 after both 1 and

3. This is also straightforward to do with a synchron:

(define (test-ordersynchron:1+3- >4)
(let ((b (synchron)))

(par (par (seq (display 1) (wait b))

(display 2))

(par (seq (display 3) (wait b))
(seq (wait b) (display 4))))))

Here, two events occur before the rendezvous at the synchron, and one occurs after. In

general, an arbitrary number of waits can be used to specify constraints between events.

While the given constraints can also be expressed by using the right permutation of par and

seq, the reorganized program would not carry with it any artifact of how it was derived by

constraining a simpler program. In contrast, synchrons can be added and removed without

altering the basic structure of the program.

3Recall that seq is an OPERA special form whose subexpressions are evaluated sequentially from left to
right. Together, par and seq constitute a language for the series/parallel combination of expressions.

306

7.1. AN INTRODUCTION TO OPERA

Another advantage of synchrons is that they facilitate the combination of timing con-

straints. Here's a single program that embodies the ordering constraints of the previous

two examples:

(define (test-orders,ynchron:3->2&1+3->4)
(let ((a (synchron))

(b (synchron)))

(par (par (seq (display 1) (wait b))

(seq (wait a) (display 2)))

(par (seq (display 3) (par (wait a) (wait b)))

(seq (wait b) (display 4))))))

Note how the synrchron annotations of the previous programs have essentially been super-

posed in this one. The program permits only five orderings of displayed numerals: 1324,

1342, 3214, 3124, and 3142. It is impossible to express this set of orderings with any

combination of pars and seqs. 4

We will use the following test-combiner procedure to illustrate the different means of

combining synchrons:

(define (test-combiner combiner)
(let ((c (synchron))

(d (synchron)))
(seq (combiner c d)

(par (seq (display 1) (seq (wait c) (display 2)))

(seq (display 3) (seq (wait d) (display 4)))))))

Test-combiner first combines the synchrons c and d (by side effect), and then executes two

processes: one of which prints 1 before 2 and the other of which prints 3 before 4. Synchron

c represents the point between the printing of 1 and 2, while d represents the point between

the printing of 3 and 4.

We consider three combiners:

1. (test-combiner (lambda (x y) 'ignore)): Here the combiner is a trivial one that

leaves c and d unconstrained. In this case there are six possible outputs:

1234, 1324, 1342, 3124, 3142, 3412

4To be fair, neither par/seq nor synchrons are sufficient to express many orderings. For example, neither
is sufficient to express the set {1234, 4321}, which requires some additional form of nondeterminism. But
OPERA with synchrons can express more orderings than OPERA without synchrons.

307

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

2. (test-combiner precede!) : The precede! combiner forces the c rendezvous to

occur before the d rendezvous. This has the effect of adding the constraint that the

1 be printed before the 4. This filters out the 3412 option, leaving only five possible

behaviors:

1234, 1324, 1342, 3124, 3142

3. (test-combiner simul!) : The simul! combiner forces the c rendezvous and d

rendezvous to occur simultaneously. This implies two additional constraints over the

unconstrained version: 1 must be printed before 4, and 3 must be printed before 2.

This leaves four possible behaviors:

1324, 1342, 3124, 3142

All of the above examples illustrate how synchrons can be used to constrain the order

of operations within a single procedure body. But the real power of synchrons is that

they can be used to constrain the order of operations across procedure boundaries. For

example, consider the following procedure, which abstracts over the notion of inserting a

synchronization point between two displays:

(define (make-displayer a b)
(lambda (sync)

(seq (display a) (seq (wait sync) (display b)))))

Using make-displayer, the three combination examples from above can be expressed

in a modular fashion as follows:

1. No constraints - pass independent synchrons to two displayers:

(par ((make-displayer 1 2) (synchron))

((make-displayer 3 4) (synchron))

2. Precede! constraint - pass two constrained synchrons to the two displayers:

(let ((c (synchron))

(d (synchron)))
(seq (precede! c d)

(par ((make-displayer 1 2) c)

((make-displayer 3 4) d))))

308

7.1. AN INTRODUCTION TO OPERA

:3. Simul! constraint - pass the same synchron to both displayers (no need to actually

unify two separate synchrons via simul!):

(let ((c (synchron)))

(par ((make-displayer 1 2) c)

((make-displayer 3 4) c)))

As a final example, we will illustrate how synchrons can be stored in data structures.

This fact is especially important for implementing synchronized lazy aggregates. We will

use the following procedure to test this feature:

(define (make-synchronized-displayer a b)

(let ((sync (synchron)))

(cons sync

(lambda ()
(seq (display a) (seq (wait sync) (display b)))))))

Make-synchronized-displayer is similar to the make-displayer procedure from above.

However, rather than returning a synchron-accepting procedure, it returns a pair of a syn-

chron and a thunk that refers to that synchron. The synchron is a hook for controlling some

behavioral aspects of the associated thunk. Here is an expression that yields the behavior

of the simul !-constrained versions of the previous examples (the other two constraints can

be expressed similarly):

(let ((sync-displ (make-synchronized-displayer 1 2))

(sync-disp2 (make-synchronized-displayer 3 4)))
(seq (simul! (car sync-displ) (car sync-disp2))

(par ((cdr sync-displ)) ((cdr sync-disp2)))))

This example underscores how independently generated synchronization points can be uni-

fied together to constrain the behavior of concurrently executing procedures. This is exactly

the mechanism used to guarantee the lock step processing of slivers networks exhibiting fan-

in.

Some Details

We conclude the overview of synchrons by mopping up a few details:

* Deadlock: None of the above examples illustrate deadlock, but it's easy to exhibit

examples that do. Here are a number of expressions that give rise to deadlock:

309

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

;; Example 1

(let ((a (synchron)))

(seq (wait a) (wait a)))

;; Example 2

(let ((a (synchron))

(b (synchron)))

(seq (unify! a b)

(seq (wait a) (wait b))))

;; Example 3

(let ((a (synchron))

(b (synchron)))

(par (seq (wait a) (wait b))

(seq (wait b) (wait a))))

;; Example 4

(let ((a (synchron))

(b (synchron)))
(seq (precede! b a)

(seq (wait a) (wait b))))

;; Example 5

(let ((a (synchron)))

(seq (wait a) a))

;; Example 6

(let ((a (sychron)))

(if (wait a)

17

a))

Examples 1 and 2 deadlock because they require a rendezvous to happen before itself.

Similarly, the deadlocks in examples 3 and 4 are due to cycles in the time ordering

constraints between two synchrons. The expression in example 5 deadlocks because

the second a in (seq (wait a) a) is a non-waiting reference to the synchron that

prevents the rendezvous from proceeding; since the reference to the second a is not

dropped until after wait successfully returns, there is a constraint cycle here as well.

Example 6 is an extension to example 5. It is somewhat disconcerting that this

expression deadlocks; because wait always returns #t, the a in the else branch of the

if can never be reached anyway. A "sufficiently smart" implementation of OPERA

310

7.1. AN INTRODUCTION TO OPERA

could determine this fact through static analysis. However, we will rely only on the

semantics provided in Chapter 8, which dictate that example 6 must also deadlock.

A careful reader familiar with the Scheme environment model [ASS85] may wonder

why a lot more examples don't deadlock. (Consider the following (non-deadlocking)

OPERA expression:

(let ((a (synchron))

(b 17))
(seq (wait a) (+ b 2)))

Under the traditional environment model, the expression (seq (wait a) (+ b 2))

is evaluated in an environment in which a is bound (via a non-waiting pointer) to a

synchron and b is bound to 17. Since the environment must be present for the evalu-

ation of (+ b 2), and it contains a non-waiting pointer to a synchron, this expression

would deadlock under the traditional environment model. In the environment model,

any expression that names a synchron could deadlock in this way; synchrons are rather

useless in sch a model.

The reason that such expressions don't deadlock is that OPERA is defined in terms of

a model of evaluation that aggressively drops spurious references. Since the binding

of a is not required to evaluate (+ b 2), the non-waiting pointer to the synchron is

effectively removed from the environment after the a in (wait a) is evaluated. The

semantics in Chapter 8 spells out how this is accomplished.

* Blocking behavior of non-waiting synchron references: The above examples used the

idiom

(seq E (wait sync))

to evaluate E before the rendezvous of sync. A similar effect can be achieved by the

simpler idiom:

(seq E sync)

311

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

The reason the latter version works is that sync is a non-waiting synchron reference

that is not dropped until after E is evaluated ; such a reference serves to block a

rendezvous on the synchron until it is dropped.

In fact, the wait-less version is often preferable to the wait version because it implies

fewer constraints. Consider the following related test procedures:

(define (test-waitful)

(let ((a (synchron)))

(par (par (seq (seq (display 1) (wait a)) (display 2))

(seq (seq (display 3) (wait a)) (display 4)))

(seq (wait a) (display 5))))

(define (test-waitless)
(let ((a (synchron)))

(par (par (seq (seq (display 1) a) (display 2))

(seq (seq (display 3) a) (display 4)))

(seq (wait a) (display 5))))

Test-waitful uses the wait idiom for expressing a before constraint, while test-waitless

uses the wait-less idiom. Both procedures specify the constraint that both 1 and

are printed before 5. However, test-waitful also constrains 1 to be printed before

4 and 3 to be printed before 2. In contrast, test-waitless does not express these

extra constraints.

The blocking behavior non-waiting references has other consequences as well. Recon-

sider the last version of the simul !-constrained examples:

(let ((sync-displ (make-synchronized-displayer 1 2))

(sync-disp2 (make-synchronized-displayer 3 4)))

(seq (simul! (car sync-displ) (car sync-disp2))

(par ((cdr sync-displ)) ((cdr sync-disp2)))))

Question: does replacing the seq in this example by a par change the behavior of

the code? It tempting to answer "yes", with the rationale that the unification could

possibly happen after all the displays if it were allowed to proceed in parallel with

them. In fact, the answer is "no". The reason is that the simul ! expression holds non-

waiting pointers to both synchrons in question. The waits peformed by the thunks

can't possibly return until the non-waiting pointers are dropped, which is only after

the unification has succeeded. There is no danger of a race condition here.

312

7.1. AN INTRODUCTION TO OPERA

That's the good news. The bad news is that the blocking behavior of non-waiting

pointers has an nasty side as well. In particular, it can easily lead to deadlock.

Consider the following innocuous-looking expression:

;; Deadlocking version
(let ((pair (cons (synchron) 17)))

(seq (wait (car pair))

(+ 2 (cdr pair))))

This expression is guaranteed to deadlock! The reason is that the pair value of

pair holds a non-waiting pointer to the synchron and that pointer is accessible until

(cdr pair) is evaluated. But (cdr pair) cannot be evaluated until the wait on the

synchron returns. This subtle dependency cycle leads to deadlock.

In this case the deadlock can be avoided by forcing the cdr to be performed before

the wait:

;; Non-deadlocking version that returns 19
(let ((pair (cons (synchron) 17)))

(let ((num (cdr pair)))

(seq (wait (car pair))

(+ 2 num))))

In fact, when dealing with a synchron-bearing data structure, it's always a good idea

to unbundle the structure into its components before waiting on any of the synchrons.

This aggressive unbundling strategy is required of every sliver (see Section 5.4.2) pre-

cisely to avoid spurious deadlocks.

Is precede! necessary?: With the introduction of eagons (see below), precede! seems

superfluous because it could be defined as:

(define (precede! synci sync2)
(eagon (seq (wait synci) (wait sync2))))

This definition uses eagon to fork off a process that requires the rendezvous on the

first argument to occur before the the rendezvous on the second argument.

Nevertheless, it turns out that a primitive precede! form allows certain garbage

collection subtleties to be resolved in a pleasing way that is not readily available with

313

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

the user-defined version (see Section 8.2.2 for details). For this reason, we stick with

precede! as a primitive.

7.1.4 Excludons

The rendezvous style of synchronization supported by synchrons is helpful for getting parts

of a computation to work in lock step. However, synchrons don't help to express mutual

exclusion between parts of a computation. (Constraining OPERA's concurrent argument

evaluation strategy to be like Scheme's some-sequential-order strategy is an example of

mutual exclusion: the order in which the arguments are evaluated does not matter, but

each argument evaluation occupies a single interval of time that cannot intersect with the

others.

For expressing mutual exclusion, OPERA supports excludon objects. An excludon serves

as a key that is needed to gain access to various regions of a computation; because its use

is restricted to one region at a time, it guarantees that the regions execute in mutually

exclusive time intervals. Excludons are similar to the locking mechanisms supplied in many

concurrent systems (e.g. semaphores [Dij68], locks [Bir89b], monitors [Hoa74]).

Each call to the nullary excludon constructor creates a unique, first-class excludon ob-

ject. The form (exclusive E,,cl Ebody) first evaluates Eexcl, which should be an excludon

x, and then evaluates Ebody while having exclusive hold on x. If x is already held by some

other exclusive, then evaluation of Ebody blocks until x is released.

Excludons are used to guarantee that sequences of operations behave as atomic actions.

This is particularly important when the operations involve side effects. For example, sup-

pose {a, b} represents a time interval in which both a and b are printed (in some order).

Then the following procedure guarantees that { 1, 2} must precede {3,4} or follow it:

(define (test-orderezxiusive)

(let ((e (excludon)))

(par (exclusive e

(par (display 1)

(display 2)))

(exclusive e

(par (display 3)

(display 4))))))

:314

7.1. AN INTRODUCTION TO OPERA

Excludons can be used to simulate Scheme's some-sequential-order argument evaluation

within OPERA. (Consider the scall special form, defined by the following desugaring:

(scall Eproc Eargi ... Earg,)
desugars to

(let ((Iexi (excludon))) ; excl is a fresh variable
(pcall (exclusive Ixcl Eproc)

(exclusive excl Eargi)

(exclusive lxc Earg)

))

The excludon named Iexcl prohibits interleaved evaluation among the subexpressions of the

pcall. Sequential versions of let and letrec (call them slet and sletrec) can also be

defined by restricting the corresponding parallel form with excludons.

7.1.5 Non-strictnesss

In OPERA, evaluation of pcall arguments is strict: all arguments must evaluate to a value

before the procedure can be applied. This is not always the desired semantics. Sometimes

we would like an argument not to be evaluated until it is actually used in the body. That

way, if the argument is never used, it will never be evaluated. This strategy is called laziness.

On the other hand, we sometimes want the body and the arguments evaluated in parallel,

regardless of whether body actually uses the arguments. This strategy is called eagerness.

Both laziness and eagerness are examples of non-strict evaluation strategies.

OPERA supports these non-strict evaluation strategies because they are helpful for con-

trolling how computations unfold. There are two types of objects used for this purpose:

lazons and eagons. Lazons support lazy evaluation, while eagons support eager evaluation.

Lazons

A lazon is a first-class object that serves as a placeholder for the value of an expression.

Lazons are created by the special form (lazon Ebody). The evaluation of Ebody is delayed

until its value is demanded by the computation. A context that requires the value of

a lazon's body is said to touch the lazon. Examples of touching contexts are argument

positions of an arithmetic operator, the test position of an if, and the operator position of

315

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

a pcall. All of these contexts need to know specific details about the value of Ebody. Non-

touching contexts, such as the operand positions of a pcall and the argument positions

of a cons, do not probe any details of the lazon's body, and simply pass around the lazon

instead. Lazons are similar to the delayed values described in [Hen80] and [ASS85], except

that delayed values are touched by application of an explicit force procedure. In OPERA,

the forcing is done implicitly by a touching context.

Consider the following definitions:

(define (display&return x) (begin (display x) x))

(define (test-strict2 a b) (begin (display 3) (* b b)))

Then in OPERA

(test-strict2 (display&return 1) (display&return 2))

prints a i and 2 in some order before printing a 3 and returning 4. Note that (display&return 1)

is evaluated even though its value is not used by the procedure. In contrast,

(test-strict2 (lazon (display&return 1)) (lazon (display&return 2)))

prints a 3 followed by a 2 before returning 4. Because lazons are objects, they satisfy

the strictness requirement of the parallel call without their bodies being evaluated. The

expression (display&return 2) is not evaluated until the value of b is demanded by the *,

which happens only after the 3 has been printed. Even though the value of b is demanded

twice, a 2 is printed only once because the value of a lazon is memoized - the lazon body

is evaluated once, and its value is cached for subsequent touches. The 1 is never printed

because the formal parameter a of test-strict2 is never referenced in the body.

If there is ever a need to explicitly force a lazon, this can be done with the touch

procedure, defined as follows:

(define (touch x) (if x x x))

5The Scheme report [CR+91] permits, but does not require, implicit forcing of the promises created by
Scheme's delay. In contrast, OPERA requires implicit touching of lazons.

316

7.1. AN INTRODUCTION TO OPERA

The test position of the if is a touching context, so it forces the evaluation of the lazon body;

that value is returned regardless of whether it is false or not. 6 Memoization guarantees that

the evaluation happens only once. Touch acts as the identity procedure on non-lazons.

OPERA does not support any predicate for testing whether an object is a lazon. No pro-

grain can ever distinguish whether or not a purely functional expression has been wrapped

in a lazon. If an expression performs side effects, however, then wrapping the expression in

a lazon may prevent those side effects from occurring in some contexts.

Lazons can be used to define a lazy argument evaluation strategy. (Consider the call

special form, defined by the following desugaring:

(lcall Eproc Eargl ... Eargn)
desugars to

(pcall Eproc
(lazon Earg)

(lazon Eargn)
)

The lazons annotating the arguments prevent them from being evaluated before the proce-

dure is called. The arguments will only be evaluated if they are needed within the body of the

called procedure. Lcall corresponds to the call-by-need parameter passing mechanism com-

mon in functional programming languages (e.g. Haskell [HJW+92] and Miranda[Tur85]).

Like the delayed objects of [Hen80] and [ASS85], lazons can be used to create conceptu-

ally infinite data structures and finesse certain kinds of circular dependencies. For example,

the stream datatype of [ASS85] can be defined in OPERA as follows:

;;; Syntactic sugar:

;;; (cons-stream Ehead Etail)

desugars to
;;; (cons Ehead (lazon Etail))

;;; Procedures

(define head car)
(define tail cdr)

(define the--empty-stream '())

(define empty-stream? null?)

'In C)PERA, as in Scheme, tests of a conditional need not be boolean objects. Any non-false object is
treated as true.

317

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

Note that OPERA'S tail operation, unlike Scheme's, does not force the evaluation of the

tail of the stream. OPERA relies on touching contexts to do this forcing.

The implicit forcing of lazons supports modularity better than the explicit forcing of

delayed objects. We will illustrate this point using a stream integration problem described

in [ASS85]. Integration can be defined by the following elegant procedure:

(define (integraloriginal integrand initial-value dt)
(letrec ((int (cons-stream

initial-value

(add-streams (scale-stream dt integrand)

int))))

int))

Integral takes a stream of values, an initial value, and a time step, and returns a stream

of the running sum of scaled values (where the sum is initialized to initial-value).

Unfortunately, certain feedback problems cannot use this integral procedure. For

example, consider the following procedure for solving the equation dy/dt = f(y) by inte-

gration:

(define (solve f y-init dt)

(letrec ((y (integral dy y-init dt))
(dy (map-stream f y)))

y))

The solve procedure fails because of a circular dependency between y and dy that is

unsolvable (as expressed) in a strict language. The solution suggested in [ASS85] is to delay

the first argument to integral:

(define (solve f y-init dt)
(letrec ((y (integral (delay dy) y-init dt))

(dy (map-stream f y)))

y))

But because delayed objects must be explicitly forced, this necessitates a change to integral:

(define (integraldelayed delayed-integrand initial-value dt)

(letrec ((int (cons-stream
initial-value

(add-streams (scale-stream dt (force delayed-integrand)) ; ***
int))))

int))

Delaying an argument to a procedure has the undesirable effect of changing its interface.

This requires modifying not only the body of the procedure, but all calls to the procedure

as well. This is a very non-modular approach to delayed evaluation.

318

7.1. AN INTRODUCTION TO OPERA

Lazons are much more suitable for such problems. With lazons, the circularity of solve

can be circumvented as follows:

(define (solve f y-init dt)
(letrec ((y (integral (lazon dy) y-init dt))

(dy (map f y)))

y))

Because lazons are iml)licitly touched, there is no need to modify the definition of integraloriginal,

nor any of the existing calls to integral. This example illustrates why lazons are superior

to delayed objects for preserving modularity.

Eagons

Like lazons, eagons are first-class placeholders for the value of an expression. But whereas

a lazon delays the evaluation of its body until it is demanded, an eagon may begin the

evaluation of its body as soon as it is created. Eagons are implicitly touched by the same

contexts as lazons. Touching an eagon blocks the current computation until the eagon body

has been fully evaluated, at which point the computation resumes with this value. Those

familiar with futures ([Hal85], [Mil87],[For91]) will recognize that "eagon" is just another

nalme for "future".

Eagons are created by the special form (eagon Ebody). Here's a sample use of eagons

as arguments to the test-strict2 procedure from page 316:

(test-strict2 (eagon (display&return 1)) (eagon (display&return 2)))

The argument expressions immediately evaluate to eagons, allowing the body of test-strict2

to be evaluated in parallel with the two calls to display&return. This means that 1, 2,

and 3 can be printed in any order. Even though the first argument is never touched,

eagons always evaluate their bodies, so the 1 is printed anyway. In fact, the lack of de-

pendences involving (display&return i) means that it is possible for the 1 to be printed

after test-strict2 has returned a 4! On the other hand, data and control dependen-

cies guarantee that both the 2 and 3 are printed before the multiplication in the body of

test-strict2.

319

CHAPTER 7. OPERA: (CONTROLLING OPERATIONAL BEHAVIOR

Eagons are useful for controlling fine-grained operational aspects of programs. For

example, the fork2 operator introduced in Section 4.2.5 can be expressed in terms of

eagons:

(fork2 E1 E2)
desugars to

(let ((x (eagon E 1))

(y (eagon E 2)))
#t)

Eagons are used extensively in the implementation of SYNAPSE to manage the details of

demand-driven evaluation.

Eagons can also be used to define an eager argument evaluation strategy. Consider the

ecall special form, defined by the following desugaring:

(ecall Eproc Eargl ... Eargn)
desugars to

(pcall (eagon Eproc)
(eagon Eargl)

(eagon Eargn)

The pcall and eagons allow all subexpressions of the ecall to be evaluated in parallel.

But the eagons on the arguments further allow the arguments to be evaluate concurrently

with the body of the procedure. Ecall corresponds to the default procedure application

strategy for the Id programming language [AN89, Tra88].

7.1.6 Graphical Bindings

OPERA's nex and nexrec constructs are "graphical" versions of let and letrec. Whereas

let and letrec associate names with first-class values, nex and nexrec associate names

with syntactic entities so that the general graph-structured syntactic dependencies can

be expressed within the tree-structured confines of s-expressions. Nex and nexrec are

essentially lazy forms of let and letrec embedded within a strict language.

We motivate these constructs and explain their semantics via a simple example. (Consider

the following OPERA procedure:

320

7.1. AN INTRO)DUCTION TO OPERA

(lambda (a b x y)

(cons (if (test a)

(compute x)

(compute y))

(if (test b)

(compute x)

(compute y)))

Suppose that test is a unary predicate and compute is an expensive unary procedure

with no side effects. In some cases, the procedure performs more work than necessary:

(compute x) is evaluated twice if both tests are true, and (compute y) is evaluated twice

if both tests are false.

One way to avoid the extra computation is to employ a finer-grained case analysis:

(lambda (a b x y)

(let ((ta (test a))

(tb (test b)))

(if ta
(if tb

(let ((cx (compute x))) (cons cx cx))

(cons (compute x) (compute y)))

(if tb

(cons (compute y) (compute x)))

(let ((cy (compute y))) (cons cy cy)))))

Unfortunately, this approach significantly impairs readability.

Another approach is to use the laziness and memoization provided by lazons to achieve

the appropriate effect:

(lambda (a b x y)

(let ((cx (lazon (compute x)))

(cy (lazon (compute y))))

(cons (if (test a) (touch cx) (touch cy))

(if (test a) (touch cx) (touch cy)))))

Explicit touches are required in this case because the operands of cons constructor are not

imlplicitly touched. This approach leads to a more readable program than the finer-grained

case analysis, but the extra lazons and touches are distracting management details.

Figure 7.3 uses the graphical notation introduced earlier (and formalized in Chapter 8)

to depict the desired structure for the body of the sample procedure. The results of both

compute appllications are shared by both ifs. According to the demand-driven model

detailed in Chapter 8), each call to compute is evaluated only once if the result is required,

and is not evaluated at all if the result is not required.

321

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

Figure 7.3: Graphical depiction of a program whose sharing properties are difficult to express
in textual syntax.

The nex binding construct expresses the sharing exhibited by the graphical notation

within textual OPERA code. Here is a version of the sample procedure that uses nex:

(lambda (a b x y)

(nex ((cx (compute x))

(cy (compute y)))

(cons (if (test a) cx cy)

(if (test a) cx cy))))

Intuitively, nex associates the names cx and cy with the outputs of the graph structure

corresponding to the compute applications, and any references to these names in the body

of the nex "wire" the appropriate output into the graph structure corresponding to the

body. For this reason, we refer to nex as a graphical binding. The meaning of the nex

version is actually defined in terms of the graph model, but it can also be viewed as an

more convenient syntax for the explicit lazon/touch approach (i.e., we could desugar any

nex expression into an expression using explict lazons and touches).

In general, nex behaves differently from let. If nex were replaced by let in the above

example, the strictness of OPERA would dictate that both (compute x) and (compute y)

would be evaluated before the body, regardless of whether both their values were used.

322

7.2. IMPLEMENTING SYNAPSE

Nexrec is similar to nex, but has the recursive scoping of a letrec. For example, the

OPERA expression

(nexrec ((a (cons 1 b))
(b (cons 2 a)))

(cons a b))

corresponds to the graphical syntax depicted in Figure 7.4.7

Figure 7.4: Graphical syntax exhibiting mutual dependencies that can be expressed with
nexrec.

7.2 Implementing SYNAPSE

The OPERA language is equipped with the concurrency, synchronization, and non-strictness

machinery necessary to implement slivers and slags. For the sake of concreteness, we will

illustrate OPERA implementations of some the SYNAPSE slivers introduced in (Chapter 6.

Ihnplementing the elements of the lock step processing model in OPERA is a challenging

activity. The features provided by OPERA for controlling the operational behavior of pro-

grams are very powerful but also rather low-level. The dizzying number of ways in which

these features can be combined to yield slightly different computations can easily lead to

mental overload. Yet, in order to achieve the goal of operational faithfulness, an imple-

7 This example is somewhat contrived. According to the rules of the EDGAR model introduced in (Chap-
ter 8, evaluating the sample nexrec expression leads to deadlock. It is necessary to introduce some non-
strictness to avoid deadlock.

