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Sound Scattering by Cylinders
of Noncircular Cross Section

Daniel DiPerna
Abstract

This thesis investigates a new method for predicting the farfield scattered pressure of a
plane wave due to an infinite cylinder of noncircular cross section. Both impenetrable and
penetrable fluid boundary conditions will be treated for several types of cross sections
and for a large frequency range. This new method requires the conformal mapping of
both the exterior and interior of a closed surface to a semi-infinite strip. Numerically
efficient algorithms will be presented for both of these cases.

A new method for satisfying the boundary conditions will be developed, as well
as an efficient algorithm for generating the required modal functions on the boundary.
Numerical results are presented for cross sections in the shape of an ellipse, square, and
three leaf clover. In all cases, the results compare extremely well with exact or high
frequency asymptotic results.
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Chapter 1

Introduction

An important part of underwater acoustics research deals with how sound interacts with

different boundaries. There are a wide variety of boundaries that exist in the ocean

environment. There are two dimensional surfaces such as the ocean surface and ocean

bottom, as well as three dimensional boundaries such as fish or submarines. Another

classification of the boundary is the material composition of the surface. For example,

a water sediment bottom scatters sound differently than the water air interface. How

sound interacts with these different types of boundaries is important in the design of

any sonar system. It is important to quantify how these different boundaries or objects

scatter sound, whether it be for the detection of an object such as a submarine, or for

an inverse problem, such as estimating biomass of marine organisms.

The manner and degree to which an object scatters sound can depend strongly on

the shape of the scatterer, as well as on the relative size of the wavelength of the sound

wave to the dimension of the scatterer. Exact analytical solutions can be found for only a

limited class of surfaces where separation of variables is applicable. This requires that the

problem be formulated in a coordinate system in which the locus of points corresponding

to the radial coordinate equal to a constant coincides exactly with the scatterer surface,

and that the Helmholtz equation in that coordinate system is separable. For the problem
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treated in this thesis-that of an infinitely long cylinder of arbitrary cross section, these

requirements are met only for three cross sections, circular, elliptic, and parabolic.

If separation of variables is not applicable for a particular shape, there are a wide

variety of methods which may be used. All of these methods suffer from limitations on

either the frequency range or the class of surfaces to which they are applicable. For

example, one analytic approach that is formally exact is the perturbation method. This

may be used for penetrable fluid or impenetrable boundary conditions, but is only valid

if the shape is close to one of the separable geometries. One approximate solution is

physical optics. However, it is valid only at high frequencies (i.e. wavelength much

smaller than any dimension of the scatterer) and cannot acount for the penetrability of

the scatterer.

In order to solve a problem over a wide range of frequencies and complex shapes,

one must resort to numerical techniques. Although numerical methods which are for-

mally exact have been developed, they can suffer from computational difficulties when

implemented. For example, the Transition or T-Matrix method is a numerical technique

which is used extensively. In practice when the surface deviates strongly from one of

the separable geometries, the resulting matrix that needs to be inverted becomes ill-

conditioned. Other numerical methods, such as the mode matching method (MMM)

may be numerically intensive for even intermediate frequencies.

As can be seen from the above, there are many different approaches applied to

the problem of sound scattering by cylinders of noncircular cross section. In general,

problems arise when the scatterer surface differs significantly from a geometry in which

the Helmholtz equation is separable. What is missing is a numerically efficient method

that works over a wide frequency range for a large class of surfaces and for penetrable

as well as impenetrable boundary conditions. The method presented in this thesis, the

Fourier Matching Method (FMM) fills this void. An overview of the existing methods

and the FMM is given in the following table.
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The FMM consists of the following procedure:

1. Formulate the problem in a new coordinate system in which the radial coordinate

u = constant is the scatterer surface,

2. express the solution for the scattered field in terms of cylindrical eigenfunctions,

and

3. solve for the unknown scattered field coefficients by expanding the boundary con-

ditions in a Fourier series, and then forcing the first M terms to be zero.

Step 1 is done because it has several desirable consequences. By using a special

type of change of variables, a conformal mapping, calculation of the normal derivative

of the pressure (which is required for calculating the normal particle velocity) becomes

proportional to the derivative with respect to u of the pressure. Another benefit is

that equispacing sampling points in the new angular variable v samples points on the

surface which change rapidly at a higher spatial rate. This latter benefit has the effect of

requiring fewer sampling points, therefore improving the numerical efficiency. The only

12
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Vars. urbation Matrix MMM FMM

Class of Limited Near

Surfaces 3-Geom. Separable All All All

Comp.
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Freq. Low- Low- Low-

Range All All Med. Med. Med.

Restric- Near two-

tions None kS << 1 Separable None dimensional



drawback to the conformal mapping is that since conformal mapping is a two-dimensional

procedure, the class of surfaces that the FMM can treat is limited to two-dimensional

scatterers.

Step 2 assures that the Helmholtz equation is satisfied. This type of expansion may

be used independently of scatterer shape, as opposed to the T-Matrix where the expansion

functions depend on shape. The benefit of expressing the solution in this manner is that

the cylindrical eigenfunctions (Hankel functions and complex exponentials) are readily

available in standard math libraries, as opposed to Mathieu functions (eigenfunctions of

the Helmholtz equation in elliptic coordinates), which are not readily available.

Step 3 results in a set of linear equations that are solved for the unknown coeffi-

cients. By satisfying the boundary conditions using this manner, the number of coeffi-

cients required to achieve a converged farfield solution is much smaller than the MMM.

1.1 Review of Relevant Literature

There has been extensive research done on this classic problem (for example see

[1, 2, 3] ). This section will give a brief overview of the existing methods that deal with

the problem stated above, along with their regions of applicability and shortcomings.

The three distinct types of methods are exact analytic solutions, approximate solutions,

and numerical solutions.

1.1.1 Analytic Solutions

The scattering of sound by an infinitely long cylinder can only be solved exactly

when the Helmholtz equation appropriate for that geometry is separable. This means

that by assuming that the solution is a product of a function of the angular variable

13



and a function of the radial variable, the Helmholtz equation for that specific geometry

may be turned into two ordinary differential equations. Each of these ordinary differ-

ential equations depends on the same separation constant, and may be solved only if

the constant is a characteristic value or eigenvalue. There are infinitely many of these

eigenvalues, with each eigenvalue leading to a solution of the Helmholtz equation. One

very desirable property is that the angular eigenfunctions form a complete, orthogonal

set, so any function may be represented as a weighted sum of these functions. The total

solution then is an infinite summation of these solutions, with an expansion coefficient

associated with each solution.

Separation of variables is a very powerful solution technique, but in two dimensions

the number of separable geometries is small, namely circular, elliptical, and parabolic[4].

For a circular cylinder, the problem may be solved exactly for impenetrable, penetrable

fluid, and elastic boundary conditions [5, 6, 7, 8]. The solution of the ordinary differential

equations in this coordinate system is straightforward. The eigenvalues are simply inte-

gers, leading to the set of complex exponentials for the angular eigenfunctions and Bessel

functions for the radial eigenfunctions. An important point here is that the eigenvalues

are independent of wavenumber, which means that even for penetrable fluid boundary

conditons, each scattered field coefficient is coupled only to one incident field coefficient.

For elliptical coordinates there is only a one-to-one coupling between scattered and

incident field coefficients for impenetrable boundary conditions. Because the angular

eigenfunctions depend on wavenumber, a closed form expression may be obtained only

for impenetrable scatterers [9, 10]. For penetrable scatterers, an expression involving

the inverse of a matrix has been obtained by Yeh [11] by expanding the interior field

in terms of the exterior eigenfunctions. The result of this is that each scattered field

coefficient is coupled to all of the incident field coefficients. Porter [12] has obtained an

approximate solution for weak scatterers with small eccentricity. An exact solution for

elastic boundary conditions has not been found, although numerical results have been
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presented by Pillai et al [13] using the T-Matrix method. In Appendix B, separation of

variables is discussed in detail for circular and elliptic coordinate systems, because this

method provides a valuable check of the results generated by the method presented in

this thesis.

Another type of analytic solution is a perturbation approach [14, 15]. When the

scatterer surface deviates only slightly from circular, the boundary conditions may be

expanded in terms of a Taylor series. By equating orders of the perturbation parameter

6, correction terms to the zeroth order solution (the circular solution) are obtained to

any order of . As in the case of the penetrable ellipse, each scattered field coefficient is

coupled to all of the incident field coefficients, even for impenetrable scatterers. These

correction terms are known analytically. The drawback of this method is that the per-

turbation series will only converge if hS < 1, where k is the wavenumber of the incident

wave.

1.1.2 Approximate Solutions

One class of approximate solutions is only valid at high frequency [16]. One such

approximation is physical optics[17, 18, 19]. This approach starts with a Helmholtz

integral formulation, and assumes that each point on the surface scatters as though it

were part of a plane tangent to that point. The resulting integrals may be evaluated

asymptotically by stationary phase or the saddle point method. This is a very powerful

method because it yields insight into the physics involved in the scattering process,

i.e. it shows which portions of the object contribute strongly to the scattered field.

The limitations are that it cannot account for the penetrability of the scatterer or for

diffraction from a sharp edge.

Another high frequency approximation which may take into account sharp edges is

the geometric theory of diffraction [20, 21, 22, 23]. The total scattered field is constructed
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by summing contributions from speculary reflected rays, surface waves, and diffracted

rays. These contributions are obtained by analyzing canonical cases. For example, an

edge diffraction contribution is calculated by analyzing the canonical case of diffraction

from a wedge.

1.1.3 Numerical Solutions

There are various numerical solutions for the scattering of sound by a noncircular

cylinder. One is a numerical solution of the integral equations [24, 25, 26]. An integral

equation is written for the scattered field on the surface. This equation is then solved

by discretizing the scattered field to yield a system of linear equations that may be

solved for the unknown surface field. The major drawback of this method is that for

high frequencies, the number of discretizations and thus unknowns becomes very large,

making the method computationally intensive. There also may be spurious resonances

corresponding to the interior eigenvalue problem.

