
Automated Termination Proofs Using Walther
Recursion

by

Alexander Wu

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Engineering in Computer Science and Engineering

and

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

(Alexander Wu, MCMXCIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant o s the right to do so.
Eng,

Author -

Department of Electrical Engineering and Computer Science
May 23, 1994

Certified by ..
David A. McAllester

A

Associate Professor
Thesis Supervisor

Accepted b \ .
.. Leonard A. Gould

Chairman, Departmental Conmittee on Graduate Students

Ik \

Automated Termination Proofs Using Walther Recursion

by

Alexander Wu

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 1994, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Computer Science and Engineering

and
Bachelor of Science in Computer Science and Engineering

Abstract
In this thesis, I present an improved method for automatic proofs of termination
through a syntactic measurement of sizing that was first developed by Walther. We
discuss formal requirements for proving termination using this method and how it can
be generalized to other languages. We present a simple set-theoretic language as an
example which can be used to write basic Lisp-like programs. Using this language, we
define strict syntactic requirements on how to prove termination and then produce
inference rules that indicate how these requirements can be established. Several
sample algorithms whose termination proofs are sketched using the inference rules
are presented in order to show the power of the approach. Last, we discuss the
issue of soundness of these rules, as well as issues of the decidability and efficiency of
implementing such a system.

Thesis Supervisor: David A. McAllester
Title: Associate Professor

Acknowledgments

I would especially like to thank David McAllester, my thesis advisor, for all his help

and more importantly, patience and understanding. None of this work would have

been possible without his guidance. Special thanks also go to Carl Witty, Robert

Givan, and Luis Rodriguez, whose showed me some of the more unusual aspects of

graduate life.

This work is dedicated to my sister, Cynara, who is undergoing trying times right

now. I hope that everything turns out for the better. I may not be the best friend

that you need right now but I still love you very much. I am also forever indebted to

my parents for everything they have done for me all these years. Thanks, Mom and

Dad. This is for you.

Finally, a thousand thanks go to all my friends here who never gave up on me

despite all the time I spent doing thesis instead of with you guys. James, maybe I

still have time to pick up ultimate. Henry, once this damned thing is finished, we can

play tennis. Howard, thanks for trying to make me a "Superstar". It didn't quite

work but you did the best with what you had. Yong, I'm sorry I didn't have quite

what it takes - you are the "Chosen One" in more ways than one. To everyone that

can't be named, or this thesis would double in size, you all have made these five years

the best of my life. I'll always remember the great times there were.

Contents

1 Introduction

1.1 A Termination Proof

1.2 Description of the Approach

1.3 Comparison with Other Approaches

2 Walther Recursion

2.1 Fixed Point Semantics

2.2 Proving Termination

3 First Order Logic

3.1 Language.

3.1.1 Description

3.1.2 Grammar

3.1.3 Operational

3.1.4 Application

3.2 Meta-Formulas . .

3.2.1 Description

3.2.2 Grammar

3.2.3 Semantics

3.3 Inference Rules

3.3.1 Description

3.3.2 Examples

3.3.3 Soundness

.

.

.

Semantics

.

.

.

.

.

.

.

.

.

4

7

8

10

12

14

14

17

24

25

26

28

28

29

33

34

37

37

37

39

43

45

.

.

.

.

.

.

.

.

.

.

.

.

.

..............................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

3.3.4 Decidability

4 Conclusion

A Soundness

A.1 Boolean Rules for Formulas

A.2 Argument Bounded Terms . .

A.3 Argument Bounded Functions

A.4 Formulas.

A.5 Difference Literals

A.6 Well-Founded Functionals

48

50

50

50

52

52

53

55

5

46

..

......................

......................

......................

......................

List of Figures

3-1 Gramrnar of the Language 28

3-2 Semantics of the Language 30

3-3 Grammar of the Meta-Formulas 37

3-4 Semantics of the Meta-Formulas 38

6

Chapter 1

Introduction

In formal reasoning with mechanical verification systems, such as those used for hard-

ware and software verification, it is often necessary to show that recursive functions

are well-defined. When defining languages for computers, an imperative model is often

used, and therefore the problem can be treated as constructing a proof of termina-

tion. Since there are recursive definitions whose termination properties are bound to

be intractable (instances of the halting problem, for example), it is necessary to resort

to heuristic algorithms to determine the well-formedness of recursive definitions.

One common approach for proving termination was invented by Floyd[6]. Floyd's

approach relies on the ability to find some measure of the arguments that is well-

ordered according to some relation, <. If a measure exists which is guaranteed to

decrease according to this relation on every recursive call, the function must termi-

nate. The key innovation required in such proofs, however, is the ability to find a

measure with the necessary properties.

Walther[12] expanded on Floyd's work by using a specific class of measures which

applies to a large class of natural recursive procedures and for which a decidable

algorithm could be constructed which automatically determines the applicability of

the measures to a given procedure. The measure is based on a syntactically-defined

notion of the size of an argument. Based on this size order, Walther describes a sound

as well as decidable method for proving automatically that a large class of recursive

procedures terminate.

7

This research generalizes the work of Walther in several ways. First, we apply

Walther recursion to a language with a more general idea of primitive data structures

than the shell principle used in Walther. Second, we extend Walther recursion to

allow certain transfinite recursive definitions to be accepted. Third, we describe a rule-

based implementation of our algorithm which is strictly based on the syntactics of our

language. Finally, the theoretical framework used by Walther in his paper did not give

clear semantical and syntactical descriptions of the language being described, making

it very difficult to formally generalize the approach. With a grammar defining the

syntax and a meaning function determining the semantics of our approach, extensions

to other languages are more readily apparent.

1.1 A Termination Proof

In order to illustrate how we prove termination, we begin with an example proof that

Euclid's algorithm for finding the greatest common denominator terminates for the

whole numbers. Specifically, using a syntax resembling that of Lisp[11], our algorithm

is defined to be:

(define (gcd a b)

(if (= a O)

b

(gcd (remainder b a) a)))

where the remainder function is defined as:

(define (remainder x y)

(if (= y O)

Y

(if (< x y)

x

(remainder (- x y) y))))

In order to prove the gcd function terminates, we must show there is a well-

founded order, <, on its arguments (a,b), such that for any recursive call, gcd(x,y)

made within the function, (x,y) <(a,b). In this paper, we restrict the well-founded

8

orders to being dependent on a single argument only. By observation, this can be

possible only if for all (a,b) such that a Z 0, a <(remainder b a). Upon inspecting

our remainder function, since y $ 0, remainder returns x if x <y or (remainder

(- x y) y) otherwise. If x <y, then (remainder b a) = x (remainder b a) <a.

Otherwise, (remainder x y) = (remainder (- x y) y). Another recursive call to

remainder is made where y $ 0. Since the minus operator defines a well-founded

order on the whole numbers, remainder will eventually stop and since y 0 always

holds, it must terminate with a value x where x <a. Thus, for all (a,b) such that

a $ 0, a <(remainder b a). We therefore have established a well-founded ordering

on (a,b) which the desired properties. Therefore, the gcd function must terminate.

The above sketch of a proof roughly describes the approach taken by Walther[12].

Although it is a reasonable sketch of a termination proof for gcd, using this approach

in an automated system has several weaknesses. First, the chain of reasoning which

lead to conclusion that the gcd function is Walther is a bit unclear. Although there

is a formal algorithm for determining whether a function is Walther recursive, the

semantics of the language as well as clear inferences leading to the proof had been

abstracted out of the discussion. Second, the automated system discussed by Walther

produces generation hypotheses and relies on an induction theorem prover to verify

these hypotheses. In our approach, we have developed a formal, set-theoretic defini-

tion of Walther recursion, proving the necessary definability properties, in order to

generate a sound set of inference rules which essentially lead to termination proofs, as

opposed to termination hypotheses. The soundness of the rules should be indeed ver-

ified by the induction theorem prover but this can be done offline and thus efficiency

can be increased significantly.

For example, in our approach the above termination proof would be proved with

the following chain of inferences:

* Function - (minus) terminates

* Given arguments ,y y 0, x 0, minus(x, y) is less than

· F- In (remainder (- x y) y), (- x y) is less than x

9

* - remainder teminates

* remainder(x, y) returns a value less than or equal to y

* - Given arguments z,y y $ 0, remainder(x, y) returns a value less than y

*· In (gcd (remainder b a) a), (remainder b a) is less than b

*· gcd terminates

1.2 Description of the Approach

As opposed to the generate-and-test paradigm combined with an induction theorem

prover that is used by Walther, we use an inference rule system for automated ter-

mination proofs. However, we have adapted the generate-and-test paradigm taken

by Walther to generate inference rules that are essentially equivalent to Walther's

approach. Since we do not use an induction theorem prover in our approach, we

have established a set of formal requirements for recursive definitions to be Walther

recursive and then proved these requirements guarantee a well-defined function. We

then defined a set of meta-formulas which within our language of discussion, indicate

how terms in our language satisfy the necessary formal requirements.