323

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

menter of slivers must meticulously consider the consequences of every design choice. Here

are some sample questions that continually confront the sliver implementer:

* How do I propagate demand to this subexpression without demanding these other

subexpressions?

* Does this sliver release its hold on storage resources as soon as it can?

* Should I express this tillling constraint with sequencing, an explicit wait, or a blocking

reference to a synchron?

* How can I ensure that this timing constraint doesn't introduce a spurious deadlock?

* Should this expression be left as is, or does it need to be wrapped in a lazon or eagon?

* Do I need an explicit touch here or not?

Because the complexities of sliver implementation are so overwhelming, it is unreason-

able to expect that average programmers should ever have to deal with them. Instead,

programmers should be provided with easy-to-use abstractions that hide all the messy de-

tails. The SYNAPSE procedures of (Chapter 6 are in this spirit. The kinds of questions listed

above need only be considered by the expert programmers implementing the abstractions.

In order to simplify the presentation, I will discuss the details of sliver implementation

in stages. First, I introduce some conventions and abstractions for manipulating slags that

simplify the subsequent discussion. Then I describe how to implement a few linear slivers

ignoring the issues of filtering. Next I show how to properly handle filtering for the linear

slivers. Finally, I conclude with some notes on the implementation of tree-shaped slivers.

7.2.1 Slag Conventions

Representing and manipulating slags is a tricky business for several reasons:

* Slags contain references to synchrons. If these references aren't handled carefully,

spurious deadlocks will result.

* The laziness aspect of slags means that components of a slag should not be computed

until they are required. Including just the right amount of laziness can be challenging.

324

7.2. IMPLEMENTING SYNAPSE

* The aggregate nature of slags means that they can potentially consume large amounts

of storage. When manipulating slags, it is necessary to exercise great care to ensure

that there is no unnecessary consumption of storage resources.

Here we present a set of conventions and some abstractions that simplify the manipulation

of slags.

Recall that a slag is an aggregate whose skeletal nodes are wired together with synters

(synchronized pointers). We will represent a synter as an entity consisting of two synchrons

(one down, one up) and a lazon that computes the skeletal node pointed at by the synter.

Figure 7.5 presents a stylized schematic of a synter. The nodes labelled S are synchrons

and the node labelled L is a lazon.

synter

down up/.. ..
. skeletal node
I computation......I

Figure 7.5: Graphical depiction of the structure of a synter.

A synquence (synchronized lazy list) is a slag whose skeletal nodes are either a distin-

guished end-of-list marker or a pair of a lazily computed element and child synquence (see

Figure 7.6). A syndrite (synchronized lazy tree) is a slag whose skeletal nodes are pairs of

a lazily computed element and a list of children syndrites (see Figure 7.7).

The basic structure illustrated in the figures is augmented with timing constraints that

define when the computations suspended by the lazons actually take place. For a synter,

the computation of the skeletal node takes place after the rendezvous at the down synchron.

Attempting to manipulate the skeletal node before this point in time will result in deadlock.

325

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

· skeletal node .
. computation

Figure 7.6: Structure of the skeletal node of a synquence.

Figure 7.7: Structure of the skeletal node of a syndrite.

326

7.2. IMPLEMENTING SYNAPSE

The timning of the element computation of a synquence depends on the shapes of the

slivers producing and consuming it. If the producing sliver has down shape, then the

element must be computed before the time of the down synchron of the child synquence. If

the producing sliver has up shape, then the element must be computed after the rendezvous

of the up synchron of the child synquence but before the rendezvous of the up synchron

of the synquence itself. If the producing synquence has across shape, then the timing

constraints are determined by context (see Section 5.2.3).

The timning constraints on the computation of a syndrite element are even more varied.

They express when the element is computed relative to the down and up synchrons of the

given syndrite and its children syndrites. It is a dynamic error for a program to require the

value of a synquence or syndrite element at a time that precedes the time at which it is

actually comIputed.

Taken together with the sliver requirements of Section 5.4.2, the structure depicted in

Figures 7.5 -- 7.7 and the timing constraints sketched above comprise a set of conventions

for implementing slivers. On the one hand, the conventions determine the properties of an

input slag that a sliver implementer can depend on. For example, an implementer knows

that that all the synters for the children of a syndrite will be available before a rendezvous on

any child's down synchron. On the other hand, the conventions limit the ways in which the

implementer may produce output slags. As the flip side of the previous syndrite example,

an implementer must guarantee that all the synters for the children of a produced syndrite

must be available before the computation of any of the skeletal nodes of those children.

7.2.2 Slag Abstractions

(Carefully following all the conventions outlined above can be difficult because there are

so many details to monitor. Here we present a few OPERA procedures that facilitate slag

manipulation by packaging up some of the conventions into handy abstractions.

Synters will be represented as three-element lists assembled via synter and disassembled

via unsynter:

327

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

(define (synter down up $snode)

(list down up $snode))

(define (unsynter slag receiver)

(receiver (car slag) (cadr slag) (caddr slag)))

The down and up arguments of synter should be synchrons, and the $snode argument

should be a lazon that computes the skeletal node. The $ in $snode is a naming convention

indicating that the variable names a lazon.

The following abstractions capture the notion of a rendezvous occuring at a procedure

call boundary: 8

(define (call/down down proc . args)

(seqn (wait down)

(apply proc args)))

(define (call/down-up down up proc . args)

(seqn (wait down)

(seql (apply proc args)

(wait up))))

Call/down uses the synchron wait procedure to rendezvous with other slivers at a down

synchron before a tail call of proc applied to args. Call/down-up is similar, but also

engages in a rendezvous at the up synchron upon return from proc to model a non-tail call.

Figure 7.8 presents some abstractions that are helpful for satisfying the rendezvous re-

quirements for procedure calls that manipulate slags. Unslag/down and unslag/down-up

are variants of call/down and call/down-up that specially handle the case where the first

argument is a slag. To allow demand to propagate through a chain of nested sliver appli-

cations, it is necessary in this case to eagerly evaluate the (otherwise delayed) computation

that produces the skeletal node of the slag. Every skeletal node computation must perform

a wait on the down synchron before doing any real work. If this computation were not

eagerly evaluated, then the wait performed by call/down or call/down-up would cer-

tainly deadlock. The waits within the skeletal node computations guarantee that the eager

evaluation of one skeletal node can't race too far ahead of another.

Reslag/down, reslag2/down and reslag/down-up are useful for implementing slivers

that map one or more input slags to an output slag. Reslag/down maps an input slag to

8Since the current implementation of OPERA does not support rest arguments, these procedures and other
procedures using rest arguments are actually implemented as macros.

328

7.2. IMPLEMENTING SYNAPSE 329

(define (unslag/down proc slag . args)
(unsynter slag

(lambda (down up $snode)
(apply call/down down

proc (eagon (touch $snode))

args))))

(define (unslag/down-up proc slag . args)
(unsynter slag

(lambda (down up $snode)

(apply call/down-up down up

proc (eagon (touch $snode))

args))))

(define (reslag/down proc slag . args)

(unsynter slag

(lambda (down up $snode)

(synter down up

(lazon (apply call/down down
proc (eagon (touch $snode))

args))))))

(define (reslag2/down proc slagl slag2 . args)
(unsynter slagl

(lambda (downl upl $snodel)

(unsynter slag2

(lambda (down2 up2 $snode2)

(let ((down (simul! downl down2))
(up (simul! upl up2)))

(synter down up

(lazon (apply call/down down

proc (eagon (touch $snodel))

(eagon (touch $snode2))

args))))))))))

(define (reslag/down-up proc slag receiver . args)

(unsynte:r slag

(lambda (down up $snode)

(nex ((new-snode&other (apply call/down down

proc (eagon (touch $snode))

args)))

(nex ((new-snode (car new-snode&other))
(other (eagon (seql (touch (cdr new-snode&other))

(wait up)))))

(let (($other (lazon other)))
(receiver (synter down up (lazon (seql new-snode other)))

$other)))))))

Figure 7.8: Abstractions for procedure application that facilitate the implementation of
rendezvous requirements.

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

an output slag in which every skeletal node of the output is determined by applying proc

to the corresponding skeletal node of the input. It is essentially a slag-returning version of

unslag/down. Reslag2/down is a similar procedure that maps two input slags to an output

slag. In order to handle fan-in, reslag2/down uses simul! to unify the corresponding

synchrons of its two inputs.

Reslag/down-up is a slag-returning version of unslag/down-up. Its interface is compli-

cated by the fact that it returns not only a new slag, but also an accumulator (other) that

is computed in the up phase. The receiver argument to reslag/down-up is a procedure

that accepts these two results. The proc argument, which is applied to the input slag

and the other arguments, is expected to return a pair of the new slag and up accumulator.

The intricacies in the definition of reslag/down-up are due the complex collection of timing

constraints that must be satisfied. In particular, the new slag must be available in the down

phase of the recursion, but the up accumulator will not be computed until the up phase

of the recursion. To get this effect, the up accumulators returned by proc and returned

to receiver must be appropriately delayed. The definition uses nex, eagon, and seql to

implement intricate mechanisms for ensuring that operations occur in an order that avoids

spurious deadlocks and space build-up.

While the procedures presented in this section are helpful in many cases, they aren't

appropriate for all situations. Implementing slivers sometimes requires manipulating low-

level details in a way that is incompatible with the abstractions developed here.

7.2.3 Unfiltered Synquences

As an introduction to sliver implementation, we first consider unfiltered synquences -

i.e., synquences whose elements are all present. This permits us to study the essence of

the synchronization issues without the considerable complications associated with filtering.

We will describe the implementations of a few representative slivers: the genQ generator,

the map2Q mapper, the downQ and upQ accumulators, and the down-scanQ and up-scanQ

scanners.

330

7.2. IMPLEMENTING SYNAPSE

GenQ

GenQ creates a synquence from scratch:

(define (genQ init next done?)
(define (gen-synq $arg up-parent)

(let ((down (synchron))

(up (synchron)))

(precede! up up-parent)

(synter down up
(lazon (call/down down gen-list (touch $arg) up)))))

(define (gen-list arg up)

(if (done? arg)

'()
(cons (lazon arg) (gen-synq (lazon (next arg)) up))))

(gen-synq (lazon init) (synchron)))

The internal gen-synq procedure creates two fresh synchrons and packages them up into a

synter, while the gen-list procedure returns a skeletal pair node for the new synquence.

The up-parent argument to gen-synq is the up synchron of previous call; it is passed in

to permit the declaration that a rendezvous at the current up synchron must precede a

rendezvous at its parent. The (synchron) in the initial call to gen-synq is an arbitrary

synchron that serves as the parent to the first up synchron in the resuling synquence. The

$arg argument to gen-synq is delayed so that it will only be computed if done? tests false.

In the above code, the lazons in the (lazon arg) and (lazon init) expressions are

actually superfluous. Since arg and init are already guaranteed to be values, there is no

need to delay their computation. Henceforth, we will eliminate superfluous lazons without

comlnlent.

Map2Q

Map2Q uses reslag2/down to map two input synquences into one output synquence:

(define (map2Q fun synql synq2)

(reslag2/down synqi synq2

(lambda (lstl lst2)

(if (or (null? lstl) (null? lst2))

'()
(let (($eltl (car sti)) ; Aggressive unbundling

($elt2 (car lst2))) ;

(cons (lazon (fun $eltl $elt2))

(map2Q fun (cdr lsti) (cdr lst2))))))))

331

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

The handling of the null? tests guarantees that the length of the output synquence is the

shorter of the two input synquences. Truncation slivers can be handled in a similar fashion.

Using let to name the cars of lstl and lst2 is a crucial application of the aggressive

unbundling principle set forth in Section 5.4.2. If the expression

(let (($eltl (car sti))

($elt2 (car lst2)))

(cons (lazon (fun $eltl $elt2))

(map2Q fun (cdr lstl) (cdr lst2))))

were instead replaced by

(cons (lazon (fun (car lsti) (car lst2)))

(map2Q fun (cdr lstl) (cdr lst2)))

then the map2Q sliver could lead to deadlock in certain contexts. The reason is that lstl

and lst2 refer to synters in their cdr slots, and those synters contain references to down

synchrons. Even though the element computation would not require these synters, the

references to them would not be dropped until the element computation was demanded. If

the element computation were not demanded until the up phase, then the rendezvous on

the down synchrons would be blocked and deadlock would ensue. This example is typical of

the kind of careful reasoning that must be performIed in the presence of synchrons to avoid

deadlock.

DownQ and UpQ

Except for the use of the synchronized calling abstractions, the down and up accumulators

look like classical list accumulators:

(define (downQ init op synq)

(define (accum 1st acc)

(if (null? lst)

acc

(unslag/down accum (cdr lst) (op (car lst) acc))))

(unslag/down accum synq init))

(define (upQ init op synq)

;; OP's first arg is lazy and second arg is eager

(define (accum lst)

(if (null? lst)

init

(op (car lst)

(eagon (unslag/down-up accum (cdr lst))))))

(unslag/down-up accum synq))

332

7.2. IMPLEMENTING SYNAPSE

DownQ uses unslag/down to preserve tail recursion, while upQ uses unslag/down-up to

return from every call.9

The careful reader may be curious about the presence of an eagon within upQ. The

justification for this eagon is rather subtle. We shall motivate its purpose in depth as an

example of the kinds of details and design choices that makes sliver implementation so

challenging.

The eagon within the definition upQ is intended to enhance the operational faithful-

ness of that sliver. Without the eagon, upQ can unduly restrict the timing of of element

coplutations. Consider the SYNAPSE expression:

(upQ (lambda ($elt acc) (+ $elt acc))

0

(mapq square (to-i 3)))

Since the square mapper is arranged between a down and an up sliver, we expect that

the relative order of squares should be unconstrained (see Section 5.2.3). But an eagon-

less ilplementation of upQ will force all the squares to happen in the up phase of the

computation! Why? Since synquence elements are lazy, they are not computed until their

value is required. By inspecting the body of the lambda expression, we can tell that all of

the results of the square applications will be needed - as arguments to +. But the OPERA

interpreter doesn't look inside the body of the lambda until it applies the procedure, and

it only does that when both arguments are available. Since the second argument does not

become available until the up phase, none of the square applications will be demanded

until the up phase.

Inserting an eagon around the second argument allows (but does not require) the ap-

plication of op to occur in the down phase. If the body of op requires the element denoted

by its first argument (as it does in the above example), the element computation may be

performed in the down phase. If the body of op does not require the value of this element,

it will not be conmputed at all. This behavior better matches the expected behavior of upQ.

9 There really should be two versions of upQ: one in which the initial call is made via unslag/down, and
another in which it is made via unslag/down-up. The former would be used in situations where upQ appears
in a tail call position, and the latter would be used for calls in non-tail positions. Similarly, there should be
two versions of downQ. We have simplified matters here by considering only the most common case. The
need for different versions underscores the fact that the slivers are explicitly simulating tail calls. It would
be preferable to have a system that automatically inserted an up rendevous only when it was necessary.
However, preliminary attempts at such a system have been unsuccessful.

333

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

Unfortunately, the fix changes the interface to op in a subtle way. The fact that the

second argument to op is now an eagon can lead to unexpected behavior for an op that does

not require the value of its second argument. C(onsider the following SYNAPSE expression:

(upQ (lambda ($elt acc) (display $elt))

'ignore

(to-1 3))

Naively, we might expect this expression to print out numbers during the up phase in the

order 1, 2, 3. And this would be the behavior in the eagon-less version of upQ. But in the

eagon version of upQ, nothing prevents the numbers to print out during the down phase in

the order 3, 2, 1. In such cases, getting the desired behavior may require extending op with

an explicit control dependency:

(upQ (lambda ($elt acc) (seqn (touch acc) (display $elt))

'ignore

(to-i 3))

In this case, requiring the touch of acc to occur before the display expresses the constraint

that all the displays should occur in reverse order during the up phase.

Down-scanQ and Up-scanQ

Down-scanQ and up-scanQ are scanning transducers patterned after the downQ and upQ

accumulators. The definition of down-scanQ is essentially a version of downQ that uses

reslag/down in place of unslag/down:

(define (down-scanQ init op synq)

(define (scan 1st acc)
(if (null? lst)

'()
(let ((new-acc (op (car lst) acc)))

(cons new-acc
(reslag/down scan (cdr lst) new-acc)))))

(reslag/down scan synq init))

The internal scan procedure maps a given skeletal node (lst) into one that holds the new

value of a down accumulator.

Although the definition of up-scanQ is also closely related to that of upQ, the resemblance

is clouded by the more complex interface of reslag/down-up:

334

7.2. IMPLEMENTING SYNAPSE

(define (up-scanQ init op synq)

;; OP's first arg is lazy and second arg is eager

(define (scan lst)

(if (null? lst)

(cons '() init)

(let (($elt (car lst)))

(reslag/down-up scan (cdr lst)

(lambda (new-list $sub-acc)

(let (($up-acc (lazon (op $elt $sub-acc))))

(cons (cons $up-acc new-list)

$up-acc)))))))

(reslag/down-up scan synq (lambda (final-synq $final-acc) final-synq)))

In this case, scan maps a given skeletal node (st) into a pair of (1) a new skeletal node

and (2) a lazon of the calculation of the up accumulator. The lazon is necessary because

the pair must be returned in the down phase, long before the application of op will take

place in the up phase. Removing the lazon would lead to a deadlock because then the pair

could not returned until the up phase even though its car would be required by the down

phase.

The delayed up accumulator, $up-acc, is used both by the new skeletal node and the

cdr of the returned pair. Since the accumulator is already present in the returned skeletal

node, why is it also necessary to return it as a separate element of the pair? The answer is

that; it helps to make the base case work smoothly. Since the empty list does not contain the

initial accumulator init, an alternate mechanism must be found for associating init with

the empty list. Returning the accumulator in the second slot of the pair avoids having to

test new-list with null? upon every return. If up-scanQ were modified so that it did not

take an initial accumulator value but instead started accumulation with the last element of

the input, this workaround would be unnecessary.

7.2.4 Filtered Synquences

As described in Section 5.5.3, it is tricky to design reusable slivers that deal with filtering

in a reasonable way. Here, we present an approach to synquence filtering that addressed

the issues raised in that section. Fortunately, we will be able to use many of the same

synchronization abstractions that proved handy for the unfiltered case. Indeed, by hiding

unnecessary detail, those abstractions help to highlight what is different about the filtered

335

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

case.

New Abstractions

We begin by defining some new abstractions designed specifically for filtering. In the unfil-

tered case, the element held by a skeletal node is represented as a lazy computation. In the

filtered case, each element is annotated with two flags:

1. The down-element? flag indicates whether the associated element is computed in the

down or up phase.

2. The down-gap? flag indicates whether the element slot holds a gap in the down phase

of a computation. If down-gap? is true, the associated element must be a gap. If

down-gap? is false, then the associated element might be a non-gap value determined

in the down phase, or it might be any value (including a gap) determined in the up

phase.

All four combinations of flags are possible. The most "interesting" combination is when

the down-element? is false but down-gap? is true. This means that a slot produced by a

up sliver is known to contain a gap during the down phase even though the ungapped slots

produced by the sliver are all computed in the up phase. This explicit shape information

makes general filtering mechanisms possible by informing slivers when it's safe to test a slot

for a gap.

An element and its two flags will be bundled together into a structure called a filton.

These structures are built by filton and taken apart by unfilton:

(define (filton down-elt? down-gap? $elt)

(list down-elt? down-gap? $elt))

(define (unfilton fil receiver)

(receiver (car fil) (cadr fil) (caddr fil)))

It is also helpful to have functions that map between filtons. Given a filton, refilton

returns a new filton with the same flags in which a given function is lazily applied to the

original element:

336

7.2. IMPLEMENTING SYNAPSE

(define (refilton fil f)

(unfilton fil

(lambda (down-elt? down-gap? $elt)
(filton down-elt? down-gap?

(lazon (let ((e (eagon (touch $elt))))

(if (gap? e)

#g ; The gap literal

(f e))))))))

We assume that f never returns a gap as a result, because that might violate the validity

of the down-gap? flag. Refilton2 is similar, but takes two inputs:

(define (refilton2 fill fi12 f)
(unfilton fill

(lambda (down-eltl? down-gapl? $eltl)
(unfilton fil2

(lambda (down-elt2? down-gap2? $elt2)
(filton (and down-eltl? down-elt2?)

(or down-gapl? down-gap2?)
(lazon (let ((el (eagon (touch $eltl)))

(e2 (eagon (touch $elt2))))

(if (or (gap? el) (gap? e2))

#g ; The gap literal

(f el e2))))))))))

The resulting filton holds a gap if either input holds a gap. The down-gap? flag of the

result is true if it is true of either input, but the resulting element is produced in the down

phase only if both inputs are produced in the down phase.

The key constraint to be obeyed in filton manipulation is that the two flags of a filton

must be accessible in the down phase of a computation. The element itself may be computed

at any time, but its enclosing filton must contain a lazon of this computation in the down

phase.

Implementing Filtered Slivers

We study filtering by examining some sliver implementations. First we consider the filterQ

sliver, and then we reconsider the same six slivers studied for the unfiltered case.

FilterQ is the only primitive sliver capable of introducing gaps where they did not

exist before. An implementation of the synquence filtering sliver, filterQ, is shown in

Figure 7.9. FilterQ is a special kind of mapping sliver that maps an element either to itself

or to a gap. As in most slivers on filtered synquences, the action taken by filterQ depends

337

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

on the values of the filton flags. If the element is known to be a gap in the down phase

the filton is passed untouched. Otherwise the action depends on when the element will be

available. If the element is available in the down phase (i.e., down-element? is true), then

it can be immediately tested with pred. But if the element won't be available until later

(i.e., down-element? is false), then a gap? test and pred test must be delayed until the up

phase. In all cases, the sliver must produce a valid filton object in the down phase so that

other slivers can examine it during the down phase.

(define (filterQ pred synq)

(define (filter-list lst)

(if (null? lst)

()
(let ((fil (car st)))

(cons (unfilton fil

(lambda (down-elt? down-gap? $elt)

(if down-gap?

fil

(if down-elt?

(if (pred (touch $elt))

fil

(filton #t #t #g))

(filton #f #f

(lazon (let ((elt (touch $elt)))

(if (gap? elt)

#g

(if (pred elt) elt #g)))))))))

(reslag/down filter-list (cdr lst))))))

(reslag/down filter-list synq))

Figure 7.9: An implementation of the filterQ sliver for filtering synquences.

Filtered versions of genQ and map2Q appear in Figure 7.10. These are minor tweaks to

the unfiltered versions; only the lines marked with ;*** have been changed. Every filton

created by genQ contains ungapped elements produced in down phase (i.e., down-element?

is true, down-gap? is false). Map2Q calls refilton2 to do the actual mapping work.

Filtered versions of downQ and down-scanQ (Figure 7.11) differ from their unfiltered

counterparts by treating gaps specially. Each avoids performing an accumulation step in

the case where down-gap? is true.

Extending the unfiltered versions of UpQ and up-scanQ to filtered versions requires more

substantial changes (Figure 7.12). When down-gap? is true, upQ can effectively make a

338

7.2. IMPLEMENTING SYNAPSE

(define (genQ init next done?)

(define (gen-synq $arg prev-up)

(let ((down (synchron))

(up (synchron)))

(precede! up prev-up)
(synter down up

(lazon (call/down down gen-list (touch $arg) up)))))

(define (gen-list arg up)

(if (done? arg)

' ()
(cons (filton #t #f arg)

(gen-synq (lazon (next arg)) up))))

(gen-synq init (synchron)))

(define (map2Q fun synql synq2)

(define (map2-list stl lst2)

(if (or (null? stl) (null? lst2))

'()
(let ((fill (car lstl))

(fi12 (car lst2)))

(cons (refilton2 fill fi12 fun)

(reslag2/down map2-list (cdr lstl) (cdr lst2))))))

(reslag2/down map2-list synql synq2))

Figure 7.10: Filtered impleilentations of genQ and map2Q.

339

CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

(define (downQ init op synq)

(define (accum 1st acc)

(if (null? lst)

acc

(unfilton (car lst)

(lambda (down-elt? down-gap? $elt)

(if down-elt?

(if down-gap?

(unslag/down accum (cdr lst) acc)

(unslag/down accum (cdr lst) (op $elt acc)))

(error "DOWNQ: Shape error"))))))
(unslag/down accum synq init))

(define (down-scanQ init op synq)

(define (down-list 1st acc)

(if (null? lst)

'()
(unfilton (car lst)

(lambda (down-elt? down-gap? $elt)

(if down-elt?

(if down-gap?

(cons (filton #t #f acc)

(reslag/down down-list (cdr lst) acc))

(let ((new-acc (op $elt acc)))

(cons (filton #t #f new-acc)

(reslag/down down-list (cdr lst) new-acc))))

(error "DOWN-SCANQ: Shape error"))))))

(reslag/down down-list synq init))

Figure 7.11: Filtered implementations of downQ and down-scanQ.

340

7.2. IMPLEMENTING SYNAPSE

tail call; but if dcwn-gap? is false upQ must defer an explicit gap? test until the up phase.

Up-scanQ is similar, but is complicated by the need to create a valid filton in the down

phase even though all the applications of op will occur in the up phase.

Expressing timing constraints for up slivers proves to be quite tricky in the filtered case.

II upQ and up-scanQ, the goal is to require each computation of op to occur between a

consecutive pair of up synchrons. But the slag manipulation abstractions developed above

only rendezvous on the up synchron corresponding to the input of op; nothing explicitly

forces op to return before the up synchron corresponding to its output. This does not cause

a problem in the unfiltered case, because every position of the recursion is occupied with

an instance of op. But in the filtered case, some positions are not occupied, and the output

of an op may not be properly constrained.

To fix this problem, it is necessary to extend the slag abstractions to pass down an up

synchron from above. Figure 7.13 shows new versions of these abstractions in which each

proc takes an additional argument, called a returner. A returner is a unary p)rocedure that

maintains a non-waiting pointer to an up synchron. The procedure acts as the identity,

but calling the procedure also releases the synchron pointer, which in turn may enable a

rendezvous at the synchron. Both upQ and up-scanQ use the modified slag abstractions to

obtain access to a returner (bound to the variable return). The return is wrapped around

non-trivial up computation to guarantee that it is bounded from above as well as from

below.