Another numerical technique is the extended boundary condition or T-Matrix

method [27, 3, 28, 13, 29]. This method assumes an expansion of the surface fields in

terms of a complete set of orthogonal functions, and then uses the Helmholtz integral for-

mula to assure that the Helmholtz equation is satisfied. The result is that the boundary

conditions will be met exactly, but in truncating a matrix, the Helmholtz equation is not

satisfied perfectly. This can lead to problems for scatterers whose shapes deviate strongly

from circular, as the matrices that need to be inverted tend to become ill-conditioned.

There are various ways to deal with these shortcomings. For example Bates and Wall [28]

suggested expanding the surface fields in terms of a more appropriate set of functions.

For an elongated scatterer, it is desirable to expand the surface fields in terms of elliptic

cylinder functions (Mathieu functions.) Varadan and Varadan [29] have also suggested

an iterative method to alleviate the ill-conditioning for elongated scatterers.
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Another numerical method is the mode matching method (MMM) [30, 31]. The

surface fields are expanded in terms of a series of solutions (modal functions) of the

Helmholtz equation, with an unknown coefficient associated with each modal function.

In contrast to the separation of variables technique, these individual solutions are not

orthogonal. This makes the choice of the unknown scattered field coefficients far more

difficult. The procedure used in the MMM is to choose the unknown coefficients to min-

imize the mean squared error in the boundary condition. This minimization is achieved

by differentiating the mean squared error on the surface with respect to each scattered

field coefficient, leaving a linear system of equations to be solved. This method can be

proven to converge to the correct solution. However, a large number of terms are needed

in general to match the boundary condition, when only a few terms are necesary to cal-

culate the farfield scattered pressure. In general, most of the computation time is spent

in calculating the modal functions, so there is an inefficiency in carrying more terms than

are necesary to calculate the farfield scattered pressure.

1.2 Statement of the Problem

As discussed previously, much research has been conducted on the problem of sound

scattering by an infinitely long cylinder of noncircular cross section. Each of these is valid

for a very specific frequency range, boundary condition, or class of surfaces. In this thesis

a new formulation will be presented that will efficiently generate farfield scattered pressure

results for penetrable fluid or impenetrable infinitely long cylinders. The cross sections

of the cylinders will involve ellipses, a square, and a three-leaf clover. These shapes fall

into three major classes: elongated scatterers, scatterers with sharp edges, and scatterers

with concavities, respectively. The formulation is the same regardless of surface type,

for all of the surfaces mentioned above, with the surface fields being expanded in terms
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of circular eigenfunctions, as opposed to the T-Matrix method where the choice of basis

functions depends on the shape.

The fact that the choice of basis function affects the numerical properties of the

T-Matrix method is what motivated the research described herein. Bates and Wall

suggested that the ill-conditioning problems for the T-Matrix could be alleviated by

choosing a coordinate system in which the radial coordinate = constant is as close to the

scatterer as possible, and expanding the surface fields and Green's function in terms of

the eigenfunctions in that new coordinate system. However, this still assumes that the

scatterer surface will be close to a coordinate system that is separable, and requires the

calculation of special functions such as Mathieu functions. One result of this research

is that by expanding the surface fields in a Fourier series in the new angular variable v

and the Green's function in circular eigenfunctions, the T-Matrix will be able to handle

even elongated scatterers without the ill-conditioning problems usually associated with

this method.

In addition to using the circular eigenfunctions instead of more complicated special

functions, the FMM has several desirable numerical properties. It facilitates and makes

more efficient the calculation of the circular eigenfunctions and their derivatives on the

scatterer surface. It also makes any numerical integration over the scatterer surface more

efficient by sampling portions of the surface that are changing rapidly at a higher spatial

rate than portions of the surface that are smooth. These issues are discussed in Chapter

2.

The major contributions of this thesis are:

1. An efficient algorithm for conformally mapping the exterior and interior of an ar-

bitrary shape to a strip is developed and

18



2. a new method for satisfying the boundary conditions is developed which improves

the numerical efficiency of calculating the backscatter from noncircular cylinders

and is valid for a large class of cross sections and frequencies.

1.3 Outline of Thesis

In Chapter 2 the class of surfaces that may be treated by the method presented in

this thesis is discussed. Algorithms are then developed to conformally map the exterior

and interior of a closed surface to a semi-infinite strip. It will be shown how the Helmholtz

equation changes, and how to solve this new Helmholtz equation.

In Chapter 3, various numerical issues that arise in the solution of the scattering

problem are discussed. These issues include how to satisfy the boundary condtions, how

to truncate the resulting infinite series, and a numerically efficient way of calculating the

modal functions and their normal derivatives on the surface.

In Chapter 4 the scattering results generated for a wide variety of surfaces and

boundary conditions are presented. Included are results for high-aspect-ratio elliptic

cylinders, a square cylinder, and a cylinder with concavities. Results are compared to

exact solutions where applicable, or to approximate solutions.

In Chapter 5 there is a discussion of the method, and future research that could

follow this thesis is addressed.
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Chapter 2

Analytic Development

The problem treated in this thesis is that of the scattering of a plane wave of sound by a

penetrable fluid cylinder of non-circular cross section. The acoustic parameters (density

and sound speed) of the obstacle are pl,cl, and those of the surrounding fluid are p, c.

The geometry is shown in Fig.(2.1).

The approach used here is to take the problem formulated in Cartesian coordinates,

and change variables (conformally map) to a new coordinate system in which the radial

coordinate = constant is the scatterer surface. This has the effect of making the boundary

conditions, continuity of pressure and normal particle velocity, easier to satisfy, but it

also makes the governing equation more complicated. However, due to the special form

of the change of variables, the solution of the new equation is also obtainable.

Consider the wave equation

V2p = I a2P (2.1)
C2 at2

where P is pressure, V2 is the Laplacian operator, c is the speed of sound, and t is

time. Using the form of the Laplacian operator in Cartesian coordinates and assuming a

harmonic time dependence e- i t , where w is the frequency (and suppressing it throughout

this thesis), the wave equation becomes the Helmholtz equation:

P,, + P + k2P = 0 (2.2)
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where k = w/c is the wavenumber. Plane waves in the form eik(xcos(A)+ysin(t)) are solutions

of this equation, where , is the angle of propagation of the plane wave with respect to the

x-axis. Each plane wave is associated with an an amplitude A(,),B(P). By integrating

over the appropriate contours in /a, expressions for the incident and scattered field may

be found.

Changing to a new coordinate system changes the Helmholtz equation, giving the

following:

P,, + Pvv + k2.F(u, v)P = 0 (2.3)

where (u, v) are the new coordinates, and F(u, v) is a function which depends on the

shape of the scatterer. Note that this has the same form as the Helmholtz equation

in Cartesian coordinates except that now the wavenumber is a function of position.

Therefore, an analogous problem is wave propagation in a range and depth dependent

media. This is a very difficult problem in general and will not be pursued in this thesis.

However, by solving the scattering problem, a new technique for solving the propagation

problem might be developed.

Solutions of this new Helmholtz equation can be found in terms of plane waves,

but now the wavenumber is a function of position. By choosing the same contours

of integration as in the circular case, solutions may be found in terms of cylindrical

eigenfunctions. These integral representations, coupled with the fact that u and v are

orthogonal, suggest a simple and efficient way to calculate the pressure and normal

particle velocity, which are needed to satisfy the boundary conditions.

Changing to a new coordinate system also generates a new set of functions einV.

These are different than the exponentials that would ordinarily be generated by using

cylindrical coordinates (einO). The new angular coordinate v is a more natural way to

describe the surface. By using this new set of functions, the boundary conditions are
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satisfied to some order of einv, as well as satisfying the Helmholtz equation to the same

order.

The remainder of this chapter is divided into two sections. The first shows how

to conformally change variables. The second describes the resulting Helmholtz equation

and its solutions.

2.1 Conformal Mapping

In this section it is shown how to conformally change variables to a new coordinate

system in which the radial coordinate = constant is the scatterer surface. This has several

consequences. One is that the conformal nature of this change of variables ensures that

the new coordinates are orthogonal. In other words, by changing from an (x, y) coordinate

system to a (u, v) coordinate system, since x and y are orthogonal, u and v will also be

orthogonal. This is a desirable property because it facilitates the computation of the

pressure and the normal particle velocity on the boundary, which are needed to satisfy

the boundary conditions. Also, by expressing the field quantities in terms of these more

natural coordinates instead of circular cylindrical coordinates, points along the surface

which change rapidly are sampled at a high spatial rate. For example, for a square

cylinder, by choosing points equally spaced in angular coordinate v, points are sampled

more rapidly near the corners where the field is expected to be changing more rapidly.

The following gives a procedure for generating the mapping function for both the

exterior and the interior of the scatterer. Once these functions have been determined,

the uniqueness of the map is checked for by determining where the Jacobian of the

transformation is zero.

Consider the class of surfaces which may be described as follows:

X = ps(q) cos()
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y = ps(O) sin(+)

where ps, are circular cylindrical coordinates. The only constraint is that p(k) must

be single valued, i.e. for each , there can be only one value of p, (see Fig.(2.2) for an

example of a geometry that cannot be handled by this conformal mapping algorithm).

Without loss of generality, p,(q) may be expanded in a Fourier series in 5 as follows:

00

ps() = a + E [rc cos(nI) + rs sin(n)] (2.5)
n=l

where a is the average radius, and r and r represent the deviation of the surface from

circular. Collecting terms this may be rewritten as

x + iylsurface = aei + [R*ei(l+n)k + Rnei( l-n) ] (2.6)
n=1

where

Rn = 2 [r + irs] (2.7)

For a conformal map the following requirement must be met:

x + iy = M(z) z = u + iv (2.8)

where M(z) is an analytic function, u is the radial variable, and v is the angular variable.

