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Abstract
In this thesis, two versions of a Discrete Superconducting Vortex Flow Transistor
(DVFT) are studied. Both overdamped and underdamped versions are fabricated
with low Tc Niobium Josephson junctions. We present analytical models for the
operation of the DVFTs that agree with the experimental data. In addition to the
operational model of the DVFT, we also present an example of a circuit implemen-
tation of the DVFT.

Measurements on the overdamped version of the DVFT indicate a current gain
of 1.2 when the gate current is injected parallel to the array of junctions. With this
manner of gate current injection, the gain is linear in the number of junctions and
can be made much greater than 1. Measurements on the underdamped version of the
DVFT indicate a transresistance of 2.8Qf with parallel gate current injection.

The overdamped DVFT is better suited for circuit implementation than the un-
derdamped version because its operation is nonlatching and is therefore less sensitive
to noise.

The conclusion of this thesis is that the DVFT is a viable superconducting transis-
tor. The DVFT can be used as a building block to construct complex logic circuitry
or as an interface between current based electronics, such as RSFQ logic and voltage
based circuits, such as CMOS memory devices.

Thesis Supervisor: Terry P. Orlando
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Superconductivity

The field of semiconductor microelectronics has seen great achievements since its

conception, but it is generally agreed that it is reaching some fundamental limits

in terms of the response time of the transistors and the power consumption caused

by the demand for increasing component density. Superconductors offer a potential

solution to these problems. The basic element in superconductor microelectronics,

the Josephson junction, has an intrinsic switching response time on the order of a

picosecond [1].

There are still some unsolved problems in superconductor-based microelectronics.

Up to now, this technology does not have a feasible three-terminal component, or a

switch, which is a necessity for the simplicity of logic circuits. In the absence of such

a switch, even simple logic operations have required complex engineering solutions

[2, 3].

There are two main material technologies in superconductor electronics. The

major distinction among them is the transition temperature (Ta) of the materials.

T, is the temperature below which the material becomes superconducting. The T¢

of any material is much lower than room temperature, thus refrigeration is needed

in order to observe superconducting phenomena. Normally, either liquid helium or

liquid nitrogen are used to achieve the necessary temperatures. Helium liquifies at 4.2
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K and nitrogen liquifies at 77 K, thus low Tc materials have transition temperatures

in the range of 4 K and are measured with liquid helium, and high Tc materials can be

measured with liquid nitrogen. Currently, the most commonly used low Tc material

is niobium, which has a transition temperature of 9.3 K. Niobium technology is well

characterized and controlled. Nevertheless, one would eventually like to operate at the

temperature of liquid nitrogen, which is much cheaper than liquid helium. Currently,

there is much research in developing a technology that would operate at the higher

temperatures. The main material being considered is YBa2 Cu3sO7-, which has a Tc

of 92 K. High Tc technology is in the developmental stage and is much less controlled

than low Tc fabrication technology.

The basic building block of most low T, superconducting electronics is the Joseph-

son junction. The counterpart of the Josephson junction in high Tc electronics is the

weak link. A Josephson junction or a weak link can be modeled as an ideal element,

exhibiting the DC (equation 1.1) and AC (equation 1.2) Josephson effects, shunted

by a parallel combination of a resistor and a capacitor.

i = i, sinG (1.1)

v= d (1.2)
27r dt

A figure of merit describing this parallel combination is the damping parameter, /3c,

which is equal to the Q of the equivalent parallel circuit.

1.2 Vortex Flow Transistors

There have been some previous attempts at constructing a superconducting three-

terminal transistor. The most promising results have been demonstrated by using

the magnetic flux of a current to control the characteristics of a Josephson system

[4, 5, 6, 7]. These systems are commonly referred to as Vortex Flow Transistors

(VFTs). VFTs have been made both in low T, and high T, material technologies.
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1.2.1 Low Tc

Up to now, the low Tc VFTs have been made using long continuous Josephson junc-

tions. There are two versions of low T VFTs; one is a device with overdamped

junctions (the McCumber parameter , < 1) and the other is made with under-

damped junctions ( > 1).

The most prominent characteristic of overdamped VFTs is a nonhysteretic I-V

relationship which can be modulated by an external magnetic flux imposed on the

Josephson junction by a gate current. Overdamped VFTs based on long Josephson

junctions, which are made in low Tc materials, have demonstrated [7] current gains

of 10 and transresistances of 0.2 Q1. The disadvantage of the long-junction-based

overdamped VFTs is the large size, necessary for high gains (750 /tm in length), low

output voltage (< 1 mV), and low output resistance (<< 1 ). Moreover, it is difficult

to manipulate the parameters and improve the response time of the device.

In contrast with the overdamped VFTs, underdamped VFTs, which are made only

in low Tc technology, demonstrate a hysteretic I-V curve with a magnetic field induced

voltage peak in the subgap region. This feature is referred to as the Eck peak [8].

The operation of the underdamped VFTs is based on the modulation of the voltage

position of the Eck peak with the magnetic field of a gate current. Underdamped

VFTs with long Josephson junctions have demonstrated [9] output voltages of 0.17

mV, output resistances of 1 F2 and transresistances of about 2 mV. The disadvantages

of these devices are similar to their overdamped counterparts: large size (800 m in

length), low output voltage, and difficulty in manipulating the parameters of the

device.

1.2.2 High Tc

The VFTs fabricated using high T material technology are similar to the low Tc

overdamped VFTs in that they both have nonhysteretic I-V traces and use gate

currents to modulate these I-Vs. The high T, VFTs utilize parallel arrays of weak

links, rather than Josephson junctions. These VFTs have shown some promising
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results [10]. Maximum output voltages of 20 mV and transresistances of the order of

10 Q were obtained. The discrete lattice of weak links permits the high T¢ VFTs to

have more efficient magnetic flux coupling, so the device can be made small in size

(80 m). The disadvantage of the high Tc devices is that the fabrication technology

is not yet fully developed and that the factors determining the performance of these

devices are not completely understood.

1.2.3 Discrete VFTs

The high Tc weak link transistors have good current gain and output voltage range,

but there is no analytical model that governs the operation of these devices. Therefore,

the improvement of the performance of the high T, devices becomes very hard. The

low T, technology is very well controlled, and the dynamics of vortex motion is

better understood [11]. Therefore, it is possible to construct a model to explain the

operation of a vortex flow transistor in low T0 technology. We can also build a device

that is made with low T¢ technology, with the magnetic coupling advantage of the

high T, devices. With an understanding of the low Tc devices we hope to improve our

understanding of the operation of the technologically important high T, devices. The

analog of the high Tc weak link devices in the low Tc technology is a device based on

a parallel array of Josephson junctions. We refer to such devices as Discrete Vortex

Flow Transistors (DVFTs).

DVFTs are three terminal devices: a gate current regulates the number of vortices

in the device; and a bias current causes the vortices to move which leads to a voltage

proportional to the number of the vortices. A DVFT consists of a parallel array

of Josephson junctions which are coupled to each other by superconducting wires.

