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Abstract

In this thesis, I present an improved method for automatic proofs of termination
through a syntactic measurement of sizing that was first developed by Walther. We
discuss formal requirements for proving termination using this method and how it can
be generalized to other languages. We present a simple set-theoretic language as an
example which can be used to write basic Lisp-like programs. Using this language, we
define strict syntactic requirements on how to prove termination and then produce
inference rules that indicate how these requirements can be established. Several
sample algorithms whose termination proofs are sketched using the inference rules
are presented in order to show the power of the approach. Last, we discuss the
issue of soundness of these rules, as well as issues of the decidability and efficiency of
implementing such a system.
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Chapter 1

Introduction

In formal reasoning with mechanical verification systems, such as those used for hard-
ware and software verification, it is often necessary to show that recursive functions
are well-defined. When defining languages for computers, an imperative model is often
used, and therefore the problem can be treated as constructing a proof of termina-
tion. Since there are recursive definitions whose termination properties are bound to
be intractable (instances of the halting problem, for example), it is necessary to resort
to heuristic algorithms to determine the well-formedness of recursive definitions.

One common approach for proving termination was invented by Floyd[6]. Floyd’s
approach relies on the ability to find some measure of the arguments that is well-
ordered according to some relation, <. If a measure exists which is guaranteed to
decrease according to this relation on every recursive call, the function must termi-
nate. The key innovation required in such proofs, however, is the ability to find a
measure with the necessary properties.

Walther[12] expanded on Floyd’s work by using a specific class of measures which
applies to a large class of natural recursive procedures and for which a decidable
algorithm could be constructed which automatically determines the applicability of
the measures to a given procedure. The measure is based on a syntactically-defined
notion of the size of an argument. Based on this size order, Walther describes a sound
as well as decidable method for proving automatically that a large class of recursive

procedures terminate.



This research generalizes the work of Walther in several ways. First, we apply
Walther recursion to a language with a more general idea of primitive data structures
than the shell principle used in Walther. Second, we extend Walther recursion to
allow certain transfinite recursive definitions to be accepted. Third, we describe a rule-
based implementation of our algorithm which is strictly based on the syntactics of our
language. Finally, the theoretical framework used by Walther in his paper did not give
clear semantical and syntactical descriptions of the language being described, making
it very difficult to formally generalize the approach. With a grammar defining the
syntax and a meaning function determining the semantics of our approach, extensions

to other languages are more readily apparent.

1.1 A Termination Proof

In order to illustrate how we prove termination, we begin with an example proof that
Euclid’s algorithm for finding the greatest common denominator terminates for the
whole numbers. Specifically, using a syntax resembling that of Lisp[11], our algorithm
is defined to be:

(define (gcd a b)
(if (= a 0)
b

(gcd (remainder b a) a)))

where the remainder function is defined as:

(define (remainder x y)

(it (= y 0)
y
(if (< x y)

X
(remainder (- x y) y))))
In order to prove the ged function terminates, we must show there is a well-
founded order, <, on its arguments (a,b), such that for any recursive call, ged(x,y)

made within the function, (x,y) <(a,b). In this paper, we restrict the well-founded



orders to being dependent on a single argument only. By observation, this can be
possible only if for all (a,b) such that a # 0, a <(remainder b a). Upon inspecting
our remainder function, since y # 0, remainder returns x if x <y or (remainder
(- x y) y) otherwise. If x <y, then (remainder b a) = x = (remainder b a) <a.

Otherwise, (remainder x y) = (remainder (- x y) y). Another recursive call to
remainder is made where y # 0. Since the minus operator defines a well-founded
order on the whole numbers, remainder will eventually stop and since y # 0 always
holds, it must terminate with a value x where x <a. Thus, for all (a,b) such that
a # 0, a <(remainder b a). We therefore have established a well-founded ordering
on (a,b) which the desired properties. Therefore, the ged function must terminate.

The above sketch of a proof roughly describes the approach taken by Walther[12].
Although it is a reasonable sketch of a termination proof for ged, using this approach
in an automated system has several weaknesses. First, the chain of reasoning which
lead to conclusion that the gecd function is Walther is a bit unclear. Although there
is a formal algorithm for determining whether a function is Walther recursive, the
semantics of the language as well as clear inferences leading to the proof had been
abstracted out of the discussion. Second, the automated system discussed by Walther
produces generation hypotheses and relies on an induction theorem prover to verify
these hypotheses. In our approach, we have developed a formal, set-theoretic defini-
tion of Walther recursion, proving the necessary definability properties, in order to
generate a sound set of inference rules which essentially lead to termination proofs, as
opposed to termination hypotheses. The soundness of the rules should be indeed ver-
ified by the induction theorem prover but this can be done offline and thus efficiency
can be increased significantly.

For example, in our approach the above termination proof would be proved with

the following chain of inferences:

o Function — (minus) terminates
e Given arguments z,y y # 0,z # 0, minus(z,y) is less than =

o I In (remainder (— x y) y), (- x y) is less than x
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o I remainder teminates

remainder(z,y) returns a value less than or equal to y

 Given arguments z,y y # 0, remainder(z,y) returns a value less than y

t In (gcd (remainder b a) a), (remainder b a) is less than b

e I gcd terminates

1.2 Description of the Approach

As opposed to the generate-and-test paradigm combined with an induction theorem
prover that is used by Walther, we use an inference rule system for automated ter-
mination proofs. However, we have adapted the generate-and-test paradigm taken
by Walther to generate inference rules that are essentially equivalent to Walther’s
approach. Since we do not use an induction theorem prover in our approach, we
have established a set of formal requirements for recursive definitions to be Walther
recursive and then proved these requirements guarantee a well-defined function. We
then defined a set of meta-formulas which within our language of discussion, indicate
how terms in our language satisfy the necessary formal requirements.

The meta-formulas, also termed properties by Walther, which are required must
determine sufficient conditions for proving a function terminates. Since our approach
is based on a well-founded size order which can establish that the size of an argument
to a recursive function decreases on every recursive call, meta-formulas for determin-
ing when a recursive function satisfies this property are needed. In order to establish
this property is true for a given recursive function, we must show that the size of
the argument decreases. Unfortunately, the size of a term has a semantic mean-
ing, which determining in the general case is intractable. We resolve this problem
by constructing a meta-formula which is a syntactic estimate of the relative size of
two terms. The basis for recognizing that terms are relatively smaller or larger is

through the idea of argument-bounded functions. Argument-bounded functions are
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functions which return results that are strictly less than or equal to a given argu-
ment to the function. For example, the remainder function in the above example
was argument-bounded on its second argument. Thus, meta-formulas which indicate
what functions are argument-bounded on which arguments are required. For a base
set of argument-bounded functions, we use a set of primitive selectors defined on a
given set of datatypes.

This, however, is still insufficient. Argument-bounded functions guarantee that
the result returned is less than or equal to the value of an argument, whereas for
proving termination, we require that in the call to a recursive function the argument
is strictly decreasing. Therefore, in addition to recognizing functions are argument-
bounded, we must also recognize when such functions return a result that is strictly
less than an argument. “When” translates into establishing conditions on the argu-
ments to a function, or so-called difference literals that ensure that the result will be
strictly less than an argument.

Given these meta-formulas, we constructed a set of inference rules which indi-
cate how the properties can be provably established within the language. Once our
meta-formulas and inference rules are established and proved to be correct, we can
incorporate them into rule-based system. Because generating inferences is the only
dynamic portion of the system and because the rules can be implemented as a recur-
sive descent parsing algorithm, an efficient implementation exists for such a rule-based
system.

Chapter 2 describes the Walther recursion more fully and extends Walther’s work
to include a set-theoretical framework for Walther recursive functions with proofs
of the fixed-point properties of these functions leading to semantically well-defined
meanings. We use this framework in chapter 3 to discuss the inference rules necessary
to determine whether definitions are Walther recursive in a simple language. The
decidability of the inference rules is established and their soundness is discussed.
A series of example algorithms are also given which are provably Walther through
the inference rules. These illustrate the types of recursive definitions which can be

expressed by Walther recursion. We conclude in chapter 4 with a brief discussion of
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the strengths and weaknesses of our approach.

1.3 Comparison with Other Approaches

The works presented here are all discussed in Walther’s paper[12]. Much of the work
in this area not only deals with termination proofs but correctness proofs as well.
Since the primary motivation for this paper is for verifying termination of recursive
functions, correctness proofs are not of major concern, and therefore are not discussed
here. However, it should be noted that algorithms incorporating correctness with
termination proofs often requires a distinct different approach.