The problem therefore is to choose an appropriate M(z). A different M(z) is needed

for interior and exterior mappings. These mappings are different because one of the

constraints on the mapping function is that the coordinate system becomes circular as

the radial coordinate increases, and that the circles must be outside the surface. For the

interior problem, a constraint is that as the radial coordinate decreases, the coordinate

system becomes circular, and that the circles are inside the surface. Because of this

difference, there are different forms for the mapping functions for the interior and exterior

problems.
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2.1.1 Exterior mapping

Since a different mapping is needed for the interior and exterior problems, let the

mapping function M(z) be denoted by G(z) for the exterior problem. The function G(z)

must be chosen so that the following three conditions are met:

1. As u --+ oo, the coordinate system is circular (this is necesary so that farfield results

are directly comparable to existing results without having to perform a possibly

very difficult inverse mapping),

2. the transformed Helmholtz equation is solvable, and

3. u = 0 is the scatterer surface.

Assume the following form for the mapping function:

00

G(z) = g_le+ E g e- (2.9)
n=O

This form was chosen so that the mapping will automatically satisfy Conditions 1 and 2.

Condition 1 is satisfied because as u -+ oo, e-nz 0, leaving G(z) -- g_ez + go, which

is a circular coordinate system with center at x = Real(go),y = Imag(go). Condition

2 is closely tied to the fact that the mapping must be unique, which will be discussed

subsequently. Condition 3 may be satisfied by choosing the g appropriately. To do

this, the original parameterization in cylindrical coordinates of the surface is forced to

be equal to the mapping function when the radial coordinate is zero, or:

00

X + iylsurface = G(z)l=0o = g_leiv + gne- inv (2.10)
n=O

Comparing this with Eq.(2.6), it is seen that there is a fundamental difference. In

Eq.(2.10) there are only negative frequency components e - inv (other than eiv), whereas in

Eq.(2.6) there are both positive and negative frequency components, i.e. ei(l+n) , ei(l-n).
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From this it is concluded that 0 : v. Now assume that

oo

¢(v) = v + E [S6 sin(lv) + S cos(lv)]. (2.11)
1=1

This form was chosen so that if the surface were circular, the values of 6 would all be

zero, and = v. Since the problem is periodic, we expect that the deviation of b from v

should also be periodic, and therefore be representable by a Fourier series, which is what

is inside of the summation.

The problem is now to choose the values of so that Eq.(2.6) and Eq.(2.10) are

the same. Inserting Eq.(2.11) into Eq.(2.10) gives

00 00oo

aei() + Z [R*e(l + ) 0(v) + R,ei( l - ) ( )] = g_le + gne '. (2.12)
n=l n=O

Multiplying both sides by 1 e-ijv and integrating over the range of v leaves

1 j-r e-jv {aei(v) + q [R,ei(+n)(v) + Rei(1-n)(v)]}) dv = j (213)
This comes from the orthogonality relationshipsgj of the complex exponential functions,

This comes from the orthogonality relationships of the complex exponential functions,

i.e. 1/27r fo2 einVe-imvdv = 5m,n, where 6m,n is the Kronecker delta function. The upper

result is a set of non-linear constraints that may be solved for the values of 6. In practice

this is done using an extension of the Newton-Raphson method (Appendix A). Once the

values of are known, +(v) is also known, and the lower result is used to calculate gj.

Once the mapping coefficients are known, the uniqueness of the map must be

checked for (i.e. that each (u, v) corresponds to only one (x, y)). This is done by making

sure that the Jacobian of the transformation is non-zero in the desired region (outside

the scatterer.) This condition is

IG'(z) l 2 o, u > 0. (2.14)
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2.1.2 Interior Mapping

For the interior mapping, let M(z) be denoted by F(z), and z = ( + i7, where (

is the radial coordinate, and is the angular coordinate. For the interior mapping, F(z)

must be chosen to satisfy the following conditions:

1. As ( - -oo, the coordinate system is circular,

2. the transformed Helmholtz equation is solvable, and

3. ( = 0 is the scatterer surface.

Now assume a form for F(z) as follows:

c

F(z) = nE fne (2.15)
n=O

Again, Conditions 1 and 2 are automatically satisfied by the form of F(z), and the fn

must be chosen to satisfy the Condition 3. Following the same procedure as for the

exterior problem, let
00oo

(7) = + E [CS sin(l7) + e cos(171)], (2.16)
1=1

where the values of e must be determined. To do this let

00 00

aei() + E JR:e i(l +n) ( ) + Rnei(-n)1(v)] = E f nein (2.17)
n=l n=O

Multiplying both sides by eij" and integrating over the range of leaves

2~r JO n=1 f .1j <
Again, the values of e are solved for, and then values of fj are calculated .

For this map to be unique, the Jacobian must be non-zero inside the scatterer, or

IF'(z)I 2 ~ 0, ( < 0. (2.19)
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2.1.3 Example

As an example, let p(q) = 1 - .2 cos(2q) + .1 sin(3q) + .1 cos(7). j, and ej were

calculated for values of j = 40. Figure(2.3a) shows lines of u = constant, with the

innermost curve being u = 0, along with the parameterization in cylindrical coordinates.

As u increases, the coordinates are becoming circular. Figure(2.3b) shows the surfaces

= constant, with the outermost curve being = 0, again with the original curve in

cylindrical coordinates. As C decreases, the coordinates are becoming circular. Because

the coordinates are becoming circular far away from the boundary, there will be no

need to perform an inverse mapping. As can be seen from this example, there is excellent

agreement between a curve given in cylindrical coordinates and one on which u = constant

using the algorithm given above.

2.2 Solutions of the Helmholtz Equation

As mentioned previously, changing variables conformally changes the Helmholtz

equation. The method by which the new Helmholtz equation is solved is described in

this section. The method is broadly similar for the fields outside and inside the scatterer.

The details of both derivations are developed in the following subsections.

2.2.1 Exterior

After conformally mapping the exterior of the scatterer to an upper halfspace, the

Helmholtz equation is transformed to the following:

Puu + Pv, + k2g(u, v)P = 0 (2.20)
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where (u, v) is a function which depends on the specific transformation. More specifi-

cally, it is the Jacobian of the transformation, or

9(U, v) = x2 + x2 (2.21)

where xu and xv are the partial derivatives of x(u, v) with respect to u and v. Note that

the uniqueness condition for the map was that the Jacobian be non-zero. If the Jacobian

were zero, this would correspond to a zero wavenumber, or an infinite soundspeed, which

is non-physical.

The solutions of this Helmholtz equation are in the form

eik[x cos(p)+y sin(jg)] (2.22)

where ft is a parameter. Physically, this solution represents a wave propagating at an

angle ,u with respect to the x axis. By integrating over all possible values of IL, the

solution may be written as

P = I A(i)eik[xcos()+ysin(z)]ddy + B(p)eik[xcos()+ysin()]du (2.23)

where Wo and W1 are contours chosen such that the integrals will represent the incident

and scattered waves, respectively, and A(/^) and B(pt) will be the amplitudes of the

incident and scattered waves,respectively, propagating at angle ju. In general A(,L) is

known, and B([t) is a function that must be solved for. Since A(kt) and B(p) must be

periodic functions, they may be expanded as Fourier series:

1 00 1 00
A(/) = 2- Ad anenl, B(u) = 2- bne (2.24)

n=-oo n=-oo

Therefore, the values of an are known, and the values of b are unknown constants

describing the scattered field.

There are various ways to evaluate the above integrals, each with different numerical

properties. The easiest is to collect terms in the exponential as follows:

r(u, v) = X2 + y

O(u, v) arctan (Y (2.25)
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Inserting Eqs.(2.24 and 2.25)into Eq.(2.23), yields

p 1 EaneinAe ikr(uv)cos(O(u v)-)du + f 1 E bneinveikr(uv)cos(O(uv)-A) dp.
2r =-oo 2r =-

(2.26)

It is here where the contours necesary for W and W1 become apparent. This is the

same integral that arises in the solution of the wave equation in circular coordinates.

According to Sommerfeld [32], by choosing these contours, the above integral may be

evaluated analytically, leading to

00 00

P - E aniein(uv)Jn (kr(u, v)) + E binein(uv)H(l) (kr(u, v)) (2.27)
n=-0 n=-oo

Where J and Hn) are Bessel and Hankel functions of the first kind, respectively, of

order n. Several things may be seen immediately from this expression. If the scatterer

is circular, O(u,v) = v, and r(u,v) = g_eu, and the solution is precisely the solution

obtained from separation of variables in circular coordinates. For the noncircular case,

as u --+ o, O(u, v) -+ v, and r(u, v) - g_leu, so the solution will approach the circular

solution (i.e. a summation of Bessel and Hankel functions, although the constants bn

will be different) far from the scatterer. The first term in this expression is the incident

field, and the second is the scattered field. By assuming a unit amplitude plane wave

excitation, with the plane wave coming from an angle vi with respect to the x-axis, the

total field is P = Pinc + pscat ,where Pin is the incident field, and ps"at is the scattered

field.

00

pine = E anineinO(uv)Jn (kr(u, v)) = eik[xcos(vl)+Ysin(v,)]
n=-00

00

n=--CO

As stated above, far away from the scatterer the coordinates become circular, so

using this fact and the asymptotic form of the Hankel functions, the farfield scattered
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pressure is given by
6 ikg-l e oo

pscat - ~ -e 4 V bneinV (2.29)

foo (v)

where f°°(v) is the form function[33]. This is the quantity that will be generated in the

results section.

