
Formal Specification Techniques for
Promoting Software Modularity,

Enhancing Documentation,
and Testing Specifications

by

Yang Meng Tan

S.B., Massachusetts Institute of Technology (1987)
S.M., Massachusetts Institute of Technology (1990)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

() Massachusetts Institute of Technology 1994

Signature of

Certified by!

Author

Department of Electrical Engineering and Computer Science
May 12, 1994

.... ~_I

V

Accepted by........

...................
John V. Guttag

Professor of Computer Science and Engineering
Thesis Supervisor

~~ . _. _..

Frederic R. Morgenthaler
Committee on Graduate Students

LIBRARIES

·..

2

Formal Specification Techniques for
Promoting Software Modularity,

Enhancing Documentation,
and Testing Specifications

by
Yang Meng Tan

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1994, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents three ideas. First, it presents a novel use of formal specification to
promote a programming style based on specified interfaces and data abstraction in a pro-
gramming language that lacks such supports. Second, it illustrates the uses of claims about
specifications. Third, it describes a software reengineering process for making existing soft-
ware easier to maintain and reuse. The process centers around specifying existing software
modules and using the specifications to drive the code improvement process.

The Larch/C Interface Language, or LCL, is a formal specification language for doc-
umenting ANSI C software modules. Although c does not support abstract types, LCL is
designed to support abstract types. A lint-like program, called LCLint, enforces type dis-
cipline in clients of LCL abstract types. LCL is structured in a way that enables LCLint

to extract information from an LCL specification for performing some consistency checks
between the specification and its implementation.

LCL also provides facilities to state claims, or redundant, problem-specific assertions
about a specification. Claims enhance the role of specifications as a software documentation
tool. Claims can be used to highlight important or unusual specification properties, promote
design coherence of software modules, and aid in program reasoning. In addition, claims
about a specification can be used to test the specification by proving that they follow
semantically from the specification. A semantics of LCL suitable for reasoning about claims
is given.

A software reengineering process developed around LCL and claims is effective for im-
proving existing programs. The impact of the process applied to an existing c program is
described. The process improved the modularity and robustness of the program without
changing its essential functionality or performance.

A major product of the process is the specifications of the main modules of the reengi-
neered program. A proof checker was used to verify some claims about the specifications;
and in the process, several specification mistakes were found. The specifications are also
used to illustrate specification writing techniques and heuristics.

Thesis Supervisor: John V. Guttag
Title: Professor of Computer Science and Engineering

3

4

Acknowledgements

John Guttag, my thesis supervisor and mentor, guided my work with steady encouragement,
enthusiasm, and understanding. He has given me enough freedom to explore on my own, but
sufficient firm guidance so that I can complete my thesis in time. His insightful comments
led to many of the good ideas in my work and flushed my bad ideas before they got in
the way. I also thank him for helping me with my writing, and for giving me timely and
thoughtful feedback despite his many responsibilities.

Dick Waters, my other mentor, personally saw me through my entire graduate studies.
He supervised my Master's thesis, guided me in my initial search for doctoral thesis topic,
fought hard for securing initial funding for me, and served as my thesis reader.

Steve Garland, my other reader, taught me much about formal proofs and specifications,
and responded to my LP requests quickly. I also thank him for his many suggestions in the
course of my work.

Members of the Systematic Programming Methodology group made many technical
contributions to my work and provided a supportive and stimulating research environment.
Mark Vandevoorde taught me the subtleties of data abstraction, helped me with many
technical issues, and provided much moral support. Dave Evans helped implement some
last-minute LCL features into the LCLint tool. My work is improved by discussions with
many people, including Anna Pogosyants, Jim Horning, Daniel Jackson, Mark Reinhold,
Raymie Stata, Matthias Weber, and Jeannette Wing. Dorothy Curtis helped me with
systems and language questions.

Boon Seong Ang, Beng-Hong Lim, Shail Gupta, and Kah-Kay Sung gave warm friend-
ship throughout my studies. Past and present members of the Singapore and Malaysian
student community provided much homely friendship.

My association with MIT was first made possible by an undergraduate scholarship from
the National Computer Board of Singapore. I also thank the Board for granting me leave
to pursue graduate work and for their patience.

I thank my in-laws for their love and support. I am deeply indebted to my mum,
brothers, and sisters-in-law who have made many sacrifices for me. They have been very
patient and supportive during my long absence from home.

My wife, Tze-Yun Leong, taught me there's life beyond work. My days in graduate
school have been sustained by her love, encouragement, patience, and confidence in me.
Despite her own demanding graduate studies, she has always been there for me. I thank
her with all my heart.

Support for this research has been provided in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval Research Research
under contract N00014-89-J-1988, in part by the National Science Foundation under grant
9115797-CCR, and in part by the Mitsubishi Electric Research Laboratory Inc, Cambridge,
MA.