Each junction is separated from its neighbor by the lattice constant p of the cell. An

important parameter in discrete 1D arrays is the penetration depth A, in units of p,

which is a measure of the discreteness of the system. For AJ < 1, vortices are well

localized objects; whereas, for AJ >> 1 vortices are spread out over several cells. The
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penetration depth AJ is defined as

AJ = as (1.3)

Here, L, is the self-inductance of a cell in the array and LJ is the Josephson induc-

tance, L = (o/(2'rI), where (o is the flux quantum and I is the critical current

of a single junction. From measurements of Fiske modes in underdamped arrays, we

have determined that in our DVFT geometry, Lo = 1.1 pop [12].

In this thesis, we describe the operation of two versions of Discrete Vortex Flow

Transistors. The overdamped DVFT has externally shunted junctions, such that

,3C, - 1. There is also an underdamped version of the DVFT with = 120. The

analysis of both versions shows that the underdamped DVFT is more susceptible

to fluctuations of the critical current, so the overdamped DVFT is better suited for

circuit implementation. We also describe in detail an inverter implementation of the

DVFT and show the implications of various parameters introduced in the chapter on

the overdamped DVFT. We also show an oscillator based on the DVFT inverter. This

oscillator can be used not only to generate clock signals, but to measure delay times

through transmission lines and the inductance per unit length of superconducting

lines.
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Chapter 2

Overdamped Vortex Flow

Transistors

2.1 Introduction

In this chapter we discuss discrete overdamped vortex flow transistors (DVFTs) made

of short niobium Josephson tunnel junctions connected in parallel. The results of our

DVFT are compared with the high T, devices and the long continuous Josephson

junctions. We also present model calculations on our DVFT which are in good agree-

ment with our experimental results. We calculate the current gain, transresistance,

the output voltage and output resistance and discuss how one can improve the op-

eration of an overdamped DVFT and what its limitations are. Our model is also

applicable to other 1D discrete systems and can also be used to model long Joseph-

son junctions. Our analysis shows that when disregarding the lower temperatures

and voltage levels in low T, materials, DVFTs made of niobium tunnel junctions can

perform at the level comparable to the present high T, flux flow devices.

2.2 Experimental results

Our DVFTs are fabricated with the dual dielectric selective niobium anodization

process (DSNAP) technology developed at Lincoln Laboratory. A layout of the device
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is shown in Fig. 2-1. A schematic drawing of the device is given in Fig. 2-2. The

DVFT consists of an array of N = 9 underdamped Josephson junctions, each shunted

with an external resistor R,. The transport current it is injected through a resistor of

about 1 fl connected to each node so that the current is uniformly injected along our

1D array. The gate current ig can be applied in two ways; in a loop near the edge of

the array or through a line parallel to the array. In this section on the experimental

results we will show results with the parallel gate current injection except for the

measurement of the gain, where we show the results for both modes of injection.

Each Nb-Al20,-Nb junction has a lithographically defined area of 3 x 3 m 2. At

4.2 K the total array critical current in zero magnetic field, ico, is 0.37 mA so that I is

0.04 mA. Thus, the critical current density, Jc, is estimated to be 450 A/cm 2. Because

the IcR, = 1.75 mV for these junctions at 4.2 K, the junction normal-state resistance,

R. can be estimated as 43 Q. The shunt resistance R, is 5.0 fl, and the capacitance

C is 405 fF. The characteristic parameters of our 1D array are the lattice spacing

p = 10 Am and Ls = 14 pH. The McCumber parameter is i -= 27rRR2qCI/(o) where

Req is the parallel combination the junction resistance Rj and R. 1. The externally

shunted junctions are critically damped with ,3c 1.

We have measured the array voltage v as a function of it at 4.2 K for several

values of ig as illustrated in Fig. 2-3. The array critical current, i, is the point of

the highest zero voltage current in the it-Va characteristic. By increasing ig, ic is

suppressed. This is the key point for the operation of the DVFT. In the absence of

an applied magnetic field the highest i occurs for ig = 0 and is denoted in this paper

as ico. For uniform current injection io = NI,. (Note capital letters denote junction

parameters and small letters denote parameters of the full discrete 1D arrays.)

Suppose the array is biased just below i,,co, as shown in Fig. 2-3 by the dotted line

at it = 0.36 mA. For a zero gate current, the voltage is 0, but when i is increased,

the operating point moves along the horizontal dotted line (for a non-loaded device),

shown in Figure 2-3. As a result, the array voltage, v, increases. If a load is present

1Rj should be taken as the subgap resistance for junctions operating below the gap voltage and
R, for higher voltages. However, for our samples the shunt resistance is much less than R, so that
the shunt resistance is the equivalent resistance.

15
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Figure 2-1: A layout of the overdamped DVFT showing two possible ways of injecting

the gate current.
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Figure 2-2: A schematic drawing of the overdamped DVFT with junctions externally
shunted with a resistance R, and resistors R connecting to each node to uniformly
inject the transport current into the array.
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._- 0.2

n
v0 0.05 0.1
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Figure 2-3: The array voltage as a function of the array transport current for three
different gate currents. The gate current is injected parallel to the array.
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0.15

5E 0.1

0.05

n
v0 0.1 0.2 0.3 0.4

ig (mA)

Figure 2-4: The input (gate current) - output (array voltage) characteristic of the
DVFT for four different transport currents through the array. The gate current is
injected parallel to the array.

at the output of the DVFT, the operating point will move along a load line, the slope

of which is equal to -1/RL, where RL is the load resistance.

Fig. 2-4 shows the input-output relation of the DVFT. It shows the array voltage,

v,, as a function of ig for several bias values of it when the array is not loaded. For

practical applications, the range of the output voltage needs to be as high as possible.

Bias currents much lower than io result in a degradation of the output voltage. To

keep the voltage levels high, it is desirable to bias it near i,,. There is also an upper

limit to the bias of it, beyond which, v will not go down to 0 volts. Thus, for

usual operating conditions, the maximum array output voltage in Fig. 2-4 is about

0.15 mV.

The coupling between ig and v is described by the transresistance r,, defined as

AV./Aig, which can be obtained from Fig. 2-4. Since these curves resemble more

a square root behavior than a straight line, the differential, rm, ranges from 2 l for

0 < i < 0.025 mA, to 0.33 fl for 0.025mA < ig < 0.25 mA. As an estimate of r,,

we use the difference between the endpoint values at v = 0 (ig = 0) and v = va,

18
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Figure 2-5: The suppression of the array critical current by the gate current for loop
injection and parallel injection. The dashed lines define the current gain of the DVFT.

(ig = 0.35 mA), i.e. r, = 0.15/0.35 = 0.43 Ql. It is desirable to have r, as high as

possible, since this factor is proportional to the gain of the device (see next section).

Another measure characterizing the performance of the DVFT is G = Ai,/Aig,

the amount of suppression of ic by ig, which is a measure of the current gain of the

device. Fig. 2-5 shows i as a function of ig for the two cases of gate current flowing

parallel to the DVFT and flowing through a loop near the DVFT edge. For small

ig, the relationship approaches a straight line, the slope of which is equal to G. For

the sample of Fig. 2-5, G = 1.2 for parallel gate currents and G = 0.35 for gate

currents through the loop. Estimates of G, its dependence on N, and the method of

flux coupling will be modeled in the next section. We will show that r, depends on

G, which in turn depends on the gate current injection.
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2.3 DVFT Analysis

2.3.1 RSJ model

We have found that the it-va relationship of our arrays can be approximated by an

equivalent RSJ model

= eqic(ig) (i(i )) 1. (2.1)

where req = (R.IIR j )/N is the equivalent resistance. For our samples, req R,/N.