2.2.2 Interior

The problem of determining the field inside the cylinder proceeds in almost exactly

the same manner as for the exterior field. Since there is a different mapping for the

interior, there is also have a different Helmholtz equation:

Pi + P7 + k2:F(¢, 7)P = 0 (2.30)

where kl is the wavenumber inside the scatterer, and F((, r/) is the Jacobian of the inner

mapping. Following the same procedure as for the exterior case, the interior pressure is

P = C(j)eikl[xcos()+ysin(l)]d/w + JD(p) ik[x cos(/i)+y sin(A)]dH, (2.31)

where C([) and D(,) are unknown fields. Expanding each of these as Fourier series and

integrating leads to

00 00

P = ZE7 cninenO(C'")Jn (klr((, 1)) + E dninein°(C' )H,() (klr((C, )) (2.32)n=-oo 00n=-oo
and

r(¢,q) = 2 +y

0((, a) arctan (Y) (2.33)

with x and y expressed in terms of ¢ and rI. From the form of the interior mapping, as

( --, r((, ) --+ 0. However, the Hankel functions become infinite as its argument
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approaches zero. Since the field must be finite everywhere, d = 0. This leaves for the

interior pressure

pint= E Cineino(,,7)Jn (kr(C, )) (2.34)
n=-oo00

The integral which led to the above expression for the interior pressure is:

00

pint := ] Cn e ik [xcos(p)+ysin(A)]d (2.35)

Since all that is required is this function on the boundary, let [x((, o),y((, r)] =

[x(uo,v),y(uo,v)]. Therefore, the interior pressure may be rewritten as a function of

the exterior variable u, v:

pint = E cnineinosjn (kp s) (2.36)

where p = r(uo, v),O, = O(uo,v). To summarize, in this section expressions were de-

veloped for the pressure fields inside and outside the scatterer. These are expressed in

terms of circular eigenfunctions, but now they are functions of the new angular variable

v. In Chapter 3 this fact will be exploited in developing a new method for satisfying the

boundary conditions.

2.3 Boundary conditions

The boundary conditions that must be satisfied on the scatterer surface are con-

tinuity of pressure and normal particle velocity. In the remainder of this section all

quantities discussed will be at the boundary. Expressions for the pressure were derived

above. The normal particle velocity Vn is proportional to the normal derivative of the

pressure Pn, or

vn = . (2.37)
Zwp

This requires the calculation of the normal derivative of the pressure. Due to the fact that

the change of variables was conformal, and the surface is u = u, , the normal derivative
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is easy to calculate. The normal derivative is P, = VP, where hi = ad is a unit vector

in the u direction. From [34], it is known that

4a",P dv0PVP= - a + ' a (2.38)
hu cu h, Ov

where ad is a unit vector in the v direction, and h and h are scale factors of the

transformation and are given by

hu= X+y

hV = 2 + y. (2.39)

Therefore, the normal particle velocity is V, = -P-. Expressing the integrals in termsiwphu'

of u and v also facilitates the computation of Pu. Consider the integral representation

of the typical pressure field (this is for the scattered field, but the procedure is the same

for the incident and the interior field):

1 00

P = 2 S E bm eme eik[x rcos()+y sin()]d (2.40)27r Jw _

Differentiating with respect to u gives

PU = 2 bmeimik (xu cos(yt) + yu sin(kp)) eik[xc°s()+ysin(u)ldl. (2.41)
2 VV1r m=-oo

Rearranging and performing the integrations yields

Pu = A bm [D-ei (m-1 )( s+ -)H(1) (krs) - D+ei(m+l)(+")H( 1 (krs)] (2.42)
m=--oo

where

D-= (x'(uo, v) + iyu(uo, v))

1
D + = (xU(u0, v) - iyU(uo, v)). (2.43)

So now expressions have been derived for all the quantities necesary to satisfy the

boundary conditions, namely continuity of pressure and normal particle velocity. The

next chapter deals with the numerical issues that arise when actually trying to satisfy

the boundary conditions.
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Chapter 3

Numerical Considerations

Some of the numerical issues that arise in the solution of this problem are treated in

this chapter. Among these are how the boundary conditions are satisfied, a convergence

criterion, and how to calculate the basis functions efficiently.

3.1 Boundary Conditions

The most difficult part of the scattering problem under consideration is how to

satisfy the boundary conditions. Although the expressions that were derived for the

scattered field on the surface appear to be similar to that of the circular cylinder, there

is one major difference: the modal functions are not orthogonal. This makes it much

more difficult to choose the scatered field coefficients properly. In the following section

the problem will be explained better, and it will be shown how to overcome it.

For simplicity, the impenetrable case will be discussed, but the issue is the same

for the penetrable case. The expressions for the fields derived in the previous chapter

are expanded in terms of basis functions which are solutions of the Helmholtz equation.

For example, from Eq.(2.28) the basis functions P,(v) for the scattered pressure on the
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surface are

Pm(v) imeim(uov)H(l)(kr(uo, v)). (3.1)

When treating rigid boundary conditions, the following basis functions from Eq.(2.37

and 2.42) will be used:
1 &Pm

V t () = ih u (3.2)

An infinite summation of these basis functions should be able to match the bound-

ary condition. In practice however, infinite summations cannot be performed, and there-

fore the summations must be truncated at some point. This is a major obstacle, because

it is far from obvious where to truncate this summation. For the separable geometries

the modal functions are eigenfunctions of a Sturm-Liouville problem, and therefore are

orthogonal. Multiplying the boundary condition equation by one of the eigenfunctions

and integrating over the angular variable will thus leave a closed form expression for the

unknown constant. Therefore, truncating the summations for a separable geometry will

not affect the accuracy of the constants that are solved for.

For a nonseparable geometry, the modal functions are no longer orthogonal. Be-

cause of this fact, questions arise on which functions are appropriate by which to multiply

the boundary condition (since there are no eigenfunctions). No matter what set of func-

tions are chosen, the result of multiplying by the weighting functions and integrating

will be a system of equations to be solved for the unknown coefficients. It is here where

the truncation problem arises. Since all of the coefficients are coupled to each other,

truncation of the series will affect the accuracy of the constants that are solved for.

The following example will demonstrate how this non-orthogonality of modal func-

tions can make the boundary conditions far more difficult to satisfy.
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3.1.1 Example: Circular cylinder

Before treating the noncircular cylinder, a case will be examined for which an exact

solution exists, the circular cylinder. In this case, separation of variables shows that the

basis functions on the surface of the scatterer are

1
VScat(v) = bimeivHl)(kg_leuo)kg-leuo (3.3)

This is the standard expression since for a circular coordinate system v = 0 and g-le0o =

a, where a is the radius of the scatterer. Here the basis functions are proportional to eimv,

which constitute an orthogonal set, and therefore any incident field may be represented

in terms of this set of basis functions. The truncation properties of this problem are well

known. The series may be truncated so that Iml < M, where M is somewhat larger

than keu . This truncation point is arrived at because the incident field is expanded in

terms of Jm(keuo). Once M > keu°, the value of the bessel function becomes small, and

therefore the amount of energy contained in this mode is negligible. Therefore, in terms

of a finite summation, the boundary condition becomes

M

E bmVat(v) + V (v) = 0, (3.4)
m=-M

where Vin"C() is the known incident particle velocity on the boundary and the bm are the

scattered field coefficients that must be chosen. This would be solved by multiplying by

e-imv for ml < M and integrating over the range of v to get

bm = -at J (ke ) (3.5)

where am = e im O° and 00 is the angle of incidence of the incident plane wave.

Now suppose that the coefficients bm are a linear combination of some new set of

coefficients b)
N

bm E Qm,nb ( l ) (3.6)
n=-N
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where Q is some known matrix. Inserting this into Eq.(3.4) and rearranging the summa-

tions, leaves
N M

v inc =- E bl) E Qm,nVmcat(v). (3.7)
n=-N m=-M

acat (V)

This has the effect of expanding the solution in terms of a new set of basis functions

4(pcat(v). Note that these functions are no longer orthogonal, although they are each still

a solution of the Helmholtz equation, because each scat(v) is a linear combination of the

Vsca t M(v)

Further assume that N is less than M. Under this assumption, trying to satisfy

the boundary conditions in the same manner as before results in an overdetermined

problem. Multiplying by e-imv for Im < M and integrating gives M constraints, and

only N unknowns. This may be solved by minimizing the mean squared error, but

nonetheless, error will be introduced. This method will be referred to as Method 1.

Another alternative is to multiply by e- imV for Iml N, which would yield an

exactly determined problem, but now there is no constraint on the eimv for INI < m < IM]I

so again there will be error. This will be referred to as Method 2. The conclusion therefore

is that in either case there will be some error introduced, although the error is not the

same in each case. In Method 1 the error will be distributed throughout all of the

angular frequency components ei" V, whereas in Method 2 all the error will be at the

higher frequencies.

From this example it is seen that by choosing the incorrect set of basis functions a

problem that can be solved exactly can be turned into one that will necesarily contain

some error.

It should not be a surprise that a problem that can be solved exactly can be turned

into a more difficut one. In this case, choosing a specific Q (Qn,m = Jn-m(krl)ei(n-m)v),

physically represents moving the coordinate origin from the center of the circle to xc =
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ri cos(vi), Yc = r sin(vi). The result of this is a radius that changes as a function of angle,

which is the same as the noncircular case. Therefore, it is expected that the resulting

equations should be similar to that of the noncircular case.

3.1.2 Noncircular cylinder

The same problem of non-orthogonality of modal functions arises in conjunction

with the noncircular cross section problem. There is an infinite summation of non-

orthogonal basis functions, which must be truncated somewhere. However, once the series

is truncated error will be introduced when choosing the unknown coefficients, presumably

because an inappropriate set of basis functions was used. Ideally, there would be some

way to construct the appropriate functions from the basis functions derived previously in

conjunction with the transformed Helmholtz equation, but this is a very difficult problem.

Since it is not known a priori what the appropriate basis functions are, a method must

be developed to choose the unknown coefficients appropriately.

Both methods 1 and 2 described above are in fact special cases of the same method.