The meta-formulas, also termed properties by Walther, which are required must

determine sufficient conditions for proving a function terminates. Since our approach

is based on a well-founded size order which can establish that the size of an argument

to a recursive function decreases on every recursive call, meta-formulas for determin-

ing when a recursive function satisfies this property are needed. In order to establish

this property is true for a given recursive function, we must show that the size of

the argument decreases. Unfortunately, the size of a term has a semantic mean-

ing, which determining in the general case is intractable. We resolve this problem

by constructing a meta-formula which is a syntactic estimate of the relative size of

two terms. The basis for recognizing that terms are relatively smaller or larger is

through the idea of argument-bounded functions. Argument-bounded functions are

10

functions which return results that are strictly less than or equal to a given argu-

ment to the function. For example, the remainder function in the above example

was argument-bounded on its second argument. Thus, meta-formulas which indicate

what functions are argument-bounded on which arguments are required. For a base

set of argument-bounded functions, we use a set of primitive selectors defined on a

given set of datatypes.

This, however, is still insufficient. Argument-bounded functions guarantee that

the result returned is less than or equal to the value of an argument, whereas for

proving termination, we require that in the call to a recursive function the argument

is strictly decreasing. Therefore, in addition to recognizing functions are argument-

bounded, we must also recognize when such functions return a result that is strictly

less than an argument. "When" translates into establishing conditions on the argu-

ments to a function, or so-called difference literals that ensure that the result will be

strictly less than an argument.

Given these meta-formulas, we constructed a set of inference rules which indi-

cate how the properties can be provably established within the language. Once our

meta-formulas and inference rules are established and proved to be correct, we can

incorporate them into rule-based system. Because generating inferences is the only

dynamic portion of the system and because the rules can be implemented as a recur-

sive descent parsing algorithm, an efficient implementation exists for such a rule-based

system.

Chapter 2 describes the Walther recursion more fully and extends Walther's work

to include a set-theoretical framework for Walther recursive functions with proofs

of the fixed-point properties of these functions leading to semantically well-defined

meanings. We use this framework in chapter 3 to discuss the inference rules necessary

to determine whether definitions are Walther recursive in a simple language. The

decidability of the inference rules is established and their soundness is discussed.

A series of example algorithms are also given which are provably Walther through

the inference rules. These illustrate the types of recursive definitions which can be

expressed by Walther recursion. We conclude in chapter 4 with a brief discussion of

11

the strengths and weaknesses of our approach.

1.3 Comparison with Other Approaches

The works presented here are all discussed in Walther's paper[12]. Much of the work

in this area not only deals with termination proofs but correctness proofs as well.

Since the primary motivation for this paper is for verifying termination of recursive

functions, correctness proofs are not of major concern, and therefore are not discussed

here. However, it should be noted that algorithms incorporating correctness with

termination proofs often requires a distinct different approach.

Floyd[6] first suggested the use of a termination function and the properties of

well-founded sets for proving termination of flow chart programs. These ideas were

adapted by Cooper[5] and used to implement a mechanical verification system. This

system was a semi-automatic facility for generating and verifying so called convergence

conditions which were sufficient for proving termination.

In [8], four different methods of proving termination are compared. For Floyd's

technique[6] as discussed above and for the loop approach, which is based on estab-

lishing an upper bound for each increasing counter in a loop, a termination function

is used. The exit approach uses exit conditions, conditions upon which a loop is

guaranteed to terminate, and attempts to show how these conditions are satisfied

at some stage in the loop. Proofs of non-termination can also be done using this

approach. Finally, the paper describes Burstall's[4] method, which uses structural

parallel induction to prove termination and correctness simultaneously.

Burstall's method is useful in unusual recursions which are difficult to under-

stand and verify such as McCarthy's 91-function and Ashcroft's algorithm for list

reversal[10][9] where termination and correctness must be shown together. Since such

algorithms are not often of practical use, we consider it a minor drawback that an

approach based strictly on termination such as Walther recursion cannot prove the

termination of such algorithms. The key problem to approaches based on this method

is that determining the correct well-founded order often requires the outside aid and

12

therefore is not fully automated.

The approach taken by the author is based on Walther recursion[12]. This is

an adaptation of Floyd's approach with termination functions through a syntactic

measure of the size of arguments to a recursive function. A similar approach was

used in the system developed Boyer and Moore[3]. However, that system required

outside intervention by the user. Walther's approach fully automates the construction

of termination proof.

13

Chapter 2

Walther Recursion

In order to prove the consistency of recursive functions, it is first necessary to formally

define Walther recursion. Our treatment will be from a set-theoretic standpoint,

which allows sufficient expressibility to be applicable to most areas within computer

science as well as a large area of mathematics. Specifically, we assume that sets are

axiomatically defined within the realm ZFC set theory.

2.1 Fixed Point Semantics

In order to establish our formal framework, we must remember that it should satisfy

our intuitive notion of Walther recursion as set forth in this paper. Thus, let us return

to our definition of a function for computing the greatest common denominator:

(define (gcd a b)

(if (= a O)

b

(gcd (remainder b a) a)))

Assuming a function remainder is already defined with provably the desired

properties we need, there is still a question of how we can mathematically express

this function in such a way that it yields the results we intuitively expect it to give.

14

For example,

bif a = 0

gcd(a, b)) = gcd(remainder(b, a), a) otherwise

has no definable meaning since the function is defined in terms of itself. Thus, our

first goal is to provide a definition for a recursive function. We take the standard

approach as described by Manna[10], through using a fixed point theory of recursion

functions. We define a partial function to be a function which maps elements in the

domain to elements whose value is within the given range or some pre-defined element,

0, which may or may not be in the range, where 0 is considered the undefined value.

Partial functions intuitively allow us to define the value of a function on a subset

of the domain, allowing us to provide an approximation of a recursive function. For

example, the first approximation of gcd could be:

b if a = 0
gcd((a, b))= otherwise

The next step is to provide some method of generating better approximations of

the recursive function we seek to define. In order to do so, we define a functional.

Functionals are functions which, given a partial function, will return a partial function.

Therefore, they can be used to model functions which given an approximation to a

recursive function, return a better approximation. For gcd:

bifa= O
GCD(gcd') = {((a, b), y) : y { ifa =

gcd'((a, b)) otherwise

In this case, the GCD functional will return a new approximation of the gcd

function, given a prior approximation, gcd'. Although we can take better and better

approximations, mathematically we want the limiting case where we have converged

15

on desired recursive function, i.e. a function, gcd, such that

GCD(gcd) = gcd

We call gcd a fixed point of the functional GCD and take it to be the natural

meaning of the recursive definition of the greatest common denominator. Thus, in

order to describe a recursive function mathematically, we define a functional and

determine its fixed point. We proceed to provide formal definitions for the above

concepts.

Definition 1 A partial function from a set X to a set Y, denoted as f: X -- Y, is

a set of ordered pairs, {(z,y): x E X,y E Y}. The value, f(z), x E X, is considered

undefined, or f(x) = 0 if there does not exist y such that (z,y) E f. Otherwise, the

value f(z) is considered y, (, y) E f. More formally,

f) = { 0if -3y, (, y)f (2.1)
y s.t. (, y) E f, otherwise

We call X, the domain of f and Y, the range of f.

Definition 2 Let r,r71,2, ... ,rn be sets and let P be the set of all partially defined

multi-valued functions g : r x r2... x r - over a given set of n variables from

r1, ... ,, to r. A functional in P is defined as a function F: P - P. By abuse of

notation, we define Fa(z), for any any ordinal a as

F(x) if a = 1
F"(x) = F(F(x)) if 33, a =3 + 1

F(x) = {(a, b): 3/ < a s.t. V-y > 3, (a, b) · F'(x)} otherwise
(2.2)

Furthermore, we use the following notation for a partial function whose value is

0 on the entire domain:

F(fo) F({}) (2.3)

16

2.2 Proving Termination

Walther recursion is based on the idea of a termination function as described by

Manna. Specifically, a size order which is a measurement of the size of the arguments

to the function is used to show that if the size order is well-founded and if the

arguments to the function are smaller in relation to the order, the function will

terminate.

Since set theory is often defined by an axiomatic construction of sets, stage by

stage using the ordinals, this leads to a natural method of defining a well-founded

size ordering on the sets using the rank of the set. Specifically,

Definition 3 For any ordinal a we define V, as

* V+1 = P(V.)

V = U<8 Va

Then, for any set x, let Il1 be the least a such that x C V,,. We call x1 the rank

of set x.

It is a common knowledge that such an ordering using the ordinals imposed a

well-founded size ordering on sets. Therefore, we assume, without proof, that the

above ordering is well-founded and we can perform induction using this size ordering.

Given a formal method of defining recursive functions and a size ordering imposed

on sets, we can now proceed to define the notion of Walther recursion. First, we need

some method of comparing different partial functions as approximations of recursive

functions.

Definition 4 Let f,g be partially defined multi-valued functions. For any i,a, we

define f =i,, g to mean that for all v = (xl,...,x ,), IxiI < a == f(v) = g(v). Thus,

f =i, g = = (, ... ,, xXn) I1 <a = f(v) = g(v) (2.4)

17

Example 1 Let f,g be functions such that

f = {((1, 2, 3), 9), ((4, 1, 5), -5), ((7, 8, 4), 5), ((5, 6, 7), 8)}

g = {((1, 2, 3),9), ((4, 1,5),-5), ((7, 8,4), 5), ((6, 5, 8), 1)}

Then f =1,5 g, f =2,5 g, and f =3,7 g.

