\“./".

Slivers:
Computational Modularity via

Synchronized Lazy Aggregates

by

Franklyn Albin Turbak

S.B., Massachusetts Institute of Technology (1986)
S.M., Massachusetts Institute of Technology (1986)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1994

(© Massachusetts Institute of Technology 1994

Signature of Author ... T e ettt e e e ey DD
Department of Electrical Engineering and Computer Science
) _ —_— January 31, 1994
i
Certified by U S B VOO T,
d Gerald Jay Sussman
Matsushlta Professor of Electrical Engineering
m~ - ~ Thesis Supervisor
Certified by . ..o i I Z S M N e e e e

David K. Gifford
Associate Professor of Computer Science and Engineering

mn\ \ \ . Thesis Supervisor

Accepted b TV NNL T K [X% TR BT g e+ o e e e ee e me e et e e
”"“’““SS”‘ #‘ W'U'E ™) Frederic R. Morgenthaler
irman, Departmental Committee on Graduate Students

APR? 0_6”?

|

Slivers:
Computational Modularity via

Synchronized Lazy Aggregates
by
Franklyn Albin Turbak

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 1994, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Slivers are a new approach to expressing computations as combinations of mix-and-match
operators on aggregate data. Unlike other aggregate data models, slivers enable program-
mers to control fine-grained operational aspects of modular programs. In particular, slivers
can guarantee that networks of operators exhibit the desirable storage behavior and oper-
ation scheduling of intricate loops and recursions. For example, slivers can preserve the
space efficiency of a complex tree algorithm when it is expressed as the superposition of
simpler tree walks.

The sliver technique is based on a dynamic model of lock step processing that enables
combinations of list and tree operators to simulate the operational behavior of a single
recursive procedure. Operational control is achieved through synchronized lazy aggregates,
dynamically unfolding data structures that constrain how the processing of separate opera-
tors is interwoven. The key to the technique is the synchron, a novel first-class object that
allows a dynamically determined number of concurrently executing operators to participate
in a barrier synchronization. Slivers embody a notion of computational shape that speci-
fies how the operational patterns of a process can be composed out of the patterns of its
components.

The utility of slivers is illustrated in the context of SYNAPSE, a simple language for
expressing linear and tree-shaped computations. SYNAPSE is built on top of OPERA, a
new concurrent dialect of Scheme that incorporates the concurrency, synchronization, and
non-strictness required by the lock step processing model. The semantics of OPERA are
explained in terms of EDGAR, a novel graph reduction model based on explicit demand
propagation.

Thesis Supervisor: Gerald Jay Sussman
Title: Matsushita Professor of Electrical Engineering

Thesis Supervisor: David K. Gifford
Title: Associate Professor of Computer Science and Engineering

Acknowledgments

Many people skip over the acknowledgments when they read a book. Not me. Every book
has a hidden story that isn’t told by the main text. The acknowledgments give a glimpse
into the process by which the book was created — how the ideas took shape, who was
involved when, the emotional ups and downs of the author, and so on. In fact, you might

say that the process of writing a thesis has a shape — but that’s another thesis.
What follows is a glimpse into the story of this thesis. First, my thesis committee:

Gerry Sussman (thesis co-supervisor) and Hal Abelson (thesis reader) are ultimately
responsible for this work. They created The Course (6.001, MIT’s introductory computer
science course) and wrote The Book (Structure and Interpretation of Computer Programs)
that changed my life. I wasn’t planning to major in computer science as an undergraduate,
but after their course, I couldn’t imagine doing anything else. A religious experience? You

might say that.

Their book said some crazy things about computations having shape. This planted
seeds in my head that germinated years later. I decided to try to make sense out of this
computational shape notion. This thesis represents a checkpoint in that process. There’s

still a long way to go.

Gerry is the archetypical hacker, mastering everything from watch repair to solar system
dynamics. His unbounded energy, infectious enthusiasm, diverse interests, and good-natured
spirit recharged me again and again during the long haul of this research. Hal is simply the

finest teacher and technical writer I have ever known.

Together, Gerry and Hal are the Lennon and McCartney of Computer Science. They
would probably hate this title, since they’d like to be associated as little as possible with

computer science. (I'm not sure about their feelings on the Beatles.) After all, in 6.001,
don’t they teach that computer science is not a science, and has very little to do with
computers? But like it or not, it’s true. They have put out more high quality teaching and
research than anyone else I have ever seen. They are the kind of pair that inspire legends,
and about whom ballads are written. Everything they touch, they improve.

I learned from them that you really don’t understand something unless you can boil it
down into a 6.001 problem set. I hope to spend a large chunk of the rest of my life boiling
things down in this manner.

David Gifford (thesis co-supervisor) got me hooked on semantics. He developed The
Other Course in my life (6.821, MIT’s graduate programming languages course). I have
learned an immense amount about programming languages and systems while under Dave’s
tutelage. Over the years, Dave has provided me with lots of support, encouraged me to
formalize my fuzzy ideas, and steered my thinking in more practical directions.

Dick Waters (thesis reader) has helped me more on particulars than anyone else. He
has spent many Thursday afternoons talking with me about both high level issues and nitty
gritty details. After many years of struggling to explain my ideas to others, it was exciting
and refreshing to talk shop with Dick. My only regret is that I added him to my thesis
committee at such a late stage!

David McAllester (thesis reader) engaged me in stimulating discussion, and was the
source of many neat ideas.

Now onto my family and friends:

First and most important is my best friend, the Love Of My Life, and my wife: Lisa
Savini. I don’t know why, but for some reason wives almost always get relegated to the
last line of the acknowledgments. Lisa deserves better than that. Again and again, her
love has lifted me out the the depths of despair, her conversation has kept me sane, and
her tasty cooking has nourished me. Lisa gradually assumed all household duties while her
husband mutated into a zombified hermit. And in the homestretch, she proofread the entire
document. I look forward to getting to know her again!

I wouldn’t have made it to the brink of doctorhood without the support of my family.

Mom and Dad raised me in an intellectually stimulating environment and gave me more

love and encouragement than any child deserves. They have been waiting for this document
for a long time! I am honored to join my father as another Dr. Turbak.

My brother, Stephen, my sister-in-law, Michelle, and my two nephews, Casimir, and
Darius, have strived to keep me in touch with reality during my long thesis journey. I am
ever so grateful that I finished my doctorate before Caz joined me here at MIT (he is now
almost five years of age).

My new family, the Savinis, provided me with large quantities of love and food (is there
a distinction?) throughout the past few years.

Jonathan Rees is one of my heroes. He has the uncanny ability to give crystal clear
explanations of most any topic in real time. I’ve learned more about programming language
design and good programming style from Jonathan than from any other source. When my
interest in my thesis waned, Jonathan convinced me that I was working on something
worthwhile. He also suggested many improvements to the organization of my dissertation.
His working in the office next door to mine during the final stages of my dissertation was a
godsend.

Brian Reistad became a Good Friend who provided detailed feedback about the docu-
ment, was always willing to listen about details, and checked up on me daily when I was
entombed in my office.

David Espinosa showed up in my life at just the right time. He renewed my excitement
in programming languages just when my enthusiasm was starting to flag. He also gave me
lots of feedback about my research and this document.

Jim O’Toole suggested many valuable improvements for restructuring the presentation
of my work.

Mark Sheldon (a.k.a. Eldo) helped to keep me afloat with his continually bubbly de-
meanor and his conversation, both technical and non-technical.

Alan Bawden introduced me to the nuances of graph reduction and taught me lots of
Cool Things.

Feng Zhao swapped thesis ideas with me on a weekly basis during the early stages of

my research. I am grateful for his friendship, and for being a sounding board for all my

fuzzy thoughts.

Mark Day shared my original vision about capturing the space/time behavior of pro-
cesses, and has provided valuable comments and suggests along the way.

Ziggy Blair was one of the few people who voiced appreciation for my research in the
early stages when most everyone else was giving me icy stares.

Bill Rozas tutored me in a wide range of computer science topics in the process of
answering gazillions of my questions.

The Switzerland crew — Hal and Gerry’s group — are an amazing collection of incredibly
smart and helpful people with refreshing views on just about any topic you can imagine. In
addition to the folks listed above, Stephen Adams, Andy Berlin, Mark Friedman, Arthur
Gleckler, Philip Greenspun, Chris Hanson, Elmer Hung, Brian LaMacchia, Jim Miller,
Ognan Nastov, Jacob Katzenelson, Kleanthes Koniaris, Nick Papadakis, Thanos Siapas,
Pete Skordos, Rajeev Surati, and Henry Wu all help to make the fourth floor of Tech
Square a very exciting environment.

The Swiss graduates — Liz Bradley, Mike Eisenberg, Mitch Resnick, Ken Yip, and Feng
Zhao — awed and inspired me while they were here, and were good friends to boot. I miss
them all dearly.

For their feedback and encouragement on my thesis research, I am grateful to Andy
diSessa, Ian Horswill, Trevor Jim, Pierre Jouvelot, Jintae Lee, Nate Osgood, John Pezaris,
Roberto Segala, Ellen Spertus, and Julie Sussman.

Becky Bisbee, Jeanne Darling, and Marilyn Pierce helped me out by taking care of lots
of details pertaining to my thesis and my life as a graduate student.

I am indebted to Ignacio Trejos-Zelaya, who was able to track down Hughes’s “Parallel
Functional Languages Use Less Space” in a forsaken file cabinet at Oxford when nobody
else in the world could seem to find a copy.

I am grateful to all the friends and family who refuse to give up on me yet even though
I’ve totally neglected them for a long time now. Special thanks to Douglas Massidda and
Fatima Serra for sharing the bounty of the ocean with Lisa and me; to David Chiang for
recharging our friendship every time he comes to Boston; to Robert Kwon for calling me up
from Japan every once in awhile; to Chablo Boyadjis, Mike Dawson, Nick Newell, and Jean

Spence for some great hiking trips; to Tina Katkocin and Christine Allan for checking up

on me; to Andy Litman, Debbie Utley, Ken & Ginny Grant, and Linda & Nitin Upadhyaya
for sharing their homes with Lisa and me; and especially to the Paulist Center’s Wednesday
Night Supper Club for helping me find Lisa.

Finally, I would also like to acknowledge the inventor of acknowledgments, without

whom this section would not have been possible.

10

This report describes research done at the Artificial Intelligence Laboratory and the
Laboratory for Computer Science at the Massachusetts Institute of Technology. Support
for this research is provided in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N00014-92-J-4097, by the
National Science Foundation under grant number MIP-9001651, and by the Department of
the Army under contract DABT63-92-C-0012.

Note to the Reader

This dissertation will be revised and published as MIT Artificial Intelligence Laboratory
technical report AI-TR-1466. Readers are encouraged to consult the technical report for

various extensions to, and simplifications of, the work described here.

11

12

Contents

1 Overview

1.1 TheProblem e
1.1.1 Modularity: Programming Idioms
1.1.2 Control: Computational Shape
1.1.3 The Signal Processing Style of Programming
1.2 Sliver Decomposition e
121 TheBasicldea,
1.2.2 Some Simple Examples
1.23 Howit Works e
1.3 Alternate Perspectives on This Research
1.4 Dissertation Road Map,
Slivers
2.1 Linear Example: Database Manipulation
2.1.1 Overview e e e e e e e e e e
2.1.2 Monolithic Style: Functional Paradigm
2.1.3 Monolithic Style: Imperative Paradigm
2.1.4 Computational Shapes
2.1.5 Monolithic Programs Lack Modularity
2.2 Tree Example: Alpha Renaming
2.2.1 Overview L e e e e e e e e

13

19
20
21
22
23
28
28
33
37
39
42

14 CONTENTS
2.2.3 Monolithic Style: Imperative Approach 62

2.3 Slivers Capture Programming Idioms 64
2.3.1 Two Approaches to Decomposing Computations 64

2.3.2 Procedural Slivers 70

2.3.3 Sliver Diagrams e 71

2.3.4 Operational Interpretation of Sliver Diagrams 77

3 The Signal Processing Style of Programming 81
3.1 The Aggregate Data Approach 82
3.1.1 Database Example: A List Implementation 83

3.1.2 Database Example: An Array Implementation 87

3.1.3 Alpha Renaming Example: A Tree Implementation 88

3.1.4 Some Drawbacks 96

3.1.5 Partial Solutions 98

3.2 The Channel Approach 105
3.2.1 Coroutining Example 00 106

3.2.2 Concurrent Process Example 111

3.3 Other Techniques o i e 122
3.3.1 Higher Order Procedures 122

3.3.2 Looping Macros 123

3.3.3 Attribute Grammarso e e e 124

3.4 SUININATY . . . v« ot e 125

4 Computational Shape 129
4.1 Linear Shapes L e e 130
4.1.1 Linmear Tiles o o i e 130

4.1.2 Linear Orientation 132

4.1.3 Linear Shards e e 132

4.1.4 An Operational Model, 136

4.1.5 Linear Tile Shapes i i e 138

4.1.6 Linear Computations. e 138

CONTENTS 15

4.1.7 Wrinkles 142

4.2 Tree Shapes L e e e e e e e e e 145
421 Binary Tiles. e 145
4.2.2 Binary Orientation 145
4.2.3 Binary Shards 150
4.24 Binary Tile Shapes o 152
4.2.5 Binary Down Tiles and Non-strictness 157
4.2.6 Binary Computations 159
4.2.7 Discussion e 163

5 Synchronized Lazy Aggregates 165
5.1 A Lock Step Processing Model 165
5.1.1 Strict Calls Provide Control 166
5.1.2 Distributing Strict Calls Loses Control 167
5.1.3 Simulating Strict Calls Regains Control 169
5.1.4 Lock Step Components 170
5.1.50 The Details o e 171

5.2 Sliver Decomposition L o 173
5.2.1 Linear Subtiles 173
5.2.2 Binary Subtiles L 181
5.2.3 Subtile Shapes L L 183
5.2.4 Sliver Computations 184
5.2.5 Subtile Compatibility 186

5.3 The Structure of Synchronized Lazy Aggregates 189
5.3.1 Overview e e e 190
5.3.2 Synquences and Syndrites L. 191
5.3.3 Synchrons e 195
5.34 Slag Dynamics e 197

5.4 Slivers Revisited e 200

5.4.1 Sliver Classification

16 CONTENTS
5.4.2 Sliver Requirements 201

5.4.3 Sliver Dynamics e 204

5.5 Filtering oL 206
5.1 Gaps e e e e e e e e e e e e e e 208

5.5.2 Gap Conventions e 209

5.5.3 Reusability e e 213

5.5.4 Up Synchronization 218

6 SYNAPSE: Programming with Slivers and Slags 221
6.1 Linear Computations e 222
6.1.1 [Iteration vs. Recursion. 223

6.1.2 Expressive Power L oo 237

6.1.3 Lazinesst i it e e e e e 242

6.1.4 Fan-in e 247

6.1.5 Fan-out e 253

6.1.6 Deadlock i e e e e 255

6.1.7 Filtering L e 265

6.2 Tree Computations o i it i e 269
6.2.1 Simple Examples oo o e 274

6.2.2 Shape Combinations 278

6.2.3 Extended Example: Alpha Renaming 285

7 OPERA: Controlling Operational Behavior 295
7.1 An Introduction to OPERAt o i i i e 295
7.1.1 Strict Procedure Calls 299

7.1.2 Concurrent Evaluation 299

7.1.3 Synchroms 302

7.1.4 Excludons 314

7.1.5 Non-strictnesss o o v i i i it it e 315

7.1.6 Graphical Bindings oo oo 320

7.2 Implementing SYNAPSE ittt i it e 323

CONTENTS

7.2.1 Slag Conventions i
7.2.2 Slag Abstractions i e
7.2.3 Unfiltered Synquences
7.2.4 Tiltered Synquencest
7.2.5 Syndrites e e e e e
8 EDGAR: Explicit Demand Graph Reduction
81 TheBasicsof EDGAR
8.1.1 Snapshots i i e e e
812 RewriteRules. o .
8.1.3 Garbage Collection
8.1.4 Transitions i e
8.1.5 Computation i
8.1.6 Behavior. e
8.1.7 Global State e
8.2 TheDetails of EDGAR it
8.2.1 Procedures e e
8.22 Synchrons e e e
823 Excludoms e e
824 Lazonsand Eagons
8.3 Compiling OPERA into EDGARo
831 OK e
8.3.2 Translating OPERAto OK,
8.3.3 Translating OKtoEDGAR.
8.3.4 Notes i e e e e e e
8.4 Alternatives and Extensions,
85 Related Work L
9 Experience
9.1 Implementation Notes i nnenene..
9.1.1 EDGAR e e e

17

324
327
330
335
341

347
348
348
352
356
357
359
361
362
364
364
366
370
372
372
373
373
379
386
387
389

18 CONTENTS
9.1.2 OPERA e e 399

9.1.3 SYNAPSE it ittt e e e e e e e 400

9.1.4 The DYNAMATOR ot ittt it ittt e 400

9.2 Testing o o i i i i e e e e e e e e e 404
9.2.1 Outcomes e e e e 405

9.2.2 Computations. e 405

9.2.3 Space Requirements, 407

9.3 Lessons i it e e e e e e e e e e e e 417
10 Conclusion 423
10.1 Summary o o e e e e e e e e e e e e e e e e e e 423
10.2 Contributions e e 425
10.3 Future Work 426
10.3.1 EXpressiveness o i i ittt e e e e e e e e 426

10.3.2 Pragmatics e e 427

10.3.3 Computational Shape 430

10.3.4 Synchromization oo, 431

10.3.5 Theoretical Directions 431

10.3.6 Pedagogy« o v i i e e e e e e e 432
Bibliography 435
A Glossary 443

Chapter 1

Overview

Slivers are a new approach to expressing computations as combinations of mix-and-match
operators on aggregate data. Unlike other aggregate data models, slivers enable program-
mers to control fine-grained operational aspects of modular programs. In particular, slivers
can guarantee that networks of operators exhibit the desirable storage behavior and oper-
ation scheduling of intricate loops and recursions. For example, slivers can preserve the
space efliciency of a complex tree algorithin when it is expressed as the superposition of
simpler tree walks.

The sliver technique is based on a dynamic model of lock step processing that enables
combinations of list and tree operators to simulate the operational behavior of a single
recursive procedure. Operational control is achieved through synchronized lazy aggregates,
dynamically unfolding data structures that constrain how the processing of separate opera-
tors is interwoven. The key to the technique is the synchron, a novel first-class object that
allows a dynamically determined number of concurrently executing operators to participate
in a barrier synchronization. Slivers embody a notion of computational shape that speci-
fies how the operational patterns of a process can be composed out of the patterns of its
components.

The utility of slivers is illustrated in the context of SYNAPSE, a simple language for
expressing linear and tree-shaped computations. SYNAPSE is built on top of OPERA, a
new concurrent dialect of Scheme that incorporates the concurrency, synchronization, and

non-strictness required by the lock step processing model. The semantics of OPERA are

19

20 CHAPTER 1. OVERVIEW

explained in terms of EDGAR, a novel graph reduction model based on explicit demand

propagation.

1.1 The Problem

Ideally, programming languages should encourage programmers to express their designs in
a modular fashion based on a library of mix-and-match components. But classic modular-
ity mechanisms are typically at odds with the desire of programmers to control important
operational aspects of their programs. These mechanisms help programmers build pro-
grams that have the desired functional behavior, but not necessarily the desired operational
behavior. As a result, programmers often eschew modularity in order to control the opera-
tional details of their programs. They manually interweave common processing idioms into

monolithic programs that do not exhibit the modular nature of the idioms.

In this research, I investigate the problem of decomposing programs into mix-and-match
parts that preserve the operational character of the original programs. I focus in particular
on decomposing loops and recursions. For instance, consider a single loop that computes
both the sum and the length of a numeric sequence. We would like to express such a loop as
the composition of two loops, one of which computes the sum of a sequence and the other
of which computes the length of a sequence. Similarly, consider decomposing a complex
single-traversal tree walk into separate components that propagate information top-down,
bottom-up, and left-to-right. We would like the resulting modular program to perform a
single tree traversal with the same time and space requirements as the original program.

While numerous techniques have been developed for factoring loops and recursions into
modular components, most fail to preserve operational properties like time and space re-
quirements. Whereas a monolithic single-traversal tree walk often requires space propor-
tional to the depth of the tree, it is common for the modular version to either walk the
given tree multiple times or store intermediate trees as large as the given tree. Practically,
the extra time or space overhead of the modular version may be unacceptable. But more
fundamentally, the modularity techniques are unduly restricting the class of computations

that the programmer can describe.

1.1. THE PROBLEM 21

The tree walk example illustrates the two-edged sword of modularity. On the one hand,
modularity simplifies program design and modification by hiding all sorts of details behind
the narrow interfaces of components that are simple to reason about and combine. On the
other hand, modularity necessarily prevents the user of the components from controlling the
hidden details to improve behavior. The trick of good component design is to ensure that
the interface is wide enough to allow desirable behavior, but not so wide as to overwhelm
the user and overconstrain the implementer.

My thesis is that existing techniques for modularizing loops and recursions unneces-
sarily prevent the programmer from controlling the operational behavior of a network of
components. In this dissertation, I develop an alternate technique, sliver decomposition,
for breaking loops and recursions into components with operationally desirable composition
properties. The key to sliver decomposition is widening the interface of traditional com-
ponents to include important synchronization control points. These control points enable
programmers to better express how a network of components should behave.

In the remainder of this section, I motivate issues of modularity and control addressed by
this work, and sminmarize the drawbacks of existing mechanisms for modularizing monolithic

loops and recursions.

1.1.1 Modularity: Programming Idioms

Programs are rarely written “from scratch”. Existing code often serves as a template that
can be molded into a desired program component. Library routines free the programmer
from reimplementing common functionality. But even in the case where programmers es-
chew existing code and library routines, they almost always make heavy use of programming
patterns they have seen or written before. These common patterns of usage, often called
idioms or cliches, are central to programming. Recognizing idioms when reading code and
effortlessly integrating idioms when writing code are key abilities that distinguish expert
programmers from run-of-the-mill programmers.

Idioms are often not highlighted in the program text. For example, consider a running
sum idiom, in which a variable is first initialized to 0, and then is updated during a compu-

tation so that it holds a Tunning total of certain numbers generated during the computation.

22 CHAPTER 1. OVERVIEW

The declaration, initialization, and updating of the variable are typically spread throughout
the program text, rather than being localized to a single region. The distributed nature of
typical idioms makes them difficult for program readers to find and for program writers to
keep in their heads.

Programming environments can help to programmers to manage idioms. One approach
is to provide tools, intelligent assistants, and special-purpose languages that aid the pro-
grammer in analyzing and synthesizing programs in terms of idioms. A good example of
this approach is Rich and Waters’s Programmer’s Apprentice project [RW90]. An alternate
approach to idiom management is to devise language constructs and mechanisms for en-
capsulating idioms as single entities within a general-purpose programming language. This
is a basic motivation for modularity and abstraction in programming languages, and is the
approach taken here. In particular, I will focus on techniques for capturing idioms that
occur in loops and general recursive programs. Such idioms include components that gener-
ate, filter, map, and accumulate sequences and trees. While a program might not explicitly
manipulate list-structured or tree-structured data, the time-dependent values of variables
manipulated by the computation often naturally exhibit the structure of a sequence or tree

that unfolds over time.

1.1.2 Control: Computational Shape

Programming would be a much simpler task if all that mattered about a program was
that it had the correct input/output behavior. In practice, programmers care a great deal
about how the outputs are computed from the inputs. They select algorithms and use
programming styles that make effective use of various resources. Sometimes this means
reducing program execution time and space or improving hardware utilitization. Other
times it means writing code that is quick to implement, easy to read, simple to maintain,
or decomposable in ways that effectively use the talents of all members of a programming
team.

I assume throughout this dissertation that an essential aspect of programming is control-
ling the way that computational processes unfold over time. Details of process evolution de-

termine the machine-based resources, such as time and space, required by a program. Even

i1.1. THE PROBLEM 23

higher-level properties like program readability, writability, and modifiability are closely
tied to patterns of process evolution. Process patterns common enough to be considered
idioms are more easily programmed and recognized than idiosyncratic ones.

Following Abelson and Sussman [ASS85], I refer to patterns of process evolution as
computational shapes. Some examples of computational shapes are iterations in two state
variables, linear recursions, and left-to-right pre-order tree walks. Intuitively, a computa-
tional shape captures operational details like the relative ordering of operations and the
storage profile of a process during its evolution.

[also adopt the view set forth by Abelson and Sussman that a central activity of pro-
gramming is designing descriptions that give rise to imagined patterns of process evolution.
From this perspective, programmers are process potters who mold computational clay into
desired shapes. A goal of this dissertation is to support this view of programming by cap-
turing idiomatic process patterns as programming language entities that compose in the
“right way”. Along the way, I will explain why existing techniques for expressing these

idioms fail to have satisfactory composability properties.

1.1.3 The Signal Processing Style of Programming

A natural way to decompose monolithic loops and recursions is to view them as signal
processing systems in which information flows through devices that generate, map, filter,
and accumulate data. I call this method of structuring programs the signal processing style
(SPS) of programming,.

As a motivation for SPS, consider a program that lists the minimum, maximum, and
average of the salaries of active employees from a given employee database. A modular
approach is to write separate subprograms that accumulate the minimum, maximum, and
average of any sequence of numbers, and then hook these components up to another com-
ponent that generates a sequence of salaries of active employees from the database. This
approach is graphically depicted in Figure 1.1 by the box labelled SALARY-INFO.

Figure 1.1 also illustrates the hierarchical nature of this programming style. The salary
generator can itself be factored into parts that generate a sequence of records from a

database (GENERATE-RECORDS), weed out the records of inactive employees (FILTER-ACTIVE),

24 CHAPTER 1. OVERVIEW

e e et et e oot mem e am et e e e em e et em e e emem e e e et et e e mmemeen _
: SALARY- INFO :
; MIN |

database —+—t gﬁf‘gﬁés MAX LIST |——»
i } AVERAGE i

; ACTIVE-SALARIES : .
i : SR e -
: : : AVERAGE :
—i | GENERATE- o| FILTER- o Map- | P : ;
: RECORDS ACTIVE SALARY | ! : :
H H E SUM \ E
--- : /
: LENGTH |~
S, A S :
DU
: LENGTH
—— MAP-ONE
U i

Figure 1.1: Structure of a modular program for computing the minimum, maximum, and
average salaries for active employees from a given database.

1.1. THE PROBLEM 25

and extract the salary from every remaining record (MAP-SALARY). The averaging subpro-
gram can be expressed as the quotient of two other components, one that calculates the
sum of a numeric sequence (SUM) and another that calculates the length of any sequence
(LENGTH). Even the LENGTH component admits a decomposition into a sum of a sequence
of ones that is the same length as the input sequence. Because the parts depicted in the
figure are not only reusable but applicable in a wide range of contexts, they constitute the
basis of a powerful modular programming language.

The signal processing style of programming has a long history and is supported by
numerous mechanisms in a wide range of programming languages. This style was used at
least as far back as the early 1960’s in the form APL’s array operators and Lisp’s higher-
order list manipulation procedures. Today, the signal processing style is supported by a

variety of mechanisms that I broadly classify into two approaches:

1. The aggregate data approach treats devices as operators that manipulate aggregate
data structures like lists, trees, and arrays. This approach includes functions on strict

and lazy data and data-parallel vector operators.

2. The channel approach treats devices as processes that communicate via some sort of
data channel. This approach includes communicating threads, file-processing pipes,

producer/consumer coroutines, and dataflow techniques.

The sliver technique introduced in this dissertation augments the aggregate data approach
but mixes in some crucial features from the channel approach.
Existing SPS techniques suffer from various drawbacks that limit the range of compu-

tations that they can express:

o Limited Shapes: In many SPS frameworks, devices are constrained to process a linear
stream of information in an iterative fashion. While linear iterative computations are
perhaps the most common computational shape, this limitation excludes more general

linear recursions and all tree recursions.!

'There are methods of encoding trees as linear streams, but manipulations of the resulting streams often
don’t accurately reflect the tree-shaped nature of the corresponding monolithic computations.

26

CHAPTER 1. OVERVIEW

e Constrained Topologies: Some SPS techniques circumscribe the ways in which devices

can be connected. Many mechanisms in the channel approach only allow straight-line
networks — i.e., linear networks in which the output of each device can be connected
to the input of only one other device. However, many programs (SALARY-INFO, for
example) decompose into networks that exhibit fan-in (where a device consumes mul-
tiple inputs) and fan-out (where a device output is used in multiple places). Another
common restriction prohibits cyclic paths from a device output back to one of its
inputs. Yet, some programs naturally decompose into standard parts connected by

cyclic paths.

Frcessive Space Overhead: SPS programs can require significantly more space than
their monolithic counterparts. Consider the SALARY-INFO program described above.
If we assume that the records in the employee database are linearly accessible, then it
is easy to write the salary program as a monolithic loop that uses only constant space.
Yet, almost all aggregate data mechanisms, as well as channel-based mechanisms that
do not support fan-out, lead to modular programs that require space proportional to

the size of the database!

As explained in Chapter 3, even techniques like laziness and fancy program trans-
formations do not ameliorate this storage disaster in general. The problem has its
roots in a fundamental mismatch between demand-driven evaluation and the fan-out
of results from device outputs. As far as | know, only Waters [Wat91] and Hughes
[Hug®3, Hug84] have provided partial solutions to this problem within aggregate data
approach. (In channel-based mechanisms that support fan-out, the space problem is

often solved by bounded channels.)

Ezxcessive Time Overhead: For a variety of reasons, SPS programs can require signif-
icantly more time than their monolithic counterparts. Some of the time overhead is
due to the manipulation of intermediate aggregates or channels that are not present
in the monolithic version. I consider this overhead acceptable in the sense that it is a
reasonable cost for the benefits achieved by modularity. Furthermore, this overhead

can often be reduced by clever compilation strategies.

1.1.

THE PROBLEM 27

On the other hand, time penalties due to a mechanism’s lack of expressive power are
unreasonable. For example, when using a mechanism that does not support fan-out,
it is necessary to replicate devices whose results are used in more than one place (see

Figure 1.2); this leads to an unnecessary duplication of work. As another example,

B\ A B\
/ /

Figure 1.2: In SPS techniques that do not allow fan-out, a device must be replicated.

mechanisms not supporting a delayed evaluation strategy can perform unnecessary
work. Consider the network in Figure 1.3; if the EVERY-0THER device is a filter that
passes only the even-indexed elements, then the MAP-EXPENSIVE-FUNCTION should
ideally not perform any computation on the odd-indexed elements. (A corresponding

monolithic program would almost certainly avoid these unnecessary computations.)

GENERATE- EVERY-
—_.
EXPENSIVE orHER |] ACCUMULATE

-~
oo
- e
- -~

-*

r --- - .
MAP-
i | GENERATE "] EXPENSIVE- [—+—>
: FUNCTION '

Figure 1.3: A network for which many SPS techniques perform unnecessary work.

28 CHAPTER 1. OVERVIEW
1.2 Sliver Decomposition

Sliver decomposition is a new technique for modularizing loops and recursions. It enhances
the expressive power of SPS programming by ameliorating the problems of exisiting tech-

niques outlined above.

1.2.1 The Basic Idea

Sliver decomposition augments the aggregate data approach by extending the operators
and aggregates to handle a simple notion of computational shape. Shape is encoded in the
way that the operators interact with a shared synchronization structure communicated by

the aggregates. An abstract depiction of sliver decomposition appears in Figure 1.4. Here,

A A
| H ¥V
............................ H Vv ’ E L
N SN} A
Monolithic V V V
Computation
| | || || L |
Sliver
Computation

Figure 1.4: Decomposing a monolithic computation into a network of slivers.

a monolithic recursive computation is partitioned into a network of slivers (tall skinny
boxes) that communicate via synchronized lazy aggregates, or slags (thick arrows). The
major difference between this sliver diagram and the other SPS diagrams encountered so

far is that the devices and wires exhibit some structure. Each horizontal dotted line is a

call boundary that represents one of the recursive calls made in a recursive computation.