The array critical current ic in Eq. 2.1 depends on the induced magnetic field and

does not follow the single-junction magnetic field dependence of the critical current.

In general, i depends on the number of junctions, the penetration depth and the

way i is injected. Eq. 2.1 works well for high temperatures where fl << 1, but

at 4.2 K where P3, 1, deviations are found. ( is temperature dependent through

I,.) We have shown that in underdamped 1D arrays there exist resonances which are

associated with standing modes of small amplitude phase oscillations [12]. In Fig.

2-3, the effects of resonances are superimposed on the RSJ-like behavior.

A possible explanation for the RSJ-like behavior is given in Ref. [11]. In that pa-

per, the equation of motion for a single, independent vortex in a 1D array is calculated.

This equation of motion along the 1D array is equivalent to the equation of motion for

the phase difference across a single RSJ junction, indicating that the vortex dynamics

in 1D arrays is equivalent to single junction dynamics and hence qualitatively similar

current-voltage characteristics are expected. However, this assumes that vortex flow

is the only dynamics in the array. When other dynamics occur, such as Fiske modes,

then the simple model presented here must be modified. For f,c < 1 we expect this

simple model to be valid. In further analysis we will use the RSJ-like dependence of

Eq. 2.1 and calculate the characteristic properties of DVFTs using typical numbers

for niobium technology at 4.2 K. We will assume the ICR(4.2 K)-product of 1.75 mV

and the specific capacitance C' of 45 fF/ pm2 to be independent of J.

Eq. 2.1 shows that to have the output voltage levels as high as possible, reqic must

be at the highest level possible. For it biased close to io and for i,(ig) suppressed by
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the gate current well below ico, then Eq. 2.1 shows that the maximum voltage can be

written as

Vamaz reqico = ( P ) *1.75mV. (2.2)

For our sample we expect vaa,, to be 0.2 mV, which is close to the measured value of

0.15 mV. To increase vama, one would like to have Req = R,, indicating intrinsically

overdamped junctions. In this respect it is helpful to write the McCumber parameter

in terms of the critical current density. For unshunted niobium junctions at 4.2 K,

we find

/3c -- (2.3)

when C' is expressed in fF/pm2 and Jc in kA/cm 2. For the junctions to be intrinsically

overdamped Jc must be at least 45kA. Such high-J, junctions are also needed for

SFQ circuits [3] and have been fabricated [13]. Probably, J, must even be higher,

because the specific capacitance is expected to be larger for these high-J, junctions.

The expression for the output resistance in the RSJ model can be derived by

taking a derivative of Eq. 2.1

_OVa reqt (2.4)
ro = aia = , (2.4)

For transport currents much higher than i, r can be approximated by:

To - req (2.5)

which is R/,IN = 0.55 for our shunted DVFT. From the DC standpoint, it is

desirable to have the output resistance as small as possible, but since this device

would probably be required to drive transmission lines, r must be matched in order

to reduce reflections. Resistances of the order of a few ohms are desirable for many

superconducting circuits.
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The transresistance, r,, is defined as

Oav av, aicrm = O- - * (2.6)

The term (-o) will be denoted by G, the current gain. For bias currents close to

ico, Eq. 2.6 can be written as

reqGic reqGicr = (2.7)

indicating that rm depends on the gate current through i and on the manner of its

injection through G. As an estimate of r,, we do not take the differential, but instead

the large signal resistance between the endpoints at va = 0 and va = vama. If Aj < 1,

then i, is some fraction of io (see calculations next section) so that

rm areqG : aroG (2.8)

and a is a parameter depending on ig and a < 1. For our sample, the measured gain

is 1.2, and this estimate gives with a = 0.5 that rm 0.6 req = 0.33 f, in agreement

with our experimental value of 0.43 Q. In order to make r,m as high as possible, G

and req must be as high as possible.

As an estimate of the response time of our arrays, we can multiply the single junc-

tion response time [14] by the number of junctions, N, and the cell-to-cell propagation

time by the number of cells, N - 1, which gives

rR ~ N2R,qC + (N - 1) /LC. (2.9)

For our DVFT, we can estimate that rR = 56ps. It is convenient to write the

expression for the response time in terms of Jc for pc 3 1 and AJ ~ 1,

rR = RqC (3N- 1) = 8 p (3N- 1) (2.10)J R
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with J, in units of kA/cm 2 . If J = 45 2 so that the junctions are intrinsically

overdamped with Req = R, then TR is expected to be about 5 ps for an array with 9

junctions.

2.3.2 Current gain

The current gain G is defined as

NI, 1NI = x ,_o Nd'o
Ai - Ai ( Ai LJ2 (2.11)

To get more insight in the factors determining G, we will write the suppression of the

array critical current by ig as a suppression by a perpendicular magnetic field and

then we can calculate the critical current suppression numerically as a function of Aj

and N.

Thus, the first step is to write ig in terms of a magnetic field. If ig is supplied

through a filamentary wire as in the discrete device shown in Fig. 2-1, then the

magnetic field is B = itoig/2rr, where r is the distance from the center of the wire.

We integrate the magnetic field over the area of the array to get the total applied

magnetic flux linkage and then divide by N - 1 to get the average flux ,p in a unit

cell of the array. Therefore, 4wp, = igM/27r(N - 1), where M is the mutual inductive

coupling which depends on the size of the array and the manner of injection of gate

current with respect to the Josephson junction array. As shown in Fig. 2-1, the gate

current, ig, can be injected parallel to the length of the array, or into a "loop" located

at one side of the array.

It is convenient to define

= 27r- (N-1) ' (2.12)
which is known as the frustration and 2 (N- 1)the number of flux quanta in a unit

which is known as the frustration and measures the number of flux quanta in a unit
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cell. Therefore, the gain can be written as

G = D LM N 1 )2 ) (2.13)
N- 1 (2 7r)2 '

where D = -(i. )/ f. Consequently, the problem of estimating G has been reduced

to finding two separate terms: M which is a property of the method of inductive

coupling, and D which is a property of the array in a magnetic field.

For injection of ig into the loop, Ml is given as

jL Il+d 1 l+d
MtH IdA -dxdy = low n d (2.14)

Here I is the length of the array which is (N - l)p = 80 pm in our samples; w

is the width of the array which is about p = 10 pm; and d is the distance of the

loop from the array which is about 1 m. Therefore, Ml can be approximated by

Mt ; 4.4 ,op = 4L,.