Next, recall that a Walther recursive function is a recursive function that guar-

antees that on every recursive call, some measure of the function is guaranteed to

decrease according to some well-ordering. This leads to our set-theoretic definition of

a Walther recursive function.

Definition 5 Given a set of functions P = (r x r2 ... x r,) -- r, a functional F:

P P is defined to be well-founded if and only if 3m, 1 < m < n where the following

condition holds:

* For any functions f,g c P, Va, (f =mc g =4 F(f) =m,a+1 F(g)).

We say F is well-founded on argument m and call m the measure argument of func-

tional F.

Claim 1 Let N = set of non-negative integers and P = N - N be a function space

over which the following functional is defined:

F(h) = {(1,0)} U {(z,y) :x > 0 A E N,y = x * h(zx - 1)}

Then F is well-founded on its first and only argument x. Note that this functional

describes the factorial function.

Proof: Let f,g be any functions such that f,g E P. Assume to the contrary that

_\V,(f =,, 9 , F(f) =,,+, F(g))

Which means that

H = a' s.t. -(f 1,a g => F(f) =,,+1 F(g))

18

Then, for a',

f =l,a' g A F(f) -#1,,'+1 F(g)

Since F(f) ,,,&+ F(g),

3v = v' s.t. v'I < a' + 1 A [F(f)](v') Z [F(g)](v')

Using our definition of the functional F, we get

1 if v' = 0

[F(f)v' * f(v'- 1) otherwise

and
1 ifv'= O

[F(g)](v') =
v' * g(v'- 1) otherwise

However, since fi,,g and Iv'l < a'+l 1 = Iv'-11 < a', f(v'-1) = g(v'- 1). Therefore,

[F(f)](v') = [F(g)](v') which is a contradiction. Thus,

Va, (f =l,a g = F(f) =l,a+l F(g))

which means that F is well-founded on its first argument.

Claim 2 Well-founded functionals do not have to be monotonic. For example, let

N = set of non-negative integers and P = N -- N be a function space over which

the following functional is defined:

F(h) = {(1,0)}U{(x,y): x > OAxz N,y if -3y'.t. y' th(X -1)
h(x -1) otherwise

Then F is well-founded on its first and only argument x.

Proof: Let f,g be any functions such that f, g E P. Assume to the contrary that

-Va, (f =, g , F(f) =,a+l F(g))

19

Which means that

3a = -a' s.t. -(f =1,. g = F(f) =1,+1 F(g))

Then, for a',

f =i,a' g A F(f) il,a'+1 F(g)

Since F(f) $1,c,+1 F(g),

3v = v' s.t. Iv'| < a' + 1 A [F(f)](v') [F(g)](v')

Using our definition of the functional F, we get

[F(f)](v') =

and

[F(g)](v') =

I

I

1 if v' = 0

0

f(v'- 1)

1

0

g(v' - 1)

if -3y' s.t. y' C f(v' - 1)

otherwise

if v' = 0

if -3y' s.t. y' C g(v' - 1)

otherwise

However, since fl1,,,g and Iv' < a'+I =1 > v'-1 < a', f(v'-1) = g(v'-1). Therefore,

[F(f)](v') = [F(g)](v') which is a contradiction. Thus,

Va, (f =1,e g F(f) =,a+l F(g))

which means that F is well-founded on its first argument. ·

'Theorem 1 Given any well-founded functional F on measure argument at m and

any ordinal a, V/3 > a, Fa(fo) =m, FO(fo).

Before proving this theorem, we state the following lemma:

Lemma 1 Given any well-founded functional F on measure argument m and any

20

ordinal a such that F"(f 0) =m,a F'+l(f0), we have that for all P > a, Fa(f0) =m,C,

F(f0)-
Proof: Let 4}[,/] represent the statement Fa(f0) =m,a F(fo). We will prove the

lemma by transfinite induction on the ordinal . For our base case, 3 = a + 1, the

proof is automatic by our assumption that Fa(fo) =,,, F'+l(fo).

In our induction step for non-limit ordinals, we wish to prove 4[/] -- 4 [/3 + 1].

Since F is a well-founded functional,

[E]-- F(F'(f)) =,, F(F(f))

Relaxing the restriction from =m,a+1 to =m,a, we get

[3] -* F+'(f 0) =m, F +(f)

Given that Fa+l(fo) =m, F"(f 0), by transitivity of =m,,,

F"+'(fo) =m,a Fc(f0)

and therefore [/,3] - [/3 + 1].

For limit ordinals, , we need to prove V7 s.t. a < y < , [] -4 [,3]. Let

V = (1, ...,an), ml < a, be an arbitrary n-tuple. By our initial assumption,

Va < y </ , [] -- F(f 0) =m, F(f0)

which means for arbitrary y,

(v,Y) Fa(f0) =, Va < <3, (, y) E F(f 0)

Thus, by the definition of F 3(f0) for transfinite /

(vy) E Fa(f0) (v,y)E F(f0)

21

Similarly, in order to show that (v, y) E F"(f 0) = (v, y) E Fa(f0)

(v,y) E F(f 0) = 3P' < p s.t. V3 > y > 3',(v,y) E F1(f0)

Thus, for any such y such that 3 > y > a,

(vy) F(f 0) (v,y) E F (fo) (v,y) E F"(f0)

Since v is arbitrary,

Vv = (,...,,Xn s.t. ImlI < a, [Fa(fo)](v) = [F'(fo)](v)

meaning we have FG(fo) =m,, F(fo) which implies that Va < 7 </ , [7] -[1] ·

Theorem 2 Given any well-founded functional F on measure argument at m and

any ordinal a, V,/ > a, F(fo) =m,a F(fo).

Proof: Let I'[a] represent the statement V,/ > a, Fa(fo) =m,,, F(f 0). We will prove

the theorem by transfinite induction:

* [a = 0]: Since there does not exist v = (,...,xn) such that Ix,m < 0,

F°(f 0) =m,O Fl(fo). Therefore, by the lemma, V /3> O, F°(f 0) =,O FO(f0).

* A[ac] -- t1[a + 1]: Given [a], F(f 0) =,o, F'+l(fo). By the definition

of a well-founded functional, F(f 0) =m,a F+l(f 0) => F(Fa(fo)) =m,,,+

F(F'a+(fo)). Therefore, F+l(fo) =m,a+ Fa+2(f0), which implies by the

lemma that V, > a + 1,

Fa+lx(fo) =m,a+ F(fo). Thus, [a] - T'[a + 1].

* For any limit ordinal a (V < a, [7y] - [a]): Let v = (X,...,Xn), Ilz, <

a, be an arbitrary n-tuple. Since lxm, < a and a is a limit ordinal, Izm +

1 < aandtherefore,[lxm + 1] is true, if we let be lxm + 1. Therefore,

'V > 7 , F(fo) =m, F(fo). Knowing that 7 < a < a + 1, we obtain

F"(f0) =m, F(fo) =m, F+l(f 0)

22

Thus, since v is arbitrary,

Vv = (, ... , X) S.t. I ml < a, [Fa(fo)](v) = [Fa+l(fo)](v)

which is by definition

Fa(f0) =, F +'(fo)

By the lemma, this implies that t[ca] is true.

Corollary 1 Let F be a well-founded functional on argument m. There exists a such

that Fa(f0) is a fixed point.

Proof: Since Fis a well-founded functional, for any ordinal a F(f 0) =m,,, F(Fa)(f0).

Let a = Trml. Since Vv = (z1,...,,n) E ri X ... x r,, I m E m x Im, < a,

v, FG(fo)(v) = [F(F')(fo)](v)

Therefore, F-(f 0) = Fa+l(f0), which means that Fa(fo) is a fixed point. ·

Definition 6 Let F be a well-founded functional with measure argument m and let

a = ITml. We define the function F'(f 0), the fixed point of F, to be the recursive

function definition of F. We use the notation Y(F), for any well-founded functional,

to denote the recursive function definition of F.

23

Chapter 3

First Order Logic

One issue that wasn't addressed in our termination proof for gcd was how to prove

that remainder has the desired properties. Since we are only concerned with ter-

mination, it suffices therefore to show that the remainder function terminates and

returns a result that guarantees that the measure argument of gcd decreases on ev-

ery recursive call. The termination properties of remainder can be shown by the

same method that we used for gcd; specifically, verifying that remainder is Walther

recursive. However, proving that the result returned by the remainder function is

less than the measure argument in the general case requires computing the value of

the function itself, which can require a large amount of computation time, or in the

worse case, be an undecidable problem. Therefore, we are forced to result to heuristic

algorithms, and perhaps more importantly, efficient methods of estimating the size of

a value.