5

6

Biographical Note

Yang Meng Tan was born in Singapore in 1963. He attended Bukit Ho Swee West School,
Gan Eng Seng School, and Hwa Chong Junior College in Singapore. From late 1981 to
August 1983, he served in the Singapore Armed Forces. He enrolled at MIT after winning
a Singapore National Computer Board Overseas Scholarship. He completed his bachelor's
degree in Computer Science and Engineering in 1987, with a minor in Economics. His
bachelor's thesis, ACE: A Cliche-Based Program Structure Editor, won the William A.
Martin Prize for Best Undergraduate Computer Science Thesis.

In September 1987, Yang Meng continued his graduate studies in computer science at
MIT. He obtained his Master's degree in September 1990. His Master's thesis, Supporting
Reuse and Evolution in Software Design, was done in the Programmer's Apprentice Group,
MIT Artificial Intelligence Laboratory. He was a teaching assistant for an undergraduate
Artificial Intelligence class in 1990. His graduate minor was in Econometrics.

Yang Meng spent a summer each at Information Technology Institute, National Com-
puter Board, Singapore (1987), and Institute of Systems Science, National University of
Singapore (1991). In 1991, he won the Singapore Tan Kah Kee Post-Graduate Scholarship.
After June 1994, he will return to Singapore to complete the balance of his military service
and scholarship bond.

7

8

Contents

1 Introduction
1.1 The Problems and the Approach

1.1.1 Software Modularity.
1.1.2 Software Documentation .
1.1.3 Checking Formal Specifications
1.1.4 Code Improvement.

1.2 Larch/C Interface Language
1.2.1 Overview of LCL.
1.2.2 Redundant Information in Specifications
1.2.3 Tool Support

1.3 Related Work.
1.3.1 Specification Languages
1.3.2 Supporting Programming Styles
1.3.3 Checking Formal Specifications

1.4 Lessons Learned
1.4.1 Software Reengineering Using LCL
1.4.2 Specification Proof Experiences
1.4.3 Specification Tool Support

1.5 Contributions
1.6 Thesis Organization

2 Overview of LCL
2.1 Larch
2.2 LCL Basics
2.3 LCL Function Specification
2.4 LCL Abstract Type Specification
2.5 Historical Note

3 Supporting Programming Styles
3.1 Specified Interfaces and Data Abstraction
3.2 Supporting Specified Interfaces in C

3.2.1 LCL Interface Convention
3.3 Supporting Abstract Types in C

3.3.1 Design Goals
3.3.2 Implementing Abstract Types in C .

3.4 Tool Support: LCLint.
3.4.1 Checking Abstract Types.

9

13
13
14

14

15
15

17

17

17
17
18

18
19

19

20
20
21

21

22

22

25
25

26

26
27

29

31
31
32
32

33
33
33
34

35

..

..
..

3.4.2 Additional Program Checks
3.5 Summary

4 Specification Techniques and Heuristics
4.1 Requirements of the Program
4.2 The Design of the PM Program
4.3 The date Interface.
4.4 The date Traits
4.5 The trans Traits.
4.6 The trans Interface
4.7 The transset Interface and Trait
4.8 The position Traits
4.9 The position Interface
4.10 Summary

5 Using Redundancy in Specifications
5.1 Specification Testing Approach
5.2 Semantics of Claims
5.3 Claims Help Test Specifications

5.3.1 Examples of Specification Errors
5.4 Claims Help Specification Regression Testing
5.5 Claims Highlight Specification Properties
5.6 Claims Promote Module Coherence
5.7 Claims Support Program Reasoning
5.8 Claims Support Test Case Generation
5.9 Experiences in Checking LCL Claims

5.9.1 Assessment
5.9.2 Modularity of Claims.
5.9.3 Support for Proving Claims

5.10 Claims or Axioms? .
5.11 Summ ary .

6 Reengineering Using LCL
6.1 Software Reengineering Process Model
6.2 A Reengineering Exercise

6.2.1 Study Program
6.2.2 Write Specifications
6.2.3 Improve Code
6.2.4 Write Claims
6.2.5 Check Claims

6.3 Effects of Reengineering
6.3.1 Effects on Program Functionality
6.3.2 Effects on Program Structure
6.3.3 Effects on Program Performance
6.3.4 Effects on Program Robustness
6.3.5 Documentation of Program Modules

6.4 Summary

10

35
36

39
39

42
43
47
47
50
52

58

59

64

69
69

70
73

74

76

77

80

81

82

82

83
84

85
86

86

89
89

91

91
92

94
94
94

94

95

95
96
97
97

97

7 The Semantics of LCL
7.1 Basic LCL Concepts
7.2 LCL Storage Model

7.2.1 LCL Abstract State
7.2.2 Typed Objects

7.3 LCL Type System
7.3.1 LCL Exposed Types
7.3.2 Linking LCL Types to LSL Sorts .

7.4 LCL Function Specification
7.4.1 Translation Schema
7.4.2 Implicit Pre and Post Conditions
7.4.3 The Modifies Clause
7.4.4 Fresh and Trashed
7.4.5 The Claims Clause