If i is injected parallel to the length of the array, M1 is

MII o w+d' 1 + d'.15)
M1 = Id, dydz Iln n (2.15)

JdI Y d'

Here, d' is the distance of the control line from the array, d' = l1m, so we can

approximate M11 by Mll t 2.4(N - l)1op = 2.2(N - 1)L,. With this manner of gate

current injection, we get about a factor of 0.55N increase in G. For current injection

parallel to the array,
1.1 ND (216)

Gl 27r2 A (2.16)

and current injection by a loop is

GI 2 1 (2.17)

The problem of finding G has now been reduced to determining D, the suppression

of i by f. For penetration depths AJ >> 1, the critical current i of an array of N
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Figure 2-6: The array critical current as a function of the frustration for four different
values of A. The plot is a result of a numerical sumulation on an array with 9
junctions and uniform current injection when considering self-inductances only. The
inset shows the linear dependence of D on A for an N = 9 array.

junctions depends on the external magnetic flux [15] as

i(f) = I sin N7rf (2.18)

so that D N. Therefore, G can be made larger by decreasing A. As A is decreased

below N, self-induced fields by the supercurrents in the DVFT become important and

the dependence of i on f must be calculated numerically [16]. The suppression of

i, depends on the manner of injection of current into the array; the current can be

injected uniformly, in the middle of the array, or at one or both edges of the array. In

Fig. 2-6, we show the result of numerical calculations for uniform current injection

in an array with N = 9. The curves in this plot are obtained from calculations with

the self-inductance of the loops only. (Inclusion of all the inductances of the array

and different ways of current injection can be accounted for in our simulations [16].)

With Fig. 2-6 and similar curves for various N, we have found D as a function of

A, for A < N. The result is shown in the inset of Fig. 2-6. We note that for uniform
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current injection and A < N, then D 2.6Aj, independent of N. Therefore, for

A < N,

Gl 0.15 A (2.19)

and
1

GI M 0.26A (2.20)
Ai

In our sample with A = 0.76 and for parallel injection of i, we expect G ~ 1.8

which agrees with my measurement of Gi1 = 1.2. Likewise, for loop injection we

expect Gt ; 0.34, which agrees well with the experimental value of 0.35. Hence, we

conclude that our model provides good estimates for the gain.

From Eqs. 2.19 and 2.20, we see that the highest gains are found for low AJ values.

However, it is difficult to make arrays with AJ much less than 0.1 without making

the cells too big. We also see that gains of 10 or higher are difficult to obtain for an

array with 9 junctions. One could increase N, in order to increase Gil; however, this

will lead to a longer response time and smaller output resistances. Better magnetic

coupling, such as with the ground plane 2, also increases G. We also expect that

including mutual inductance effects [16], will not significantly change the value of the

gain.

It is also interesting to compare the gain of an array to that of a two junction

SQUID, which is an array with N = 2. The gain of the SQUID, Gsq is still given

by Eq. 2.13. Also the magnetic coupling M of the SQUID is given by Eqs. 2.14

and 2.15 with w = = p and d = d', since for a square cell, "loop" and "parallel"

current injection are the same. Finally, the estimate of D can be derived noting that

for AJ < 1, the change of a 1/2 flux quantum of applied field, decreases the critical

current of the SQUID from io = 2IC to i(1/2) = In. From Fig. 12.20 of Ref. [14]

which shows I,, as a function of A 2, we find that for the SQUID D = 1.6A. For

2 Another possible method of control is to have i flow uniformly through a thin ground plane of
width W placed directly over or under the array. A constant magnetic flux density B = Ioig/2W
then passes through the array, and the current gain is then Ggp = D N L,. The width W could
be of the order of p, which means that Gp > Gi. Hence, this method provides a better coupling
than the methods using filamentary conductors.
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p = 10/ m, d = 1m, and M = 2.4po/p ~ 2.2L,, then

1
GsQ x 0.18A (2.21)

for AJ < 1. Moreover, as AJ approaches zero, Imi,/(2Ic) = 1-rAJ [14] and D = 27rA

indicating that the current gain saturates at about 0.7 for the numbers given above.

Consequently, we see that it is difficult to get gains greater than one with this manner

of magnetic coupling. We note that GSQ is about 50% lower than GI, as to be expected

from the increased magnetic coupling from all the cells in the array. Moreover, for

parallel coupling, GSQ is N times smaller than the array. In both cases the array

provides a larger gain than a single two junction SQUID.

There are better ways to couple flux in the SQUID loop (e.g. by using pick-up

coils), but there is a trade off. One would like the inductances LCI of the wires used to

couple the flux in the loop to be as small as possible. When several loops with control

lines are connected together, the Lcl/lr constant must be kept below the response time

of the SQUID, which is TrR. For TR of the order of 10 ps and with r, = 5 Q, L,1 must

be smaller than 50 pH. This might in particular be a problem for high-T-devices.

In conclusion, to obtain output voltages of the order of the IcR,-product (1.75 mV

for niobium at 4.2 K) one needs intrinsically shunted junctions so that J must be

higher than 45,000 A/cm 2 . To get the highest gains, AJ must be kept smaller than

1. However, higher gains can also be obtained by increasing the number of junctions

but longer arrays will increase the response time and decrease the output resistance.

2.4 Comparison to low-T, LJJ and High-Tc-devices

The low-T, (niobium) long Josephson junction Current Injection Transistor (CIT) [7],

like the junctions in our samples, is shunted by a parallel resistor to make the device

overdamped. The transport current-voltage characteristics of this device follow the

RSJ model, thus its operation is similar to our devices with one major exception that

the control current is actually injected into the body of the device. Therefore, in the
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CIT, there is no isolation between the input and the output which can be a problem

in circuit designs. The current gain for this device has been shown to be G Z e/2AJ,

where e is the length of the device and AJ is the Josephson penetration depth [7]. For

a long junction made of electrodes with penetration depth A and thickness greater

than A, then A, = 4/2rtoJch, where h = 2A + t, , and t is the oxide thickness of

the junction.

To make a closer comparison between the DVFT and the CIT, we model the CIT

as a DVFT with a rectangular unit cell: the lattice spacing along the direction of the

device is given by AJ, and the lattice spacing perpendicular to the device is h. The

self inductance L, is modeled as the inductance of a transmission line of length A so

that L, = pohAJ/W.; where Wj is the width of the junction. The "junction" induc-

tance is modeled as L = (o/2rJcWjAj.. Consequently, the corresponding AJ = 1,

as to be expected since the penetration depth is the lattice spacing along the array.

The equivalent number of junctions is N - I/A, assuming N > 1. Likewise, the

corresponding resistances and capacitances are N times larger and smaller respec-

tively than the total resistance and capacitance. Therefore, ,c remains the same for

each cell as for the whole continuous junction. In the upper part of table 2.1, the

parameters for the "discrete model" of the CIT are given in brackets. From these

parameters we calculated the output parameters using the formulas for the DVFT.

These output parameters are listed in the lower part of table 2.1 in brackets next

to the experimentally measured values. The two sets of numbers agree reasonably

well, suggesting the usefulness of our "discrete model." For our "discrete model" of

the CIT, a gain of /2Aj translates into G = N/2. This is the same dependence as

Eq. 2.19 for Gl[ and AJ = 1, except for a numerical factor of order unity reflecting

the different magnetic coupling used in the CIT.