7.2.5 Syndrites

The implementation of syndrites follows the same ideas used in the implementation of

synquences. In fact, the same slag abstractions that aid the synquence implementations are

useful for many of the syndrite implementations. However, the fact that a syndrite skeletal

node generally has multiple children can introduce many headaches.

To give the flavor of syndrite slivers, I will briefly describe the implementations of three

simlle unfiltered examples. Figure 7.14 shows the implementations of mapD, preD, and

down-scanD.

The mapD synlrite mapper closely resembles synquence mappers. The main difference

341

(CHAPTER 7. OPERA: C(ONTROLLING OPERATIONAL BEHAVIOR

(define (upQ init op synq)

(define (accum 1st return)

(if (null? lst)

(return init)

(unfilton (car lst)

(lambda (down-elt? down-gap? $elt)

(if down-gap?

(unslag/down-return accum (cdr st))

(let ((sub-acc (eagon (unslag/down-up-return accum (cdr lst)))))

(return

(if (gap? $elt)

(touch sub-acc)

(op $elt sub-acc)))))))))

(unslag/down-up-return accum synq))

(define (up-scanQ init op synq)

(define (up-list 1st return)

;; Returns a pair of (1) A new list (2) A (lazy) new accumulator

(if (null? lst)

(cons '() (lazon (return init)))

(let ((fil (car lst))

(subsynq (cdr st)))

(unfilton (car lst)

(lambda (down-elt? down-gap? $elt)

(if down-gap?

;; Return a non-gap in either case.

(reslag/down-return-receiver up-list subsynq

(lambda (new-list $sub-acc)

(cons (cons (filton #f #f $sub-acc)

new-list)

$sub-acc)))

(reslag/down-up-return up-list subsynq

(lambda (new-list $sub-acc)

;; This is tricky. In all cases, MUST return a pair of

;; a synchron and a lazy accumulator immediately.

(nex ((up-acc (if (gap? $elt) $sub-acc (op $elt $sub-acc))))

(cons (cons (filton #f #f (lazon up-acc))

new-list)

(lazon (return up-acc))))))))))))

(reslag/down-up-return up-list synq (lambda (final-synq $final-acc) final-synq)))

Figure 7.12: Filtered imlplementations of upQ and up-scanQ.

342

7.2. IMPLEMENTING SYNAPSE

(define (unslag/down-return proc slag . args)
(unsynter slag

(lambda, (down up $snode)
(apply call/down down
proc (eagon (touch $snode))

(lambda (x) (seql x up)) ; Returner

args))))

(define (unslag/down-up-return proc slag . args)
(unsynter slag

(lambda. (down up $snode)

(apply call/down-up down up

proc (eagon (touch $snode))

(lambda (x) (seql x up)) ; Returner

args))))

(define (reslag/down-return-receiver proc slag receiver . args)
(unsynter slag

(lambda. (down up $snode)

(nex ((new-snode&other (apply call/down down
proc (eagon (touch $snode))

(lambda (x) (seql x up)) ; Returner

args)))

(nex ((new-snode (car new-snode&other))

(other (eagon (touch (cdr new-snode&other)))))
(let (($other (lazon other)))

(receiver (synter down up (lazon (seql new-snode other)))
$other)))))))

(define (reslag/down-up-return proc slag receiver . args)
(unsynter slag

(lambda (down up $snode)

(nex ((new-snode&other (apply call/down down

proc (eagon (touch $snode))

(lambda (x) (seql x up)) ; Returner

args)))

(nex ((new-snode (car new-snode&other))

(other (eagon (seql (touch (cdr new-snode&other))

(wait up)))))

(let (($other (lazon other)))

(receiver (synter down up (lazon (seql new-snode other)))
$other)))))))

Figure 7.13: Modified slag abstractions used by upQ and up-scanQ.

343

C4HAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

(define (mapD f synd)

(define (map-tree tr)

(let (($elt (elt tr)))

(tree (lazon (f $elt))

(map (lambda (kid) (mapD f kid))

(kids tr)))))

(reslag/down map-tree synd))

(define (down-scanD init op synd)

(define (accum tr acc)

(let (($elt (elt tr))

(subdrites (kids tr)))

(let ((new-acc (op $elt acc)))

(tree new-acc

(map (lambda (synd) (reslag/down accum synd new-acc))

subdrites)))))

(reslag/down accum synd init))

(define (preD dir init op synd)

(define (walk-tree tr return acc)

(let (($elt (elt tr))

(ks (kids tr)))

(let ((new-acc (op $elt acc)))

(if (null? ks)

(return new-acc)

(walk-trees ((permuter dir) ks) new-acc)))))

(define (walk-trees synds acc)

(let ((fst (car synds))

(rest (cdr synds)))

(if (null? rest)

(unslag/down-return walk-tree fst acc)

(walk-trees rest (unslag/down-up-return walk-tree fst acc)))))

(unslag/down-return walk-tree synd init))

Figure 7.14: Ilplementations of three unfiltered syndrites.

344

7.2. IMPLEMENTING SYNAPSE

is that the internal map-tree manipulates a tree shaped skeletal node rather than a linear

one. The tree constructor makes a tree out of an element and a list of subtrees; the elt

andt kids selectors extract these components from a tree. MapD is recursively mapped over

the subtrees using OPERA's higher order map procedure. The base case that terminates the

recursion is applying map to an empty list of children.

Down-scanD is a straightforward parallel down scanner that resembles the down-scanQ

sliver for synquences.

Recall that preD is a pre-order accumulator that takes a direction argument (dir) in

addition to the usual initial value, combiner, and slag. PreD is implemented as a pair

of mutually recursive procedures, walk-tree and walk-trees. Walk-tree returns the

accumulated value from a pre-order walk of a tree, while walk-trees returns the accumulated

value from a pre-order walk of a list of syndrites. The permuter procedure used in the body

of walk-tree permutes the children of a tree as specified by the direction.

The implementation of preD is carefully crafted to preserve important operational char-

acteristics of a pre-order walk. To preserve tail recursion, the case where walk-trees is

given a singleton list is handled specially; walk-trees is never called on an empty list.

Returner-supplying versions of the slag abstractions are used to constrain the pre-order

walking operations to happen at the right time with respect to other slivers that might be

manipulating g the same syndrite.

The simplicity of the above examples is somewhat deceiving. Many syndrite slivers,

especially the scanners, are very complex and have repeatedly resisted simplification at-

tempts. For example, the pre-order scanner is so intricate that it doesn't even fit on a

single page! The scanners are particularly difficult to write because they must immediately

return new syndrite structure while at the same time laying down the proper dependencies

and time constraints for the accumulation computation that will take place later. Thus far

I have been unable to find appropriate abstractions that elegantly express these intricate

processes.

Another fly in the syndrite ointment is filtering. The two-flag synquence filtering tech-

nique does not solve the reusability problem for general syndrite filtering. In the synquence

case, an element is filtered either in the down phase or the up phase. But in the syndrite

345

346 CHAPTER 7. OPERA: CONTROLLING OPERATIONAL BEHAVIOR

case, filtering can happen betweenz subcalls as well. This greatly complicates the design of fil-

tered syndrites, and I have not worked out the details. The interactions between tree shapes

and filtering remains an area for future study. The current implementation of SYNAPSE uses

a straightforward approach to gap representation that is sufficient for the simple examples

tested so far.

Chapter 8

EDGAR: Explicit Demand Graph

Reduction

I have demonstrated how slivers and synchronized lazy aggregates can be realized using

the concurrency, synchronization, and non-strictness features of OPERA. But since I have

only described these features in an informal way, there are many potential ambiguities

and unexplained subtleties concerning how they work. In particular, the details of how a

rendezvous occurs at a synchron are far from clear.

In this chapter, I present a semantic model that precisely specifies the meaning of OPERA

expressions. The model is based on Explicit Demand Graph Reduction (EDGAR), a frame-

work that I have developed for describing how computations unfold over time. Whereas

many semantic frameworks focus on the value produced by a computation, EDGAR is de-

signed to emphasize the way in which the value is computed. EDGAR represents a compu-

tation as a sequence of graphs, each one of which represents the control state and accessible

data at a particular point in the computation. EDGAR shares many similarities with other

models of computation (e.g., graph reduction, dataflow models, concurrency models, struc-

tured operationall semantics). The key feature that distinguishes it from most other semantic

models is its explicit representation of the flow of demand through a computation. This

feat;ure simplifies the explanation of OPERA'S features for fine-grained operational control.

I present the semantics of OPERA in three parts. First, I explain the basics of the

347

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

EDGAR model. Then I focus on the EDGAR rules that implement OPERA'S concurrency,

synchronization, and non-strictness features. Finally, I describe how an OPERA expression

can be evaluated by translating it into an initial EDGAR grap)h, turning the crank of the

graph reduction process, and translating the final graph into an OPERA result. I conclude

the chapter by relating EDGAR to other graph-based semantic frameworks.

8.1 The Basics of EDGAR.

At the very highest level, EDGAR follows the basic recipe for an operational semantics

framework [Plo81]. In an operational semantics, program execution states are represented

by some sort of structured configuration, and there are transition rules that specify how the

computation can step from one configuration to the next. Program execution is modelled

by mapping the program to an initial configuration and iteratively applying transition rules

until a suitable final configuration (one representing an answer) is obtained. The final

configuration is then mapped to an appropriate answer domain.

8.1.1 Snapshots

In ED)GAR, each configuration is called a snapshot because it represents a single moment

in the dynamic evolution of a process. A snapshot is a graph consisting of interconnected

program components. Figure 8.1 is a visual depiction of a sample snapshot that we will

refer to in the ensuing discussion.

Each program component, called a node, can be viewed as a computational device that

responds to a demand for a value by computing that value. Every node is has a label that

indicates the behavior of the node. Each node posesses a set of labelled input ports that

specify the arguments of the node and a set of labelled output ports that specify the results

of the node. The number of input ports and output ports is dictated by the label of the

node. Typically, a node has several input ports and one output port. Every node must

have at least one port, but one of the input port set or the output port set may be empty.l

1In all of our examples, a node will have only 0 or 1 output ports, but in general it can have any number.

348

8.1. THE BASICS OF EDGAR

Figure 8.1: A simple snapshot.

In Figure 8.1, nodes are depicted as labelled rectangles, and ports are depicted as tri-

angles attached to the nodes. An input port points into its node; an output port points

away froni its node. Ports are labelled with names that serve to distinguish them, as well

as indicate their purpose.

Nodes are wired together much like the components of an electrical circuit. Each con-

nection is indicated by a directed wire from an output port of the source node to an input

port of the target ntode. Wires appear as lines in Figure 8.1. Technically, a wire connects

a, sourcce port to a, target port, but when there is no ambiguity it is convenient to refer to a

wire as connecting two lodes. The set of wires entering the input ports of a node are its

inpullt wires, while those that leave its output ports are its output wires.

Intuitively, a wire is used for a two-step communication protocol between its source and

target ports: the target port can request the value from its source port, and the source

port can respond to the request by returning a value. Every wire has a state attribute that

indicates the status of this commnunication protocol. There are three possible wire states:

1. iactive: No request has yet been made on the wire.

349

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

2. requested: A request has been made on the wire, but no value has been returned.

3. returned: A request has been made on the wire, and a value has been returned.

In Figure 8.1, an unannotated line is an inactive wire; a line with an empty circle is re-

quested; and a line with a filled circle is returned. Wire states are the chief characteristic

of EDGAR that distinguish it from traditional forms of graph reduction. In particular, the

existence of a requested state is what makes EDGAR an "explicit demand" model.

The value returned by a returned wire is the source node of the wire. In EDGAR, only

a subset of the nodes may appear at the source of a returned wire. These nodes are called

value nodes. Examples of value nodes include constants, data structures, and procedures.

The +, -, and sqrt nodes in Figure 8.1 examples of nodes that are not value nodes; they

represent the applications of procedures but are not procedures themselves.

We shall see later that the state of a wire can change when a computation steps from one

snapshot to another. As implied by the description of the wire states, the communication

protocol on a wire over a sequence of snapshots is very limited:

* At most one request can ever be made on a wire.

* No value can be returned to a wire until a request has been made on that wire.

* At most one value can ever be returned to a wire.2

A wire, then, is a one-shot communication "fuse" that can be used for transmiting a single

request and a single value before it is "used up". These restrictions on wires distinguish

EDGAR from dataflow graph models, in which wires carry a stream of value tokens.

In a legal snapshot, every input port must be connected to exactly one wire, but an

output port may be connected to any number of wires, including zero. Wire fan-out at an

output port allows the result computed at one node to be shared as an input to other nodes.

Wire sharing means that nodes can be arranged in directed acyclic graphs (I)AGs) or even

exhibit cycles (see Figure 7.4 on page 323 for an example of a cyclic graph).

2This is true only for the functional subset of EDGAR. In the presence of nodes that model side effects,
the value represented by a wire may change over time. See [Tur94] for details.

350

8.1. THE BASIC'S OF EDGAR

The snapshot depicted in Figure 8.1 is an intermediate configuration in a simple numer-

ical computation. The computation specifies the calculation of

(7-3)+ (7-3)

where the sharing of the - node indicates that the difference between 7 and 3 is to be

calculated only once. The nodes labelled 7 and 3 are numeric nodes whose single output

ports stand for the designated number. The nodes labelled +, -, and sqrt are primop

nodes, whose output ports stand for the result of performing the specified operation on the

argument values specified by the input wires.

The node labelled sink is a sink node, which serves as the primitive source of demand

in a computation. Intuitively, a sink node "tugs on" (emits a request to) the wire connected

to its single input port in order to initiate a computation. The computation initiated by

a sink node successfully terminates when the wire into the sink node enters the returned

state. Every computation must have at least one sink node, a distinguished node known

as the top-level sink node. The top-level sink node loosely corresponds to the eval in a

traditional Lisp read-eval-print loop.

It is worth emphasizing that a snapshot is just a particular moment in the evolution of

dynamic process. No mention yet has been made to how a process steps from one snapshot

to the next. Nevertheless, it is possible to deduce certain aspects of the history of a process

from the wire states in a single snapshot. In Figure 8.1, for example, the wire annotations

indicate that demand has propagated from the sink node through the + node to the sqrt

nole (where demand stops) and to the - node (through which demand has propagated to

the 7 and 3 nodes). Furthermore, the 3 node has returned to the - node in response to the

demand.

We shall soon see how the allowable transitions between snapshots are constrained in

order to guarantee that a sensible history can be deduced from the wire states of any

particular shapshot.

351

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

Figure 8.2: A rule that propagates demand through a sqrt node.

8.1.2 Rewrite Rules

The dynamic behavior of a computation is specified by a set of rewrite rules that transform

one snapshot into another. It is the rewrite rules that dictate the dynamic behavior of

nodes and the flow of demand and values through a sequence of snapshots.

A rewrite rule has two parts, a pattern and a replacement. The pattern is a partial

graph structure in which wires may be attached to pattern variables instead of ports. A

pattern is said to match a snapshot if it can be embedded in the snapshot. The replacement

specifies how the snapshot structure matched by the pattern should be replaced in order to

construct a new snapshot.

Figure 8.2 shows a simple rewrite rule for propagating demand through a sqrt node.

The rule says that if a snapshot contains a sqrt node having at least one output wire

in the requested state and its input wire in the inactive state, then the snapshot can be

transformed into a new graph with the same structure as the original except that the input

wire is in the requested state. The rule has been labelled with a name ([sqrt-request]) so

that we can conveniently refer to it later.

A rewrite rule that matches a snapshot can be applied to the snapshot to yield a new

snapshot. Removing the structure specified by a pattern from a snapshot that it matches

leaves the context of the match. The new snapshot is constructed from the context by

pat e replacement

a a

.. .. .
.sqrt I

Targ

b b

[sqrt-request]

352

8. 1. THE BASICS OF EDGAR

(a) A snapshot matched by (b) The context determined (c) The result of the rule ap-
the [sqrt-request] rule. by the match. plication.

Figure 8.3: Steps in an application of the [sqrt-request] rule.

filling the hole left by the deleted pattern with the structure specified by the replacement.

The part of the initial snapshot that is not directly matched by the pattern is carried over

unchanged into the final snapshot.

For example, the pattern of the [sqrt-request] rule matches the snapshot in Figure 8.3(a).

The context determined by the match appears in Figure 8.3(b). Context ports that match

a pattern variable in the pattern are labelled to indicate the match. The structure specified

by the rule replacement is "glued" onto the context to form the snapshot that is the result

of the rule application (Figure 8.3(c)). As shown in Figure 8.4, a rule application can be

depicted by showing both the original snapshot and the resulting snapshot. (Henceforth,

we will omit names on ports by assuming that input and output ports on a node appear in

a canonical left-to-right order.)

Each rule pattern contains a distinguished node-matching element called its locus. In

figure for the [sqrt-request] rule, the locus of the rule is the sqrt node, which is indicated

by a dotted outline. The locus provides a convenient way to specify a particular node in a

snapshot at which the match occurs. In a successful match, the node matched by the locus

of a rule is said to be enabled by the rule. Whenever a snapshot contains a node enabled

353

1

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

Figure 8.4: An application of the [sqrt-demand] rule. Port labels have been dropped here
(and in following figures) because they are unambiguously determined by position.

by a rule, the rule can be applied at that node to yield a new snapshot. In Figure 8.4, the

dotted outline of the sqrt node indicates that it is enabled by the [sqrt-request] rule.

Figure 8.5 shows all the EDGAR rules necessary for handling the kinds of nodes we have

seen so far. The [sink-request] rule shows that a sink acts as a source of demand in the

system. Although other nodes may propagate demand, sinks are EDGAR's only source of

demand.

The [constant-return] rule is the only rule for handling constants (e.g., numbers, booleans,

primitive procedures, etc.). Technically, [constant-return] is a rule schema3 that stands for

an infinite collection of rules; we obtain a particular rule by instantiating the metavariable

(C" with any constant. The [constant-return] rule schema dictates that a constant responds

to a request simply by returning. The filled-in circle on the output wire of a returned con-

stant indicates that the wire has entered a "returned" state. Unlike certain representations

of dataflow, the filled-in circle is just a state indicator and not a value-bearing token; the

31 do not emphasize the distinction between rules and rule schemas in the remainder of this discussion,
and will sometimes loosely use "rule" where "rule schema" would be more appropriate.

354

8.1. THE BASICS OF EDGAR

r I

Figure 8.5:

returned value is simply the node at the source of a wire in the returned state.

There are two rules for handling primop nodes. The [primlop-request] rule specifies that

demand for the result of a n-argument primitive operation P propagates in parallel to all

n arguments of the operation. This rule differs from the operand evalution semantics of

most sequential languages, which typically require that the arguments are evaluated in a

specified order, or at least some sequential order. The [primop-request] rule is one of the

means by which concurrency is achieved in EDGAR.

The [primiop-apply] rule specifies how the application of a primitive operator to values

returns a result. An n-argument primop node P is only enabled by such a rule if each

of its n input wires is in the returned state (i.e., a primitive application is strict). Each

metavariable Vi can be instantiated with any value node that is an acceptable ith argument

to P. The node labelled P(V 1, ... , V,,) is the result of applying the primitive operator to

the argument values. For example, applying a + primop node to a 1 node and 2 node would

yield a 3 node.

The triangle labelled A at the output port of the primop node is the depiction of a

r---------------I

sinkI. ..

a a

[sink-request]

a a

: C..onstant-return]

[constant-return]

P Pt
ao an ao an

[primop-request]

7I

I [primop-apply]

-

I&

PM, - - - , VP I

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

Figure 8.6: Application of a [primop-apply] rule for binary subtraction. Note that the 4
node is enabled in the resulting snapshot.

vire set pattern variable. Such a pattern variable matches the entire set of wires leaving

a port, provided that the set is nonempty and contains at least one requested wire. The

[primop-apply] rule says that all of the wires originally attached to the P node are "moved"

to the output port of the node that is the result of the primitive application. Figure 8.6

shows a sample application of the rule obtained by instantiating the [primllop-apply] rule

with a binary subtraction operator.

8.1.3 Garbage Collection

As indicated by Figure 8.6, rule applications can sometimes result in nodes that are inacces-

sible from the top-level sink node. A node is inaccessible from a sink if there is no directed

path of wires from the output port of the node to the input port of the root. In the binary

subtraction example, the subgraph rooted at the - node is a disconnected component of the

snapshot graph, all of whose nodes are inaccessible from the sink.

In order to be able to accurately model the space required by a computation, it is neces-

sary to have some means for removing the inaccessible nodes from a snapshot. This process

356

8.1. THE BASICS OF EDGAR

is called garbage collection. We will assume the existence of a garbage collection function,

gc, that maps snapshots to snapshots by removing any nodes that are not accessible from

the sink nodes of a snapshot. 4

II1 the case of the [primop-apply] rule, the inaccessible nodes in the result are present

because the rule specifies that the primop nodes and argument nodes should be copied

from the initial snapshot to the final snapshot. Why not change the [primop-apply] rule

avoid copying these nodes? The problem with this approach is that incorporating garbage

collection into the rewrite rules leads to a number of complexities. For example, while it

is always safe for the [primop-apply] rule to delete the primop node (since it is guaranteed

to become inaccessible when all of its output wires are moved), the argument nodes cannot

always be deleted since they may be accessible from some other part of the snapshot. Rather

than trying to express the garbage collection conditions within the rewrite rules, it is simpler

to handle garbage collection via a separate mechanism.

8.1.4 Transitions

Whenever a rule allows snapshot S to be rewritten into S ', we say that there is a transition

between S and gc(S '), written S gc(S'). A transition combines a rule application and

garbage collection into a single step of the computation. = is a binary relation between

snapshots; >= is the reflexive, transitive closure of this relation. When S,1 = S2, we say

that there is a transition path from S1 to S2.

In general, it may be possible to make several different transitions from a given snapshot.

It is often the case that several nodes in a snapshot are enabled by one or more rules.

IFor example, Figure 8.7 shows the two transitions that are possible from the snapshot in

Figure 8.1.

Even though more than one rule application may be possible for a given snapshot, tran-

sitions are defined so that there is only one rule application per transition. This restriction

corresp)onds to a computational model in which there is a single "processor" that can only

apply one rule in each step of the computation. It is possible to imagine alternate approaches

4 The sink nodes are so-called roots of the garbage collection. Eagon nodes are also garbage collection
roots.

357

358 CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCJTION

Figure 8.7: The two possible transitions for a snapshot in which two nodes are enabled.

8.1. THE BASICS OF EDGAR

in which more than one rule application would be allowed per transition. For example, a

multi-processor model might allow several rule applications to occur in parallel within a

single transition. However, allowing multiple applications introduces extra complexities

(e.g. undesirable interactions between rules whose patterns might overlap when matching a

graph). Since allowing only a single application per transition is sufficient for our purposes,

we henceforth ignore the possibility of multiple rule applications per transition.

8.1.5 Computation

Here we formalize the notion of an EDGAR computation. First, a few definitions:

* An initial srnapshot is a snapshot rooted at a sink node in which all wires are inactive.

* A final snapshot is a snapshot in which no rules are enabled.

* A trace is any sequence of snapshots such that there is a transition from each element

of the sequence to the next.

* The space required by a snapshot is the suIm of the number of nodes and the number

of wires in the snapshot.

A ter mi7nating computation is a trace from an initial snapshot to a final snapshot. The time

required by a termninating computation is the number of transitions made in the trace (i.e.,

one less than the length of the trace). The space required by a terminating computation is

the maximum of the space of the snapshots in the computation.

For example, Figure 8.8 depicts a sample terminating computation as a "movie" of

numbered snapshot "frames". The time of the sample computation is 13 transitions, and

the space is 12 units (the first 6 frames require 6 nodes + 6 wires).

A non-terminatinLg computation is an infinite trace beginning with an initial snapshot.

The time required by a non-terminating computation is undefined. The space required

by a non-terminating computation is the maximum of the space of the snapshots in the

computation if this mIaximum is defined; otherwise the space is undefined.

A computation has an outcome that describes its fate. The outcome of a non-terillinating

computation is bottom. The outcome of a terminating computation is determined by its

359

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

Figure 8.8: Depiction of a computation as a sequence of snapshots.

360

8.1. THE BASICS OF EDGAR

final snapshot. If the input wire to the root sink node is returned, then the outcome is a

result whose value is the graph structure at the source of the wire. For example, the outcome

of the computation depicted in Figure 8.8 is a result whose value is the constant node 6.

If' the input wire to the root sink is not returned, then the outcome is deadlock. Deadlock

indicates a computation that is "stuck" in a snapshot in which no rules are applicable.

Figure 8.9 shows two final snapshots of a deadlocked computation. In (a), the snapshot

corresponds to a type error (sqrt cannot be applied to a boolean); in (b), the snapshot is

caught in an unresolvable dependency.

sink

sink

sqrt

sqrt

(a) (b)

Figure 8.9: Two examples of deadlocked final snapshots.

8.1.6 Behavior

The behavior of an initial snapshot is the set of all computations that begin with that

snapshot. A behavior often contains numerous computations due to the fact that several

transitions may be possible from a given snapshot. The time and space required by of a

behavior can be found by maximizing over the spaces and times required by the component

computations (when these quantities are defined). The outcomes of a behavior is the set

of outcomes for the component computations. Due to the fact that EDG(AR supports side

effects (data mutation and I/O), the nondeterminism of transitions can lead to multiple

outcomes.

(Iconsider the initial snapshot Sinitia l used in Figure 8.8:

361

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

The wires in Sinitial have been labelled so that we can refer to them by number. The

behavior of Sin,,itial is depicted in Figure 8.10 as a directed graph in which each vertex

stands for a snapshot and each directed edge stands for a transition. Each vertex is a triple

of numeric sets indicating the states of the wires labelled by the numbers. The triple is

interpreted as

(inactive wires, requested wires, returned wires)

A number can be a member of at most one of the three sets; if it is a member of none, then

it is not present in the snapshot. For the simple case of Si,,itil, a triple uniquely identifies

a snapshot in one of Si,itial's computations. Every path through the graph from Si,,itia to

Sfinal represents one of the computations in the behavior of Sinitial. The shaded crosses

are isomorphic subgraphs that only differ in whether or not wire 4 is inactive (left cross) or

requested (right cross).