Recall the boundary condition after truncating the series for the scattered field is

M

E bmWva(v) + Vc(v) = 0. (3.8)
m=-M

Multiplying by a set of functions n,~(v) and integrating over the range of v yields

M 27r 27r

M b VScat(V. ) (v)dv + 0j Vinc(v)n(v)dv = 0 (3.9)

for each n. The question now is to choose an appropriate set of ;b. A logical choice is to

try to minimize the mean squared error on the surface, or

M

= E bmVscat(V) + V (v) (3.10)
m=-M
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where

E bmVcatv ) + Vinc(V) = [bmV () + V (3.11)
m=-M m=-M

In order to minimize this expression, differentiate with respect to bn and set equal to zero

to obtain

2ir M 2ir
Z bm sV.(V)Vcat(V) )dcat*(V inc caV (312)

for n < M. Comparing Eq.(3.12) to Eq.(3.9), it is seen that this is the same as choosing

O, = V~n°t*(v). This choice of weighting function is equivalent to the mode matching

method (MMM)[31]. There is a proof that this will converge to the true solution with

increasing M, but in practice, M will be very large.

Another choice for 1b is to let , = einv. This choice of weighting function is referred

to as the Fourier matching method (FMM). It is here where the conformal mapping

becomes important. Recall that this v is specific to the geometry. It was generated

through the conformal mapping algorithm. Without changing variables to (u, v), this

choice of lb would not be possible. The author cannot prove rigorously that this will

converge to the true solution. However, as can be seen in Chapter 4, in all of the cases

that have been tried, the farfield scattered pressure calculated using the FMM compares

extremely well with either the exact solution (for the elliptic cylinder), the high frequency

limit predicted using the physical optics approximation (for the impenetetrable ellipse

and three-leaf clover), or the DWBA (for the weakly scattering square). The FMM is in

general preferable to the MMM for calculating the farfield scattered pressure because far

fewer terms are required for a convergent solution. For example, for a 2:1 aspect ratio

rigid elliptic cylinder using the MMM, M = 50 is required for a convergent solution at

ka = 3. For the same problem using the FMM, there is a converged solution for M = 12.

However, if a nearfield solution is desired, the MMM must be used, since the error in

satisfying the boundary condition using the FMM does not approach zero with increasing

M.
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In summary, the equations for the boundary conditions using the FMM are for rigid

boundary conditions:

2,r M 27r
E b Vscat(v)e-invdv + Vnc( -invdv (3.13)m ! Jo (v--O, (3.13)

for soft boundary conditions,

2r M 2r
E bPscat(V)einvdv + pinc(v)evdv = 0 (3.14)

m=-M

and for penetrable fluid boundary conditions,

J2-7 M inv 27 Pinc(V) in 2-7r M pnt(Vr-inv2

mra=-M m=-M
27r M 2rr M

E bmV !ca(v)e-invdv + vinc(v)e-invdv = J CmVmn(v)evdv
m=-M PC m=-M

(3.15)

for n < M.

3.2 Convergence

Since for the FMM, the error on the boundary does not necesarily decrease with

increasing M, another criterion for convergence is used. Therefore, a criterion using the

field quantities away from the scatterer surface will be used. The following is a measure

of how well the optical theorem is satisfied [31], and is used in the MMM. Since the

MMM and the FMM have similar forms, it may be used directly term by term as given

in [31]:

IM M b eim(+ ) (M) = 2 -=-M m2 + e M me(+ (3.16)
M M (3.16)MM=-M bml2 - Re EM bmem(0+ 2

where (M) is the error as a function of the number of unknown coefficients. The nu-

merator is a measure of how well the optical theorem is satisfied. The first term in the
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numerator is simply the total cross section a, which is the total scattered power normal-

ized by the incident power density. The denominator is approximately twice the total

cross section ur and therefore normalizes the error in the optical theorem by the total

scattered power.

In practice, M will be increased until (M) is smaller than some given tolerance.

This is a necesary condition that the field must satisfy (i.e. this is a statement of con-

servation of energy, so it must be satisfied), but it is not sufficient.

The insufficiency of this criterion occurs because there are many choices for bm that

satisfy the above condition. If the bm were to be chosen simply to satisfy this condition,

the choice would not be unique. The above condition is totally independent of the type

of scatterer, both shape and whether the boundary condition is soft, rigid or penetrable.

The farfield condition becomes useful only when used in conjunction with the con-

ditions imposed by the FMM on the scatterer surface. As stated previously, the FMM

only matches the boundary condition to some order of eimv. It is unclear how to choose

Aly. The above criterion gives us a measure of how large M should be. For example, the

boundary condition may be met in the FMM sense for some M. If that M is not large

enough, M may not be small, and therefore that choice of bm will not satisfy a necesary

condition. By increasing Al until EM is less than some tolerance. Therefore, out of all

the possible choices of b, that satisfy the above criterion, we choose the ones that also

satisfy the boundary conditions in the FMM sense.

In all cases that have been tried, when (M) decreases to within some suitably small

tolerance, the backscattered pressure is no longer changing significantly, and compares

well with the reference solutions. Specific examples are given in Chapter 4.
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3.3 Numerical Computation of Modal Functions

In Chapter 2, expressions were derived for the pressure and velocity fields in terms

of series of Bessel functions. When trying to satisfy the boundary conditions, 2M + 1

Bessel functions must be calculated for N integration points. This can be numerically

intensive. The following gives an improved method for calculating the mode functions.

Recalling the integral representation of the scattered field and rearranging somewhat

leaves
00

pscat = E n i ng bne" eikg-je'cos(V-/)K(u, v, )dp, (3.17)
n=-o

where

K(u, v, ) = eik[xcos(II)+ysin(A)] e- ikg - le u cos(v-t2) (3.18)

Since K(u, v, y) is a periodic function in , it may be expanded in a Fourier series as

follows:
1 00

K(u,v, ) = 2 ne (3.19)
27r n=-00

where in, is a function of u and v, and may be found by integrating as follows

en = einzK(u,v, )d d. (3.20)

The in are known analytically, but in general the result is a multiple summation of

products of Bessel functions, and the truncation of these series is far from obvious. It

is also far more efficient to perform the above integration numerically, and since that

integration is essentially a Fourier transform, a Fast Fourier Transform (FFT) algorithm

may be used to calculate it. For simple cases, where there is only one roughness coefficient,

it may be easier to find n, analytically. For example, for an ellipse, gl is the only nonzero

coefficient, and

, = J,(kgle-)i'eiv. (3.21)

In general, the resulting integral becomes

pscat = Lw [ bne in] [1 ein rn] eikg-leucos(v-A)di (3.22)
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Multiplying these series together gives

Pscat = d E inyeikg-eU cos(v -I)d (3.23)
n=-oo =-co

This may be evaluated analytically, and after rearranging the summations,

00 00

pscat = Z bm Z in-meil VHnl) (kg_1 eu). (3.24)
m=-00 n=-oo

Although this appears more complicated than the previous expression (Eq.(2.28)), it is

more efficient to evaluate because each H(n) needs to be evaluated only once for a given

frequency, instead of N times for the previous expression.

A similar expression may be derived for the normal particle velocity. Due to the

conformal nature of the change of variables, cc a' Therefore the normal particle

velocity is Vscat = 1 pscat Performing this differentiation yields

vscat= 1 E be 6 ingeikga-leucos(v-)K(u,v,t)[xucos(u)+yusin(L)]dy. (3.25)
ophu l n-00

By letting

K'(u, v, r) = K(u, v, r) [xu cos(r) + yu sin(H)] , (3.26)

K' can be expanded as a Fourier series:

oo

K'(u,v,) = Z ,ie itn). (3.27)
n=-oo

Following the same procedure as for the pressure the normal particle velocity is given by:

I 00 00

vs t 1 bm fnm ineV H)(kg_l e u) (3.28)
wph m=-oo n=- o

The normal particle velocity of the incident field is known immediately from Eq.(2.37):

vinc = 1 eik[xcos(v,)+ysin(v,)] [ u cos(vi) + Yu sin(vi)] . (3.29)
wphu

The integral which led to the above expression for the interior pressure is

00
pint E C ieinheik1[x cos(u)+Ysin(I)]dt. (3.30)n=-oo~~~~~~~~~~~(.0
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Following the same procedure as for the exterior problem, gives

00pint= E
n=--o

where

T(u, v, [z) = eiki[xcos(I)+y sin(t )]

Since T(u, v, it) is a periodic function in /z, it may be expanded in a Fourier series as

follows:
1T(u,v,i) = (

27rTn--oo
where rn is a function of u and v, and may be found by integrating as follows

Trn 
'

2
e-ingT(u, v, [t)du (3.34)

Inserting Eq.(3.34) into Eq.(3.31) in and multiplying the series yields

pint = E E Cnm
n=-oo m=-oo 

(3.35)

This integral is zero unless n = O, so letting n = 0 and rearranging the sum, the internal

pressure becomes

pint = E Cm T-
m=--oo

(3.36)

The normal particle velocity may also be found very easily.

derivative of the internal pressure with respect to the normal gives:

vint = wph o E
nwph =-oo

Taking the normal

cneinT' (u, v, )dz (3.37)

where

T'(u, v, ) = T(u, v, y) [xu cos(p) + y, sin(H)]

T' can be expanded as a Fourier series:

T'(u, v, ) =

(3.38)

(3.39)n
n=-oo
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Inserting Eq.(3.39) into Eq.(3.37) and integrating, yields

00

Vint = S Cm71. (3.40)
m=-oo

A numerically efficient way to generate all of the quantities that are needed to

satisfy penetrable fluid boundary conditions at the surface of the scatterer, the interior

and exterior pressure fields, and the interior and exterior normal particle velocities has

been developed. This representation is numerically efficient for several reasons. One

is that Hankel functions no longer have to be calculated for every integration point

along the boundary. A second is that by equally spacing integration points in the new

angular variable v, points along the surface that change rapidly are sampled at a higher

spatial rate, so fewer integration points are required than if points were equally spaced

in cylindrical coordinates.