Floyd[6] first suggested the use of a termination function and the properties of
well-founded sets for proving termination of flow chart programs. These ideas were
adapted by Cooper[5] and used to implement a mechanical verification system. This
system was a semi-automatic facility for generating and verifying so called convergence
conditions which were sufficient for proving termination.

In [8], four different methods of proving termination are compared. For Floyd’s
technique[6] as discussed above and for the loop approach, which is based on estab-
lishing an upper bound for each increasing counter in a loop, a termination function
is used. The ezit approach uses ezit conditions, conditions upon which a loop is
guaranteed to terminate, and attempts to show how these conditions are satisfied
at some stage in the loop. Proofs of non-termination can also be done using this
approach. Finally, the paper describes Burstall’s[4] method, which uses structural
parallel induction to prove termination and correctness simultaneously.

Burstall’s method is useful in unusual recursions which are difficult to under-
stand and verify such as McCarthy’s 91-function and Ashcroft’s algorithm for list
reversal[10][9] where termination and correctness must be shown together. Since such
algorithms are not often of practical use, we consider it a minor drawback that an
approach based strictly on termination such as Walther recursion cannot prove the
termination of such algorithms. The key problem to approaches based on this method

is that determining the correct well-founded order often requires the outside aid and
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therefore is not fully automated.

The approach taken by the author is based on Walther recursion[12]. This is
an adaptation of Floyd’s approach with termination functions through a syntactic
measure of the size of arguments to a recursive function. A similar approach was
used in the system developed Boyer and Moore[3]. However, that system required
outside intervention by the user. Walther’s approach fully automates the construction

of termination proof.
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Chapter 2

Walther Recursion

In order to prove the consistency of recursive functions, it is first necessary to formally
define Walther recursion. Our treatment will be from a set-theoretic standpoint,
which allows sufficient expressibility to be applicable to most areas within computer
science as well as a large area of mathematics. Specifically, we assume that sets are

axiomatically defined within the realm ZFC set theory.

2.1 Fixed Point Semantics

In order to establish our formal framework, we must remember that it should satisfy
our intuitive notion of Walther recursion as set forth in this paper. Thus, let us return
to our definition of a function for computing the greatest common denominator:

(define (gecd a b)
(if (= a 0)
b
(gcd (remainder b a) a)))
Assuming a function remainder is already defined with provably the desired

properties we need, there is still a question of how we can mathematically express

this function in such a way that it yields the results we intuitively expect it to give.
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For example,

bifa=0
gcd((a, b)) =

ged(remainder(b, a), a) otherwise
has no definable meaning since the function is defined in terms of itself. Thus, our
first goal is to provide a definition for a recursive function. We take the standard
approach as described by Manna[10], through using a fixed point theory of recursion
functions. We define a partial function to be a function which maps elements in the
domain to elements whose value is within the given range or some pre-defined element,
0, which may or may not be in the range, where () is considered the undefined value.
Partial functions intuitively allow us to define the value of a function on a subset
of the domain, allowing us to provide an approximation of a recursive function. For

example, the first approximation of ged could be:

bifa=0
gcd((a, b)) = ,
@ otherwise
The next step is to provide some method of generating better approximations of
the recursive function we seek to define. In order to do so, we define a functional.
Functionals are functions which, given a partial function, will return a partial function.

Therefore, they can be used to model functions which given an approximation to a

recursive function, return a better approximation. For ged:

bifa=0

GCD(ged') = {({a,b),y) : y = :
gcd'({a, b)) otherwise

In this case, the GCD functional will return a new approximation of the ged
function, given a prior approximation, ged’. Although we can take better and better

approximations, mathematically we want the limiting case where we have converged
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on desired recursive function, i.e. a function, ged, such that
GCD(ged) = ged

We call ged a fixed point of the functional GCD and take it to be the natural
meaning of the recursive definition of the greatest common denominator. Thus, in
order to describe a recursive function mathematically, we define a functional and
determine its fixed point. We proceed to provide formal definitions for the above

concepts.

Definition 1 A partial function from a set X to a set Y, denoted as f : X — Y, is
a set of ordered pairs, {(z,y) : z € X,y € Y}. The value, f(z), = € X, is considered
undefined, or f(z) = { if there does not exist y such that (z,y) € f. Otherwise, the
value f(z) is considered y,(z,y) € f. More formally,

fo) = { 0if ~3y, (z,y) € f -

y s.t. (z,y) € f, otherwise
We call X, the domain of f and Y, the range of f.

Definition 2 Let 7,7y, 73,...,7, be sets and let P be the set of all partially defined
multi-valued functions g : 7 X 7... X 7, — T over a given set of n variables from
Ty, Tn 0 7. A functional in P is defined as a function F' : P — P. By abuse of

notation, we define F'*(z), for any any ordinal a as

F(z) ifa=1
Fe(z) = F(FF(z)) if38,a=0+1
F(z) = {(a,b) : 38 < a s.t.Vy > B,(a,b) € F(z)} otherwise
(2.2)
Furthermore, we use the following notation for a partial function whose value is

® on the entire domain:
F*(fo) = F*({}) (2.3)
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2.2 Proving Termination

Walther recursion is based on the idea of a termination function as described by
Manna. Specifically, a size order which is a measurement of the size of the arguments
to the function is used to show that if the size order is well-founded and if the
arguments to the function are smaller in relation to the order, the function will
terminate.

Since set theory is often defined by an axiomatic construction of sets, stage by
stage using the ordinals, this leads to a natural method of defining a well-founded
size ordering on the sets using the rank of the set. Specifically,

Definition 8 For any ordinal a we define V, as

o V=0
[ Va+1:P(Va)

o Vs =Uascs Va

Then, for any set x, let |z| be the least a such that z C V,. We call |z| the rank
of set z.

It is a common knowledge that such an ordering using the ordinals imposed a
well-founded size ordering on sets. Therefore, we assume, without proof, that the
above ordering is well-founded and we can perform induction using this size ordering.

Given a formal method of defining recursive functions and a size ordering imposed
on sets, we can now proceed to define the notion of Walther recursion. First, we need
some method of comparing different partial functions as approximations of recursive

functions.

Definition 4 Let f,g be partially defined multi-valued functions. For any i, c, we
define f =; o g to mean that for all v = (&4, ..., 2,), |z;| < @ = f(v) = g(v). Thus,

f Siha = Vv = (1131, ""w'n>1 thl <a= f(v) = g(v) (24)
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Example 1 Let f,g be functions such that

f = {((172’3)79)7 ((47 1) 5)1 —5), ((7, 8,4)5 5)a ((57 61 7),8)}

9 =1{((1,2,3),9),({4,1,5), -5),({7,8,4),5),((6,5,8),1)}

Then f =159, f =25 9,and f =37g.

Next, recall that a Walther recursive function is a recursive function that guar-
antees that on every recursive call, some measure of the function is guaranteed to
decrease according to some well-ordering. This leads to our set-theoretic definition of

a Walther recursive function.

Definition 5 Given a set of functions P = (11 X 73... X 7,) — 7, a functional F :
P — P is defined to be well-founded if and only if 3m,1 < m < n where the following

condition holds:
e For any functions f,g € P, Vo,(f =ma 9 = F(f) =ma+1 F(9))

We say F is well-founded on argument m and call m the measure argument of func-

tional F.

Claim 1 Let N = set of non-negative integers and P = N — N be a function space

over which the following functional is defined:

F(R)={(1,00}U{(z,y):2>0Az € N,y =z *h(z — 1)}

Then F is well-founded on its first and only argument x. Note that this functional
describes the factorial function.

Proof: Let f,g be any functions such that f,g € P. Assume to the contrary that

Ve, (f =10 9 = F(f) =1,041 F(9))

Which means that

Jda =o' s.t. =(f =10 9 = F(f) =1,0+1 F(9))

18



Then, for o,

f =1, 9 A F(f) ?él,a'+1 F(g)

Since F(f) 7él.a'+1 F(g),
o =o' s.t. [o'] < o + LA[F()(v') # [F(9))(+)

Using our definition of the functional F, we get

1 ifv' =0
[F(H))(v) = {

v'x f(v'—1) otherwise

and
1 ifv'=0
[F(9)](v") = {

v'x g(v' — 1) otherwise

However, since fy g and |[v'| < o' +1 = |[v'—1| < o, f(v'—1) = g(v'—1). Therefore,
[F(f)](v") = [F(g)](v') which is a contradiction. Thus,

Va,(f =10 9 = F(f) =1,0+1 F(9))

which means that Fis well-founded on its first argument. W

Claim 2 Well-founded functionals do not have to be monotonic. For example, let
N = set of non-negative integers and P = N — N be a function space over which

the following functional is defined:

0 if =3y’ s.t. y' € h(z — 1)
h(z —1) otherwise

F(h)={(1,0)}U{(w,y)=z>0Aw€N,y={ }

Then Fis well-founded on its first and only argument x.