Thus, the main idea behind Walther recursion is the ability to use a calculus of

estimation, a syntactic and therefore decidable method of giving bounds on the size of

terms. The calculus of estimation must be sound but cannot, as discussed above, be

complete. It is based on the idea of argument estimation rules. These rules indicate

when the results of functions are guaranteed to be smaller than or equal to the value of

one of the arguments. These functions are known as argument-bounded function sym-

bols. Proving termination requires only that we determine the relative, not absolute,

size of a term when compared to the measure argument, allowing these estimation

24

rules to be sufficient. However, since proving termination requires a strict inequality,

we associate a difference literal with each argument-bounded function symbol which

indicates when the inequality is strict.

We recognize argument-bounded function symbols either axiomatically, as primi-

tive operators (selectors) on primitive data structures, or algorithmically, through a

case analysis proof that shows for all possible situations, the result of the function is

smaller than or equal to the value of the argument in question. These comparative

judgments can be made through the calculus of estimation. Furthermore, for recur-

sive functions we can perform inductive proofs that the function is argument-bounded

provided the argument be sent into the recursive call is smaller than the argument in

question. It is also sometimes necessary to manipulate algorithms in other manners

in order to make them argument-bounded.

Therefore, our discussion now turns from a mathematical standpoint to a practical

standpoint where decidability and efficiency are the primary concerns, making the

semantic value of a term not nearly as important as a syntactic approximation of it.

It is therefore necessary to first define a "practical" language which is the basis for our

discussion of the syntactic methods used in Walther recursion to prove termination.

Thus, we first turn our attention towards this task. Once that is complete, we describe

the properties, or meta-formulas, which we need to infer for a given term or definition

:in the language in order to prove argument-boundedness or well-foundedness. We

also provide a set of inference rules in order to give a sound, but not complete,

method of inferring the properties/meta-formulas under consideration. Finally, we

briefly discuss the efficient implementation of these rules in order to show that such

a system is usable practically.

3.1 Language

We choose the language of first order logic extended to include set theory because

of its simple semantics yet ability to express the concepts in many advanced mathe-

matical disciplines. Furthermore, it's functional paradigm is better suited to Walther

25

recursion than the non-functional approach many languages take. Although there

is a distinct disadvantage using Walther recursion in non-functional languages, we

note that automated termination proofs based on well-orderings in such languages

have been successful[7]. Therefore, it is not unreasonable to believe that Walther is

extendable to such languages.

Nevertheless, in situations where a functional approach is taken, Walther recur-

sion is much more natural and concise. Therefore, our treatment of its applicability

to a language in which a high degree of expressibility and flexibility is possible hope-

fully illustrates that the concepts behind Walther recursion are essentially language

independent.

3.1.1 Description

A language in first-order logic as defined by Barwise[l] of a set L of constant symbols,

function symbols, and relation symbols. Since we are defined a language using first-

order logic in the context of set theory, we define our constant symbols to be sets. Sets

can be constructed using the standard notion of braces, {}, with the elements of the

set enclosed within the braces, or through pre-defined O-ary function symbols. Each

function symbol f has a non-negative integer, n, assigned to it, where f is considered

an n-ary function symbol. Let M = the collection V of all sets. Then if f L is

an n-ary function symbol, then f : M n M. Likewise, each relation symbol R has

a positive integer, n assigned to it, where R is considered an n-ary relation symbol.

We deviate here from Barwise's definition of relation symbols by defining symbols,

True and False as constant symbols such that if R C L is an n-ary relation symbol,

then R: M n - {True, False}. This is equivalent to Barwise's definition of relation

symbols, R' through the mappings R' {x: R(x) = True} and R = {(x,y): x C

.M, y = True if x R', y = False otherwise}.

By doing so, we have made formulas as defined in Barwise, to be a subset of terms.

rTerms, which are always sets, are thus one of the following:

* a constant symbol

26

* the result of a function which maps terms to terms

* a formula

* a set construct using ()

* the result of an if operator

* the result of an U operator

Formulas are the result of mapping terms to a boolean value through a relation

symbol, the result of the standard equality, =, operator, the result of the set-theoretic

membership G operator applied to two terms, or those formulas created by combining

the standard logic operators -, V and quantifier 3.

Functions in our language are either function symbols, or the result of the Y-

operator (defined below) applied to a functional. Functionals are essentially equiva-

lent to those defined in the previous chapter and their use is restricted to generating

recursive functions.

In order to have some sort of control structure, we also define an if operator

which takes on its intuitive meaning. Specifically, it is a 3-argument operator which

takes a formula and two terms and returns the first term is the formula is not False,

and returns the second term if the formula is False. Note that as a consequence

since formulas need not return a value in {True,False}, any value not in this set is

considered a True value.

Although we have the ability to construct sets currently using our language, we

still lack method of extracting elements from these sets. Unfortunately, there is no

general way of doing so without using the Axiom of Choice. However, the doing so

would require using of an arbitrary choice function which, for defining a language,

it not a very appealing choice. Therefore, we avoid the notion of a choice function

altogether and define a U operator which takes in a variable, v and two terms, tl

and t2 and returns the union of all possible values of t2, with the variable v bound to

some element of t. Mathematically, this can be represented as UvEtl t2 where v has

its specified meaning in t2. Although at first glance this operator does not provide

27

t := I | (F t ... n) (if t t2) I tl,...,tn} I (U tl t2)

b := (= t t2) (E tl t2) (I T1) (A 1 '42) (3 t)
F := f l(A (xl ... x))) (Y f F)
x := first-order variable
f := function variable

Figure 3-1: Grammar of the Language

any clear method for extracting elements from a set, it is sufficient for most purposes

as will be demonstrated below.

We proceed with a more formal grammar and semantics for the language.

3.1.2 Grammar

Figure 3-1 gives a complete grammar for our language as described in section 3.1.1.

Note that t denote terms, Fdenote functions, · denote formulas, and fdenote function

symbols. Also note that syntactically, formulas and terms are equivalent. Semanti-

cally, formulas differ from terms in that formulas are used as the first argument to the

if operator, whereas terms are used in all other situations. This distinction is made

in order to clarify the presentation of the inference rules in section 3.3.

3.1.3 Operational Semantics

We define a meaning function associated with each grammar rule. The meaning of

each of our terms corresponds directly to its equivalent meaning in first order logic

as described in section 3.1.1. Refer to Figure 3-2.

We now state two key properties of our language that will be important in under-

standing our language and establishing the inference rules. First, although we stated

in the previous chapter that sets are well-founded given a size order based on the

ordinals, we still do not have a method of establishing the relative size of two sets.

The below theorem, stated without proof, is from [2]:

Theorem 3 Let x be any set. Then Vy E x, IYI < 1I.

28

The next theorem is for recursive functions defined within our language. Seman-

tically, our definition of a recursive function corresponds to that of Corollary 1. We

must therefore show that the definition has the fixed point property that we need.

Theorem 4 Let (Y f ((... x,,) t)) be a recursive function definition which has

semantic meaning f, = M[(Y f (A (... z,) t)),p] under some interpretation, p.

Given the functional F(f') = M[(A (xi ... x,) t),p[f := f']], if F is well-founded,

then F(fm) = f,.

Proof: Since the functional F(f') = M[(A (xl ... z,) t),p[f := f']] is well-founded,

by Corollary 1, a fixed point Fa(f 0) exists for the functional. Because

V-y > , (a,b)E F r(f0)

Fa(f0) C M[(Y f ((x1 ... xn) t)),p]. Furthermore, since

P > a, F3(f0) = Fa(f0)

M[(Y f (A (xi ... x,) t)),p] C FG(f 0). Therefore, (Y f ((xl ... x,) t)) is a fixed

point of F. ·

3.1.4 Application

With the grammar and semantics of our language determined, we once again return

to our definition of gcd and remainder to illustrate how functions are defined in

the language. In order to keep the syntax of our language as similar as possible

to the syntax used in our examples in preceeding chapters, we require several more

conventions, though not within the language itself, enhance readability and allow for

easier understanding. First, we assume that for any function variable, f, arguments,

x, ... x,, and term, t, the following expression:

(define (f zl ... ,,) t)

29

M[(F xi ... Xn),P]

M[(U xtlt2), p]

M[(if 4I, t t:?), pi]

M[(Y f),]

M[(A (xi ... Xn) t), p]

M[z, p]

M[f, p]

M[(= tl t2),p]

f(x... X-)
where f' = M[F, p]{t I xi = M[Xl p *X = M[xn, p]

Uxet t 2{ where t~ = M[tl,p],t' M[t2,p[x =
x']]

M[t 2, p] if M[, p] = False
M[ti, p] otherwise

{twhere t = M[t, p], ..., t = M[tn, p]

{(a, b): 3 s.t. Vy > , (a, b) E F'(f0)}{ where F = {(f,, fy) : fy = M[l,p[f := f]]}

= {((X·,...,X n),y') y: = M[t, p[xl = Xl,...x n = xn]]}

= p(x)

= p(f)

_ True if M[tl, p] = M[t 2, p]
False otherwise

M[(E tl t2) p]

M[(- ¢p), p]

M[(A ¢4),p]

M[(3 x),pl

True if M[tl, p C M[t2 , p]
False otherwise

False if M[P, p] = True
True otherwise

J True if M[, p] = True and M[g', p] = True
False otherwise

| True if 3z, s.t. M[4,p[x := z]] = True
False otherwise

Figure 3-2: Semantics of the Language

30

to mean the function symbol, f, is a pre-defined symbol with meaning equivalent to

(Y f ((... ,) t))

Likewise, for constant symbols, we assume for any constant symbol, c, and term,

t, the following expression:

(define c t)

indicates the constant symbol, c, is pre-defined to have the meaning of t. Now, we

have the ability to define our functions with the exact same syntax as before:

(define (gcd a b)

(if (= a 0)

b

(gcd (remainder b a) a)))

(define (remainder x y)

(if (= y O)

Y

(if (< x y)

(remainder (- x y) y))))

Furthermore, since functions cannot return formulas because terms and functions

are distinct categories in the grammar, we shall adopt another more notational con-

venience. Whenever a term, t is used as a formula, we assume it's meaning is the

formula (= t True). On the other hand, whenever a formula, 4t is used as a term,

we assume it's meaning is the term (if 4 True False).