1.2. SLIVER DECOMPOSITION 29

The area between two such lines represents the computation performed by one level of
the recursion. The decomposition distributes the recursive call structure of the monolithic
computation across each of the slivers. The striations of the slags are intended to suggest
that they transmit a representation of the recursive call structure of one sliver to another.

A sliver network resulting from sliver decomposition is intended to satisfy two criteria:

l. Operational faithfulness: The network as a whole should preserve the operational
behavior of the monolithic computation. Here, operational behavior includes which
operations are performed by the monolithic computation, the relative order of these
operations, and the storage profile of the whole computation. The network is allowed
to employ additional operations and storage for management purposes as long as it

maintains the monolithic computation’s order of growth in space and time.

2. Reusability: The slivers should share a standard interface so that they can be recom-

bined in a mix-and-match way to model a wide range of computations.

Reusability is achieved by representing slivers as procedures and slags as data structures.
These choices mean that sliver networks can be expressed by standard mechanisms for
procedural composition.

Operational faithfulness is achieved by a lock step processing model that guarantees
that corresponding call boundaries of the individual slivers are glued together to simulate a
call boundary of the monolithic computation. This gluing process is depicted in Figure 1.5.
Communication events (arrows labelled (') occur between pairs of connected slivers, but
synchronization events (shaded barriers labelled S) are shared among all the slivers. The
idea is that every sliver computation locally must wait at the shared barrier until all the
other slivers in the network have reached the same barrier. By tightly coupling the sliver
computations, the synchronization barriers propagated by the slags ensure that the network
as a whole behaves like a monolithic procedure.

In this context, “shape” describes the time-based relationships between the synchro-
nization barriers and how the slivers interact with these barriers. Each barrier is actually
associated with fwo events in a computation: calling a recursive procedure and returning

from a recursive procedure. A computation can be viewed as a path that crosses each bar-

OVERVIEW

CHAPTER 1.

30

po

Creii¥

“{it
DAALLLAA A st g

R

N

N

554

-~ &
%mw//,// RN

C

e O

C—

555

WRERRER

s

ommunication events (') and synchronization events (5) among the slivers in

"
]

Figure [.5: C

a network.

1.2. SLIVER DECOMPOSITION 31

A

%
v

L

(a) Shape of a general linear recursion. (b) Shape of a linear iteration.

—
Iw<———¢

Figure 1.6: Some shapes for linear computations. Each horizontal line is a synchronization
barrier whose left half represents a call event and whose right half represents a return event.
Solid directed lines indicate a time ordering between events, while undirected dotted lines
connect simultaneous events. A chain of downward arrows represents the iterative (calling)
portion of a linear recursion. A chain of upward arrows represents the recursive (returning)
portion of a linear recursion. A chain of undirected dotted lines represents the non-returning
behavior of tail calls.

rier in a synchronization structure twice: once for the call event, and once for the return
event. For example, Figure 1.6(a) is an abstract depiction of a general linear recursion.
Such a computation breaks cleanly into a down (call) phase and and up (return) phase.
An iterative linear computation is a special case in which each call is a non-returning tail
call [Ste77]; it exhibits no up phase, because all returns events effectively occur at the same
time (as indicated by the dotted lines in Figure 1.6(b)). These notions extend to tree
computations; Figure 1.7 is a gallery of some shapes for binary computation trees.

The shape of the computation defined by a network is derived from the shapes of its
component slivers. For example, if each linear sliver in a network is iterative, then the
network as a whole is iterative. But if one sliver has a non-trivial up phase, then so does

the whole network. Tree-shaped computations permit a wider and more interesting variety

32 CHAPTER 1. OVERVIEW

A\ LN LS\ LN LIXNTIRN | XN L XN | /XA | IR\ | XN | RN | XN | UXN | X | IX
TR TN DA R TR M TR A OR TR DR MR O B DR DR R DR AT

(a) Parallel tree computation. (b) Post-order tree computation.

SIBIBIA

allallallalallallalla)

(¢) In-order tree computation. (d) Pre-order tree computation.

Figure 1.7: Some common shapes on a binary computation tree. Each call/return barrier
lies above the barriers for its two recursive subcalls. Shape (a) is the multi-threaded walk
of a parallel tree computation, while shapes (b)-(d) are variations on single-threaded left-
to-right walks of a sequential tree computation. Other binary shapes include right-to-left
versions of the left-to-right shapes.

1.2. SLIVER DECOMPOSITION 33

of shape combinations.

The fact that each sliver network corresponds to single recursive computation constrains
the kinds sliver combinations that make sense. There is a kind of shape calculus on slivers
that determines the compatibility of the slivers in a network. In a network of linear slivers,
for instance, the down phase of a sliver may consume the products of a preceding sliver’s
down phase but not those of its up phase; the latter situation would not correspond to a
single-pass linear recursion. Some rules for binary computations are that parallel slivers
usually mix with the sequential ones, but left-to-right and right-to-left binary shapes are
always incompatible.

Sliver decomposition is intended not to replace other SPS techniques, but to be used in
conjunction with them. The lock step processing of sliver network is not appropriate for
many computations. However, sliver decomposition interfaces nicely with other aggregate
data mechanisms, so it is easy to flexibly mix the tight coupling of slivers with the loose

coupling afforded by other mechanisms.

1.2.2 Some Simple Examples

In this section, I present a few simple examples that give the flavor of sliver decomposition
and hint at its expressive power. (The examples in this section are necessarily brief and
simple. The reader is encouraged to explore the more interesting examples in Chapter 6.)

First consider the time-worn, but still trusty, factorial procedure. A procedure for
calculating the factorial of n naturally breaks into two parts: a generator of the numbers
between 1 and n, and an accumulator that takes the product of these numbers. The sliver
diagrams in Figure 1.8 illustrate that this decomposition is supported by many different
computational shapes.

In (a), the FROM-N-TO-1 sliver generates the integers from the input down to (and
including) 1, while the DOWN-x* iteratively accumulates these numbers. The downward arrows
annotating the slivers and the “DOWN” in DOWN-* indicate that both slivers have only a down
phase, so the resulting computation is a linear iteration. In contrast, the UP-* accumulator
of (b) has an up arrow because it stacks multiplication operations to be performed after the

last number is generated; the resulting computation is a non-iterative recursion. In both

34 HAPTER 1. OVERVIEW

number answer number answer
W V' b4
FROM-N-TO-1 DOWN- * PROM-N-TO-1 Up-*
; —b\ : H B\
(a) Linear iterative factorial. (b) Linear recursive factorial.
number answer number answer
N V'
SPLIT-RANGE LR-PRE-* SPLIT-RANGE BINARY-UP-*
| A
(c) Left-to-right pre-order tree factorial. (d) Parallel tree factorial.

Figure 1.8: Various sliver decompositions of a factorial procedure.

(a) and (b), it would be possible to replace the generator by a FROM-1-TO0-N sliver that
counted from 1 up to the input. This would yield two more operationally distinct versions

of factorial.

Factorial versions (c) and (d) describe tree-shaped computations. In both, the SPLIT-RANGE
generator takes a range specified by low and high bounds and creates a binary tree slag
whose leaves are the numbers in the range. Given a range that contains only a single ele-
ment, SPLIT-RANGE produces a leaf with that element; otherwise it produces a valueless tree
node whose left and right subtrees are trees for two balanced subranges that partition the
given range. The generator has a so-called “binary down” shape because range information

conceptually travels in parallel from a parent node down to both subnodes.

In (c), the product of the leaves is calculated by the left-to-right pre-order LR-PRE-*
accumulator, while in (d), the subtree products of the subtrees are conceptually evaluated
in parallel and then combined by the BINARY-UP-* accumulator. Due to the operational
faithfulness of slivers, the computation described by version (c¢) uses control space propor-
tional to the depth of the tree; at most one branch of the tree really exists at any point in

time. However, in (d), the multi-threaded nature of a parallel computation implies that

1.2. SLIVER DECOMPOSITION 35

L

X

[TITTTTTTEERTI

‘\4

GENERATE- FILTER- MAP-
RECORDS A ACTIVE SALARY

m’l""

L

|
TLITTHCEFCRTOTTTTRY

Y

[T

Figure 1.9: The salary information program expressed as a sliver diagram. The thick cables
represent slags, while the thin lines represent non-slag data. The whole network behaves
like a monolithic iteration because each of the components is inherently iterative.

space proportional to the size of the whole tree may be required in the worst case. Of
course, there are many other strategies for generating a tree of numbers and finding their
product. The shape-based nature of slivers makes them a good language for describing and
comparing various approaches to a problem.

Figure 1.9 presents a sliver diagram for the salary information program presented ear-
lier. Because all elements of the network have a down shape, the specified computation
is guaranteed to behave like a monolithic iteration in five state variables (current record,
current minimum, current maximum, current sum, and current count). This is an impor-
tant improvement over SPS techniques that disallow fan-out or would build up intermediate
storage proportional to the size of the list. Replacing any one of the slivers by a component
with up shape would specify a computation requiring a linear stack.

The sliver diagram in Figure 1.10 exercises some of the other kinds of linear slivers that

can be expressed:

e SPLAY-LIST converts a list into a linear slag.

36 "HAPTER 1. OVERVIEW

SPLAY-~
LIST

coefficients thresshold
elicents | S
i | _ DOWN- TRUNCATE-
i MAPZ-* | scan-+ N | WHEN-> A LAST
5 |

POWERS-
OF-2

i llis

Figure 1.10: A sliver diagram introducing some new kinds of linear slivers.

¢ POWERS-OF-2 generates a conceptually infinite slag with elements 2°, 21, 22,

e MAP2-% is a two-input mapper that performs elementwise multiplication. Its output

is only as long as its shortest input.

e DOWN-SCAN-+ performs an iterative sum accumulation, but returns a slag of the inter-

mediate sums rather than just the final answer.

e TRUNCATE-WHEN-> truncates the input slag after the first element greater than a given
threshold.

e LAST returns the last element of a given slag.

The program as a whole iteratively calculates the first sum in a running sum of scaled
powers of two that is greater than a particular threshold.

Finally, consider some simple tree examples. Figure 1.11 shows three tree slivers that
transform one tree-shaped slag into another. Each node of a tree slag is assumed hold
a number. Each of the slivers returns a new tree slag in which every node is annotated
with the intermediate sum maintained by a particular tree summation computation when it
processes the node. BINARY-DOWN-SCAN-+ returns at each node the sum of the numbers on
the direct path to the root; BINARY-UP-SCAN-+ returns at each node the sum of the numbers
in the subtree rooted at that node; and LR-PRE-SCAN-+ returns at each node the running
sum of a left-to-right pre-order summation. Following the terminology from data-parallel

programming, we refer to these slivers as scanners.

1.2. SLIVER DECOMPOSITION

BINARY-
UP-
SCAN-+

37

= = 5 = 5

/AN

Figure 1.11: Three tree scanners distinquished by shape.

BINARY- LR-PRE BINARY-
- DOWN- - - uP- UP-ROOT
SPLAY-TREE s . SCAN-+ s -

'result

tree '

N - -
— vV — v — VvV

AN IMIPAN N

Figure 1.12: A sequential composition of differently shaped tree scanners.

The tree scanners can be combined both sequentially and in parallel. For example,
Figure 1.12 returns the root value of the tree resulting from a sequential cascading of these
three scanners, while Figure 1.13 returns the maximum value of a given function applied
elementwise to a given tree and the results of the three scans on that tree. In both cases,
the computation described by the sliver diagram behaves like the single-traversal tree walk
of a corresponding monolithic recursive procedure.

Although these tree examples are contrived, the shapes involved suggest more practical
applications. Tree slivers can be used to manipulate tree-structured databases and abstract

syntax trees of programs. This makes it possible to express such programs as pattern-

matchers, deductive retrievers, interpreters, and compilers as networks of slivers.

1.2.3 How it Works

Sliver decomposition makes essential use of concurrency, synchronization, and laziness:

o Concurrency: The demand-driven model underlying sliver decomposition is inherently
concurrent. The interaction between demand-driven evaluation and fan-out requires
some form of concurrency to prevent spurious storage leaks (see [Hug84]). Experi-

ence with sliver decomposition suggests that concurrency is an essential technique for

38 CHAPTER 1. OVERVIEW

BINARY- function
DOWN- h. 4

BINARY-
UP-
SCAN-+

BINARY-

SPLAY-TREE UP-MAX

/\

>
4

TREE-MAP4
LB\ ' result
——- F
LR-PRE-
N | scan-+

(LLEETTTTIEETT,
)

Figure 1.13: A parallel composition of differently shaped tree scanners.

1.3. ALTERNATE PERSPECTIVES ON THIS RESEARCH 39

expressing programs in a modular fashion.

o Synchronization: The lock step processing of sliver networks is achieved by synchrons,
a novel synchronization technology. A sliver network dynamically “solves” a set of
time constraints between sliver operations and the call or return events represented
by a set of synchrons. An event represented by a synchron is only enabled when the
system can “prove” that no more computation can happen before the event. Locks, a

more traditional forms of synchronization for concurrent systems, are also supported.

e Laziness: The backbone of slags, as well as the elements attached to this backbone, are
handled lazily — i.e., they are only computed if and when they are needed. Laziness
helps to realize operational faithfulness by controlling the order of operations and

guaranteeing that no spurious operations are performed within a sliver network.

Slags transmit intermediate values and synchronization information between concur-
rently executing slivers. Each slag element represents the information produced or con-
sumed by one recursive layer of a sliver. Slags are realized as lazy data structures that
carry a pair of call/return synchrons for every lazily-held element. Slivers are realized as
procedures that consume and/or produce slags and also follow an important set of conven-
tions for manipulating the elements and sychronizing on the synchrons. The conventions
guarantee that sliver processing proceeds in lock step and that undesirable intermediate

storage does not accrue.

1.3 Alternate Perspectives on This Research

The main theme of this research is that it is possible to design modular programs with-
out necessarily sacrificing control. However, there are some alternate perspectives that

characterize this work or portions thereof:

1. Operational Modularity: Traditional black-box abstraction techniques exhibit func-
tional modularity in the sense that they define the functional input/output behavior
of a modular component. This work explores the notion of operational modularity —

decomposing the complex operational behavior of a monolithic system into simpler

40

CHAPTER 1. OVERVIEW

parts. Sliver decomposition achieves a kind of operational modularity by widening the
interface of the traditional aggregate data approach to include operationally significant

synchronization information.

. A Dynamic Model of Lock Step Processing: Numerous program transformations

and compilation techniques exist for removing intermediate data structures from ag-
gregate data programs [DR76, Dar82, Bac78, Bel86, Bir89a, Bir86, Bir88, GW7S8,
Bud88, Wad84, Wad85, Wad88, Chi92, GLJ93, Wat91]. Most of these compile-time
techniques are based on a high-level version of the loop fusion technique employed
by many optimizing compilers [ASU86]. Synchronized lazy aggregates are essentially
a mechanism for performing loop fusion at run-time. Due to their dynamic nature,
synchronized lazy aggregates enable a level of expressiveness that cannot be matched

by the static approaches.

Hybrid SPS Techniques: Sliver decomposition can be viewed as an answer to the
riddle “What do you get if you cross aggregate data with channels?” That is, it is an
attempt to combine the best aspects of a number of existing SPS techniques into a sin-
gle technique. Sliver decomposition extends lazy aggregates with the synchronization

of channel-based approaches.

(feneralizing Series: Much of this research was inspired by Waters’s extensive work on
loop decomposition [Wat78, Wat79, Wat84, Wat87, Wat90, Wat91]. Waters designed a
well-engineered mechanism for expressing loops in terms of networks of linear iterative
operators manipulating a kind of synchronized lazy data structure known as series.
In addition, he developed conditions and static analysis techniques guaranteeing that
a large class of series networks can be efficiently compiled into loops. These make

programs expressed in terms of series a practical alternative to loops.

The research described here is a first step towards extending series to handle general
linear recursion (not just loops) and general tree-shaped computations. Slags are
a generalization of series that support these more complex computational shapes.
But currently, slags are only explained in terms of a somewhat inefficient dynamic

synchronization model. In order to make sliver decomposition a practical alternative

1.3. ALTERNATE PERSPECTIVES ON THIS RESEARCH 41

wn

to monolithic recursions, it will be necessary to develop series-like static analysis and

compilation techniques for sliver programs.

. Abstracting Over Hughes’s Ideas: In his dissertation [Hug83] and an important but

little-known paper [Hug84]% , Hughes explains why concurrency and synchronization
are necessary for preserving the space characteristics of a monolithic program in a
modular SPS program. He introduces concurrency and synchronization constructs
that can be thought of as annotations for controlling the operational behavior of a
functional program. The concurrency and synchronization techniques used in sliver
decomposition are similar to ones introduced by Hughes, but they are organized into

abstractions that make them easier to program with and reason about.

First-class Synchronization Barriers: The Id programming language employs a syn-
chronization barrier construct as a means of controlling the non-functional features of
a mostly functional language [Bar92]. The synchrons introduced in this report can be
viewed as first-class synchronization barriers. Thus, one aspect of this research is ex-
ploring the gains in expressive power that can be achieved by making synchronization

barriers first-class objects.

. A Pedagogically Viable Graphical Programming Model: In part, sliver decomposition

was motivated by a desire to develop a graphical evaluation model for the Scheme pro-
gramming language. Here, “graphical” is meant in two senses: (1) “graph-theoretic” —
i.e., is expressed in terms of vertices and edges; and (2) “visual” - i.e., takes advantage

of human visual perception skills. The goal was to develop a graphical model that:

(a) Explains all the important features of Scheme (e.g., first-class procedures, tail-

recursion, side-effects, continuations).
(b) Is straightforward enough to be automatically animated.
(c) Is simple enough to be understood by novice Scheme programmers.

(d) Is an effective pedagogical tool for teaching Scheme.

21 am indebted to Ignacio Trejos-Zelaya for tracking down this paper at Oxford and sending me a copy.

42 CHAPTER 1. OVERVIEW

The EpGAR model introduced in this dissertation satisfies the first two criteria; the
last two need to be empirically verified. A prototype implementation of an EDGAR-
based graphical programming model has been implemented and shows promise as a
pedagogical tool. An unexpected benefit of this research is that the model is able to

explain important concurrency features that are not a part of standard Scheme.

1.4 Dissertation Road Map

The remaining text of this dissertation is organized into three major segments:

I. BACKGROUND

The background segment gives a detailed motivation of the problem. Readers who
are eager to learn about the details of the sliver technique should skip ahead to the

next segment. There are two chapters in the background segment:

¢ Chapter 2: Slivers — A motivation for sliver decomposition in the context of
two monolithic programs: an employee database program and an alpha renaming

prograni.

¢ Chapter 3: The Signal Processing Style of Programming - A detailed
analysis of why existing SPS techniques fail to express desirable operational char-

acteristics of programs.

II. SLIVER DECOMPOSITION

The sliver decomposition segment gives a detailed exposition of slivers and slags.
These are complex entities involving numerous subtleties. In order to suppress a flood
of potentially overwhelming details, they are presented in a top-down fashion over five

chapters:

¢ Chapter 4: Computational Shape - A presentation of a simple notion of
computational shape. Shapes are described in terms of the time-based ordering

induced on the call and return events in the execution of a recursive procedure.

1.4. DISSERTATION ROAD MAP 43

I1I1.

e Chapter 5: Synchronized Lazy Aggregates — An explanation of the lock
step processing model underlying the sliver technique. Synchronized lazy aggre-
gates are introduced as a mechanism for guaranteeing that networks of slivers

simulate the behavior of a corresponding monolithic procedure.

e Chapter 6: SyNAPSE: Programming with Slivers and Slags — An illus-
tration of the power of slivers and slags in the context of SYNAPSE, a simple

language for manipulating synchronized lists and trees.

e Chapter 7: OPERA: Controlling Operational Behavior — A presentation
of OPERA, the concurrent dialect of Scheme in which SYNAPSE is embedded. An
informal description of OPERA’s concurrency, synchronization, and non-strictness

features is followed by an explanation of how SYNAPSE is implemented in OPERA.

e Chapter 8: EpcGARr: Explicit Demand Graph Reduction — An overview of
EDGAR, an explicit demand graph reduction model that provides an operational
semantics for OPERA. OPERA’s concurrency, synchronization, and non-strictness

mechanisms are formally described here.

The top-down approach effectively manages complexity, but suffers a major draw-
back: the discussion of many concepts is distributed across several chapters. For in-
stance, crucial notions like demand-driven evaluation, concurrency, synchronization,
non-strictness, and tail-recursion are first introduced in an informal, almost hand-
waving, fashion; then their details are unravelled over several chapters. Readers who
prefer bottom-up presentations are encouraged to jump ahead to the detailed exposi-
tions in the later chapters. Skimming the SYNAPSE programs in Chapter 6 and the

graphical rewrite rules in Chapter 8 may be particularly helpful for building intuitions.

WRAP-UP
The main text of the dissertation concludes with a wrap-up segment of two chapters

and an appendix:

¢ Chapter 9: Experience — A discussion of the experimental aspects of the

research, including the implementation and testing of EpGAr, OPERA, and

44

CHAPTER 1. OVERVIEW

SYNAPSE. This chapter also describes the DYNAMATOR, a graphical program

animator that proved invaluable in the development of the other systems.

Chapter 10: Conclusion — A summary of the research, including contributions

and future work.

Appendix A: Glossary — This dissertation introduces a large number of new
terms, and uses some existing terms in a non-standard way. The glossary is

provided to help the reader adjust to the terminology.

Chapter 2

Slivers

This chapter introduces a class of programming idioms that I call slivers. Slivers capture
the generating, mapping, filtering, and accumulating idioms commonly found in loops and
recursive procedures. Many programs can be visualized as sliver diagrams in which informa-
tion flows through a static network of slivers. This type of program organization is certainly
not new, and in the next chapter we will see how it is supported in various popular pro-
gramming paradigms. What ¢s new is a dynamic framework for combining the operational
aspects of slivers in a reasonable way. I will only hint at that framework in this chapter,

but will develop it in detail in Chapters 4 and 5.

I motivate slivers in the context of two extended examples:

1. Simple manipulations of a linearly-structured database. This example introduces
many of the issues relevant to modularity in the signal processing style of program-

ming,.

2. Alpha renaming of lambda calculus terms. This tree-structured example illustrates

important issues and patterns of computation that do not arise in linear examples.

For the purpose of presentation, both examples have intentionally been kept simple. How-
ever, even though the examples are somewhat contrived, the issues they raise are very

real.

46 "HAPTER 2. SLIVERS

2.1 Linear Example: Database Manipulation

2.1.1 Overview

In this example, we consider simple programs manipulating an employee database. Suppose

that the interface to the database is the following set of procedures:!

(first-record database-descriptor) returns the first record of the specified database.

(next-record record) returns the database record following the given one.

e (end-of-database? record) tests for a distinguished database termination record.

(record-get record field) retrieves the contents of the specified field from the given

record.

The first three procedures effectively make the database accessible as a linked list of records.
The record-get procedure is the means of extracting information from an individual record.
For the purposes of this example, we will assume that the records in every database are
sorted alphabetically by surname.

The procedural interface hides many details about how the database is implemented.
For all we know, the database records might be stored in a tree-like fashion; different fields
might be stored in distinct tables; or parts of the database may be stored remotely, perhaps
even distributed across several physical servers and sites. Even a bizarre scenario in which
every call to next-record initiates a request for a data entry operator to type in the next
employee record on the fly is consistent with this interface! These details do not affect the
values returned by the procedures, although they may show through in other ways (e.g.,
next-record may take a long time if records are stored remotely).

Below, we investigate two procedures describing computations on an employee database:

e (mean-age database-descriptor) returns the average age of employees in the specified

database.

"The procedure specifications have parentheses because they, like all programming examples in this dis-
sertation, are written in Scheme, a dialect of Lisp ([CR*91], [ASS85]). I use Scheme because its support
for first-class procedures, side effects, and tail recursion permits concise expression of a wide range of pro-
gramming styles. However, the computational issues [am investigating are independent of the particular
language in which the examples are phrased.

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION 47

o (fat-cats threshold database-descriptor) teturns a list (sorted alphabetically) of
the names of all employees in the specified database whose salaries are greater than

the given threshold.

These procedures will serve as a basis for comparing several styles of programming. We
will explore issues of modularity by considering the ease with which these procedures can

be modified and combined.

2.1.2 Monolithic Style: Functional Paradigm

In the monolithic style, the example programs are implemented as single recursive proce-
dures that collect information during a traversal of the database. Here is a monolithic

implementation of mean-age written in the functional programming paradigm:?

(define (mean-age;,, database)
(define (loop record age-total count)
(if (end-of-database? record)
(/ age-total count)
(loop (next-record record)
(+ age-total (record-get record ’age))
(+ 1 count))))
(loop (first-record database) 0 0))

The internal loop procedure performs an iterative traversal of the database while main-
taining three state variables: record points to the current record, age-total names the
running sum of employee ages, and count names the number of records examined.

The monolithic functional version of fat-cats has a similar structure:

(define (fat-catsy,, threshold database)
(define (gather record)
(if (end-of-database? record)
')
(if (> (record-get record ’salary)
threshold)
(cons (record-get record ’name)
(gather (next-record record)))
(gather (next-record record)))))
(gather (first-record database)))

%Identifiers naming procedures (such as mean-age) will often be subscripted (in this case, with fun) to
distinguish different implementations of the same procedure. The subscript is not part of the identifier; it is
merely a convenient way to refer to a particular definition.

48 CHAPTER 2. SLIVERS

The internal gather procedure traverses the entire database and collects into a list the
names of the employees satisfying the salary predicate. The list collection strategy used
here, in which an employee name is prepended to the list resulting from a recursive call to
gather, preserves the relative ordering of the selected employees. Because the databases

are ordered alphabetically, so is the resulting list.

2.1.3 Monolithic Style: Imperative Paradigm

Both of the above procedures are written in the functional paradigm, which does not permit
assignment. For comparison, Figure 2.1 presents monolithic versions of the two procedures
written in the imperative paradigm. The imperative programs are rather similar to their
functional counterparts. The main difference is that immutable formal parameters in the

functional versions become mutable state variables in the imperative version.

2.1.4 Computational Shapes

Following [ASS85], 1 carefully distinguishing procedures from the computations that they
specify.? A procedure is just a specification for a computational process, whereas a compu-
tation is the process that dynamically unfolds when the procedure is called.

Despite the fact that the functional and imperative versions of mean-age are written in
different styles, they specify computations with similar operational characteristics. In both
cases, even though the internal loop procedure is syntactically recursive, the tail-recursive
property of Scheme ([CRT91], [Ste77]) guarantees that loop executes iteratively, just as
if it had been written as a do, for, or while loop in other languages. And both loop
procedures iterate over the same three state variables, though in one case they are explicit
argunments and in the other case they are implicit. The operational behavior of fat-catsyfy,
and fat-cats;,,, is likewise very similar.

On the other hand, even though mean-agey,,, and fat-catsj,, are both written in the
functional style, they specify computations that differ in fundamental ways. In addition to

the obvious fact that these programs perform different calculations, the gather procedure

3We use the term “computation” in place of the term “process” used by [ASS85]. We make this change
so that we can distinguish the standard usage of “process” in the concurrency community from the notion
for computational unfoldment presented in [ASS85].

LINEAR EXAMPLE: DATABASE MANIPULATION

(define (mean-age;n,, database)
(let ((record (first-record database))
(age-total 0)
(count 0))

(define (loop)
(if (end-of-database? record)
(/ age-total count)

(begin
(set! age—-total (+ age-total (record-get record ’age)))

(set! count (+ count 1))
(set! record (next-record record))
(Lloop))))

(1oop)))

(define (fat-cats;,, threshold database)
(let ((record (first-record database)))

(define (gather)
(if (end-of-database? record)

()
(if (> (record-get record ’salary)
threshold)
(let ((name (record-get record ’name)))
(begin
(set! record (next-record record))
(cons name (gather))))
(begin
(set! record (next-record record))
(gather)))))
(gather)))

Figure 2.1: Imperative versions of the database procedures.

49

50 CHAPTER 2. SLIVERS
does not have the purely iterative character of loop. When the salary predicate is satisfied,
the implementation must “remember” to perform a pending cons operation upon returning
from the recursive call to gather. Conceptually, such calls to gather push information on
an implicit control stack. Calls made to gather when the salary predicate is not satisfied
push no information on the stack (they act like gotos). The amount of control space
required to execute fat-cats is thus proportional to the number of names satisfying the
salary predicate.

We’d like some method of characterizing these sorts of operational similarities and differ-
ences between computations. One way of doing this is to adopt a standard evaluation model
that captures operational features. For example, [ASS85] uses an expresssion-rewriting
model to analyze procedures in terms of traces of their evaluation. Here is a summary of
such a trace of mean-agey,, on a sample database (where the details of database and record
representations have been surpressed):

database)
0)
1)
2)
3)
4)
5)
6)

(mean-agefyn,
(loop recordl 0
(loop record? 43
(loop record3 103
(loop record4 125
(loop 174
(1oop 202
(loop 233

recordb
record6
record?

On every line of the trace, the state of the computation is entirely captured in the values
of the three arguments to loop. Thus, mean-agey,, exhibits the constant space behavior
of an iterative computation.

In contrast, here is a trace for fat-cats on a sample database:

(fat-catsjf,, 250000 database)

(gather recordl)
(gather record?)

(cons "Raws P. Arrow" (gather record3))
(cons "Raws P. Arrow" (gather record4))
(cons "Raws P. Arrow" (gather record)))
(cons "Raws P. Arrow" (cons "Gill Bates" (gather recordf)))
(cons "Raws P. Arrow" (cons "Gill Bates'" (gather record7)))

Some calls to gather simply rewrite to another call of gather on the next record. However,

when the salary predicate is satisfied, a call to gather rewrites to a cons application whose

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION 51

second argument is a call to gather. The rightward-growing “bulge” of the trace expressions
is due to the pending calls to cons, which textually encode the implicit control stack required
by the computation.

These examples show how the expression-rewriting model differentiates procedures ac-
cording to the pattern by which their computations evolve. In keeping with [ASS85], I will
refer to these patterns of computational evolution as shapes of computation. The notion
of shape is intended to capture operational features of a computation, such as time and
space complexity and the relative ordering of various events. The work described in this
report was motivated by the desire to formalize the notion of computational shape and to
incorporate shape-based ideas into a programming language.

(Certain patterns are so common that programmers give them names. For example,
mean-age is a linear iteration in three state variables while fat-cats is a linear recursion
in one argument. Both shapes are said to be linear because because each line of the trace
contains only a single recursive call. Later we will study more general tree shapes in which

several recursive calls are potentially active.

2.1.5 Monolithic Programs Lack Modularity

Mean-age and fat-cats exhibit several common idioms for linear computations. De-
spite the differences in their shape and what they compute, both procedures generate all
the records of the database in succession, and accumulate information from each record.
Mean-age uses two instances of a running sum idiom, in which a numeric variable initialized
to 0 is used to accumulate a sum. Fat-cats uses a filtering idiom to eliminate unwanted
records, a mapping idiom to find the name in each record, and a list accumulation idiom to
collect information in a list. These kinds of idioms (generate, map, filter, accumulate) arise
repeatedly in manipulation of linear data. For example, Waters found that 90% of the code
in the Fortran Scientific Subroutine Package could be expressed wholly in terms of these
idioms [Wat79].

A major problem with the above procedures is that the idioms are not localized in the
program text. For example, the database enumeration idiom is spread out across each

procedure body in the calls to first-record, next-record, and end-of-database?. Sim-

52 CHAPTER 2. SLIVERS

ilarly, the running sum idiom conceptually consists of the declaration, initialization, and
update of a variable that maintains the sum. However, in mean-agey,,,, these three parts of
the running sum idiom are textually separated from each other. The situation is marginally

better in mean-age;,,,, where the declaration and initialization occur together.