Proof: Let f,g be any functions such that f,g € P. Assume to the contrary that

Ve, (f =12 9 = F(f) =1,0+1 F(9))

19



Which means that
Ja = ' s.t. ﬁ(f =108 = F(f) =1l,a+1 F(g))
Then, for o/,

f =10 g ANF(f) #1011 F(9)

Since F(f) #1041 F(9),
v =o' s.t. p'| < o' + LA [F(f))(v)) # [F(g)l(2)
Using our definition of the functional F, we get

1 ifv' =0
[F(Hl(@)=3 0 if ~Jy’'s.t.y' € f(v' - 1)
f(v' —1) otherwise

and
1 ifv'=0
[F(g)](v") =14 0 if ~Jy’s.t.y' € g(v' — 1)

g(v' — 1) otherwise

However, since f1 g and |v'| < ¢/4+1 = |[v'—1]| < &, f(v'—1) = g(v'—1). Therefore,
[F(f)](v") = [F(g)](v") which is a contradiction. Thus,

Va,(f =10 9= F(f) =10+1 F(9))

which means that F'is well-founded on its first argument. B

Theorem 1 Given any well-founded functional F on measure argument at m and
any ordinal o, V8 > a, F*(fp) =m,« FP(fo)-
Before proving this theorem, we state the following lemma:

Lemma 1 Given any well-founded functional F on measure argument m and any

20



ordinal a such that F*(f3) =m« F*t'(fs), we have that for all 8 > a, F*(f3) =m,«

FP(fo)-
Proof: Let ®[3] represent the statement F*(fp) =ma FP(fy). We will prove the
lemma by transfinite induction on the ordinal 8. For our base case, 3 = a + 1, the
proof is automatic by our assumption that F*(fy) =ma F**(fp).

In our induction step for non-limit ordinals, we wish to prove ®[8] — ®[8 + 1].

Since F'is a well-founded functional,
8[8] — F(F*(fo)) =m.ar1 F(F*(fo))
Relaxing the restriction from =,, 441 to =, o, We get
8(8] — F*(fo) =ma FP(fo)
Given that Fot1(f3) =pm o F*(fp), by transitivity of =, q,
FP*Y(fo) =ma F*(fo)

and therefore ®[3] — ®[8 + 1].
For limit ordinals, 3, we need to prove Vv s.t. a < v < 3,®[7y] — ®[B]. Let

v = (Z1,...,Zn), |&m| < @, be an arbitrary n-tuple. By our initial assumption,

Va <5 < B,8[v] = F*(fs) =ma F'(fo)

which means for arbitrary y,

(v,9) € F*(fy) = Va <y < B,(v,y) € F'(fp)

Thus, by the definition of FA(fy) for transfinite 3

(v,9) € F*(fo) = (v,y) € F*(fy)

21



Similarly, in order to show that (v,3) € FA(fs) = (v,y) € F*(f2)
(v,9) € FA(fo) = 38’ < Bs.t. Y8 > v > B, (v,y) € F'(fy)
Thus, for any such ~ such that 8> 7 > a,
(v,9) € F2(fo) = (v,9) € F'(fo) = (v,9) € F*(fo)
Since v is arbitrary,
Vo = (21,0, 20) 8.8 [2m| < @, [F(fo)l(v) = [FP(fo)](v)

meaning we have F*(f3) =m,o FP(fp) which implies that Va < v < 3, ®[y] — ®[5] ™

Theorem 2 Given any well-founded functional F on measure argument at m and
any ordinal a, V3 > a, F*(f3) =m.« FP(fo)-
Proof: Let ¥[a] represent the statement V8 > a, F*(fy) =m,o« FP(fp). We will prove

the theorem by transfinite induction:

o ¥la = 0]: Since there does not exist v = (=z1,...,2,) such that |z,,| < 0,

F°(fo) =m,0 F'(fo). Therefore, by the lemma, V8 > 0, FO(f3) =m0 FA(fo).

o ¥[a] - ¥[a+ 1]: Given ¥[a], F(fy) =me F2t'(fp). By the definition
of a well-founded functional, F*(fy) =ma Ft(fo) = F(F*(fo)) =ma+1
F(F**1(fy)). Therefore, F**Y(f3) =ma+1 F*+%(fy), which implies by the
lemma that V8 > a + 1,

Fo*Y(fo) =ma+1 F(fo). Thus, ¥[a] — ¥[a + 1].

e For any limit ordinal o (Vy < a,¥[y] — ¥[a]): Let v = (Z1,..., Zn), [Tm| <
a, be an arbitrary n-tuple. Since |z,,| < a and a is a limit ordinal, |z,,| +
1 < aandtherefore¥||z,,| + 1] is true, if we let v be |z,,| + 1. Therefore,
VB > v, F'(fo) =m~ FP(fs).- Knowing that v < a < a + 1, we obtain

F*(fo) =mo F(fo) =mny F*(fo)

22



Thus, since v is arbitrary,

Vo = (21, .0y Zn) 5.8 [2m| < 0, [F(fo))(v) = [FH(fo)](v)

which is by definition
F(fo) =ma F**(fo)

By the lemma, this implies that ¥[q] is true.

Corollary 1 Let F be a well-founded functional on argument m. There exists a such
that F*(fp) is a fixed point.
Proof: Since Fis a well-founded functional, for any ordinal a F*(fp) =m,. F(F*)(fa)-

Let a = |1,|. Since Vo = (21,...,&n) € T1 X oo X Ty, || € Tin = || < @,

Vv, F(fo)(v) = [F(F*)(fo)l(v)

Therefore, F*(f3) = F**(fy), which means that F*(fy) is a fixed point. B

Definition 8 Let F be a well-founded functional with measure argument m and let
a = |T,|. We define the function F*(fp), the fixed point of F, to be the recursive
function definition of F. We use the notation Y (F'), for any well-founded functional,

to denote the recursive function definition of F.
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Chapter 3

First Order Logic

One issue that wasn’t addressed in our termination proof for gcd was how to prove
that remainder has the desired properties. Since we are only concerned with ter-
mination, it suffices therefore to show that the remainder function terminates and
returns a result that guarantees that the measure argument of gcd decreases on ev-
ery recursive call. The termination properties of remainder can be shown by the
same method that we used for ged; specifically, verifying that remainder is Walther
recursive. However, proving that the result returned by the remainder function is
less than the measure argument in the general case requires computing the value of
the function itself, which can require a large amount of computation time, or in the
worse case, be an undecidable problem. Therefore, we are forced to result to heuristic
algorithms, and perhaps more importantly, efficient methods of estimating the size of
a value.

Thus, the main idea behind Walther recursion is the ability to use a calculus of
estimation, a syntactic and therefore decidable method of giving bounds on the size of
terms. The calculus of estimation must be sound but cannot, as discussed above, be
complete. It is based on the idea of argument estimation rules. These rules indicate
when the results of functions are guaranteed to be smaller than or equal to the value of
one of the arguments. These functions are known as argument-bounded function sym-
bols. Proving termination requires only that we determine the relative, not absolute,

size of a term when compared to the measure argument, allowing these estimation
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rules to be sufficient. However, since proving termination requires a strict inequality,
we associate a difference literal with each argument-bounded function symbol which
indicates when the inequality is strict.

We recognize argument-bounded function symbols either axiomatically, as primi-
tive operators (selectors) on primitive data structures, or algorithmically, through a
case analysis proof that shows for all possible situations, the result of the function is
smaller than or equal to the value of the argument in question. These comparative
judgments can be made through the calculus of estimation. Furthermore, for recur-
sive functions we can perform inductive proofs that the function is argument-bounded
provided the argument be sent into the recursive call is smaller than the argument in
question. It is also sometimes necessary to manipulate algorithms in other manners
in order to make them argument-bounded.

Therefore, our discussion now turns from a mathematical standpoint to a practical
standpoint where decidability and efficiency are the primary concerns, making the
semantic value of a term not nearly as important as a syntactic approximation of it.
It is therefore necessary to first define a “practical” language which is the basis for our
discussion of the syntactic methods used in Walther recursion to prove termination.
Thus, we first turn our attention towards this task. Once that is complete, we describe
the properties, or meta-formulas, which we need to infer for a given term or definition
in the language in order to prove argument-boundedness or well-foundedness. We
also provide a set of inference rules in order to give a sound, but not complete,
method of inferring the properties/meta-formulas under consideration. Finally, we
briefly discuss the efficient implementation of these rules in order to show that such

a system is usable practically.