Although the syntax of the language is now the same, we still require a semantic

notion for the constant symbol, 0, as well as the function symbols, < and -. Doing

so requires some formal structure for defining the set of non-negative integers. We do

so using the standard definition of the set through the ordinals:

(define 0 {})

31

(define (succ x)

(U y x {x,y}))

(define (pred x)

(U y x

(if (= (succ y) x)

{Y}

Careful examination will show these definitions are equivalent to their set-theoretic

equivalents.

In order to create a more generalized notion of a data structure, we show how to

use our primitive set structures to define an ordered pair, which is equivalent to the

Lisp cons cell.

Since sets do not have any inherent ordering, to creating an ordered pair, (x, y), it

is necessary to impose this ordering on the elements. One common method of doing

so is by defining (x, y) to be {x, {x, y}}. Therefore, we obtain the following definition

for a function which constructs ordered pairs, cons:

(define (cons x y)

{x,{x,y}})

We also need some method of extract the respective elements, x and y, from the

pair. The functions, car and cdr extract the first and second elements, respectively,

from an ordered pair. We define them as follows:

(define (car x)

(if (= x nil)

nil

(U a x

(U bx
(if (= a b)

(U c b

(if (= c a)

c

11MM)>>

32

(define (cdr x)

(if (= x nil)

nil
(U a

(U b x

(if (= a b)

{}

(U c b

(if (= c a)

{}

c)))))))

Close examination will show that they return the correct results. Specifically,

given the pair {x, {x,y}}, car will extract the x E {x,y} and cdr will extract the

y C {,y}.

In languages such as Lisp which use ordered pairs, pairs are then chained together

through their second element to form lists, or ordered sets. A convention for an empty

list, nil must therefore be decided. The obvious choice is:

(define nil {})

Although these functions do not return any sensical value if given improper ar-

guments, it is simple with the above conventions to create a well-typed set of data

structures which could verify that its arguments are of the proper type. These con-

ventions could also be also be defined within the language but because they provide

no additional functionality, there is no reason for doing so.

3.2 Meta-Formulas

The meta-formulas for our language are designed to prove that terms within our

language have the necessary formal characteristics to prove well-foundedness of func-

tionals. These meta-formulas must be provably sufficient conditions under which

sound inference rules can be established that functionals within our language are

indeed well-founded.

33

In order for well-foundedness to be established, we must establish a well-ordering

on one of the arguments of the functional and then show a measure argument for

the functional exists. Proving that an argument is a measure argument requires

showing that in every recursive call made to the functional, the argument is smaller

as established by the well-ordering.

As discussed, these well-orderings must be based on some sort of size order. Since

our language uses sets as its elements, our size order is defined to be the ordinal

size of the set because of the simple semantics it provides, thereby allowing a corre-

spondingly simple syntactic meaning. Although such an ordering may not be possible

in other languages, it is easy to show that similar orderings may be established in

more practical languages. For example, in Walther's paper, data structures based on

Boyer Moore's shell principle were used. Furthermore, as discussed above, we have

the ability to define the data structures present in most other languages through our

use of sets. If these structures are represented in the "proper" manner, as is the case

with the ordered pair and non-integer integer sets defined above, our well-ordering

for sets will be applicable as well-ordering for other structures.

3.2.1 Description

We need proceed to define the necessary meta-formulas needed in order to show well-

foundedness of a functional. Specifically, we provide formulas to establish sets are

smaller than other sets based on the well-ordering we have imposed and we provide

formulas to prove that a measure argument exists for a functional.

Our first meta-formula establishes the syntactical method of determining when

a set is relatively smaller than another, based on the semantic well-ordering of sets

using the ordinals. Being syntactically based, it is an approximation of the relative

size; specifically, we establish meta-formulas for a lower bound on the degree which

one set is smaller than another as well for an upper bound on the degree which one

set is larger than another.

Definition 7 Let tl and t2 be terms. For any non-negative integer a, we define

34

tl •a t 2 to represent the fact that tll + a < It2[.

Definition 8 Let t and t2 be terms. For any negative integer a, let b = -a. We

define t <a t2 to represent the fact that Itl I < b + It2z.

Although the above definitions provide the basic means necessary to determine the

relative size of sets, we still need some method of determining when the relative

size of the result of a function compared to its arguments. The solution to this

problem Walther presents is establish a property which determines when the result of

a function is guaranteed to be less than or equal to a given argument. Functions with

this property are called argument-bounded functions. Likewise, we establish similar

meta-formulas which describes functions which are argument-bounded.

Definition 9 Let f be an n-ary function and 1 < i < n be a number representing

the ith argument of f. For any non-negative integer a, we define f <a i to represent

the fact that for all , ..., I, f(xi, ..., x)1 + a < Iil.

Definition 10 Let f be an n-ary function and 1 < i < n be a number representing

the ith argument of f. For any negative integer a, let b = -a. We define f <a i to

represent the fact that for all X,...,Xn, If(xz,...,xn)l < b+ Ix;il

Proving a recursive function terminates requires that in every recursive call, one of the

arguments is strictly decreases. In Walther's approach to determining which argument

satisfies such a condition, using argument-bounded functions is sufficient since they

guarantee only that the result is less than or equal to the given argument. Therefore,

some method of determining when an argument-bounded function returned a result

strictly less than a given argument was required. This required the use of difference

literals which indicate conditions on the arguments to a function which guarantee

that the result returned is strictly less than a given argument.

Although our definition of argument-bounded functions technically allows for func-

tions to guarantee than the result is strictly less than an argument, such functions

cannot exist since any function can accept the empty set as an argument. Thus, the

35

use of difference literals is still necessary. For example, for a simple operation like cdr,

the result returned is argument-bounded, but unless we guarantee that the argument

sent to cdr is not nil, we fail to recognize that cdr returns a value which is strictly

less than its argument for all other cases. Thus, we regard argument-bounded func-

tions to yield an initial approximation to the size of a function's result relative to its

arguments, and use difference literals to attempt to infer further possible information

about the size of the result if some set of conditions are satisfied.

First, we define a meta-formula which allows us to recognize functions which return

results which will be used as formulas. Since formulas use the boolean constants, True

and False, we just need to recognize their occurrence in functions.

Definition 11 Let f be an n-ary function and 1 < i < n be a number representing

the ith argument of f. For any non-negative integer a and any predicate function,

AI, also of arity n, we define value (f, ~, t) to represent the fact that for all xl,...,x,,

(Xl-...7,) = True f(Xl,..., x,) = t.

Next we define a difference literal. A difference literal indicates that if a set of

conditions on the arguments to a function are true, then a tighter bound on the size

of the return value for the function can be achieved.

Definition 12 Let f be an n-ary function and 1 < i < n be a number representing

the ith argument of f. For any non-negative integer a and any predicate function,

A, also of arity n, we define A(f,, aI,, i) to represent the fact that for all xl,...,,

4(Xl,..., xn,) = True X. f(x1,., xn) + a < xil.

Definition 13 Let f be an n-ary function and 1 i < n be a number representing

the ith argument of f. For any negative integer a, where b = -a, and any predicate

function, -P, also of arity n, we define A(f, , a, i) to represent the fact that for all

x, t--, n a(1, ..., oX) = True f If(xl,..., Xn) I< b + xii .

Now that we have a complete set of meta-formulas for establishing the relative size of

36

T := t t I F <a n I value (F., t) I
(F, a, <, n) I wf ((A (f) t), , n)

a := an integer
n := a positive integer
t, (, F, x:= non-terminals from the language

Figure 3-3: Grammar of the Meta-Formulas

sets, we define a meta-formula to indicates when an argument to a recursive function

is strictly decreasing on every recursive call.

Definition 14 Let t be a term occurring in the body of some n-ary function f and

x be the ith formal parameter of f. We say that t makes strictly decreasing calls with

respect to the function f by the ith argument, x, written as wf ((A (f) t), x, i) if and

only if the function F = (A (f) t) which maps functions to terms, given any functions

f,g and any interpretation of the variables, p, f =i,a g = F'(f) = F'(g).

3.2.2 Grammar

Figure 3-3 provides a complete grammar for our meta-formulas as defined in sec-

tion 3.2.1.

3.2.3 Semantics

We define a meaning function associated with each grammar rule. The meaning

of each of our meta-formulas corresponds directly to our equivalent definitions as

described in section 3.2.1. This table summarizes those definitions. Refer to Figure 3-

4.