8.1.7 Global State

The above definition of behavior assumes that the set of computations emanating from an

initial snapshot depends only on the snapshot. Indeed, in the absence of I/O operations

or other operations on global state, each initial snapshot identifies a unique behavior. But

362

8.1. THE BASICS OF EDGAR 363

Sinitial <{1,2,3,4,5,6), {, ()>in~~ial

,<(4,5,6, 1,2,3),

(<{4}, {1,2,3,5,61, {}>a < {5 , 6} { 1 2 3 4), {>

2: <{4}, (1,2,3,6}, {5> .>f <t4}, {1,2,3,5}, <6> (^:<{}, {1,2,3,4,5,6), {}>

t~~~~~~~~~~~~~~~~~~~~~~~s~~~~~~~~~~-
<(4), (1,2,3), <14 , {,> { 2}> i 4[5 , {1,,3} {4

(1,2,) } {15 3}6 {,>

<(4),~~~~~ ~ ~ ~ ~ ~ (1{I, (2}> <2,3} (123,

iinal:~'""---~,~-----.· , ~--.~~t.-~~. ,,,~ . ,.,, .. ~.,,,..~,~...~, :..,...,,.4.,.,......,.-.,-:..,..-..-,.
..................~~~~~~~~~~~~~~~~~~~~~1 ~ '.......... ..-.:' "''""" '"" ~'..- ~...............

<(4} ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~(,3,4, (2}> ii~...._..~ {} ~,2,3, {4}>

<(]. ~ ~ ~ (,3{.3,} 2) , {3, , } {4>[

<({1), (2,3)>

Sfinal[<(), } l}

Figure 8.10: Depiction of the behavior of a simple initial snapshot.

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

in the presence of such operations, the behavior of an initial snapshot may depend on the

global state, and individual computations may modify the global state.

There are many approaches to handling global state in the EDGAR framework. Here are

some possibilities:

1. Assume that all global state is explicitly encoded in the initial snapshot and can be

extracted from the final snapshot.

2. Change the definition of computation so that it is a triple of a trace, an initial state,

and a final state such that the trace produces the final state from the initial one.

Additionally extend the notion of outcome to include the final state. Behavior would

still be defined as a set of computations.

3. Keep the definition of a computation the same, but change the definition of behavior

to be a function from initial states to sets of computation/final-state pairs.

I will not pick a particular method, but will simply assume that global state is handled

appropriately in situations where it is an issue.

8.2 The Details of EDGAR

Here we detail only those EDGAR rules that are essential for expressing the concurrency,

synchronization, and non-strictness features of OPERA. The complete collection of EDGAR

rules is described in [Tur94].

8.2.1 Procedures

The handling of procedures and procedure calls is shown in Figure 8.11. A pcall node is a

general procedure application node. The [pcall-request] rule propagates demand for a pcall

node to all of its input wires. Together, the [primop-request] rule (from the previous section)

and the [pcall-request] rule implement a concurrent strategy for argument evaluation.

Nodes labelled proc represent procedures. Each proc node contains a template, a partial

graph structure that specifies the body of the procedure. The template has an output port

that represents the result of the body, and a number of input ports that represent the

364

8.2. THE DETAILS OF EDGAR

Figure 8.11: EDGAR rules for handling procedures.

Ipallj .Ipall

ao an ao an

[pcall-request]

proc proc
................. A=

template . template

iXl Xk Yi Yn Xl X k Yl Yn

........

a1 ak a ak

[proc-return]

pcall , I psall I I instantiationpcall PCall
X1 Xk Y Yn

proc proa
template template

.Xl Xk Y Yn 1

a1, ak a

[pcall-apply]

365

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

values on which the body depends. The k input ports xl, ... , xk stand for the values of

free variables used in the body, while the n input ports Yl, .. , y,, stand for the explicit

arguments of the procedure. The proc node itself has k input ports that are attached to

the values of the free variables (al, ... , ak). These inputs correspond to the environment

of a closure in the traditional environment model of procedures [ASS85]. The dotted lines

connected the first k input ports on the template to the input ports of the proc node are

intended to suggest that the template inputs will be connected to the proc inputs upon

application of the procedure.

The [proc-return] rule simply says that a proc node is a value. The [pcall-apply] rule

specifies the details of procedure application. The rule is not applicable until all the input

wires are returned, which indicates that procedure calls are strict. The rule creates a copy

of the template, called the instantiation, and connects wires to its ports as follows:

* The first k input wires of the instantiation are connected to the sources of the k

input wires of the proc node. This supplies the values of the free variables as implicit

arguments to the instantiation.

* The last n7 input wires of the instantiation are connected to the sources of the n

operand wires of the pcall node. This supplies the values of the explicit arguments

to the instantiation.

* All of the output wires of the pcall node are rerouted to the output port of the

instantiation. This means that the value of the instantiation will be "returned" as the

value of the pcall node.

8.2.2 Synchrons

I present two versions of the synchron rules. The simpler version, which ignores the com-

plexities of the precede! operator, is shown in in Figure 8.12. The [synchron-return] rule

treats synchron nodes as self-evaluating values. The [simultaneous] rule is a unification

rule that ensures that all references to two unified synchrons point to the same object.

The [rendezvous] rule is the cornerstone of the OPERA semantics. In fact, the whole

EDGAR system was design to express this rule in a reasonable way! A synchron output wire

366

8.2. THE DETAILS OF EDGAR

[simultaneous]

Ir--

Figure 8.12: Simple versions of the EDGAR synchron rules.

a a

ri-_--- - . _-
isynchron synchron

synchr......................

[synchron-return]

I I

simul!

synchron synchron

1 77
synchron..

[rendezvous]

wait i... wait

-

367

CHAPTER 8. EDGAR: EXPLI(CIT DEMAND GRAPH REDUCTION

that is in the returned state and attached to a demanded wait node is a waiting pointer.

Any other output wire of a synchron is a non-waiting pointer. The rendezvous rule is only

enabled when all of the output wires of a synchron are waiting pointers. The result of the

rule is that a constant true node is returned to all output wires of all the wait nodes involved

in the rendezvous. Note that the synchron is inaccessible after the [rendezvous] rule, and

can be garbage collected. The rule essentially embodies a proof that the rendezvous is safe

since every process that could ever wait on the synchron is waiting on the synchron.

The precede! operator complicates the handling of synchrons. The constraint that

synchron A precedes synchron B will be represented by augmenting A with an input port

that is connected to the output port of B via an inactive wire. Since the wire is a non-waiting

pointer, B is blocked from rendezvousing as long at A is still accessible.

The modified rules necessary for handling synchrons in the presence of precede! are

shown in Figure 8.13. Each synchron is assumed to have a set of input wires. The [precede]

rule adds a new input wire to one synchron only if the other is not already a follower; the

result returned by the precede! node is a constant true node. The [simultaneous] rule

is modified to take the union of the followers of the two synchrons being combined. The

[rendezvous] rule is trivially updated to indicate that nothing happens to the followers.

One last wrinkle concerning synchrons in the presence of precede ! is that the gc garbage

collection function must be modified to transform certain configurations of connected syn-

chrons in order for OPERA to maintain the right storage behavior. The transformation is

expressed as the [compaction] pseudo-rule in Figure 8.14. (Although expressed as a rewrite

rule, the transformation is part of the gc garbage collection function, not the rewrite sys-

tem). The pseudo-rule says that if a synchron with a single follower is only pointed at by

other synchrons, it can safely be removed. This reduces the amount of space required by

chains of unreferenced synchrons, which can occur in the up processing of filtered lists (see

Section 5.5.4). Extending the rule to synchrons with more than one follower is not a good

idea, because the transformation would actually increase the space by creating new wires.

368

x notin S

x

8.2. THE DET'AILS OF EDGAR

KB7

En

A,

.precede!

|synchron | synchron|x

t.. T X ..

[precede]

Figure 8.13: Extended versions of the ED(:;AR synchron rules.

[rendezvous]

- - - ---

369

s T S T

S S

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

Figure 8.14: Pseudo-rule for synchron garbage collection that must be implemented by the
gc function.

8.2.3 Excludons

In OPERA, excludons and the exclusive construct are responsible for implementing mlu-

tual exclusion. The rules for manipulation excludons are shown in Figure 8.15. The

[excludon-return] rule indicates that excludons are values. The side conditions on this

rule implement the locking behavior of excludons; if an excludon has a returned output

wire to one exclusive, it cannot return to another. The [exclusive-request-lock] rule re-

quests an excludon, but this process will be blocked if the excludon has a returned wire

to another exclusive. Once an exclusive has obtained a lock, it can evaluate the body

([exclusive-with-lock]). When the body returns ([exclusive-release-lock]), the lock is effec-

tively released because garbage collection will remove the returned wire to the inaccessible

exclusive.

TS

[compaction]

370

.r2. THE DETAILS OF EDGAR

a a

'exclusive: exclusive

b Ib
excludon excludon

[exclusive-request-lock]

a a

.......... :L

exclusive exclusive

I u b b
excludon excludon

[exclusive-with-lock]

Figure 8.15: Rules for handling excludons.

a a Conditions:

,i..... i (1) a not an exclusiveM* OR
*excludon excludon x (2) a an exclusive and

-----------........................ x not returned to another exclusive

[excludon-return]

[exclusive-release-lock]

371

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDIUCTION

8.2.4 Lazons and Eagons

OPERA's non-strictness is expressed in terms of lazons and eagons. The EDGAR rewrite

rules for handling these to objects are shown in Figure 8.16. The rules indicate there is

only a single difference between lazons and eagons: a lazon returns to a request without

propagating the demand, while an eagon returns to a request and propagates demand. The

dotted input wire to the eagon node in the [eagon-touch] rule indicates that the wire may

be in any state.

Figure 8.16: EDGAR rules for handling lazons and eagons.

8.3 Compiling OPERA into EDGAR

The semantics of OPERA can be formalized by describing how to translate an OPERA

program into an ED(;AR initial snapshot. The behavior of this snapshot is the meaning of

the OPERA expression. The results of this snapshot are the possible values of the expression.

a a

lazon! I lazon.....t..... t
b b

[lazon-return]

a a

...
X eagon eagon
..... j.

b b

[eagon-return]

touch

.... ,
lazoni

'bb
[lazon-touch]

|touch

:eagon

b

[eagon-touch]

.
.

;172

""KA

8.3. (COMPILING OPERA INTO EDGAR

To simplify the presentation, we will introduce an intermediate language, OK, which is a

slight variant of the OPERA kernel. We will then present the OPERA to EDGAR translation

process in two stages: the translation from OPERA to OK, and the translation from OK to

E) GAR.

8.3.1 OK

OK is a language that is a minor tweak of the OPERA kernel. The syntax of OK is sum-

marized in Figure 8.17. (For comparison, see Figure 7.1 on page 296 for a summary of the

OPERA kernel.) OK supports almost all the kernel syntax of OPERA. The differences are

as follows:

* Unlike an OPERA program, an OK program includes no definitions. It consists of a

single OK expression.

* Whereas OPERA's quote form can express arbitrary symbolic expressions as literals,

OK's quote form can only express symbols.

* OK does not support the assignment form (set! Iname Eval).

* OK includes the new form (primop Opriim Earg*) to express the application of prim-

itive operators. Oprim must be the name of one of OPERA's primitive procedures.

(primop + 1 2) can be viewed as an "in-lined" version of (+ 1 2).

* The forms (seqi E*) and (seqn E*), which are syntactic sugar in OPERA, are

considered to be kernel forms in OK.

* Except for the seqi and seqn forms, OK does not support any of the syntactic sugar

of OPERA.

8.3.2 Translating OPERA to OK

The translation fom OPERA to OK is performed by two functions:

1. prog maps an OPERA program to an OK program.

373

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

Kernel Grammar:
P E Program
E E Expression
I E Identifier
L E Literal
S E Symbolic Expression
O E Operator Name

P ::= (program Ebody)

L

I
(lambda (Ifo,,al*) Ebody)
(pcall Eproc Earg*)
(pletrec ((I,,me Edef)*) Ebody)

(if Etest Ethen Eelse)
(quote I)
(lazon Ebody)
(eagon Ebody)
(exclusive Eexcl Ebody)

(nex ((I,n,e Edef)*) Ebody)
(nexrec ((Ilna,, Edef)*) Ebody)

(primop Oprim Earg*)
(seql Esequent*)
(seqn Esequent*)

[literal expression]
[variable reference]
[abstraction]
[parallel application]
[parallel recursive bindings]
[conditional]
[quoted expressions]
[suspension]
[future]
[mutual exclusion]
[graphical bindings]
[graphical recursive bindings]
[primitive application]
[sequence/first]
[sequence/last]

::= usual Scheme identifiers
::= usual Scheme literals

Figure 8.17: OK summary

[program]

E

I
L

374

8.3. COMPILING OPERA INTO EDGAR

2. Texp maps an OPERA expression to an OK expression.

Tprog simply, transforms an OPERA program into an OK program whose body is a

pletrec expression:

Tprog[(program Ebody (define I E) ...)

= (program Texp[(pletrec ((II El) ...) Ebody)])

The Texp function can be expressed as the composition of a number of source-to-source

transformations I present each component transformation below in the order in which they

are applied. I will treat each transformation as a separate phase, though in practice the

phases can be interwoven into a transformation program that makes fewer passes over the

OPERA expression (yet another potential application of slivers!):

Desugaring

The desugaring phase, fDexp, transforms an OPERA expression into another OPERA expres-

sion by expanding all of the syntactic sugar forms. The syntactic sugar inherited from

Scheme (except for begin) is expanded according to the rules given in [(:CR+91]. The

OPERA-specific syntactic sugar is trivially expanded as follows:

Dexpl[(begin E ...)D = (seqn exp[E ...)

VDexp[(Eproc Earg .) = (pcall DexpI[Eproc] Dexp[Earg] ...)

Dexp[(let ((I E) ...) Ebody)j
= (pcall (lambda (I ...) 2Dexp[Ebodyj) exp[E ...)
plet is handled similarly

Dexp[(letrec ((I E) ...) Ebody)]
= (pletrec ((I)Dexp[E]) ...) Dexpi[Ebody])

Dexp[(seq E ...) = Dexp[(seql #t E ...)]

Though simple expansions exist for seql and seqn, these forms are left unexpanded by the

desugaring phase.

375

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

Quote removal

The quote removal phase, Qexp, transforms one OPERA expresion to another by lifting

compound quoted expressions to top level and expanding them. A quoted expression is

compound if the text of the quotation is a list or vector.

The lifting stage names all compound quoted expressions at top level and replaces their

former positions with a variable reference. For example, lifting would transform:

(lambda () (list '(a b) 'd '(e (f g))))

into5

(let ((,1 '(a b))
(%2 '(e (f g))))

(lambda () (list %1 'd %2)))

The expansion stage, Xsexp, uses the following transformations to expand quoted ex-

pressions:

Xsexp['L] = L

Xsexp [(S ...)D = (list Xsexp[',S] ...)

X ,sexpj'(Scar · Scdr) = (cons Xsexp',ScarD ,sexp['Scdr]l)

Xsexp [#(Scar ...) = (vector Xsexp['Scarl ...)

Xsexp resembles the expander associated with Lisp's backquote notation, except that it

works on quote notation instead. It leaves behind a tree of data constructors that will later

create the structure denoted by the quoted expression. The leaves of the tree are literals

and quoted symbols (quoted symbols are left untouched by Xsexp).

Quote removal is necessary to accurately model Lisp's treatment of quoted expressions

within EDGAR. In Lisp, the data structure of a quoted expression is created by the Lisp

reader; every evaluation of the quoted expression returns this same data structure. In

particular, the data structure can be mutated. Consider the following Scheme procedure:

51 use a let here to enhance readability, but since the Q,p transformation is performed after the desugar-
ing phase, the actual transformation needs to use the desugared form of let. In the interests of readability, I
will similarly make use of other unavailable constructs in later examples; but in all cases, the transformation
can be made precise without the offending constructs.

376

8.3. COMPILING OPERA INTO EDGAR

(let ((foo (lambda () '(1 2 3))))

(begin (set-car! (foo) 17)

(foo))))

The value of the above expression should be (17 2 3) because the set-car! mutates the

value of the quoted list in the body of the foo procedure. Quote removal expresses this

behavior by constructing the data structure for a quoted expression at top level (simulating

the Lisp reader) and using naming to appropriately share the resulting value.

Assignment conversion

Since EDGAR does not support any kind of named entities, all names must be removed as

part of the compilation process. Assignment conversion is one aspect of name removal. The

assignment conversion phase, Aexp, transforms OPERA expressions to OK expressions by

remloving all assignments - i.e., expressions of the form (set! I E). Assignment conver-

sion is described in [K+86]. The basic idea behind assignment conversion is to transform

all assignments into mutation operations on cells (mutable one-slot data structures).

As an example, consider the OPERA expression:

(lambda (count)

(lambda (inc)
(seqn (set! count (+ count inc))

count)))

The following OK expression results from applying the assignment conversion function,

Aexp, to the above OPERA expression:

(lambda (count)

(let ((%count (cell count)))
(lambda (inc)

(seqn (cell-set! %count (+ (cell-ref %count) inc))
(cell-ref %count)))))

The name count introduced by the lambda is shadowed by the count introduced by the

let. The latter is bound to a cell containing the value of the former. The assignment to the

former count is replaced by a cell-set! operation on the latter. Each variable reference

to the former count is replaced by a cell-ref operation on the latter. Note that the inc

variable, which is not assigned to, is left untouched.

In general, assignment conversion processes each name introduced by a lambda or

pletrec. If the name is not assigned to in its lexical scope, it is left alone (like inc).

377

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDIUCTION

However, if the name is assigned in its lexical scope, then (1) a new variable is introduced

and bound to a cell holding the value of the original; (2) every reference to the name in its

lexical scope is replaced by an appropriate call to cell-ref; and (3) every assignment to

the name in its lexical scope is replaced by an appropriate call to cell-set!.

Note that assignment conversion does not process names introduced by a nex or a

nexrec. In fact, attempting to assign to a variable introduced by one of these constructs is

an error.

Eta expansion

The eta expansion phase, Cexp, maps an OK expression to an OK expression by eta expand-

ing [Bar84] every reference to a primitive procedure that does not occur in the operator

position of a pcall application. For example:

,exp[(pcall f + (pcall + 1 2))]

= (pcall f (lambda (a b) (pcall + a b)) (pcall + 1 2))

Here, the first instance of + does not occur in the operator position of a pcall, so it is

expanded in a lambda of two arguments (we assume that + takes exactly two arguments).

Note that the expansion moves + into the operator position of a pcall. At the end of the

eta expansion phase, every reference to a primitive procedure is in the operator position.

The name of a primitive procedure is only eta expanded if is not shadowed by a lexical

variable. For instance, eta expansion acts as the identity on (lambda (+) (f + 1)) because

the name + introduced by the lambda is not a reference to the primitive procedure +.

In-lining of primitives

The in-lining phase, exp, maps OK expressions to OK expressions by converting every

application of a primitive operator into a primop expression:

Iexp[(pcall prilm Earg ...)D = (primop Oprira Earg ...)

This phase merely tags primitive operator applications as being special.

378

8.3. COMPILING OPERA INTO EDGAR

Touch introduction

The touch introduction phase, 'Hexp, wraps an explicit touch around every expression that

occurs in a touching context. The non-trivial clauses for the definition of KIexp are shown

below:

ltexp[(if Etest Ethen Eelse)]l
= (if (touch Hexp[Ethen]) exp[Ethen] Hexp[Eelse])

'7expl(pcall Erator Erand ...)]
= (pcall (touch 1Hexp[Erator]) J-exp[Erand] ...)

7exp[(exclusive Eexcl Ebody)]
= (exclusive (touch ltexp[Eexcl]) ltexp[Ebodyj)

This clause only applies if Oprim is neither a constructor nor touch.
'7exp(pprimop Oprim Earg ...)]

= (primop Oprim (touch J'exp[Earg]]) ...)

The primop transformation is not applicable when Oprim is touch or when it is a constructor

(i.e., cons, vector, and cell). The special case for constructors allows them to hold

untouched lazons and eagons.

The straightforward touch introduction scheme sketched above can be optimized to

avoid unnecessary touches. For example, it is never necessary to touch a literal, quoted

expression, o lambda. In fact, it is only necessary to touch expressions that might evaluate

to a lazon or eagon. Analysis techniques that conservatively approximate this property

could reduce the number of touches introduced.

8.3.3 Translating OK to EDGAR

Most of the messy details of compiling OPERA to EDGAR are handled by the OPERA to

OK translation described above. The second stage, translating OK to EDGAR, is fairly

straightforward. We will describe two compilation functions:

1. Cprog coml)iles an OK program to an EDGAR initial graph.

2. Cexp compiles an OK expression to an EDGAR graph.

Cprog comI)iles the OK program (program Ebody) to an EDGAR graph rooted at a sink

node:

379

380 CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

sink

Cprog[[(program Ebody) = I
;

CexpfE body] eo
,. ,

Cexp takes two arguments, an OK expression and an environment, and returns a port

of a EDGAR graph. The environment is a function mapping names to EDGAR ports. The

empty environment, eo, maps every name to a distinguished unbound port indicating that

the name is not bound. The above compilation rule for Cprog calls Cexp on the program

body and the empty environment.

Compiling simple expressions

Cexp is a simple recursive descent compiler. Figure 8.18 shows sample clauses for its defini-

tion. A literal compiles to a constant node, a quoted symbol compiles to a symbol literal,

and lazon, if, and primop expressions compile to lazon, if, and primop nodes. The

clauses for pcall, eagon, seql, seqn, and exclusive are similarly straightforward, and are

not shown.

The only interesting clauses in the definition of Cexp are for those expressions that

manipulate the environment: I, nex, nexrec, lambda, and pletrec. When Cexp reaches a

variable reference I, it returns the port associated with I in the environment. If the name

is associated with the unbound port, then the expression contains an unbound variable.

(Note that such a name can't be a global reference to a primitive procedure since all these

have been removed by the eta expansion and procedure in-lining phases of Texp.)

Compiling nex and nexrec

The compilation of a nex expression extends the environment with the result of recursively

compiling the binding expressions, and returns the result of compiling the body expression

in the extended environment:

Cexp[(nex ((I E1) ... (I E,)) Ebody)]e = CexpjEbody]e[Cexp[Ele/I. . .,Cexp[E -ne/In]

8.3. (COMPILI.NG OPERA INTO EDGAR

.................................

CX[L .. xp[[L]] e
---------------------------- , -w

Cexp (quote I)]] e
..-

C exp[[(lazon E)]] e
.......................................

I&lazon

C exp[f E e:
I.

C expI[Etest e4
..
Cexp[[(if Etest Ethen Eelse)]] e.

I I

.
C exp[[Ethenl e

............I
C exp[Eelse] e
;. ;

......

Cexp[[(primop Oprim Eargl . . E argn) e

°prim

*Cexp[[Eargi e . Cexp[[Eargn]] e.
..

Figure 8.18: Sample clauses for the OK to EDGAR compiler.

381

...........................

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

(The notation e[..., vi/I;,...] stands for the result of extending environment e with the

bindings between identifiers Ii and values vi.) By allowing a subgraph to be named and

referred to later by a variable, nex permits the creation of directed acyclic graphs.

Nexrec permits the full flexibility of graphs by allowing cyclic references through the

environment:

Cexp[(nexrec ((II El) ... (In E,)) Ebody)]e =Cexp[Ebodyle'

where e = e[Cexp[ElDe '/I1,. . .,Cexp[En]e '/In]

The environment e' is the fixed point obtained from extending e with bindings between the

names I; and the graphs resulting from the compilation of the value expressions Ei in e'.

Compiling lambda

The compilation of lambda expressions depends crucially on the notion of free variables.

Suppose we view an OK expression as an abstract syntax tree whose leaves are literals,

quoted symbols, and variable references, and whose internal nodes are the compound ex-

pressions types (e.g., pcall, lambda, if, etc.). Then an occurrence of a variable reference

I within an OK expression is free if in the corresponding abstract syntax tree there is no

I-binding lambda, pletrec, nex, or nexrec on the path from the reference to the root of the

tree. In other words, I is free if it is not lexically bound by one of the binding constructs.

The free variables of E is the set of the names of all the variable references that are free in

E.

The compilation of a lambda expression in environment e yields a proc node whose

template results from compiling the body of the lambda in an extended environment e ':

proc
.--------------------- E.

Cexpi (lambda (1***· In) Ebdy)]]-e I= C exp[[E body e'C exp[(lambda (I1 ... In) E body)]] e
................ k...PP..h......... "

a, · ,

382

8..3. (-COMPILLNG OPERA INTO EDGAR

Suppose that the lambda expression being compiled contains k free variables, J1 ... Jk.

Then e 'is defined as

e = e[fl/J-, ,fk/Jk, pl/I1,, p,p,l/I]

where fi, .. f, Pi, ..., Pk are new ports. That is, the extended environment binds each

free variable and parameter of the lambda expression to a new port. These new ports serve

as placeholders for the graph structure that will eventually be the values of the variables.

The proc node itself has k input ports which are wired to the results of looking up the

fiee variables J1, ... , J,, in the environment e. These inputs represent the values of the

fiee variables used within the lambda expression. If the free variable was originally bound

by a lambda or pletrec, the result of a lookup will be a placeholder port. However, if

the variable was originally bound by a nex or nexrec, the result of the lookup may be the

output port of a fragment of compiled graph structure.

Figure 8.19 shows the result of compiling the following lambda expression:

(lambda (a)

(lambda (b)
(pcall (lambda (c d)

(* b

(/ (- c d)
(+ c d))))

(* a a)

(* b b))))

For readability, the parameter ports on the procedure templates have been labelled with the

corresp)onding parameter names. The three nested proc nodes in the figure correspond to

the three nested :lambdas of the expression. Note that the template of the innermost proc

has only one free variable input port because the corresponding lambda expression has only

one free variable (b).

Together, the lambda compilation strategy and the EDGAR rewrite rule for pcall de-

scribe the "plumbing" that allows argument values and the values of free variables to reach

their destinations.. The input ports to a template within a proc node stand for all the values

that can potentially be used to compute the body of the template; these include the explicit

parameters of the lambda as well as implicit parameters - i.e., free variables. A proc node

holds free variable values as inputs so that they can be supplied as implicit argument values

383

384 CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

A
proc

a

Figure 8.19: Result of compiling a lambda expression via Cexp.

.3. (COMPILING OPERA INTO EDGAR

at the point of call. This strategy for managing free variables as implicit arguments is a

graphical version of the lambda lifting technique for transforming nested procedures into

toI)-level ones [Joh85].

An important detail of the lambda compilation process is that the implicit parameters to

a procedure are only the free variables that appear textually inside of it. A proc node only

holds onto values that are likely to be used in the computation of the template. In particular,

a proc node does not hold onto the values of lexical variables that are not referenced by

the template. This strategy has desirable consequences for garbage collection. Aggressively

dropping references to the values of unused lexical variables means that those values can be

garbage collected as soon as they are no longer needed.