The problem with non-localized idioms is that they are hard to read, write, and modify.
Idiom recognition is hampered when the programmer has to hunt for fragments of an idiom
in different parts of the code. First, it is necessary to make sure that all the right pieces
are present, and then it is necessary to become convinced that the rest of the code doesn’t
prevent the idiom from working as expected. Reasoning is similarly complicated when
writing or modifying code; the programmer has to mentally juggle pieces from various idioms
and guarantee that they don’t adversely interact. The non-locality forces the programmer

to wade through details unrelated to the idiom.

With non-localized idioms, the author of a programs may very well be guided by mental
notions of such idioms, and an attuned reader of programs can recognize the idioms. But
the idioms are only implicit. A fundamental principle of modularity in programming is that
idioms should be made ezplicit. When idioms are captured and named, programs can be
expressed by explicitly composing program fragments embodying the idioms. The above
procedures are said to be monolithic because they are expressed as densely interwoven idiom

fragments rather than as compositions of reusable idiom components.

Programs written in the monolithic style are difficult to combine and modify. For
example, suppose we want to compute the average age of employees earning more than a
given salary. Intuitively, we would like to connect fat-cats and mean-age in series. But
the result of fat-cats is a list of names, and mean-age expects a database. Even if we
reach inside the procedures, we do not find a common interface through which they can be
connected. Instead, the monolithic style forces us to construct an entirely new procedure

from scratch:*

*Here, and throughout the rest of this section, we will only consider procedures written in the functional
style. However, all the analyses and conclusions hold for the imperative style as well.

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION 53

(define (fat-cat-agej,, threshold database)
(define (loop record age-total count)
(if (end-of-database? record)
(/ age-total count)
(if (> (record-get record ’salary)
threshold)
(loop (next-record record)
(+ age-total (record-get record ’age))
(+ 1 count))
(loop (next-record record)
age-total
count))))
(loop (first-record database) 0 0))

Almost all of the expression fragments used in the resulting procedure are taken from
the two original functional procedures. But we cannot point to single entities that represent
the salary filtering, the running total for ages, or the running count of filtered employees.
As before, these idioms are smeared throughout the (new) loop procedure. The work that
went into implementing these idioms in the original procedures must be repeated because
the monolithic style does not create reusable language artifacts embodying the idioms.

An interesting feature of fat-cat-agey,, is that it is iterative, even though it is partially
derived the non-iterative fat-catsy,, procedure. Examination of that procedure reveals
that the stacking behavior is due only to the list accumulation idiom. Since fat-cat-agefys,
does not use that idiom, it does not require a procedure call stack. This example suggests
that we should be able to associate shapes of computation with individual idioms and then
determine the shape generated by a program from the shapes of the idioms out of which it
is constructed. Later, we will explore this idea in depth.

As another example, consider a procedure that returns both the fat cats and the average
employee age for a given database. Here we want to connect mean-age and fat-cats in
parallel. In the simplest approach, we can just encapsulate the two existing computations
within one procedure:

(define (fat-cats&mean-age,;.. threshold database)
(list (fat-cats threshold database)
(mean-age database)))

This extremely simple means of combination is a key advantage of the black-box modularity
offered by procedures. This procedure works regardless of the styles in which fat-cats and

mean-age happen to have been written.

54 CHAPTER 2. SLIVERS

Unfortunately, while this procedure computes the desired values, it doesn’t necessarily
compute them in the desired way. In particular, the calls to fat-cats and mean-age will
each traverse the entire database independently. This means that next-record will be
called twice for every record in the database — once by fat-cats and once by mean-age.
The overhead of calling next-record twice for every record may be deemed unacceptable,
especially in the case where calls to next-record are particularly expensive (e.g., when the
database is stored remotely).

An alternative is to merge the computations of fat-cats and mean-age such that the

database is traversed only once. Here is the merged version for the functional implementations:®

(define (fat-cats&mean-age;,, threshold database)
(define (both record age-total count)
(if (end-of-database? record)
(1ist ’() (/ age-total count))
(if (> (record-get record ’salary)
threshold)
(mlet (((rest-names avg)
(both (next-record record)
(+ age-total (record-get record ’age))
(+ 1 count))))
(1ist (cons (record-get record ’name) rest-names) avg))
(both (next-record record)
(+ age-total (record-get record ’age))
(+ 1 count)))))
(both (first-record database) O 0))

Here, the internal both procedure performs a single traversal of the database, during which
it accumulates both a list of names and an average age. It returns the two results as a two-
element list. Since this procedure does use the linearly-recursive list accumulation idiom,
its shape is a linear recursion rather than a linear iteration.

Although fat-cats&mean-ages,, is “better” than fat-cats&mean-age,;. in terms of
execution time, it is a whole lot worse in terms of understandability and modifiability. The

idioms here are exactly the same as those used in fat-cat-age, but their interleaving makes

®1 assume that Scheme has been extended with a pattern matching version of let called mlet. A mlet
expression has the same form as a let expression, except that the name position of a binding may contain
a name pattern rather than just a single name. A name pattern is any list structure whose atomic elements
are names. The name pattern is matched against the value of the binding expression, and the resulting
name/value associations are accessible in the body of the mlet. It is an error if a name pattern does not
match the binding value.

It is possible to dispense with mlet by instead using explicit selectors or Scheme’s multiple value return
mechanism. However, I find both of these alternatives too unwieldy for expository purposes.

2.1. LINEAR EXAMPLE: DATABASE MANIPULATION 55

them even harder to recognize. Additionally, the program is complicated by the details of
managing two return values rather than one. For example, the fact that the calculation of
the average age is still effectively iterative is obscured by the inherently recursive nature of
the name collection.

As a final example, we consider a modification to the original fat-cats procedure. By
a clever trick based on mutable pairs, it is possible to transform the linear recursive version
into a linear iteration. The original version generates a recursive computation because no
pair is allocated for cons until both of its subexpressions are fully evaluated. This means
that the pairs composing the spine of the returned list are actually allocated in order from
back to front, requiring the implementation to maintain a stack of pending conses.

The trick is to allocate the pairs from front to back by using side effects. Here is a

procedure that embodies this trick:®

(define (fat-cats—-iter,,;z.q threshold database)
(let ((ans-pair (cons ’ignore ’ignore)))
(define (gather! record prev-pair)
(if (end-of-database? record)

{begin
(set-cdr! prev-pair ’())
(cdr ans-pair))

(if (> (record-get record ’salary)

threshold)
(let ((next-pair (coms (record-get record ’'name)
ignore)))
(begin

(set-cdr! prev-pair next-pair)
(gather! (next-record record) next-pair)))
(gather! (next-record record) prev-pair))))
(gather! (first-record database) ans-pair)))

The iterative gather! procedure takes the previously allocated pair in addition to the
current record. Every time a record satisfies the condition, it bashes the cdr of the previous
pair to point to a newly allocated pair, and then passes the new pair to the recursive call.
The initial pair passed to gather! is a dummy whose cdr will ultimately be the final answer
list; gather! returns this answer list when the end of the database is reached.

This trick, which I will call edr-bashing list collection, is clearly handy in many list

processing programs. However, the monolithic approach does not allow us to package

5The resulting procedure is annotated with a ,zeq subscript because it combines aspects of both the
functional and imperative styles.

56 CHAPTER 2. SLIVERS

this trick into a component that can be used elsewhere. In fact, the convoluted structure
of fat-cats-iter,,;z.q makes it difficult to even notice that it has been obtained from

fat-cats by applying a trick!

2.2 Tree Example: Alpha Renaming

2.2.1 Overview

All the programs considered thus far generate linear computations. In this section, we will
study a program that generates a tree-structured computation. Tree-shaped computations
are important because, in the absence of control features like non-local exits and continua-
tions, the procedure calls dynamically executed in any program can naturally be arranged
in a tree. Linear computations are trivially a subset of tree computations. Moreover, we
will see that tree-shaped computations support a richer set of evolution patterns than do

linear computations.

The program we consider is alpha renaming, an operation on abstract syntax trees that
is common in interpreters and compilers. Alpha renaming is one of the simplest practical

programs that involves combining different shapes of tree walks in a nontrivial way.

Alpha renaming is a mechanism for consistently renaming the variables in a program so
that each variable has a unique name.” This transformation is especially useful in lexically
scoped languages, which permit the same identifier to name different logical variables within
a single program. Many other expression transformations (e.g., substitution) are easier to

perform on an expression that has been alpha renamed.

For simplicity, I will initially present alpha renaming in the context of an extremely
simple language, the lambda calculus. The syntax of lambda calculus terms E is given by

the following grammar:

"Technically, alpha renaming is any renaming transformation that maintains the same “connectivity” of
variable declarations and references within a program. It does not necessarily imply making all variable
names unique. However, in practice, the term is typically used to indicate that the resulting variable names
are all distinct.

2.2. TREE EXAMPLE: ALPHA RENAMING 57

E 1= I [Variable reference]
l (lambda Iger Ebody) [Abstraction]
| (call Eiator Frand) [Application]

I == aflb|c}|...|]aa]| ab]...

For our purposes, it is acceptable to view the lambda calculus as a restricted Lisp dialect
where all procedures take exactly one argument and applications are tagged with an explicit
call keyword. The only detail that matters for the present example is that the identifier Ijef
introduced by a lambda term declares a variable that can be referenced anywhere within
Ebody (as long as there is no intervening declaration of another variable with the same
name).

The lambda calculus is about as spartan as a programming language can be. Later, we
will consider extending it with extra features that make it more palatable to program in.
We will see that a good test of the modularity of an alpha-renaming program is how little
it needs to be changed in order to accomodate such features.

As an example of alpha renaming, consider the lambda calculus term:

(lambda x
(lambda y
(call (lambda x x)
{call (lambda y x)
(call (lambda x y)
z)))))

In this term, there are three logically distinct variables named x, two named y, and one
named z. Variable references that occur within the scope of a declaration are said to be

bound; those, like z, that are not in the scope of a declaration are said to be free.

The following is an alpha renamed instance of the above term:

(lambda x_1
(lambda y_2
(call (lambda x_3 x_3)
(call (lambda y_4 x_1)
(call (lambda x_5 y_2)
z)))))

Here, all declared variables and bound references have been consistently renamed by ex-

tending the original name with a unique number. (The free variable reference z cannot

58 "HAPTER 2. SLIVERS

been renamed.) Any other method for consistent renaming that guarantees distinct names
for distinct logical variables would also be acceptable.
The standard technique for alpha renaming can be visualized as the superposition of

three tree-walking computations, as sketched in Figure 2.2:

o® Ny
‘.‘llllllllllllIIllllllllIIIIIIIIlllllllIllllllll‘lllllllIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllll*

Environment Propagator

a
0...
*
h
%,
oy
e,
o,
....
N
e,

‘IIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllll=llllIlIlIlIllIllIIlIllIlIIIIIIIIIIIIIIIIIIIIII.I*

Renamer

....................-.-.ﬁ‘-.-......-...--...-......

....
e,
N
.
ey
v,
N,
.
ey,
¥,
*en,

.
.:l:-llllllllllllll.lIIIIIIIIIllllllllllIllIIIIllllllll.l.llIlllllllllllllllllllIlIIIIIIIIIIIIIIK

Figure 2.2: Sketch suggesting the different shapes the computations involved in alpha-
renaming.

1. A name generator that creates a fresh name for every declared variable. To guarantee
distinctness among the fresh names, the generator must conceptually carry with it
some history of the names generated so far. Since the history at any point in time
depends on the history at the previous point in time, the name generation compu-
tation effectively traces out a single-threaded dependence path through the syntax
tree specified by the term. Whether the generator walks the term tree left-to-right,

right-to-left, or by some other route is immaterial as long as the path is a single thread.

2.2. TREE EXAMPLE: ALPHA RENAMING 59

2. An environment propagator that transmits the fresh name for each declared variable
down to all references of that variable. Since both subterms of an application see the
same set of old-name/new-name bindings, the environment computation conceptually
fans out into independent subcomputations at each call node. This downward fan

shape contrasts with the single-threaded nature of the name generator.

3. A renamer that makes a copy of the term tree in which variable declarations and
references have been replaced by the appropriate fresh name passed down by the
environment propagator. The renaming computation conceptually starts at the leaves

of the term tree and builds a new term on its way up the tree.

Although the above algorithm is standard, the form of the description — a decomposi-
tion into superposed computations — is not. One of the main themes of this dissertation is
that conceptualizing programs in terms of interacting processes is essential to good modular-
ity regardless of whether or not the programs are actually run on multi-processor machines.
Each of the computations described above is a natural modular unit. Such computations
are valuable building blocks for other programs; for example, environment propagating com-
putations crop up all the time in interpreters and static analyzers. And such computations
have the interchangeability usually associated with modules; for instance, in some contexts
it might be worthwhile to replace a left-to-right name generator with a right-to-left one.

From this perspective, it seems reasonable to judge alpha-renaming programs by how
well they reflect the modular structure described above. Unfortunately, the typical mono-

lithic implementations exhibit little of this structure.

2.2.2 Monolithic Style: Functional Approach

Figure 2.3 presents an alpha renaming procedure written in the functional paradigm. The
internal walk procedure takes three arguments: the term to be renamed; an environment
that associates original variable names with their new names; and a positive integer repre-
senting a counter that is incremented every time a new variable declaration is encountered.

The integer is used as an argument to fresh-name, which is responsible for generating

60 CHAPTER 2. SLIVERS

unique names.® Walk returns two results: the alpha-renamed term, and the current value of
the counter. Appropriate procedures for environment manipulation, fresh name generation,
and syntactic abstraction (e.g., lambda?, make-call) are straightforward and have been
omitted.

The alpha-renamey,, procedure exhibits none of the modular structure suggested by
Figure 2.2. Name generation, environment propagation, and construction of the renamed
term are all inextricably intertwined in the single walk procedure. There is no handle for
reusing one of the computations in a different program, or for easily modifying one of these
computatations independently of the others. For example, the name generator hidden in the
above program performs a left-to-right walk over the tree. What changes would be required
to yield a right-to-left walk?® Answering this question requires consideration of the whole
program rather than just a name generation piece. Furthermore, when making the changes,
we must be careful to maintain the integrity of the other conceptual computations.

Finally, consider how alpha-renamey,, would have to be modified in response to ex-
tending the base language with the conditional term (if Eiesy Ethen Felse). The dispatch

within walk would need to be extended with a clause like the following;:

((if? exp)
(mlet (((new-test numl) (walk (test exp) env num)))
(mlet (((new-then num2) (walk (then exp) env numi)))
(mlet (((new-else num3) (walk (else exp) env num2)))
(1ist (make-if new-test new-then new-else) num3)))))
This is an awfully complicated mess for something as simple as a conditional! The problem

is that the bookkeeping details associated with returning both the renamed term and the

updated counter obscure the following essential facts:

o The counter flows in a left-to-right fashion through the three subterms of the if.

e The environment flows unchanged into the three subterms of the if.

8For alpha-renames., to be correct, it is necessary to assume that fresh-name returns a name disjoint
from the set of free variables of the term.

°In the alpha renaming program, the order of traversal doesn’t affect the correctness of the result.
However, it’s easy to imagine similarly structured programs in which some traversal orders are more desirable
than others.

2.2. TREE EXAMPLE: ALPHA RENAMING

(define (alpha-rename;,, exp)

(define (walk exp env num)
(cond

((variable? exp)

(1ist (env-lookup exp env) num))

((lambda? exp)

(let ((old-formal (formal exp)))

(let ((new-formal (fresh-name old-formal num)))
(mlet (((new-body numi) (walk (body exp)

(env-extend old-formal
new-formal
env)

(+ num 1))))

(1ist (make-lambda new-formal new-body) numi)))))
((call? exp)
(mlet (((new-rator numi) (walk (rator exp) env num)))
(mlet (((new-rand num2) (walk (rand exp) env numi)))
(1ist (make-call new-rator new-rand) num2))))

))

(mlet (((new-exp final-num) (walk exp env-standard 0)))
new-exp))

Figure 2.3: Monolithic version of an alpha renamer written in the monolithic style.

61

62 CHAPTER 2. SLIVERS

Since these are the default flows associated with the name generation and environment
computations, we would prefer a modularization in which we didn’t have to specify them
explicitly for the if case at alll After all, one of the measures of good modularity is the
localizability of changes — internal modifications to one module shouldn’t require changing

connected modules.

2.2.3 Monolithic Style: Imperative Approach

Judicious use of side effects can improve the modularity of the alpha renaming program.

Consider the alpha-rename;,,, procedure in Figure 2.4. The key difference between this

(define (alpha-rename;,, exp)

(define gensym!
(let ((num 0))
(lambda (name)
(let ((new-name (fresh-name name num)))
(begin (set! num (+ num 1))
new-name)))))

(define (walk exp env)

(cond

((variable? exp) (env-lookup exp env))
((lambda? exp)

(let ((old-formal (formal exp)))

(let ((new-formal (gensym! old-formal)))
(make-lambda new-formal
(walk (body exp)

(env-extend (formal exp)
new-formal
env))))))

((call? exp)
(make-call (walk (rator exp) env)
(walk (rand exp) env)))
)

(walk exp env-standard))

Figure 2.4: Monolithic version of an alpha-renamer written in the monolithic style.

procedure and the previous one is that most of the name generation computation has been
captured in the gensym! procedure. The gensym! procedure owns a local state variable

(num) that maintains the counter which was spread throughout the entire walk procedure

2.2, TREE EXAMPLE: ALPHA RENAMING 63

within alpha-renamey,,. Because the single threading of the name generation computation
is now being managed implicitly by side-effects rather than explicitly by data flow, the
interface to the walk procedure is much simpler: it takes one less argument and returns
one less result than in the functional version. This makes the resulting code easier to read
and extend. For example, an if term can be handled by extending walk with the following
clause, which is far simpler than the solution for the functional version:
((if? exp)
(make-if (walk (test exp) env)

(walk (then exp) env)
(walk (else exp) env)))

This example underscores the importance of state and side effects as a technique for
modularizing programs. This point is certainly not new and is elegantly argued elsewhere
([ASS85], [Bar92]). However, it is worth emphasizing that side effects are an important tool
that cannot be neglected in our goal of modularizing programs.

In spite of the improvements, alpha-rename;,,, fails to achieve modularity in some

important ways:

¢ The notion of a downward-flowing environment computation is still intertwined with
the tree-construction computation in the single walk procedure. This means that the
environment computation is not an entity that can be reused elsewhere. Furthermore,
this organization forces the if handler to explicitly indicate that the environment is
passed unchanged to each recursive call to walk on the subterms of the if. In an

ideal scenario, this default flow shouldn’t have to be explicit.

e More subtly, while most of the name generation computation has been localized to
gensym, not all of it has. The order in which name generation visits the nodes of the
term tree is inherited from the order in which the implementation language visits the
arguments to a procedure call. In Scheme, where the order of argument evaluation
is unspecified, no particular order can be relied upon. If for some reason we want to
guarantee that the name generator visits subterms in left-to-right order, it is necessary

to rewrite the call handler as:

64 "HAPTER 2. SLIVERS

((call? exp)
(let ((new-rator (walk (rator exp) env)))
(let ((new-rand (walk (rand exp) env)))
(make-call new-rator new-rand))))

Here, Scheme’s (strict) 1et construct forces the operator walk to be performed before

the operand walk. A similar approach would have to be used for for cases like if.

Again, the order of the name generator doesn’t matter in this particular problem, but
traversal order does matter in other problems with a similar structure. In general, we
would like a mechanism by which we can easily choose from options like left-to-right,
right-to-left, and don’t-care. A modularity technique providing finer control over the

ordering of side effects (when it matters) is preferable to one that offers no control.

We have given numerous examples demonstrating that the monolithic approach fails to
capture an important class of programming idioms in an effective way. It is obviously de-
sirable to consider program organizations in which such idioms can be captured as modular

units.

2.3 Slivers Capture Programming Idioms

2.3.1 Two Approaches to Decomposing Computations

We have seen that procedures like mean-age, fat-cats, and alpha-rename are conceptually
composed out of many idiomatic units. But what is the nature of these units, and how are
they combined to yield a program?

Viewing computations graphically gives some insight into these questions. Figure 2.5
shows a computation diagram for fat-cats. A computation diagram is a kind of circuit
diagram for computations. In the diagram, every procedure application is represented as a
labelled rectangular device, except for calls to fat-cats and gather, which have been ex-
panded in terms of their definitions.!® (Procedure calls represented by devices will be called
unezpanded, while those replaced by the structure of their bodies will be called ezpanded.)

Triangles pointing into a device are input ports that represent the procedure’s arguments,

1%ln the diagram, salary and name are abbreviations for calls to record-get.

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 65

while triangles pointing out of a device are output ports for the procedure’s results. Devices
are connected by wires that specify the data dependences between procedures. Values can

be thought of as flowing along the wires in the direction of the arrows.

This picture is similar to graphical depictions of dataflow programs [Den75, DK82]
except that here the devices can compute only once, and the wires can transmit only a
single value token before they are “used up”. A computation diagram can be viewed as
a dataflow diagram unwound so that every spatial entity is also associated with a unique
point of time during the execution of the program. We will have much more to say about
the static and dynamic properties of such computation diagrams in Chapter 8. For now,

we will focus on ways in which the diagram can be decomposed into modular units.

The dashed boxes in Figure 2.6 indicate a layer decomposition of the computation di-
agram for fat-cats. FEach box, called a layer, represents an expanded procedure call:
the topmost box represents a call to fat-cats, while the other boxes represent calls to
gather. Each layer contains devices for the unexpanded subcalls in the procedure’s body,
and sits on top of the layers for the expanded subcalls in the procedure’s body. Layers
are glued together by wires that pass arguments down to sublayers and receive results up
from sublayers. Some of the arguments are explicit in the code (e.g., the results of the
next-record devices correspond to the record parameter of gather) while others are im-
plicit (the threshold “bus” down the middle of the diagram indicates that lexical scoping

effectively makes threshold an implicit argument of gather).

Figure 2.7 shows a so-called sliver decomposition of the same diagram. Here the dashed
boxes, called slivers, parse the diagram into vertical components rather than horizontal
ones. The slivers are glued together by cables, collections of wires that pass information in

and out of the sides of the slivers.

The rules for what comprises a legal sliver are very loose. The only real requirement is
that if a sliver contains one instance of a device corresponding to a particular call in the
procedure underlying the diagram, then it must contain all such instances. But beyond
that, there are just some general guidelines for choosing slivers. The slivers are typically
chosen to encapsulate repeated units of related functionality while minimizing the structure

of the cables between them. All instances of the three devices for database manipulation

66

database

L

first-
record

end-of-
database?

CHAPTER 2. SLIVERS

threshold

nil

A
>

>
next-
record

end-of-
database?

if

cons

if

nil

4sa1ary}——‘—i::l:::
>

-

next-
record

end-of-
database?|

if

cons

if

nil

e
>

I

next-
record

hd

Figure 2.5: Computation diagram for fat-cats.

E!I -
Hh

2.3.

SLIVERS CAPTURE PROGRAMMING IDIOMS

database threshold

nil

name

]
..

name

Figure 2.6: Layer decomposition of fat-cats.

67

68

CHAPTER 2. SLIVERS

database threshold

first-
record

end-of - 4 27
database?| | |

nil

salary P———u::
| > t

next-
record

end-of- -+ e %
database?| : ! :

[N
Hh

salary P‘—'—a H _ 4:
> H H

= ¢
+ name P+
i :
L P :
. H
i :

next-
record

end-of - i, é i, é
database?| : o :

nil

name

next-
record
4

v .
. »

GENERATE- FILTER- MAP-
RECORDS SALARY NAME

Figure 2.7: Sliver decomposition of fat-cats.

STACKING-
COLLECT-
LIST

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 69

are bundled into the sliver labelled GENERATE-RECORDS, while the devices responsible for list
collection are packaged up into STACKING-COLLECT-LIST. (The term “stacking” is intended
to indicate that the sliver builds the resulting list from bottom up.) It would be possible to
decompose these slivers up even further, say by factoring the end-of-database? devices or
the nil devices into their own separate slivers, but this did not seem particularly desirable
in this case. The devices within a sliver often form a single connected component of the
computation diagram, but slivers like FILTER-SALARY and MAP-NAME consist of repeated

connected components, all of which are mutually disjoint.

The most remarkable feature of the sliver decomposition in Figure 2.7 is that the in-
dividual slivers correspond closely to the kinds of idioms mentioned in the discussion of
mean-age and fat-cats. The GENERATE-RECORDS sliver takes a database and spits out
the individual records of the database in succession, along with a boolean termination flag
indicating whether the database termination record has been found. Conceptually, this
component occurs in both mean-age and fat-cats. The STACKING-COLLECT-LIST sliver
accumulates elements into a list from the bottom up; elements are conditionally included in
the resulting list depending on the value of an associated boolean presence flag. This can
be made into a general linear recursive accumulator by abstracting the cons and nil to be
any binary operator and base value. FILTER-SALARY effectively filters the records based on
salary by providing the presence flag to the list collector, while MAP-NAME simply extracts

the names from each record.

A host of other idioms can be depicted as slivers. For example, running sum and cdr-
bashing list collection are two linear iterative accumulators that can be encapsulated into
slivers. And the three tree-traversal idioms for alpha-rename sketched in Figure 2.2 can

also be fleshed out into tree-shaped slivers.

What feature of sliver decompositions allows it to capture so many idioms? Whereas
a layer decomposition focuses on the recursive pattern of a computation, a sliver decom-
position focuses on recursionless operators. In effect, the recursion has been distributed
over the slivers rather than being the main organizational principle for the program. The
sliver-based organization directs attention away from the structural details of recursion and

towards a more functional view of how program units fit together.

70 CHAPTER 2. SLIVERS

The notion of distributing loops over program components to enhance modularity is an
old one. It has its origins in Lisp’s higher-order list operators and APL’s array operators,
and is now used extensively as a technique in data parallel languages, functional and mostly
functional languages, concurrent languages, and stream-based languages. We will study
many of these techniques in detail in Chapter 3.

The new idea in slivers is to provide decompositions for a more general class of recursive
computations than those handled by existing techniques. We shall see that most of the
techniques alluded to above are limited to expressing linear iterative computations. Even
the techniques that handle more general computations exhibit other limitations that con-
strain the class of decomposable computations. The goal of slivers is to express general
tree-structured computations as compositions of mix-and-match parts. The strategy is to
gain insight into the nature of these parts by studying sliver decompositions of monolithic
computations that contain them.

Before we go on, it is worth pointing out that the sliver decomposition of Figure 2.7 is
not an ideal modular decomposition. The problem is that the list collection sliver “knows”
about the filtering sliver in the way that it handles the presence flag. In a sliver decompo-
sition for a program that lists all employees, the list collection sliver would not handle any
presence flags at all; for a similar program with two filtering predicates, the list collection
sliver might need to handle two presence flags per record. It is clearly unreasonable to
require different list collection slivers for each of these situations. In some sense, the in-
stances of if that manipulate the presence flag really belong in the filtering sliver. But this
change would greatly complicate the wiring between the filtering and accumulation slivers;
it would add a cable loop between the slivers, and the clear upward flow of information
in STACKING-COLLECT-LIST would disappear. In Chapter 5, we will investigate various

methods for enhancing the modularity of computations that involve filtering.

2.3.2 Procedural Slivers

Just as it is important to distinguish procedures from the computations they specify, it
is necessary to distinguish procedural slivers from computational slivers. A computational

sliver is what we have simply been calling a sliver up to this point: a repeated pattern of

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 71

devices in a computation diagram that embodies a programming idiom. A procedural sliver
is a specification of this repeated pattern. Intuitively, it is that fragment of a procedure
that encapsulates the idiom.

How can such a fragment be specified? Investigating answers to this question is one of
the main goals of this report. For the moment, the following approach may be helpful for
envisioning procedural slivers. Imagine starting with the text of a procedure and erasing
all the program structure that is not relevant for generating a given computational sliver.
Then what’s left over is a crude kind of procedural sliver.

Figure 2.8 shows the descriptions that result from using this approach for three of the
computational slivers of fat-cats. The resulting procedural slivers don’t make much sense
individually, and certainly aren’t executable. However, a sensible program like fat-cats
can be constructed by textually overlaying its component procedural slivers. In computation
space, the textual overlaying of procedural slivers corresponds to combining computational
slivers in a side-by-side manner to yield the computation diagram for the entire procedure.
The challenge is to develop a programming model in which the specification and combination
of procedural slivers is no harder than procedure specification and combination.

For the remainder of this report, we will loosely use the term sliver for both computa-
tional slivers and procedural slivers when the meaning is clear from context or the distinction
doesn’t matter. The modifiers “computational” and “procedural” will only be sprinkled in

when we wish to emphasize the distinction.

2.3.3 Sliver Diagrams

Sliver decompositions can be abstracted into sliver diagrams that suminarize the sliver
and cable interconnections while suppressing many details. Figure 2.9 shows one possible
diagram for the fat-cats sliver decomposition. Each sliver is represented as a box, while
cables are represented as thick, directed conduits between slivers. Individual devices and
wires are represented as before.

The sliver diagram in Figure 2.9 is a very literal interpretation the sliver decomposition
in Figure 2.7 in the sense that the slivers and cables are assumed to have exactly the

structure shown in the decomposition. For example, in Figure 2.9, the input cable to the

72 CHAPTER 2.

;;; Fragment responsible for GENERATE-RECORDS
(define (fat-cats database)
(define (gather record)
(end-of-database? record)

(gather (next-record record)))
(gather (first-record database)))

;33 Fragment responsible for FILTER-SALARY.

;33 (The fragment for MAP-NAME is similar)

(define (fat-cats threshold)
(define (gather)

(> (record-get record ’salary)
threshold)

(gather))
(gather)

;;; Fragment responsible for STACKING-COLLECT-LIST

LIEIE]

(define (fat-cats)
(define (gather)
(if
()
(if
(cons
(gather)
(gather NN
(gather)

SLIVERS

Figure 2.8: Procedural fragments approximating the procedural slivers that generate the
computational slivers of fat-cats. These are obtained by “whiting out” structure that
does not appear in a given computation sliver. The original program can be obtained by

textually overlaying all of its component fragments.

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 73

I database I Lthreghold]

y .
GENERATE- M| PILTER A map- B ggﬁggf-
RECORDS SALARY NAME LIST

Figure 2.9: A sliver diagram summarizing the sliver decomposition for fat-cats.
MAP-NAME sliver is assumed to carry three types of wires:

1. Termination wires that transmit a boolean indicating whether the end of the database

has been reached.

2. Presence wires that transmit a boolean indicating whether the filter has passed the

associated record.

3. Element wires that transmit the current record when the corresponding terminations

and presence wires both transmit a true value.

The output cable of the MAP-NAME sliver also carries the same three types of wires. MAP-NAME
passes the termination and presence wires unchanged, but transmits a string rather than a
record on the element wire.

However, not every wire that happens to pass across a vertical dotted box in a sliver
decomposition need be considered part of that sliver. Figure 2.10 depicts a sliver diagram for
a different perspective on the sliver decomposition of fat-cats. Here, the cable produced
by the record generator fans out and feeds both FILTER-SALARY and MAP-NAME, while the

list collector now takes two input cables:
1. A cable of presence wires from the salary comparison.
2. A cable of element wires from the name mapper.

(Presumably one or both of these cables also carries the termination wires.) It is easy to
imagine yet other diagrams in which each type of wire is carried by a distinct cable. Of

course, the interfaces to the abstracted slivers depends on the chosen interpretation. The

74 CHAPTER 2. SLIVERS

challenge is to design the diagrams to maximize the reusability of the abstracted slivers.
We will discuss this in detail later; for now, we will choose Figure 2.9 as the “standard”

sliver diagram for fat-cats.

threshold

A FILTER |
77| SALARY | .
CENERATE = STACKING
RECORDS = COLLECT
= LIST
= MAP ﬁ
‘ NAME |

Figure 2.10: An alternate sliver diagram for fat-cats.

Sliver diagrams underscore the advantages of capturing idioms in modular units. They
provide a convenient framework in which to understand and compare programs. For exam-
ple, the block diagram in Figure 2.11 elucidates the structure of mean-age. The fact that
there are two running sums is obvious from the structure of the diagram. The MAP-ONE
sliver maps every input record into the constant 1; summing these 1s up gives the employee
count. From the sliver diagrams, it is easy to see that mean-age uses the same database

enumeration strategy as fat-cats.