3.3 Inference Rules

Our inference rules provide a method of automating our termination proofs by estab-

lishing a syntactic method of recognizing when a meta-formula is satisfied by a term

37

Ai[tl <a t 2, P

Il [F <a n, p]

True if a > O and IM[tl,p]I + a < + M[t2,p]
True if a < O and M[ti, p]I < b + M[t2, P] , b = -a
False otherwise

=

A.[value (F, , t):, p]

MAfA(F, b, <, i), p]

Alwf ((A (f) t), ,, i), p]

=1

True if a > O and Vxl,..., x, f(xi,..., xn) + a < zxil
True if a < O0 and Vxl,..., xn, If(x, ..., xn)l < b + xzI

where f = M[F, p],
b = -a

False otherwise

True if Vul, ..., un, '(ul, ... , un) =~ f'(ul, ... , un) = t'
t'= M[t, p],

where f' = M[F,p],
' = M[(A (xl ... xn) 4), p],n = arity of f'

False otherwise

True if Vul, ... , Un, t'(U1, ... ,Un) =: f(Ul, ... ,Un) <a Ui
wher f' = M[F, p,

:= w M[(A (xl ... xn)), p], n arity of f'
False otherwise

True if Vf, g, Vaf =i, g = F(f) = F(g)
= < where F(f') = M[t, p[f := f']]

False otherwise

Figure 3-4: Semantics of the Meta-Formulas

38

through the semantic meanings ascribed to the meta-formulas in section 3.2.1. This is

equivalent to Walther's notion of the calculus of estimation in addition to his method

of generating termination hypotheses. We first describe the entire set of inference

used for our language in the following section. A discussion of the soundness of the

rules is given in Appendix A.

3.3.1 Description

Boolean Rules for Formulas

These rules define standard inferences in boolean logic. They are used when attempt-

ing to match formulas for difference literals.

E F- (A)

] - (- (A I))

rJ H (- ~)

Argument Bounded Terms

These rules establish when comparison rules between two terms with respect to the

well-founded order already established. In addition to rules for showing that one

term is less than another, the reflexive and transitive properties of the well-orderings

is used.

* (= a)

*· H(= y)

- y <o X

39

* (x y)

E FX <1 Y

* E - (E xi {x,..., ,})

· , (E tl) t2 <a ti

k - (U t t2) <.+l ti

* , I tl < t

, (- 4) t <b t

E - (if t t2) _min(a,b) t

*· E 2 <a, y

E F- y b Z

E H X <a+b Z

Argument Bounded Functions

These rules establish when a function is argument-bounded with respect to one of

its arguments. In addition to rules for pre-defined functions, rules for recursively de-

fined functions, i.e. an induction rule for argument-bounded functions, are also used.

This is equivalent to Walther's use of recursion elimination to optimize difference

algorithms.

* f <a i

Si <b t

f(ul,...,ui-,si,ui+l,...,un) <a+b t

, f < i t <a Xi

E (Y f ((... x.) t)) <a i

Formulas

These rules establish a method of determining the primitive formulas which are true

when a non-primitive function is used as a formula. Establishing the formulas that

40

hold for variables in any portion of a definition is essential for successful use of dif-

ference literals.

* E I- value ((A (xl ... x,) True), True, True)

*· F value ((A (x1 ... x,) False), True, False)

*· , F - value ((A (xl ... xn) w), T, t)

E F- value ((A (xl ... x,) (if w u)), (A 4), t)

*· , (-,) value ((A (xi ... x,,) u), , t)

E - value ((A (x1 ... x,) (if w u)), (((-,)), t)

*· > value ((A (x' ... x,) t), , True)

- F(= f(ul,..., u,,) False)

[- (_ I[ul/xl ... Un/;n])

*· E value ((A (x1 ... x,n) t), , False)

~ (= f(u,..., u,,) True)

r ~ (- [Ul/xl ... U,/X=])

Difference Literals

These rules establish the difference literals of a function through a case by case

analysis. Induction rules are established for recursive functions through the use of

argument-bounded functions.

· F- t <, xi

- A((A (xi ... x,) t), True, <ai)

* , q F A((A (... X,) W), , <i)

F ((A (xz ... x,) (if · ' w u)), (A), <,, i)

* E,(- f) H a(((1 ... x,) U), ,- <a,Li)

s A((A (... x) (if w u)), (() T), a, i)

41

· J H a(((... X=) t), , <a, i)

H '[UuI/Xi ... Un/Xn]

- f(uli,-..., u<a Ui

Well-Founded Functionals

These rules determine when a functional is well-founded. Aside from the basic def-

inition of well-foundedness, rules are needed in order to establish well-foundedness

in expressions which allows means of combining terms. Thus, since our means of

combination within our language allow an arbitrary number of arguments in a few

cases, several of these rules are, in some sense, meta-rules, because they are actually

a set of rules rather than a single rule.

* F wf ((A (f) wl), ,i)

S

S

- wf ((A () w.), ,)

E - wi <a>o X

E wf ((A (f) f(wl,..., ,)),aX,i)

Y wf ((A (f) w), X, i)

E F- wf ((A (f) w), x,i)

g#f
E - wf ((A (f) g(w,..., w)),x,i)

E F wf ((A (f) 4), x,i)

, (,) - wf ((A (f) u), x, i)
F- wf ((A (f) w), x,i)

E2 H wf ((A (f) (if 4 w u)),x,i)

wf ((A

wf ((A

wf ((A

(f)), x,i)
(f) 4'), xi)
(f) (A)),x,i)

42

-

*· E wf ((A

E F wf ((A

E wf ((A

r* Hwf ((A

E H wf ((A

, E -wf ((A

E F wf ((A

· - wf ((A

(f)

(f)
(f)

(f)

(f)

(E t t), , i)

,), ,i)

(- *)),X i)

1), x,i)3~,),,i)

(f) wi),x,i)

E F wf ((A (f) w,),x,i)

s F wf ((A (f) {Wl,...,w), xi)

· wf ((A (f) x),x',i)

3.3.2 Examples

We first illustrate the use of our inference rules using the example that has been

discussed throughout this paper:

(define (gcd a b)

(if (= a O)

b

(gcd (remainder b a) a)))

where the remainder function is defined as:

(define (remainder x y)

(if (= y O)

y

(if (< x y)

(remainder (- x y) y))))

In addition, we require the < and - operators to be defined. Standard definitions

might be:

43

(f)
(f)

t), X, i)

t2), X,i)

(define (< x y)

(if (= y O)

False

(if (= x O)

True

(< (pred x) (pred y)))))

(define (- a b)

(if (= a O)

0

(if (= b O)

a

(- (pred a) (pred b)))))

Ideally, such definitions of < and - would generate inferences that lead to proofs

that remainder and gcd terminate. Although - will trigger rules which allow the

proper inferences to be made, < will not. The reason is that < is a primitive compara-

tor for the set of non-negative integers. As a result, it must establish the well-ordering

on the set, which is cannot do given our current representation of integers combined

with the absence of type-checking. Therefore, we must define set-theoretically < as:

(define (< a b)

(E ab))

We summarize the inference made to prove that gcd terminates below:

*· (pred a) <1 a

· wf(-, a, 1)

· - - < 1

* F- A(-, (A (- (= y 0)) (- (= x 0))), <1,1)

* (-x y) <1

*· wf (remainder, x, 1)

* remainder <0o 1

44

* - A(remainder, (- (= y 0)), <1, 1)

* (remainder a b) <1 b

F- wf (gcd, a, 1)

We now illustrate the ability of our language to define transfinite recursions and

recognize that they terminate. The following function determines if a set is an ordinal:

(define (ordinal? alpha)

(if (= alpha {})

True

(if (3 x (A (= (succ x) alpha) (ordinal? x)))

True

(if (False (U y alpha (ordinal? y)))

False

(= alpha (U x alpha (U y x y})))))))

The rules for proving termination are briefly as follows:

* (= (succ x) alpha) F (x alpha)

* t- x <1 alpha

* wf ((A (ordinal?) (ordinal? z)), alpha, 1)

* (U y alpha (ordinal? y)) (y alpha)

·* Y <1 alpha

* wf ((A (ordinal?) (ordinal? y)), alpha, 1)

* wf (ordinal?, alpha, 1)

3.3.3 Soundness

The soundness of the inference rules is proved is Appendix A. From these, we wish

to establish the following:

45

Theorem 5 Let (Y f (A (xl ... x,1) t)) be the recursive function of n arguments,

x1, ..., , and body t defined by the functional F(f') = M[(A (x1 ... Xz) t), p[f := f']].

If wf ((A (f) t), x, i) is true, then F is well-founded on argument i.

Proof: Let F(f') = M[(A (... Xz) t),p[f := f']] and F2(f') = M[t,p[f := f']].