3.1 Language

We choose the language of first order logic extended to include set theory because
of its simple semantics yet ability to express the concepts in many advanced mathe-

matical disciplines. Furthermore, it’s functional paradigm is better suited to Walther
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recursion than the non-functional approach many languages take. Although there
is a distinct disadvantage using Walther recursion in non-functional languages, we
note that automated termination proofs based on well-orderings in such languages
have been successful[7]. Therefore, it is not unreasonable to believe that Walther is
extendable to such languages.

Nevertheless, in situations where a functional approach is taken, Walther recur-
sion is much more natural and concise. Therefore, our treatment of its applicability
to a language in which a high degree of expressibility and flexibility is possible hope-
fully illustrates that the concepts behind Walther recursion are essentially language

independent.

3.1.1 Description

A language in first-order logic as defined by Barwise[1] of a set L of constant symbols,
function symbols, and relation symbols. Since we are defined a language using first-
order logic in the context of set theory, we define our constant symbols to be sets. Sets
can be constructed using the standard notion of braces, {}, with the elements of the
set enclosed within the braces, or through pre-defined 0-ary function symbols. Each
function symbol fhas a non-negative integer, n, assigned to it, where fis considered
an n-ary function symbol. Let M = the collection V of all sets. Then if f € L is
an n-ary function symbol, then f : M™ — M. Likewise, each relation symbol R has
a positive integer, n assigned to it, where R is considered an n-ary relation symbol.
We deviate here from Barwise’s definition of relation symbols by defining symbols,
True and False as constant symbols such that if R € L is an n-ary relation symbol,
then R : M™ — {True, False}. This is equivalent to Barwise’s definition of relation
symbols, R' through the mappings R' = {z : R(z) = True} and R = {(z,y) : z €
Mm,y = True if z € R',y = False otherwise}.

By doing so, we have made formulas as defined in Barwise, to be a subset of terms.

Terms, which are always sets, are thus one of the following:

e a constant symbol
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the result of a function which maps terms to terms

a formula

a set construct using {}
o the result of an if operator

the result of an |J operator

Formulas are the result of mapping terms to a boolean value through a relation
symbol, the result of the standard equality, =, operator, the result of the set-theoretic
membership € operator applied to two terms, or those formulas created by combining
the standard logic operators -,V and quantifier 3.

Functions in our language are either function symbols, or the result of the Y-
operator (defined below) applied to a functional. Functionals are essentially equiva-
lent to those defined in the previous chapter and their use is restricted to generating
recursive functions.

In order to have some sort of control structure, we also define an if operator
which takes on its intuitive meaning. Specifically, it is a 3-argument operator which
takes a formula and two terms and returns the first term is the formula is not False,
and returns the second term if the formula is False. Note that as a consequence
since formulas need not return a value in {True,False}, any value not in this set is
considered a True value.

Although we have the ability to construct sets currently using our language, we
still lack method of extracting elements from these sets. Unfortunately, there is no
general way of doing so without using the Axiom of Choice. However, the doing so
would require using of an arbitrary choice function which, for defining a language,
it not a very appealing choice. Therefore, we avoid the notion of a choice function
altogether and define a |J operator which takes in a variable, v and two terms, #;
and t; and returns the union of all possible values of ¢;, with the variable v bound to
some element of ¢;. Mathematically, this can be represented as |J,¢;, t2 where v has

its specified meaning in ¢,. Although at first glance this operator does not provide
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Figure 3-1: Grammar of the Language

any clear method for extracting elements from a set, it is sufficient for most purposes
as will be demonstrated below.

We proceed with a more formal grammar and semantics for the language.

3.1.2 Grammar

Figure 3-1 gives a complete grammar for our language as described in section 3.1.1.
Note that ¢ denote terms, F denote functions, ® denote formulas, and fdenote function
symbols. Also note that syntactically, formulas and terms are equivalent. Semanti-
cally, formulas differ from terms in that formulas are used as the first argument to the
if operator, whereas terms are used in all other situations. This distinction is made

in order to clarify the presentation of the inference rules in section 3.3.

3.1.3 Operational Semantics

We define a meaning function associated with each grammar rule. The meaning of
each of our terms corresponds directly to its equivalent meaning in first order logic
as described in section 3.1.1. Refer to Figure 3-2.

We now state two key properties of our language that will be important in under-
standing our language and establishing the inference rules. First, although we stated
in the previous chapter that sets are well-founded given a size order based on the
ordinals, we still do not have a method of establishing the relative size of two sets.

The below theorem, stated without proof, is from [2]:

Theorem 3 Let z be any set. Then Vy € z,|y| < |z|.
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The next theorem is for recursive functions defined within our language. Seman-
tically, our definition of a recursive function corresponds to that of Corollary 1. We

must therefore show that the definition has the fixed point property that we need.

Theorem 4 Let (Y f (A (1 ... ) t)) be a recursive function definition which has
semantic meaning f, = M[(Y f (A (21 ... ,) t)), p] under some interpretation, p.
Given the functional F(f') = M[(A (z1 ... z») t),p[f := f']], if F is well-founded,
then F(fm) = fm-

Proof: Since the functional F(f') = M[(A (21 ... z,) t), p[f := f']] is well-founded,
by Corollary 1, a fixed point F*(fy) exists for the functional. Because

Vy > a,(a,b) € F'(fa)
F*(fo) CM[(Y f (A (21 ... a) t)), p]. Furthermore, since
VB > a, F¥(fy) = F*(fy)

M[(Y f (X (z1 ... 24) £)),p] C F(fp). Therefore, (Y f (X (=1 ... ) t)) is a fixed
point of F. B

3.1.4 Application

With the grammar and semantics of our language determined, we once again return
to our definition of gcd and remainder to illustrate how functions are defined in
the language. In order to keep the syntax of our language as similar as possible
to the syntax used in our examples in preceeding chapters, we require several more
conventions, though not within the language itself, enhance readability and allow for
easier understanding. First, we assume that for any function variable, f, arguments,
T1,..., Ly, and term, t, the following expression:

(define (f =1 ... z,) t)
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wl)
where f’ = MIF,p]
M[mhp] :M[mn,p]

M[(F z; ... z,.), p]

Uz 'et] t,

M[(U ztita), p] where t’l = Mlty,p),ty, = Mlts, plz =

MI(Gf ® ¢, 12), p]

M]t1, p] otherwise

{ [t2, p] if M[®, p] = False
-
{
{(

o in}
M{{ts; -orta}s o] o Where t, = Mlty,pl,...,t,, = M|[t,, p]
{(a,b) : 38 s.t. Vy > B,(a,b) € F(fp)}
MI(Y £, whore {(Fur£,) : £, = ML pif o= £.]]}
M[(X (21 )t)pl = {({@hy s 2h), ') 1y = Mt plzy = 2, .z, = 2! ]]}
Mz, p] = p(z)
[f,p] =

True if M[t1,p] = M|[t,, p]
False otherwise

True if M tl, p] € M[tz,p]
False otherwise

False if M[®, p] = True
True 0therw1se

True if M[®,p] = True and M[¥, p] = True

MI(A @ W), p] False otherw1se

True if Jz, s.t. M[®, p[z := z]] = True

M[(3z @),p] = False otherw1se

{

-

Mi(- 9),) - {
{

{

Figure 3-2: Semantics of the Language
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to mean the function symbol, f, is a pre-defined symbol with meaning equivalent to

(Y f A (21 ... ) 1))

Likewise, for constant symbols, we assume for any constant symbol, ¢, and term,
t, the following expression:

(define ¢ t)

indicates the constant symbol, c, is pre-defined to have the meaning of {. Now, we
have the ability to define our functions with the exact same syntax as before:

(define (gecd a b)
(it (= a 0)
b
(gcd (remainder b a) a)))

(define (remainder x y)

(if (= y 0)
y
(if (< xy)

x
(remainder (- x y) y))))

Furthermore, since functions cannot return formulas because terms and functions
are distinct categories in the grammar, we shall adopt another more notational con-
venience. Whenever a term, ¢ is used as a formula, we assume it’s meaning is the
formula (= t True). On the other hand, whenever a formula, ® is used as a term,
we assume it’s meaning is the term (if & True False).

Although the syntax of the language is now the same, we still require a semantic
notion for the constant symbol, 0, as well as the function symbols, < and —. Doing
so requires some formal structure for defining the set of non-negative integers. We do
so using the standard definition of the set through the ordinals:

(define 0 {})
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(define (succ x)

(LJ y x {x9y}))

(define (pred x)

UJvyzx

(if (= (suce y) x)
{v}
{HN

Careful examination will show these definitions are equivalent to their set-theoretic
equivalents.

In order to create a more generalized notion of a data structure, we show how to
use our primitive set structures to define an ordered pair, which is equivalent to the
Lisp cons cell.