It has also been discussed how to choose the scattered field coefficients, and a

convergence criteria for the farfield scattered pressure.
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Chapter 4

Numerical Results

This chapter will begin by comparing the numerical efficiency of the FMM with various

existing methods. Numerical results generated using the FMM will then be presented

for a several types of cross sections and boundary conditions and compared with exact

solutions, where applicable, or approximate solutions. All results involve plots of the

backscattered form function as defined in Eq. (2.29) versus a dimensionless term k

times a characteristic dimension of the cross section. The equations used to generate all

results for the FMM are given by Eq.(3.13) for rigid boundary conditions, Eq.(3.14) for

soft boundary conditions, and Eq.(3.15) for penetrable fluid boundary conditions. The

modal functions for the scattered and interior fields are those given in Eqs.(3.24, 3.28)

and Eqs.(3.36 and 3.40), respectively.

4.1 Numerical Efficiency

Two numerical methods that are used to solve the problem of scattering by a

noncircular cylinder are the MMM and the T-Matrix method. One similarity between

both of these approaches and the FMM is that they all require the calculation a Hankel

function (for each unknown coefficient) at many points along the boundary, and then
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an integration over the boundary. Therefore, the numerical efficiency of each of these

methods depends on two criteria:

1. The number of unknown coefficients, and

2. the number of integration points.

For smooth scatterers that do not deviate strongly from circular, there will not be

a significant difference between the numerical efficiency of the FMM and the T-Matrix or

the MMM. However, in more extreme cases, the FMM can be much more efficient than

the other approaches.

For example, the FMM is numerically more efficient than the T-Matrix for elon-

gated cross sections because fewer terms are needed for the numerical integrations. This

arises due to the fact that the conformal mapping used in the FMM samples points along

the scatterer surface that change rapidly at a higher spatial rate. The following table

shows the number of modes and integration points required for the FMM and the T-

Matrix for the case of a rigid 10:1 aspect ratio elliptic cylinder for kL = 5, where L is

the length of the semimajor axis. Note that in order to make the T-Matrix stable, the

basis functions for the surface field were expanded in terms of a Fourier series in v, and

the Green's function in cylindrical eigenfunctions. The MMM required more terms than

the computer could handle:

Method FMM T-Matrix MMM

Number of Modes 18 18 > 18

Number of Integration Points 120 800 800

The FMM is numerically more efficient than the MMM because far fewer unknown

coefficients are required for the same degree of accuracy. The MMM requires more terms

is because it strictly matches the boundary condition, whereas the FMM may only be

used to calculate the far field pressure. For example, the following table shows the number
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of modes and integration points required for the FMM, the T-Matrix and the MMM for

the case of a rigid 2:1 aspect ratio elliptic cylinder for kL = 3:

Method FMM T-Matrix MMM

Number of Modes 12 12 52

Number of Integration Points 100 100 100

As was discussed previously the FMM and MMM are very similar, the main differ-

ence being that the weighting functions are different. Recall the FMM uses the weighting

functions 0k) = ei n v , with v being the angular variable in the new coordinate system that

was generated from the conformal mapping. An interesting question is whether this

choice of functions is better than the set of functions b,% = ein0, where 0 is the an-

gular variable in circular coordinates. If this were true the conformal mapping would

be unnecesary, since the entire formulation could be performed in circular coordinates.

However, in practice the FMM requires far fewer terms than by using 0/n = einr. For ex-

ample, Figure (4.1) shows the backscatter from a rigid 10:1 aspect ratio elliptic cylinder

for rigid boundary conditions. The solid curve shows the result using the FMM and 16

modes, and converges to the exact solution, as will be shown in the following section.

The dashed curve uses the cylindrical weighting functions for the same number of modes.

The dash-dotted curve used the cylindrical weighting functions using 22 modes. As can

be seen from this, the cylindrical weighting functions may be used, but will require more

modes than the FMM.

4.2 Ellipse

The elliptic cylinder is a very important check on the FMM because the exact

solution is know in terms of Mathieu functions (Appendix B). For this geometry, the

results from the FMM may be compared with the exact solution for both impenetrable

and penetrable fluid cylinders for a wide range of aspect ratios. Results will be presented
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Figure 4.1: Backscattered form function of a Rigid Ten to One Ellipse: 00 = 0. The
solid curve is from the FMM using 16 modes, the dashed curve uses cylindrical weighting
functions using 16 modes, and the dash-dotted curve uses cylindrical weighting functions
using 22 modes.
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for a rigid 10:1 aspect ratio ellipse, and for a 2:1 aspect ratio cylinder for both rigid

and penetrable boundary conditions. For all of these cases, the exact solution, and the

solution from the FMM are essentially indistinguishable. Figure (4.2) shows the geometry

of the elliptic cylinder for a 2:1 aspect ratio.

Figure (4.3) illustrates the backscatter from an approximately 10:1 aspect ratio

rigid elliptic cylinder vs. kL for a wave incident along the major axis. The parameters

used are shown in the following table:

Mapping Coefficients g_1=1 g1 = e- . 2

Aspect Ratio 10.033:1

Number of Modes M=18

Number of Integration Points 120

Error eM < .0001

Here both the results from the FMM and the exact result from separation of vari-

ables are plotted versus kL, As can be seen, the results are indistinguishable. Figure

(4.4) illustrates both the exact result and the results from the FMM for a 10:1 aspect

ratio ellipse under rigid boundary conditions for a plane wave incident along the minor

axis. Again, the results are indistinguishable.

Figure(4.5) illustrates the backscatter from an approximately 2:1 aspect ratio rigid

elliptic cylinder vs. wavenumber. The parameters used were:

Mapping Coefficients g-y=l g = e-l

Aspect Ratio 2.164:1

Number of Modes M=12

Number of Integration Points 100

Error EM < .0001

Both the results from the FMM and the exact result from separation of variables

are shown. Again, the results are indistinguishable.
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Figure 4.2: Geometry of Cross section of Elliptic Cylinder
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Figure 4.3: Backscattered form function of a Rigid Ten to One Ellipse: 00 = 0 (direction
of incidence along the major axis). Both exact solution and approximate solution from
the FMM are plotted.

55



1 Al

100

8

10-1

In-2
10-1 100 101

kL

Figure 4.4: Backscattered form function of a Rigid Ten to One Ellipse: Oo = 7 (direction
of incidence along the minor axis). Both exact solution and approximate solution from
the FMM are plotted.
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Figure 4.5: Backscattered form function of a Rigid Two to One Ellipse: 00 = 0 (direction
of incidence along the major axis). Both exact solution and approximate solution from
the FMM are plotted.
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Figure (4.6) illustrates the backscatter from an approximately 2:1 aspect ratio

penetrable fluid elliptic cylinder vs. wavenumber. The material parameters used were

p/pt = 2, and c/cl = 1.05. Here both the results from the FMM and the exact result

from separation of variables are plotted. Again, the results are indistinguishable, hence

illustrating the success of the method.

4.3 Square

For the square cylinder, a conformal mapping will not be valid at the sharp corners.

However, after truncating the mapping the corners become slightly rounded, and the

mapping will be valid. Therefore, only the first few terms in the mapping will be used.

The parameters used for the square cylinder are:

Mapping Coefficients g-1=1 g3 = -1/6 g7 = 1/56

Number of Modes M=30

Number of Integration Points 120

Error EM .0001

The cross section of the now rounded square cylinder appears as in Fig. (4.7).

Results for the physical optics approximation as well as the FMM will be generated for

the rounded square.

Figure (4.8) illustrates the backscattered form function for a plane wave incident

at 45 degrees from a rigid square cylinder. The backscattered form function is plotted

versus kL, where L is the length of a side of the square. The solid curve is from the FMM,

and the dashed curve is from the physical optics method. Note that at low frequency

the two curves do not coincide. This discrepancy is not alarming because physical optics

is valid only at high frequency. As the frequency increases, the agreement between the

FMM and physical optics improves.
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Figure 4.6: Backscattered form function of a Penetrable Two to One Ellipse: o = 0
(direction of incidence along the major axis). Both exact solution and approximate
solution from the FMM are plotted. The material parameters are P = 2 and cl = 1.05
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Figure 4.7: Geometry of Cross Section of a Square Cylinder
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Figure 4.8: Backscattered form function of a Rigid Square : 00 = (direction of in-
cidence from the corner of the square). The dashed cur-ve is from the physical optics
approximation, and the solid curve is from the F\IM under rigid boundary conditions.
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Similar results are obtained for a plane wave incident at 45 degrees from a soft

square cylinder, as shown in Fig. (4.9).

Figure (4.10) illustrates the backscatter of a plane wave incident at 0 degrees from

a rigid square cylinder. Again, the two curves show good agreement except at low

frequency, where physical optics is not valid.

For the penetrable square cylinder, there is no exact solution. However, if the

scatterer is weak, that is the material properties of the scatterer are a perturbation

of the surrounding fluid, the the Distorted Wave Born Approximation (DWBA) may

be used. For a square cylinder with = 1.05, = 1.05 and a plane wave incident
p c

at 0 degrees, the scattering integral reduces to a form that may be interpreted as the

interference between a reflection off the front surface of the square and a wave that is

transmitted through the front face of the cylinder, reflects off the back face, and then is

transmitted through the front face. By summing the contributions from these two waves,

the DWBA is calculated and plotted along with results from the FMM in Fig. (4.11).

The solid curve is the FMM and the dashed curve is the DWBA. Both show the dramatic

oscillatory effect due to the interference between the two waves. The agreement is again

excellent.