7.5 LCL Module
7.5.1 Type Containment
7.5.2 A Simple Type Induction Rule ..
7.5.3 A Second Type Induction Rule ..
7.5.4 A Third Type Induction Rule . . .
7.5.5 Jointly Defined Abstract Types . .
7.5.6 Module Induction Principle
7.5.7 Module Claims

7.6 Type Safety of Abstract Types
7.7 Summary

8 Further Work and Summary
8.1 Specification Tool Support
8.2 Further Work

8.2.1 More Checks on Specifications . .
8.2.2 More Checks on Implementations .
8.2.3 LCL and Larch Extensions
8.2.4 Reengineering Case Studies

8.3 Summary

A LCL Reference Grammar

B Relating LCL Types and LSL Sorts
B.1 Modeling LCL Exposed Types with LSL Sorts
B.2 Assigning LSL Sorts to LCL Variables
B.3 Assigning LSL Sorts to C Literals

C LCL Built-in Operators

D Specification Case Study
D.1 The char Trait
D.2 The cstring Trait
D.3 The string Trait
D.4 The mystdio Trait.
D.5 The genlib Trait

11

99........ . 99
100
101
102
103
103
104
106
107
108
109
110
110
110
112
113
115
116
119
120
121
122
122

125
125
126
126
127
127
128
128

131

135
135
136
137

139

143
143
144
144
145
146

..

...

D.6 The dateBasics Trait
D.7 The dateFormat Trait
D.8 The date Trait
D.9 The security Trait.
D.10 The lot Trait
D.11 The list Trait
D.12 The lotlist Trait
D.13 The kind Trait
D.14 The transBasics Trait
D.15 The transFormat Trait
D.16 The transParse Trait
D.17 The trans Trait
D.18 The transset Trait
D.19 The income Trait
D.20 The positionBasics Trait . . .
D.21 The positionMatches Trait .
D.22 The positionExchange Trait
D.23 The positionReduce Trait . .
D.24 The positionSell Trait
D.25 The positionTbill Trait
D.26 The position Trait
D.27 The genlib Interface
D.28 The date Interface
D.29 The security Interface
D.30 The lot-list Interface
D.31 The trans Interface
D.32 The transset Interface
D.33 The position Interface

... 147
148
148
149
149
150
150
151
151
151
152
153
154
154
155
156
157
157
157
159
159
160
161
162
163
164
166
167

12

..

Chapter 1

Introduction

Software is difficult to develop, maintain, and reuse. One contributing factor is the lack
of modular design. A related issue is the lack of good program documentation. The lack
of modular design in software makes software changes more difficult to implement. The
lack of good program documentation makes programs more difficult to understand and to
maintain.

Program modularity is often encouraged through programming language design [26, 33].
In this thesis, we describe a novel approach towards promoting program modularity. We
present a formal specification language that is designed to promote software modularity
through the use of abstract data types even though the underlying programming language
does not have such support. In addition, our specification language is structured in a way
that allows certain useful information to be extracted from a specification and used to
perform some consistency checks between the specification and its implementation.

Our specification language supports the precise documentation of programs, and pro-
vides facilities to state redundant information about specifications. The redundant infor-
mation can be used to highlight important properties of specifications so as to enhance the
role of specifications as a documentation tool.

While specifications can encourage program modularity, they often contain errors. A
specification may not state what is intended. Furthermore, many specification errors occur
as a result of evolving program requirements. One approach is to design specifications
that can be executed and tested [41]. In this thesis, we study an alternate approach: how
redundant information in a specification can be used to test the specification.

In this thesis, we also describe a software reengineering process model for improving
existing programs. The process is aimed at making existing programs easier to maintain
and reuse while keeping their essential functionalities unchanged. Our process model is
distinguished by the central role formal specifications play in driving code improvement.
We described the results of applying the process to a case study.

1.1 The Problems and the Approach

Programs are often difficult to maintain and reuse if they are not modular and not well-
documented. Formal specifications can encourage program modularity, and are a good
means of documenting programs. Specifications, however, often contain errors that lessen
their utility. Our approach uses formal specifications to promote program modularity and
to document program modules, and redundant information in specifications to highlight

13

important properties of specifications and to test specifications.

1.1.1 Software Modularity

Our approach to addressing the problem of software modularity is to design a formal spec-
ification language to encourage a more modular style of programming, based on interface
specifications and abstractions. In particular, we support a style of programming where
data abstraction [26] is a key program structuring principle.

1.1.2 Software Documentation

Our formal specification language can be used for documenting programs. Program docu-
mentation is often obsolete with respect to the code it documents. For example, the use
of global variables documented in a program comment may be out-of-date with respect to
the program. It is useful to have documentation that can be used to check against code to
detect inconsistencies between the two.