An analogous "discrete model" for high-temperature superconductors was not

done because the mechanism of vortex motion is probably not the same as in a

Josephson junction or array. However, if the current-phase relation for high-T-devices

is sinusoidal, one could still use our estimate of the gain. For the high-T-device of

Ref. [10], we predict a gain of 2.2 for loop injection in reasonable agreement with the
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parameter DVFT CIT [7] HTc [10] DVFT with high Jc
J,(A/cm 2 ) 450 1000 4000 45,000
Aj(om 2) 9 [75] 20 0.22
I,(mA) 0.04 [0.75] 0.8 0.1
i,(mA) 0.37 22.5 4 0.9
R.(Q) 5 [0.8] - -
IS(Q) 43 [2.7] 17.5
C(fF) 405 [640] - 10
N 9 [30] 5 9

p(,m) 10 [25] 20 10

I(1,m) 80 750 80 80

AJ 0.77 [1] 0.12 0.5
L(pH) 14 [0.44] 28 14

LJ(pH) 8 [0.44] 0.4 3.3
_ _ 1.3 1 <1 1

rm(1f) 0.43 (0.49) 0.2 [0.06] 10-20 2.7
Gi 0.35 (0.34) 1.1 (2.2) 0.52
G11 1.2 (1.77) 10 [4.5] 2.8

V,,,, (mV) 0.15 (0.2) 0.2 [0.47] 23 1.75
r () 0.55 (0.55) 0.025 [0.028] 12.8 2

TR (ps) -(55) 100 [42] 60 5

Table 2.1: Summary of the vital characteristics of three non hysteretic superconduct-
ing transistor technologies.
The parameters for the low-T-devices are taken at 4.2 K, and the ones for the high-
T, device at 77 K. The DVFT is the measured array of Figures 2-1 through 2-6. In
parentheses, we quote the numbers expected from our model calculation. The high-J
DVFT is a proposed devices based on high critical current density junctions. The
CIT is the continuous junction of Ref. [7]; the bracketed numbers refer to the discrete
model of the continuous devices as discussed in the text. The high-T, device is the
high-temperature superconducting flux flow transistor of Ref. [10].
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experimental value of 1.1. In addition, our relation r rG also seems to hold for

this high-Te-device as can be seen in table 2.1.

In table 2.1, we summarize the characteristics of our measured DVFT, the CIT

of Ref. [7] and the high-Te flux flow transistor of Ref. [10]. The response times of the

measured three devices are comparable, so it is hard to make a distinction among them

in this respect. The CIT has the largest gain; but this is due to it having the largest

effective N. If the other devices were as long, they would have comparable gains.

Furthermore, the CIT would be difficult to use in complex circuit designs, because

of the problem of the input not being isolated from the output and the low output

voltages and resistances. The separate control over the resistances, self inductance,

and lattice spacing, as well as using the same fabrication technology as other low-T

devices also gives the DVFT a strong advantage over the CIT. The high-Te devices

have the advantage over the low-Te devices, in that the voltage scale is increased by

a factor of 100.

In table 2.1 we also list the calculated properties of a DVFT made with niobium

technology similar to our measured device, but with intrinsically shunted junctions

requiring critical current densities larger than 45,000 A/cm 2 . In our calculations, we

have taken a junction critical current of 0.1 mA, which is about the critical current

used in the single-flux-quantum (SFQ) technology [3]. With Jc = 45, 000 A/cm 2, the

junctions are 0.5 x 0.5 Am2, which should be possible with present technology. For

N = 9, gains of about 3, response times around 5 ps, and voltage levels of 1.75 mV

are possible. In addition, ro and rmll will be about 2-3 Q. By making the junctions a

factor 6.25 smaller (0.2 by 0.2 rm 2), the gain will still be larger than 1, but r, and

rTmll will be about 10 Q. The response time and the voltage levels would remain the

same. Except for the voltage levels, the performance of such DVFT would be the

same as or better than that of the present high-T, devices.

One of the possible applications for the DVFT is to act as an interface between

the current based SFQ logic and the voltage based CMOS memory. For this appli-

cation, the DVFT must have output voltage levels that are high enough to surpass

the threshold levels of the CMOS gates. Output voltages on the order of 0.1 volt
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are desirable. The low-To technology will be limited by the IR, product, which is

1.75 mV for Nb at 4.2 K. Therefore, to obtain higher voltage outputs one needs several

DVFTs connected in series or stacked on top of each other. The high-T, materials

have an advantage in this area because the characteristic voltage scale can be much

higher, although the present value of 0.02 V still seems to be too small. For other

applications at 4.2 K where the output voltage is not as important, DVFTs made in

niobium technology are expected to have a comparable or better performance with

the advantage of using a reliable technology.

2.5 Conclusions

We have fabricated, measured, and modeled discrete overdamped vortex flow transis-

tors made of low-temperature Josephson junctions connected in parallel. The DVFT

compares in performance with the high-temperature superconducting DVFTs except

that the output voltage is lower. The DVFT has advantages over the continuous

LJJ in that more freedom can be exercised over the parameters, which is useful in

designing specific devices. Our modeling of these devices shows that overdamped

submicron junctions with high critical current densities would be the near optimal

design for DVFTs. It should be possible to stack DVFTs or connect them in series, by

which both the output voltage and the output resistance increase. With 100 DVFTs

in series, we project output voltages greater than 0.1 V and resistances of the order

of 100 Q. However, these devices require longer control lines for injecting the gate

currents and the inductances L associated with these lines must be kept small so

that the bandwidth of the circuit is not dominated by the Lel/ro time constant.
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Chapter 3

Underdamped Vortex Flow

Transistors

3.1 Experimental results

The underdamped DVFTs are fabricated with a four mask selective-niobium-anodization

process (SNAP) technology at Lincoln Laboratory and AT&T. A schematic drawing

of the array is shown in Fig. 3-1. Our underdamped DVFT consists of an array of 54

unshunted Josephson junctions with a lithographically defined area of 1.5 x 1.5 pm2 .

At 4.2 K, i3(R,) - 100. The transport current is injected into the array at the middle

of the sample and the voltage across the array is measured with a pair of leads at the

edge of the array. The gate current is injected from one edge to the other edge of the

array through the superconducting wire connecting all junctions in parallel. We have

measured three underdamped DVFTs and we will show here the results of the array

with the highest AJ.

We have measured the it - v. characteristic at 4.2 K for several values of ig as

shown in Fig. 3-2. The it-v. characteristic is hysteretic, which is a consequence of

the low damping in the Josephson system. In the absence of an induced magnetic

field, the it-v. characteristic shows a critical current; and above the critical current

the device directly switches to the niobium gap. By applying a gate current, ig, we

impose a magnetic flux on the array of Josephson junctions which gives rise to a
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Figure 3-1: A schematic drawing of the underdamped
current is injected into the middle of the array.
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Figure 3-2: The array voltage as a function of the transport current for three different
gate currents. The inset shows the input-output relation of this underdamped DVFT
for a transport current of it = 33pA. The slope of the dashed line is the transresistance
rm.

33



peak in the it-v, within the gap region. This peak is known as the Eck peak. As

ig is increased, the voltage position of the Eck peak increases, and its current height

decreases slightly.

Because of the hysteresis in the it-va, the choice for the bias of it is very important.

As soon as the current position of the operating point surpasses the height of the Eck

peak, the voltage switches to the superconducting gap. If this happens, it is necessary

to bring it down to 0, in order to reset the Josephson array into the superconducting

state. This effect is referred to as the "latching" of the Josephson system. Thus, in

order to avoid "latching", it is necessary to bias it below the lowest height of the Eck

peak, as is shown in Fig. 3-2. But, since the Eck peak also has a finite slope, the

choice of the bias of it also determines the range for the output voltage. Decreasing

the bias of it would decrease the voltage range. The output resistance, r, is the

reciprocal of the slope of the Eck peak in the it-va. The value of ro in our samples is

about 2.7 g.