In contrast, procedures in the traditional environment model [ASS85] hold onto the val-

ues of all lexically enclosing variables. As a result, the garbage collection of many provably

useless values is delayed because they are spuriously held by a procedure. In programs

that mlanipulate synchrons, the aggressive reference dropping inherent in lambda compi-

lation strategy solves the riddle (raised in Section 7.1.3) of how deadlocks implied by the

environment model are avoided in OPERA.

Compiling pletrec

The compilation of a pletrec expression involves the compilation of a lambda expression

as a subcomponent:

...........................-......--..----- ------ ---

Cexp[[(pletrec ((I1 E) (In E)) Ebody)] 6e
.......... " ...1·.. .. ·... · ·........ ·........

Cexp[[(lambda (11 ... In) Ebody)]]e' I Cexp[[E 1]] e' ... Cexp]e
Tomi..latio...n rule sn, ... t.o .h ...g.r................J

This compilation rule is sinmilar to the desugaring rule for plet,

DeXp[(plet ((I E) ...) Ebody) = (pcall (lambda (I ...) DexplEbody]) D)exp[E] ...),

385

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

except that the compilation rule uses an extended environment e' for compiling the subex-

pressions. The extended environment is the solution of the same fixed point equation used

in the compilation of nexrec:

e' = e[CexpEDeI '/I1, Cexp[Enje '/In]

8.3.4 Notes

We conclude the discussion of OPERA to EDGAR compilation with a few notes:

* No names: It is worth emphasizing in the context of OPERA to EDGAR compila-

tion that EDGAR has no names. In fact, one of the most interesting aspects of the

compilation process is how it translates all names into graphical connections.

· Meaning of OPERA programs: OPERA programs are compiled to EDGAR via the func-

tion Cprog Tprog that composes the two translation stages described above. It is easy

to show that the result of this compilation process is an EDGAR initial graph. By

the definition of Cprog, it is rooted at a sink; and all of the clauses of Cexp only create

graph structure in which all wires are inactive. We can then define the meaning of

an OPERA program as the behavior of the initial graph into which it compiles. The

possible values of the OPERA expression can be determined from the outcomes of the

behaviors (see Section 8.1.6). In the case where an outcome is an ED(:AR value node,

it is easy to translate the graph rooted at that node into a legal OPERA value.

This notion of meaning ignores the fact that the program mlight read data from or

write data to some global entity (such as a file system). In general, the behavior

of an OPERA program might depend on global state, and we would be interested in

tracking any changes the program makes to the global state. We will assume that

global state is handled in one of the ways suggested in Section 8.1.7, and that the

notion of program meaning is changed to take into account the initial and final state.

* Meaning of OPERA expressions: All of the translation machinery described above

assumed that we started with an OPERA program, not an OPERA expression. Yet, in

practice, we mllight be concerned with the meaning of OPERA expressions evaluated

386

8.4. ALTERNATIVES AND EXTENSIONS

by an interactive interpreter (such an interpreter is described in Section 9.1.2). This

introduces several complexities. First, it would be necessary to accurately model state

maintained by the interpreter (e.g., a global environment that keeps track of bindings

introduced by top-level defines). Second, it would be necessary to extend the notion

of the behavior of an EDGAR graph to express the changes made to the interpreter

state by evaluating the graph. This is another example of the global state issue (see

Section 8.1.7).

8.4 Alternatives and Extensions

The above discussions of EDGAR and the compilation of OPERA to EDGAR were structured

to simplify the presentation. Here we briefly touch upon some extra issues that were ignored

above.

Primop rules: There is no real need for EDGAR to represent primitive applications

with a special class of nodes. Instead of representing an addition by a special +

application node, it would be more elegant to handle this situation using the general

pcall with a special + value node as its operator. This would reduce the number of

rewrite rules and obviate the need for the eta expansion and primitive in-lining phases

of the OPEFRA to EDGAR compiler.

Why, then, have primitive application nodes? Because without them, the rewrite

rules can become more complex. Any rule involving a primitive application (e.g.,

rules involving wait, touch, car, etc.) would include extra pcall nodes. This would

make it harder for both people and programs to reason about the rules.

* Value returns:l: The demand driven nature of EDGAR is intended to model the evalua-

tion process of a Scheme interpreter. That is, demand arriving at a node is supposed

to correspond to calling eval on the expression represented by that node. But the

EDGAR rules introduced above fail to accurately model the return of values. For ex-

ample, in the evaluation of the graph corresponding to (+ 1 2), the newly created

result node (3) must be demanded before its value is returned. But this implies that

387

CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

the Scheme interpreter calls eval on the result of a primitive application, which is

definitely not the case.

This behavior can be fixed by dictating that demanded wires connected to the newly

created node must immediately enter the returned state. But such a change com-

plicates the primitive application rule. And it also raises new questions. If (+ 1 2)

is demanded by two wires, should the newly created 3 immediately return to both?

(I.e., in a concurrent Scheme evaluation model, would it make sense for a value to be

returned to two threads at the same time?)

* Trivial transitions: In a typical trace, an large percentage of the transitions are trivial

ones in which a value node is requested or is returned. These trivial transitions en-

cumber step-by-step reasoning about EDGAR executions, and are a serious annoyance

in the program animator based on the EDG(AR model (Section 9.1.4).

It is possible to remove trivial transitions by changing the way that values are handled.

An alternative to having value nodes to respond to individual demands is to require

that all output wires of every value node are always in the returned state. This alter-

nate strategy is consistent with the interpretation that a returned wire indicates that

the node at the source of the wire is a value node. It also corresponds to the common

practice in operational semantics of classifying a subset of rewritable expressions as

values [Mey, GJ90]. An additional benefit is that it greatly simplifies the handling of

quote, since a compound quoted expression can be treated as a single value created

before the program is executed.6

Unfortunately, the alternate strategy for handling values complicates the EDGAR

rewrite rules. At the high level, it invalidates the constraint that a wire cannot enter

a returned state until it is first in the demanded state. It also complicates particu-

lar rules by increasing the number of cases that must be considered. For instance,

it would be necessary to modify the [pcall-request] rule to indicate that demand is

only propagated to unreturned input wires. New notations could simplify this change;

6However, even with the alternate value strategy, it would still be necessary to perform the lifting aspect
of the quote removal transformation to get the appropriate sharing of quoted values.

388

8.5. RELATED WORK

we could introduce a wire pattern that matched only inactive or returned wires, and

introduce a meta-rule that demanding a returned wire has no effect. However, such

notations would complicate the already detailed rules of EDGAR.7

For simplicity, I stuck with the no-return-until-requested model in my presentation of

the EDGAR rules above. However, my implementation actually uses the every-value-

is-returned strategy.

8.5 Related Work

The development of EDGAR was heavily influenced by previous work in operational se-

mantics and graph reduction. Graph reduction has long been used as an implementation

technique for functional programming languages. Turner [Tur79] developed a means for

compiling functional programs into graphs of three coimbinators (S, K, and I) and ex-

ecuting the resulting graphs by graph rewriting. Hughes [Hug82] introduced a method,

super-combinators, for compiling a function into a specialized graph rewriting rule. Peyton

Jones [Pey87] summarizes numerous issues relevant to graph reduction as an implementation

technique.

While EDGAVR' is clearly a graph reduction framework, it differs in many respects from

the work done in the functional programming community. First is a difference in emphasis:

ED(.AR is primarily a semantic framework, not an implementation technique. The EDGAR

rules have been implemented as an interpreter, but only as a proof-of-concept; we make no

claim that the EDGAR style of graph reduction is a good implementation technique. In this

sense, EDG(AR is closer to work on graph rewriting semantics [B+87, AA93].

Because implementation efficiency is not a concern, some of the concepts in EDGAR are

cleaner than in other graph reduction frameworks. For example, the ability for ED(;AR

rules to "move" wires obviates the need for messy special mechanisms like overwriting

application nodes and inserting indirection nodes (see [Pey87]). The fact that EDGAR deals

with side effects, concurrency, and synchronization clearly separates it from much of the

7The added complexity may be due to the fact that using return tokens to represent values may just be
a bad idea. The traditional approach of defining a class of value graphs might simplify the presentation of
the alternate strategy. This possibility needs to be explored.

389

CHAPTER 8. EDGAR: EXPLI(CIT DEMAND GRAPH REDUC(TION

other work in the field. Although parallel graph reduction techniques exist [Pey87, Sme93],

the focus is again on efficiency, not on semantics. Until relatively recently, side effects have

been anathema to the functional programming community, so they rarely appear in graph

reduction work (but see [AA93]).

An notable exception to the avoidance of side effects is Bawden's work on connection

graphs (CGs) [Baw86, Baw92]. Bawden introduced ((CGs) to explore issues of state and

linearity in programming languages. Like EDGAR, CGs are a framework in which graph

rewrite rules define the semantics of interconnected nodes with labelled ports. Because the

systems have different goals, it is not surprising that they differ in many details: CG wires

are undirected while EDGAR wires are directed; CGports must be connected to exactly one

wire, while EDGAR output ports may be connected to zero or multiple wires; CG rewrite

rule patterns may only have two nodes connected by a single wire, while EDGAR rewrite

rule patterns may involve any connected set of nodes; CC(: uses node states to simulate

evaluation, while EDGAR uses tokens on wires. Nevertheless, CGs exerted a tremendous

influence on the development of OPERA. The notion that procedures hold onto the values

of their free variables, the non-deterministic handling of side effects, and many aspects of

the OPERA to Scheme compiler were inspired by Bawden's Scheme to CG compiler.

EDGAR's explicit representation of demand was inspired by the demand tokens used in

the operational model for Gelernter and Jaganathan's Ideal Software Machine (ISM) [GJ90].

ISM is a model that ascribes sequential and parallel characteristics to dimensions of both

space and time. The concurrency allowed by ISM (parallelism in the time dimension) is

formally expressed in a semantic framework that combines aspects of Petri nets [Pet77] and

graph rewriting. Like Petri nets, the ISM semantics uses tokens to represent concurrency

and synchronization; in the case of ISM, the tokens are an explicit representation of demand.

As in graph rewriting, the ISM semantics allows graph rewrites to occur where patterns are

matched; the patterns usually involve tokens.

Not only was the basic ISM model adopted in EDGAR, but many of EDGAR's rewrite rules

(such as those handling procedure calls, conditionals, and sequential evaluation) are almost

identical to ones in the ISM semantics (modulo different notation). There are several major

differences, however. Foremost is EDGAR'S support of synchrons as a new synchronization

390

8.5. RELATED WORK

technology; in fact, the raison d'etre of the EDGAR model is to explain synchrons. Another

major difference is naming. We find that the ISM model handles naming in a rather ad

hoc fashion; by eliminating names altogether, the EDGAR model emphasizes that nanling

is fundamentally a topological concern (i.e., names express connections). As far as we can

(letermine, the ISM semantics for procedure call is not properly tail recursive; this is an

EDG(:AR feature that is crucial for controlling space behavior. Finally, it appears that ISM's

representation of closure environments holds onto values longer than necessary. To be fair,

ISM was designed to be a general model for comparing different languages. We view ED(:AR

as an improved version of ISM targeted at faithfully modelling a wide range of operational

issues.

A handful of other systems employ explicit representation of demand. Arvind and

Pingali describe a mechanism for simulating demand-driven evaluation in a data flow model;

they use data tokens to represent demand [PA85, PA86]. Ashcroft and Wadge describe a

system that combines demand flow (via entities called questons) with data flow (via entities

called datons) [WA85].

The visual notations used to represent EDGAR graphs were influenced by the notations

used in the data flow community (e.g., [Den75, DK82]). We emphasize, however, that the

execution models for EDGAR and data flow are fundamentally different. In data flow models,

tokens representing values flow through mostly static networks; the same wire can be used

transmit many different values. In EDG(:AR's dynamically-changing networks, a wire may

only transmit a single value. Additionally, the demand-driven nature of EDGAR conrasts

with the data-driven emphasis of data flow.

The visual notations of EDGAR bear some resemblance to plan calculus representations

from the PrograImmer's Apprentice project [Ric81]. And, in fact, EDGAR was designed to

support many of the same kinds of program decompositions considered in that project.

EDGAR has the advantage that it is executable, but as a relatively low-level operational

model, it does not straightforwardly support the high-level plans at the heart of the Pro-

grammer's Apprentice.

It is possible to encode EDGAR's graphical rewrite rules in a more traditional textual

fashion. The substitution model described by Meyer [Mey], which was influenced by ideas in

391

392 CHAPTER 8. EDGAR: EXPLICIT DEMAND GRAPH REDUCTION

EDGAR, is a step in this direction. Unlike most other text-based operational models, Meyer's

model captures the sharing of values in data structures. However, from the viewpoint of

pedagogy, we strongly believe that the visual notations provided by EDGAR are vastly

superior to any textual mechanism for indicating sharing.

Chapter 9

Experience

This chapter describes the experimental aspects of my research. I discuss the systems I

have implemented to experiment with my ideas, describe the tests I have undertaken with

these systems, and evaluate the current status of my work based on this experience. I also

summarize a few of the important lessons that I learned in the context of this research.

9.1 Implementation Notes

As a part of Ilmy research in reducing the tension between modularity and control, I have

constructed prototype implementations of the EDGAR, OPERA, and SYNAPSE languages

described in the previous three chapters. Additionally, I have implemented a graphical

program animator, the DYNAMATOR, that has proven invaluable for guiding the design of

these languages and debugging their implementations. This section presents a synopsis of

each of these four systems.

9.1.1 EDGAR

All of the languages and tools mentioned above are based on the EDGAR interpreter, which

imlplements the graph rewrite rules described in Chapter 8. Currently, the EDGAR inter-

preter is a Scheme program that supports all the EDGAR features except for vectors; these

should be easy to add.

393

CHAPTER 9. EXPERIENCE

Basics of the E)DGAR Interpreter

The EDGAR interpreter represents graph graph nodes and wires as Scheme objects connected

in a way that directly reflects the topology of the graph being modelled. Each node object

maintains a list of input wires, a list of output wires, and node-dependent state information.

Each wire object maintains its source node, its target node, and wire-dependent state

information. There is a library of Scheme procedures for creating nodes and wires, hooking

them together, and accessing and modifying their states.

Graph rewriting is handled by mutating a global graph structure via an agenda-based

simulation. An agenda is a list of tasks to be peformed. Sample tasks include propagating

requests from an output wire of a node to its input wires, returning a value to a requested

wire, and creating new nodes that are inserted into the graph. Performing one task on

the agenda may add other tasks to the agenda or remove other tasks from it. The EDGAR

interpreter is invoked with a initial graph and an initial list of tasks for the agenda. It

performs one task at a time until there are no more tasks on the agenda. The "result" of

the EDGAR interpreter is the graph structure remaining when there are no more tasks to

be performed.

The basic architecture of the EDGAR interpreter was inspired by Abelson and Suss-

man's digital logic simulator [ASS85]. The representation of networks, the propagation of

information, and the agenda-based simulation closely resemble aspects of the digital logic

simulator. The main innovation of the EDGAR interpreter is the dynamic nature of its

networks. While logic networks are static, the structure of EDGAR graphs changes over

time with the addition and removal of nodes. In this respect, the EDGAR interpreter can

profitably be viewed as a cross between the digital logic simulator and a graph reduction

engine.

Task Selection Strategies

Due to the nondeterminism of EDGAR's rewrite rules, there may be more than one task to

perform at a given time. After completing one task, the EDGAR interpreter employs a task

selection strategy to choose the next task on the agenda. The default strategy is to randomly

select the next task from the agenda. But EDGAR comes equipped with a variety of other

394

9.1. IMPLEMENTATION NOTES

strategies that aid experimenting and debugging. For example, it is possible to prioritize

the tasks, assign probabilities to them, or choose them manually. Another option is to "play

back" a list of choices constructed by a previous invocaton of the EDGAR interpreter; this

facilitates debugging in the presence of the random selection strategy.

In the current implementation of EDGAR, the graph rewrite rules are not localized

anywhere. Instead, they are distributed over the behaviors of the individual node types.

The procedural, distributed nature of the rules makes them difficult to locate, understand,

modify, and prove correct. To overcome these difficulties, it would be worthwhile to design

a separate language for expressing the set of graph rewrite rules in a clear and concise way.

Garbage Collection

Perhaps the most interesting technical detail of the EDGAR interpreter involves garbage

collection. Recall that the EDGAR rewrite rules may create nodes and wires and move wires

but they do not delete nodes or wires. Instead, it is assumed that a garbage collection

process removes atll nodes and wires that are inaccessible from a root node (i.e., a sink node

or an eagon node).

In EDGAR, garbage collection is not only a practical matter, but a semantically im-

portant one: the proper behavior of synchrons depends on it. The rendezvous rule for

synchrons dictates that a rendezvous occurs at a synchron when it is referenced only by

waiting pointers -- i.e., when all the output wires of a synchron are in the returned state

and are connected to requested wait nodes. Since any non-waiting pointer blocks a ren-

dezvous, it is essential to eventually remove these wires when they cannot be accessed from

a root. Otherwise, it is possible to enter a deadlock state in which all forward progress in a

computation is impeded by a spuriously blocked rendezvous. Even if an EDGAR interpreter

were magically given an infinite amount of memory in which to execute, it would still need

to perform some sort of storage analysis to effectively reclaim inaccessible non-waiting wires.

Let's ignore the space reuse aspect of garbage collection in EDGAR and instead focus on

the synchronization aspect. A naive approach to avoiding spurious deadlocks is to perform

a garbage collection whenever a deadlock occurs, and then examine all synchrons to see

if the garbage collection has enabled a rendezvous. If so, the computation can continue

395

CHAPTER 9. EXPERIENCE

with that rendezvous; otherwise, the computation halts in a true deadlock state. While

this approach is correct, it is not necessarily practical in a system where synchronization is

frequent and garbage collection is potentially expensive. Another drawback of this scheme

is that it impairs debuggability of ED(GAR graphs by hiding the accessible nodes in a sea of

inaccessible ones.

An alternate approach is to use a reference counting garbage collector that drops (imme-

diately removes) nodes and wires as soon as they become inaccessible. Moving or dropping

an output wire of a node triggers a check that determines whether the node has any output

wires remaining. If not, it can safely be dropped, which entails dropping its input wires

as well. The recursive nature of dropping means that a single rewrite rule can trigger the

dropping of an arbitrarily large subgraph. As typical with reference counting schemes, this

approach does not interact well with cyclic structures. It is possible for a synchron to

be spuriously held by an inaccessible cyclic data structure in such a way that inaccessible

non-waiting pointers to the synchron are never dropped by the reference counting scheme.

However, such situations tend to be rare in practice.

The EDGAR interpreter combines the reference counting approach with the naive ap-

proach. Reference counting is applied as a default, but a full-fledged garbage collection

is invoked whenever a deadlock state is reached. In the presence of reference counting, a

deadlock state almost always represents a program error rather than a spuriously blocked

rendezvous, so the price of a full-fledged garbage collection is rarely paid by most programs.

Moreover, under this approach, the current set of undropped nodes and wires is usually a

very close approximation to the set of accessible nodes and wires; this greatly simplifies the

debugging of EDGAR graphs.

Global Cells

In order to support the interactive evaluation of individual OPERA expressions and defi-

nitions, the EDGAR interpreter maintains a global table mapping top-level names to cells.

These global cells facilitate the sharing of values (especially procedures) between one com-

putation and the next. Global cells act as an additional type of root node for garbage

collection.

396

9.1. IMPLEMENTATION NOTES

Metering

The E)(:AR interpreter supports metering operations that keep track of the following pa-

rameters of a computation:

1. The number of tasks performed during a computation.

2. The number of nodes created during the computation.

3. The maximrum number of nodes created during the computation that are in use at

any intermediate point of the computation.

4. The number of nodes accessible at the end of a computation.

5. The process time required by a computation.

6. The real (wall clock) time required by a computation.

These quantities are useful for comparing the time and space behaviors of different programs. 1

Debugging

The EDGAR environment supports a number of debugging tools. Without a doubt, the

most important of these is the DYNAMATOR, a graphical program animator discussed in

Section 9.1.4. But there are some other useful features, including the ability to single step

through a program, trace procedures, and set breakpoints at procedure entry or synchron

rendezvous.

Liberties

For reasons of simplicity and efficiency, the prototype EDGAR implementation takes a few

liberties with the EDGAR rewrite rules:

1According to the! definition of space requirements in Section 8.1.5, space includes not only the number
of nodes but the number of wires. The current version of the EDGAR interpreter does not keep track of the
number of wires; this should be changed in future versions. There are some pathological cases involving
synchrons where it's important to account for the number of wires, but these don't crop up in any of the
examples I considered.

397

CHAPTER 9. EXPERIENCE

* Aggressive returns: According to the conventions of the EDGAR rewrite rules, a wire

is not supposed to enter a returned state until it has been requested. In practice, this

means that a large number of rule applications are devoted to requesting and returning

"obvious" values like numbers and lazons. To avoid these rule applications, the EDGAR

interpreter immediately "returns" such values to their output wires without waiting

for a request. Other rules are modified to take into account the possibility of these

unrequested returns.

* Implicit touches: The EDGAR rewrite rules require explicit touch nodes to require the

results of a computation associated with an eagon or lazon value. In order to reduce

the number of touch nodes and the number of touching rules applied, the current

implementation implicitly touches nodes in the following contexts:

- the arguments of a strict primitive procedure call.

- the test input of an if node.

- the operator position of a pcall node.

- the lock position of an exclusive node.

* Sysprim nodes: According to the presentation in Section 8.1, primitive applications in

EDGAR are expressed via distinguished primitive application nodes. While the EDGAR

interpreter supports primitive application nodes, it also introduces literal nodes called

sysprim nodes that represent primitive procedures. A pcall node whose operator is

a sysprim node is treated exactly like a primitive application node.

* Alternate evaluation strategies EDGAR permits experimentation with various proce-

dure application strategies by supporting evaluation strategies other than the de-

fault concurrent one. In particular, it also supports strict sequential strategies (both

ordered and unordered), a lazy strategy, and an eager strategy. For example, the

unordered strict sequential strategy is used to implement a "Scheme mode" that fa-

cilitates the evaluation of Scheme (as opposed to OPERA) programs.

398

9.1. IMPLEMENTATION NOTES

9.1.2 OPERA.

The OPERA language outlined in Chapter 7 has been implemented as an evaluator written

in Scheme. The current version of OPERA handles most standard Scheme features. The

Scheme features currently not handled are: vectors, continuations, rest arguments, apply,

and multiple-value returns. Eventually, I plan to add all of these to OPERA. The handling

of continuations will be based largely on Bawden's work (see [Baw92]).

The OPERA evaluator works by compiling OPERA expressions into EDGAR graphs that

are interpreted by the EDGAR interpreter (see Section 8.3 for details). The EDGAR graph

representing an OPERA expression is rooted at a top-level sink node to provide the initial

"tug" for evaluating the graph in a demand driven fashion. Evaluation of an OPERA ex-

pression terminates only if the EDGAR computation terminates (i.e., the agenda becomes

empty). At the termination of a computation, the input wire of the top-level sink node is

examined for one of two cases:

1. If the wire is in the returned state, then the subgraph rooted at the source of the

wire represents the value returned by the computation. This subgraph is translated

into a format appropriate to OPERA and returned as the value of the initial OPERA

expression.

2. If the input wire to the top-level sink node is in the requested state, then the compu-

tation terminated without returning a value. This indicates a deadlock state, which

is reported to the user along with an option to debug the deadlock (via the DYNAM-

ATOR).

Note that a computation does not necessarily terminate when a value is returned to the

top-level sink node. Due to the presence of eagons, there may be other tasks to perform

even after a value appears at the sink node. All tasks associated with eagons must be

performed before a value can be returned to the OPERA evaluator. The rationale for this

decision is that the eagon tasks might perform side effects that affect the evaluation of

future OPERA expressions; forcing value returns to coincide with termination ensures that

top-level OPERA expressions appear to be evaluated atomically.

399

CHAPTER 9. EXPERIENCE

The interface to the OPERA evaluator is a read-eval-print loop. The read-eval-print loop

handles define and load forms specially. A top-level define form compiles into an EDGAR

graph that updates the value of a global cell. A load form evaluates each of the forms in a

specified file as if they were typed in at top level.

The OPERA to EDGAR compiler departs in a number of ways from the description in

Section 8.3. The transformation of OPERA to o is does not exhibit all the structures or the

features of the modular approach explained earlier. Quote is currently handled in an ad

hoc fashion that does not faithfully preserve its sharing properties. The template produced

by the compilation of a lambda expression is actually a delayed compilation of the body.

9.1.3 SYNAPSE

The SYNAPSE language introduced in Chapter 6 has been implemented as a collection of

OPERA procedures. Section 7.2 gives an overview of this implementation ([Tur94] presents

all of the code for these procedures). While filtered synquences are handled in a fully

reusable manner, filtered synquences are currently handled in an ad hoc fashion.

9.1.4 The DYNAMATOR

The DYNAMATOR is a graphical program animator that dynamically animates the evolution

of an EDGAR computation. It has been invaluable for guiding the designs of and debugging

the implementations of EDGAR, OPERA, and SYNAPSE. It has also helped me build intu-

itions about concurrency, synchronization and non-strictness in a way that would not have

otherwise been possible.

Snaphsot Representation

The dynamator displays a "movie" of computational snapshots, where each snapshot dis-

plays the nodes and wires of the EDGAR interpreter's current graph. Each snapshot re-

sembles the manually drawn figures in this document: nodes appear as labelled boxes with

triangular input and output ports, and wires appear as lines between ports. 2 Color is used

2At the time of this writing, I do not have a convenient way to include a sample D -NAMAT R snapshot
in this document.

400

9.1. IMPLEMENTATION NOTES

in place of empty and filled circles to encode the state of a wire (inactive, requested, re-

turned). In DYNAMATOR snapshots, I have also found it worthwhile to define a node state

that can also be encoded by color. The state of a node is defined as:

* Returned if at least one of the output wires is in the returned state.

* Requested if' some of its output wires are in the requested state, but none are in the

returned state.

* Inactive if all of its output wires are in the inactive state.

I)istinguishing the node states by different visual cues makes it easy to parse a snapshot

into values (returned subgraphs), pending operations (requested subgraphs), and code that

has not yet been interpreted

Some nodes in a snapshot are distinguished by an indication that they are enabled.