We structure our specification language in a way that makes it easy to build tools for
checking the syntax and the static semantics of specifications, and for detecting certain
inconsistencies between a specification and its implementation.

To serve as good program documentation, specifications should be unambiguous and
they should highlight important and useful properties of the program design. This helps
both the implementor and the client of the program modules understand the module design
quickly and easily. Towards this end, our specification language supports constructs for
stating semantically redundant information about a specification, or claims.

Claims are useful for highlighting important or unusual properties of a specification. A
specification in our formal specification language defines a logical theory, and claims are
conjectures in such a theory. There are infinitely many consequences in a logical theory.
Most of them are neither interesting nor useful. It can be difficult for readers of a specifi-
cation to pick up the important or useful properties of the specification. Specifiers can use
claims to highlight these properties. Readers of a specification can use them to check their
understanding of the specification.

Claims can also be used to highlight unusual properties in the design of a module.
For example, a module that represents and manipulates dates may have an unexpected
interpretation of a two-digit representation of a year: it may interpret any number over
fifty as the corresponding year in the current century, and any positive number under fifty
as the corresponding year in the next century. It is important to highlight such unusual
interpretations.

Claims can help support program reasoning. If a claim about a specification has been
proved, it states a property that must be true of any valid implementation of the specifica-
tion, since the specification is an abstraction of all its valid implementations. Claims can
sometimes serve as useful lemmas in program verification. In particular, claims about a
module can help the implementor of the module exploit special properties of the design.

A well-designed module is not a random collection of functions. There are often invari-
ants that are maintained by the functions in the module. Such invariants can be stated
as claims, and proved to hold from the interfaces of the exported functions. Organizing
a module around some useful or interesting claims promotes the design coherence of the
module. It makes the designer focus more on overall module properties.

14

1.1.3 Checking Formal Specifications

Most uses of a formal specification assume that the specification is appropriate, in the sense
that it states what the specifier has in mind. However, this is usually not true, especially
when large specifications are involved.

Our general approach towards tackling this problem is: given a formal specification, a
specifier can attempt to prove some conjectures that the specifier believes should follow from
the specification. Success in the proof attempt provides the specifier with more confidence
that the specification is appropriate. Failures can lead to a better understanding of the
specification and can identify errors.

A problem related to the problem of checking whether a specification is appropriate is:
if a formal specification is modified, how can we avoid inadvertent consequences? Using our
methodology, we will attempt to re-prove the conjectures that were true before the change.
This regression testing can uncover some of the unwanted consequences.

In our approach, we focus on problem-specific conjectures stated as claims. It is fre-
quently easier to state and prove such conjectures. While this idea is not new [13], a
weakness of earlier work is that it gave specifiers little guidance on how to find conjectures
that are useful for testing specifications and how to go about proving them. We strengthen
this methodology by adding facilities in a specification language so that a specifier can make
claims about specifications. A tool can be built to translate such claims, together with the
specifications, into inputs suitable for a proof checker. This will enable the specifier to check
the claims.

1.1.4 Code Improvement

Many existing programs are written in languages that do not support data abstraction. As a
result, they often lack modularity. It is difficult and expensive to maintain and extend such
legacy programs to meet changing requirements. Instead of building new ones to replace
them, it is often more cost-effective to improve them in ways that make their maintenance
easier.

The process of improving an existing program while keeping its essential functionality
unchanged is termed reengineering. Using the ideas described in the previous subsections,
we give a specification-centered reengineering process model for making programs easier to
maintain and reuse. Our reengineering process model is depicted in Figure 1-1. An oval in
the figure is a step in the process, and an arrow shows the next step one may take after the
completion of a step. We outline the steps of the process below.

1. Study the existing program: First, we learn about the requirements of the program
and its application domain. In this step, we also study the program to extract the
structure of the program in terms of its constituent modules, and to understand the
intended roles and behaviors of these modules.

2. Write specifications for the modules of the program: In this step, we write specifica-
tions for the modules of the program. This step is the most significant step of the
reengineering process. It involves studying the procedures exported by each module
carefully, and specifying the essential behavior of most procedures. It is often neces-
sary to abstract from the specific details of the chosen implementation. The major
activities in this step include choosing to make some existing types into data ab-
stractions, identifying new procedural and data abstractions, and uncovering implicit
preconditions of procedures.

15

improve code

Figure 1-1: Specification-centered software reengineering process model.

3. Improve code: This step is driven by the previous specification step. While the overall
requirements of the program do not change, how the requirements are met by the
modules of the program can change. The specifications of the modules of the program
may suggest a different division of labor among the different modules. Each time the
specification of a module in the program changes, the code has to be updated. Each
change in the code is accompanied by appropriate testing to ensure that the program
meets its specification.