MAP- 2\ rRuNNING-

s AGE SUM
GENERATE-}—H }
RECORDS = /

Al map- A RUNNING-
| ONE SUM

Figure 2.11: A sliver diagram for mean-age.

Perhaps the biggest advantage of sliver diagrams is that they promote the notion that

programs should be organized out of mix-and-match parts. For example, Figures 2.12

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 75

and 2.13 support the intuition that the fat-cat-age and fat-cats&mean-age procedures

are essentially series and parallel combinations of fat-cats and mean-age.!! Replacing the
recursive STACKING-COLLECT-LIST sliver in Figure 2.9 with the iterative CDR-BASHING-COLLECT-LIST
sliver (Figure 2.14) represents the constant-space computation generated by the fat-cats-iter
procedure. It is apparent from the diagrams that the iterative version is obtained from

the recursive one by a simple modification; moreover, that modification is encapsulated

in a way such that it can easily be plugged in elsewhere. Components like RUNNING-SUM,
STACKING-COLLECT-LIST, and CDR-BASHING-COLLECT-LIST are especially reusable because

they do not depend on particular details of the database example.!?

L database I I thresholcﬂ

MAD- A rRoNNING-
= AGE SUM
A =
GENERATE- FILTER |
RECORDS | SALARY = /
H__MN| Map- AJ RUNNING-
7] ONE SuM

Figure 2.12: A sliver diagram for fat-cat-age.

As a final example, Figure 2.15 shows a sliver diagram for the tree-based alpha-rename
computation. Here, each cable transmits tree-structured information between the slivers.
The name generation, environment propagation, and renaming computations have each
been encapsulated in their own sliver. There are some additional slivers, though. The
FILTER-FORMALS sliver finds the names of the declared variables; this has been factored out
of the name generation computation so that the names can be supplied to the environment
computation as well. And the TERM->TREE and TREE->TREE slivers provide conversions

between concrete terms and the “exploded” versions of their abstract syntax trees that are

“Figure 2.12 is somewhat misleading, since it uses versions of MAP-AGE, MAP-ONE, and RUNNING-SUM that
must handle the presence flag produced by FILTER-SALARY. Yet, the corresponding slivers in Figure 2.11 do
not manipulate a presence flag. This is another instance of the problems inherent in filtering that we will
need to deal with later.

2Modulo the above-mentioned issues of filtering.

76

threshold

CHAPTER 2. SLIVERS

A rrrrEr{—B Map-
T 1/| SALARY NAME
GENERATE-| B
RECORDS =
£ MAP- RUNNING-
V7| AGE suM LIST P
s MAP- RUNNING-
ONE SUM
Figure 2.13: A sliver diagram for fat-cats&mean-age.
I database I Ithresholdl
y -
- i
GENERATE-p——B\| FILTER B map- e orasome
RECORDS SALARY | NAME LIST

Figure 2.14: A sliver diagram for fat-cats-iter.

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 77

transmitted via the cables.13

A
H | -
=
— TREE->
= RENAME
= [A\ TERM
= FILTER- {—5 v ENV
FORMALS
' E | FRESH
NAMES

Figure 2.15: A sliver diagram for alpha-rename.

A key property of sliver diagrams is that they explicitly show only the flow of data,
not of control. As noted above, an upshot of modularizing the kinds of idioms discussed
above is that loops and recursions are distributed over individual devices rather than being
the main organizing principle for programs. This approach directs attention away from the
often complex details of control flow and towards a more functional view of how program
units fit together. Reasoning about control is localized to the implementations of individual

devices, where it is much more tractable.

2.3.4 Operational Interpretation of Sliver Diagrams

The previous examples demonstrate that it’s easy to combine slivers in mix-and-match ways.
But the operational behavior of the programs specified by the resulting sliver diagrams is
rather ambiguous. Suppose we presented the sliver diagrams in Figures 2.9 — 2.15 to other
programmers and described the high-level purpose of each box but did not explain how
the diagrams were derived from monolithic programs. Then the programmers could easily
construct many distinct but consistent stories about the meaning of these diagrams that

were different from our intended meaning. Here are some alternate interpretations:

1. The boxes are procedures that take and return aggregate data structures.

13This is only true as long as there are no circularities in the data dependencies implied by the cables.
While such “data loops” can be be useful programming techniques (e.g. [Bir84]), they can also complicate
reasoning about programs by requiring programmers to think in terms of fixed points.

8 CHAPTER 2. SLIVERS

2. The boxes are demand-driven agents that request individual values from and return

individual values to their neighbors.

3. The boxes are data-driven processes that concurrently consume and produce values

sent over communicating channels.

These interpretations correspond to some of the classical techniques for achieving modularity
by distributing loops across programming idioms.

But the existence of so many interpretations means that sliver diagrams fail to nail down
important operational characteristics of computations. In the case where sliver diagrams are
derived from monolithic procedures, we’d like the resulting diagrams to specify operational
behavior similar to the original procedures. And when the diagrams aren’t derived from a
single procedure, but are pieced together from existing slivers, we want a theory that defines
how the operational behavior of the composite structure is determined from the operational
behavior of the parts.

Exactly what is meant by “similar operational behavior” will necessarily remain vague
until we present a formal model of computation (Chapter 8). But here we can at least give

a few examples of what we have in mind:

¢ The monolithic mean-age and fat-cat procedures perform a single traversal over
the database, while the monolithic alpha-rename procedure performs a single traver-
sal over its argument expresssion. We would like the computation described by the

corresponding sliver diagrams to maintain this single-traversal property.

e The monolithic mean-age procedure generates a computation that requires constant
data and control space. The corresponding sliver diagram should also specify a

constant-space computation.

¢ The monolithic fat-cats procedure does not compute the name for a record that does
not pass the salary filter. In this case, the name computation is trivial, but it’s easy to
imagine cases where it is important to avoid computations on items that do not pass
a filter. It is desirable for the computations specified by the sliver diagrams in both
Figures 2.9 and 2.10 to avoid unnecessary operations. (The fan-out in Figure 2.10

makes it tricky to implement this behavior.)

2.3. SLIVERS CAPTURE PROGRAMMING IDIOMS 79

In a truly modular approach to these operational concerns, the operational behavior of
a computation should be derivable from operational behavior of its component parts. In
order to capture operational nuances, it will be necessary to include operational details in
the interfaces to slivers. We have done this to some extent in terms of the names of the
list collection slivers; STACKING-LIST-COLLECT and CDR-BASHING-LIST-COLLECT have the
same input/output behavior, but the first requires a control stack while the second does
not. We’d like to have a method of reasoning about these kinds of space issues based on the
structure of the slivers. Chapters 4 and 5 develop such a method. But first, in Chapter 3, we

will explore what’s wrong with existing methods for expressing sliver diagrams as programs

80

"HAPTER 2. SLIVERS

Chapter 3

The Signal Processing Style of

Programming

The signal processing style (SPS) of programming is a label for the class of techniques that
organize programs like the sliver diagrams introduced in the previous chapter. In this style,
computations are are expressed as networks of computational devices that generate, map,
filter, and accumulate data transmitted over directed cables. This style encompasses a
wide range of programming techniques used in functional, imperative, object oriented, and
concurrent languages. The name “signal processing style” is suggested by the resemblance
between sliver diagrams and signal processing block diagrams.

This chapter explores the tension between modularity and control in the signal process-

ing style of programming. It elucidates two key points about this style:

o The signal processing style is a powerful means of decomposing programs into modular

units that encapsulate important programming idioms.

¢ C(lassical techniques for programming in the signal processing style often preempt the
programmer from controlling important operational aspects of programs expressed in

this style (e.g., execution time, space complexity, operation scheduling).

The remainder of this dissertation explores ways of reducing the tension between modularity

and control. In particular, the lock step processing model developed later is able to achieve

31

82 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

modularity while preserving space complexity and operation scheduling (it does not address

the control of execution time).

I will classify SPS techniques into two categories according to how they represent the

slivers and cables in a sliver diagram:

1. The aggregate data approach represent slivers as operators that manipulate aggregate
data (e.g., lists, streams, arrays, trees) and cables as the aggregate data structures

themselves.

2. The channel approach represent slivers as communicating processes and cables as the

communication channels between processes.

The lines between these approaches are not rigid; we will encounter techiques that exhibit

characteristics of both.

In the following sections, we study these two approaches in the context of the database
and alpha renaming examples. We will also consider several other techniques that resist
classification into the above two categories. We will see that each of the standard SPS
techniques is a two-edged sword: it helps the programmer subdue complexity, but it also
either (1) prevents the programmer from controlling important operational behavior or (2)

unduly limits the class of programs that can be expressed.

3.1 The Aggregate Data Approach

A common technique for encoding sliver diagrams is to represent slivers as procedures
that manipulate aggregate data structures. Then the slivers can be wired together simply
by the usual methods for procedural composition. For example, the following procedures
are the textual encodings of the sliver diagrams for fat-cats (Figure 2.9) and mean-age

(Figure 2.11):

3.1. THE AGGREGATE DATA APPROACH 83

(define (fat-cats database)
(stacking-collect-list
(map-name
(filter-salary threshold
(generate-records database)))))

(define (mean-age database)
(let ((records (generate-records database)))
(/ (running-sum (map-age records))
(running-sum (map-one records)))))

Here we assume that each procedure called in the body corresponds to the similarly-named
sliver. Note how the wire connections are represented by the natural data dependences of
nested subexpressions; in some sense, the aggregate values are the cables. Cable fan-out is
handled by let, whose bindings allow the same aggregate value to be used by more than
one procedure.

The aggregate data style has its roots in Lisp’s list manipulation routines (as epito-
mized by mapcar) and APL’s array operators. Today, the aggregate data approach is the
main organizing principle for data parallel languages (e.g., Fortran 90 [Ame89], C* [RS87],
NESL [Ble92], paralations [Sab88]). It is also a commonly used technique in many other
languages, especially functional and mostly functional ones (e.g., Haskell [HIW*92], 1d

[AN&9], Common Lisp [Ste90], Scheme [CR*91], ML [MTH90]).

3.1.1 Database Example: A List Implementation

For the linear database example, lists are an obvious choice for the type of aggregate data
structure. Figure 3.1 shows how each of the slivers can be represented as a list-manipulation
procedure.

Expressing mean-age and fat-cats as combinations of parts that share a standard
interface (lists) is a powerful strategy because the parts are reusable in a mix and match way.
Even though the code size for the aggregate data versions of these two programs (including
the definitions of their subroutines) is much larger than the size of the monolithic versions,
this increased size is offset by the modularity of the structure and the fact that the size of
the subroutines should be be amortized over all the places where those subroutines will be
used. Parts like those in Figure 3.1 are likely to be used pervasively in database applications.

And parts like map-oney;;; and running-sum;s; have even broader applicability, since they

84 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

;3 Generators
(define (generate-records;,; database)
(define (gen record)
(if (end-~of-database? record)
()
(cons record (gen (next-record record)))))
(gen (first-record database)))

;;; Mappers
(define (map-age;s: records)
(if (null? records)
0]
(cons (record-get (car records) ’age)
(map-agey;s: (cdr records)))))

(define (map-oney,; list)
(if (null? list)
()
(cons 1 (map-onej;; (cdr list)))))

(define (map-name; records)
(if (null? records)
()
(cons (record-get (car records) ’name)
(map-agey;s; (cdr records)))))

;3 Filters
(define (filter-salaryggtqbase threshold records)
(cond ((null? records) ’())
((> (record-get (car records) ’salary) threshold)
(cons (car records)
(filter-salarygatqabase threshold (cdr records))))
(else (filter-salaryugiabase threshold (cdr records)))))

;3 ; Accumulators
(define (running-sumy,; list)
(define (accum 1lst sum)
(if (null? 1st)
sum
(accum (cdr 1lst) (+ (car 1lst) sum))))
(accum list 0))

(define (stacking-collect-listy,; 1lst) 1st) ; Already a list!

Figure 3.1: List-based implementation of the slivers used by mean-age and fat-cats.

3.1. THE AGGREGATE DATA APPROACH 85

will work on any linear structures, not only databases. This underscores the key advantage
of the aggregate data approach: aggregate data operators constitute a language for working
in a domain.

Using higher-order procedures, it is possible to obtain modular pieces boasting even
greater reusability. Figure 3.2 introduces higher-order procedures that capture the essence
of generation, mapping, and iterative accumulation. The mean-age subroutines are just

instances of these more general abstractions (Figure 3.3).

(define (generate,;; done? next current)
(if (done? current)
()

(cons current (generate;;; done? next (next current)))))

(define (mapj;;; function 1lst)
(if (null? 1st)
()
(cons (function (car 1lst))
(mapy;5;; function (cdr 1lst)))))

(define (filter;;;; predicate 1lst)
(cond ((null? 1st) ’())
((predicate (car 1lst))
(cons (car 1st) (filtery;: predicate (cdr 1lst))))
(else (filter;,; predicate (cdr 1lst)))))

(define (iter-accumulatej;;; operator identity list)
(define (acuum lst ans)
(if (null? 1st)
ans
(accum (cdr 1st) (operator (car lst) ans))))
(accum list identity))

Figure 3.2: Higher-order list-manipulation procedures.

It is worth noting how the list-based implementation finesses the modularity problems
with filtering for the sliver decomposition of Figure 2.7. A list representing a cable does not
explicitly represent any presence flags. Rather, any element whose associated presence flag
is false is simply not included in the list. This compression technique enhances modularity
because there is no need to have different procedures for handling filtered vs. unfiltered
data. Unfortunately, the compression trick does not extend to the tree-structured case;

removing an element from a list leaves a list, but removing an element from a tree does not

86 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (generate-records;,; database)
(generate/list end-of-database? next-record (first-record database)))

(define (map-ageys: records)
(map/list (lambda (rec) (record-get rec ’age)) records))

(define (map-onej,; list)
(map/list (lambda (rec) 1) list))

(define (running-sumy,; list)
(iter-accumulate/list + 0 list))

Figure 3.3: Implementations of the mean-age subroutines in terms of the higher-order list-
manipulation procedures.

leave a tree! Later, we will see how to deal with this problem.

As an aside, it should be mentioned that the list-based programs are really only sim-
ulating the sliver diagrams for mean-age and fat-cats. Indeed, each of the procedures
in Figure 3.1 can be described by its own sliver diagram! For example, the structure of
fat-catsy,; is really as shown in Figure 3.4. Here, each of the four component proce-
dures is associated with a dotted box containing the sliver diagram for that procedure. The
core slivers (GENERATE-RECORDS, FILTER-SALARY, MAP-NAME) are wrapped in instances of
SPLAY-LIST and GLOM-LIST that convert between the standard external list representation
and the internal cable representation: SPLAY-LIST is a generator that, given a list, spits out
its elements in order to a cable; GLOM-LIST is just a synonynm for STACKING-LIST-COLLECT.
(SPLAY-LIST and GLOM-LIST are the analogues of buffers in electrical systems that present
standard impedances to the rest of a circuit.) Each dotted box simulates the input/output
behavior of the corresponding sliver in Figure 2.7, while each wire between dotted boxes

carries a list that encodes an entire cable structure between slivers.

It is possible to imagine doing algebra on slivers. For example, SPLAY-LIST and GLOM-LIST
act as inverses, so it should be possible to treat any juxtaposition of these two slivers
as an identity. Using this fact in conjunction with the equivalence of GLOM-LIST and
STACKING-LIST-COLLECT, it is easy to show that the diagram in Figure 3.4 is “equiva-
lent” to the diagram in Figure 2.9. But this notion of equivalence only captures the in-

put/output behavior of fat-cats. It does not capture how fat-cats, builds and takes

3.1. THE AGGREGATE DATA APPROACH 87

threshold
oo L - i I bl b I A]' H

GENERATE FILTER GLOM | | | |sPLAY MAP GLoM | |
RECORDS SALARY LIST H LIST NAME LIST B :
Lo il] . R ;
generate-records filter-salary map-name stacking-
collect-

list

Figure 3.4: Sliver diagram for the list-based implementation of fat-cats. Each of the
dotted boxes corresponds to the procedure whose name appears below it.

aparts intermediate lists that do not exist in fat-catsy,,. Nor does it capture how (in
Scheme) fat-cats;;;; performs all generation steps before any filtering steps (in contrast,

fat-catsy,, interleaves the steps from these stages).

3.1.2 Database Example: An Array Implementation

Lists are not the only data structure that can be used to implement the database examples
in the aggregate data style. In a data-parallel language, the natural representation for
cables would be some sort of array. In such a language, the basic strategy for the database
examples would be to fill an array with all the database records and then use appropriate

data-parallel array operators to derive a result.

A notable feature of data-parallel operators is that they tend to operate in an elemen-
twise fashion on the input array. In this paradigm, a natural way to do filtering is to first
compute a boolean array containing presence flags for the corresponding elements of an
input array, and later use the presence flags to select the array indices at which an opera-
tion will be performed. We will call this approach the gap technique of filtering, because
it models the absence of an element with an explicit marker indicating that the element is
not there. Via the selection mechanism, all array operators are equipped to handled filtered
data at all times; unfiltered data is just the special case where all indices are selected. Thus,

modularity is enhanced in the gap technique by having every sliver handle filtered data.

88 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

3.1.3 Alpha Renaming Example: A Tree Implementation

Significant gains in modularity can be achieved by expressing alpha renaming as an SPS
program. The sliver diagram in Figure 2.15 is easy to express in the aggregate data ap-

proach:

(define (alpha-rename;,.. exp)
(let ((exp-tree (splay-tree exp)))
(let ((def-tree (filter-formals exp-tree)))
(glom-tree (rename exp-tree
(environment def-tree
(fresh-names def-tree)))))))

Since each of the conceptual processes involved in alpha renaming is some sort of tree
walk, it is natural to use trees as the common currency through which the slivers commu-
nicate. To simplify the implementation, all of the intermediate trees have a common form.
They are instances of a tree data abstraction in which every tree node is an immutable
structure maintaining a single value (the datum) and a list of subtrees. The tree construc-
tor takes a datum and list of subtrees and returns a newly constructed tree node with this
information; the tree-datum and tree-subtrees selectors extract information from a tree.
Here is a straightforward implementation of this abstraction that we will assume in our

examples.
(define (tree value subtrees) (cons value subtrees))
(define (tree-datum tr) (car tr))

(define (tree-subtrees tr) (cdr tr))

The datum stored at a tree node can be any value. Multiple values can be stored at a tree
node by packaging them up into a single compound datum. A tree whose subtree list is
empty is called a leaf.

Figures 3.5 — 3.7 present the tree-based implementations of the subroutines used by
alpha-rename;... Although lambda calculus terms have an inherent tree structure, it is
still necessary to convert them into the common tree format used by the other operations.
We will refer to the original syntactic form as an term and the converted one as a node tree.
The conversion between terms and node trees is handled by splay-tree and glom-tree, as

shown in Figure 3.5. The datum of an node tree, called a node, is a list of a term type and

THE AGGREGATE DATA APPROACH

(define (splay-tree exp)
(cond
((variable? exp)
(tree (list ’variable exp) '()))
((lambda? exp)
(tree (1ist ‘lambda (formal exp))
(list (splay->tree (body exp)))))
((call? exp)
(tree (1list ’call)
(list (splay->tree (rator exp))
(splay->tree (rand exp)))))
))

(define (glom—tree tr)
(let ((exp (tree-datum tr))
(subexps (tree-subtrees tr)))
(case (first exp)
((variable) (second exp))
((1ambda)
(make-lambda (second exp)
(glom-tree (first subexps))))

((call)
(make-call (glom-tree (first subexps))
(glom-tree (second subexps))))

)))

(define (filter-formals exp-tree)
(let ((exp (tree-datum exp-tree))
(subexps (tree-subtrees exp-tree)))
(if (eq? ’lambda (first exp))
(tree (second exp)
(list (filter-formals (first subexps))))
(tree ’() ; No names declared at this node.
(map filter—-formals subexps)))))

Figure 3.5: Subroutines for the alpha-renamer, part 1.

89

90 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

extra information relevant to that type. The subtrees of an node tree are just the converted

subterms.

For instance, consider the following sample term:

(define a-term
’(lambda x
(lambda y
(call (lambda x
x)
(lambda y
x)))))

The node tree corresponding to a-term is given below:

(splay-tree a-term)

ggg
((1ambda x)
((1ambda y)
((call)
((lambda x)
((variable x)))
((1ambda y)
((variable x))))))

The filter-formals procedure (see Figure 3.5) highlights the locations of the declared
names in an expression tree. It returns a name tree with the same shape as its input in
which every lambda node has been mapped to its formal parameter and every non-lambda
node has been mapped to nil. This is an example of the gap technique of filtering applied
to trees; here, a gap is explicitly represented by a nil. For example,

(filter-formals (splay-tree a-term))

eval
(x
(y
€0
(x
40D
(y
OIMN

The name generator, fresh-names (see Figure 3.6), is the most complicated component
in this decomposition. It transforms a given name tree into a new name tree in which all
the names are distinct. It does this in two stages. First, it performs a left-to-right preorder
walk over the given name tree, in which it increments a counter every time it encounters a

name. This process returns a number tree with the same shape as the name tree in which

3.1. THE AGGREGATE DATA APPROACH 91

every node is decorated with the value of the counter from the walk. Second, it maps a
new-symbol generator over the name tree and the number tree to get a tree of fresh names.

For example:

(lr-pre-number (filter-formals (splay-tree a-term) 0))
eval
(o
(1
(2
(2
(3))
(3
@)

(fresh~names (filter-formals (splay-tree test)))
eval
(x_0
(y-1
O
(x_2
«)
(y-3
O

It is worth noting that 1r-pre-number works on any tree, not only name trees.

The environment procedure (Figure 3.7) takes a name tree and a value tree and creates
a tree of environments that has the same shape as the two input trees. The environment
datum at every node in the resulting tree is the environment of the parent node extended by
a binding between the corresponding name and value. When there is no corresponding name
(i.e., the name tree has a nil at a node), the environment is passed down unchanged from
above. If we assume that environments are implemented as association lists (where earlier
bindings take precedence over later ones), then environment has the following behavior on

our test expression:

(let ((defs (filter-formals (splay-tree a-term))))
(environment defs
(fresh-names defs)))

(((x . x.0))
(((y . y_1) (x . x_0))
(((y . y_1) (x . x_0))
((x . x22) (y - y_1) (x . x_0))
(((x . x22) (y . y21) (x . x_0))))
(((y . y.3) (y . y_1) (x . x_0))
(((y . y23) (y . y_1) (x . x_0)))))))

CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (fresh-names name-tree)
(map-fresh name-~tree
(lr-pre-number name-tree 0)))

(define (lr-pre-number tr num)
;; Create a number tree for the given tree
;; by a left-to-right preorder walk.
(define (walk tr num)
;; Returns a list of a new tree and a new num
(mlet (((num-subtrees numl)
(walk-trees (tree-subtrees tr)
(if (null? (tree-datum tr))
num
(+ num 1)))))
(list (tree num num-subtrees)
numi)))
(define (walk-trees trs num)
;; Returns a list of a new tree list and a new num
(if (null? trs)
(1ist () num)
(mlet (((first-tree numi) (walk (car trs) num)))
(mlet (((rest-trees num2) (walk-trees (cdr trs) numil)))
(1ist (cons first-tree rest-trees)
nun2)))))
(car (walk tr 0)))

(define (map-fresh name~tree num-tree)
(let ((name (tree—-datum name-tree))
(num (tree-datum num-tree)))
(tree (if (null? name)
()
(fresh-name name num))
(map map-fresh

(tree-subtrees name-tree)
(tree-subtrees num-tree)))))

Figure 3.6: Subroutines for the alpha-renamer, part II.

3.1. THE AGGREGATE DATA APPROACH 93

(define (environment name-tree val-tree)
;3 Assume ENV-IDENTITY binds each name to itself
((env-down env-identity) name-tree val-tree))

(define (env-down env)
(lambda (ntree vtree)
(let ({(name (tree—-datum ntree))
{(val (tree-datum vtree)))
(let ((new-env (if (null? name)
env
(env-extend name val env))))
(tree new—-env
(map (down new-env)
(tree-subtrees ntree)
(tree-subtrees vtree)

2)))))

(define (rename exp-tree env-tree)
(let ((exp (tree-datum exp-tree))
(env (tree-datum env-tree)))
(tree (case (first exp)
((variable)
(list ’variable (env-lookup (second exp) env)))
((lambda)
(l1ist ’lambda (env-lookup (second exp) env)))
(else exp))
(map rename
(tree-subtrees exp-tree)
(tree-subtrees env-tree)))))

Figure 3.7: Subroutines for the alpha-renamer, part III.

The final component of the decomposition is the rename procedure (Figure 3.7). It
takes a node tree and an environment tree and returns a new expression tree in which all
lambda-bound variables and variable references are renamed according to the corresponding

environinent. In the case of our running example:

94 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(let ((exp-tree (splay-tree a-term)))
(let ((defs (filter-formals exp-tree)))
(rename exp-tree
(environment defs
(fresh-names defs)))))

eval
—

((lambda x_0)
((lambda y_1)
((call)
((lambda x_2)
((variable x_2)))
((1ambda y_3)
((variable x_0))))))

Putting all the components together yields the complete alpha renamer, which works as
advertised on the test term:

(alpha-rename a-term)

eval
{(lambda x_0
(lambda y_1
(call
(lambda x_2
x_2)
(lambda y_3
x_0))))

The signal processing organization for the alpha renaming program has numerous mod-

ularity advantages over the monolithic approaches:

¢ The tree-manipulation procedures can be designed, implemented, and debugged inde-
pendently. In the monolithic versions, it was impossible to perform any of these tasks

on only one of the subprocesses since they all were intertwined.

e Many program modifications can be made by local changes to the tree-manipulation
procedures. For example, in order to make a name generator that walks right-to-
left rather than left-to-right, it is only necessary to replace the Ir-pre-number within
fresh-names by an appropriately defined rl-pre-number. Such a modification is

entirely local; no other module need be changed.

e The tree-manipulation procedures are reusable. Structurally, they share a standard
interface (trees) that makes them easy to mix and match. More importantly, the

modules can be designed to make minimal assumptions about the contexts in which

3.1.

THE AGGREGATE DATA APPROACH 95

they are to be used, thereby broadening their range of applicability. For example, the
environment procedure embodies a downward flow of binding information for any
tree of names and any tree of values, as long as they have the same shape. More
context-dependent modules, such as filter-formals and rename (both of which
contain references to lambda-calculus specific details like the lambda keyword) can be

generalized to make them more widely applicable.

Many of the tree-manipulation procedures share a common structure that can be cap-
tured by higher-order tree-manipulation procedures. For example, filter-formals
and rename are both instances of a more general tree-mapping process in which each
datum of a result node only depends on data of the argument nodes. Environment,
glom-tree, and lr-pre-number are instances, respectively, of more general processes
that accumulate information down a tree, up a tree, and threaded through a tree. We

will consider such generalizations in depth in Chapter 6.

The modules can capture default behavior in a way that facilitates extensions. Ex-
tending the alpha renamer to deal with an if construct only requires adding new

handlers to the conversion routines splay-tree and glom-tree:

(define (splay-tree exp)
(cond

((if? exp)
(tree (list 'if)
(1ist (splay-tree (test exp))
(splay-tree (then exp))
(splay-tree (else exp)))))

))

96 "HAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (glom-tree tr)
(let ((exp (tree-datum tr))
(subexps (tree-subtrees tr)))
(case (first exp)

((if) (make-if (glom-tree (first subexps))
(glom-tree (second subexps))
(glom-tree (third subexps))))

)

In particular, the core modules of the alpha renamer — name generation, environment,
renaming — need not be changed at all to handle the if construct! The reason is that
these modules all have appropriate defaults built in. For example, at any node where
a name is not supplied, environment simply passes the current environment down to
all the subexpressions. This default captures essential behavior of “environmentness”

that need be specified in only one place.

To be fair, it is worth noting that adding a new name declaration construct would not
be as easy as adding if. The problem is that the notions of name declaration and
scope are too closely tied to details of the lambda calculus within filter-formals
and rename. However it is possible to generalize these modules so that even new

binding constructs are easy to add to the base language.

3.1.4 Some Drawbacks

Unfortunately, the aggregate data approach suffers from some important drawbacks that
detract from the benefits of modularity. Chief among these is the overhead of manipulating
the aggregate data. Consider mean-age. The monolithic version of mean-age creates no
aggregate data structures, but the list-based version of mean-age creates five intermediate
lists during its execution. There is a time overhead associated with building these lists
and taking them apart. Even more debilitating is the space overhead used to compute and
store these lists. Under the standard Scheme evaluation model, memory must contain a
list the size of the entire database whenever map-age, map-one, and down-accumulate-sum

are applied. Furthermore, whenever the base case is reached in any of the computations

3.1. THE AGGREGATE DATA APPROACH 97

specified in Figure 3.1, the size of the implicit control stack must be on the order of the
database size as well. These problems plague any program representing cables by lists or

trees.

The time overhead is very annoying but not devastating. It increases the running time of
the monolithic mean-age by a constant multiplicative factor. In many cases it is reasonable
to pay this price in order to reap the benefits of modularity. For example, because the
modular version makes better use of the programmer’s time (since it is easier to write,
modify, and debug), it may actually be more cost-effective than a faster program that is

harder to write.

The space overhead can be a more serious problem. Whereas the time requirements
differed in a constant factor, the space requirements can differ in order of growth. The
monolithic version of mean-age executes in constant space, while the list-based version
requires both stack and heap space linear in the size of the database. A sufficiently large
database can exhaust available memory in the list-based version, causing the program to
fail. This is an unreasonable price to pay for modularity. Even though standardly available
computer memories will continue to grow larger at a rapid pace, it is likely that the standard
size of information chunks will grow at an even faster pace. The storage pitfalls of the

aggregate data approach will become more problematic over time, not less so.

Furthermore, the straightforward aggregate data technique fails totally in cases where
the aggregate structures are conceptually infinite. Infinite data structures can be a powerful
way to modularize programs (see [ASS85]). An excellent example [Hug90] is decomposing
a game program into a part that generates a game tree, and a part that examines the
game tree. This supports modularity because the game tree generator can be designed as
an independent unit without regard to the particular ways in which it will examined. But
since game trees are typically infinite, this decomposition can stretch the above storage

overhead problem beyond the capabilities of any finite memory.

Finally, although time and space overheads are the most important problems with the
aggregate data approach, they aren’t the only ones. Sometimes it is desirable to control the
scheduling of operations from different slivers. For example, if two different slivers use /0

operations, we might want these interleaved in a certain fashion, or we might want all the

98 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

operations in one sliver to happen before those in another. The aggregate data language is
not powerful enough by itself to express such constraints. More generally, there are questions
of how to combine the computational shapes of individual idioms to yield a desired shape
for the composite. It is often possible to manually interweave several linear iterations into
a single linear recursive computations, but the standard aggregate data approach does not

allow us to talk in these terms.

3.1.5 Partial Solutions

There are a number of techniques for ameliorating the problems outlined above in special

cases, but none is satisfactory in general.

Cdr-bashing

The cdr-bashing trick can be used to reduce the control space associated with list manip-
ulations. Replacing every instance of GLOM-LIST with CDR-BASHING-LIST-COLLECT would
remove the need for implicit stacks in all of the database examples. A similar trick, in con-
junction with pointer reversal, could remove implicit stacks from the tree problems as well.
But these tricks ultimately convert implicit stacks to explicit ones. They do not address the

more fundemental problem of the space taken by the intermediate aggregate structures.

Lazy Data Structures

Lazy data structures are often suggested as a solution to the space problems described
above, but this technique does not work in all cases.! A data structure is lazy when the
computation of each of its components is delayed until it is required (if ever). In SPS
programs based on aggregate data, lazy data can reduce space overhead and permit infinite
data structures by effectively allowing a limited kind of coroutining between the slivers.

In some SPS programs, lazy data can eliminate the order-of-growth space overhead

associated with the intermediate aggregate structures. For example, consider the following

!Lazy data structures are not to be confused with the more general strategy of lazy evaluation. Lazy
evaluation introduces many space problems of its own (such as the dragging tail problem [Pey87]) that will
not be detailed here.