Recall from Chapter 8 that every potential match of a rewrite rule is associated with an

enabled node. In a DYNAMATOR snapshot, every node marked as enabled represents one of

the tasks that is on the agenda of the EDGAR interpreter.

Dynamics

The EDGAR interpreter generates display events whenever a displayable action happens

(e.g., a node or wire is created, a wire changes state, a wire is moved, a node or wire is

dropped.) The DYNAMATOR responds to these events by updating the currently displayed

snapshot. The result is that every change in the state of the interpreter is reflected by a

corresponding change in the display state of the DYNAMATOR. This makes it possible to

watch comllputations dynamically unfold over time.

Since the DYNAMATOR reflects the state of the EDGAR interpreter, the animation of

the [)YNAMATOR can be controlled by changing the mode of the EDGAR interpreter. For

examnple, under the default processing of the EDGAR interpreter, the animation unfolds

as fast as the graphics operations generated by the interpreter can be executed. When

the EDGAR interpreter is in single-stepping mode, the animation can be moved forward one

snapshot at a time. One of the task selection strategies supported by the EDGAR interpreter

401

CHAPTER 9. EXPERIENCE

allows the user to select an enabled node in the displayed snapshot to indicate which task

should be performed next. This gives rises to a single-stepping mode in which the user

controls exactly how the computation evolves.

Some display transitions are smoother than others. For example, changing the state of

a wire does not require repositioning any of the nodes or wires. Moving a wire requires

minimial changes: erasing one line and drawing another. On the other hand, creating

new nodes and wires (as is done at every procedure invocation) may require non-trivial

reorganization of the visual representations in the snapshot. (TCurrently, the default is to

redisplay the entire snapshot at every procedure call. This leads to a "jerkiness" in the

visual representation that can make it hard to track individual nodes and wires. It would

be worthwhile to investigate strategies to reduce this jerkiness.

Graph Layout

I have experimented with two strategies for laying out the snapshot graph:

* In graph mode, a directed spanning tree of the graph is determined from the top-level

sink node.3 The node of the spanning tree are laid out in a recursive fashion such

that every node appears above its subtrees. Wires that are not part of the spanning

tree are then added on top of this basic tree structure.

* In Escher mode, all non-call nodes apear at the top of the representation, and the

rest of the display space is partitioned among the call nodes, which are represented as

large rectangles. For each call, the new node and wires structure created by the call

appears in the appropriate rectangle. This approach is called "Escher mode" because

the representations get smaller and smaller as the computation progresses.

Each of these approaches has advantages and disadvantages. Graph mode only depends

on the current state of the EDGAR interpreter, so it can be invoked at any time during

the computation. On the other hand, Escher mode represents the entire call structure of

the computation, so it only works for displaying an entire computation from start to finish.

3When there is more than one root (i.e., there are unheld eagon nodes), they are processed in sequence,
and each is considered to be the root of a tree consisting of the nodes that are not yet part of any other tree.

402

9.1. IMPLEMENTATION NOTES

Escher mode has the further disadvantage that the representations quickly get too small

to be helpful (some magnification facility would be helpful here!). The key advantage of

Escher mode is that a every node has a never-changing position on the display canvas. In

particular, when a procedure is called, new nodes are created, but old nodes do not move.

In contrast, a procedure call in graph mode currently triggers a redisplay of the entire

complutation graph. It is worthwhile to see if some other graph layout mechanism could

somehow combine the best of both approaches.

Additional Features

Additional features supported by the current implementation of the DYNAMATOR include:

* (ode view: Nodes that resulted from compiling OPERA code are annotated with the

OPERA expression responsible for their generation. Procedure nodes are also anno-

tated with the code of their bodies. These annotations can be accessed by selecting

the visual representation of the node.

* Procedure inamers: A disadvantage of the process of compiling OPERA to EDGAR is

that the names of the program are lost. But names carry a significant amount of

information. The current implementation keeps track of the names associated with

procedures and uses these names in place of the usual proc label for procedure nodes.

* Abbreviations: When snapshots contain large numbers of nodes, the individual nodes

are so small that long labels are impractical. The DYNAMATOR makes it possible to

abbreviate the labels so that such snapshots can still be understood.

* Dropped images: When nodes or wires are dropped, there is an option to completely

erase them from the screen, as well as an option to show them in a muted gray. The

latter option makes it possible to tell something about the recent history of the current

snapshot.

* Node highlighting: Nodes and wires can be programatically highlighted in a chosen

color. This facilitates finding which node is responsible for an error when debugging.

403

CHAPTER 9. EXPERIENCE

In the current implementation, the interface to many of these features is programmatic

rather than interactive. The reason for this is that the version of Scheme I use has a poor

interface to the X window system. I plan to explore better interfaces to this functionality.

The kinds of features listed above only scratch the surface of what should be provided in

a full-fledged program animator. Other desirable features include: starting and stopping a

computation at the press of a button; running a computation backwards (at least for some

pIredetermined number of steps); manually dragging nodes across the screen to improve upon

automatic layout; highlighting subgraphs; selecting and expanding subgraphs; annotating

wires with names determined by the program; and graphically editing a program graph.

9.2 Testing

I have touted the sliver technique as a mechanism that facilitates the modular expression

of some computations while retaining their operational character. I have also claimed that,

for certain programs, the sliver technique is superior to other modularity mechanisms in

certain dimensions. While I can sketch informal arguments that slivers provide the claimed

guarantees in specific cases, I do not have any formal proof of these claims. What I do have is

extensive experience interacting with the EDGAR, OPERA, and SYNAPSE implementations.

Here I summarize the kinds of tests I have performed with these systems and explain how

they support my claims.

The goal of the tests is to show that SYNAPSE programs exhibit the operational behavior

that they were designed to exhibit. The notion of operational behavior could be formalized

in terms of the behavior of an EDGAR initial graph - i.e., as a set of computation traces.

However, given that the set of traces can be very large even for a small program, I believe

that it is impractical to develop a testing strategy based on this formalism. Instead, I focus

on three testable characteristics of this formalism for behavior: the outcome of a program,

individual computations of a program, and the space requirements of a program.

404

9.2. TESTING

9.2.1 Outcomes

The very least that we expect from a SYNAPSE program is that it has the expected outcome.

Recall that there are three classes of outcomes in the underlying EDGAR model: a program

can either return a value, enter a deadlock state, or hang in an infinite loop.4 Although

there is no effective test for the looping outcome, it is easy to test for returned values and

deadlock.

I have implemented an automatic testing program that verifies that an OPERA expression

has a specified value/deadlock outcome. The testing program runs successfully on a suite

of hundreds of simple SYNAPSE programs. Most of the programs are similar to the kinds of

synquence and syndrite examples illustrated in Chapter 6. Many of the test programs are

examples that failed to work in earlier incarnations of the system.

The most important aspect of automatic testing is that it can rapidly uncover spurious

deadlocks. Programs exhibiting shape incompatibilities are supposed to deadlock. How-

ever, if the SYNAPSE primitives are not implemented extremely carefully, it is possible for

programs to deadlock when they are supposed to return a value. To aid in discovering these

bugs for syndrite slivers, I wrote a program that generates test programs for all possible

pairings of syndrite accumulators and scanners. This automatic test generator embodies a

simple notion of shape compatibility that accurately predicts which combinations should

deadlock.

9.2.2 Computations

Recall that a computation for a program is a sequence of EDGAR graphs comprising one of

its possible executions. Using the DYNAMATOR, it is possible to watch an entire computa-

tion unfold from start to finish. Textual operation traces, like those employed throughout

C('apter 6, also provide a good window onto a computation.

I have not developed any tools for automatically analyzing computations, but I have had

studied hundreds (if not thousands) of DYNAMATOR animations and operation traces. Based

4 I:)ue to the nondeterminism inherent in the systems, it is possible for single program to return multiple
values and/or exhibit all three kinds of outcomes in different executions. However, we will only consider
programs that have a single outcome.

405

CHAPTER 9. EXPERIENCE

on this experience, I have great confidence that SYNAPSE programs exhibit the predicted

operation order. In particular, sliver operations are always performed between the right

pair of synchron rendezvous.

Given the nondeterminism present in OPERA programs, it is reasonable to wonder how

much faith should be invested in particular animations and operation traces. After all, it

may be that the expected operation order is highly probable, but not guaranteed. Nev-

ertheless, there are two reasons to expect that the computations I examined accurately

characterize the overall behavior of the tested programs:

1. Diabolical operation scheduling: In many cases, I executed the programs using a worst-

case operation scheduling strategy. The EDGAR interpreter has a hook for installing

an arbitrary strategy for determining which enabled rewrite rule to apply next. I have

implemented a higher-order strategy generator that makes it possible to specify the

relative priorities of different operations.

The priority strategy can be used to force a program to exhibit possible (but unlikely)

undesirable behavior. For example, consider the following SYNAPSE expression:

(let ((nums (to-1 5)))

(cons (downQ 0 + nums)
(downQ 1 * nums)))

In a correct implementation, the accumulation operations should always occur in pairs

of one + and one *. Yet, even a concurrent lazy implementation of downQ is likely

to exhibit this behavior. To distinguish between the two implementations, we can

set the priority of + below all other operations (including *). In the concurrent lazy

implementation, this will force all *s to precede the first +, In a correct SYNAPSE

implementation, the * and + operations will still occur in pairs, but the * will precede

the + in every pair.

2. "Funneling" behavior of synchrons: Although the nondeterminism present in OPERA

programs can lead to a blow-up in the number of possible computations, the use of

synchrons greatly constrains the nature of these computations. Synchronized lazy

aggregates were specifically designed to force concurrently executing slivers to engage

406

9.2. TESTING

in a barrier synchronization. At the time of a rendezvous, every sliver should be

in a state where only the rewrite rule for a rendezvous is enabled. Although there

are many possible paths that a SYNAPSE program can take from one rendezvous to

the next, the synchronization guarantees that computations can never wander too far

away from a sample path.

Extensive experience watching DYNAMATOR animations confirms that synchrons reg-

ularly "funnel" SYNAPSE computations to a single point before allowing them to

proceed. Inspecting the dependencies among operations and waits before and after

a rendezvous is the basis for "visual proofs" that the operations must execute in the

desired order.

9.2.3 Space Requirements

Perhaps the most important characteristic of a SYNAPSE program is its space behavior.

After all, a major motivation for slivers was to design an aggregate data model of computa-

tion in which the space required by the aggregates could be controlled in a reasonable way.

There are two aspects to space behavior:

I. Order of growth: How does the space requirement of a program depend on the size of

the input?

2. Space profile: How does the space consumed by an individual computation change

over time?

The goal of operational faithfulness dictates that a SYNAPSE program should qualitatively

match these space characteristics of the corresponding monolithic loop or recursion.

The EDGAR interpreter provides mechanisms for tracking the space profile and maximum

space usage of a computation. 5 These were used in experiments that compared the space

behaviors of SYNAPSE programs to those of monolothic programs and other aggregate data

programs. We describe two such experiments here: a linear example (averaging the numbers

of a file) and a tree example (alpha renaming).

5The current implementation models the space of an EDGAR graph as the number of nodes in the graph.
According to the definition of space in Section 8.1.5, wires should also be accounted for. However, including
wires should not change the qualitative nature of the results discussed below.

407

CHAPTER 9. EXPERIENCE

Average

The averaging program finds the average of the contents of a specified numeric file. Fig-

ure 9.1 shows monolithic and modular versions of this program written in OPERA. These

;;; Monolithic version

(define (average-file-down:mono filename)

(let ((port (open-input-file filename)))

(define (loop sum count)

(let ((elt (read port)))

(if (eof-object? elt)

(begin (close-input-port port)

(/ sum count))

(loop (+ elt sum) (1+ count)))))

(loop 0 0)))

;;; Modular version

(define (average-file-down:mod filename)

(let ((nums (splay-file filename)))

(/ (downQ 0 + nums)

(downQ 0 inc nums))))

(define (inc elt sum) (1+ sum))

(define (splay-file filename)

(let ((port (open-input-file filename)))

(produceQ 'ignore

(lambda (ignore yield terminate)

(let ((elt (read port)))

(if (eof-object? elt)

(begin (close-input-port port)

(terminate))

(yield elt 'ignore)))))))

Figure 9.1: Monolithic and modular versions of an iterative program for averaging the
contents of a numeric file.

two programs were tested under conditions that ranged along the following dimensions:

* Sequential vs. Concurrent: The default application strategy of the EDGAR interpreter

is to concurrently evaluate the subexpressions of all procedure calls. To facilitate

comparing sequential and concurrent evaluation strategies, the EDGAR interpreter

also provides a sequential mode in which the subexpressions of all calls are evaluated

408

9.2. TESTING

in some sequential order.

* Strict vs. Lazy vs. SYNAPSE: The default implementation of the SYNAPSE sliver

primitives is based on synchronized lazy aggregates. For the purposes of comparing

different aggregate data approaches, I also implemented versions of the SYNAPSE

primitives based on strict aggregates and lazy aggregates. 6

* Ra7ndom vs. Prioritized: To test likely vs. worst-case scenarios, the averaging pro-

grams were run under different task selection strategies. The random strategy picks

the next task randomly. The prioritized strategy gave + a lower priority than all other

operations (including the incrementer, 1+).

To test the averaging programs for order of growth in space, their space requirements

were measured as a function of file size. The highlights of the results appear in Figure 9.2.

The figure shows an overlay of plots for six experiments. The labels for the individual plots

indicate the conditions under which they were run. (Those plots with a "prioritized" label

were run under the prioritized strategy, while those without this label were run under a

random strategy.') The figure shows the following results:

* Even under worst case scheduling conditions, the modular SYNAPSE program exhibits

a constant space requirement that qualitatively matches that of the monolithic pro-

gram. Quantitatively, the SYNAPSE program exhibits a higher constant factor than

the monolithic program.

* Sequential strict and sequential lazy implementations require space linear in the size

of the file.

* Under favorable conditions, a concurrent lazy implementation can exhibit constant

space requirements. However, under worst-case conditions, a concurrent lazy imple-

mentation requires space linear in the size of the file.

6There is the potential problem that my strict and lazy implementations do not make optimal use of
space. It would have been better to test the programs in "industrial strength" implementations of established
languages that, support strict and lazy features, but it was impractical to do so.

409

CHAPTER 9. EXPERIENCE

I I I

Concurrent Monolithic o
Sequential Strict -+---
Sequential Lazy -- ----

Concurrent Lazy--x------........
Prioritized Concurrent Lazy --A---

Prioritized Synapse -a----

10020 40 60 80
File Size (elements)

Figure 9.2: Comparison of the space requirements of various averaging programs as a func-
tion of file size.

400

350

300
-e

0o

a:Y

a.

Co

250

200

150

100

50

0
0

----------.

v

I

410

9.2. TESTING

To compare space profiles of individual computations, sample space profiles were gen-

erated by running the averaging programs on an input file with ten numbers. Profiles for

six different strategies appear in Figure 9.3. The x-axis measures time in in execution steps

of the EDGAR interpreter, while the y-axis measures space in the number of nodes required

by the EDGAR graph at the given execution step. The space profiles can be classified into

three qualitative categories:

1. Flat: The three constant-space computations (concurrent monolithic, concurrent lazy,

and prioritized SYNAPSE) all exhibit a broad flat band in which the space usage alter-

nates between high and low values ten times. Each high value is the size of the graph

soon after the beginning of a new iteration, while each low value is the size of a graph

at the end of an iteration. Irregularities in the high and low values for the modular

programs are due to the nondeterminism of the concurrent evaluation strategy. The

peaks do not indicate a rising trend in the two constant-space modular versions be-

cause the intermediate values held by the aggregates are aggressively dropped rather

than being buffered.

Due to management operations, the modular versions take significantly more steps

than the monolithic version. In the case of the SYNAPSE program, the difference

is an order of magnitude. 7 The management operations for the SYNAPSE program

include packaging and unpackaging slags, synchronzing on synchrons, and handling

higher-order procedural arguments.

2. Peak: The sequential lazy and prioritized concurrent lazy programs exhibit profiles

that gradually rise to a peak and then fall off more rapidly. The rise is due to the

fact that each element read from the file is buffered for later use; the fall occurs in

the phase of the computation that processes the buffered elements.

3. Plateau: The sequential strict program exhibits a plateau between a rising segement

and a falling segment. Each of these three segments corresponds to one of the three

7 The S NAPSE profile was generated in an unfiltered implementation of S NAPSE The time overhead
would be even higher in the filtered version.

411

C(HAPTER 9. EXPERIENCE

14

12

10

8

6

4

2

0
0 20 40 60 80 100 120

Time (execution steps)

40

35

30

25
0 20

15

10

5

0

(a) Concurrent monolothic

50
45
40
35
30
25

id 20
15

10
5
0

0 50 100 150 200 250 300 350 400
Time (execution steps)

35

30

25

o 20

15

10

5

o

(c) Sequential lazy

50
45
40
35

o 0 30
c 25
d 0 20

15
10
5
0

0 50 100 150 200 250 300
Time (execution steps)

350

50
45
40
35
30
25
20

va 15

10
5
0

(e) Prioritized concurrent lazy

Figure 9.3: Space profiles of various down averaging
elements.

0 50 100 150 200 250 300 350 400
Time (execution steps)

(b) Sequential strict

0 50 100 150 200 250 300 350
Time (execution steps)

(d) Concurrent lazy

0 200 400 600 800 1000 1200 1400 1600
Time (execution steps)

(f) Prioritized SYNAPSE

programs on an input file of ten

412

9.2. TESTING

list-manipulation modules. The rising segment is caused by splay-list's construc-

tion of a list holding all the elements of the file.8 A plateau occurs during the first

accumulation because all of the list elements must be saved for the second accumula-

tion. During the second accumulation, the list elements are dropped as soon as they

are processed.

Experiments were also performed on up versions of the file averaging programs (Fig-

ure 9.4). In these versions, both the + and 1+ are performed in up phases of the program. As

(define (average-file-up:mono filename)

(let ((port (open-input-file filename)))

(define (recur)

(let ((elt (read port)))

(if (eof-object? elt)

(begin (close-input-port port)
(cons 0 0))

(let ((sum&count (recur)))
(cons (+ elt (car sum&count))

(1+ (cdr sum&count)))))))

(let ((sum&count (recur)))
(/ (car sum&count)

(cdr sum&count)))))

(define (average-file-up filename)
(let ((nums (splay-file filename)))

(/ (upQ 0 + nums)

(upQ 0 inc nums))))

;;; INC and SPLAY-FILE the same as before.

Figure 9.4: Monolithic and modular versions of a recursive program for averaging the
contents of a numeric file.

expected, all versions require space linear in the size of the file due to the stacked operations

and their arguments (details omitted).

However, it is still possible to classify the up programs by the qualitative nature of their

individual space profiles (Figure 9.5). As in the down case, there are three categories. In

the monolithic, concurrent lazy, and prioritized SYNAPSE profiles, a rising (stack-pushing)

8More precisely, the rise is due to the creation of a stack of pending cons operations. This is followed
by a brief stack-popping phase in which the pending cons operations are executed to create a list. This
stack-popping phase appears as a short straight line segment in the profile at the beginning of the plateau.

413

CHAPTER 9.

0 50 100 150
Time (execution steps)

50
45
40

~' 35
0 30

25
20

Ov3 15
10
5
0

200 250

(a) Concurrent monolothic

0 50 100 150 200 250 300 350 400
Time (execution steps)

EXPERIENCE

0 50 100 150 200 250 300 350 400
Time (execution steps)

(b) Sequential strict

70

60

50
0o 40

30

20

10

0

(c) Sequential lazy

0 50 100 150 200 250
Time (execution steps)

0 50 100 150 200 250
Time (execution steps)

300 350

(d) Concurrent lazy

250

200

*0

0

150

100

50

0
300 350

(e) Prioritized concurrent lazy

0 200 400 600 800 100012001400160018002000
Time (execution steps)

(f) Prioritized SYNAPSE

Figure 9.5: Space profiles of various up averaging programs on an input file of ten elements.

414

so
45
40
35
30
25

i 20
15

10
5
0

60

50

U

0.
V)

40

30

20

10

0

60

50

40

30

a

*0
0~

20

10

0

9.2. TESTING

phase is immediately followed by a falling (stack-popping) phase. In the sequential lazy

and prioritized concurrent lazy versions, the initial rise (combining list-creation and the

first stack-pushing) is followed by a sharp decline (the first stack-popping accumulation), a

plateau (turning a list data structure into a stack for the second accumulation), and another

sharp decline (the second stack-popping accumulation). These same three falling stages are

found in the sequential strict case, but its rising phase is split into two independent parts:

list-creation and the first stack-pushing.

The bottom line of the averaging experiments is that the modular SYNAPSE programs

accurately model the qualitative space behavior of the monolithic averaging programs both

at the coarse-grained (order of growth) and fine-grained (space profile) levels. While a

concurrent lazy program is likely to show the same desirable qualitative space behavior, it

is not guaranteed to (as shown by the prioritized example).

Alpha Rename

To test the space behavior of SYNAPSE for a non-trivial tree example, an order of growth

experiment was performed on a modified alpha renamer. In order to accurately measure

the space required by the alpha renaming process, it is necessary to subtract off the space

taken up by the input and output terms. To remove the space associated with the output

term, the monolithic alpha renamer in Section 2.2 and the modular version in Section 6.2.3

were modified to return a parallel up accumulated sum of the number of variable references

in the alpha renamed term. In order to discount the size of the input terms, they were

chosen to be ones that could be represented in space linear (rather than exponential) in

their depth. (Thus, the input terms were not eliminated, but made sufficiently small.) In

particular, they were chosen to be of the form

termi = (lambda x bodyi)

where bodyi is recursively defined by

bodyo = x

body,, = (call bodyll body,_L1)

415

(CHAPTER 9. EXPERIENCE

Using sharing of subterms, it is easy to generate a version of bodyi that uses space linear

in i.

Figure 9.6 shows a log-log plot for the space required by various versions of the modified

alpha renamer. The x-axis measures the depth of the input tree termi. The y-axis measures

the maximal number of nodes required by the computation. Simple analysis shows that the

strict and lazy approaches require space exponential in the depth of the input tree, while

the monolithic and SYNAPSE approaches require space linear in the depth of the tree.

100000

10000

1000

100

10
1 10

File Size (elements)

Figure 9.6: Log-log plot of the space consumed by various versions of the modified alpha
renaming program as a function of the depth of the input tree.

Once again, the evidence is that the SYNAPSE program accurately models the desirable

qualitative behavior of a monolithc program. Granted, in the current prototype system,

the SYNAPSE version of the modified alpha renamer requires an order of magnitude more

time and an order of magnitude more space than the monolithic program. Nevertheless,

11-1
co

0.)0

v)
c.)

416

9.3. LESSONS

the SYNAPSE program is able to handle inputs far larger than the strict or lazy approaches,

which both exhaust the OPERA interpreter's memory for input depths 9 or greater. More-

over, it is arguably easier to write the SYNAPSE program than the more complex monolithic

pirogram. SYNAPSE programs may be slow, but they are infinitely faster than programs

that were never written because they were too hard to understand!

9.3 Lessons

Here I summarize several important lessons that I have learned while designing and imple-

menting slivers. 'While these lessons are not necessarily new, they are especially highlighted

by this research.

i. (oncurrency is a crucial modularity mechanism: Concurrency is often touted as a

means of making programs more efficient. While efficiency may be of practical interest,

this perspeictive clouds the real advantage of concurrency: modularity. (Concurrency

makes it possible to express complex process behaviors as the combination of simpler

process behaviors. Without concurrency, complex process behaviors can be achieved

only by laboriously interweaving separate process specifications by hand.

Concurrency has proven to be a cornerstone of the sliver technique. For several years

I unsuccessfully attempted to develop sliver-like modularity mechanisms in sequential

models. Eventually, it became apparent that concurrency was necessary for controlling

space behavior operation order in a modular way. I was later pleased to find that

Hughes [Hug84] had come to a similar conclusion a decade ago!

In retrospect, the notion that concurrency is important to modularity has been around

for a long time; it's just not emphasized enough. The notion of concurrently executing

modular units has cropped up repeatedly in compiler optimization, operating systems,

robotics, and data analysis. Perhaps unfortunately, limited versions of concurrency

can be expressed within fundamentally sequential programming models by techniques

such as laziness, coroutining, and continuations. While these techniques are impor-

tant, I think they tend to support the illusion that full-fledged concurrency is not

417

(CHAPTER 9. EXPERIENCE

important. Perhaps the emerging emphasis on multi-threading in a number of cur-

rent languages will help to start moving programmers out of the sequential mindset.

2. Visualization tools are essential for concurrent programmitng:

According to folklore, concurrency and synchronization are hard to think about. My

experience shows that the folkore is absolutely correct. After I latched onto the

concurrent paradigm and developed the notion of synchrons, I quickly stumbled in

my early efforts at implementating slivers. Deadlock was an ever-present problem.

I)iscovering the cause of a deadlock in a large graph using simple text-based tools

could easily take on the order of hours.

Early debugging nightmares convinced me to bite the bullet and create a program

animator that visually displayed program graphs. This was probably the best decision

made during the entire project. The D)YNAMATOR took a few months to build, but

quickly paid itself off in saved debugging time. Bugs that used to take hours to find

could now be discovered in minutes. More important, the DYNAMATOR helped forge

new intuitions that fed back into the design process. In retrospect, I do not see

how I could have ever converged on the final EDGAR rules or managed all the subtle

complexities of the SYNAPSE implementation without the aid of the DYNAMATOR.

Interestingly, the DYNAMATOR has an important drawback. I have come to rely

so much upon it that I can't imagine adding new features to EDGAR without also

adding them to the DYNAMATOR. Unfortunately, this means that those additions

requiring non-trivial extensions to the D)YNAMATOR are less likely to be implemented.

In particular, the DYNAMATOR currently assumes that every node has a single output

port. Yet, some important features, like continuations and multiple-value returns,

require nodes with multiple output ports. The implementation of these features has

been delayed because they require major extensions to the DYNAMATOR.

3. Laziness requires defensive programming strategies:

Although I expected concurrent programming to be hard, I was not prepared for

the wrench that non-strictness (especially laziness) would throw into the works. The

418

9.3. LESSONS

principle of laziness is simple enough - things shouldn't be evaluated until (and un-

less) they are actually needed. Laziness is powerful because it allows the creation of

conceptually infinite data structures and otherwise unresolvable circular dependen-

cies. However, even without the complications of concurrency and synchronization,

laziness can be very difficult to reason about.