Since sets do not have any inherent ordering, to creating an ordered pair, (z,y), it
is necessary to impose this ordering on the elements. One common method of doing
so is by defining (z,y) to be {z,{z,y}}. Therefore, we obtain the following definition
for a function which constructs ordered pairs, cons:

(define (cons x y)
{=:{x, 7}

We also need some method of extract the respective elements, x and y, from the
pair. The functions, car and cdr extract the first and second elements, respectively,
from an ordered pair. We define them as follows:

(define (car x)
(if (= x nil)
nil
(U a x
(Ub x
(if (= a b)
{}
Uehbd
(if (= c a)
c

{HNNN
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(define (cdr x)
(if (= x nil)
nil
(U ax
(Ubex
(it (= a b)
{3
(Ueod

(if (= c a)

{
€)))N)

Close examination will show that they return the correct results. Specifically,
given the pair {z,{z,y}}, car will extract the z € {z,y} and cdr will extract the
y € {z,y}.

In languages such as Lisp which use ordered pairs, pairs are then chained together
through their second element to form lists, or ordered sets. A convention for an empty
list, nil must therefore be decided. The obvious choice is:

(define nil {})

Although these functions do not return any sensical value if given improper ar-
guments, it is simple with the above conventions to create a well-typed set of data
structures which could verify that its arguments are of the proper type. These con-
ventions could also be also be defined within the language but because they provide

no additional functionality, there is no reason for doing so.

3.2 Meta-Formulas

The meta-formulas for our language are designed to prove that terms within our
language have the necessary formal characteristics to prove well-foundedness of func-
tionals. These meta-formulas must be provably sufficient conditions under which

sound inference rules can be established that functionals within our language are

indeed well-founded.
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In order for well-foundedness to be established, we must establish a well-ordering
on one of the arguments of the functional and then show a measure argument for
the functional exists. Proving that an argument is a measure argument requires
showing that in every recursive call made to the functional, the argument is smaller
as established by the well-ordering.

As discussed, these well-orderings must be based on some sort of size order. Since
our language uses sets as its elements, our size order is defined to be the ordinal
size of the set because of the simple semantics it provides, thereby allowing a corre-
spondingly simple syntactic meaning. Although such an ordering may not be possible
in other languages, it is easy to show that similar orderings may be established in
more practical languages. For example, in Walther’s paper, data structures based on
Boyer Moore’s shell principle were used. Furthermore, as discussed above, we have
the ability to define the data structures present in most other languages through our
use of sets. If these structures are represented in the “proper” manner, as is the case
with the ordered pair and non-integer integer sets defined above, our well-ordering

for sets will be applicable as well-ordering for other structures.

3.2.1 Description

We need proceed to define the necessary meta-formulas needed in order to show well-
foundedness of a functional. Specifically, we provide formulas to establish sets are
smaller than other sets based on the well-ordering we have imposed and we provide
formulas to prove that a measure argument exists for a functional.

Our first meta-formula establishes the syntactical method of determining when
a set is relatively smaller than another, based on the semantic well-ordering of sets
using the ordinals. Being syntactically based, it is an approximation of the relative
size; specifically, we establish meta-formulas for a lower bound on the degree which
one set is smaller than another as well for an upper bound on the degree which one

set is larger than another.

Definition 7 Let ¢; and ¢, be terms. For any non-negative integer a, we define
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t1 <4tz to represent the fact that |t1| + a < |t5].

Definition 8 Let ¢; and ¢, be terms. For any negative integer a, let b = —a. We

define t; <, ¢, to represent the fact that |t;| < b+ |t2].

Although the above definitions provide the basic means necessary to determine the
relative size of sets, we still need some method of determining when the relative
size of the result of a function compared to its arguments. The solution to this
problem Walther presents is establish a property which determines when the result of
a function is guaranteed to be less than or equal to a given argument. Functions with
this property are called argument-bounded functions. Likewise, we establish similar

meta-formulas which describes functions which are argument-bounded.

Definition 9 Let f be an n-ary function and 1 < ¢ < n be a number representing
the i#th argument of f. For any non-negative integer a, we define f <, 7 to represent

the fact that for all zy,...,2,, [f(21,...,2.)| + a < |2;].

Definition 10 Let f be an n-ary function and 1 < : < n be a number representing
the i#th argument of f. For any negative integer a, let b = —a. We define f <, ¢ to
represent the fact that for all zy,...,zn, |f(21,...,2,)| < b+ |z4|.

Proving a recursive function terminates requires that in every recursive call, one of the
arguments is strictly decreases. In Walther’s approach to determining which argument
satisfies such a condition, using argument-bounded functions is sufficient since they
guarantee only that the result is less than or equal to the given argument. Therefore,
some method of determining when an argument-bounded function returned a result
strictly less than a given argument was required. This required the use of difference
literals which indicate conditions on the arguments to a function which guarantee
that the result returned is strictly less than a given argument.

Although our definition of argument-bounded functions technically allows for func-
tions to guarantee than the result is strictly less than an argument, such functions

cannot exist since any function can accept the empty set as an argument. Thus, the
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use of difference literals is still necessary. For example, for a simple operation like cdr,
the result returned is argument-bounded, but unless we guarantee that the argument
sent to cdr is not nil, we fail to recognize that cdr returns a value which is strictly
less than its argument for all other cases. Thus, we regard argument-bounded func-
tions to yield an initial approzimation to the size of a function’s result relative to its
arguments, and use difference literals to attempt to infer further possible information
about the size of the result if some set of conditions are satisfied.

First, we define a meta-formula which allows us to recognize functions which return
results which will be used as formulas. Since formulas use the boolean constants, True

and False, we just need to recognize their occurrence in functions.

Definition 11 Let f be an n-ary function and 1 < 7 < n be a number representing
the #th argument of f. For any non-negative integer ¢ and any predicate function,
®, also of arity n, we define value (f, ®,t) to represent the fact that for all z,,...,z,,
®(zy,...,z,) = True = f(z1,...,z,) = L.

Next we define a difference literal. A difference literal indicates that if a set of
conditions on the arguments to a function are true, then a tighter bound on the size

of the return value for the function can be achieved.

Definition 12 Let f be an n-ary function and 1 < ¢ < n be a number representing
the ith argument of £ For any non-negative integer ¢ and any predicate function,
®, also of arity n, we define A(f, ®,<,,7) to represent the fact that for all 2., ..., z,,
®(z1,...,2,) = True = |f(z1,...,2n)| + a < |z;|.

Definition 13 Let f be an n-ary function and 1 < i < n be a number representing
the #th argument of f. For any negative integer a, where b = —a, and any predicate
function, @, also of arity n, we define A(f, ®,<,,?) to represent the fact that for all
L1y ey Ty B(21,...,2,) = True = |f(z1,...,n)| < b+ |z4].

Now that we have a complete set of meta-formulas for establishing the relative size of
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T = t<,t| F <,n|value (F,®,1) |
A(F,®,<q,n) | wi((A (f) t),z,n)

a := an integer
n := a positive integer
t,®,F,z := non-terminals from the language

Figure 3-3: Grammar of the Meta-Formulas

sets, we define a meta-formula to indicates when an argument to a recursive function

is strictly decreasing on every recursive call.

Definition 14 Let ¢ be a term occurring in the body of some n-ary function f and
z be the ith formal parameter of f. We say that ¢ makes strictly decreasing calls with
respect to the function f by the ith argument, z, written as wf ((A (f) £),,?) if and
only if the function F = (A (f) t) which maps functions to terms, given any functions

f,g and any interpretation of the variables, p, f =i g = F'(f) = F'(g).

3.2.2 Grammar

Figure 3-3 provides a complete grammar for our meta-formulas as defined in sec-

tion 3.2.1.

3.2.3 Semantics

We define a meaning function associated with each grammar rule. The meaning
of each of our meta-formulas corresponds directly to our equivalent definitions as
described in section 3.2.1. This table summarizes those definitions. Refer to Figure 3-

4.