3.1. THE AGGREGATE DATA APPROACH 99

procedure for counting the number of employees who earn more than a given amount:

(define (fat-cat-count threshold database)
(running-sum
(map-one
(filter-salary threshold
(generate-records database)))))

Rather than manipulating lists, suppose that the subroutines manipulate Scheme streams,
a form of lazy lists described in [ASS85]. A stream implementation of these subroutines

appears in Figure 3.8.

(define (generate-recordssir.am database)
(define (gen record)
(if (end-of-database? record)
the—empty~stream
(cons-stream record (gen (next-record record)))))
(gen (first-record database)))

(define (filter-salarysireqm threshold records)
(cond ((empty-stream? records) the-empty-stream)
((> (record-get (head records) ’salary) threshold)
(cons-stream (head records)
(filter-salary,sream threshold (tail records))))
(else (filter-salarysiream threshold (tail records)))))

(define (map-one;ireqm str)
(if (empty-stream? str)
the-empty-stream
(cons-stream 1 (map-one,ireqm (tail str)))))

(define running-sumgiream
(et ()
(define (accum str sum)
(if (empty-stream? str)
sum
(accum (tail str) (+ (head str) sum))))
(lambda (stream) (accum stream 0))))

Figure 3.8: A stream-based implementation of the parts used by fat-cat-count.

The stream-based version of fat-cat-count executes in constant control and data space.
This is a remarkable result: the space behavior of a monolithic version of fat-cat-count
is achieved in a modular aggregate data program without any explicit concurrency or side
effects. The operations of the subroutines are interleaved as a result of the delayed eval-

uation of the second argument of cons-stream. This interleaving enables the garbage

100 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

collector to reclaim the intermediate storage allocated for each record by the time the next
one is processed.? The side effects necessary for the cdr-bashing trick aren’t needed here
because they are effectively hidden by the memoization employed by streams to avoid the
recomputation of delayed values [ASS85].

Unfortunately, lazy data is not a silver bullet. The subtle interactions between laziness
and garbage collection can make it hard to predict the storage requirements of a program.
As one example of the subtlety, compare the running-sumg.cq, Figure 3.8 with the more

straightforward version below:

(define (running-sumsireqm Stream)
(define (accum str sum)
(if (empty-stream? str)
sum
(accum (tail str) (+ (head str) sum))))
(accum stream 0))

If the more straightforward version of running-sumreqm is used in fat-cat-count, then
constant space behavior cannot be guaranteed!?

Even worse, lazy data doesn’t always interact well with fan-out. Consider a stream
implementation of mean-age, which exhibits fan-out by using the records generated from

the database in two places:

(define (mean-agesiream database)
(let ((records (generate-records;ir.,m database)))
(/ (running-sumgireqm (Map-agesiream records))
(running-sumsipeqm (Map-onesireqm records)))))

Because Scheme evaluates procedure arguments in some sequential order, there is a point
in the computation when one of the arguments to / has been completely evaluated but

evaluation of the other has not yet begun. Due to the memoization of stream elements,

2The garbage collector may not actually reclaim the intermediate storage after every record is processed.
But the fact that the storage can be reclaimed at any future point means that it not charged to the
computation in space analysis.

3Here’s why: Under the usual environment model of Scheme evaluation (see [ASS85]), the stream argu-
ment to running-suMe¢reqm is accessible from the environment in which accum is evaluated. Even though
streamis never referenced within accum, its value can’t be garbage collected until accum returns. But in the
case of fat-cat—count, stream will be holding onto the stream created by map-onetream, whose size is the
number of fat cats in the database. So fat-cat-count is no longer constant space.

There are implementation strategies and alternate evaluation models under which accum won’t unneces-
sarily hang onto stream In these cases, fat-cat-count would still be constant space. However, the language
doesn’t guarantee this behavior.

3.1. THE AGGREGATE DATA APPROACH 101

memory must contain an intermediate data structure corresponding to the entire database
at this point. If streams were not memoized, then there would be no storage overhead, but
the database would have to be traversed twice. This latter case is equivalent to manually

removing the fan-out from mean-age:

(define (mean-ageno—fan—ou: database)
(/ (running-sum (map-age (generate-records database)))
(running-sum (map-one (generate-records database)))))

In either case, lazy data does not help.

Hughes’s Approach

Hughes improved the lazy data approach by supplying mechanisms that can guarantee de-
sirable space behavior even for networks exhibiting fan-out [Hug83, Hug84]. He observed
that in programs like mean-age, a constant space computation can only be achieved if the
arguments to / are somehow computed together in lock step. That is, generate-records
should not produce a new record until all the mappers and summers have completely pro-

cessed the previous one; this way, no handle on the previous record needs to be stored.

Hughes showed that in functional languages with sequential argument evaluation it is
impossible to express this kind of lock step evaluation in a modular way. To overcome the
limitations of sequential argument evaluation, Hughes introduced mechanisms for parallel

evaluation (par) and synchronization (synch). These are summarized in Figure 3.9.4

Using Hughes’s par and synch constructs, the stream-based version of mean-age can

be forced to exhibit constant space behavior as follows:

*Hughes originally posed his mechanism in a lazy functional language, so these versions have to be suitably
modified to make sense in Scheme. Hughes’s (synch E) actually returned a pair both of whose components
held the value of E; but each component could only be accessed when both components had been requested.

102 "HAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

e (par E) returns immediately with a placeholder for the result of the evaluation of
E. The evaluation of E proceeeds concurrently with the rest of the computation.
Any context requiring the actual value of the placeholder will wait until the value is
available. Par is equivalent to the future construct provided by many Lisps [Hal85,
Mil87, For91].

o (synch E) returns an object that suspends the computation of E. Demandl and
demand2 are procedures that demand such an object to return the value of its sus-
pended computation, but the computation is only initiated when both demand1 and
demand2 have been called on the object. Once computed, the value of E is memo-
ized. Synch is similar to Scheme’s delay, except that there are two different forcing
functions, both of which must be invoked before the delayed expression is computed.

Figure 3.9: Scheme renditions of Hughes’s par and synch constructs.

(define (mean-agepygr.s database)
(let ((records (synch-stream (generate-recordssireqm database))))
(/ (par (running-sumgireem
(map_agestream
(map-stream demandl records))))
(par (running-sumgiream
(map-onesiream
(map-stream demand2 records)))))))

(define (synch-stream str)
(if (empty-stream? str)
(synch the-empty—stream)
(cons-stream (synch (head str))
(synch-stream (tail str)))))

(define (map-stream f str)
(if (empty-stream? str)
the-empty—stream
(cons~stream (f (head str))
(map-stream (tail str)))))

Mean-agepyghes Uses synch-stream to associate a synchronization point with every database
record and par to evaluate the operands of / concurrently. Since the age computation uses
demand1 to access a record and the length computation uses demand2, neither computation
can race ahead of the other. It’s as if both computations must pass through a series of locked
doors, each of which has two locks, and each computation has they key to only one of the
locks. As in the case of fat-cat-count, constant space behavior is once again guaranteed.

Hughes’s technique is a good mechanism for controlling space behavior, but it has a few

3.1

THE AGGREGATE DATA APPROACH 103

drawbacks:

o Lack of abstraction: The technique requires extending the sliver diagram for mean-age

with two instances of par and three slivers that manage synchronization (synch-stream
and two instances of map-stream). It would be preferable to somehow abstract over
these parallelization and synchronization operations so that the original network struc-
ture could be maintained. Unfortunately, they are difficult to capture in a reusable
fashion. For example, synch-stream can’t simply be inserted into the definition of
generate-records;eq,, because other applications of this procedure might exhibit
a fan-out other than two. Without extra support from the language, programmers
are required to manage par and synch-stream explicitly — an error-prone prospect,

especially since since synch raises the specter of deadlock.’

Weak synchronization: Using synch-stream to replace every instance of fan-out in
a sliver diagram does not force all the slivers in the diagram to compute in lock
step. Since synchronization is local, not global, there may be a lag between two sliver
computations that’s related to the number of synch-streams that appear between
them. This is usually not very important, but can be troublesome if tighter operator

interleaving is desired.

The concurrency and synchronization mechanisms underlying my technique are closely re-

lated to Hughes’s par and synch except that they address the two drawbacks above. In

particular, my technique makes it possible to hide the mechanisms inside of sliver abstrac-

tions so that the programmer does not have to deal with them.

Program Transformations and Compilation Techniques

There are a large number of program transformations and compilation techniques that

can eliminate some intermediate data structures from aggregate data programs by fusing

connected slivers. They are all essentially high-level versions of the classic low-level loop

® Deadlockis a state in which a computation can make no progress. Deadlock can arise in the presence of
synch if demand2 cannot be applied until the successful return of demand1, or vice versa.

104 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

fusion technique performed by many optimizing compilers [ASU86]. As a typical example

of these techniques, the Scheme expression

(map £ (map g 1))

could be replaced by

(map (lambda (x) (£ (g x))) 1).

The later expression is preferable because no list is constructed for the ouput of g.

The problem with existing transformation and compilation techniques is that they either
provide no guarantees or they only work on a limited class of programs. Algebraic transfor-
mation techniques [DR76, Dar82, Bac78, Bel86, Bir89a, Bir86, Bir88] perform transforma-
tions like the above map removal, but systems that automatically apply these transforma-
tions do not guarantee that all intermediate data will be removed. Because programmers
cannot depend on the transformations, they must seek other methods of controlling the
space behavior of their programs. APL compilation techniques [GW78, Bud88] suffer from
the same problem.

The listlessness {Wad84, Wad85] and deforestation [Wad88, Chi92, GLJ93] techniques
pioneered by Wadler do provide guarantees, but they are rather limited in applicability.
Listlessness handles a subclass of list programs, but no trees. Deforestation can eliminate
both lists and trees, but only in networks that exhibit no fan-out.

The most impressive of the transformation approaches is Waters’s series technique
[Wat91, Wat90]. Series is a linear datatype that corresponds to a sequence of the val-
ues assumed by a state variable during an iteration. The series compiler can transform a
large class of series networks, including those with fan-in, fan-out, and filtering, into efficient
loops. The most important aspect of series is that there is an explicit set of easy-to-check
restrictions that the programmer can verify to determine whether a given network can be
efficiently compiled. The compiler generates a warning when these restrictions are violated.

Alas, series is limited to the expression of linear iterative computations. It cannot

handle tree-shaped computations, or even linear recursions. Cyclic data dependencies are

3.2. THE CHANNEL APPROACH 105

not allowed, even though these are sometimes useful for program decomposition.® Finally,
because it is based on static analysis, series requires that the network of series operators
be determinable at compile-time. This limits expressiveness by outlawing the dynamic
configuration of the network at run-time. The lock step processing technique developed in
Chapter 5 is the basis for dynamic version of series that addresses all of these issues.

The problem with all of the transformations described in this section is that they are
too restrictive (e.g., can’t handle tree-shaped data, fan-out, or recursion) and/or they fail
to provide provide the programmer with sufficient guarantees about improvements. The
upshot is that programmers often shun the aggregate data approach and instead embrace
the fine-grained control of the monolithic style.

The storage overhead problem is a classic example of how modularity can preclude
a programmer from expressing desired behavior. The aggregate data approach hides the
operational details of the slivers inside of procedures specified wholly in terms of their
input/output behavior. The programmer has no hook into how the procedures work, and

therefore cannot express details like lock step evaluation.

3.2 The Channel Approach

In the channel approach, SPS networks are viewed as interconnected processes that com-
municate via data channel defined by the cables. Whereas the focus in the aggregate data
approach is the data transmitted on a cable, the focus in the channel approach is the process
that sends and receives data from the channel. A characteristic of the channel approach is
that the collection of elements transmitted across a channel is not treated as a single en-
tity. In the channel approach, processes are usually assumed to be independent threads of
control. They may be executing concurrently, or they may be coroutining in some fashion.

The channel approach is supported by numerous languages and systems. Hoare’s CSP
is the canonical version of this approach [Hoa85]; Unix pipes [KP84] is one of the most

widely used. Other examples of the channel approach include: communicating threads

8Waters argues that such cycles make programs harder to understand, and therefore should be avoided
at all costs.

106 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

[Bir89b, CM90], producer/consumer models (CLU iterators [L79], Id’s I-structures and
M-structures [ANP89, Bar92], Linda [CG89]) and dataflow ([Den75], [WA85], [DK&2]).
Below, we explore both coroutining and concurrent versions of the channel approach.
We will see that the channel approach can provide reasonable control over space behavior
but that it is not a very good approach for expressing linear recursions and tree shaped

computations.

3.2.1 Coroutining Example

As a demonstration of coroutining, consider a simple organization in which each sliver is
represented as an state-maintaining object that keeps track of the source object for each of
its input cables (this is the representation of the “channel”). Computation will be performed
in a demand-driven fashion. If an object receives a request for the next value on one of its
output cables, it may in turn request values from its input cables in order to satisfy the
request.7

Figures 3.10 and 3.11 present encodings of the database idioms under this organization.
Every object (except for record generators) has a source variable that indicates the source of
its input wire. Each object is represented as a thunk (parameterless procedure) that returns
its next output every time it is called. The demand! procedure enhances the readability of

this usage pattern:

(define (demand! object) (object))

When an object runs out of values to produce, it returns a distinguished done value:®

(define done °’(*done*))
(define (done? obj) (eq? obj done))

A detail: the set!s used within the accumulators guarantee that they will return done after
producing the accumulated value.

Here’s a version of the fat~cats program in this approach:

"In more complex organizations, objects might also keep track of the targets of their output cables, and
computation might exhibit both data-driven and demand-driven aspects.

8 An alternate approach is for every object to handle both an “are you done?” message and a “give me
your next value” message. It turns out that this alternate approach unduly complicates the filtering idiom
in this style (try it and seel!).

3.2. THE CHANNEL APPROACH 107

(define (make-record-generator., database)
(let ((record (first-record database)))
(lambda ()
(if (end-of-database? record)
done
(let ((val record))
(set! record (next-record record))

val)))))

(define (make-running-summer.,, source)
(define (accum sum)
(let ({next (demand! source)))
(if (done? next)
{begin (set! accum (lambda (x) dome))
sum)
(accum (+ next sum)))))
(lambda () (accum 0)))

(define (make-stacking-list-collector,, source)
(define (accum)
(let ((next (demand! source)))
(if (done? next)
(begin (set! accum (lambda () done))
10D
(cons next (accum)))))
(lambda () (accum)))

Figure 3.10: Generating and accumulating idioms for the database example in the corou-
tining technique.

108 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (make-mapper-maker.,. fun)
(lambda (source)
(lambda ()
(let ({(next (demand! source)))
(if (done? next)
done
(fun next))))))

(define make-age-mapper. .,
(make-mapper-maker., (lambda (r) (record-get r ’age))))

(define make-name-mapper.,,
(make-mapper-maker.,, (lambda (r) (record-get r ’'name))))

(define make-1-mapper or
(make-mapper-maker.,, (lambda (r) 1)))

(define (make-salary-filter,., threshold source)
(define (next)
(let ((record (demand! source)))
(cond ((done? record) done)
((> (record-get record ’salary)
threshold)

record)
(else (next)))))

(lambda () (next)))

Figure 3.11: Filtering and mapping idioms fort the database example in the coroutining
technique.

3.2. THE CHANNEL APPROACH 109

(define (fat-cats.,, threshold database)
(demand! (make-stacking-list-collector .,
(make-name-mapper .,
(make-salary-filter.,. threshold
(make-record-generator,.,, database))))))

This resembles the aggregate data approach in the way that the interconnecton of slivers is
specified by nesting expressions. However, no intermediate aggregate structures are created.
Instead, demand and values pass back and forth between the objects in a coroutining
fashion. This computational pattern closely resembles the evaluation of a lazy data version
of fat-cats.

The mean-age program is harder to express in this approach due to fan-out. The naive
approach, shown below, fails to work as desired:

;;; Doesn’t work because of fan-out!
(define (mean-age.or_wrong database)
(let ((generator (make-record-generator., database)))
(/ (demand! (make-running-summmer.,,
(make-age-mapper/dist generator)))
(demand! (make-running-summmer,,,
(make-1-mapper/dist generator))))))

Because requesting a record from generator changes its state, the two mappers connected
to generator receive different record sequences!

To avoid this problem without traversing the database twice, it is necessary to buffer
values produced by the generator until both mappers have consumed them. This can be
done in general by the using the copy., routine shown in Figure 3.12 to represent cable
fan-out in a sliver diagram. Copy... uses a buffer to effectively return two copies of a single
object. Using this routine, mean-age can be correctly implemented as:

(define (mean-age.,, database)
(mlet (((geni gen2) (copy.,r (make-record-generator/dist database))))
(/ (demand! (make-running-summer,,
(make-age-mapper.,r genli)))
(demand! (make-running-summer.,,
(make-1-mapper.,, gen2))))))

Introducing buffering makes it possible to handle fan-out, but it brings with it the
same space overhead problems that hamper the aggregate data approach. In a language
with sequential argument evaluation, the mean-age.,, procedure will end up buffering the

entire database at some point. As in the aggregate data approach, the problem with the

110 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (copy..r source)
(let ((queue (make-queue))
(slowpoke 0)) ; 0 = neither copy behind;
; 1 = first copy behind;
; 2 = second copy behind.
(define (make-copy my-id other-id)
(lambda ()
(if (= my-id slowpoke)
;3 If I'm behind, get next value from queue.
(let ((head (dequeue! queue)))
(if (queue-empty? queue)
(set! slowpoke 0))

head)
;5 If I'm not behind, get next value from source and queue it.

(let ((next (demand! source)))
(vegin
(enqueue! next queune)
(set! slowpoke other-id)

next)))))
;3 Return a list of two thunks that act like SOURCE.

(list (make-copy 1 2) (make-copy 2 1))))

Figure 3.12: A routine that returns two copies of a given object. The procedures

make-queue, enqueue!, dequeue!, and queue-empty? implement a queue abstraction that

is not detailed here.

3.2. THE CHANNEL APPROACH 111

coroutining technique is that the modules preclude the programmer from expressing fine-
grained control. In both cases, some form of concurrency and synchronization are required
to express desired control.

A new problem exhibited by coroutining is that tree-shaped computations are hard to
handle. Using demands to request the next value from an input cable is fine when the values
are arranged linearly in sequences, but is problematic when they are arranged as trees. How
would alpha-rename be coded in the coroutining technique? There are several approaches,

none of which is entirely satisfactory:

o Encode the tree as a linear sequence of its contents along with extra information
indicating the shape of the tree. This kind of encoding is used all the time to transmit
structured information over physical wires. Yet, a programmer doesn’t want to have to
think in these terms; at the very least, there need to be abstractions for the encoding

and decoding process.

e Associate with each request an address that indicates the desired element. This com-
plicates both requestor and requestee by requiring them to keep track of address

information.

¢ Have each object respond to demand! by returning subtree objects in addition to the
usual value. The requester then can explicitly choose which subobject to demand!

next. This complicates each requester by forcing it to manage the subobjects.

3.2.2 Concurrent Process Example

We address the concurrency problem of the coroutining technique by considering a model
in which the sliver processes are concurrent. The processes need not actually be running
in parallel on separate physical processors; for our purposes, simulated concurrency on a

single processor is perfectly adequate.

The Database Example

Versions of mean-age and fat-cats written in the concurrent process technique are shown

in Figure 3.13. They make use of the idioms presented in Figures 3.14 and 3.15. In this code,

112 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

we assume that Scheme has been extended with some constructs that support concurrency:®

(cobegin expl exp2 ...) evaluates each of the subexpressions in its own concurrent
thread. Evaluation of the subexpressions may be arbitrarily interleaved. Cobegin
returns only when all component thunks have returned; its return value is a list of the

subexpression values.

(make-channel) returns a new channel object, which acts as a FIFO communication

queue between concurrently executing threads.

(send! channel value) tacks value on the end of the channel queue and returns value.

¢ (receive! channel) removes the first value from the channel queue and returns it. If

the queue is empty, then receive! blocks until a value is available to read.

Channels are assumed to be buffered communication queues in which sends and receives
are performed by side effect, but there are many other communication models that could
have been chosen. As in the coroutining technique, done and done? are used to indicate
the termination of a value sequence.

In mean-age,,. and fat-cats..m,., each cable is represented explicitly as a channel
object, and each sliver is represented as a channel-manipulation procedure. The cobegin
allows the slivers conceptually to execute in parallel, though on a sequential machine their
computations are actually interleaved. Most slivers wait for values from their input channels,
and then produce values on their output channels. The blocking behavior of receive! on
an empty channel is a synchronization mechanism that forces slivers to wait for values to
become available on their input channels before proceeding. This results in a data-driven
model of evaluation that stands in contrast with the demand-driven evaluation of the lazy
data technique and the coroutining technique.

The rationale behind the copyconc is the same as that for copy,r in the previous example.
Since receive! works by side effect, two consumers sharing the same channel will not see

the same sequence of values. Copying the values to two separate channels decouples the

®Except for a few cosmetic changes changes, these constructs are the ones described in [J(389).

3.2. THE CHANNEL APPROACH

(define (mean-age.,,. database)

(let ((gen~>copy (make-channel))
(copy->map-age (make-channel))
(copy->map-one (make-channel))
(map-age->sumi (make-channel))

(map-one->sum2 (make-channel)))
(mlet (((. - _ - sumi sum2)
(cobegin

(generate-records.,,. database gen->copy)
(copycone gen—->copy copy->map-age copy->map-one)
(map-agecon. copy->map-age map-age->sumi)
(map-one;,,. copy->map-one map-one->sum2)
(running-sum.,,. map-age->sumi)
(running-sum.,,. map-one->sum2))))

(/ suml sum2))))

(define (fat-cats.,,. threshold database)
(let ((gen—->filter (make-channel))
(filter->map (make-channel))
(map->list (make-channel)))
(mlet (((_ _ - name-list)
(cobegin
(generate-records,,,. database gen->filter)

(filter~salary . threshold gen->filter filter->map)

(map-name.,,. filter->map map->list)
(stacking-list-collect e, map->list))))
name-1list)))

113

Figure 3.13: Versions of mean-age and fat-cats in the concurrent process technique. The
mlet construct is the pattern matching version of let introduced earlier; the underscore

character ‘.’ is used in patterns to indicate unnamed slots.

114 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

(define (generate-records.,,. database out)
(define (gen record)
(if (end-of-database? record)
(send! out done)
(begin
(send! out record)
(gen (next-record record)))))
(gen (first-record database)))

(define (running-sumcy,. in)
(define (sum ans)
(let ((next (receive! in)))
(if (done? next)
ans
(sum (+ next ans)))))
(sum 0))

(define (stacking-list-collect s, in)
(define (accum)
(let ((next (receive! in)))
(if (done? next)
()
(cons next (accum)))))
(accum))

Figure 3.14: Generating and accumulating idioms for the database example in the concur-
rent process approach.

3.2, THE CHANNEL APPROACH 115

(define (make-mapon. f)
(define (map in out)
(define (loop)
(let ((next (receive! in)))
(if (done? next)
(send! out done)

(begin
(send! out (f next))
(1oop)))))
(Loop))
map)

(define map-age.on. (make-map..,. (lambda (r) (record-get r ’age))))
(define map-name.,n. (make-map.on. (lambda (r) (record-get r 'name))))
(define map-one .. (make-map..n. (lambda (x) 1)))

(define (filter-salary.,,. threshold in out)
(define (loop)
(let ((next (receive! in)))
(if (done? next)
(send! out done)
(begin
(if (> (record-get next ’salary)
threshold)
(send! out next))
(Loop)))))
(1oop))

(define (cop¥con. in outl out?2)
(define (loop)
(let ((next (receive! in)))
(begin
(send! outl next)
(send! out2 next)
(if (not (done? next)) (loop)))))
(Loop))

Figure 3.15: Mapping, filtering, and copying idioms for the database example in the con-
current process approach.

116 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

consumers from each other. An alternate approach would be to share a single channel but

provide each consumer with its own pointer into the channel queue.

Storage Overhead

The concurrent process technique offers the possibility of better storage behavior than the
other approaches, but does not guarantee it. Consider mean-age.oc. If all of the component
processes are operating in lock step, then no channel queue ever contains more than one
element and the program as a whole uses only constant space. However, at the other
extreme, the map-age ., process might send all database ages to its output channel before
the running-sum.,,. at the other end of the channel receives the first one. In this case, the
map-age->suml channel requires storage linear in the size of the database.

Channel storage requirements can be reduced by constraining the unbounded nature of
channel queues. The problem with unbounded channels is that they allow a producer to
race arbitrarily far ahead of one of its consumers. A common solution is to limit the number
of values that the channel can buffer.

In the most restrictive approach, channels aren’t allowed to buffer any values; instead,
the processes at the ends of the channel engage in a rendezvous in which a send! does not
return in the sending process until a receive! has been executed in the receiving process.
This is the approach adopted by CSP [Hoa85]. A rendezvous-based version of mean-age .
would be guaranteed to require only constant space.

A less restrictive approach is a bounded queue, in which there is an upper limit on the
size of a queue; when the queue reaches this limit, a send! blocks until the queue gets
smaller. mean-age,,,. would also use only constant space under this approach, though the
constant would be larger than in the rendezvous case. The bounded queue approach is a
standard means of implementing flow control between independent processes [Bir89b].

Why not simply adopt a policy in which all the channel queues are bounded? The
problem with this is that there are problems that require unbounded queues. Consider an
appendgo. process with two input channels and one output channel that first copies all
elements from the first input channel to the output channel and then copies all elements

from the second input channel to the output channel (Figure 3.16).

3.2. THE CHANNEL APPROACH 117

(define (append,,. inl in2 out)
(define (copyil)
(let ((next (receive! ini1)))
(if (done? next)
(copy2)
(begin (send! out next)
(copy1)))))
(define (copy2)
(let ((next (receive! ini)))
(if (done? next)
(send! out next)
(begin (send! out next)

(copy2)))))
(copyl))

Figure 3.16: A procedure that sends to its output channel the result of appends the values
from its two input channels.

If append.,y.. is used in the following twice procedure,

(define (twice in out)
(mlet (((c1 c2) (copyeonc im)))
(appendcone c1 c2 out)))

then the second input channel c2 to append.,,. requires a queue whose size is the number
of elements in the in channel. Since this size may be arbitrarily large, bounded queues do
not suffice in general.

A reasonable compromise is to let the programmer choose between bounded and un-
bounded channels. In addition to the unbounded (make-channel), the language could also
provide a (make-bounded-channel num) constructor that creates a channel whose queue
length is bounded by num. Then for cases like mean-age, the programiner has a means
of expressing the constant-space nature of the computation while maintaining the modular
SPS structure. Its ability to support both modular decomposition and some means of con-
straining control distinguishes the concurrent process technique from the other techniques

we have studied.

Deadlock

While the concurrent process technique has some nice properties, there are a number of

issues that detract from it. Foremost among these is that concurrent programs can some-

118 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

times enter a wedged state called deadlock in which processes aren’t done executing, but
none can make any progress. Here is a simple example of a program that deadlocks:

(let ((c1 (make-channel))
(c2 (make-channel)))
(cobegin
(begin (receive! c2) (send ci 19))
(begin (receive! c1) (send c2 23))))

Each of the two processes created by the cobegin attempts to receive a value from the
other process before it sends a value to the other process. Since neither process can make
headway, the program is stuck and no value is returned.

The problem with the above example is that the sequential ordering constraints implied
by the begins are too strong and cannot be satisfied. Deadlock can often be avoided by
removing spurious ordering constraints. For instance, the above example can be made to
work by changing the begins to cobegins:

(let ((ci (make-channel))
(c2 (make~channel)))
(cobegin
(mlet (((- ans1)
(cobegin (receive! c2) (send! ci 19))))
ans1)
(mlet (((- ans2)
(cobegin (receive! c1) (send! c2 23))))
ans2)))
24 (19 23)

This change is reasonable because the send!s do not depend on the values of the receive!s.
However, when there is an inherent dependency loop, deadlock is unavoidable and indicates
a program bug. Here is a deadlocking expression containing such a loop:

(let ((ci (make-channel))
(c2 (make-channel)))
(cobegin
(send c1 (receive! c2))
(send c2 (receive! c1))))

The above examples are contrived, but spurious deadlocks are easy to come by in prac-
tice. Avoiding them requires a defensive programming style that relaxes unnecessary order-
ing constraints. For instance, the unnecessary ordering of send!s in the copycon. procedure
from Figure 3.15 can insidiously lead to deadlock in some contexts. This procedure can be

written more robustly by decoupling the send!s with a cobegin:

3.2. THE CHANNEL APPROACH 119

(define (cOPYconc—better in outl out?2)
(define (loop)
(let ((next (receive! in)))
(begin
(cobegin ; Relax ordering of SEND!s
(send! outl next)
(send! out2 next))
(if (not (done? next)) (loop)))))
(Qoop))

In the presence of bounded channels, deadlock is even more of a threat because it can be
caused simply by choosing a bound that is lower than actually required.

Deadlock complicates the concurrent processing approach to SPS by requiring the pro-
grammer to reason more carefully about sliver composition than in other styles. In the
other approaches, the meaning of a network is easy to determine from the meaning of the
parts; as long as there are no directed loops between slivers, there are no surprises. However,
in the concurrent processing style, deadlock can arise from undirected loops'® or channels
whose buffers aren’t big enough. The extra reasoning necessary to show that a program

does not have deadlock is part of the price of additional control.

Other Issues

Deadlock is not the only issue that complicates SPS programs written in the concurrent

processing style. Here are some others:

o Synchronization: Deadlock arises from overconstrained control. But underconstrained
control also leads to problems, usually involving side effects. Consider the following

version of copy:

(define (copYeonc—worse in outl out2)
(define (loop)
(let ((next (receive! in)))
(cobegin
(send! outl next)
(send! out2 next)
(if (not (done? next)) (loop))))) ; ***
(1oop))

'%An undirected loop between slivers is formed by any two distinct paths from one to another.

120

"HAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

This differs from copy onc—better in that the starred line appears inside the cobegin.
This allows the next value to be received in parallel with sending the current value.
Unfortunately, it also allows the next value to be sent before the current value is sent.

This changes the input/ouput behavior of copy in a major way.

Underconstrained control is a classic problem whenever concurrent processes commu-
nicate via shared mutable data. The solution is to introduce extra constraints in the
form of synchronization. Typical synchronization mechanisms include locks [Bir89b],
semaphores [Dij68], monitors [Hoa74], I-structures [ANP89], M-structures [Bar92],

and Hughes’s synch construct [Hug83, Hug84].

Termination: A cobegin does not return until all its subprocesses have returned; this
kind of behavior is typical of fork/join parallelism. But getting all the subprocesses
to terminate can be tricky. Imagine an accumulator that only consumes the first
few values of a long or unbounded sequence produced by a generator. The accumu-
lator returns quickly; but what forces the generator to stop and return? For these
kinds of situations, the concurrent process technique often requires a special means of

terminating processes.

An alternate approach is to allow a process to return before it terminates. This
decoupling is employeed in so-called eager or lenient evaluation strategies ([Tra88,
Hal85, Mil87]) in which computations may continue to execute after a final answer
has been returned. Some means of garbage-collecting these superfluous computations

is necessary to avoid wasting resources.

Tree-shaped Data: Like the coroutining technique, the concurrent process technique
has difficulty expressing tree-shaped computations. The same circumventions sug-
gested for coroutining work here as well. But a more satisfying approach is to mix
aspects of the data aggregate approach and the concurrent process approach. For
example, rather than transmitting a tree over a single channel, why not transmit a
tree over a tree of channels, where each channel transmits exactly one element? This
is the approach taken by languages, such as Id [AN89] and Linda [CG89), that exhibit

producer/consumer parallelism. These languages support non-strict data structures

3.2. THE CHANNEL APPROACH 121

that can be manipulated by a program before their components have been computed.
Any attempt to reference an uncomputed component results in a computation that is
blocked until the component is actually there. Thus, components of a non-strict data
structure are essentially channels that can communicate only a single element before

being “used up”.

o Unnecessary Computation: Data-driven evaluation can often perform unnecessary
operations. As a simple example, imagine a network where an expensive mapper

precedes a filter that passes only every other element:

: —B\] MAP- =\ every- =B\
t | GENERATE EXPENSIVE- ACCUMULATE
: FUNCTION [V | OTHER

In this case, much of the work being done by the mapper is for naught. This contrasts
with demand-driven evaluation, in which only those operations necessary for the final
result are performed. An obvious fix is to swap the components, but the mapper may

be packaged together with other slivers in a way that makes this infeasible.