Consider the following two lambda expressions written in OPERA:

(a) (:Lambda (x)
(lazon (if (and (= (length x) 2)

(eq? (car x) 'bar))

(list 'bar 'quux)

(list 'bar 'baz))))

(b) (:Lambda (x)
(list 'bar

(lazon (if (and (= (length x) 2)

(eq? (car x) 'bar))

'quux

'baz))))

Both return a list of two elements whose first element is always the symbol bar. The

first returns this list lazily; the second factors out the common bar and returns only

the second element of the list lazily. While at first glance it might appear that the

differences between these two expressions are unimportant, they can make a crucial

difference in certain contexts, like the following:

(cadr (letrec ((foo E)
(lst (lazon (foo lst))))

lst))

If the first lambda expression is substituted for E, the resulting expression deadlocks.

If the second lambda expression is substituted for E, the resulting expression terimi-

nates normally with the value quux.

The deadlock in the first case is not caused by concurrency or synchronization, but

by an unresolvable circular dependency. To return a result, the if is first required

to find the length of x and the car of x; but x turns out to be the output of the if

expression! The unresolvable dependency is avoided in the second case by aggressively

constructing the parts of the output that the if must examine (i.e., a two-element list

419

CHAPTER 9. EXPERIENCE

whose first element is bar). While the above example is contrived, I have encountered

many similar situations in my implementation of SYNAPSE.

Aggressive construction of data structures in the presence of laziness is an example

of what I call defensive programming strategies. A defensive strategy aims to express

known invariants to the interpreter as soon as possible in a program. In the above

example, the invariant is that the result of the lambda expression is a two element

list whose first element is bar. Another example of a defensive programming strategy

is the aggressive unbundling requirement discussed in Section 5.4.2. In aggressive

unbundling, the goal is to express which components of a data structure will later

be used. These sorts of defensive programming strategies have proven invaluable in

the implementation of SYNAPSE, where concurrency, synchronization, and eagerness

compound the kinds of subtle deadlock problems that can be exhibited with laziness

alone.

4. Environment models are problematic:

This research has underscored some of the problems with traditional environment

model for representing closures. A closure is a representation for a first-class procedure

that pairs the code of the procedure with some structure that determines the meaning

of free variable references that appear in the code. In the classical environment model,

such as that expounded in [ASS85], the meaning of free variables is determined by an

environment structure that contains bindings for the names of all lexically enclosing

variables. The problem with this approach is that the interpreter can inadvertently

hold onto unreferenceable structures via the environment. In Scheme, this can result

in insidious space leaks (especially in the case of stream programs). In OPERA, this

problem would be particularly acute, because deadlock is virtually guaranteed if the

interpreter does not release synchron-holding structures as soon as possible.

Avoiding the problems of spuriously held structures requires new language models and

implementation techniques. OPERA attacks this problem by using free variable analy-

sis and lambda lifting to reduce the number of variables that a procedure closes over,

and by using reference counting garbage collection to aggressively reclaim unreference-

420

9.3. LESSONS 421

able objects. These techniques aren't always viable. With the development of more

sophisticated language constructs that are tied into the storage management model

(like synchrons), other techniques for aggressively dropping references to objects will

have to be developed.

422 CHAPTER 9. EXPERIENCE

Chapter 10

Conclusion

10.1 Summary

The solutions to many p)rogramming problems can naturally be expressed as the composi-

tion of procedures that manipulate lists and trees. By capturing common idioms in reusable

pieces, this modular program organization facilitates reading, writing, modifying, and rea-

soning about i)rograms. Unfortunately, issues of space, time, and operation scheduling often

compel programmers to manually interweave several idioms into a single complex loop or

recursion. The result is a monolithic program that is significantly harder to construct,

understand, and extend than the modular version.

I have developed a technique that enables programmers to achieve the desirable space

characteristics and operation scheduling of intricate loops and recursions in modular list

and tree programs. The technique is based on a lock step processing model that allows

networks of aggregate data operators called slivers to capture the fine-grained operational

behavior of monolithic procedures. Slivers communicate via synchronized lazy aggregates,

standard interfaces that transmit not only elements but control information that specifies

when the elements are computed. Control information is in the form of synchrons, a novel

barrier synchronization mechanism that is fundamentally tied to automatic storage man-

agemlent. Synchrons enable the barriers represented by strict monolithic procedures call to

be simulated by a network of concurrently executing slivers.

The sliver technique combines the simplicity and expressiveness of lazy data with the

423

CHAPTER 10. CONCLUSION

synchronization and storage efficiency of interprocess communication channels. The sliver

approach is a dynamic version of Waters's series technique that is able to express general

linear and tree-shaped recursive computations in addition to iterations. By allowing the

complexities of synchronization to be hidden from the programmer, slivers improve upon

the concurrency and synchronization techniques suggested by Hughes for controlling space

behavior in modular programs.

I have implemented a tower of languages (EDGAR, OPERA, and SYNAPSE) that support

the lock step processing model. EDCAR is an explicit demand graph reduction model in

which the operational details of concurrency, synchronization, and non-strictness are for-

malized. OPERA is a dialect of Scheme in which these operational features are embedded.

SYNAPSE is a collection of higher order OPERA procedures that manipulate synchronized

lazy lists and trees. I have shown how a number of intricate computations can naturally

be expressed as modular combinations of SYNAPSE procedures, and that the resulting pro-

grams mimic the detailed space behavior and operation scheduling of hand-crafted loops

and recursions. Synchronized lazy aggregates can also b)e used in conjunction with conven-

tional strict and lazy aggregates to partition a computation into loosely coupled networks

of tightly coupled components.

The slivers technique addresses the space overheads, but not the time overheads, associ-

ated with aggregate data programs. While sliver programs have the same time complexity

as corresponding monolithic programs, prototype implementations indicate that they suffer

significant time overheads due to the manipulation of intermediate data and the manage-

ment of fine-grained concurrency and synchronization. Nevertheless, I expect that it will

be possible to eliminate these overheads in many cases by employing techniques similar to

those used by Waters to compile series programs into monolithic loops and recursions.

Despite the pragmatic drawbacks, the work described here represents an important step

towards reducing the tension between modularity and control in programming. At the

very least, slivers and synchronized lazy aggregates constitute an executable specification-

language for expressing operational characteristics of programs. More importantly, the

notions of computational shape and lock step processing developed here provide new ways

for programmers to think and talk about computation.

424

10.2. CONTRIB UTIONS

10.2 Contributions

Here is a sumlmary of the major contributions of this work:

* I have presented a detailed analysis of why existing modularity techniques fail to

preserve important operational characteristics of monolithic loops and recursions.

* I have laid the groundwork for a theory of computational shape that describes how the

operational processing patterns of a computation can be composed from the patterns

of its components. The preliminary notion shape presented here successfully captures

intuitions about linear and tree-structured computations.

* I have developed a lock step model of computation that allows programs written in the

aggregate data style to control space behavior and operation scheduling in a modular

fashion. The model introduces two new abstractions that successfully encapsulate the

details of lock step processing: a sliver is a processing module and a synchronized lazy

aggregate is a data structure that guarantees the lock step processing of the slivers that

produce and consume it. I have demonstrated the utility of the lock step processing

model in the context of SYNAPSE, a list and tree processing language.

* I have invented a novel synchronization mechanism, the synchron, that interacts with

automatic storage management to provide a general form of barrier synchronization.

Synchrons are the key technology for implementing synchronized lazy aggregates and

achieving the lock step processing of slivers.

* I have designed a semantic framework, explicit demand graph reduction (EDGAR), that

models concurrency, synchronization, non-strictness, and side effects in an intuitive

way. I have implemented a graph-based interpreter based on EDGAR and used it as a

foundation for OPERA, a concurrent dialect of Scheme that supports synchrons.

* I have implemented a graphical program animator, the DYNAMATOR, that visually

illustrates the step-by-step execution of the EDGAR model. The DYNAMATOR shows

great promise as a tool for debugging and pedagogy.

425

(CHAPTER 10. CONCLUSION

10.3 Future Work

10.3.1 Expressiveness

The SYNAPSE implementation validates the lock step model upon which slivers are based,

but it is far from an ideal system for expressing computations in a modular way. While it

is fairly easy to express a wide range of linear computations in terms of existing synquence

slivers, there is still much functionality missing. More linear primitives, along the lines of

those developed for series [Wat90], need to be added.

Syndrites are in a considerably more embryonic state than synquences. The current set of

syndrite slivers is very weak. The mechanisms for specifying different orders and directions

of sequential tree traversals are rather ad hoc; better abstractions for sequential processing

of trees need to be found. It would also be helpful to develop a sliver that sequentializes

parallel tree manipulations in a reusable way. Designing slivers whose processing shapes are

dynamically determined rather than being statically defined is another important avenue of

exploration. For example, imagine a syndrite that performs a left-to-right pre-order walk if

its argument is even, but a right-to-left post-order walk if its argument is odd.

To drive the design of an expressive suite of syndrite slivers, the sliver technique needs

to be tested out on a wide range of complex tree-shaped computations. I have only experi-

mented with a few relatively simple tree programs: free and bound variable analysis, alpha

renaming, lambda lifting, and pattern matching. At the very least, slivers should be used

to duplicate results from attribute grammar research within the aggregate data style. A

more ambitious undertaking would be a detailed study of existing tree programs along the

lines of Waters's study of iterative programs [Wat78, Wat79].

Compilers and interpreters are particularly relevant candidates for study. One of the

main pragmatic motivations for slivers was to be able to describe compilers and interpreters

in a modular, but still efficient, fashion. Currently, interpreters are not easily accomodated

by SYNAPSE because the dynamic evaluation trees generated by an interpreter tend to ex-

hibit complex dependencies between subtrees. For example, when evaluating an application

node in a Scheme interpreter, the environment associated with the result of evaluating the

operator subtree is needed in the subtree for evaluating body; this dependency does not

426

10.3. FUTURE WORK

correspond to an existing syndrite sliver.

Filtering is an area that requires more work. While reusable filtering works surprisingly

well for synquences, the details of syndrite filtering have yet to be ironed out. Compacting

the elements of a filtered list can often be accomplished using the loose coupling afforded

by stream buffers; but this technique can lead to deadlock in situations with fan-out. The

default gap handling properties of mappers and accumulators is often inappropriate when

multiple inputs are involved. The existence of a large corpus of tree examples would help

in the design of better filtering constructs.

Cyclic dependencies are another area requiring further investigation. Some problems

naturally decompose into components that exhibit cyclic dependencies. For example, in the

FX language [G(JSO92], name resolution and type reconstruction are conceptually distinct

stages of the implementation that happen to depend on each other. In practice, the imple-

nentations of these stages must be manually interwoven. Slivers offer the possibility that

this process could be explressed as a cyclic combination of a name resolution sliver and a

type reconstruction sliver. While I have successfully implemented a cyclic Fibonacci network

based on slivers,: I have not yet developed robust enough abstractions for experimenting

with more complex examples.

Tail calls should be expressed in a more elegant manner. The tail call of a monolithic

procedure is currently simulated in SYNAPSE slivers by using a special calling mechanism

that does not rendezvous at an up synchron. But this requires two versions of every calling

abstraction. Is it; possible to design a cleverer calling convention that automatically waits

on an up synchron only if there is pending work to be done?

10.3.2 Pragmnatics

In order for synchronized lazy aggregates to be a practical technique, it is necessary to

significantly reduce the time and space overheads exhibited by the current SYNAPSE and

OPERA implementations. This area is ripe for exploration.

The time overhead is by far the biggest problem. While SYNAPSE programs have the

'It turns out that, there can never be a cycle consisting purely of slags within a sliver network. At least
one connection in every cyclic dependency must be a non-slag.

427

CHAPTER 10. CONCLUSION

same order of growth in time as the monolithic programs that they model, preliminary

results indicate that they take more than an order of magnitude more execution steps than

monolithic programs executed under the same graph reduction model. The extra steps are

due to the following sources:

* Packaging and unpackaging the elements of slag.

* Manipulating and rendezvousing on synchrons.

* Manipulations for handling filtering appropriately.

* Handling of lazons, eagons, and touches that control fine-grained behavior.

Because the comparisons were performed in a graph reduction model, these overheads do

not include any overheads of the graph reduction model itself. In practice, straightforward

implementations of the fine-grained concurrency and reference-counting garbage collection

implied by EDGAR and OPERA are likely to incur additional significant time penalties

compared to traditional sequential implementations of monolithic programs.

While SYNAPSE programs can exhibit the same order of growth in space as a monolithic

program, they still have higher constants due to the memory requirements of slags. For

example, a constant-space iteration composed out of two SYNAPSE slivers requires extra

storage for the intermediate slag structure necessary to communicate a single element from

one sliver to another.

There are two basic approaches for reducing the overheads associated with SYNAPSE

1. The dynamic approach is to develop efficient mechanisms for handling the fine-grained

concurrency, synchron synchronization, and non-strictness required by OPERA.

2. The static approach is to develop static analysis and compilation techniques that

remove the sources of overhead.

Unfortunately, the dynamic approach does not address many of the sources of SYNAPSE

inefficiency. In particular, it does nothing to reduce the allocations, stores, and reads from

intermediate data structures, nor does it remove the extra manipulations associated with

428

10.3. FUTURE WORK

filtering. Nevertheless, if other overheads are brought down to low enough levels, these

remaining overheads may be deemed acceptable for certain classes of programs. Since

p)rogralmmer time is often more valuable than machine time, the ease with which a program

can be written can be more important than how fast it is.

The static approach holds more promise for increased efficiency. Ideally, it should be

possible to eliminate the need for run-time overhead completely by compiling many sliver

networks into efficient monolithic recursive procedures. Techniques that are particularly

worth exploring in this context include series compilation [Wat91], deforestation [Wad88],

partial evaluation [WC(RS91], and attribute grammar evaluation [DJL88]. Series compila-

tion is based on representing a series operator as collection of code fragments that character-

ize different aspects of the operator; compilation consists of gluing together corresponding

firagments for a network of series operators. This approach appears promising for slivers, but

the details need to be worked out. Both deforestation and partial evaluation techniques can

have trouble dealing with general recursions, but the limited forms of recursions in SYNAPSE

and the explicit synchronization information available may provide enough constraints to

make the techniques applicable.

It is worth emphasizing that requiring slivers networks to be compiled into monolithic

recursive i)rocedures will result in reduced expressive power. Since any such compilation

technique would need to determine the structure of a sliver network at compile time, many

of the more expressive aspects of slivers (e.g., higher-order slivers, repeated application of a

sliver, conditionally choosing a sliver at runtime) would have to be curtailed. Of course, an

option would be to compile only those networks that are statically determinable, and leave

the more expressive cases to be handled by existing dynamic methods. But if the goal is

to eliminate the run-time overheads of features like fine-grained concurrency, this option is

not viable.

If dynamic overheads are deemed allowable, then other forms of static analysis (in addi-

tion to the compilation techniques mentioned above) can be used to reduce these overheads.

For example, using the technique of effect analysis [LG88], it may be possible to distinguish

expressions that need to be evaluated concurrently from those for which sequential evalua-

tion is sufficient.

429

CHAPTER 10. CONCLUSION

10.3.3 Computational Shape

The notions of computational shape introduced in Chapters 4 and 5 are alluring but very

preliminary and informal. An important area of future research is to formalize these notions

into a shape calculus that can be used as a basis to help both humans and machines reason

about programs. A shape calculus would capture the essential interfaces, call structures, and

internal dependencies of process fragments like slivers and use this information to determine

both pairwise sliver compatibility and the processing shapes of lock step components.

A shape calculus could be the basis for many practical tools. In analogy with type

systems, it is possible to imagine a shape system in which the shape of sliver network can

be determined from the shape of its components by shape reconstruction. Shape analysis

would be helpful for conservatively predicting whether a sliver network could deadlock. Any

sliver compilation technique would presumably have to employ some sort of shape analysis.

Shape-based reasoning shows promise as a new way to approach program transformta-

tions. Existing algebraic techniques may benefit by incorporating a notion of shape. Based

on a library of slivers partitioned according to function, it may be possible to improve the

operational characteristics of a given program by replacing some slivers with differently-

shaped, but functionally equivalent, slivers.

Another direction to explore is extending the simple linear and tree shapes suggested

by this research. Are there processes shaped like arrays, DAGs, and graphs? What process

shapes are suitable for describing data parallel computations? How can the process shapes

generated by fancy control constructs (e.g., non-local exits and continuations) be expressed?

Is it possible to convert a process of one shape to one of another shape? (For example,

perhaps sequential tree walkers can be described as linear processes that are appropriately

"bent" to form a tree.)

It would also be worthwhile to explore synergies between the notion of shape developed

here and other notions of data, communication, and computation shapes. The dependency

analysis underlying many attribute grammar systems [DJL88] is relevant to the design of

the shape calculus. It may well turn out that the shape calculus amounts to a modular

version of this analysis. Jay and others are currently developing a theory of "shapely types"

that factors data structures into their shapes and their elements. For example, the same

430

10.3. FUTURE WORK

sequence of elements can be stored in a list, an array, or as the leaves of different kinds

of trees; a shapely type describes the structure holding onto the sequence [Jay]. Size and

access inference for data parallel programs [CBF91] is another line of work that strongly

suggests a notion of process shapes. In his work on paralations [Sab88], Sabot described an

intriguing notion of communication shape.

10.3.4 Synchronization

Synchrons are a powerful synchronization mechanism that may have many other uses be-

yond their role in synchronized lazy aggregates. For example, it might be possible to use

them as the basis for a general temporal constraint solver. The time-based nature of syn-

chrons suggests a temporal calculus in which actions are specified to happen before, after, or

between synchrons. Early versions of the OPERA supported before, after, and between

constructs on synchrons, but they were ultimately abandoned because their semantics was

never satisfactory. Working out the details of a temporal calculus would be an interesting

project.

Synchrons are currently implemented using reference counting garbage collection. Ref-

erence counting, which requires explicit deallocation of every object, has a high overhead

compared to techniques (like stop and copy) that only examine live data. Is it possible to

impllement synchrons more efficiently?

Synchrons are an example of a growing number of data structures that interact with

garbage collection. Other examples include T's pop)ulations [RAM83], MultiScheme's pairs

and finalization objects [Mil87], and Hughes's synch construct [Hug83, Hug84]. This trend

raises a number of questions: Are there other examples of these structures waiting to

be uncovered? What is an appropriate set of primitives and means of combination for

constructing new ones? What are efficient techniques for implementing these structures?

What are the appropriate formalisms for describing their semantics?

10.3.5 Theoretical Directions

A great deal of work can be done in formalizing the concepts introduced informally in this

document. In addition to the shape calculus mentioned above, EDGAR is fertile ground for

431

(CHAPTER 10. CONCLUSION

some theoretical explorations. For example:

* Confluence: It would be nice to know under what conditions the model is confluent

(i.e., has the property that all computations from the same initial graph end at the

same final graph).

* 5'liver Correctness: Many of the sliver implementations (especially scanners) are ex-

tremely complex. EDCGAR provides a formal model for their execution; can it help to

prove them correct?

* Behavioral Equivalence: I have claimed that sliver networks are operationally equiva-

lent to monolithic programs "modulo management operations". Classical approaches

to process equivalence (like (CP's trace equivalence [Hoa85]) appear too weak to han-

dle the crucial notion of equivalent space behavior. EDGAR seems to be a natural

starting point for a richer notion process equivalence that explicitly models space con-

sumption. The hard part is defining what "modulo management operations" means

in this context. Pomset models of concurrent computation [Pra86, HA87] may be

helpful for defining an EDGAR-based notion of process equivalence.

10.3.6 Pedagogy

The computational models and tools developed for this work have important pedagogical

applications. The EDGAR model is an extremely rich computational model in which a

wide variety of programming issues can be studied: iteration, linear and tree recursion, tail

calls, first-class procedures, procedure calling mechanisms, laziness, eagerness, side effects,

environment structures, continuations, concurrency, synchronization, and nondetermlinism.

The fact that all of these issues can be explored through the graphical animation of the

DYNAMATOR makes EDGAR a natural choice for illustrating the dimensions of these issues.

The notions of shape and lock step processing presented in this dissertation suggest new

ways for teaching the structure of both modular and monolithic computations. For example,

the difference between linear iterations and recursions can be introduced by mleans of sliver

diagrams annotated with shapes. The fact that elements between a down process and an

up process form an explicit stack helps to convey the essence of recursion. Shapes can aid

432

10.3. FUTURE WORK 433

in the discussion of program organization and transformation. And the fact that slivers are

mix-and-match pieces emphasizes the principles of modularity.

Slivers and shapes not only open up new teaching avenues, but they are a potentially

powerful language for helping programmers express processes to each other and to their

coill)uters. It remains to be seen whether their potential will be realized.

434 CHAPTER 10. C(ONCLUSION

Bibliography

[AA93] Zena Ariola and Arvind. Graph rewriting systems: Capturing sharing of conm-
putation ill language implementations. (Computation Structure Group Melo
347, MIT Laboratory for Computer Science, April 1993.

[Ada91] Stephen Adams. Modular Grammars for Programming Language Prototyping.
Phi) thesis, Department of Electronics and Computer Science, University of
Southampton, March 1991.

[Ame89] American National Standards Institute. American National Standard for Infor-
mation Systems Programming Language Fortran: S8(X3.9-198x), 1989.

[AN89] Arvind and Rishiyur S. Nikhil. A dataflow approach to general-purpose parallel
computing. Computation Structure Group Memo 302, MIT Laboratory for
Computer Science, July 1989.

[ANP89] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: I)ata structures
for parallel computing. ACM Transactions on Programming Languages and
,ystems, pages 598-632, October 1989.

[ASS85] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-
pretalion of C(,omputer Programs. MIT Press, 1985.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley, 1986.

[Axe86] Tim S. Axelrod. Effects of synchronization barriers on multiprocessor perfor-
mance. Parallel Computing, 3(2):129-140, May 1986.

[B+87] H.P. Barendregt et al. Toward an intermediate language based on graph rewrit-
ing. In PARLE: Parallel Architectures and Languages Europe, Volume 2, pages
159 - 175. Springer-Verlag, 1987. Lecture Notes in Computer Science, Number
259.

[Bac78] John Backus. Can programmning be liberated from the von Neuman style? A
functional style and its algebra of programs. Comrmunications of the A CM,
21(8):.245-264, August 1978.

[Bar84] H.P Barendregt. The Lambda-calculus: Its Syntax and Semantics. North-
Hollaud, 1984.

435

BIBLIOGRAPHY

[Bar92] Paul S. Barth. Atomic data structures for parallel computing. Technical Report
MIT/LCS/TR-532, MIT Laboratory for (Computer Science, March 1992.

[Baw86] Alan Bawden. (Connection graphs. In Symposium on Lisp and Functional Pro-
gramming, pages 258-265. ACM, August 1986.

[Baw92] Alan Bawden. Linear Graph Reduction: Confronting the Cost of Naming.
PhD thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, June 1992.

[Bel86] Francoise Bellegarde. Rewriting systems on FP expressions that reduce the
number of sequences yielded. ,Science of Computer Programming, 6(1):11-34,
January 1986.

[Bir84] R. S. Bird. Using circular programs to eliminate multiple traversals of data.
Acta Informatica, pages 239-250, 1984.

[Bir86] Richard S. Bird. An introduction to the theory of lists. In Manfred Broy, editor,
Logic of Programming and Calculi of Discrete Design (NATO ASI Series, Vol.
F36), pages 5-42. Springer-Verlag, 1986.

[Bir88] Richard S. Bird. Lectures on constructive functional programming. In Manfred
Broy, editor, Constructive Methods in Computing Science (NATO ASI Series,
Vol. F55), pages 5-42. Springer-Verlag, 1988.

[Bir89a] R. S. Bird. Algebraic identities for program calculation. The Computer Journal,
pages 122-126, 1989.

[Bir89b] Andrew Birrel. An introduction to programming with threads. SRC(Report 35,
Digital Equipment (Corporation, January 1989.

[BL93] Robert D). Blumofe and Charles E. Leiserson. Space-efficient scheduling of mul-
tithreaded computations. In 25th Annual ACM ,Syrlposium on Theory of Com-
puting. ACM, May 1993.

[Ble90] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

[Ble92] Guy E. Blelloch. NESL: A nested data-parallel language. Technical Report
CMU-(:S-92-103, Carnegie-Mellon University Computer Science Department,
January 1992.

[Bud88] Timothy Budd. An APL Compiler. Springer-Verlag, 1988.

[CBF91] Siddhartha Chatterjee, Guy E. Blelloch, and Allan Fisher. Size and access
inference for data-parallel programs. In Programming Language Design and
Implementation '91, pages 130-144. ACM, 1991.

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Communications of
the AC'M, 32(4):444-458, 1989.

4,36

BIBLIOGRAPHY

[C(hi92] Wei-Ngan Chin. Safe fusion of functional expressions. In Symposium on Lisp
and Functional Programm7ing, pages 11-20. AC(:M, 1992.

[C(M90] Eric Cooper and J. Gregory Morrisett. Adding threads to standard ML. Tech-
nical Report (MU-CS-90-186, Carnegie Mellon University (:omputer Science
Department, December 1990.

[(Ioh83] Norman H. Cohen. Eliminating redundant recursive calls. ACM Transactions
on Programming Languages and Systems, 5(3):265-299, July 1983.

[(-R+91] William Clinger, Jonathan Rees, et al. Revised4 report on the algorithmic
language Scheme. Lisp Pointers, 4(3), 1991.

[I)ar82] John Darlington. Program transformation. In J. Darlington, P. Henderson,
and D). A. Turner, editors, Functional Programming and its Applications, pages
177-1.92. 1982.

[1)C90] G. D. P. Dueck and G. V. Cormack. Modular attribute grammars. The C omputer
Journal, 33(2): 164-172, April 1990.

[DI)en75] Jack B. I)ennis. First version of a data flow procedure language. Computa-
tion Structure Group Memo MIT/LCS/TM-61, MIT Laboratory for Computer
Science, May 1975.

[D)ij68] E. W. Dijkstra. (o-operating sequential processes. In F. Genuys, editor, Pro-
gramminllg Languages (NATO Advanced Study Institute), pages 43-112. London:
Academic Press, 1968.

[DJL88] Pierre D)eransart, Martin Jordan, and Bernard Lorho. Atribute Grammars.
Springer-Verlag, 1988. Lecture Notes in Computer Science, Number 323.

[I)K82] Alan L. Davis and Robert M. Keller. Data flow program graphs. IEEE Com-
puter, pages 26-41, February 1982.

[DR76] John Darlington and R.M.Burstall. A system which automatically improves
programs. Acta Informatica, pages 41-60, 1976.