The inset of Fig. 3-2 shows the dependence of va on ig for it = 33 pA. There is

a threshold current ith, for ig, below which there is no output voltage. This quantity

represents the amount of magnetic flux required for a vortex to enter the system. The

transresistance, r, is a function of the voltage position of the operating point. We

find r, to be of the order of 2.8 f as illustrated in the inset of Fig. 3-2.

3.2 DVFT Analysis

In underdamped 1D Josephson systems, resonances occur in the it-va characteristic.

In a small system, there are standing modes of small amplitude phase oscillations

which are called Fiske modes [17]. In the itva, these Fiske modes show up as current

steps occurring at certain voltages. For a sufficiently long system, damping can

destroy the standing wave condition and the Fiske peaks merge into one current step

which is called the Eck peak [8]. The Eck peak can also be explained in terms of vortex

motion. The magnetic field introduces vortices in the array which are accelerated by

the transport current to velocities close to the speed of light in the array. The number
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of vortices leaving the array per unit time determines the voltage. The higher the

magnetic field, the more vortices are introduced and the higher the voltage. In fact,

a linear dependence of the voltage on the applied magnetic field has been observed in

long Josephson junctions [8]. There have been no previous reports on measurements

of Eck peaks in underdamped DVFTs.

In a long Josephson junction of length and Josephson penetration depth A,

a magnetic field causes an array of vortices to enter with periodicity AJ/f. Here,

f = BhAX where B is the external magnetic flux density penetrating the junction and

h = t + 2AJ. Here, t is the thickness of the insulating barrier in the Josephson

junction. However, for vortices to enter, the f must be larger than fl, the lower

critical field. For f > f, the phase of the array of vortices can be approximated

as a sinusoidal wave with wavenumber k = 27rf/AJ. Since the vortices of an Eck

peak move at the speed of light , the corresponding angular frequency for the wave

is w(k) = k. Note that w(k) is the dispersion relation of the transmission line

without the Josephson tunneling channel. The voltage of the Eck peak is given by

the Josephson voltage-phase relation,

VE = W(k). (3.1)

Using the dispersion relation, one finds the known relation VE = o~f /AJ, which is

linear in the magnetic field [8].

We have performed an analysis for the Eck peak in discrete systems similar to

that for long continuous junctions [18]. For f > f, the phase of the vortices in

the discrete array for AJ > 1 can be approximated again by a sinusoidal wave with

wavenumber k = 2rf/p. We find that for a general f the voltage at the Eck peak is

still given by Eq 3.1. However, w(k) is the dispersion relation of the discrete array

without the Josephson channel; that is, the dispersion relation of a ladder network of

inductances and capacitors. If only the self inductance L, is considered, we find that
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w(k) = (2:/p)lsin kp/2]. This gives the voltage at the Eck peak of

vE = Isin(7rf)l . (3.2)

For small f we obtain the result for the continuous junction, E = ocf/Aj where

c = p/x/T; for a discrete transmission line. Because of the discreteness, E is

periodic in f with period f = 1 and vE(f) bends at the first Brillouin zone edge at

f = 0.5. The periodic nature of vE is an extra factor that must be taken into account

in the operation of the underdamped DVFT. In general one needs to keep f < 0.5.

In the experiment we have observed sine-like behavior in the input-output relation

above an entry field fl of 0.2. The measured maximum voltage is 0.3 mV which is

in good agreement with the expected value of $O/(rL/TU). Table 3.1 contains the

values of the parameters for the underdamped DVFT. To increase the maximum

voltage one could decrease the cell size (decrease L,) and/or decrease the junction

area (decrease C). A reduction of L, can also be obtained by using a superconducting

groundplane. Of course, the output voltage is limited by the IR product.

The transresistance r, is can be found by noting that

0 v.E .= 9 E Of
r,, = Ogeig Of (3.3)

,aig 'Of ig

Using Eqs. 2.12 and 3.2 along with the definitions for M from Eqs. 2.14 and 2.15, we

find that for loop injection of ig

(r,)t = r(N- 1) cosrf (3.4)

and for i injected parallel to the array

1.1 L.1(r.)l = -1 cos rf . (3.5)

Since these formulae are only valid for f > fl, we must choose a value of f to

compare with our data. From the inset of Fig. 3-2 we see that the value of r, was
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chosen is near f - 3/8. For this f and with the parameters listed in Table 3.1, we

estimate that (rm)ll is 1.4 SI which agrees well with the measured value of 2.8 Q.

Although there is no expression for the current-voltage characteristic of the Eck

peak, we assume that the vortex velocity u is the same as found for a single vortex

driven by a current in the absence of an applied magnetic field. From Ref. [19], this

velocity in a long Josephson junction is given by u = (1 + 16i2/7r2i2,3c)- 1/2. By

assuming now that each vortex in an applied field moves with this same velocity, we

find that the voltage is E = 4(ouf/p. Hence,

va(it) = 4Sol (3.6)
i6i2

Therefore, for ,c > 1, it i and C/p = 1/'., then

16A f L__, (3.7)

Using the parameters listed in Table 3.1 and setting f = 3/8, we get an estimate of

r of about 1 t which compares with the measured value of 2.7 1.

We can estimate the response time as the transit time for a vortex to travel across

the array. The maximum vortex velocity is p// L , so that the expected transit

time rt is (N - 1) /LC. For our underdamped DVFT, we find rt = 60 ps. Again, a

decrease of the response time is obtained by decreasing L, and C.

When comparing two samples with three different Aj's, we have seen a better

performance for the sample with the higher AJ value. In that sample the Eck peak

is also more pronounced leading to a smaller output resistance. This indicates that

one would like to have A > 1, which is the assumption we made in our analysis. In

that respect, our design with AJ = 1.3 is far from optimal. Improvements could be

obtained by decreasing L, and C yielding higher output voltages, higher speed and

higher AJ values. We expect that for higher Aj values the Eck peak becomes more

pronounced so that the output resistance would also be smaller.
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3.3 Comparison to LJJ

The operation of the vortex flow transistor in the underdamped region has been

studied using long Josephson junctions [20, 21, 22]. Because the magnetic coupling

into the LLJs is different, a direct comparison of the transresistance is not possible.

The value of r, that appears in the literature is inversely proportional to the control

line width, Wo. An experimental expression for rm for NbN/Pb-alloy junctions has

been determined [21] to be: r, = 375m0-m This dependence on W follows from

calculating rm with the plane method of magnetic coupling described earlier. This

gives rm = V/(oht/e)/2W, which for typical parameters and dielectric constant e

gives rmW to be a few hundred ma-dam. In practical devices W can be as small as

5pAm. The transresistance also can be slightly increased by reducing the control line

thickness, thus further increasing the inductance of the control line.

The maximum output voltage can not exceed the superconducting gap of the

material. So, the maximum output voltage of the Nb-Ai20O-Nb junctions is never

greater than 1.75 mV. The NbN/Pb-alloy junctions have output voltages as high as

3 mV [20].