4. Write claims about the specifications of the program modules: In this step, we analyze
the specification of each module and its clients to extract properties about the design
of the module. We codify some of these properties as claims. This step may lead to
changes in the specification of a module that make it more coherent. It may suggest
splitting an existing abstraction into different abstractions, adding new checks to
weaken the preconditions of some interfaces, or removing unused information kept in
the implementation. Some of these specification changes may affect its clients. If a
specification changes, its implementation and its client may have to be modified.

5. Check claims: We check that the claims we wrote about a module in the previous
step are met by the specification of the module. Depending on the desired level of
rigors, this step may range from an informal argument of why a claim should hold, to
a formal proof of the claim with the help of a mechanical proof checker. This step is
intended to ensure that the specifications are consistent with the understanding of the
module design we have in mind. If this step leads to specification changes, the clients
and the implementation of the changed specification must be updated accordingly.

16

1.2 Larch/C Interface Language

We designed and implemented a new version of the formal specification language, the
Larch/C Interface Language (or LCL), as a vehicle for exploring the main ideas of this
thesis. Our language builds on and supersedes a previous design [14].

1.2.1 Overview of LCL

LCL specifications can serve as precise and formal documentation for the modules that make
up the design of an ANSI C program. LCL is an interface language designed in the Larch
tradition [37].

A distinguishing feature of a Larch specification language is its two-tiered approach: A
Larch specification is composed of two parts: one part is specified in the Larch Shared Lan-
guage (LSL) and the other in an interface language specific to the intended implementation
language. LSL is common to all interface languages [15]. It is used to specify mathematical
abstractions that are programming language independent. It supports an algebraic style of
specification.

Larch interface languages are programming language dependent. For each programming
language of interest, there is a distinct interface language to specify the interfaces between
different program modules. The interface specification uses operators that are defined at
the LSL level. Relations on program states, exceptions, and other programming language
dependent features are specified at the interface level.

Besides providing a language for specifying c interfaces, an important goal of LCL is to
encourage a simple, modular, and effective style of programming that combines the strengths
of abstract data types and the popularity and flexibility of c. Even though c does not have
abstract types, LCL supports the specification of abstract types. A lint-like program, called
LCLint, performs many of the usual checks that a lint program [19] does, and in addition,
ensures that the LCL-specified type barriers are not breached by clients of an abstract type.
This allows the implementation of an abstract type to be changed without having to modify
its clients. The resulting improved program modularity is the key practical benefit of using
LCL abstract types.

1.2.2 Redundant Information in Specifications

To provide better design documentation and a means of testing specifications, LCL supports
constructs for making claims. We also provide a semantics of LCL suitable for reasoning
about claims.

There is a facility for stating conjectures about properties that all the functions in
an LCL module must maintain. This can be used to make claims about invariants about
abstract types, or about the properties that must hold for the private state of the module.
We call these module claims. Another facility allows conjectures to be associated individual
functions of a module. We call these procedure claims. A third facility allows conjectures
to be associated with the outputs of individual functions; these are the output claims.

1.2.3 Tool Support

LCL specifications are structured in such a way that LCLint can efficiently check that certain
constraints implied by the specifications are obeyed [5]. For example, LCL requires that the
global variables a function accesses be explicitly given in the specification of the function.

17

LCLint uses this information to ensure that only specified global variables are accessed in
the implementation of the function. LCL also highlights the objects that a function may
modify. This allows LCLint to detect situations where objects that should not be modified
are changed. Such checks help uncover programming mistakes.

1.3 Related Work

We classify work related to this research into three categories. First, there are specification
languages that are comparable to LCL. Second, there are other approaches to supporting a
more modular programming style. Third, there are studies on checking formal specifications.

1.3.1 Specification Languages

LCL is one of several Larch interface languages. Other interface languages include Larch/cLu
[37], Larch/Modula-2 [16], Larch/Generic [3], Larch/Ada [12], Larch/ML [39], Larch/c++
[24], Larch/Smalltalk [4], Larch/Modula-3 [15], and Larch/Speckle [36].

Larch/Generic [3] gives a description of a Larch interface language for a programming
language that models program executions as state transformations. Each of the other
interface languages is designed for the programming language given in its name. All of
them share the same underlying Larch Shared Language. Their differences stem mainly
from differences in the programming languages they are designed to model. Unlike c, many
of these programming languages support data abstraction. New specification constructs
have been introduced in LCL to support more concise specifications and to codify some
specification conventions.

Like Larch, VDM [21] provides a language for specifying the functional behavior of com-
puter programs. Specifiers use VDM to design specifications for programs and to reason
about them. The VDM specification for a program is based on logical assertions about an
abstract state, and hence it is not tied to any programming language. It is a uniform lan-
guage used to define mathematical abstractions and interface specifications. In contrast,
Larch is two-tiered, and interface specifications are tied to specific programming languages.
In Larch, only the Larch Shared Language is programming language independent. Since
LCL is designed for the c programming language, it can more easily incorporate specification
features that make possible a checking tool such as LCLint.