3.3 Inference Rules

Our inference rules provide a method of automating our termination proofs by estab-

lishing a syntactic method of recognizing when a meta-formula is satisfied by a term
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-ﬂl[tl Sa t2, P]

M[F <a n,p]

M{value (F, ®,t), p]

MIA(F, ®,<a,1), 0]

Mwt ((A (f) t),2,12), 0]

|

True if a > 0 and |M[t1, p]| + a < |[M[t2, p]|
Trueif a < 0 and |M[tq,p]| < b+ |M[ts,p]|,0 = —a
False otherwise

True if @ > 0 and Va1, ..., Tn, | f(Z1, .-, o) + @ < |24
Trueif a < 0 and V1, ..., 2, | f(Z1, ..y n)| < b+ |24
f= M[Fap]a

b=—a

False otherwise

where

True if Yuy, ..., Un, ®' (w1, -0y un) = (U1, .0yun) =1

t' = Mlt, pl,
where f' = M|F,p],
®' = M[(A (21 ... z,) ®),p],» = arity of f'

False otherwise

True if Vuy, .oy tn, (w1, ey un) = (U1, ey tn) <o wi
7= M[F, ),
@I = M[(A ((1:1
False otherwise

where e Ty) @), pl,n = arity of f'

True if Vf,g,Vaf =i g = F(f) = F(9)
where F(f') = M[t,p[f := f']]

False otherwise

Figure 3-4: Semantics of the Meta-Formulas
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through the semantic meanings ascribed to the meta-formulas in section 3.2.1. This is
equivalent to Walther’s notion of the calculus of estimation in addition to his method
of generating termination hypotheses. We first describe the entire set of inference
used for our language in the following section. A discussion of the soundness of the

rules is given in Appendix A.

3.3.1 Description
Boolean Rules for Formulas

These rules define standard inferences in boolean logic. They are used when attempt-

ing to match formulas for difference literals.

o XI®
Sh¥
TFATY)

o X
(- (A2 Y))
TF(-V)

Argument Bounded Terms

These rules establish when comparison rules between two terms with respect to the
well-founded order already established. In addition to rules for showing that one
term is less than another, the reflexive and transitive properties of the well-orderings

is used.
o (= zz)

e YF(= zvy)
YFe<py

o X (= zy)
EI—ySoz
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k(e zy)
Yhre<iy

T k(€ 2 {z1,-;2n})

2,(E T t1) - t2 Sa t1
LU ztits) <at1 ta

BB Ft <.t
2,(_1 Q) |_ tz Sbt
Xk (if ®t t2) Smin(a,b) t

e Y,y
Yhy<pz

Yhez<aup2

Argument Bounded Functions

These rules establish when a function is argument-bounded with respect to one of
its arguments. In addition to rules for pre-defined functions, rules for recursively de-
fined functions, i.e. an induction rule for argument-bounded functions, are also used.
This is equivalent to Walther’s use of recursion elimination to optimize difference

algorithms.

e Y f<, 1
El—sisbt

D E Uy ey Uity Siy Uity ey Un) <atb t

b Ea.fSOii—tSami
EE(Y (A (1) t)) <at

Formulas

These rules establish a method of determining the primitive formulas which are true

when a non-primitive function is used as a formula. Establishing the formulas that
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hold for variables in any portion of a definition is essential for successful use of dif-

ference literals.

e X I value ((A (z; ... ) True), True, True)

¥ F value ((A (21 ... z,) False), True, False)

2, ® F value ((A (21 ... zn) w), ¥, 1)
Y I value (A (%1 ... z,) (if @ w w)),(A @ ¥),1)

2,(— ®) F value (A (1 ... zn) u), ¥, 1)
Y | value ((A (21 ... z,,) (if @ w u)), (A (- @) ¥),1)

¥ I value ((A (21 ... z,) t1), ¥, True)
L+ (= f(u,...,un) False)
Y (- Yur/zy ... un/zn))

¥ | value ((A (21 ... z,) t1), ¥, False)
L+ (= f(u1,...,us) True)
LF (- Vur/z1 ... un/zn))

Difference Literals

These rules establish the difference literals of a function through a case by case
analysis. Induction rules are established for recursive functions through the use of

argument-bounded functions.

e Xt Sa Ty
LFA(X (21 ... zn) t), True, <,,1)

e X, FA((A (21 ... ) w), ¥, <,,1)
SF A (21 . 20) (EB ww)),(A & T),<op7)

o N,(= @) F A((A (1 ... T0) u), ¥, <4,1)
TEA(A (21 oee ) (i @ w u)), (A (= @) U),<,,7)

41



e TFA(A (21 ... 2n) 1), ¥, <q,1)
YF Oug/zy oo U /2]
L F flur,y e tn) <qg

Well-Founded Functionals

These rules determine when a functional is well-founded. Aside from the basic def-
inition of well-foundedness, rules are needed in order to establish well-foundedness
in expressions which allows means of combining terms. Thus, since our means of
combination within our language allow an arbitrary number of arguments in a few
cases, several of these rules are, in some sense, meta-rules, because they are actually

a set of rules rather than a single rule.

o I Fwi((A(f)w)z,9)

Y Fwi((A(f) wn),z,)
D w; Sa>0 z

X Fwi((A(f) f(wry-orywn)), z,1)

e XF Wf(()‘ (f) wl)vmai)

T wi((A(f) wn),z,1)
9#f
2k wi ((A (f) g(wiy -y wn)), 2,3)

o X Fwi((A(f)®),z,1)
%, (= 8) F wt () (£) w),27)
3,8 F wi((A(f)w),z,17)
ST Wi () @ ww),2,9)

e X Fwi((X(f) ®),2,7)
XFwt (()‘ (f) \I’),mai)
EFwi((A(f) (A2 Y¥)),z,i)
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o X Fwi((A(f)tr),z,7)
I wi((A(f) t2),2,1)
Y Fwi((A(f) (€ t1ta)),z,1)

o Bk wi((A(f) ®),2,1)
L Ewi((A(f) (= 2)),2,9)

o T wf((A(f)®),z,7)
T wi((A(f) J=@),2,7)

o T Fwi((A(f)w)z,i)

Sk wt (0 (f) wa)y )
T wi (A (f) {w, ey W }), T, 1)

o wi ((A (f) .’B),m',i)

3.3.2 Examples

We first illustrate the use of our inference rules using the example that has been
discussed throughout this paper:

(define (gecd a b)
(if (= a 0)
b
(ged (remainder b a) a)))

where the remainder function is defined as:

(define (remainder x y)

(if (= y 0)
y
(if (< xy)
x

(remainder (- x y) y))))

In addition, we require the < and — operators to be defined. Standard definitions

might be:
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(define (< x y)
(it (=y 0)
False
(if (= x 0)
True
(< (pred x) (pred y)))))
(detine (- a b)
(if (= a 0)
0
(if (= b 0)
a

(- (pred a) (pred b)))))

Ideally, such definitions of < and — would generate inferences that lead to proofs
that remainder and gcd terminate. Although — will trigger rules which allow the
proper inferences to be made, < will not. The reason is that < is a primitive compara-
tor for the set of non-negative integers. As a result, it must establish the well-ordering
on the set, which is cannot do given our current representation of integers combined
with the absence of type-checking. Therefore, we must define set-theoretically < as:

(define (< a b)

(€ abd))

We summarize the inference made to prove that ged terminates below:

o I (preda)<;a

o Fwf(—,a,1)
o — So 1
o FA(= (A (= (= 30) (= (= 20)),<1,1)

F(zy) <1z

F wf (remainder, z, 1)

F remainder <g 1
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¢ I A(remainder, (- (= y0)),<4,1)
e I (remainder a b) <; b

o F wf(ged,a,l)

We now illustrate the ability of our language to define transfinite recursions and
recognize that they terminate. The following function determines if a set is an ordinal:

(define (ordinal? alpha)
(if (= alpha {})

True

(it (3 x (A (= (succ x) alpha) (ordinal? x)))
True
(if (€ False (|J y alpha (ordinal? y)))

False
(= alpha (|J x alpha ( y x {yPNINN)

The rules for proving termination are briefly as follows:
o (= (succz) alpha) - (€ z alpha)

F z <; alpha

F wf (() (ordinal?) (ordinal? z)), alpha,1)

(U y alpha (ordinal? y)) - (€ y alpha)

Fy <; alpha

F wf ((X (ordinal?) (ordinal? y)), alpha,1)

F wf (ordinal?, alpha,1)

3.3.3 Soundness

The soundness of the inference rules is proved is Appendix A. From these, we wish

to establish the following:
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Theorem 5 Let (Y f (A (21 ... ,,) t)) be the recursive function of n arguments,
Z1,..., 2, and body t defined by the functional F(f') = M[() (z1 ... z,) t), p[f := f']]-
If wf((A (f) t),®,?) is true, then F is well-founded on argument i.

Proof: Let F(f') = M[(A (21 ... zn) t),p[f = f']] and Fo(f') = M|t,p[f := f']].
By the definition of wf ((A (f) t),z,%), for any functions g,h such that f =;, g,
Fy(f) = Fa(g), which means that

Mit,plf := g]] = M[t,p[f := h]|

Thus, it immediately follows that

MI(A (21 .. 2a) £), plf = gl] = MI(A (21 .. 2a) £), oL = ]

Therefore, f =; o g = F(f) =i,at+1 F(g), so F is well-founded on argument i.