[FMY92] R. Farrow, T. J. Marlowe, and I). M. Yellin. Composable attribute grammars:
Support for modularity in translator design and implnentation. In Nineteenth
Annual A CM ,Symposium on Principles of Programming Languages, pages 223-
234, 1.992.

[For91] Alessandro Forin. Futures. In Peter Lee, editor, Topics in Advanced Language
Implemlentation, pages 219-241. MIT Press, 1991.

[GJ90] David Gelernter and Suresh Jagannathan. Programminig Linguistics. MIT Press,
1990.

[GJSO92] David Gifford, Pierre Jouvelot, Mark Sheldon, and James O'Toole. Report on
the FX-91 programming language. Technical Report MIT/LCS/TR-531, MIT
Laboratory for Computer Science, February 1992.

437

BIBLIOGRAPHY

[GLJ93] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to
deforestation. In Functional Programming and Comnputer Architecture, 1993.

[GM84] Richard P. Gabriel and John McCarthy. Queue-based multi-processing Lisp. In
SymposiumL on Lisp and Functional Programming, pages 25-44. ACM, August
1984.

[GW78] Leo J. Guibas and Douglas K. Wyatt. Compilation and delayed evaluation in
APL. In Conference Record of the Fifth ACM Conference on the Principles of
Programming Languages, pages 1-8, 1978.

[HA87] Paul Hudak and Steve Anderson. Pomset interpretation of parallel functional
programs. In Functional Programming Languages and Computer Architecture,
pages 234-256, September 1987. Lecture Notes in Computer Science, Number
274.

[Hal85] Robert Halstead. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, pages 501-528,
October 1985.

[Hen80] Peter Henderson. Functional Programming: Application and Implementation.
Prentice-Hall, 1980.

[HJW+92] Paul Hudak, Simon Petyon Jones, Philip Wadler, et al. Report on the pro-
gramming language Haskell, version 1.2. ACM SIGPLAN Notices, 27(5), May
1992.

[Hoa74] C.A.R. Hoare. Monitors: An operating system structuring concept. Corlmmuni-
cations of the AC'M, 17(10):549-557, 1974.

[Hoa85] C .A.R. Hoare. C(omrmurnicatirng Sequential Processes. Prentice-Hall, 1985.

[HS86a] W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Comlmunica-
tions of the ACM, 29(12), 1986.

[HS86b] Paul Hudak and Lauren Smith. Para-functional programming: A paradigm for
programming multiprocessor systems. In Thirteenth Annual ACM Symposium
on Principles of Programming Languages, pages 243-254, January 1986.

[Hug82] R. J. M. Hughes. Super-combinators: A new implementation technique for
applicative languages. In Symposium on Lisp and Functional Programming,
pages 1-10, August 1982.

[Hug83] R. J. M. Hughes. The Design and Implementation of Programming Languages.
PhD thesis, Oxford Universiy Computing Laboratory, Programming Research
Group, July 1983.

[Hug84] R. J. M. Hughes. Parallel functional languages use less space. Technical report,
Oxford University Programming Research Group, 1984.

438

BIBLIOGRAPH Y

[Hug85] R. J. M. Hughes. Lazy memo-functions. In Functional Programming Languages
and Computer Architecture, pages 129-146, 1985. Lecture Notes in Computer
Science, Number 201.

[Hug90] R. J. M. Hughes. Why functional programming matters. In David Turner, edi-
tor, Research Topics in Functional Programming, pages 17-42. Addison Wesley,
1990.

[Ive87] Kenneth E. Iverson. A dictionary of APL. APL QUOTE QUAD, 18(1):5-40,
September 1987.

[Jay] C(. Barry Jay. Personal correspondence.

[J G89] Pierre Jouvelot and David K. Gifford. Communication effects for message-based
concurrency. Technical Report MIT/LCS/TM-386, MIT Laboratory for Com-
puter Science, February 1989.

[Joh85] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Functional Programming Languages and Computer Architecture, pages
190-203, September 1985. Lecture Notes in Computer Science, Number 201.

[Joh87] Thomas Johnsson. Attribute grammars as a functional programming paradigm.
In Functional Programming Languages and Computer Architecture, pages 154-
173, 1,987. Lecture Notes in Computer Science, Number 274.

[K+X6] David Kranz et al. Orbit: An optimizing compiler for Scheme. In Proceedings
of SIGIPLAN '86 ymposium on Corrpiler C'onstruction, pages 219-233. ACM,
June 1986.

[Kat84] Takuya Katayamla. Translation of attribute grammars into procedures. Trans-
actions on Programming Languages and ,Systems, 6(3):345-369, 1984.

[Knu68] I)onald E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127-145, 1968.

[Knu73] Donald E. Knuth. The Art of Computer Programminig. 2rd ed. Vol. 1: Funda-
mental algorithms. Addison-Wesley, 1973.

[Kos84] Kai Koskimes. A specification language for one-pass semantic analysis. In A CM
SIGPLAN '84 Symposium on Compiler Construction, pages 179-189, Tama-
City, Tokyo, June 1984.

[KP84] Brian W. Kernighan and Rob Pike. The UNIX Programming Environment.
Prentice-Hall, Englewood Cliffs, NJ, 1984.

[KW92] U. Kastens and W. M. Waite. Modularity and reusability in attribute grammars.
Technical Report (:CU-CS-613-92, University of Colorado at Boulder, September
1992.

439

BIBLIOGRAPHY

[L+79] Barbara Liskov et al. CLU reference manual. Technical Report MIT/LCS/TR-
225, MIT Laboratory for Computer Science, October 1979.

[LG88] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Pro-
ceedings of the ACM Symposiunm on the Principles of Programming Languages,
pages 47-57, 1988.

[Mey] Albert R. Meyer. A substitution model for Scheme: Formal definitions. In
preparation.

[Mil87] James S. Miller. MultiScheme: A parallel processing system based on MIT
Scheme. Technical Report MIT/LCS/TR-402, MIT Laboratory for Computer
Science, September 1987.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

[PA85] Keshav Pingali and Arvind. Efficient demand-driven evaluation (I). ACM Trans-
actions on Programming Languages and Systems, 7(2):311-333, April 1985.

[PA86] Keshav Pingali and Arvind. Efficient demand-driven evaluation (II). ACM
Transactions on Programming Languages and Systems, 8(1):109-139, January
1986.

[Pet77] James L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223-250, 1977.

[Pet84] Alberto Pettorossi. A powerful strategy for deriving efficient programs by trans-
formation. In ACM Conference on Lisp and Functional Programming, pages
273-281, 1984.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall, 1987.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Techni-
cal Report DAIMI FN-19, Aarhus University Computer Science Department,
September 1981.

[Pra86] V. R. Pratt. Modeling concurrency with partial orders. International Journal
of Parallel Programming, 15(1):33-71, February 1986.

[RAM83] Jonathan Rees, Norman I. Adams, and James R. Meehan. The T manual (third
edition). Technical report, Yale University Department of Computer Science,
March 1983.

[Ric81] Charles Rich. Inspection methods in programming. Technical Report AI-TR-
604, MIT Artificial Intelligence Laboratory, June 1981.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23-41, 1965.

440

BIBLIOGRAPHY

[RS87] J. R. Rose and Guy L. Steele Jr. (C:*: An extended C language for data par-
allel progranmling. In Proceedings of the Second International Conference on
Supercomputing, Vol 2, pages 2-16, 1987.

[RW90] Charles Rich and Richard C. Waters. The Programrnmer's Apprentice. Addison-
Wesley, 1990.

[Sab88] Gary W. Sabot. The Paralation Model. MIT Press, 1988.

[Sme93] Jacobus Edith Willem (Sjaak) Smetsers. Graph Rewriting and Functional Lan-
guages. PhD thesis, Katholieke Universiteit Nijimegan, February 1993.

[Ste77] Guy L. Steele Jr. D)ebunking the "expensive procedure call" myth, or procedure
call implementations considered harmful, or LAMBDA, the ultimate Goto. Tech-
nical Report AIM-443, MIT Artificial Intelligence Laboratory, October 1977.

[Ste90] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, 1990.

[Str71] H. R.. Strong. Translating recursion equations into flow charts. Journal of
Computer and System Sciences, 5:254-285, 1971.

[Tra88] Kenneth R. Traub. Sequential implementation of lenient programming lan-
guages. Technical Report MIT/L(CS/TR-417, MIT Laboratory for Computer
Science, October 1988.

[Tur79] I). A. Turner. A new implementation for applicative languages. Software -
Practice and Experience, 9:31-49, 1979.

[Tur85] I). A. Turner. Miranda: A non-strict functional language with polymorphic
types. In Functional Programming Languages and Computer Architecture, pages
1-16, 1985. Lecture Notes in Computer Science, Number 201.

[Tur94] Franklyn Turbak. Slivers: (omputational modularity via synchronized lazy
aggregates. Ai-tr-1466, MIT Artificial Intelligence Laboratory, 1994. Revised
version of doctoral dissertation. In prepartion.

[WA85] William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow Programming
Language. Academic Press, 1985.

[Wad84] Philip Wadler. Listlessness is better than laziness: Lazy evaluation and garbage
collection at compile-time. In ACM Symposium On Lisp and Functional Pro-
gramm:ing, pages 45-52, 1984.

[Wad85] Philip Wadler. Listlessness is better than laziness II: Coomposing listless func-
tions. In Programs As Data Objects, pages 282-305. Springer-Verlag, 1985.
Lecture Notes in (omputer Science 217.

[Wad88] Philip Wadler. I)eforestation: Transforming programs to eliminate trees. In 2nd
European Symposium on Programming, pages 344-358, 1988. Lecture Notes in
(Computer Science, Number 300.

441

BIBLIOGRAPHY

[Wat] Richard C. Waters. To NReverse when consing a list or by pointer manipulation
to avoid it; that is the question. Lisp Pointers (to appear).

[Wat78] Richard C. Waters. Automatic analysis of the logical structure of programs.
Technical Report AI-TR-492, MIT Artificial Intelligence Laboratory, Deceber
1978.

[Wat79] Richard (C. Waters. A method for analyzing loop programs. IEEE Transactions
on Software Engineering, SE-5(3):237-247, May 1979.

[Wat84] Richard C. Waters. Expressional loops. In ACM Symposium on the Principles
of Programming Languages, pages 1-10, 1984.

[Wat87] Richard (C. Waters. Efficient interpretation of synchronizable series expressions.
In A CM SIGPLAN '87 Symposium on Interpreters and Interpretive Techniques,
volume SE-5, pages 74-85, 1987.

[Wat90O] Richard C. Waters. Series. In Guy L. Steele Jr., editor, Common Lisp: The
Language, pages 923-955. Digital Press, 1990.

[Wat91] Richard C'. Waters. Automatic transformation of series expressions into loops.
ACM Transactions on Programming Languages and Systems, 13(1):52-98, Jan-
uary 1991.

[Wat92] D. A. Watt. Modular description of programming languages. The Computer
Journal, 35:A009-A0028, 1992.

[W(-RS91] Daniel Weise, Roland C(onybeare, Erik Ruf, and Scott Seligman. Automatic
online partial evaluation. In Proceedings of the Conference on Functional Pro-
gramming Languages and Computer Architecture. Springer-Verlag, August 1991.

[WS73] S. A. Walker and H. R. Strong. (Characterizations of flowchartable recursions.
Journal of Computer and ,System Sciences, 7:404-447, 1973.

442

Appendix A

Glossary

This dissertation defines many new terms and uses some existing terms in a non-standard

way. As an aid to the reader, this glossary contains definitions of these terms. Each entry

includes a bracketed number that indicates a page on which the term is either introduced

or discussed.

across [132] An orientation for a tile operation indicating that the operation is unordered

with respect; to subcall initiations and returns. Applies to both linear and tree-shaped

tiles. Also used to describe the shape of a sliver exhibiting no inter-layer data depen-

dencies.

aggregate data approach [82] An approach to the signal processing style of program-

ming in which the signal processing operators are represented as procedures that

manipulate aggregate data structures (e.g., lists, arrays, streams, trees).

arguments [131] The values consumed by a procedure application. In tile diagrams, they

appear as inputs terminating on the line representing the call boundary.

attribute grammar [124] A grammar-based formalism for declaratively specifying the

decoration of a tree with attributes.

barrion [192] A pair of a down synchron and an up synchron that represents a call

boundary.

443

APPENDIX A. GLOSSARY

barrier synchronization [302] A style of synchronization in which all members of a group

of processes must rendezvous at a point before any are allowed to proceed. Synchrons

provide barrier synchronization for a dynamically determined number of processes.

between [148] An orientation for a tree tile operator indicating that the operator must be

performed after some subcall return but before another subcall initiation.

between-LR [148] An orientation for a binary tile operator indicating that the operator

must be performed after the left subcall return but before the right subcall initiation.

between-RL [148] An orientation for a binary tile operator indicating that the operator

must be performed after the right subcall return but before the left subcall initiation.

binary down [152] Shape of a parallel binary tile or computation with at least one up-both

operation.

binary tile [145] A tile in which at most two subcalls may be made.

binary trellis [145] An infinite binary tree structure representing the potential computa-

tion of a binary recursion. Each position of the trellis corresponds to the computation

performed by one layer of the recursion.

binary up [152] Shape of a parallel binary tile or computation with up-both operations.

cable [65] In a sliver decomposition, a collection of wires that connects slivers.

call boundary [130] An abstract barrier that separates the computation of a procedure

body from the computation of its arguments and the computation that uses its results.

The call boundary is defined by two events: call initiation begins the computation of

the body, and call return ends the computation of the body. In tile diagrams, a call

boundary is represented as the top line of a tile.

call initiation [131] The event marking the start of a tile computation. All arguments

must be available before this event.

call return [131] The event marking the end of a tile computation. All result values must

be available before this events.

444

445

cell [298] A one-slot mutable data structure supported by OPERA.

channel approach [82] An approach to the signal processing style of programming in

which the signal processing operators are represented as processes that transmit data

over communication channels.

compaction approach [208] An approach to the filtering of aggregate data in which the

output of the filter contains only the elements that pass the filter. Used in contrast

with gap approach.

computational shapes [129] Computational patterns that characterize how processes

unfold over time. See also shape.

consumpts [174] Horizontal inputs consumed by a subtile (in contrast with arguments,

which are vertical inputs). In subtile diagrams, consumpts appear as inputs termi-

nating on the left-hand edge of the subtile. In the context of slivers, consumpts refer

to the input slags of a sliver.

conditionally tail-recursive [137] Describes a tile that contains both trivial and non-

trivial paths through an up shard.

control arm [133] A section of a shard that contains a conditional that must be performed

before some subcall.

deadlock [142] A state in which a computation can make no progress even though it has

not terminated with a result.

down [132] An orientation for a linear tile operation indicating that the operation must be

performed before subcall initiation. Also used to describe the shape of a sliver consist-

ing of only down operations. Down-both, down-left, and down-right tree operations

are loosely classified as down operations as well.

down barrier [166] A point defined by call initiation that separates the computation of

the arguments to a procedure call from the computation of the body of the call.

APPENDIX A. GLOSSARY

down-both [148] An orientation for a binary tile operator indicating that the operator must

be performed before both the left and right subcall initiations.

down-left [148] An orientation for a binary tile operator indicating that the operator must

be performed before the left subcall initiation but is unordered with respect the right

subcall.

down-right [148] An orientation for a binary tile operator indicating that the operator

must be performed before the right subcall initiation but is unordered with respect

the left subcall.

down phase [139] The phase of a linear iteration or recursion in which all down operations

are performed.

DYNAMATOR [400] A graphical program animator for the EDGAR graph reduction model.

eagon [319] An OPERA object embodying an eager evaluation strategy. Equivalent to the

future objects of other languages.

eager evaluation [158] A non-strict argument evaluation strategy for a procedure applica-

tion in which arguments are evaluated in parallel with the evaluation of the procedure

body.

EDGAR [347] An Explicit Demand GrAph Reduction model. EDGAR differs from most

other graph reduction models in its explicit representation of the demand for the

evaluation of a subgraph.

element wire [176] In a sliver decomposition, a wire that transmits the element associated

with a particular layer of a recursive process.

excludon [314] A mutual exclusion object supported by OPERA.

fan-in [26] A situation in which a device has more than one input.

fan-out [26] A situation in which an output of some device is shared by more than one

other device.

446

447

filton [336] A data structure representing a filtered element of a synchronized lazy list.

filtered slag [335] A synchronized lazy aggregate whose elements may be gaps.

future [298] Synonym of eagon.

gap [177] A distinguished element in an aggregate data structure that marks a position

where a value has been filtered out. Written as #g.

gap approach [208] An approach to the filtering of aggregate data in which the output of

the filter contains explicit gap entities for elements that did not pass the filter. Used

in contrast with compaction approach.

in [152] Shape of a sequential tree tile having at least one between operation and no up

operations. Also applies to tree slivers and computations whose operations satisfy

these criteria.

in-order [269] A tree processing strategy in which the node of a tree is processed after

some of its children but before other of its children.

interface tiles [143] Unreplicated tiles that perform initialization and finalization for a

replicated tile computation.

intermediates [133] Values that do not cross the call boundary or subcall boundaries of a

procedure. In tile diagrams, intermediates are produced by one shard and consumed

by another shard within a tile.

iteration [51] Synonym for linear iteration.

layer decomposition [65] "Horizontal" decomposition of a recursive monolithic compu-

tation that collects together all operations performed in one layer of the recursion.

lazy data [98] Data structures whose components are not computed until their values are

required.

lazy evaluation [158] A non-strict argument evaluation strategy for a procedure applica-

tion in which the evaluation of arguments is suspended until their values are required.

APPENDIX A. GLOSSARY

lazon [315] An OPERA object embodying a lazy evaluation strategy. Equivalent to an

automatically forced Scheme delay object.

left-to-right tile [150] Any tree tile in which dataflow constrains subcalls to be visited

in a left-to-right order.

linear computation [51] A process whose dynamic calls form a linear sequence.

linear down shape [140] Shape of a linear computation that has no up phase. Iterative

computations have a linear down shape.

linear iteration [51] A linear computation exhibiting constant control space.

linear recursion [51] A linear computation requiring an implicit control stack.

linear tile [130] Tile in which at most one subcall may be made.

linear up shape [140] Shape of a linear computation that has an up phase.

linear trellis [130] Infinite linear structure representing the potential computation of a

linear iteration or recursion. Each position of the trellis corresponds to the computa-

tion performed by one layer of the iteration or recursion.

lock step component [171] A collection of slivers that engages in lock step processing

to simulate the behavior of a monolithic recursive procedure. Any two slivers com-

municating via a synchronized lazy aggregate are in the same lock step component.

monolithic [52] Describes a program organization in which programming idioms are man-

ually interwoven in a way that obscures the conceptual structure of the program.

modular [52] Describes a program organization that effectively encapsulates programming

idioms into units that can be combined in mix-and-match ways.

multi-threaded [163] Describes a computation with a multiple loci of control.

non-strict evaluation [158] Any argument evaluation strategy in which the evaluation

of arguments is not required to precede the evaluation of the body of the applied

procedure. Laziness and eagerness are examples of non-strictness.

448

449

non-tail call [166] A procedure call that requires the pushing of control stack.

non-waiting pointer [302] A reference to a synchron that blocks a rendezvous from

occuring at that synchron.

OPERA [295] A dialect of Scheme supporting concurrency (concurrent evaluation of proce-

dure call subexpresions), synchronization (synchrons and excludons), and non-strictness

(lazons and eagons).

operational faithfulness [29] The principle that a lock step component of slivers should

simulate the operational behavior generated by a monolithic recursive procedure.

operation order [29] A partial order describing the relative times at which operations

may be performed.

orientation [132] A property of a tile operator that specifies when it is performed relative

to the subcalls of the tile.

par [101] An eager evaluation mechanism introduced by Hughes. Similar to a future.

parallel down [164] Shape of a parallel binary tile or computation with no up-both opera-

tions.

parallel tile [150] Any tree tile in which there is no dataflow between subcalls.

parallel up [164] Shape of a parallel binary tile or computation with at least one up-both

operation.

post [152] Shape of a sequential tree tile having at least one up operation. Also applies to

a tree computation performing only these operations.

post-order [2691 A tree processing strategy in which a node is processed after all of its

children are processed.

pre [152] Shape of a sequential tree tile having only down operations. Also applies to a

tree computation performing only these operations.

APPENDIX A. GLOSSARY

pre-order [269] A tree processing strategy in which a node is processed before any of its

children are processed.

presence wire [176] In a sliver decomposition, a wire that transmits a flag indicating

whether the current element is present. A presence wire carrying false indicates a

gap.

products [174] Horizontal outputs produced by a subtile (in contrast with results, which

are vertical outputs). In subtile diagrams, products appear as outputs originating on

the right-hand edge of the subtile. In the context of slivers, refers to the output slags

of a sliver.

recursion [450] Any recurisvely-structured computation requiring non-constant control

space. See also recursion.

reify [212] In the context of filtering, an operator that turns a gap into a non-gap value.

rendezvous [197] The point in time at which all processes that could be waiting on a

given synchron are waiting on that synchron.

results [131] The values produced by a procedure application. In tile diagrams, they

appear as outputs originating at the line representing the call boundary.

reusability [29] The principle that a module (e.g., a sliver) should have a standard inter-

face so that it can be reused in mix-and-match ways.

right-to-left tile [150] Any tree tile in which dataflow constrains subcalls to be visited

in a right-to-left order.

sequential tile [150] Any tree tile in which dataflow constrains subcalls to be visited in

some sequential order.

series [104] A synchronized sequence structure defined by Waters. It is the basis for a

strategy that transforms modular sequence programs into efficient loops.

shape [138] A property that summarizes the operational nature of a computation. When

applied to a tile or subtile, shape is a static property determined by the orientations

450

451

of operators. When applied to the computation generated by a tile or subtile, shape is

a dynamic property determined by the orienations of operators that are dynamically

performed.

shard [132] The collection of operations within a tile or subtile that share the same

orientation.

signal processing style [81] A style of organizing programs as signal processing block

diagrams in which information flows through devices that generate, map, filter, and

accumulate data. Aggregate data approaches and channel approaches are two common

examples of the signal processing style. SPS is an abbreviation for this style.

single-threaded [163] Describes a computation with a single locus of control.

skeletal node [192] One of the nodes that forms the backbone of an aggregate data

structure.

slag [190] Abbreviated form of Synchronized Lazy AGgregate.

sliver [65] Fragment of a recursive computation that captures a programming idiom. When

used in the conjunction with synchronized lazy aggregates, denotes a procedure that

manipulates such aggregates.

sliver decomposition [65] "Vertical" decomposition of a recursive monolithic computa-

tion that distributes the recursive structure over each of the components.

space profile [407] A function that describes the space required by a process as a function

of execution time.

SPS [81] Acronym for Signal Processing Style.

stream [99] An incrementally computed sequence. In this document, I use the term

exclusively to mean Scheme's lazy lists.

strict data [409] Data structures that require their components to be fully computed

values.

APPENDIX A. GLOSSARY

strict evaluation [??] Any argument evaluation strategy in which the evaluation of

arguments is required to precede the evaluation of the body of the applied procedure.

subarguments [131] The values consumed by the subcall boundary of a tile.

subcall [130] Any procedure application that appears within the body of a given proce-

dure.

subcall boundary [130] The call boundary associated with a subcall. In tile diagrams, a

subcall boundary is represented as a line at the bottom of the tile. A single tile may

have several subcall boundaries.

subcall initiation [131] The event that marks the beginning of a subcall's computation.

All subarguments must be available before this time.

subcall return [131] The event that marks the end of a subcall's computation. All

subresults are available after this time.

subresults [131] The values produced by the subcall boundary of a tile.

subtile [173] A tile fragment that specifies the computation performed by one layer of a

sliver.

SYNAPSE [221] A language for manipulating synchronized lazy lists and trees. SYNAPSE

is a suite of slag-manipulation procedures embedded in OPERA. The name stands for

SYNchronized Aggregate Programming Structures Environment.

synch [101] Hughes's construct for synchronizing two demands for a value.

synchron [302] An OPERA object permitting barrier synchronization of a dynamically

determined number of processes. Synchrons are at the heart of the lock step processing

model embodied by slivers and synchronized lazy aggregates.

synchronized lazy aggregate [190] A dynamically unfolding aggregate data structure

carrying synchronization tokens that enable lock step processing among the producers

and consumers of the aggregate.

452

453

synchronized lazy list [191] A synchronized lazy aggregate that denotes a sequence of

elements.

synchronized lazy tree [191] A synchronized lazy aggregate that denotes a tree of ele-

ments.

syndrite [191] A synchronized lazy tree. The name stands for SYNchronized denDRITE.

synquence [191.] A synchronized lazy list. The name stands for SYNchronized seQUENCE.

synter [192] A structure annotated with two synchrons that connects the skeletal nodes

of a synchronized lazy aggregate. The name stands for SYNchronized poin TER.

tail call [169] A procedure call that does not require the pushing of control stack.

tail-recursive [131] Describes the tail call of a recursive procedure. When applied to tile

operations or slivers, the term is synonymous with "down shaped".

termination wire [176] In a sliver decomposition, a wire that transmits a flag indicating

whether there is any more data.

tile [130] A specification of the computation performed by one layer of an iteration or

recursion. A tile is depicted as a box whose contents specify the potential operations

performed by the layer.

tree shaped computation [56] A process whose dynamic calls form a tree.

unfiltered slag [330] A synchronized lazy aggregate whose elements may be gaps.

unitilable [138] Describes a recursive computation in which every layer is generated by

the same tile.

unreify [212] In the context of filtering, an operator that turns a non-gap value into a

gap.

up [132] An orientation for a linear tile operation indicating that the operation must be

performed after subcall return. Also used to describe the shape of a linear sliver that

APPENDIX A. GLOSSARY

has at least one up operation. Up-both, up-left, and up-right tree operations are

loosely classified as up operations as well.

up barrier [166] A point defined by call return that separates the computation of the

results of a procedure call from the computation that uses these results.

up phase [139] The phase of a linear recursion in which all up operations are performed.

up-both [148] An orientation for a binary tile operator indicating that the operator must

be performed after both the left and right subcall returns.

up-left [148] An orientation for a binary tile operator indicating that the operator must be

performed after the left subcall return but is unordered with respect the right subcall.

up-right [148] An orientation for a binary tile operator indicating that the operator must

be performed after the right subcall return but is unordered with respect the left

subcall.

waiting pointer [302] A reference to a synchron that indicates that a process is ready to

engage in a rendezvous at that synchron.

454