By the definition of wf ((A (f) t),x,i), for any functions g,h such that f =i, g,

F2(f) = F2(g), which means that

M[t, p[f := g]] = M[t, p[f := h]]

Thus, it immediately follows that

M[(A (x1 ... x,z) t),p[f := g]] = M[(A (1 ... x,) t),p[f := h]]

Therefore, f =i,. g F(f) =i,,+1 F(g), so F is well-founded on argument i. ·

Corollary 2 Let (A (f) (A (,...,nn), t)) be a functional on functions of n argu-

ments, xl, ..., x, and body t. (Y f ((xl ... an) t)) is a fixed-point of the functional.

Proof: Immediate from Theorem 5 and Corollary 4. ·

3.3.4 Decidability

Theorem 6 Given an finite set of pre-defined functions and meta-formulas derived

for those functions, for any expression in the language, the closure of all meta-formulas

which are derivable from the inference rules about that expression is decidable.

Proof: Given the inference rules stated above, with the exception of one rule, every

rule in the system derives meta-formulas about expressions larger than the antecedent

expressions. Thus, if we wish to derive all the meta-formulas for any given expression,

we are only required to examine meta-formulas on expressions of smaller or equal size.

Since the initial expression is finite, the number of possible meta-formulas and rules

which need to be examined is finite.

The only rule which is an exception is:

46

· E F A((Yf(((... X)t)), , <,i)

- = ' ((Y f (A (I ...))) U, ... Un)

r f(Ul ...Un,) <a i

However, since this rule is only appropriate for a pre-defined set of functions, there

are only a finite number of inferences which can be with this rule.

Thus, since a finite number of inferences can be generated with the above rule, and

all other rules are restricted to a finite number of inferences about a given expression,

there exists a decidable algorithm to generate all meta-formulas which are derivable

for a given expression. U

47

Chapter 4

Conclusion

In this paper, we have presented an alternative method of viewing Walther recursion.

The primary goal was to a provide as broad of a framework as possible in which

to view termination proofs using this syntactic notion of a size order. Forgoing pre-

defined primitive data structures such as numbers and lists, already with the necessary

argument-bounded primitive selectors, we chose sets with the membership operator as

our single data structure. Using sets allowed us to establish a theoretical framework

for defining Walther recursion under fixed point semantics.

Once we established a formal notion of Walther recursion, we proceeded to define

a set-theoretic language. Given the proper operators, it is possible through sets to

define structures such as numbers, lists, and more complex types, while preserving

well-orderings for these types. Unfortunately, because our approach lacks any type

restrictions, it is we occasionally necessary to artificially restrict how we define, using

sets, our types as well as primitve operators for these types since intuitively natural

properties of certain functions on their parameters do not always provably have the

necessary properties since arguments which do not match the "expected" type spec-

ifications can be given to the function. This restriction could severely restrict the

usefulness of this approach unless a bit of caution is taken.

However, despite this limitation, using a set-theoretic framework provides much

more flexibility than the framework Walther selected since data structures do not have

to be defined in a set manner. In addition, our method can prove termination of a

48

class of transfinite computations. Because the system is rule-based, deductions being

performed are immediately apparent, also making it simple to create a system which

not only automates termination proofs, but which can under certain circumstances

determine why an algorithm does not provably terminate under these rules. Since

the approach also remains essentially the same as Walther's, based a syntactic size

order, we believe that termination proofs based on such a method can be established

for a large class of naturally recursive algorithms.

49

Appendix A

Soundness

What follows is a series of informal arguments of the soundness of each of the in-

dividual inference rules through the semantics given by the language and by the

meta-formulas.

A.1 Boolean Rules for Formulas

The following are inference rules that are derivable from the axioms of boolean alge-

bra:

E ~ (A)

F- ((A *))

I- (- 4 I')

A.2 Argument Bounded Terms

The following rules are based on the axioms of set theory along with Theorem 3 which

determines the relative size of sets.

50

· (= x x)

For any set x, by the reflexive property of equality, x = x.

·* J(= xy)

F- x z<o

By the substitution principle of equality, the rule immediately is true.

* (= y)

E F x <o y

By the substitution principle of equality, the rule immediately is true.

* J F-(E (c y)

E X <1 Y

By Theorem 3, this rule immediately is true.

· 2 Xi E {X1,..., n}

The {} operator in the language corresponds to construction of a set with

members xl, ..., ,, the rule immediately follows from the axioms of set theory.

E, z E t F- t2 < tl

- F- (U t t2) <a tl

By the semantics of the U operator, x t and t2 C (U x t t 2). The second

statement leads to the fact that (U x t1 t2) <o t2 since the rule must hold for

all interpretations of t2. By the transitive property of inequality for ordinals

the rule follows.

· , F t <a t

E, (-') F- t2 < t

E (if (It t t2) <in(a,b) t

By the semantics of the if operator, the value must be either t or t2 . Therefore,

the lower bound must be true.

F- X <a

E FY <b Z

51

E - X <a+b Z

If <a y and y b z, by the transitive property of inequality for ordinals,

X <a+b Z.

A.3 Argument Bounded Functions

* SJ H f <a i

E I- si <b t

E F f(u1,...,ui-,si, Ui+1,..., Un)<a+b t

By the definition of the meta-formula for f <a i, f(Ul, .--, Ui- , uSi+l..., Un)|+

a < Il, where f = M[F,p]. Then, since i <b t Isil + b < t, by the

additive property of inequality, If(u1,...,ui_1,si,ui+1,...,u,) + a + b < Itl =

F(ul, ..., ui-1, si, Ui+l,., u,) _<a+b t-

* ,f <O Ft <a Xi

I F wf ((A (f) (Y f (A (x1 ... xn) t))), x, n)

, ~ (Y f ((... Xn) t)) <a i

Proof by induction can be established using the fact that a base case must exist

since the function is well-founded.

A.4 Formulas

*· F value ((A (xl ... xn) True), True, True)

If f = M[(A (xl ... xn) True),p], Vu1,,u,, f(ul,...u,) = M[True,p]. The

inference rule immediately follows.

*· E value ((A (l ... xn) False), True, False)

If f = M[(A (x1 ... X,) False),p], Vu,...,u,, f(ul,...un) = M[False, p]. The

inference rule immediately follows.

* , F value ((A (xi ... xn) w), , t)

E value ((A (1 ... xn) (if w u)), (A), t)

52

If f = M[(A (... x,,) (if w u)),p], if is true, f(uL,...u) = M[w,p].

Furthermore, if T is true, f(u, ...u) = M[w, p] = M[t, p]. Therefore, the rule

follows.

* ,,) -value (((xi ... x) u), ,t)
E H value ((A (xl ... x,) (if ,I w u)), (A (-, 4) T),t)

If f = M[(A (xi ... x,) (if w u)),p], if -A is true, f(u,...u,) = M[u,p].

Furthermore, if [is true, f(u, ...u,) = M[u,p] = M[t,p]. Therefore, the rule

follows.

* E value ((A (xi ... x) t), , True)

E F-(= f(ui,..., u,) False)

E F (- [U/x ...- Un/Xn])

Since (= f(u1,...,u,) False), and value ((A (xi ... z,) t),9, True), 9 under

the current interpretation must be false. Through fl-reduction, we obtain the

desired result.

* ¢ - value ((A (x1 ... x,) t), , False)

s (= f(ul,..., u,) True)

Since (= f(ui,...,u,) True), and value ((A (xl ... x,) t),A,False), T under

the current interpretation must be false. Through fl-reduction, we obtain the

desired result.

A.5 Difference Literals

E F t <a Xi

E F- A((A (xi ... x,) t), True, <a,i)

By the semantics of the A operator,

53

where f :::= M[(A (x1 ... xn) t), p]. Since E t <a Xi, it immediately follows that

f(U1, ... Un,) <a Ui

and therefore the rule is sound.

· , 4 F- i Ai((A (x 1 ... Xn) W), II, a, i)

- A((A (x I ... n) (if (l w u)), (A (P XF), <a, i)

By the semantics of the A operator,

Vul, ---7Un, f(ul, ... U,) = M[(if 4 w u), p]

where f --:: M[(A (xl ... Xn) (if t w u)),p]. Let

g = M[(A (xl ... xn) (A · I)),p]

then for all ul, ..., u,,

g(ul, -.., un) > '(ul, -.., un) A V'(ui, ..., un)

where ' := M[(A (x1 ... x,) P),p] and tI' M[(A (x1 ... xn) l/), p]. Therefore,

g(ul, .. , u,)= ·4 f(ul ,., ,) = M[w,p]

Given that E, k A((A (x1 ... xn) W), ,,i) and g(ul,...,u,) U n A ,

g(ul, , u,) = w <a Ui

Thus, the rule is sound.

· , (I t) -' A(((1 ... Xn) U), 4, ai)

54

Y - A((A (x1 ... xn) (if 4 w u)), (A ((4)), <a i)

By the semantics of the A operator,

where f == M[(A (x1 .. xn) (if w u)),p]. Let

g = M[((1 .. xn) (A (It))),P]pi

then for all ul, ..., u,,

g(Ul, ** Un) =~ (I't(Ul, . Un) A t(tuI, .. , Un)

where ' = M[(A (x1 ... Xn) (-)),p] and ' = M[(A (zx ... Xn) XIF),p]

Therefore,

g(Ul,..., Un) ((ul) ,..,un) M[u, p]

Given that E,(-) f A((A (xl ... x,) u), IF, <a, i) and g(ul,...,un) = 4 A I,

g(ul, ...7 Un) = > _<a Ui

Thus, the rule is sound.