In systems that provide real parallelism (i.e., many physical processors), it is often
possible to reduce overall computing resources by wasting or repeating some compu-
tation. (The data parallel techniques discussed in [HS86a] are an excellent example
of this phenomenon.) In such systems, demand-driven techniques can reduce per-
formance rather than improving it. However, in systems providing only simulated
parallelism (i.e., a single processor), demand-driven techniques may still be advanta-
geous. Pingali and Arvind show how demand-driven computation can be simulated

within a dataflow model [PA85], [PA8G].

e Querconstrained Operation Order: The linearity of channels sometimes overconstrains
the order in which operations are applied. Consider the mapping routines in Fig-
ure 3.15. These routines force the mapped function to be applied to each record
in the order in which it appears in the database. Compare this behavior with the

mapping functions for the aggregate data approach. In the latter case, the mapped

122 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

function can happen in any order with respect to the recursive mapping. This un-
specified order can increase the modularity of components like mappers, which can
then be used in contexts that constrain the order in different ways. It is unwise to

specify operation scheduling too early!

3.3 Other Techniques

Here we discuss a few common modularity techniques that are clearly relevant to the ex-
pression of loops and recursions, but can’t easily be characterized within the aggregate data

approach or the channel approach.

3.3.1 Higher Order Procedures

In a programming language that supports higher-order procedures, it is natural to capture
general loops and recursions as procedures. For example, here are Scheme procedures

encapsulating iteration and linear recursion:

(define (iterate initial-state done? down final)
(define (iter state)
(if (done? state)
(final state)
(iter (down state))))
(iter initial-state))

(define (recur initial-state done? base down up final)
(define (rec state)
(if (done? state)
(base state)
(up state (rec (down state)))))
(final (rec initial-state))))

While this is an elegant and powerful strategy for capturing control constructs, it does
not provide the kind modularity supported by the signal processing style.!! For example,
implementing mean-age via iterate requires the programmer to manually interweave the
done? parts of the component slivers, the down parts of the components, and the final

parts of the components. This is hardly an improvement over the monolithic approach! The

1 Another problem is that general tree walkers are considerably more complex than the simple linear
examples shown here.

3.3. OTHER TECHNIQUES 123

problem is that the looping control structure is still centralized in loop rather than being
distributed over components.

Modularity could be achieved in this approach by representing an iterative sliver as
a record of procedures that described the sliver’s contribution to each of the arguments
of the abstracted control structure. For example, an iterative sliver would be a record of
initial-state, done?, down, and final components. However, it would also be necessary
to define an appropriate means of combination for such records, which would be complicated
in general. While this approach may not be reasonable for programmers, it can be good idea,
for compilers. Indeed, the notion of gluing together corresponding fragments of different

slivers is at the heart of Waters’s series compiler [Wat91].

3.3.2 Looping Macros

Many versions of Lisp have supported complex macros that capture certain looping idioms.!?

For example, in Common Lisp [Ste90], the mean-age procedure can be written as follows:

(defun mean-age (database)
(loop for record = (first-record database)
then (first-record (next-record record))

until (end-of-database? record)

sum (record-get record ’age) into total

count record into length

finally (return (/ total length))))
Here, for, until, sum, count, and finally all introduce clauses into the occurence of the
loop looping macro. Each clause is intended to express a common iterative processing idiom
in a convenient syntax.

As with the higher-order procedure approach, looping macros suffer modularity prob-
lems. Again, there is a centralized control structure that is not distributed over the com-
ponents. There is no way to abstract over a collection of clauses to reuse them in other
occurrences of loop. While some clauses concisely capture an idiom (e.g., the sum and

count clauses), other idioms are spread over several clauses (e.g., record generation). This

approach is essentially an alternate syntax for writing a monolithic iteration.

‘2 As far as | know, there are not any similar macros that capture the idioms of tree recursions. Designing
such a macro would be an interesting project.

124 "HAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

3.3.3 Attribute Grammars

Attribute grammars are a formalism invented by Knuth [Knu68] for declaratively specify-
ing the decoration of tree nodes with named attributes. Though originally intended for
describing the semantics of programming languages based on their grammars, today they
are mainly used for syntax-directed compilation techniques (see [DJL88] for an overview).

Attribute grammars are related to slivers because (1) they are a language for describing
a class of tree computations (2) they support a crude notion of shape. Attribute grammars
specify computations on a tree (typically a parse tree) by indicating how an attribute at
one node in a tree is calculated from attributes at the current node, its parent node, or its
children nodes. Attributes are classified according to dependency information: an attribute
computed from parent nodes is said to be inherited, while one computed from children nodes
is said to be synthesized. “Inherited” and “synthesized” roughly correspond to parallel down
and parallel up computation shapes. Indeed, it is possible to view attribute grammars as
defining recursive functions [Joh87] or procedures [Kat84].

“lassical attribute grammars suffer from a lack of modularity because they distribute the
specification of attribute computations across all the different types of tree nodes. However,
in recent years, there has been a flurry of activity on modular attribute grammars, which
strive to group all the computations of a given attribute into a modular unit [DC90, Ada91,
FMY92, KW92, Wat92].

While attribute grammars can be a powerful declarative framework for specifying tree
computations, they do not seem to be good languages for controlling the behavior of these

computations:

o As far as I can tell, most of the attribute grammar frameworks assume that the entire
tree being decorated resides in memory. This is an exponential difference in space
complexity for monolithic tree-recursive procedures that require space proportional

only to the depth of the tree.

o Attribute grammars don’t supply a means of expressing tail recursion. To return a
result from the leaf of a tree, it is necessary to pass it through all the intermediate

nodes back to the root, even if there are no pending computations to be performed

3.4. SUMMARY 125

on it.

e The declarative nature of attribute grammars can make it difficult to predict how
many passes the attribute computation will make over the tree. (There are some
frameworks, such as one-pass attribute grammars [Kos84], that do limit the number

of passes).

o Attribute grammar formalisms are usually not designed to express general tree com-
putations; they are typically tied to parsing technology and are used mainly to specify

language implementations.

e Modular attribute grammar formalisms typically involve ad hoc mechanisms for spec-
ifying component connectivity. Connections are much more natural to express in the

aggregate data and channel approaches.

3.4 Summary

We have examined in detail issues of modularity and control for a linear and tree-based

example. The following themes stand out:

e Modularity arguments suggest that some programs can be structured like signal pro-
cessing networks of mix and match slivers that embody idiomatic loops and recursions.

This approach is called the signal processing style of programming.

¢ The modularity of slivers is enhanced when their specification leaves open certain
details that can be filled in by the context in which they are used. Examples of this

theme include:

— Higher-order procedures capture general patterns while allowing parameters to

be supplied where they are used.

~ Lazy data permits the specification of potentially infinite data structures, but
these are only computed to the extent required by the context in which they’re

used.

126 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

— Concurrency allows operations in different slivers to be interleaved, subject to
the ordering constraints that result from their connection. The reusability of
concurrent processes is increased when spurious ordering constraints on their

computations are removed.

— Unspecified sequential evaluation of arguments gives a limited form of operator

interleaving.

o Side effects are a crucial mechanism both for achieving modularity and specifying
fine-grained control. They aid modularity by localizing computation and reducing
the interfaces between parts. They permit fine-grained control of space resources and

operation order, as in the cdr-bashing list collection example.

e Traditional forms of implementing input/output modularity often preclude the pro-
grammer from controlling operational details of a programn at a fine-grained level. Such
details include time and space complexity, operation order, and limiting unnecessary

computations.

¢ Standard techniques for SPS programming have benefits and drawbacks along various

dimensions:

— Storage requirements and operation scheduling are difficult to control in the ag-
gregate data and coroutining techniques. They are easier to control in presence
of concurrency, but then it is necessary to contend with issues such as deadlock

and termination.

— Fan-out in the cables of sliver diagrams causes no problems for the aggregate
data style, but requires special handling in the channel techniques. Undirected
cycles (formed by fan-out in combination with fan-in) can also lead to deadlock

in the concurrent process technique.

— Unnecessary computation can be avoided by using demand-driven evaluation.
This form of evaluation is natural in the lazy aggregate data style and the
demand-driven coroutining approach. However, it is in conflict with the nat-

ural data-driven evaluation of concurrent programs.

3.4. SUMMARY 127

— Tree-shaped data is easy to handle in the aggregate data approach, but is prob-

lematic in the channel approaches.

128 CHAPTER 3. THE SIGNAL PROCESSING STYLE OF PROGRAMMING

Chapter 4

Computational Shape

The goal of slivers is to decompose monolithic recursive procedures into networks of mix-
and-match parts that preserve the operational character of the original procedure. But

what is meant by the “operational character” of a recursive procedure?

Intuitively, operational character describes how the computations specified by a pro-
cedure unfold over time. Fine-grained aspects of this unfolding include the relative order
of particular operations and the profile of the storage consumed by the computation as a
function of time. But unfoldings also display coarser-grained patterns that appear again
and again. The iterative nature of computations generated by a tail-recursive procedure are
one example of such a pattern. Other patterns include nested loops, mutual recursions, and
different classes of tree walks. These patterns are important enough to programmers that
they will spend often expend considerable energy to construct a program that generates a

desirable computational pattern.

This chapter describes the computational patterns generated by recursive procedures. |
call these patterns computational shapes. Computational shapes provide a basis for describ-
ing some of the important operational characteristics of computations that are preserved

by the sliver technique.

129

130 CHAPTER 4. COMPUTATIONAL SHAPE

4.1 Linear Shapes

4.1.1 Linear Tiles

Figure 4.1 shows the abstract structure of a simple linear recursion. It is a stack of repeated
boxes that grow increasingly shorter on the way down. I call this ladder-like structure a
linear trellis. Although the figure suggests an infinite regress, any terminating computation

will populate only a finite prefix of the trellis.

- —

Figure 4.1: Trellis that depicts the structure of a simple linear recursion.

Each T-labeled box in the trellis, called a linear tile, represents the computation per-
formed by one layer of the recursion. The interface to a tile is shown in Figure 4.2. The
top line of a tile, called the call boundary, corresponds to the recursive procedure call that
initiates the computation in the tile. The bottom line of a tile, called the subcall bound-
ary, corresponds to the single recursive subcall that a tile computation is allowed to make.!
Within a linear trellis, the subcall boundary of one tile coincides with the call boundary of

the tile below it.

A tile computation might not make any subcall; in fact, a linear recursion will terminate only if some tile
in the trellis does not make a subcall. Also, a tile computation is allowed to have several potential subcalls
as long as it is guaranteed to actually call at most one of them.

4.1. LINEAR SHAPES 131

ARGUMENTS RESULTS

CALL BOUNDARY

SUBARGUMENTS SUBRESULTS

Figure 4.2: Interface to a linear tile. Each shaded arrow designates the transmission of zero
or more values.

A tile receives arguments and passes results across the call boundary. Additionally,
it may pass subarguments and receive subresults across the subcall boundary. Each of
these actions (receiving/passing arguments/results) corresponds to an event that the tile

computation may participate in:

1. Call initiation marks the beginning of the tile computation. Since all argument values

must be available before call initiation, the call boundary is said to be strict.

2. Subcall initiation marks the beginning of the subcall’s computation. Due to the strict-
ness of the subcall boundary, all subargument values must be computed before subcall
initiation.

3. Subcall return marks the end of the subcall’s computation. After this point, the result

values of the subcall are available.

4. Call return marks the end of the tile computation. The result values returned by the

call must be available before this point.

These four events are ordered linearly in time (Figure 4.3). A tile computation that peforms
no operations between the subcall return and call return events is said to be tail-recursive.

In this case, the two events are considered to temporally coincide.

132 CHAPTER 4. COMPUTATIONAL SHAPE

subcall
return

subcall
return
--------- B % oo

Figure 4.3: Time ordering of linear tile events.

subcall
initiation

(a) General tile

call

subcall

initiation initiation

(b) Tail-recursive tile

4.1.2 Linear Orientation

Operations performed by a tile computation can be classified according to when they can

be performed with respect to the subcall:
1. A down operation must be performed between call initiation and subcall initiation.
2. An up operation must be performed between subcall return and call return.

3. An across operation is unordered with respect to subcall initiation and return. It
must be performed within the call, but may be performed before, during, or after the

subcall.

This classification will be called the orientation of an operator. The timing constraints on

the three orientations are summarized by Figure 4.4.

4.1.3 Linear Shards

Because the timing constraints are mutually exclusive, they partition a tile’s computation

into into disjoint collections of operations, which 1 will call shards. The partitioning of a tile

4.1. LINEAR SHAPES 133

call subcall :w{ subcall G ocall M. e

initiation ““\ return

initiation

ACROSS

Figure 4.4: Timing constraints that define the orientation of an operation within in a linear
tile.

into shards is graphically depicted in Figure 4.5. The down shard computes subarguments

ARGUMENTS RESULTS

I S T

CONTROL ARM__:

FE L e T PP T T PR PP L P POy — L e Y- HL PR
[

i INTER- INTER-

o L Y Ly 1 = R — +» MEDIATES p g-eeeeedtleee..... .

: > ACROSS > upP i
emnane i{ el . [: | “l :
SUBARGUMENTS SUBRESULTS

Figure 4.5: Computational shards within a linear tile.

from arguments, while the up shard computes results from subresults. Arguments and
intermediate values may be transmitted via so-called intermediates from the down shard,
through the across shard, and to the up shard. In a tail-recursive tile, both the across and
up shards are trivial — they contain no operations. The down shard usually has a control
arm interposed between the up shard and the results; this will be explained shortly.

Tiles for some simple computations are shown in Figure 4.6.

The tiles are arranged in pairs of iterative (left) and recursive (right) approaches to the

same problem. Tiles (a) and (b) calculate the sum of the squares of the integers between

134

sum

result

CHAPTER 4. COMPUTATIONAL SHAPE

num

sum

-1+
DOWN ! P
subnum subsum subresult subnum subsum

(a) Iterative sum of squares

result

(b) Recursive sum of squares

num

square f
RMER
UP; ACROSS UP:
-—i - i
subnum subsum subresult subnum subsum

(c) Iterative sum of squared evens

(d) Recursive sum of squared evens

Figure 4.6: (Part I) Sample tiles from some linear recursive computations.

4.1.

LINEAR SHAPES

num prev

result

¥ ¥

”

set-cdr!

135

square

-1+
DOWN

ACROSS

.
L. . LS - .

- v

subnum subprev subresult

(e) Iterative list of squares

v —

subnum sublist

(f) Recursive list of squares

UP}

~— -

&

subnum subsum subresult

(g) Iterative even/odd

subnum subsum

(h) Recursive even/odd

Figure 4.6: (Part II) Sample tiles from some linear recursive computations.

136 CHAPTER 4. COMPUTATIONAL SHAPE

1 and n. Tiles (¢) and (d) calculate the sum of the squares of the even integers between
1 and n. Tiles (e) and (f) list the squares of the integers between 1 and n. Tiles (g) and

(h) calculate the nth term of the even-odd sequence eo defined as follows:

eog = 0
14+ e0,_y ifi>0,eo0;,_1 even
eo; =
2e0;_ if i > 0, eo;_1 odd
In each case, the tile is the computational unit repeated by the corresponding loop or

recursion. For now, issues of initialization (how arguments for the top-level call are specified)

and finalization (what is done with the results from the top-level call) will be ignored.

4.1.4 An Operational Model

Building intuitions about tiles and shards requires some understanding of how their compu-
tational innards work. The precise details concerning the interpretation of computational
elements like those pictured in Figure 4.6 won’t be spelled out until the exposition of the
EpGAR model in Chapter 8. For now, assume that computation proceeds in a demand-

driven fashion as follows:

e Computation within in a tile is initiated by the request of its results. The computation

returns only when values are available for all results.

o A requested operator node (e.g. zero?, -1+, set-cdr!) requests all of its subnodes,
which are then evaluated concurrently. When values for all subnodes are available,

the operator is performed (computes a result).

e A requested if node first requests the value of its test subnode. When the test value
is available, the if is performed by rerouting the request for its value to either its then

subnode or its else subnode, as appropriate.

e A requested seqn node first requests the value of its left subnode. When the left value
becomes available the seqn is performed by rerouting the request for its value to its

right subnode. (The value of the left subnode is ignored).

4.1. LINEAR SHAPES 137

o A request for a subresult produced by a subcall first propagates requests to all of the
subargument nodes, which are then evaluated concurrently. Subcall initiation occurs
only after all subresults have been requested and all subargument values are available;
i.e., the subcall is strict in all of its argulﬁents. At this point, the subresult requests
are allowed to propagate across the subcall boundary to the computation of the tile

below.

Based on the above operational model in mind, here are some observations about the

sample tiles in Figure 4.6:

e The demand-driven handling of conditionals accounts for the control arm of the down
shard. Any ifs that appear in this arm are performed before the subcall, so they
belong in the down shard. (I assume that an if is always performed in the same shard
as the operation that determines its test value.) The name “control arm” derives from
the fact that these conditionals control the rest of the tile’s computation. An if can

appear outside the control arm when its test is determined by an up operation, as in

tile (h).

o The operator nodes and subcall boundary represent only potential computation, not
actual computation. For example, when the upper-left if in any of the sample tiles

tests true, the subcall and most of the tile nodes are not performed.

e The up shard may be a trivial computation that contains wires but no operations
(e.g., tiles (a), (¢), (e), and (g)). This signifies a tail-recursive tile computation.
Intuitively, a tail-recursive tile never returns any results because there is no up com-
putation to be performed. Instead, requests for the results of a tail-recursive tile are

simply rerouted to become requests for the subresults.

¢ Some tiles (e.g., tile (d)) have both trivial and non-trivial paths through an up shard.
I call such tiles conditionally tail-recursive. Since the tail-recursive property must be
known before subcall initiation, any condition on which tail-recursion depends must

be tested in the down shard.

138 HAPTER 4. COMPUTATIONAL SHAPE

e The square operations in tiles (b), (d), and (f) are across operations because they
must be performed during the tile computation but can be performed before, during,
or after the subcall. In contrast, the corresponding square operations in tiles (a), (c),
and (e) are down operations because subargument evaluation requires their results.
Due to such dependencies, tail-recursive tiles cannot have an across shard. Across

shards that are empty or trivial (i.e., only wires) are simply omitted from tile diagrams.

e In tile (g), the seqn node serves to control the order of the side-effects performed
by the set-cdr! operator. The value returned by the tile doesn’t actually matter
because the finalizer for the tile (not shown) is responsible for maintaining a pointer

to the result.

4.1.5 Linear Tile Shapes

It is useful to characterize tiles according to their shards. In the case of linear tiles, the
main distinguishing feature is whether or not the up and across shards are trivial. A tile
with trivial up and across shards will be said to have a down shape because it consists of
only a down component. A computation with a non-trivial up component will be said to
have an up shape. For now, “down shape” and “up shape” can be treated as synonyms for
“tail-recursive” and “non-tail-recursive”. But we will soon encounter other computational

patterns that extend the shape notion beyond tail-recursion.

4.1.6 Linear Computations

Individual tiles are stacked together to represent a whole computation. For now, I will only
consider computations that can be expressed by replicating the same tile throughout the
linear trellis of Figure 4.1. This defines the class of unitilable computations.

For example, a recursive sum-of-squares computation on 3 would be constructed out
of four instances of tile (b) from Figure 4.6 (three for the non-zero cases, and one for the
zero case). Operationally, we can imagine that new tiles are dynamically appended to the
bottom of a stack only when a subcall is initiated.

A terminating computation uses only a finite number of tiles. Some computations,

however, conceptually require an infinite number of tiles. For example, a sum-of-squares

4.1. LINEAR SHAPES 139

computation on a negative input would require unlimited instances of tile (b) because the
zero? test would never be true. Some tiles can only generate infinite computations; for
example, both tiles in Figure 4.7 give rise to computations that are guaranteed never to

return, regardless of their inputs.

input count result input count
P

¥

DOWN uP i | pown up

r
sub- sub- sub- sub- sub-
input count result input count

Figure 4.7: Two tiles that generate infinite computations regardless of input.

A particular computation can be classified according to the timing relationships induced
among all the call events that occur during the computation. Figure 4.8 shows some timing
configurations for linear computations. Each pair of circles represents the initiation (I) and
return (R) events for a single call boundary. A solid directed line from event A to event
B indicates that A must happen before B. It is also assumed that every initiation event
must occur before its paired return event. A dotted line connecting two events indicates

that they occur simultaneously; this is used to represent tail-recursion.

The configurations in the Figure differ in the relationships among the return events.
All returns in configuration (a) occur at the same time, indicating that all of its calls
are tail-recursive. In contrast, in configuration (c¢), every subcall return occurs before the
corresponding call return; this means that no calls are tail-recursive. Configuration (b)

exhibits both tail-recursive and non-tail-recursive calls.

The timing diagrams suggest that the computation performed within a linear trellis can
naturally be divided into down and up phases. In the down phase, the down shards of the
tiles are performed in a top to bottom order. In the up phase, the stack of pending up shards
are performed in bottom to top order. Across operations may happen at any time (subject

to data dependencies) between the point where the down phase enters the tile computation

140 "HAPTER 4. COMPUTATIONAL SHAPE

DOWN SHAPE UP SHAPE

Figure 4.8: Three possible timing configurations for a linear computation.

and the point where the up phase leaves it.

If all the tiles in a linear computation prove to be tail-recursive, the up phase will be
trivial (i.e., will perform no operations). In this case, the entire linear computation is a
pure iteration and is said to have a linear down shape. If a linear computation has one or
more tiles that turns out not be tail-recursive, then it exhibits some stack-pushing behavior

and is said to have a linear up shape.

These computational shapes are dynamic properties of running computations. In con-
trast, the tile shapes defined earlier are static properties of tile structure. The shape of a
tile gives a conservative approximation of the shape of a computation generated by that tile.
A tile with down shape necessarily generates a computation with down shape. However, a
tile with up shape doesn’t necessarily generate an up-shaped computation. For example,
a conditionally tail-recursive tile has up shape, but for some inputs may generate iterative
computations. In fact, there are up-shaped tiles that always generate down-shaped compu-
tations; Figure 4.9 gives one such example. Nevertheless, in practice, tile shape tends to be

a good predictor computation shape.

4.1. LINEAR SHAPES 141

input answer

subinput subanswer

Figure 4.9: A tile with up shape that always generates a computation with down shape.
Because the result of pred is tested by both if nodes, the then branch of the lower if node
can never be taken.

142 CHAPTER 4. COMPUTATIONAL SHAPE

4.1.7 Wrinkles
Deadlock

There are a few extra issues to discuss before leaving linear shapes. First is the issue of
computational fate. So far, we have studied computations that terminate with a result and
computations that don’t terminate. There is a third possibility: computations that get

stuck. Figure 4.10 depicts a tile that generates such a computation. The problem is that op

input answer

subinput subanswer

Figure 4.10: A tile that gives rise to a computation that deadlocks.

requires the subresult value in order to compute the subargument value. But the subresult
value is not available until the subcall returns, and the subcall cannot be initiated until the
subargument is available. This cyclic dependency halts the computation dead in its tracks;
the resulting state is called deadlock. Deadlock will play an important role in the lock step
processing model developed in Chapter 5.

As with computational shape, it is often possible to predict whether or not a computation
will deadlock based on the structure of its generating tile. An operation that can be classified
in both the down and up components of a tile (like op in the example) is a leading candidate

for causing deadlock. But, like most interesting properties, deadlock is uncomputable in

4.1. LINEAR SHAPES 143

general. As an added complication, it turns out that in the presence of non-strict operators,

not all cyclic dependencies result in deadlock. I will return to these issues later.

Multiple Potential Subcalls

Second, it is worth mentioning that not all tile diagrams are as tidy as the ones in Fig-
ure 4.6. For example, consider a tile (Figure 4.11) that models the following exponentiation

procedure:

(define (fast-expt,.. base power)
(if (zero? power)
1
(if (even? power)
(square (fast-expt,.. base (/ power 2)))
(* base (fast-expt,.. base (- power 1))))))

A different power argument is computed in each of the branches determined by the even?
test. So there are two potential subcalls, at most one of which can be taken. This is
represented in the tile diagram by two subcall boundaries with an OR separator. This is an
ad hoc and awkward way of “sharing” several subcalls along the subcall boundary lines. This
situation could be improved by decomposing the conditional into split and join operations
(e.g., see [Den75]) that would enable the tile to share a single subcall boundary among
several potential calls. However, this “problem” is purely an issue of visual presentation;
in terms of the computational model, all that matters is that a tile computation make at

most one subcall.

Initialization and Finalization

Third, the notion that many recursive computations can be constructed by replicating
a single tile ignores important issues of initialization and finalization. For example, the
down-shaped tiles (a), (¢), and (e) from Figure 4.6 nowhere specify that the initial sum
accumulation value should be 0. Similarly, the cdr-bashing list accumulation tile ((g)) does
not spell out the important details of how to start and finish the computation. For these
purposes, [will assume the existence of unreplicated interface tiles that sit between trellis
tiles and the rest of a computation. Figure 4.12 illustrates interface tiles for the summation

and cdr-bashing examples.

144

CHAPTER 4. COMPUTATIONAL SHAPE

power base result

even even even odd odd odd
sub- sub- sub- sub- sub- sub-
power base result power base result

EVEN SUBCALL ODD SUBCALL

Figure 4.11: A tile with two potential subcalls, at most one of which can be initiated.

A 4

num result m m
initial initial final v
num sum result num prev result

(a) Interface tile for iterative summing tiles.

(b) Interface tile for the cdr-bashing tile.

Figure 4.12: Interface tiles to a summation iteration and a cdr-bashing copying routine.

4.2. TREE SHAPES 145

More Complex Recursion Patterns

Finally, I have only described a very narrow range of linear recursions — namely those that
can be represented by the replication of a single tile. More complex linear computations,
like mutual recursions and nested loops, can have structures that are composed out of
several different kinds of tiles (see Figure 4.13). For now, I will continue to ignore these
complexities and stick to the simple unitilable case. Nevertheless, the sliver technique based

on this theory of shape will be able to handle more complex patterns of recursion.

4.2 Tree Shapes

The shape concepts developed for linear computations generalize to tree-structured com-
putations. For simplicity, I will only consider binary computation trees for now. However,
the concepts developed here can be extended to more general computation trees in which

the branching factor is a non-uniform function of each tree node.

4.2.1 Binary Tiles

Figure 4.14 depicts a binary trellis that shows the structure of a simple recursive tree
computation populated with instances of the binary tile labelled T. The interface to a
binary tile is shown in Figure 4.15. The chief difference between binary tiles and linear tiles
is that a binary tile may make up to two subcalls whereas a linear tile can make at most
one. This leads to an interface with left and right subcall boundaries. The AND separator
in Figure 4.15 indicates that both subcalls may be initiated. In contrast, the OR separator
mentioned in the previous section indicates that at most one subcall may be initiated.
Associated with the computation of a binary tile are initiation and return events for
the call boundary and each of the two subcall boundaries. These six events exhibit the

branching time partial order illustrated in Figure 4.16.

4.2.2 Binary Orientation

Since an operation has a down, across, or up orientation with respect to each of the two

subcall boundaries, there are nine distinct orientations for a binary tile operator. These are

146 "HAPTER 4. COMPUTATIONAL SHAPE

B
P -~ N
| =—— 3
— |

(a)

(b)

Figure 4.13: Some linear trellises constructed from two tiles. (a) is intended to suggest
mutual recursion between A and B, while (b) is intended to suggest an inner loop of Bs
nested within an outer loop of As.

4.2. TREE SHAPES 147

Figure 4.14: Trellis that depicts the structure of a simple tree recursion.

ARGUMENTS RESULTS

CALL BOUNDARY
BINARY TILE

LEFT LEFT RIGHT RIGHT
SUBARGUMENTS SUBRESULTS SUBARGUMENTS SUBRESULTS

Figure 4.15: The interface to a binary tile.

148 CHAPTER 4. COMPUTATIONAL SHAPE

left
subcall
_\ initiation

call

Time ==w===== an call,
- initiation

right
subcall
initiation

Figure 4.16: Time ordering of binary tile events.

enumerated in table 4.1. Distinguishing nine orientations may seem like overkill, but we will
see that it provides us with a terse vocabulary for describing some important operational
traits.

Figure 4.17 graphically summarizes the timing constraints for the nine binary orien-
tations. The down-both orientation involves three events because an operation with this
orientation must occur after call initiation but before both subcall initiations. The up-both
orientation is similar in this regard. In contrast, the down-left orientation involves only two
events. This indicates that a down-left operation not only must occur before initiation of
the left subcall, but also must be unordered with respect to the right subcall. Otherwise it
would be classified as down-both or between-RL. Similar remarks hold for the down-right,
up-left, and up-right orientations. The binary across orientation has the same meaning as
the linear one; an across operation can be performed at any point within the duration of
the tile computation.

Sometimes it is convenient to use a less detailed vocabulary for talking about binary

orientations. Here are a few helpful abstractions:

e between-LR and between-RL will be classified as between orientations.

¢ down-both, down-left, and down-right will be classified as down orientations.

4.2. TREE SHAPES 149

Left Subcall | Right Subcall || Binary
Orientation | Orientation Orientation
down down down-both
down across down-left
down up between-RL
across down down-right
across across across
across up up-left

up down between-LR
up across up-right

up up up-both

Table 4.1: The nine orientations of an operation within a binary tile computation.

ACROSS

left
subcall
initiate

left

; subcall
f\\\::turn

call
initiate

right
subcall
initiate

N ////:;ght

subcall
return

Figure 4.17: Timing constraints that define the orientation of an operation within in a

binary tile. The two-headed down-both and two-tailed up-both arrows indicate constraints
that involve three events.

150 CHAPTER 4. COMPUTATIONAL SHAPE

e up-both, up-left, and up-right will be classified as up orientations.

Down and up for tree orientations can be viewed as generalizing their meaning for linear

orientations. Context will distinguish whether linear or tree orientations are intended.

4.2.3 Binary Shards

Asin alinear tile, the operations within a binary tile can be partitioned into shards according
to their orientation. Different possibilities for dataflow between the two subcall boundaries

lead to three patterns for binary tile computations (Figure 4.18):

1. A parallel tile allows no dataflow between subcalls. Due to the concurrency inherent

in the computational model sketched earlier, the subcalls can be evaluated in parallel.

2. A left-to-right tile allows the right subarguments to depend on the left subresults. Due
to the strictness of a subcall boundary, this means that the left subcall must return

before the right subcall is initiated.

3. A right-to-left tile is symmetric with the left-to-right one.

The fourth possibility, a mutually dependent tile in which the left and right subcalls depend
on each other, is disallowed because the cyclic dependencies would lead to deadlock.? The
left-to-right and right-to-left tiles are classified as sequential tiles because they force one
subcall to return before the other is initiated.

Note that each of the three patterns in Figure 4.18 is necessarily missing several shards.
The between-LR and between-RL shards are mutually exclusive because they imply that the
subcalls happen in different orders. Clearly, no tile can contain both of these shards; and a
parallel tile, whose subcalls must be unordered, can contain neither of them. A left-to-right
tile invariably forces every operation that happens before the left subcall to also happen

before the right subcall as well. In this case, a down-left shard is impossible because its

2] am assuming here that all operations performed in a tile computation are themselves strict. In the
presence of lazy operators, cyclic dependencies are not only possible but often desirable (e.g., see [Bir84],
[Joh87]). Later, I will introduce a form of laziness that, if used indiscriminantly, would invalidate the
claims made about the impossibility of mutually dependent tiles and the execution order of sequential tiles.
However, I will carefully restrict laziness in order to preserve these claims.