The output resistance reflects the slope of the Eck peak. Ideally, the Eck peak

should be as vertical as possible, yielding in an infinitesimal output resistance. Output

resistances have been reported as low as 0.1 mf [21] in long junctions.

The speed of the long Josephson junction-based VFTs depends on the length of

the device. Amplifiers based on the long junction VFT have been shown to have

reasonable gain up to 100 GHz [22]. This value implied delay times on the order of

10 ps.

In Table 3.1 we compare the results for the LLJ [9] with those of the underdamped

DVFT. We see that the DVFT is better in most regards to the LJJ. However, both

of these devices are inferior in performance to the overdamped junctions.
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parameter DVFT LJJ [9]
J, (A/cm 2 ) 670 350
Aj (m 2 ) 2.25 [920]

I, (mA) 0.012 [3.2]
R () 145.8 [0.6]
C (pF) 0.15 [7.8]
N 54 [35]

p (m) 12 [23]
(m) 636 800

AJ 1.3 [1]

L. (pH) 16.6 [0.1]
LJ (pH) 27.7 [0.1]

_c_ _ 120 [28]

r 1ll () 2.8 (1.4) 0.002 [0.015]
ith (mA) 0.125 (-) 48 [-]
Vaa,,z (mV) 0.31 (0.42) 0.17 [0.75]
ro (0F) 2.7 (0.3) 1 [0.008]

TR (s) - (84) 100 [30]

Table 3.1: Summary of the vital characteristics of two hysteretic superconducting
transistor technologies.
The DVFT is the measured array of Figures 3-1 and 3-2 and LJJ is the continuous
junction of Ref. [9]. In parentheses, we quote the numbers expected from our model
calculation for the DVFT and the bracketed numbers refer to the discrete model of
the continuous devices as discussed in the text. Aj is the defined junction area; the
actual junction area of the DVFT is 1.8 pm 2. The capacitance of these junctions is
higher than expected due to parasitic contributions [12].
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3.4 Conclusions

We have fabricated, measured and modeled discrete underdamped vortex flow tran-

sistors made of low temperature Josephson junctions connected in parallel. We have

also constructed a discrete model to the published data on the underdamped vortex

flow transistors based on long Josephson junctions. In comparison with these long

junction based transistors, the underdamped DVFT performs better. In comparison

with the overdamped DVFT, the underdamped DVFT has the disadvantage of having

a hysteretic it-v. relationship. This hysteresis makes the underdamped DVFT much

more sensitive to the fluctuations in i caused by noise or any other factors.
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Chapter 4

Implementation of the DVFT

4.1 Introduction

In the preceding chapters, the fundamentals of the operation of the overdamped and

underdamped vortex flow transistors have been introduced. This chapter discusses

the role that these fundamentals play in the implementation of the Discrete Vortex

Flow Transistor in circuits. The underdamped DVFT is much harder to implement

than its overdamped counterpart, because of its hysteretic it - va relationship, so we

will concentrate on the overdamped DVFT.

We attempted to use SPICE to simulate DVFT circuits, in order to determine

the effects of the individual characteristics of the DVFT on its performance in sim-

ple circuits, such as an inverter, memory cell, or an oscillator. We were successful

in programming an approximate model of the overdamped DVFT into SPICE, but

attempts to embed this model into more complex circuitry ran into computational

problems. Nevertheless, we can still gain some important information from hand

calculations of the performance of a simple inverter.

4.2 Inverter

Consider an inverter shown in Fig. 4-1. The bias current ib can be thought of as a

supply current. The gate current ig is assumed to be fed by other DVFT circuits. If ib
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Figure 4-1: A schematic drawing of a DVFT based inverter.

is biased below i,, of the DVFT, then for a zero ig, the i of the DVFT is unsupressed

and remains at i. In this case, the entire bias current ib is flowing through the

DVFT, resulting in a zero voltage across the resistor. Therefore, there is an output

current, iot = ib, for a zero gate current. Thus, a logic "1" on the output corresponds

to a logic "0" on the input.

Now, suppose there is a gate current corresponding to a logic "1" that suppresses

the i, of the DVFT. Since the bias current exceeds the critical current of the DVFT,

the bias current will flow through both the DVFT and the load resistor, RL. Since

there is a finite current flowing through the resistor, there is a voltage across the

parallel combination of the DVFT and RL. Therefore, the DVFT must be in the

resistive state. We can solve this problem either graphically by combining the it-

v, relationship of the DVFT and the load line of the resistor, or by simultaneously

solving the system of equations for the output current it:

va = -it2 (4.1)

Va = RL (ib-it) (4.2)
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The solution of this system of equations is:

-ibR2 i reqic (r2 - R) + ibR
it r - (4.3)

Consider the limit of i = 0. The expression for it reduces to:

it =ib ri RL
r,q RL

In this, expression, the upper sign is the only physically realizable situation, since the

lower sign would give us a current opposite in sense to ib, unless req < RL, in which

case we get a current that is larger than ib, which is impossible. Thus, if we are able

to conceive a situation where i is suppressed to zero, the expression for it simplifies

to a simple current divider relation:

it = ib L (4.5)
req + RL

Ideally, we would like it, which is the output current, to be zero in this case, since

we are trying to invert an input of logic "1". Thus, from the above argument, it is

evident that for this particular implementation it is necessary not only to be able to

suppress i to zero, but make RL < rq.

From the simulations shown in Fig. 2-6, we know that i, does not go to zero for

small Aj. In order to divert current from the output, it has to be greater than i.

If the minimum level of i increases, then the amount of current diverted from the

output decreases. Thus, the logic "O" output current is increased, which is a very

undesirable effect. In other implementations, that do not use a shunting resistor,

the maximum suppression of i, still remains a critical problem that must be solved,

because the degradation of output logic "0" can potentially create errors, since a

nonzero current can be interpreted as a logic "1" by the subsequent stages. There

are several possible solutions to this problem.

From the earlier discussion on the gain of overdamped DVFTs, we know that

43



the gain is: G = 0.15 NY. This suggests that to get large gain with relatively small

transistors, it is necessary to have small Aj. On the other hand, from Fig. 2-6, we

see that as Aj is decreased, the minimum value of i,, ii,, increases. Thus, from the

above discussion, we see that the only way to have low levels of ii,~ and have large

gain would be to have large N and large AJ. Figure 2-6 also shows that for large AJ

there are nonlinear "ripples" in the dependence of i on ig. This is an undesirable

artifact, and there are several possible solutions to this problem.

In the literature dealing with Josephson junctions [15], there have been some

successful attempts at reducing the "ripple" effect in the i, behavior in the magnetic

field. Instead of being uniform in shape along its length, the Josephson junction can

be shaped such that the critical current I, is greater in the middle and smaller along

the length of the junction towards the ends. The dual of this would be to arrange a

parallel combination of short junctions such that the Josephson junctions with larger

areas would be in the middle of the array and decrease the junction area along the

length of the array away from the middle.

It is important to remember that AJ = A Thus, AJ can be increased by

decreasing the junction critical current, or decreasing the self-inductance of the loops

by making them small or including a ground plane underneath the entire transistor,

which decreases L. by a factor of 5.