Corollary 2 Let (A (f) (X (21,...,m,), t)) be a functional on functions of n argu-
ments, 1, ...,Z, and body t. (Y f (X (21 ... z,) t)) is a fixed-point of the functional.

Proof: Immediate from Theorem 5 and Corollary 4. B

3.3.4 Decidability

Theorem 6 Given an finite set of pre-defined functions and meta-formulas derived
for those functions, for any expression in the language, the closure of all meta-formulas
which are derivable from the inference rules about that expression is decidable.
Proof: Given the inference rules stated above, with the exception of one rule, every
rule in the system derives meta-formulas about expressions larger than the antecedent
expressions. Thus, if we wish to derive all the meta-formulas for any given expression,
we are only required to examine meta-formulas on expressions of smaller or equal size.
Since the initial expression is finite, the number of possible meta-formulas and rules
which need to be examined is finite.

The only rule which is an exception is:
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e TFAY fF(A (21 ... 20) 1)), ¥,<q,1)
TFE=((YF(OA (21 o z0) ¥)) ug o wty)
Yk f(ula "',un) Sa Uu;

However, since this rule is only appropriate for a pre-defined set of functions, there
are only a finite number of inferences which can be with this rule.

Thus, since a finite number of inferences can be generated with the above rule, and
all other rules are restricted to a finite number of inferences about a given expression,
there exists a decidable algorithm to generate all meta-formulas which are derivable

for a given expression. B
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Chapter 4

Conclusion

In this paper, we have presented an alternative method of viewing Walther recursion.
The primary goal was to a provide as broad of a framework as possible in which
to view termination proofs using this syntactic notion of a size order. Forgoing pre-
defined primitive data structures such as numbers and lists, already with the necessary
argument-bounded primitive selectors, we chose sets with the membership operator as
our single data structure. Using sets allowed us to establish a theoretical framework
for defining Walther recursion under fixed point semantics.

Once we established a formal notion of Walther recursion, we proceeded to define
a set-theoretic language. Given the proper operators, it is possible through sets to
define structures such as numbers, lists, and more complex types, while preserving
well-orderings for these types. Unfortunately, because our approach lacks any type
restrictions, it is we occasionally necessary to artificially restrict how we define, using
sets, our types as well as primitve operators for these types since intuitively natural
properties of certain functions on their parameters do not always provably have the
necessary properties since arguments which do not match the “expected” type spec-
ifications can be given to the function. This restriction could severely restrict the
usefulness of this approach unless a bit of caution is taken.

However, despite this limitation, using a set-theoretic framework provides much
more flexibility than the framework Walther selected since data structures do not have

to be defined in a set manner. In addition, our method can prove termination of a
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class of transfinite computations. Because the system is rule-based, deductions being
performed are immediately apparent, also making it simple to create a system which
not only automates termination proofs, but which can under certain circumstances
determine why an algorithm does not provably terminate under these rules. Since
the approach also remains essentially the same as Walther’s, based a syntactic size
order, we believe that termination proofs based on such a method can be established

for a large class of naturally recursive algorithms.
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Appendix A

Soundness

What follows is a series of informal arguments of the soundness of each of the in-
dividual inference rules through the semantics given by the language and by the

meta-formulas.

A.1 Boolean Rules for Formulas

The following are inference rules that are derivable from the axioms of boolean alge-

bra:

e YO
ST
(A V)

e XIH®
TE(-(AD VD))
EH(-V)

A.2 Argument Bounded Terms

The following rules are based on the axioms of set theory along with Theorem 3 which

determines the relative size of sets.
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o (= zx)

For any set x, by the reflexive property of equality, z = z.

YF(= zvy)
Yz <oy
By the substitution principle of equality, the rule immediately is true.

YHE(=zvy)
YFz<oy

By the substitution principle of equality, the rule immediately is true.

(e zy)
Yhrz<iy

By Theorem 3, this rule immediately is true.

e Ytz € {z1,...,2zn}
The {} operator in the language corresponds to construction of a set with

members &1, ..., Z,, the rule immediately follows from the axioms of set theory.

Y,zetiFty <,
EF‘(U Ztltg)satl

By the semantics of the |J operator, z € ¢; and t, C (U z 1 t2). The second
statement leads to the fact that (U z ¢; t2) <o ¢, since the rule must hold for
all interpretations of ¢,. By the transitive property of inequality for ordinals

the rule follows.

[ ) 2,@ }_ tl Sat
2,(" Q) ,_ tz Sbt
Y+ (if ® t1 tz) Smin(a,b) t

By the semantics of the if operator, the value must be either ¢; or ¢,. Therefore,

the lower bound must be true.

e YFz<,y
Yhy<pz
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Yhae<emz
If z <, y and y < 2, by the transitive property of inequality for ordinals,

z <.4b 2.

A.3 Argument Bounded Functions

e Yk f<, 1
YFs; <pt

I F f(wy ey Uis1y Siy Uity eeny Un) <a4b t

By the definition of the meta-formula for f <g 2, |f(%1, ey Uiz1, iy Uity ooy Un )|+
a < |s;|, where f = MJF,p]. Then, since s; <p t = |s;| + b < |¢|, by the
additive property of inequality, |f(w1,...,%i—1, 8iy Uit1, .oy tn)| + @ + b < [t| =

F(ul, eeey Ui—1983y Ujt1, ...,un) Sa+b t.

o X, f<loikt <, 2

S Fwi((A(F) (Y F A (21 - 20) 1)), 2,7)
EF(Y 7O (21 on) D)) <al

Proof by induction can be established using the fact that a base case must exist

since the function is well-founded.

A.4 Formulas

e X value ((A (#; ... z,) True), True, True)
If f=M[ (21 ... 2,) True),p], Vui,...,un, f(u1,...un) = M[True,p]. The

inference rule immediately follows.

o X I value ((A (21 ... z,) False), True, False)
I f = M[() (21 ... z,) False),p], Vuq, ..., un, f(u1,...un) = M[False,p]. The

inference rule immediately follows.

o X,® I value (A (21 ... z,) w), ¥, ¢)
Y+ value ((A (21 ... zn) (if @ w u)), (A ® ¥),t)
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I f=M( (2 ... 2z,) (if @ w u)),pl, if ®is true, f(uy,...un) = M[w,p].
Furthermore, if ¥ is true, f(u1,...u,) = M[w, p] = M|t,p]. Therefore, the rule

follows.

o X,(— @)k value ((A (21 ... zn) u), ¥, 1)
T+ value ((A (21 ... ) (if @ w w)), (A (- @) ©),1)
If f =M (21 ... z,) (if @ w w)),p], if =P is true, f(u,...un) = M[u,p].
Furthermore, if ¥ is true, f(ui,...u,) = M[u,p] = M[t,p]. Therefore, the rule

follows.

o X I value ((A (21 ... z,) t1), ¥, True)
(= f(uy...,u,) False)
D (- Plur/z1 ... un/zn))
Since (= f(ui,...,us) False), and value ((A (z1 ... ,,) 1), ¥, True), ¥ under

the current interpretation must be false. Through S-reduction, we obtain the

desired result.

e Y | value ((A (21 ... z,) t1), ¥, False)
X+ (= f(ui,...,u,) True)
LE (- Vuy /2y ..o Un /)
Since (= f(u1,...,un) True), and value ((A (z1 ... z,) t1), ¥, False), ¥ under

the current interpretation must be false. Through B-reduction, we obtain the

desired result.

A.5 Difference Literals

e X H¢ Sa Z;
L A((A (21 ... z,) t), True, <,,1)

By the semantics of the A operator,

VU1, ey Uny F(U1y 00y Un) = M2, p]
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where f = M[(X (21 ... ,) t), p]. Since £ F ¢ <, x;, it immediately follows that

f(ula "'7un) <a U;

and therefore the rule is sound.

2,8 FA((A (21 ... zp) w), ¥, <q,17)
YEA(A (21 .o z0) (if @ ww)), (A D V), <,,1)

By the semantics of the A operator,

YUy eey Uny f(U1y ooy Un) = M[(If @ w u), p]

where f = M[(A (21 ... ¢,,) (if ® w u)), p]. Let

9= M[(A (21 .. 2a) (A 8 ¥)), ]

then for all uq, ..., un,

G(U1y ey tn) = B (Ury ey un) A O (Ugyoeey un)

where &' = M[(X (z1 ... z,) ®),p] and ¥' = M[(A (21 ... z») ¥), p]. Therefore,

g(’llq, "'7un) = ¢ = f(ula-",un) = M[w,p]

Given that £,® F A((X (21 ... ¢,) w), ¥, <,,?) and g(u1,...,u,) = AU,

9 U1y ey Un) = w <, u;

Thus, the rule is sound.