4.4 Three Leaf Clover

This section shows a more complex shape than considered previously. This work was

conducted because it is fundamentally different than the ellipse and square in that there

are concavities in the surface. The geometry is shown in Fig. (4.12). The parameters

used for this shape are:
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Figure 4.9: Backscattered form function of a Soft Square : 00 = (direction of inci-
dence from the corner of the square). The dashed curve is is from the physical optics
approximation, and the solid curve is from the FMM under soft boundary conditions

63



I1n'I
IV'

100
8

In-1

10-1 100 101 10 2

kL

Figure 4.10: Backscattered form function of a Rigid Square : 0o = 0 (direction of in-
cidence from the side of the square). The dashed curve is is from the physical optics
approximation, and the solid curve is from the FMM under soft boundary conditions.
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tion of incidence from the side of the square). The dashed curve is from the DWBA, and
the solid is from the FMM. The material parameters are P = 1.05 and cl = 1.05.
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Mapping Coefficients g_l= 1 92 = -.2 g5 = -.05

Number of Modes M=30

Number of Integration Points 120

Error EM < .0001

Figure (4.13) illustrates the backscatter from a rigid clover for a plane wave incident

at 0O = w/6 compared with physical optics. The backscattered form function is plotted

versus kL, where L is the average radius of the surface. The dashed curve is physical

optics, and the solid curve is from the FMM under rigid boundary conditions. Again,

physical optics is not valid at low frequencies, so the comparison there is not expected to

be close, but at high frequencies the comparison improves. For both this case, and that

of the square cylinder, even at high frequencies the agreement is close but not perfect.

This is to be expected because physical optics assumes that each point scatters as though

it were part of an infinite plane, which is not true. It also ignores any contribution from

circumferential waves, which tend to alter the structure of the scatter pattern . Figure

(4.14) shows physical optics (solid curve) compared with the exact solution for a 2:1

aspect ratio elliptic cylinder. The dashed curve is for soft boundary condtions, and the

dotted curve is for rigid boundary conditions. As can be seen, the physical optics method

will not necesarily accurately predict the level of the nulls.
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Figure 4.12: Geometry of Cross Section of Three Leaf Clover
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Figure 4.13: Backscattered form function of a Rigid Clover: 00o = r/6. The dashed curve
is from the physical optics approximation, and the solid curve is from the FMM under
soft boundary conditions.
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Figure 4.14: Backscattered form function from a 2:1 Ellipse. 00 = 0. The solid curve is
is from the physical optics approximation, the dashed curve is from the exact solution
under soft boundary conditions, and the dotted curve is from the exact solution under
rigid boundary conditions. This illustrates the fact that the physical optics solution will
not necesarily accurately predict the level of the nulls.
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Chapter 5

Discussion and Conclusions

5.1 Conclusions

The development of a new method for calculating the farfield scattered pressure of a

plane wave due to a cylinder of noncircular cross section has been presented in this thesis.

The new method has been shown to be very accurate and numerically efficient for a wide

range of cross sections and boundary conditions. The formulation is simple in that it does

not need to be tailored to the shape of the scatterer, as does the T-Matrix. Numerical

results presented for elongated cross sections, as well as cross sections with sharp edges

and concavities, have shown excellent agreement with exact and approximate solutions.

It has also been shown to be numerically more efficient than competing approaches when

the scatterer is not close to circular.

This method most nearly resembles the MMM, in that the scattered field is de-

scribed as a finite summation of nonorthogonal modal functions. The difference is in

how the scattered field coefficients are chosen. In the MMM, the mean squared error on

the boundary is minimized. The drawback of this approach is that in order to satisfy the

boundary conditions, far more coefficients are required than are necesary to describe the

farfield scattered pressure.
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It is here that the method developed in this thesis, the FMM, becomes useful.

Instead of minimizing the mean squared error, the scattered field coefficients are chosen

so that there is no error in the Fourier components einv for In I < N. In practice fewer

terms are required to have a convergent farfield scattered pressure than to satisfy the

boundary conditions rigorously. Therefore, if nearfield quantities are not required, the

FMM will in general be more efficient than the MMM.

Another benefit of this research is the fact that the conformal mapping portion may

be used in conjunction with the T-Matrix to improve the range of surfaces the method can

handle. For example, by expressing the surface fields in terms of the new angular variable

v, accurate results were achieved for an elongated (elliptical) cross section using the T-

Matrix, where the Green's function was expressed in terms of cylindrical eigenfunctions.

This improvement was due to the fact that sampling points for the numerical integrations

were more rapidly sampled at the ends of the ellipse, therefore eliminating the error that

causes the method to become unstable.

Although the FMM may be more efficient and general than both the MMM and

T-Matrix, the major disadvantage of the FMM is that it has not been rigorously shown to

converge to the true solution. Results have been presented that show excellent agreement

with reference solutions. By proof of example, The author is confident that the solution

is,in fact, correct. In order to use the FMM, it is necesary to change variables to a new

coordinate system in which the radial coordinate u = 0 is the scatterer surface. This is

achieved through a conformal mapping, namely conformally mapping the exterior of a

closed surface to a semi-infinite strip, and the interior of a closed surface to a semi-infinite

strip. To the knowledge of the author, this is the first time that an efficient algorithm

has been presented for doing this.

In conclusion, a new technique for solving the problem of scattering from a cylinder

of noncircular cross section has been presented. This technique has proven to be accurate

for a wide variety of cross sections and boundary conditions, as well as numerically
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efficient. Several examples of backscatter calculations were presented and compared to

either exact or approximate solutions. As discussed in the following section, however,

some interesting research remains to be done.

5.2 Recommendations for Future Research

There are several types of research that could follow directly from the work pre-

sented in this thesis. Since an efficient algorithm has been developed to describe the

scattering from a noncircular cylinder, it would be straightforward to generate time-

domain scattering data from which the physics underlying the scattering process could

be studied.

Although the focus of this research has been the scattering of sound by a (pene-

trable) fluid cylinder, the extension to an elastic cylinder would be straightforward. For

example, the shear wave that may be supported in an elastic scatterer may be accounted

for by introducing another set of unknown coefficients for that new field, and then that

set of coefficients would be eliminated by introducing the extra boundary condition that

arises for an elastic boundary.

A third area that would be interesting to pursue would be that of a three-dimensional

scatterer. This would be more difficult because conformal mapping involves only two di-

mensions and might not be extendable to three dimensions.

A fourth area, alluded to earlier in the thesis, involves using the fact that the

Helmholtz equation in the new coordinates is the same as the Helmholtz equation in

Cartesian coordinates with a spatially dependent wavenumber. Propagation of an acous-

tic wave in a range and depth dependent environment is an important and difficult

problem, and the methods developed in this thesis may give insight into a new technique

for solving this problem.
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Chapter 6

Appendices

6.1 Appendix A: Numerical Solution of Nonlinear System of

Equations

This appendix describes how to numerically solve the set of nonlinear equations

that arise from the conformal mapping procedure. The procedure is a simple extension

of the Newton-Raphson procedure [35]. The Newton-Raphson method is an iterative

algorithm that linearizes the nonlinear system of equations. For example, consider the

one-dimensional case

d(6) = 0 (6.1)

where d(6) is a nonlinear function of , and is the unknown. Assume an estimate of

the value of the root of the equation is 6°, such that d(&° + h) = 0, where h is small.

This may be written as a Taylor series

d(,o + h) = d(6o) + hod'(60) +... (6.2)

Retaining only the first term, and setting d(P° + h) = 0, the correction term may be

solved for: h = d(&°)/d'(60). The new estimate of the root thus becomes 61 = 6° + h°.

The entire procedure is now repeated, with the Mth correction term being given by
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hM-l = d(6M-1)/d'(M-1). In practice M may be chosen such that d(M) is less than

some tolerance.

This is easily generalizable to the N-dimensional case. The problem in N-dimensions

is

dl(61,. b,5) = 0

d,(6S,. **,) = 0 (6.3)

Following the same procedure as in the one-dimensional case, the Mth correction vector

is obtained from solving the following:

d(SM-1) + JM-lh M -1 = 0 (6.4)

where hM- l is the Mth correction vector, and JM-1 is the Jacobian matrix whose ele-

ments are given by

JMi = 1 |AI-1 (6.5)

Solving for hM-l , a new estimate for the solution vector becomes:

SM = AM-1 + hM- 1 (6.6)

Again, this process is iterated until the maximum of d(M) is less than some tolerance.

Note here that most of the computation time in the Newton-Raphson method

is in calculating the Jacobian matrix. The modified Newton-Raphson avoids this by

calculating the Jacobian only for the original estimate of the solution vector 6° and

solving the following equation

d( M- 1) + J°hM -l = 0 (6.7)

Using this method will generally require a larger M, but it is much faster because the

Jacobian only has to be calculated once.
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The convergence in either method will be very fast provided the initial guess o

is close to the true solution. For shapes that are nearly circular, a reasonable initial

guess is that 60 = 0. For shapes that differ considerably from circular, an extension of

Newton-Raphson must be tried. Recall that on the surface

00

z + iylsurface= aei + E [Re i (1+n) + Rnei(l- n)] (6.8)
n=l

If the Rs are not small, the new procedure is to divide all Rn by some suitably large

integer L, leading to the sequence of problems

x + iylsurfac, = aei + L E [Rnei(l +n)q + Rnei(l-n)] (6.9)
n=1

The problem for I = 1 is solved using the intial guess of 60 = 0. Once the M have been

solved for, these values are used as the initial guess for I = 2. The procedure is then

continued until 1 = L, which is the original problem.
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6.2 Appendix B: Equations used in Numerical comparisons

This appendix will describe the equations used in generating the numerical results

various existing solutions. The results are used in the main text for comparison with the

FMM. Included are descriptions of the 1) exact solutions which involves separation of

variables for the two surfaces which are applicable to this thesis, circular and elliptical,

for both penetrable and impenetrable scatterers, 2) the physical optics approximation for

high frequency impenetrable scatterers, and 3) the Distorted Wave Born Approximation

for weakly scattering (highly penetrable) bodies for all frequencies.