4.2. TREE SHAPES

ARGUMENTS RESULTS

LEFT LEFT RIGHT RIGHT
SUBARGUMENTS SUBRESULTS |D| SUBARGUMENTS SUBRESULTS

(a) Parallel Tile

ARGUMENTS RESULTS

1

DOWN DOWN % X
Pk % RIGHT BETWEEN-LR | % up

LEFT LEFT RIGHT
SUBARGUMENTS SUBRESULTS SUBARGUMENTS SUBRESULTS

(b) Left-to-right Tile

ARGUMENTS RESULTS

&

DOWN % DOWN % BETWEEN-RL I e TN
BOTH LEFT i % RUP %

T

prmesmeasevasesaens -

} ACROSS E

LEFT RIGHT RIGHT
SUBRESULTS SUBARGUMENTS SUBRESULTS

(c) Right-to-left Tile

LEFT
SUBARGUMENTS

Figure 4.18: Three general shard patterns for a binary tile computation.

152 "HAPTER 4. COMPUTATIONAL SHAPE

operations would have to be unordered with respect to the right subcall; an up-right shard
can similarly be discounted. Symmetric remarks hold for the right-to-left tile.

Some sample binary tiles appear in Figure 4.19. All of them share a generating fragment
(consisting of the doubler 2% and the incrementer 1+) that creates a “virtual” binary tree
of a given size in which each non-leaf node is numbered with its position in a left-to-right
breadth-first traversal. I will call this a breadth index tree (see Figure 4.20).

The breadth index tree is virtual in the sense that it never exists as a bona fide data
structure; rather, its elements are created and used by the tree-structured computation.
Tile (a) is a parallel accumulator that collects the virtual tree elements into a tree-shaped
data structure in which every node is represented as a list of its element and its left and right
subtrees; nil represents the empty subtree. Tile (b) ((c), (d)) collects a list of elements
visited during a left-to-right pre-order (in-order, post-order) walk of the virtual tree.?

Several shards in the tile patterns of Figure 4.18 have control arms. In general, a control
arm can be exhibited by any shard that must occur before some subcall — i.e., down-both,
down-left, down-right, between-LR, and between-RL shards. For example, Figure 4.21
shows a tile with a control arm on both the down-both and between-LR shards. These allow
the accumulation to terminate on entry to the call as well as between the two subcalls. A
subtle constraint is that while down-left and down-right shards may have control arms in a

parallel tile, they may not have control arms in a sequential tile.

4.2.4 Binary Tile Shapes

It is helpful to give names to special cases of the binary tile patterns introduced above. As
in the linear case, these will be called shapes. A listing of important binary shapes appears
in table 4.2.

Binary up tiles are a generalization of linear up tiles. These are tiles that simply combine

the results of two independent subcalls; Figure 4.19(a) is an example. Binary down tiles

3Note that because cons builds the list from the end, the resulting list contains the elements in reverse
left-to-right pre-order. A left-to-right pre-order list of tree elements can be generated by cons-accumulating
elements in a right-to-left post-order walk of the tree. Alternately, the cdr-bashing strategy can be used to
collect the list in pre-order during a pre-order walk. Similar remarks hold for the in-order and post-order
cases.

4.2. TREE SHAPES

tree
num limit out
— W
i DOWN-BOTH
cons
list
DOWN-
E] iRIGHT
vp.
BOTH
=
right right right left left left
num limit tree num limit tree
out

(a) A tile collecting the elements of a virtual tree into a tree-shaped data structure.

list

out

list
in num limit out
¥ ¥ ¥y 4
| DOWN-BOTH
DOWN- UP-
@ RIGHT BOTH
BETWEEN-LR '}
v v v— =

right right right right D] left left left left
list num limit list list num limit list
in out in out

(b) A tile collecting a list of elements during a pre-order walk over a virtual tree.

Figure 4.19: (Part I) Sample binary tiles.

154 "HAPTER 4. COMPUTATIONAL SHAPE

list list

N num limit out

¥ ¥ .
| DOWN-BOTH

BETWEEN-LR i \DOWN- UP-

RIGHT BOTH
2]

vv#i[ﬁlifi

right right right right |p]| left left left left
list num limit list list num limit list
in out in out

(¢) A tile collecting a list of elements during a in-order walk over a virtual tree.

list list

in num limit out

¥ ¥ ¥ -
| DOWN-BOTH

| o
|

2% DOWN-
RIGHT |
up- i
; i . BOTH
v—v—V v—Vv— =&
right right right right [D| left left left left
list num limit list list num limit list
in out in out

(d) A tile collecting a list of elements during a post-order walk over a virtual tree.

Figure 4.19: (Part II) Sample binary tiles.

4.2. TREE SHAPES 15

W]

Figure 4.20: A breadth index tree with six elements.

[Shape “ Binary Pattern LRestrictions
binary down | parallel up-both, up-left and up-right trivial
binary up parallel up-both non-trivial
LR pre left-to-right between-LR and up-both trivial
LR in left-to-right between-LR non-trivial and up-both trivial
LR post left-to-right up-both non-trivial
RL pre right-to-left between-RL and up-right trivial
RL in right-to-left between-RL non-trivial and up-both trivial
LR post right-to-left up-both non-trivial

Table 4.2: Shapes of binary tiles.

156 "HAPTER 4. COMPUTATIONAL SHAPE

sum
sum tree out
. 4 h 4
PLE SRRRCLECELEEt B e e LT EELEERELL L LR R EL PR LR EEEPPEETRE SCETTCIT TR s

*egative?

A L)

L BETWEENLE L
: E negative? E

-

¥ ioTH | |

right ||

o L z o] "
~— =0 &
right right right (5| left left left
sum sub- sum Y sum sub- sum
in tree out in tree out

Figure 4.21: A tile in which both the down-both and between-LR shards have control arms.
The leaf? operator tests for an elementless leaf node; the elt, left, and right operators
return, respectively, the element, left subtree, and right subtree of a non-leaf node. If all
the tree elements are non-negative, the tile generates a computation that returns their sum.
However, if some of the elements are negative, the tile generates a computation that returns
the first negative element encountered in a left-to-right pre-order traversal of the tree.

4.2. TREE SHAPES 157

are more difficult to exhibit, and I postpone them for the moment.

In a pre tile, all operations are performed before the first subcall. An in tile allows
operations between the two calls, while a post tile permits operations after the second call.
Tiles (b), (c), and (d) in Figure 4.19 are examples, respectively, of pre, in, and post tiles.
The shape names were chosen to reflect the kind of tree walk implied by the computations.
Since the walks can be performed in either a left-to-right or right-to-left direction, the shape
names are parameterized by this direction.

The sequential shapes can be ordered by specifity as follows:

pre < in < post

The shapes are defined so that every sequential tile has a unique most specific shape. These
extend the simple down < up ordering for linear tiles. In fact, note that both pre and in
tiles are effectively tail-recursive in the second subcall.

Binary tile shapes essentially specify the dependencies between different parts of a tree
computation. In this respect, they resemble aftribute grammars, a declarative formalism
in which programs can be specified in terms of the information dependencies between the
nodes of a grammar-induced tree [DJL88]. (See Section 3.3.3 for a discussion of attribute

gramiars.)

4.2.5 Binary Down Tiles and Non-strictness

We now return to the notion of binary down tiles. These are tiles whose up-both, up-left
and up-right shards are all trivial. But using the simple operations introduced so far, it
is impossible to construct a binary tile with these properties! Intuitively, the only way to
propagate requests to both of the subcalls is through a binary operator. But all the binary
operators seen so far would have to be placed in the up-both shard because they cannot be
peformed until their input values are available.

This problem can be circumvented by introducing a special binary node, fork2. A
fork2 node responds to a request by propagating requests to its two subnodes and then
immediately returning the boolean true value (#t) without waiting for a result from either

subnode. The tile in Figure 4.22 shows a simple use of fork2 to print the elements of a

158 "HAPTER 4. COMPUTATIONAL SHAPE

tree. The seqn forces a node’s element to be printed before any elements in either of its

tree done

RIGHT

left left right right
sub- done sub- done
tree tree

Figure 4.22: A tile with binary down shape that prints the elements of a tree. The print
operator prints its input and then returns #t. Seqn forces a node’s element to be printed
before any element in its subtrees. Fork2 returns after initiating both subcalls without
waiting for their results.

subtrees. The fork?2 initiates the printing (in parallel) of the left and right subtrees.

Fork2’s strategy of evaluating arguments in parallel with returning a result is called
eager evaluation. Eager evaluation is an example of a non-strict evaluation strategy, so
called because the operator is performed before its arguments are completely evaluated.
Another form of non-strictness is lazy evaluation, in which argument evaluation is suspended
until it is required. The lazy data technique introduced in Section 3.1.5 is an example of
the lazy evaluation strategy.

The non-strict behavior of fork2 can change the timing constraints among the call and

subcalls. A call to the tree-printing tile may return at any time with respect to the initiation

4.2. TREE SHAPES 159

or return of the subcalls (see Figure 4.23). This implies that tree elements may continue to

print after the top-level call to the tree-printing tile has returned!

left
"""""" =% subcall
return

left
subcall
initiation

call
initiation

right
subcall
initiation

right
subcall
return

Figure 4.23: The use of the non-strict fork2 operator changes the timing diagram for the
events in a binary tile.

The ability of a non-strict computation to return before completing its computation is a
powerful feature for expressing parallelism and speculative computation (see [Tra88, Hal85,
Mil&7]). Indeed, we will see in Chapter 7 that non-strictness is an essential technique for
modularizing computations. However, because it can change timing relationships among
calls and other operations, non-strictness complicates reasoning about programs (e.g., see
[HA8T7]). For example, consider a sequential tile in which a non-strict operator links the
result of one subcall to the argument of the other subcall. Then it is no longer true that
the first subcall must return before the initiation of the second subcall! Due to these kinds
of complications, I restrict the use of non-strict operators. Except for if and seqn (which
are non-problematic instances of non-strict operators), I will assume that tile computations

do not contain any non-strict operators.

4.2.6 Binary Computations

Under the unitilable assumption, a binary computation can be generated by dynamically

replicating a binary tile throughout a binary trellis. As in the linear case, the resulting

160 CHAPTER 4. COMPUTATIONAL SHAPE

computations can be classified by computational shape — i.e., according to the timing
relationships induced on their call events.

Figure 4.24 shows the three canonical shape configurations for a computation generated
by a left-to-right sequential tile. These differ according to which events must happen si-
multaneously. Strings of events connected by dotted lines indicate paths along which no
computation is allowed; all the events on the path occur at the same time. In a pre-shaped
computation, every return must be connected by such a path to either an initiation event
for a right subcall or the return even of the top-level call. A computation with in shape
additionally forces at least one left subcall return to precede a right subcall initiation, while
a post-shaped computation is characterized by a subcall return that precedes a call return.
Due to the conditional nature of tiles, a post tile might actually generate any of the three
computational shapes. However, a pre tile necessarily generates only pre computations,
while an in tile can may generate only in and pre computations.

Two possible parallel shapes are illustrated in Figure 4.25. These are distinguished by
the relationships among the return events. In a binary down computation, all return events
are totally unconstrained with respect to each other, while in a binary up computation,
some subcall returns are required to precede the return of the corresponding call. Note
that the assumption that tiles do not contain non-strict operators effectively eliminates the
binary down shape for tiles. However, by judicious use of non-strictness, it is possible to
design computations having this shape.

Unlike linear computations, binary computations do not decompose nicely into single
down and up phases. In the sequential case, after a computation walks down one branch
of the event tree, it must generally walk back up the branch in order to get to the next
branch. In the parallel case, the concurrent evaluation of subcalls means that down-both
operations in one branch may be interleaved with up-both operations in another branch.

The timing diagrams in Figures 4.24 and 4.25 underscore the difference between sequen-
tial and parallel computations. At the coarse-grained resolution of the timing diagrams,

sequential shapes constrain time to follow a single path through the computation.* Because

*A finer-grained analysis of individual operations might expose local branching of time. For example,
an across operation in a call can be interleaved with any operations in both subcalls. The timing diagrams
supress this level of detail.

4.2. TREE SHAPES 161

(¢) Computation having post shape.

Figure 4.24; The timing configurations for sequential computations exhibit a single-threaded
structure.

162 CHAPTER 4. COMPUTATIONAL SHAPE

(b) Computation having binary up shape.

Figure 4.25: The timing configurations for parallel computations exhibit a multi-threaded
structure.

4.2. TREE SHAPES 163

such a computation effectively has a single locus of control, it is said to be single-threaded.
Since the branching time nature of parallel computations permits multiple loci of control,
they are said to be multi-threaded.

While the potential for evaluating subcalls in parallel makes multi-threaded computa-
tions attractive candidates for execution on parallel hardware, I will not explore this avenue.
Instead, I will focus on fundamental behavioral issues that arise from the branching time

nature of multi-threading. In particular, I will be concerned with the following two issues:

1. Non-Determinism: In the presence of side-effects, multi-threaded computations may
be non-deterministic. Different interleavings of mutation operators can give rise to
different results. Various atomicity and synchronization techniques (e.g., [Bir89b,

Dij68, Bar92]) may be required to appropriately constrain behavior.

2. Storage Requirements: Multi-threaded computations have the potential for consuming
much more storage than single-threaded ones. Since a single-threaded computation
populates at most one branch of a binary trellis at any time, the space consumed
by a single-threaded computation is linear in the depth of the trellis. In contrast, a
worst-case multi-threaded computation can populate the entire trellis at once — this
leads to space exponential in the depth of the trellis. This problem can be addressed
by dynamic strategies (e.g., [BL93]) or by giving the programmer fine-grained control
over parallelism (e.g., [GM8&4]).

Although they permit parallelism, multi-threaded computations do not require it. It
is always possible to sequentialize a multi-threaded computation by adding additional con-
straints that one subcall return before another initiates. For example, many languages
require procedural arguments to be evaluated in a particular order even when they have no
side-effects. I will eschew these spurious constraints and only pay attention to constraints

explicity specified by the programmer.

4.2.7 Discussion

Although we have only studied binary tree computations, the notions developed here gener-

alize to tree computations where the branching factor can be node-dependent. In the more

164 CHAPTER 4. COMPUTATIONAL SHAPE

general setting, binary down and binary up shapes become parallel down and parallel up
shapes. Sequential shapes need to be extended to handle the fact that any permutation of
the subcalls defines a possible sequential ordering. Except for the new orderings, pre and
post shapes remain essentially unchanged. However, in shapes must be extended to express
the fact that an in operation may happen between any pair of subcalls consistent with a
given sequential walk.

Dropping the unitilable assumption would also greatly increase the number of computa-
tions that can be expressed. Then it would be possible for a single in tile, say, to have pre,
post, and binary up tiles for its subcalls. However, for reasons of simplicity, I will stick to

the unitilable assumption for tree computations throughout the remainder of this report.

Chapter 5

Synchronized Lazy Aggregates

In Chapter 3, we saw how existing techniques for programming in the signal processing
style exhibit tensions between modularity and control. This chapter introduces a new
technique, synchronized lazy aggregates, that relaxes some of these tensions. This technique
makes concrete the notion, first presented in Chapter 2, that slivers are slices through a

monolithic recursive computation.

5.1 A Lock Step Processing Model

Synchronized lazy aggregates are based on a model of processing in which slivers compute
in a lock step manner to simulate the behavior of monolithic recursive procedure. Here I
present a brief motivation for and overview of the lock step model. The rest of the chapter
fleshes out the details of how lock step processing can be achieved.

The lock step model is designed to satisfy two important goals:

1. Operational faithfulness: A sliver network as a whole should simulate the operation
scheduling and space behavior of a monolithic computation. A mechanism may use
additional operations and storage for management purposes as long as it maintains

the monolithic computation’s order of growth in space and time.

2. Reusability: The slivers should share a standard interface so that they can be recom-

bined in a mix-and-match way to model a wide range of computations.

165

166 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

We begin by considering the following question: Why is it so difficult to model the storage
behavior and operation scheduling of a monolithic procedure using ezisiting SPS techniques?
To answer this question, we first need to see how operational control is achieved in monolithic
procedures. Then we can investigate what goes wrong in the modular case. Finally, based

on our analysis, we can propose a fix.

5.1.1 Strict Calls Provide Control

The desirable operational properties of monolithic recursive procedures are due to strict
procedure calls. Strictness means that all argument values must be computed before the
procedure is applied. Every strict call defines a barriers that clearly delineates the operations
that must be performed before the application from the operations that must be performed
after the application. For instance, in the monolithic versions of mean-age (see Chapter 2),
strictness guarantees that each iteration of the loop will read the next record from the
database, add the age of the current record to the running sum, and increment the running
length. The operations of the next iteration cannot be performed until all the operations
of the current one have been completed. In this way, strictness effectively manages the
interleaving of operations from separate idioms.

In contrast, non-strict strategies (lazy and eager evaluation) decouple the time-based
ordering of the argument computations from the time of the procedure application (see
[HA87]). While non-strictness is a powerful and useful language feature ([Hug90, Tra88,
Hal85, Mil87]), the lack of effective barriers thwarts efforts to reason about operational
details like storage requirements and operation order. For example, both lazy and eager
strategies give rise to insidious space leaks and introduce new complexities in programs with
side-effects.

It is important to note that non-tail calls define two barriers. The down barrier is the
barrier described above that delineates argument computation from the computation of the
procedure body. The up barrier delineates the computation of the procedure body from
the computation that uses the results of the call. In the tile diagrams of Chapter 4, a call
boundary represents both the down and up barriers.

Up barriers can constrain the order of operations performed in the up phase of a com-

5.1. A LOCK STEP PROCESSING MODEL 167

putation. For example, consider the following procedure:

(define (sum&list-squares lst)
(if (null? 1st)
(1ist 0 °())
(mlet ((sq (square (car 1lst)))
((sum sqrs) (sum&list-squares (cdr 1lst))))
(1ist (+ sq sum) (cons sq sqrs)))))

Given an input list, the procedure returns two results (packaged as a list): (1) the sum of
the squares of the numbers in the input list and (2) a list of the squares of the numbers in
the inputs list. In the down phase of a computation generated by sum&list-squares, each
call is preceded by one occurrence each of null?, car, cdr, and square. In the up phase
of the computation, each return is preceded by one occurrence each of 1ist! , cons, and +.
Here the up barrier of the recursive call forces the list collection and summation idioms to

proceed in lock step.

5.1.2 Distributing Strict Calls Loses Control

The main problem with decomposing a monolithic procedure into slivers is that this elimi-
nates the barriers that provide control. Consider Figure 5.1, which depicts the computations
associated with a monolithic program and the associated sliver program. Each dotted hor-
izontal line represents a call boundary. The decomposition process splits each monolithic
call boundary into one boundary for each sliver (the labels emphasize which boundaries
match up).

The control supplied by the monolithic call are lost when it is distributed over the slivers.
Whereas the down and up barrier of the monolithic call forces the idioms to work in lock
step, the corresponding barriers of the slivers are only loosely coupled. Modulo dataflow
dependencies, nothing prevents one sliver from racing ahead of its neighbors. For example,
sliver .S; may cross the down barriers of A, B, (', and D before S, has even crossed A. The

lack of a shared barrier results in two problems:

L. Unsynchronized Operations: In the sliver computation, the corresponding operations
of different idioms are no longer guaranteed to be synchronized. It is no longer possible

to rely on properties that depend on the synchronized order.

'In actuality, 1ist performs some conses, but we’ll treat it as a primitive for now.

168 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

A A A
Sy Sz S3
""" B [~ B Y -
0o —_A o _A 0o
w 7’ |94 7. v
: E :
A 4 a—— A
Sy S 5 =
B B. B. = B.
€ DECOMPOSE & = € = &
/5] /5] = P
. — S 6
=
MONOLITHIC B . .
COMPUTATION [a] = Lol R
Sz = Syo
..... B...... EB......B......T
= A | A
&7 =S © = &
/5] (5] D
S 8
SLIVER
COMPUTATION

Figure 5.1: Decomposing a monolithic computation into a network of slivers.

5.1. A LOCK STEP PROCESSING MODEL 169

2. Buffering of Intermediate Results: If a producing sliver races ahead of a consuming
sliver, then the values produced by the producing sliver must be buffered somewhere
until the consuming sliver consumes them. This buffering requires storage beyond

that inherently implied by the computation.

In practice, the problem of buffering is far more serious than whether operations are syn-
chronized. But the two problems are closely related. If the operations are not synchronized
appropriately, then buffering will be required.

The space of possible operation schedules (i.e., orderings of operations) that are con-
sistent with the sliver computation are generally much larger than the schedules consistent
with the monolithic computation. Each of the SPS techniques studied in Chapter 3 picks a
particular schedule from this larger set. For example, a strict aggregate approach chooses to
perform all operations in one sliver before moving on to another one. None of the techniques
is guaranteed to pick a schedule that is consistent with the monolithic computation. While
the concurrent approaches (e.g., the concurrent channel technique and Hughes’s par/synch

technique) may pick a monolithic schedule, they are not guaranteed to.?

5.1.3 Simulating Strict Calls Regains Control

Intuitively, the lock step processing model guarantees desirable behavior for a sliver network
by gluing the corresponding call boundaries of the slivers together so that they simulate
the call boundaries of the monolithic call. Each sliver call boundary locally provides down
and up barriers for the operations performed within the sliver. If the corresponding call
boundaries were aligned so that all calls occurred at the same time and all returns occurred
at the same time, then the sliver network would be forced to follow an operation schedule
consistent with the monolithic computation. This approach clearly solves the problem of
unsynchronized operations; and as long as the gluing process itself does not consume an
unreasonable amount of storage, it solves the unwanted buffering problem as well.

An important wrinkle on the gluing idea concerns the handling of tail calls. Some of

the sliver call boundaries may locally be tail calls. We want to guarantee that the gluing

2It’s still possible to guarantee good space behavior without following one of the monolithic schedules.

170 JHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

process does not force a sliver to push stack when there is no pending work to be done. In
particular, if all the corresponding call boundaries are tail calls, we want to guarantee that
the entire network effectively performs a monolithic tail call. This behavior makes it possible
to compose iterative computations out of iterative slivers, and has desirable consequences
for general tree-recursive computations as well.

The notion of gluing together the corresponding call boundaries of networked slivers is
very simple. The hard part is designing a mechanism that accomplishes it. We can argue

from first principles the important properties that such a mechanism must possess:

e Concurrency: As Hughes has shown, any sequential evaluation strategy is insufficient
for achieving desired space behavior in certain networks with fan-out [Hug83, Hug84].

The lock step model requires that the slivers are somehow executing concurrently.

o Synchronization: Concurrency allows the desired behavior but it doesn’t necessarily
guarantee it. Some form of synchronization is required to get the effect of gluing
the call boundaries together. This form of synchronization must be more stringent
than the synchronization associated with the other concurrent techniques we have
studied. For the sliver computation diagram in Figure 5.1, for instance, both Hughes’s
technique and the concurrent channel technique allow sliver .57 to be at the call labelled
D while Sg is at the call labelled A. The lock step model requires that no sliver can
reach a call labelled B until all have passed through the call labelled A.

e Non-strictness: To simulate demand-driven evaluation in a monolithic computation,
the lock step model requires that the values produced by a sliver are not computed
unless they are actually needed by the consuming sliver. This implies that the model

supports some form of laziness.

5.1.4 Lock Step Components

The lock step processing model is fine for simulating a single monolithic recursive procedure.
But a typical computation is specified by many monolithic procedures. It is not appropriate
for the slivers corresponding to one procedure to be acting in lock step with the slivers from

another procedure. To deal with this situation, the model assumes that the slivers of a

5.1. A LOCK STEP PROCESSING MODEL 171

computation are partitioned into lock step components, where each lock step component

consists of slivers that are intended to proceed in lock step.

Lock step components can be wired together to yield a loosely coupled network of tightly
coupled parts. Such a network is depicted in Figure 5.2. The figure contains four lock step
components, which are denoted by dotted outlines. Each component consists of slivers
that are connected by thick cables, while the components themselves are connected by thin
wires. Henceforth, a cable connecting two slivers shall be taken as a declaration that they
are in the same lock step component. All other communication is accomplished by wires.
As indicated by the figure, non-sliver computational devices (X, Y, and Z) may be attached

to the wires.

5.1.5 The Detalils

The remaining sections of this chapter describe the details by which the lock step model

outlined above can be achieved. The presentation consists of the following parts:

o Sliver Decomposition: Based on the ideas introduced in Chapter 4, this section de-

scribes how to decompose a monolithic computation into a network of slivers.

o The Structure of Synchronized Lazy Aggregates: This section motivates the require-
ments for a data structure that supports the lock step processing model. Most impor-
tantly, it introduces a novel synchronization technology, the synchron, that permits

call boundaries to be glued together.

o Slivers Revisited: Synchronized lazy aggregates provide the raw materials for gluing
call boundaries together, but the slivers are responsible for hooking everything up in

the right way. This section describes the details of the gluing process.

o Filtering: One of the trickiest aspects of synchronized lazy aggregates is handling

filtering. This section explains how it’s done.

172 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

RTPPTTTTIINS
0 *,

'.." "-'E"w
0“'
~
F
1N
A0
=
% L
= [E
=
— ot
F
=
=
= .
R : A AL
» o ™ w
. (n} =
%, . o Af
N N o Y "» N1 TV
o‘. X Ol
O e | N H
© O
——V
fm) D
ng (g
----- = / f : :
H
4 o)

K K K K
v 3 —

4. 1. 4. .

. L | =

Figure 5.2: A network consisting of four lock step components. Slivers connected by thick
cables form a lock step component. Lock step components are connected by thin wires.

5.2. SLIVER DECOMPOSITION 173

5.2 Sliver Decomposition

Chapter 2 introduced sliver decomposition as a way of decomposing monolithic computa-
tions into slivers. Here, I use the shape concepts developed in Chapter 4 to describe sliver
decomposition more precisely. As in Chapter 4, I will limit the discussion to unitilable
monolithic recursions.

Without the synchronization supplied by synchronized lazy aggregates, it will not be
possible to guarantee lock step behavior for the result of the decomposition. This section

describes the first in a series of approximations to the final model.

5.2.1 Linear Subtiles

Figure 5.3 suggests a simple strategy for decomposing a unitilable monolithic computation
into slivers: break the tile for the monolithic computation into communicating fragments
called subtiles, and then replicate each subtile to reflect the structure of the monolithic

computation. Although the figure shows a linear computation whose slivers communicate

e T

Figure 5.3: A simple strategy for sliver decomposition. If a tile (T) can be decomposed
into communicating subtiles (A, B, C, and D), then the computation corresponding to the
replicated tiles can be decomposed into the slivers corresponding to the replicated subtiles.

174 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

in a straight line, the strategy applies to tree computations and sliver networks that exhibit
fan-in and fan-out.
A subtile is a generalization of a tile that can communicate horizontally with other

subtiles in addition to communicating vertically with copies of itself (see Figure 5.4). The

ARGUMENTS RESULTS

CONSUMPTS LINEAR SUBTILE PRODUCTS

SUBARGUMENTS SUBRESULTS
(a) Linear subtile.

ARGUMENTS RESULTS

CONSUMPTS BINARY SUBTILE PRODUCTS

LEFT LEFT RIGHT RIGHT
SUBARGUMENTS SUBRESULTS SUBARGUMENTS SUBRESULTS

(b) Binary subtile.

Figure 5.4: Subtile interfaces.

horizontal inputs are called consumpts and the horizontal outputs are called products. As
indicated by Figure 5.3, each subtile instance within a trellis can communicate horizontally
only with instances of other subtiles at the same trellis location. A tile can be viewed as
special kind of subtile whose consumpts and products are both empty.

Figure 5.5 illustrates a first cut at using this strategy to modularize the recursive sum-of-

squared-evens tile from Figure 4.6. The tile is decomposed into four subtiles that correspond

5.2. SLIVER DECOMPOSITION

num

sum

s L f
zero? if
0
even? if
DOWN
|
Yeauoreh -
-1+
ACROSS up
subnum subsum
. S
| TEGMINATION |
TERMINATION TERMINATION TERMINATION | n
m PRESENCE PRESENCE n
ELEMENT ELEMENT ELEMENT u
-1+
uP
TO-1 FILTER-EVEN MAP-SQUARE UP-+

Figure 5.5: A naive decomposition of the sum-of-squared-evens tile into four subtiles.

176

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

to common programming idioms:

. TO-1 generates a sequence of integers from a given integer down to 1 (inclusive).

FILTER-EVEN is a sequence filter that passes only the even numbers from its input to

its output.
MAP-SQUARES squares each of the elements in the input sequence.

UP-+ performs a recursive sum accumulation on a sequence.

The subtiles communicate information horizontally via three classes of wires:

Termination wires transmit a boolean that indicates whether or not the end of the

sequence has been reached.

Presence wires transmit a boolean that indicates whether the associated element has

been passed by a filter.

FElement wires transmit the current element of the sequence.

Unfortunately, the decomposition depicted in Figure 5.5 suffers from two very important

problems:

1.

Non-standard interfaces: Reusability is hindered because the components don’t all
share the same interface. In particular, some subtiles handle presence wires, while
others do not. For instance, FILTER~EVEN produces a presence wire even though
it does not consume one. Two such filters cannot be cascaded — a disaster for
composability. Naive decompositions for other tiles presented earlier can easily lead

to subtiles in which some of the three wires are absent or duplicated.

Inadequate control: Operational faithfulness is threatened by the inadequate specifi-
cation of when subtile operations or subcalls are performed. For example, the simple
operational rules outlined previously dictate that, within the tile, the -1+ is performed
only after the subresult has been requested. However, in the decomposed version, dif-

ferent subtiles have different subcall boundaries. How does the T0-1 tile know when

5.2. SLIVER DECOMPOSITION 177

to perform -1+? Similarly, the MAP-SQUARE subtile does not explicitly specify that
the square operation is performed only on even integers; yet this is clear in the tile.
And none of T0-1, FILTER-EVEN, and MAP-SQUARE indicate when a subcall should be
initiated. Since slivers are supposed to mimic the operational behavior of a monolithic

computation, this underspecification of control is disconcerting.

The improved tile decomposition in Figure 5.6 addresses some of these concerns. First,
all of the subtiles share a standard interface in which each sequence element is represented
by a triple of termination, presence, and element wires. The presence wire is manipulated
by all subtiles in a composable way: the generator initializes the presence wire to a true
value (#t); the filter combines it with local filtering information; the mapper passes it along
untouched; and the accumulator uses it to control accumulation. The subtiles also maintain
the invariant that when the presence wire carries the false value, the element wire carries
a distinguished gap value (written #g). The gap value indicates a position in the sequence
where an element has been filtered out.

Second, control details are much more explicit in the subtiles of Figure 5.6 than those
of Figure 5.5. Each subtile has its own copy of the termination control assembly from the
tile’s control arm. The generator, filter, and mapper are all assumed to ultimately return
the boolean truth value (#t) just so that the request for this value can be used as a means
of specifying local control. For example, the -1+ operation in the T0-1 tile will only be
performed after its local subresult has been requested. The fact that MAP-SQUARE’s square
operation is guarded by a test of the presence wire is another example of control being made
explicit.

The more sophisticated decomposition still leaves some important control problems un-
solved. The subcall boundary of the whole tile effectively synchronizes all subresult requests
with all subargument evaluations. When the subcall boundary is distributed across subtiles,
one sliver can easily race ahead of another. For example, nothing prevents the sophisticated
T0-1 sliver from merrily generating all the numbers in the sequence before any of the other
slivers have processed the first one. This would imply the need for storage buffers between
the components, which is exactly the kind of behavior the lock step model is supposed to

avoid. We will see shortly how synchronized lazy aggregates solve this problem. Until then,

178 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

=
€
3
w

u

T
i |

3

square p-+—
@ ACROSS uP
- x

subnum subsum

DECOMPOSE

> 2 —a . - +

] voun._ L1 s o]

DOWN.
)]
ks [—' m ACROSS T
DOWN. ACRQSS up
v {
TO-1 FILTER-EVEN MAP-SQUARE UP-+

Figure 5.6: A sophisticated decomposition of the sum-of-squared-evens tile into four subtiles.