~ - A((A (xi ... Xn) t), , <a, i)

- F [Ul/Xl .. Un/Xn]

The rule i:mmediately follows from -reduction and the definition of the S meta-

formula.

A.6 Well-Founded Functionals

* - wf ((A (f) w),x,i)

H wf ((A (f) wn), x,)

55

E -wi < x

E - wf (((f) f(wl, ...,w)),x,i)

Let j,k be any functions such that Va, j =i,, k. By the semantics of our language,

F(j) = M[f (wl,..., w,), p[f := j]]

which means that F(j) = j(wW, ... , w) where

W w [f = M[w,[]], = M[wn, P[f = j]]

By similar reasoning, we also obtain F(k) = k(w', ..., wn) where

w = M[W1, P[f kll,...,W -pM[W P[f := k]]

Given our initial assumptions that wf ((A (f) Wl), x,.)..wf ((A (f) Wn,), z,i),

G,(j) = Gl(k) M[wL, p[f := j]] = M[w, p[f := k]]

G,(j) = Gn(k) M[wn,p[f = jll = M[w,,op[f = k]]

Since our initial assumption is that wi < x, and because g =ilxl h, F(g) =

g(w.,...u, w') = h(w", ... w) = F(h).

E F wf (()k (f) w),x,i)

F wf ((, (f) w,),x,i)

g f
- wf ((A (f) g(wl,..., w'), x, i)

Let j,k be any functions such that Va, j =i, k By the semantics of our language,

F(j) = M[g(l, ... , wn)), p[f := j]]

56

which means that F(j) = g(w, ... , w') where

W' = M[w, p[f := j]],..., w' = M[Wn p[f := j]]

By similar reasoning, we also obtain F(k) = g(w, ..., w') where

W' = M[wl, p[f = ,..., = M[W, [f := k]]

Given our initial assumptions that wf ((A (f) wi),x,i)...wf ((A (f) wn),z,i),

G1(j) = Gi(k) • M[w', p[f := j]] = M[w, p[f := k]]

Gn(j) = Gn(k) = M[wn,p[f = j]] = M[w,p[f := k]]

By similar reasoning, we also obtain F(k) = g(wl,...,wn). Therefore, F(j) =

g(w;,...,) = g(w;,..., w) = F(k).

* E wf ((A (f) x),, i)

E, --I F wf ((A (f) u), 2, i)

E, - wf ((A (f) w), x, i)

E F- wf ((A (f) (if w u)),x,i)

Let g,h be any functions such that Va,g =i, h.

language,

By the semantics of our

F(g) = M[(if 4 w u),p[f := g]]

and

F(h) = M[(if to u), p[f := h]]

By the semantics of the if, the above values are dependent on . Furthermore,

since E - wf ((A (f)), x,i), if we let G = M[(A (f)), p], M[c,p[f := g]] =

G(g) = G(h) = M[4,p[f := h]]. Thus, we can examine the value of the if

57

statement case by case on the value of = M[, p[f := g]] = M[, p[f := h]].

- = True: We then have

F(g) = M[w, p[f := g]]

and

F(h) = M[w,p[f := h]]

Since , - wf ((A (f) w), x,i), by the definition of well-foundedness,

given that G = M[(A (f) w),p], G(f) = G(g) M[w,p[f := g]] =

M[w, p[f := h]]. Therefore, F(f) = F(g).

- = False: We then have

F(g) = M[u,p[f := g]]

and

F(h) = M[u, p[f := h]]

Since , -'A H wf ((A (f) u),z,i), by the definition of well-foundedness,

given that G = M[(A (f) u),p], G(f) = G(g) M[u,p[f := g]] =

M[u, p[f := h]]. Therefore, F(f) = F(g).

- = 1_: We then have

F(g) = M[I, p[f := g]]

and

F(h) = M[l, p[f := h]]

Therefore, F(f) = F(g).

Since in all possible cases, F(f) = F(g), wf ((A (f) (if o w u)), x, i).

58

* r H wf ((A (f)),,i)

H k wf ((.A (f)),, i)

E ~ wf ((A (f) V I),z,i)

Let j,k be any functions such that Va, j =i , k By the semantics of our language,

F(j) = M[V I, p[f := j]]

and

F(k) = M[P V ',p[f := g]]

By our initial assumptions,

G(j) = G(k) = M[, p[f := j]] = M[, p[f := k]]

and

H(j) = H(k) = M[T, p[f := j]] = M[T, p[f := k]]

Since M[4' V Psi, p'] is dependent only upon M[, p'] and M[I', p'],

M['1 V , p[f := j]] = M[4 V , p[f := k]] F(j) = F(k)

* E - wf (()t (f) tl),x,i)
E F wf (()t (f) t2), x,i)

E - wf ((AI (f) t C t2),x,i)

Let j,k be any functions such that Va, j =i, k By the semantics of our language,

F(j) = M[tl C t2,p[f := j]]

and

F(k) = M[tl C t2,p[f := g]]

59

By our initial assumptions,

G(j) = G(k) =- M[ti, p[f := j]] = M[tl,p[f := k]]

and

H(j) = H(k) = M[t2,p[f := j]] = M[t2,p[f := k]]l

Since M[t1 E t2, p'] is dependent only upon M[tl, p'] and M[t 2, p'],

M[tl E t 2,p[f := j]] = M[tI E t2 ,p[f := k]] => F(j) = F(k)

* r H wf ((A (f) f),, i)

r H wf ((A (f) x), , i)

Let j,k be any functions such that Va, j =i,. k By the semantics of our language,

F(j) = M[-,t,p[f := j]]

and

F(k) = M[-,, p[f := g]]

By our initial assumption,

G(j) = G(k) =~ M[,p[f := j]] = M[b,p[f := k]]

Since M[-,p'] is dependent only upon M[4,p'],

M[-i, p[f := j]] = M[_i, p[f := k]] =, F(j) = F(k)

E F- wf ((A (f)), x,i)

E -wf ((A (f) 3,4), ,i)

60

Let j,k be any functions such that Va, j =i,, k By the semantics of our language,

F(j) = M[3x, p[f := j]]

and

F(k) = M[32x, p[f := g]]

By our initial assumption,

G(j) = G(k) M[', p[f := j]] = M[, p[f := k]]

Since M[-, p'] is dependent only upon M[, p'],

M[3xc, p[f := j]] = M[3vX, p[f := k]] F(j) = F(k)

wf ((A (f) w),, i)

E wf (((f) w), X, i)
E - wf ((A (f) {wl,...,), x, i)

Let j,k be any functions such that Va, j =i,a k By the semantics of our language,

F(j) = M[{wl,..., wn},p[f := j]]

which means that F(j) = {w,..., wn} where

W, = M[wl, p[f = j]],..., w = M[wn, p[f := j]]

By similar reasoning, we also obtain F(k) = {w' , , P...w} where

w~ = M[w, p[f := k]],...,wn = M[wn,p[f := k]]

61

Given our initial assumptions that wf ((A (f) wl),x,i)...wf ((A (f) wn),x,i),

Gi(j) = Gl(k) = M[w,p[f :j] = j M[w;',p[f := k]]

G.(j) = G.(k) = M[w', p[f := j]] = M[w", p[f := k]]

By similar reasoning, we also obtain F(k) = {w1, ...,wn}. Therefore, F(j) =

{wl X ...,X w- } = {w ... w- = F(k).

* wf ((A (f) x), x', i)

*· H wf ((A (f) t),x,i)

S ~ Walther((Y f ((xi ... xn) t)),f,x,i)

Immediate from definitions

62

Bibliography

[1] Jon Barwise, editor. Handbook of Mathematical Logic. North-Holland Publishing

Company, New York, 1977.

[2] J.L. Bell and M. Machover. A Course in Mathematical Logic. North-Holland

Publishing Company, New York, 1977.

[3] Robert S. Boyer and J. Strother Moore. A Computational Logic. Academic Press,

1979.

[4] R.M. Burstall. Program proving as hand simulation with a little induction. In

Proceedings IFIP Congress 1974 Stockholm, pages 308-312, 1974. As cited in

[12].

[5] D.C. Cooper. Programs for mechanical program verification. Machine Intelli-

gence, 6:43-59, 1971.

[6] Robert W. Floyd. Assigning meanings to programs. In Proceedings of Symposia

in Applied Mathematics, volume 19, 1967.

[7] C.A.R. Hoare. Find. Communications of the ACM, 12:321, 1961.

[8] S. Katz and Z. Manna. A closer look at termination. Acta Informatica, 5:333-

352, 1975. As cited in [12].

[9] Manna, Ness, and Vuillemin. Inductive methods for proving properties of pro-

grams. Communications of the ACM, 16(8):491-502, 1973.

[10] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

63

[11] Guy L. Steele. Common Lisp - The Language. Digital Press, 1984.

[12] Christoph Walther. Automated Termination Proofs. Universitat Karlsruhe, In-

stitut fur Logik, Komplexitat und Deduktionssysteme, 1989.

64