The VDM method is designed to support a rigorous approach to the development of
programs by successively proving that a more concrete specification (which in the extreme,
would be an operational program) is an acceptable implementation of a more abstract
specification.

z [32] is a specification language based on set theory and predicate logic. z specifications
are composed of pieces of descriptions, called schemas. z is distinguished by having a schema
calculus to combine schemas. This makes it easy for specifiers to separate specifications of
normal functioning of systems and error conditions, and then combine them later using the
z schema calculus. The schema for an operation must also indicate whether the operation
modifies any part of the global state. This feature is similar to the LCL modifies clause.
Invariants can also be associated with the global state.

Like VDM, the z method emphasizes the formal derivation of implementations from
formal specifications. Since z is programming language independent, it is more difficult to
perform LCLint-like checks on programs implementing z specifications.

18

Anna [28] extends the Ada programming language with annotations that are meant
to serve as specifications for Ada programs. An Anna program is an Ada program with
formal comments that are machine-manipulable. Different kinds of Anna annotations can
be placed at different levels of an Ada program. For example, there can be constraints on the
inputs and outputs of a subprogram unit, or assertions about both the public and private
sections of an Ada package. Some Anna annotations can be transformed into assertions
that can be compiled into runtime checks. This ability to execute a program against its
formal specification is a powerful tool for testing and debugging Ada programs.

The Analyzer [27] is an Anna debugging tool used to locate errors using failures in such
runtime checks. It assumes that correct formal specifications defining a program's required
behavior are given and placed at various structural levels. Work in Anna is complementary
to our work: our work can be used to help discharge an important assumption made in the
Anna Analyzer, that the formal specifications used in an Anna program are reasonably free
from errors.

1.3.2 Supporting Programming Styles

A traditional approach to promoting modular software designs has been through the design
of programming languages. Within this broad approach, there are two implementation
strategies. One takes the form of a compiler implementation. For example, the following
languages support data abstraction through features implemented by a compiler: CLU [25],
Modula-3 [30], and c++ [33]. Another implementation strategy is a preprocessor approach.
This is the approach taken by the FAD system in adding abstract data types to Fortran [29].

In contrast, our approach retains the original characteristics of the programming lan-
guage, and orthogonally adds support for data abstraction. In this way, the programmer
is able to use data abstraction techniques where they are desired and is free to exploit the
strengths of the programming language where they are needed.

By combining specifications and programming conventions, our approach offers not only
a different way of achieving the same goals, but also added advantages. In our approach,
specifications provide valuable information that can be used in many ways. Specifications
provide concise documentation for the clients of program interfaces, supporting modular
program development and maintenance. Specifications contain information that is essential
to formal program verification and the kind of design analysis described in Chapter 5 of
this thesis. They also contain information that is useful for program optimization [36].
Furthermore, the information can be extracted by LCLint to perform useful quick checks on
the implementation of a specification.

1.3.3 Checking Formal Specifications

Our work is inspired by related and complementary work that allows LSL claims to be made
and checked [8]. In LSL, the implies construct is analogous to the LCL claims clause. It
allows a specifier to state conjectures about LSL traits. A tool, called Is12 1p, translates LSL

traits and implies conjectures into LP proof obligations. Since LCL specifications use LSL

traits, sl21p can be used to help test such LSL traits.
The LSL traits used by an LCL interface are auxiliary to the specification; the operators

exported by the traits need not be implemented. Unlike LSL implies, which are assertions
about auxiliary operators, LCL claims are about properties of interfaces that can be in-
voked by the clients of the interfaces. LCL claims can refer to values of objects in different

19

computational states, and can specify invariants maintained by interfaces.
The mural system [6] is an experimental system with similar goals and approach as our

research on checking specifications. It consists of an interactive theorem-proving assistant
and a specification tool that supports the writing of VDM specifications. Part of the VDM

specifications can be translated into appropriate logical theories in the prover. Mural can
automatically generate the needed proof obligations corresponding to the consistency of a
VDM specification and the refinement relationship between two specifications.

PAISLey [41] is an executable language for specifying requirements of embedded systems.
A specifier can test PAISLey specifications directly, by running them on an interpreter. The
shortcoming, however, is that executable specification languages sacrifice ease of use and
expressiveness in order to be able to execute specifications. In contrast, Larch specification
languages are designed to be simple and concise, rather than executable. In place of exe-
cuting specifications as a means of testing them, LCL claims allow specifiers to state and
check conjectures at design time.

1.4 Lessons Learned

While LCL was designed with the development of new c software in mind, it can also be
used for reengineering existing c programs. Using LCL, we applied our reengineering model
described in Section 1.1.4 to an existing 1800-line c program, named PM for portfolio
manager. PM keeps track of the portfolio of an investor. It processes a sequence of financial
security transactions, checks their internal consistency, and summarizes the portfolio.