6.2.1 Exact Solutions for Separable Geometries

As discussed earlier, the conformal mapping changes the Helmholtz equation in

Cartesian coordinates to a new Helmholtz equation

P,, + P,, + k2 F(u, v)P = 0 (6.1)

where F(u, v) depends on the specific mapping. If F(u, v) is a sum of a function of u

and a function of v, then the equation is said to be separable. That means that it may

be solved by separation of variables. The equation becomes:

Puu + P + kI2[f(u) + g(v)] P = 0 (6.2)

By assuming that the solution is a product of a function of u and a function of v,

P = U(u)V(v), and insertng this into Eq.(6.2), leaves

Uu + k2f(u) V= v + kg(v)] (6.3)

Since the left side of this equation is a function of u only, and the right side is a function

of v only, each side must be constant. This is known as a separation constant and is

denoted by 'y. The equation now becomes

U + k2f(u ) V + k2g(v) = (6.4)
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This may now be rewritten as two equations

V,, + k2g(v)V + V = 0

U,, + k2f(u)U yU = O (6.5)

These are ordinary differential equations and thus may be solved rigorously. In general

the first of these equations has a distinct solution for infinitely many values of -y. Each

of these values ym is called a characteristic value or eigenvalue, and the corresponding

solution Vm(v) is called an eigenfunction. Once the eigenvalue has been determined, the

second equation may be solved to yield Um(u). The total solution is then a summation

of each of these solutions, i.e.
00

P= E bmVm(v)Um(u) (6.6)
m=-oo

Circular

The simplest separable geometry is a circular boundary. For this case, f(u) = e2u, and

g(v) = 0. The resulting ordinary differential equations become

v, + V = 0

Uuu + k2e2 U - 7U = 0 (6.7)

Solving these differential equations yields the following solutions

pex t = E [ameimJm(keu) + bmeimvH()(keu)] (6.8)
m=-00(

Where the am are the known incident coefficients, and bm are the unknown scattered field

coefficients. In the interior of the scatterer, the corresponding solution is

pin t = E dmeimvJm(k eu) (6.9)
m=-oo

Where the dm are unkown transmitted field coefficients. The boundary conditions are

pext _ pint

. VPext = . VP in t (6.10)
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Inserting Eqs.(6.8 and 6.9) into Eqs.(6.10), and utilizing the orthogonality properties of

the angular eigenfunctions leaves

amJ,(keu) + bmH(l)(keUO) = dmJm(kleuo)

amJ.m(keuo) + bmHm1)(keu) = pc dJm(kleUO ) (6.11)
Pi Ci

This is precisely the solution obtained from the formulation in Chapter 2.

Elliptic

The next simplest separable geometry is the elliptic boundary. For this case, f(u) =

2 cosh(2u), and g(v) = -2 cos(2v). The resulting ordinary differential equations become

V, - 2k2 cos(2v)V + V = 0

Uu + 2k2 cosh(2u)U - yU= (6.12)

The first of these equations is Mathieu's equation, and the second is Mathieu's modified

equation. Note that Mathieu's equation depends on wavenumber, which is fundamentally

different than the corresponding circular case, where the angular equation was indepen-

dent of wavenumber. This makes no difference for the impenetrable case, but for the

penetrable scatterer this means that there are no orthogonality relations between the

exterior and interior angular eigenfunctions.

Solving these differential equations yields the following solutions in McLachlan's

notation [10]:

00

P= E [a'mCe2m(k, u)ce2m(k, v) + a'm+2Se2m+2(k, u)Se2m+2(k, v) +
m=O

a2 m+lCe2m+l(k, u)ce2m+l(k, v) + am+l Se2m+l(k, U)Se2m+l(k, v)]

+ Z [bmMeIlm)(k, u)ce 2m(k, v) + b m+2Nem)+2 (k, u)se2m+2(k, v) +
m=O

bm+lMlm+l(k, U)ce2m+l (k, v) + bm+l Nem)+l(k, u)se2m+l(k, v)] (6.13)
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Where the a are the known incident coefficients, and the b are the unknown scattered

field coefficients. The superscripts "e" and "" are for even or odd solutions, and the

subscripts 2m, 2m+1 tell whether the angular function is periodic in r or in 27r. Therefore

there are 4 distinct types of Mathieu functions.

1. Even in 27r ce 2m+l(k,v)

2. Odd in 27r : se2m+l(k, v)

3. Even in : ce2m(k,v)

4. Odd in r: Se 2m (k, v)

The ce(k, v),se(k,v) are angular Mathieu functions corresponding to cosine and

sine functions, respectively. The Me()(k, u), Ne(')(k, u) are radial Mathieu functions

corresponding to Hankel functions of the first kind, and Ce(k, u), Se(k, u) are radial

Mathieu functions corresponding to Bessel functions. The interior solution is

00

pint = Z [d'mCe2m(kl , u)ce2m(kl , v) + dm+ 2Se 2m+2(kl, u)se2m+2(kl, v) +
m=O

d2m+lCe2m+l(kl, u)ce2 m+l(kl, v) + d +lm+lSe2m+l(kl, u)Se 2m+l(kl, v)] (6.14)

Where the d are the unknown transmitted field coefficients.

Since Mathieu functions are not available in MATLAB, they had to be written.

They were coded directly from McLachlan, with the radial Mathieu functions being

expanded in terms of products of Bessel functions.

For the rigid cylinder, the boundary condition is

n . VPe t = 0 (6.15)

Using the orthogonality relations leaves

be =_ Ce2m (kU) e
n Me"(')(k, uo) 2 m
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b Ce2m+1 (k,uo) ae
2m+1 = Me (k, o) 2m +1

Sem+l (k, UO) 

Se2m+2(k, uo)
bo2m+2 = ' 2(1) k, am+2 (6.16)

2 Nem2~./~ 2m+2

The penetrable case is significantly more difficult. Again the boundary conditions are

pext = pint

. * vpext = h. VPint (6.17)

Since the interior wavenumber is now different than the exterior wavenumber, ther is no

longer orthogonality between the interior and exterior angular wavefunctions. By multi-

plyng by the exterior angular eigenfunctions and integrating, the result is a summation

on the right side of the equation:

00oo

bemMe(1)(k, uo) + a'mCe 2m(k, uo) = S tYn,2mdmCe2m(k 1,o)
n=0

bemMe'(1)(k, uo) + a2mCe2m(k,u) = P ( (6.18)

On,m = ce 2n(k Uo)e 2m(kl uo) (6.19)

This is equivalent to expanding each ce2m(kl, uo) in terms of ce2m(k, uo), which is what

Yeh[11] did. This is only for even solutions periodic in 7r, and there are corresponding

results for the other types of solutions. These equations may be solved for bm, but now

each bm, is coupled to all of the am, i.e.

00

bem = /n,ma2m (6.20)
n=O

Similar expressions may be derived for the remaining scattered field coefficients.
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6.2.2 High Frequency (Physical Optics) Approximation

The backscattered form function for the physical optics approximation is given by

the following integral [19]

f () = (k. )ei2(' )dA (6.21)

where k is a unit vector in the direction of the incident wave, h is the unit normal vector,

k is the incident wavevector, r is the position vector of each point on the surface, dA is

a differential surface element, and A is the ensonified area.

Because the surface normal n is very easy to calculate in the new coordinate system,

the integral will be evaluated in this coordinate system. Using the properties of the new

coordinate system, the quantities in the integral become:

k n= [x, cos(00) + y sin(0o)]

k = r= k(x cos(9o) + y sin(Oo)

dA= h,dv (6.22)

Inserting these into the above integral leaves

f° (Xr) = ±- j[xu, cos(Oo) + y, sin(Oo)]ei2k(cos(°o)+Ysin(°o))dv (6.23)

All of the quantities appearing in the above integral are easily calculated once the map-

ping coefficients are known. For example, x and y are found by taking the real and

imaginary parts of the mapping function:

00

x + iy = gieiv + : g,e- inv (6.24)
n=O
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xz and y, may be found by taking the real and imaginary parts of the derivative of the

mapping function with respect to u:

00

x, + iy, = gle i" - ngne-inv. (6.25)
n=O

The mapping coefficients used for the shapes in this thesis have already been de-

termined elsewhere in this thesis, and are summarized as follows:

· 10:1 ellipse: g_l = 1, gl = e-2

* 2:1 ellipse : g_1 = 1, gl = e-l

* square: g-l = 1, g3 = -, g7 = 6

* clover: 9-1 = 1, g2 = -.2, g5 = -.05

6.2.3 Distorted Wave Born Approximation

For weakly scattering objects, that is scatterers whose material properties are a

perturbation of the surrounding fluid, the Born approximation assumes the total field

on the scatterer surface to be the incident field, and then uses Green's theorem to gen-

erate the scattered pressure by integrating over the surface. An extension to the Born

approximation found using the T-Matrix is given by Waterman [27]. His result is for

three-dimensional scatterers, but for two dimensions it is given by:

pc(7) a, n i kR pi - p) + (c c)] f ei2k' dS (6.26)

where dS is differential surface element. For the square cylinder and plane wave incident

along the side of the square, performing this integration yields

j e2'dS = LeikL [1-e2k ] (627)is L e ~~~~~~~~~~~(6.27)
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The physical interpretation of this result is as follows: the first term in the brackets

represents the reflection of the incident wave off the front face. The second term represents

a wave that is transmitted through the front face of the scatterer, is reflected off the back

face, and then is transmitted back through the front face. This can be seen from the

fact that the phase of the transmitted wave is k2L, and the length of the path described

above is 2L. However, the wavenumber in the scatterer is not k, but kl. The Distorted

Wave Born Approximation is found by accounting for this fact. That is, the wave that is

transmitted through the cylinder will have a wavenumber k1, where kl = k-c. Replacing

k by k in the transmitted term yields for the farfield pressure:

eikr Nv/
P at(7.) i [(P - p) + (cl - c)] LeikL [1 - e- i2kL] (6.28)

In order to apply this method to a general scatterer, it is necesary to be able to

evaluate the original integral in closed form, and then to separate out the contributions

of the waves that are propagating on the interior of the scatterer. In general this is not

possible, so this method can only be applied in certain simple cases.
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