Factors such as the nonzero logic "0" output of the DVFT inverter and the pres-

ence of noise suggest that we need a threshold level for the operation of DVFT circuits.

This threshold can be accomplished in a variety of ways. We can bias the DVFT be-

low the maximum critical current, io, which is shown in Fig. 2-4. As the bias of it is

decreased, the threshold for the "turn-on" of the DVFT is increased.

Another way of introducing the threshold level is to inject the bias current into the

DVFT in the middle of the array, rather than using uniform injection. The behavior of

i, in magnetic field for middle current injection is shown in Fig. 4-2. This figure closely

resembles the ideal inverter transfer characteristics. Current injection in the middle

of the array also helps to reduce the power consumption, because this would eliminate

the bias resistors that are used to achieve uniform current injection. The disadvantage
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Figure 4-2: The array critical current as a function of the frustration. The plot is a
result of a numerical simulation on an array with 9 junctions and current injection in
the middle when considering only the self-inductances.

of using middle bias current injection is the fact that i,,o is strongly sensitive to the

penetration depth in the array, which in turn, is a function of the critical current

density of the Josephson junctions. Thus, to use middle bias current injection, the

fabrication process must have tight controls that allow good reproducibility of the

target critical current density. Current low-T, processes can achieve J within 10%

-15% of the target.

4.3 Oscillator

A DVFT based oscillator can be realized by feeding the output of the inverter shown

in Fig. 4-1 back to the input of the same inverter. This creates a feedback loop that

results in the oscillation of i,t. This method is similar to the clock oscillators used

in many CMOS integrated circuits. The period of the oscillations is approximately
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Jc= 450 A/cm 2 J = 12 kA/cm 2 J, = 45 kA/cm 2

frequency (GHz) 3.7 5.6 5.9

Table 4.1: Oscillation frequency for a single stage DVFT inverter based oscillator

equal to twice the response time of the inverter. Thus, the oscillation period is:

T=2 (rR ) (4.6)

Here, TR is the DVFT response time defined in equation 2.10, and LL is the inductance

of the line connecting the DVFT with the load. We can monitor the oscillations

by directly observing the transitions with a current to voltage converting DVFT,

magnetically picking up the signal, or indirectly by measuring the voltage across a

series connected Josephson junction. Assuming LL = 40pH, and RL = 0.5fl, table 4.1

shows the expected frequency for different J. In table 4.1, the only parameter that is

changed is J,, and the delay through the DVFT becomes negligible as the junctions

in the array become intrinsically shunted, thus it becomes possible to measure delay

times arising from propagation along superconducting lines. Thus, it is possible to

precisely measure inductances of superconducting lines.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we have described the operation of two versions of a Discrete Vortex

Flow Transistor. We have included analytical models that describe the operation of

the transistors. When compared with experimental data, the models were in good

agreement. Therefore, we can conclude that the models presented here are valid.

From the analysis of the overdamped DVFT, we saw that we can construct an

equivalent RSJ model to describe the entire array of Josephson junctions as a single

entity. The maximum output voltage is vam.. = (R-) * 1.75mV. Here, Req < R in

the case of externally shunted junctions. We also saw that the current gain of the

overdamped DVFT with parallel gate current injection is proportional to the number

of junctions in the array, N, and inversely proportional to the penetration depth in

the array, AJ.

We compared both the underdamped and overdamped versions of the DVFT with

the long junction based devices and the DVFT showed better performance. In com-

paring the two versions of the DVFT, the underdamped version has a disadvantage.

The underdamped DVFT has a hysteretic it -v. relationship which causes it to switch

to the superconducting gap voltage when it surpasses i. This is the "latching" effect

that is seen in underdamped superconducting systems. This effect causes the under-

damped DVFT to be much more sensitive to fluctuations of i due to noise or other
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factors.

Of course, the future direction for the DVFT points toward using high Tc tech-

nology. Circuits made with high Tc materials take advantage of the low cost of liquid

nitrogen cooling opposed to cooling with liquid helium. Before it is possible to con-

struct circuits with high T¢ transistors, it is necessary to have a model that describes

the operation of the devices. Such a model does not exist currently for the high Tc

transistors.

As an example of a circuit implementation of the DVFT, we have also used the

analytical model for the overdamped DVFT to analyze a DVFT based inverter. We

have seen that its operation is crucially linked to the behavior of i, in the magnetic

field.

5.2 Suggestions for Future Work

The understanding of the operation of the VFT in high Tc technology is very impor-

tant for future applications. Thus, it is very important to continuously improve the

reproducibility of the high Tc fabrication technology and to find a successful model

to describe the operation of the VFT is this technology.

The improvement of the operation of the low T0 based devices is also very impor-

tant. There is a large number of research possibilities that remain to be explored in

this area.

* In the analysis of the overdamped DVFT, we saw the importance of having

overdamped Josephson junctions without the use of external shunting resis-

tors. This can be achieved with high critical current density junctions. Critical

current densities as high as 45,000 kA/cm2 are needed to get 3 = 1. It is im-

portant to fabricate DVFTs utilizing these junctions and verify the operation

of the DVFT under these conditions.

* It is also important to explore the possibility of improved magnetic coupling of

the gate current to the Josephson array. It is possible to arrange the gate wire to

form a complete loop over the entire array, if another layer of metal is available
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in the fabrication process. This method would double the coupling efficiency

of the parallel method shown earlier. Thus, G would double on the account of

better coupling. Of course, the gate wire can be looped many times over the

array, improving the coupling even further, but increasing the length of the gate

wire increases the input inductance which would slow down the response time

of the device.

* If we can improve the magnetic coupling, then we can afford to reduce the

surface area of the DVFT by reducing the number of junctions, N, without

decreasing G. This opens up the possibility of having uniform current injection

without using resistors to achieve this. This may be possible because the size of

the array becomes comparable to the penetration depth, so the current would

be distributed over a greater percentage of the array, so io should be more

insensitive to the penetration depth. This is definitely true in the case of the

penetration depth being larger than the size of the array.

* In the analysis of the DVFT based inverter we saw the importance of the be-

havior of i in the magnetic field. It is very important that i goes down to 0

and that io is insensitive to J,. This would take some engineering of the array.

As discussed in the previous chapter, it may be possible to vary the area of the

junctions along the array, such that the larger junctions are in the middle of

the array, and the area of the junctions decreases toward the ends of the array.

This method may help to reduce the "ripple" effect that is seen in the behavior

of i in the magnetic field.

* With a model describing the operation of the DVFT, we can now use the DVFT

to design circuits. We saw an analysis of a simple example of a circuit imple-

mentation of the DVFT - the inverter. More complex circuits would be much

harder to analyze, that is why a computer simulation tool such as SPICE is

needed.

* In our model, we proposed a theoretical approximation for the response time of
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the DVFT. It is important to make experimental measurements to determine

the validity of our model for the response time.

* In our model, we did not include any effects of disorder in the Josephson system,

which may be caused by an uncontrolled spatial variation of the critical current

density. The effects of disorder can be easily included in the simulations of the

behavior of ic in the magnetic field.

* It would also be interesting to study the effects of noise in the system. There

are many sources of noise, and it is an important aspect of electronic circuit

design.
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