1.4.1 Software Reengineering Using LCL

The software reengineering exercise demonstrated how LCL can be used to improve existing
c programs.

The most visible product of the reengineering exercise was the formal specifications of
the main modules of the program. The specifications serve as precise documentation for
the program modules. With modules that are documented, future changes to the program
will be easier and parts of the program are more likely to be reused than if the formal
documentation were absent. Furthermore, maintenance of the program is eased because
our documentation makes explicit a number of implicit design decisions in the program,
and it contains claims which highlight some of the central properties of the PM program.

The specification of PM also shows that LCL is adequate for specifying the main modules
of a class of real programs. Furthermore, we use the specification to demonstrate how to
go about using claims to document and test specifications.

Besides the new specification product, the reengineering process helped to make the
program more modular, helped to uncover some new abstractions, and contributed to a
more coherent module design. In addition, the process made the program more robust by
removing some potential errors in the program. The service provided by the reengineered
program also improved because the process helped us identify new useful checks on the
user's inputs to the program. We have achieved these effects without changing the essential
functionality or performance of the program.

While the benefits of the reengineering process we observed could be obtained with
careful analysis and without specifications, we believe that our specification-centered reengi-
neering process provides a methodology by which the benefits can be brought about system-
atically. Formal specifications have an edge over informal ones because of their precision.

20

The precision sharpens the analysis process, and leaves no room for misinterpretation of
the specification. Formal specifications are also more amenable to mechanical tool support,
which has improved the program and the specification considerably.

1.4.2 Specification Proof Experiences

Using the specification of the PM program, we illustrate how redundant information in
specifications can be used to find errors in specifications and to highlight the design of
software modules.

We specified a number of claims about the modules of the PM program. We translated
some of the LCL specifications and claims into inputs for the Larch Prover (LP) [7], and
used LP to check a few claims. By doing this, we uncovered some mistakes in our original
specifications.

We found both simple careless errors as well as deeper logical mistakes in our specifica-
tions. While some of these errors could have been found by careful inspection, others cannot
be so easily detected. When a proof does not proceed as we expect, it is often because we
have glossed over some fine points in our specifications, or we have omitted some essential
information in the specification. Besides improving the quality of the specification, we note
that the chief benefits the proof exercises provide are a better understanding of our design
and increased confidence in the specifications.

Verifying claims is a time-consuming and difficult process. We found that the places
where we were stuck longest in the proof were also where we learned most about our
specifications. However, some of the expended efforts could be reduced with better theorem
proving techniques.

1.4.3 Specification Tool Support

We found tool support to be indispensable in writing formal specifications. There are
three main kinds of tools we used. First, there are tools that check the syntax and static
semantics of specifications. The LSL checker checks LSL traits, and the LCL checker checks
LCL specifications. These help uncover many careless errors such as spelling mistakes and
syntax errors.

Second, we used LP to verify LCL claims. LP is instrumental in catching the mistakes
we found in the specification. The proof checker lessens the proof effort by helping us to be
meticulous in our proof steps, and supports regression testing of specifications.

Third, we use LCLint to check both the implementations and clients of an LCL specifica-
tion. The tool has helped us find errors in our code. Two classes of errors stand out. One,
LCLint is useful in locating code that violates an abstract type barrier. Two, LCLint finds
places in a function where global variables are accessed even though they are not sanctioned
by the specification of the function.

We note another benefit of LCLint: Since LCLint checks aspects of consistency between
an LCL specification and its implementation, when an error is detected, it is sometimes an
indication of a specification error rather than a coding error. For example, when LCLint re-
ports that a global variable is accessed in an implementation when its specification does not
allow such access, it is sometimes a specification omission. LCLint dutifully reports the in-
consistency that leads us to correct our specifications, and thus improves the documentation
of the program.

21

This experience argues for the use of formal description techniques rather than informal
ones, because we can build better tools to support formal description techniques.

1.5 Contributions

This thesis makes the following contributions:
First, we designed and implemented a new version of the formal specification language,

LCL version 2.4. LCL can be used to specify ANSI C program modules. We implemented an
LCL checker program that checks the syntax and the static semantics of LCL specifications.
We provided a detailed description of the semantics of LCL. Our language design also
provides the framework for the construction of the LCLint program [5].

Our LCL language builds on and supersedes a previous design, LCL version 1.0 [14].
Earlier descriptions of LCL in [15] adopted many of the key design changes made in our
current version. The principal innovations in our version include a richer abstract type
model that adds immutable types, a new parameter passing convention that provides more
freedom to the implementors of abstract types, an extension of the modifies clause to handle
collections of objects, and new language constructs to enable more compact specifications
and to state claims. A more detailed description is given in Section 2.5.