5.2. SLIVER DECOMPOSITION 179

we will assume that connected slivers magically compute in a synchronous manner.
Another drawback of the sophisticated decomposition is that the four subtiles obviously

do more total work than the single tile. Some examples:

e The termination test is performed once by the tile, but four times by the subtiles.
¢ Manipulating presence wires in a standard way requires extra if and and operations.

¢ The communication and synchronization between subtiles (introduced later) will un-

doubtedly require additional overhead as well.

It is possible that executing the slivers on multiple physical processors could reduce these
overheads. But this is unlikely® and, more relevant, unimportant. Most any attempt to
provide standard interface within a given system is bound to result in overheads. These
are often justified by a significant gain in simplicity. The kinds of overhead enumerated
above can be insignificant when compared to the mental overhead of having to express
computations in a non-modular way. The real benefit of sliver decompositions is that they
suggest new ways of analyzing and synthesizing computations.

A wide range of useful subtiles can be designed with the standard three-wire-per-element
interface introduced above. Figure 5.7 illustrates some more linear subtiles. Subtile (a) is
an iterative accumulator; if the UP-+ subtile of Figure 5.6 were replaced by an instance
of this down accumulator, the network would correspond to an iterative sum-of-squared
evens rather than a recursive one. Subtiles (b) and (c¢) are scanners that emit as products
the intermediate accumulated values in a down or up accumulation. Note that a scanner
product is always present even if the corresponding consumpt was not present. Subtile (d)
is a truncater that terminates a sequence as soon as pred is true of an element; the (short-
circuit) and prevents pred from being applied to a gap. Subtile (e) is a shifter that moves

non-gap elements down to the next non-gap rung in a linear trellis. Subtile (f) maps a

3Since the slivers do so little computation between communication and synchronization events, parallel
execution of slivers is likely to offer few practical performance benefits.

*There are two very different meanings of “scan” in the literature on the signal processing style of
programming. In the data parallel literature, “scan” refers to a partial accumulator [Ble90, Sab88, (:JS092].
In Waters’s series package, though, “scan” refers to a kind of generator [Wat90]. I adopt the former meaning
here.

180 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

] —a 4 7 4:1 4

e Plece] " b [)b
i

acc if
DOWN.
'J " ")
acc
DOWN. lr DOWN. [_‘ UP
v ' ——— & —
(a) DOWN-ACCUMULTE (b) DOWN-SCAN (c) UP-SCAN

DOWN. DOWN;
— =

(d) TRUNCATE (e) SHIFT (f) MAP2

Figure 5.7: A gallery of linear subtiles.

5.2. SLIVER DECOMPOSITION 181

function fun over the elements of two consumpts to give a single product. The termination
wires of MAP2 are joined with an or so that the product terminates as soon as one of the
input terminates. The presence wires of MAP2 are joined with and so that the product is
only present (i.e., the function is only applied) if both consumpts are present.

The visual complexity of subtile diagrams has limited this discussion to very simple
sliver networks. Examples of more complex networks specified in a textual form appear in

Chapter 6.

5.2.2 Binary Subtiles

The kinds of subtile decompositions introduced above extend naturally to tree-shaped com-
putations. Figure 5.8 shows some sample binary subtiles. As in the linear case, each tree
node is represented by a triple of termination, presence, and element wires. Conceptually,
the BREADTH-INDEX generator (subtile (a)) can be combined pairwise with the four accumu-
lating subtiles ((¢) - (f)) to yield the tiles in Figure 4.19. Accumulating the squares of the
elements of a breadth index tree could be accomplished by inserting the BINARY-MAP-SQUARE
tile between generator and accumulator.

Perhaps the biggest surprise in Figure 5.8 is the presence of the non-strict fork2 node
in both BREADTH-INDEX and BINARY-MAP-SQUARE. Neither of these subtiles naturally accu-
mulates any meaningful value. The duty of the done port in both cases is not to return a
value but to propagate requests to the subcalls. In order to maintain the essential parallel,
non-accumulating character of these subtiles, it is imperative to propagate requests in a
way that both (1) does not specify the order of the subcalls and (2) does not leave behind a
pending operation to be performed. Single-threading the request through the two subcalls
would satisfy (2) but not (1). On the other hand, the eager, parallel behavior of fork2 fits
the bill perfectly. So while we will not permit whole tiles to use fork2, we will use fork2
in a restricted way to represent subtiles with a binary down character.®

The only other surprise is COLLECT-TREE’s treatment of gaps. Note that the presence

wire is never checked! When performing a parallel up accumulation on a tree with gaps,

®(lonceptually, when subtiles are glued together to form tiles, there will necessarily be some subtile with
an accumulation component that renders the fork2s unnecessary. So no tile composed out of subtiles requires
a fork2.

182

num limijt

CHAPTER 5.

(o3

one

i

DOWN-BOTH

right right left left left right
num limit done num limit done

(a) BREADTH-INDEX

list list
in out

J ¥

By

DOWN-BOTH.

right right [] left left
list list list list
in out in out

(d) BINARY-PRE-CONS

AGCRQSS

= a 2=
left D right
done = done

(b) BINARY-MAP-SQUARE

list list

in out

] DOWN-BOTH
»[
1 if

I
BETWEENILA

N—

4—|—Vﬂ—
right right left left
list list list list

in out in out

(e) BINARY-IN-CONS

Figure 5.8: Sample binary subtiles.

SYNCHRONIZED LAZY AGGREGATES

list out
N

DOWN-BOTH.

UP-BOTH

(c) COLLECT-TREE

list list

in out
VN
1

DOVIN-BOTH.

UP-BOTH

*__—%

EV_T
right right left left
list list list list

in out in out

(f) BINARY-POST-CONS

5.2. SLIVER DECOMPOSITION 183

it is generally pecessary to specify two accumulators: one for the case where the current
element is present, and one for the case where it is not. COLLECT-TREE makes the sim-
plifying assumption that it’s alright to include a gap value in the returned tree. But if a
sum accumulation were being performed instead, the innards of the sliver would be more

complex.

5.2.3 Subtile Shapes

Subtiles can be classified by a notion of shape similar to that for tiles. As with tiles, the
operations of subtiles can naturally be partitioned into shards according to their relationship
with subcall initiation and return. For example, such shards are labelled in the subtiles of
Figures 5.6 — 5.8.6

The subtile shards stand out from tile shards in several ways:

¢ In Figure 5.6, the down shards of FILTER-EVEN, MAP-SQUARE, and UP-+ consist purely
of control arms. In contrast, the down shards from all the linear tile examples pre-
sented thus far have all been connected to the subcall boundary via a subargument
wire. Similar remarks hold for the down-both shards of BINARY-MAP-SQUARE and
COLLECT-TREE in Figure 5.8.

e Subtiles can have a shape different from that of the tile from which they are derived.
For example, the TO-1 subtile in Figure 5.6 has a fundamentally down shape even
though the tile as a whole has an up shape. This captures the intuition that the
generator fragment of the tile works in a fundamentally iterative way. Similarly, the
BREADTH-INDEX subtile in Figure 5.8 has a fundamentally binary down shape even
though none of the tiles in Figure 4.19 (page 154) has binary down shape.

e Due to horizontal communication, subtiles support patterns that are not possible for
whole tiles. For example, FILTER-EVEN and MAP-SQUARE in Figure 5.6 each has non-
trivial down and across shards but a trivial up shard. This pattern is not possible

in a tile because the results of the across shard would necessarily be consumed by

®For simplicity, trivial shards have been omitted in these and subsequent figures.

184 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

a non-trivial up shard. In subtiles, an across shard can find an alternate outlet as
subtile products. We shall use the term across shape to refer to a linear subtile that
consists only of an across shard in addition to a simple termination-controlling down

shard. Similarly, BINARY-MAP-SQUARE will be said to have a binary across shape.

Except for the across shapes mentioned above, subtile shapes are determined in a manner
similar to tile shapes. For example, the shape definitions in Table 4.2 (page 155) hold for
binary shapes.

An interesting feature of across subtiles is that their operational behavior is context

dependent. Consider the three different uses of the MAP-SQUARE subtile in Figure 5.9:

1. In network (a), MAP-SQUARE feeds a down accumulator that forces the squaring oper-

ation to be performed before subcall initiation.

2. In network (b), MAP-SQUARE’s position between a down generator and an up accumu-

lator leaves the squaring operation unconstrained with respect to the subcall.

3. In network (c), MAP-SQUARE is wedged between an up scanner and an up accumulator,

which force the squaring operation to occur after the subcall returns.”

These examples illustrate that an across subtile operation does not necessarily act like an
across operation in a network of subtiles; its behavioral fate is determined by the surround-
ing context. In contrast, down and up subtile operations are unaffected by context. So
while cascading two linear subtiles always yields another linear subtile, it may require the

relabelling of across shards.

5.2.4 Sliver Computations

Just as replicating a tile throughout a trellis gives rise to a monolithic computation, repli-
cating a subtile throughout a trellis conceptually generates a sliver computation. Like
monolithic computations, sliver computations have a dynamic shape property determined

by the time structure of their call events.

"There is actually a nasty technical problem lurking in network (c) that will be discussed in Section 5.5.

5.2. SLIVER DECOMPOSITION 185

MAP-SQUARE DOWN-+
(a) MAP-SQUARE’s across shard forced down.

oot h—| A

RQWN.

oy | il e ACROSS up
v — x
TO-1 MAP-SQUARE UP-+

(b) MAP-SQUARE’s across shard unconstrained.

e X

if if
oy o]
y it

DOWN.

oo . ACRQSS] wp
-+
UP-SCAN MAP-SQUARE UP-+

(c) MAP-SQUARE’s across shard forced up.

Figure 5.9: Examples showing the context-dependent nature of across operations within a
subtile.

186 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

Due to consumpts and products, sliver computations within the same lock step compo-
nent can be viewed as consuming and producing horizontally transmitted values. Because
of the demand driven nature of the components out of which they are built, no product is
computed unless it is actually needed by a consuming sliver. Thus, this version of the sliver

decomposition technique is operationally faithful in this detail.

5.2.5 Subtile Compatibility

While subtiles share a standard interface, not all combinations of subtiles make sense. First

of all, there are some obvious structural constraints:

e Connected subtiles must have the same number of subcalls. It doesn’t make sense to

mix linear and binary subtiles.®

¢ Connections are only allowed between result/argument ports and between product/consumpt
ports. It is illegal to wire a result port to a consumpt port or a product port to an

argument port.

e A product/consumpt connection is only legal if the termination/presence/element
ports are correspondingly wired. That is, a triple of termination, presence, and ele-

ment ports is treated as a single connection point.

All of these are local constraints that can be simply checked between any pair of subtiles.
More subtly, there are some important non-local constraints. Consider the subtile net-
work in Figure 5.10, in which an up-multiplying scanner feeds an down-summing accumula-
tor through a square mapper. According to the operational model, the + must be performed
before subcall initiation in DOWN-+, and the * can only be performed after subcall return
in UP-*. But the subcall boundaries of connected slivers are conceptually glued together
to form a single boundary. So the shaded path indicates a dependency circularity in the
subtile network that will cause deadlock in any computation based on this network. This
circularity is non-local because it cannot be discovered by considering any connected pair

of subtiles.

8 Actually, this isn’t quite true. It is possible to imagine subtiles that “convert” between linear and tree
slivers.

5.2. SLIVER DECOMPOSITION 187

ACRQOSS

UP-SCAN MAP-SQUARE

Figure 5.10: This network of subtiles is non-sensical because the corresponding tile is guar-
anteed to deadlock.

Another way to view the deadlock problem of Figure 5.10 is in terms of up and down
phases. Recall that every unitilable linear computation has a single down phase followed
(optionally) by a single up phase. The problem with any computation based on the sample
network is that it attempts to force a second down phase to occur after the up phase.
Intuitively, this cannot be done in a single recursive pass; it requires two recursive passes
communicating via an aggregate data structure. By design, lock step components model
ouly computations with one recursive pass, so no single subtile network can represent the
intended computation. (However, it is possible to encode the computation as two lock step

components.)

There are two basic approaches for detecting deadlock within a subtile network:

1. Dynamic deadlock detection: In a dynamic approach, deadlock is only detected during
the execution of the computation generated by a subtile network. Deadlock is detected
by the execution engine when no progress can be made on a computation that has

not terminated.

188 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

2. Static deadlock detection: In a static approach, a subtile network is analyzed for
potential deadlocks before it is executed. Deadlock is detected by the analyzer when

it discovers a potential dependency circularity.

These approaches exhibit the classic tradeoffs found in other dynamic/static dichotomies
(e.g. dynamic vs. static type-checking). Static deadlock detection is helpful for finding log-
ical errors as early as possible. However, it requires the conceptual overhead of developing
a theory of deadlock and inventing a sound deadlock detection algorithm. Moreover, dead-
lock is an undecidable property (see below), so any sound static deadlock analysis will
conservatively ascribe deadlock to some deadlock-free computations.

In contrast, dynamic deadlock detection offers simplicity and expressibility. The existing
operational model is already powerful enough to detect deadlock. And by delaying deadlock
detection as long as possible, the dynamic approach finds no spurious deadlocks. On the
other hand, this approach provides no guarantees that a program is deadlock-free. And
while a system can provide debugging information on a deadlocked state, it can be difficult
to trace the deadlock back to its source.

Since shapes encode dependency information, it should be possible to develop a form of
static deadlock detection based on subtile shapes. For example, in the case of linear subtiles,
we expect that an up tile feeding a down tile can cause deadlock, but we know that it is
always safe for a down subtile to feed another down subtile. Similarly, with binary subtiles,
we expect that left-to-right and right-to-left subtiles never mix (because this would imply
incompatible traversals of the computation tree). However, binary down subtiles should be
able to precede any binary subtile, while binary up subtiles should be able to follow any
binary subtile. We shall refer to this shape-based approach for deadlock detection as shape
checking, in analogy to type checking.

Although the possibility of shape checking is alluring, I have not yet developed an elegant
formulation for it. While the combination rules mentioned in the previous paragraph are
helpful heuristics, the notion of subtile shape defined earlier is too coarse for handling the
nuances of deadlock in a reasonable way. Presumably, something more like the circularity
detection analysis of attribute grammars [DJL8&8] is required here, but I will not explore

this avenue. For simplicity, I will assume dynamic deadlock detection throughout the rest

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES 189

of this document.

I conclude this section with the sketch of a proof that deadlock is undecidable. Consider
the simple computation diagram sketched in Figure 5.11. It contains a single-argument
procedure F, not (the boolean negation operator), and two copies of an EITHER-SCAN-+

sliver. The EITHER-SCAN-+ sliver is designed to behave like DOWN-SCAN-+ if its argument is

EITHER- EITHER-
SCAN-+ —-—?' SCAN-+

Figure 5.11: A network used to illustrate the undecidability of deadlock detection.

true, but behaves like UP-SCAN-+ if its argument is false. Assuming that F is deadlock-free,
the network can only exhibit a deadlock when the output of F is false. So the question
of whether the network exhibits deadlock is reducible to the question of whether a given

procedure is identically true for all inputs. The latter is obviously undecidable in general.

5.3 The Structure of Synchronized Lazy Aggregates

Subtiles are an abstract solution to the problem of partitioning a monolithic recursive
computation into reusable fragments. There are many concrete questions they do not

address:

e How is the computational pattern specified by a subtile replicated to generate a sliver

computation?

¢ How are the products of one subtile communicated as consumpts to another subtile?

190

CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

¢ What synchronization mechanism glues the corresponding call boundaries of con-

nected subtiles together?

All of these issues are resolved by synchronized lazy aggregates (abbreviated as slags) a novel

class of lazy data structures that carry explicit synchronization information:

e Since it represents a fragment of a monolithic recursive procedure, a sliver is naturally

implemented as a recursive procedure that manipulates slags. The usual recursion

mechanism accounts for subtile replication.

As an aggregate data structure, a slag is well-equipped to communicate termination,
presence, and element information from one sliver to another. The lazy nature of slags
guarantees that communication happens in a demand-driven manner that faithfully

models the operational behavior of a corresponding monolithic procedure.

The synchronization information carried by a slag manages the lock step computation
of connected slivers. Every sliver that abides by the rules of a synchronization contract

is guaranteed not to race ahead or lag behind its compatriots.

5.3.1 Overview

We know from Chapter 3 that aggregate data is an elegant and easy-to-use technique for

communicating values between sliver-like program components. We will adapt the technique

to solve the problem of gluing together the corresponding call boundaries of all the slivers

in a lock step component. The call boundaries influence the aggregate data approach in

two fundamental ways:

1.

Synchronization: In order for slivers to engage in lock step processing, the aggregate
data structures connecting them must transmit some sort of synchronization tokens
that represent the down and up barriers of the desired composite call boundary. I will

call these tokens synchrons.

Laziness: Elements computed above a call boundary will have to be successfully

communicated between slivers before elements below the call boundary have been

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES 191

computed. This means that an aggregate connecting two slivers is generally only
partially determined at a given point in time. A form of laziness will be used to

represent the time-unfolding nature of the aggregate.

We will use the term synchronized lazy aggregate (abbreviated slag), to refer to an aggregate
structure that addresses these two issues. Slags are a particular implementation of the cables
that appear in sliver diagrams.

Intuitively, a slag is a data structure that represents the values of a program variable
over time. Waters uses the term temporal abstraction [Wat78] to refer to this notion. In
fact, his series data structure [Wat90, Wat91] is a particular instance of the more general
synchronized lazy aggregates. Whereas a series represents the successive values of the state
variable of a loop, synchronized lazy aggregates can represent the conceptual tree of values
taken on by an identifier within an arbitrary recursive procedure. Another way to say this
is that series corresponds to a register while synchronized lazy aggregates correspond to a
register plus a stack.

Slags can fruitfully be viewed as a hybrid between lazy aggregates and synchronous com-
munication channels for concurrent processes. Like lazy aggregates, slags are compound,
potentially tree-shaped, data structures whose parts are not computed until they are re-
quired. Like synchronous communication channels, slags synchronize separate threads of
control and manage inter-process storage resources. (However, unlike many other synchro-

nization models (e.g. [Hoa85, Mil89]), slags decouple communication and synchronization.)

5.3.2 Synquences and Syndrites

For simplicity, we will focus on two particular kinds of slags: synquences and syndrites. A
synquence (synchronized sequence) is a synchronized lazy list while a syndrite (synchronized
dendrite) is a synchronized lazy tree. Synquences represent the cables between linear sliv-
ers, while syndrites represent the cables between tree-shaped slivers. While trees generally
subsume lists as a special case, we distinguish the two structures because synchronized lists
have important properties that not shared by synchronized trees. In particular, synchro-
nized lists permit forms of iteration and filtering that are not supported by synchronized

trees.

192 HAPTER 5. SYNCHRONIZED LAZY AGGREGATES

Intuitively, a synquence is a linear chain of value-bearing nodes linked together by point-
ers annotated with synchronization information. Figure 5.12 compares the structure of a
traditional list to the structure of a synquence. In a traditional list (a), the component
values (2, 3, and 5) hang off of a chain of skeletal nodes consisting of three pairs and a nil.
The synquence structure (b) is similar, except that each pointer to a skeletal node in (a)
has been replaced by a compound structure holding onto two synchrons: a down synchron
representing the down barrier of a call boundary, and an up synchron representing the up
barrier of a call boundary. Structure (c) is an abbreviation of the synquence (b) that
emphasizes how the synchronization information has essentially annotated the pointers of
the list structure. A barrion stands for the pair of down and up synchrons.

A pointer annotated with a barrion will be called a synchronized pointer, or synter for
short. The term “synquence” refers not to a skeletal node, but to a synter that points
to a skeletal node. Synters only connect the skeletal nodes that form the backbone of
the aggregate; component values hanging off of the backbone are held by unannotated
pointers. A valueless nil node terminates a finite synquence; an unterminated synquence
is conceptually infinite in length.

In a synquence, the structure between two synters encodes the information in one triple
of termination, presence, and element wires. The termination boolean is represented by
whether or not the skeletal node is nil. The presence boolean and element are assumed to
be encoded in the value held by a non-nil node.

The structure of syndrites is similar to the structure of synquences (see Figure 5.13).

The two main differences are:

1. Syndrite nodes are connected by synters to multiple children rather than just one.

2. A finite branch of a syndrite is terminated by a 1leaf node that has a value but zero

children. In contrast, the nil node terminating a synquence carries no value.

At first glance, representing leaves by value-bearing nodes may seem at odds with the
termination/presence/element model. However, experience suggests that in a large percent-
age of tree-shaped computations, subtiles transmit/receive elements when the corresponding

termination boolean is true. The essence of termination in tree computations is not a value-

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES 193

barrion

| —

B

/1
; DOWN upP

ST S~ ||é

J
/ 1

|
SpIlcres

barrion

ON

L

I~~~
—

barrion

DOWN up

ni

(a) (b) (c)

Figure 5.12: Comparison of list structure and synquence structure. (a) is a list of three
elements. (b) is a synquence of three elements. (c) is an abbreviation of synquence (b).

194 HAPTER 5. SYNCHRONIZED LAZY AGGREGATES

Figure 5.13: Structure of a sample syndrite.

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES 195

less node, but a childless node. Trees with null leaves (like the one pictured in Figure 4.20)
are represented as syndrites whose leaves carry null or gap values (Figure 5.14(a)). The
common case of trees with valued leaves but valueless internal nodes is handled by syndrites

with gaps at the non-leaf nodes (Figure 5.14(b)).

(D (#9)
(2) (3) W @ Y
(40 () () W W © & O
() (#9) (9) (19) (1) () 0O

(a) A tree with valueless leaves. (b) A tree with valueless internal nodes.

Figure 5.14: Using gaps (#g) to represent valueless nodes.

5.3.3 Synchrons

A synchron is an entity that represents the down or up barrier of a call boundary. It is
the fundamental mechanism by which slivers synchronize with each other to achieve lock
step processing. We assume that synchrons are propagated in such a way that all slivers
in the same lock step component share access to the same synchron for the same call or
return event. For example, Figure 5.15 indicates the sharing of synchrons (represented by
barrions) in a simple sliver network. We shall see shortly how this sharing is achieved.
Right now we concentrate on what must be true of the synchrons themselves.

Synchrons support the following operations:

o Create makes a new synchron from scratch. This operation is invoked by generating

slivers when constructing a slag.

o Unify glues two synchrons together so that they become the same synchron. Slivers

with fan-in invoke this operation on the corresponding synchrons of their inputs. This

196 "HAPTER 5. SYNCHRONIZED LAZY AGGREGATES

LIST

(2 3 5) E\

’ ?ﬁ DOWN -+

=
-~ B
SPLAY- 3 MAP- = __:
LIST 3 ?' SQUARE '—-——n‘ .—E L
.— R =
r . - . ; :_ >} DOWN-*

@

0 9 ¢

: nil 5 nil
é L. O,
he 4

Figure 5.15: Barrion sharing in a simple linear computation. Two intermediate synquences
share the same synchrons, permitting all four slivers to synchronize with each other.

15
NO

THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES 197

guarantees that synchrons generated independently in different parts of the same lock

step component will eventually come to denote the same barrier.

o Wait is called by a sliver on a synchron when it is ready to participate in a rendezvous
with all the other slivers in the network. The rendezvous occurs when all the slivers
in a lock step component have called wait on a shared synchron. It is only possible
to rendezvous once at a given synchron. The details of how a rendezvous is deter-
mined are rather subtle; they are expanded on in Chapter 7 and formally described

in Chapter &.

o Precede declares that the rendezvous at one synchron must occur before the ren-
dezvous at another synchron. It turns out that this operation is necessary to ensure

that up synchrons rendezvous in the proper order in the presence of filtering.

5.3.4 Slag Dynamics

The slag diagrams in Figures 5.12, 5.13, and 5.15 are somewhat misleading because they
don’t accurately portray the time-dependent nature of slags. For example, in Figure 5.15,
neither synquence ever exists as a complete entity at any point in time. Instead, a synquence
grows downward only as new elements are demanded; meanwhile, it shrinks from above
because slivers eagerly drop references to skeletal nodes as soon as they can. In fact, at
most one skeletal node of a synquence actually exists at any point in time!’

Figure 5.16 presents a selected sequence of snapshots that illustrate how the synquences
from Figure 5.15 actually unfold over time. The dotted boxes containing question marks
represent suspended synquence computations that do not resume until after a rendezvous
has taken place on the down synchron of the barrion. The snapshots indicate how the lazy
nature of slags leads to a constant storage requirement for this example.

Suppose we modify the two accumulators from the previous example to have up shape
rather than down shape. Figure 5.17 shows a snapshot of the modified computation when it

first reaches the end of the list. Even though the intermediate synquences have disappeared,

(flarification: By “exists” | mean “is accessible”. I assume throughout that inaccessible structures that
will be reclaimed by the garbage collector do not count towards the space consumed by a computation.

198 C"HAPTER 5. SYNCHRONIZED LAZY AGGREGATES

barrion

Figure 5.16: A “movie” showing how synquences unfold over time.

5.3. THE STRUCTURE OF SYNCHRONIZED LAZY AGGREGATES 199

@"
-G

4
o
&

UpP

UP
A

UP-+ up-*
SLIVER SLIVER

Figure 5.17: A snapshot illustrating how parts of a synquence can be stacked by slivers.

200 CHAPTER 5. SYNCHRONIZED LAZY AGGREGATES

each of the accumulating slivers maintains its own stack of values and up synchrons. This
means that the modified computation requires space linear in the length of the list argument.
The up synchrons shared by the stack couple the remaining + and * operations so that they
will be performed in lock step as the stacks are popped.

Computations involving syndrites are trickier to analyze. In computations that corre-
spond to sequential tiles, a syndrite at any point in time is unfolded only along the branch
currently being explored; branches previously explored have disappeared and those not yet
explored are suspended. For computations that correspond to parallel tiles, a syndrite may
in the worst case be completely unfolded. Although undesirable, this accurately models the
space consumption of a monolithic tree-parallel computation. The storage requirements in

this case can be greatly reduced by sequentializing the parallel computation.

5.4 Slivers Revisited

5.4.1 Sliver Classification

Slivers are just slag-manipulation procedures that observe some important local structural
and behavioral constraints (described later). The slags consumed and produced by a sliver
correspond a subtile’s consumpts and products; the non-slag inputs and outputs of a sliver
correspond to a subtiles arguments and results. To maintain these distinctions, we will
say that a sliver consumes input slags, produces output slags, takes arguments, and returns
results.

Slivers are classified into three categories according to how they manipulate slags:

1. Generators. A generator is a sliver that consumes no slags but produces one or
more slags. Sample generators include a sliver that produces a synquence of integers
between two limits and a sliver that converts a tree into a syndrite. Generators are

responsible for creating fresh synchrons for the slags that they produce.

2. Transducers. A transducer is a sliver that both consumes and produces slags. A
transducer with multiple slag inputs must unify the corresponding synchrons of its

inputs and use the unified synchrons in its outputs. Common transducers include:

5.4. SLIVERS REVISITED 201

e Mappers that apply a function elementwise to a slag.

o Filters that selectively replace slag elements by gaps. (We will see below that,

due to technicalities, filters cannot simply be represented as mappers.)

e Scanners that produce output slags containing the intermediate values of an

accumulation over inputs slags.

Truncaters that produce potentially truncated versions of their input slags.

3. Reducers. A reducer is a sliver that consumes input slags but returns results instead
of producing output slags. Reducers include eccumulators that accumulate a value
from a slag and selectors that select an element from a slag. For instance: a sliver
that sums the elements of a synquence, a sliver that collects syndrite elements into a

tree, and a sliver that returns the last element of a synquence.

5.4.2 Sliver Requirements

Not every procedure that manipulates slags has what it takes to be a sliver. In order to be
a sliver, a slag-manipulation procedure must observe some important local structural and
behavioral requirements. Here we describe the requirements and discuss the behavior that
that they engender.

A sliver can be viewed as a fragment of a monolithic recursive procedure in which every
access to the next slag (via a synter) coincides with a recursive procedure call. We will
associate each recursive call in a sliver with the down and up synchrons annotating the
current consumpt and product slags.

Every sliver must obey the following requirements:

1. Synchron propagation. A sliver must ensure that all of its output slags use the same
synchrons (in the same order) as any of its input slags (as in Figure 5.15). This
guarantees that all slivers in a lock step component share the same synchrons. If
a sliver has no input slags, it generates fresh synchrons that are then shared by its
output slags. If a sliver has multiple input slags (which may have been produced by
independent generators) it uses the synchron unify operation to combine the input

synchrons into a single output synchron.

202

2.

[]

"HAPTER 5. SYNCHRONIZED LAZY AGGREGATES

Down synchronization. As a part of making a local recursive call, a sliver must
wait for a rendezvous at the down synchron with all the other slivers in the lock step
component. This rendezvous simulates the down barrier of a monolithic recursive call.
After the rendezvous, the slivers compute independently (modulo data dependencies)

until the next rendezvous.

Up synchronization. If a sliver returns from a local recursive call, then it must wait for
a rendezvous at the up synchron with all the other slivers that return from their calls.
This rendezvous simulates the up barrier of a monolithic recursive call. However, a
sliver that makes a tail-recursive call never returns, so it will not rendezvous with
the other slivers. Thus, a lock step component of linear slivers only exhibits stacking
behavior when at least one of its slivers has up shape. When all the slivers have
down shape, the entire lock step component acts as an iterative computation. In this
important case, slivers behave like the series procedures in Waters’s series package.
But slivers also preserve the shape aspects of tree computations as well. For example,
a sequential tree computation built only out of slivers with pre shape has the tail-

recursive characteristics of a pre-order accumulation (see Figure 4.24 on page 4.24).

Lazy elements. The demand-driven nature of the underlying computational model
implies that an element wire does not transmit a value unless it is requested. In
other words, while the call boundaries of subtiles are strict, the side-to-side prod-
uct/consumpt boundaries are non-strict. Operational faithfulness dictates that slivers
must delay the computation of every slag element so that the element value is never

computed if it is never requested.

. Aggressive reference dropping. In order to preserve expected storage behavior, slivers

must aggressively drop references to slags, as well as to the values and synchrons
held by slags, when they can no longer be referenced. For example, if a sliver only
requires one component of a slag, it must extract that component as soon as possible
so that the other components become inaccessible (and therefore garbarge-collectible).
Aggressive extraction is required not only for preserving desirable space requirements,

but also for avoiding spurious deadlock (see the deadlock discussion in Chapter 7).

b
b

SLIVERS REVISITED 203

6. Appropriate treatment of gaps. Due to the presence of filters, a sliver may sometimes
discover a gap — a token indicating that the element at the given position has been
filtered out. The sliver must handle the gap in a reasonable way. The conventions for

handling gaps will be discussed in Section 5.5.2.

In practice, it is challenging to write procedures that embody all of the sliver require-
ments listed above. The sources of difficulty will be discussed in Chapter 7. However, it
is possible to express a wide range of common sliver patterns as instances of a handful of
carefully written sliver templates. The SYNAPSE language described in Chapter 6 is an
example of this approach.

Note that the sliver requirements do not include any rule that corresponds to the uniti-
lable assumption invoked in the discussion of tiles and subtiles. This assumption was made
purely to simplify the presentation. Aslong as slivers obey the above requirements, nothing
prevents them from being implemented in terms of nested loops or mutual recursions.

A rendezvous between slivers resembles interprocess synchronization in many models of
concurrent processes (e.g., [Hoa85, Mil89, CM90]). However, there are several aspects that

distinguish sliver synchronization from these other models.

e With slivers, communication and synchronization are decoupled. Communication is
achieved by referencing a data structure, while synchronization is achieved by applying
wait to a synchron. This approach contrasts with models in which every communica-

tion event synchronizes sender and receiver.

o Slivers engage in a multiway rendezvous that involves all the slivers in a lock step com-
ponent. Most synchronous communication models support only a two-way rendezvous.
While CSP [Hoa85] supports a multiway rendezvous, it is limited to communication

between a single sender and m