2, (= ®) F A (21 ... 2,) w), ¥, <q,9)
SF AN (21 2) (@ w w)), (A (= B) T), <ard)
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By the semantics of the A operator,

YUty ooy Upy f(U1y ey up) = M[(If @ w u), p]

where f = M[() (21 ... z,) (if ® w u)), p]. Let

g=M[( (21 ... z) (A (- @) ¥)), 0]

then for all uq, ..., u,,

g(U1y ey tn) = B (Ury ey Un) A ¥ (U1, ey )

where & = M[(A (21 ... z,) (- @)),p] and ¥' = M[(X (21 ... z,) ¥),p].
Therefore,
g(u1, e ttn) = (0 @) = f(ur, ..., un) = Mlu, p|

Given that Z,(— @) - A((A (21 ... ) ©), ¥, <q4,7) and g(u1,...,u,) = ® A Y,

g Uty e ttn) = v <, u;

Thus, the rule is sound.

o THA((A (21 ... ) t), ¥, <q,1)
L Ulur/zy o un /@)
T E flury e tn) <o u;

The rule immediately follows from (3-reduction and the definition of the § meta-

formula.

A.6 Well-Founded Functionals

o Y wf(()(f)w),z,7)

L FEwi((X(f) wn),z,)
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YFuw, <z
= wi((A(f) f(w, ey Wn))y T, 1)

Let 7,k be any functions such that Va, 7 =; o k. By the semantics of our language,

F(5) = M[f(w1, ..., wn), p[f = J]]
which means that F(j) = j(w!,...,w!,) where
wy = Mwy, p[f = jl], ..., w, = Mwn, p[f := j]]
By similar reasoning, we also obtain F(k) = k(w/, ..., w") where
wy = M{ws, p[f := K]}, ..., wy; = M[wn, p[f := k]|
Given our initial assumptions that wf ((A (f) w1),z,.)..wf (A (f) wn),z,12),

G1(j) = Gi(k) = Mwi, plf = j]] = M[wY, p[f := k]

Gn(j) = Ga(k) = Mlwy, plf = j]] = M[wy, p[f := k]|

Since our initial assumption is that w; < z, and because g =; | h, F(g) =

(14 0) = (1) oy ul) = F(B).
Y Fwf (A (f) wi),z,%)
Y Ewi((A(f) wn),z,1)

9#f
Y Ewt(()(f) g(wiy ..., wp), z,17)

Let 7,k be any functions such that Ve, 7 =; , k By the semantics of our language,

F(]) = M[g(wla ---,wn)),P[f = .7]]
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which means that F(j) = g(wj, ..., w],) where

w) = M(wy, plf = jl], ey wy, = M[wn, p[f :=j]]
By similar reasoning, we also obtain F(k) = g(w{,...,w})) where
wi = Mlwy, p[f = Ell, .., wy, = M{wn, p[f := k]|
Given our initial assumptions that wi (A (f) w1),®,2)...wE ((A (f) wn),2,1),

G1(§) = Gi(k) = Mwi, p[f := j]] = M[wi, p[f := k]|

Gn(j) = Gu(k) = Mlwp, plf = j]] = M[wy, p[f := k]

By similar reasoning, we also obtain F(k) = g(ws,...,w,). Therefore, F(j) =

g('w;, '",w:;) = g(w;’a ...,’LUZ) = F(k’)

o T Fwi((A(f) ®),z,1)
2,-® F wi((A(f) u),=,1)
Z,8 - wi((A(f) w)2,i)
LEwi((A(f) (if @ wu)),z,i)

Let g,h be any functions such that Va,g =;, h. By the semantics of our
language,

F(g) = M[(if @ w u),p[f := g]]

and

F(h) = M[(i & w ), plf := ]

By the semantics of the if, the above values are dependent on ®. Furthermore,
since T b wi (A (f) @),2,i), if we let G = M[() (f) @), 0], M[®, p[f := g]] =
G(g9) = G(h) = M[®,p[f := h]]. Thus, we can examine the value of the if
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statement case by case on the value of & = M[®, p[f := g]] = M[®, p[f := R]].

— & = True: We then have

F(g) = M[w, p[f := g]]
and
F(h) = Mlw, plf = K]

Since £,® F wf ((A (f) w),z,%), by the definition of well-foundedness,
given that G = M[(X (f) w),pl, G(f) = G(g) = Mlw,p[f = g]] =
Mlw, p[f := h]]. Therefore, F(f) = F(g)-

— & = False: We then have

F(g) = M[u, p[f := g]]

and

F(h) = M[u,p[f := h]]

Since ¥,~® F wf ((A (f) u),z,7), by the definition of well-foundedness,
given that G = M[(A (f) u),p], G(f) = G(9) = Mlu,p[f = g]] =
M{u, p[f := h]]. Therefore, F(f) = F(g).

— & = | : We then have

F(g) = M[L,p[f :=g]|

and

F() = M[L,plf = h]
Therefore, F(f) = F(g).

Since in all possible cases, F(f) = F(g), wf (A (f) (if @ w u)), z,1).
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o Tt wi((A(f)®),2,7)
T wi((A(f) ¥),2,7)
SFwi((X(f) @V ¥),z,1)

Let 7,k be any functions such that Vo, j =; , k& By the semantics of our language,

F(j) = M@V ¥,pf :=j]]

and

F(k) = M3V ¥, p[f = g

By our initial assumptions,

G(j) = Gk) = M[®,plf := j]] = M[®, [ := k]

and

H(j) = H(k) = M[¥,p[f := j]] = M[¥, p[f := k]|

Since M[® V Pst,p'] is dependent only upon M[®,p'] and M[¥, p'],

M@V V,p[f :=j]] = M[® V¥, p[f := k]| = F(5) = F(k)

o Y wi((A(f)t),z,7)
T Ewi((A(f) t2),z,9)
L FEwE((A(f) t1 € t2),2,0)

Let j,k be any functions such that Vo, j =; , k£ By the semantics of our language,

F(j) = Mlt1 € 12, p[f := j]]

and

F(k) = Ml[t; € ta,p[f = g]]
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By our initial assumptions,

G(5) = G(k) = Mts,plf = 3]) = Mlts, ol := K]

and

H(j) = H(k) = Mlt2,plf := j]] = M[t5, plf := k]

Since M|[t; € ts,p'] is dependent only upon M(ts, '] and M[t., f'l,

Mlt; € ta, plf = jl| = Mt1 € ta,p[f := k]] = F(§) = F(k)

e X Fwif((A(f) ®),z,1)
SFE(O () ~8), %0

Let j,k be any functions such that Va, j =;,« k By the semantics of our language,

F(j) = M[~®,plf = j]

and

F(k) = M[-®,p[f := gl]

By our initial assumption,

G(j) = G(k) = M[®,p[f := j]] = M[®, p[f := k]

Since M[—®, p'] is dependent only upon M[®, '],

M[-®,p[f := j]] = M[~®,plf := k]] = F(j) = F(k)

o T Fwf(()(f) ®),z,17)
2 Fwi((A(f) J=®),z,1)
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Let j,k be any functions such that Ve, j =;, k By the semantics of our language,

F(j) = M[3=2®, p[f := jl|

and

F(k) = M[3z®,p[f := g]|

By our initial assumption,
G(7) = G(k) = M[2,p[f := j]| = M[®,p[f := k]
Since M[—®, '] is dependent only upon M|[®, p'],

M[323,plf := j]] = M[328,plf := K] = F(j) = F(k)
Y Ewi((A(f) wi),z,1)

Z Ewi((A (f) wa), 2,7)
X wi ((’\ (f) {wl, -",wn}),w’i)

Let j,k be any functions such that Ve, j =; , k By the semantics of our language,

F(J) = M[{wly'",wn}ap[f = J]]

which means that F(j) = {w},...,w’} where

w; = M[wlap[f = j]]v--’w:; = M[wn, p[f := j]]
By similar reasoning, we also obtain F(k) = {w/,...,w"} where

wy = Mlws, p[f := k]|, ooy Wy = M[wn, p[f := k]|
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Given our initial assumptions that wi ((A (f) w1),z,?)...wf ((A (f) wn),z,1),

G1(7) = Gu(k) = Mlwi, p[f := jl] = M{wi, p[f := ]

Gn(7) = Ga(k) = Mlwy, p[f := j]] = M[wy, p[f := k]|
By similar reasoning, we also obtain F(k) = {w;,...,wn}. Therefore, F(j) =
(), ey w} = {0 ey l} = F(R).
o wE((A () 2),2"i)
o I Fwi(()(f)1t),z,i)

Y F Walther((Y f (A (21 -.- za) 1)), f, 2,7)

Immediate from definitions
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