Second, by the design of LCL, we illustrated an approach for supporting programming
styles using a formal specification language, programming conventions, and checking tools.
In particular, we designed a formal specification language that supports a style of program-
ming based on interfaces and abstract types. Our approach combines the strengths of using
interfaces and abstractions and the flexibility of the underlying programming language.

Third, we demonstrated how redundant information in a formal specification can be used
to improve the quality of the specification. We showed how claims can highlight important
specification properties, promote module coherence, support program reasoning, help test
specifications, and support regression testing of specifications. To the extent that a formal
specification is the codification of a software design, our approach allows software designs to
be analyzed and studied before code is written for them. We also provided some practical
experiences in using a proof checker to verify specification properties.

Fourth, we gave a software reengineering process model for improving existing programs
in ways that make their maintenance and reuse easier. Our process model centers around
specifying existing programs and using the specifications to drive the code improvement
process. We applied our process to an existing, working, 1800-line c program and described
the effects of the process.

Fifth, a major product of our reengineering exercise is the formal specifications of the
main modules of a c program. We used the specifications to illustrate and codify some
techniques and heuristics useful in writing specifications.

1.6 Thesis Organization

Chapter 2 gives an overview of LCL that is detailed enough for understanding the main
points of the thesis. It covers the design goals of LCL, the underlying Larch framework, and
some features of LCL as a specification language.

Chapter 3 describes how LCL specifications can be used to support a style of c program-
ming based on specified interfaces and data abstraction.

22

Chapter 4 describes the specification of the reengineered PM C program. We can also
view the reengineering exercise as a specification case study. We use the specification to
illustrate the techniques and heuristics we employ in writing specifications. We illustrate
ways to achieve more compact and easier to understand specifications. This includes LCL

constructs that highlight checks that must be performed by the implementor, and those
that codify specification conventions. We also point out some common errors in writing
specifications. Many of the techniques we document are general; they are specific neither
to LCL nor Larch.

Chapter 5 describes the claims concept and describes the various uses of claims in a
formal specification. We illustrate how claims can be used to highlight important properties
of specifications, test specifications, support program reasoning, and promote the design
coherence of software modules.

Chapter 6 combines the ideas in Chapter 3 and Chapter 5 to describe a specification-
centered software reengineering process model for improving existing programs in ways that
make them easier to maintain and reuse. The impact of applying the process to the original
PM program is described.

Chapter 7 provides a more complete description of LCL. It describes the interesting
aspects of LCL's semantics. In particular, a data type induction principle is given for LCL

abstract types. This chapter is useful as a reference for the subtler points of LCL and for
other specification language designers.

Chapter 8 gives our experiences in using various tools for checking formal specifications.
It also contains a discussion of further work and summarizes the achievements of the thesis.

The reference grammar of LCL is given in Appendix A. A number of static semantic
issues are addressed in Appendices B and C. The LCL specifications of the main modules
of PM is given in Appendix D.

23

24

Chapter 2

Overview of LCL

The ideas we study in this thesis are exercised in the context of the Larch/C Interface
Language, LCL. LCL is a formal specification language designed to document c interfaces,
and to support a programming style based on specifications and abstract data types, even
though c does not support abstract types.

In this chapter, we describe LCL as a formal specification language in sufficient detail so
that the main ideas in the thesis can be understood. A tutorial-style description of LCL can
be found in [15]. The use of LCL to support programming styles is described in the next
chapter. The semantics of the LCL language is described in Chapter 7.

2.1 Larch

LCL is a formal specification language designed in the Larch tradition [37, 15]. Larch is a
family of specification languages designed for practical application of formal specifications
to programming. It embodies a software engineering approach in which problem decompo-
sition, abstraction, and specification are central [26].

Larch specification languages are used to formally specify the abstraction units that
make up the design of a computer program. Different programmers can tackle the im-
plementation of different abstraction units independently and concurrently. The formal
specifications serve as contracts between the implementors of different units.

Even before a specification is sent to implementors to be constructed, the specifier
can analyze the specification to minimize errors in the specification. This can save costly
mistakes early in the production process. Larch specifications are designed to facilitate the
construction of tools that help specifiers check the syntax of specifications and analyze the
semantics of the specifications.

Larch specifications are distinguished by their two-tiered structure. A Larch specifica-
tion is composed of two parts: one part is written in the Larch Shared Language (LSL) and
the other in a Larch interface language specific to the intended implementation language.

* Larch Shared Language: The Larch Shared Language is common to all interface
languages [15]. It is used to capture mathematical abstractions that are programming
language independent.

* Larch Interface Languages: An interface specification must describe how data and
control are transferred to and from the caller of a procedure. Programming languages
have different parameter passing mechanisms and exception handling capabilities. It

25

is desirable to design an interface language that is specific to a programming language
so that specifications written in the interface language can be more precise than those
written in some universal interface language. It is also easier for a programmer to
implement a Larch interface specification.

Interface specifications use operators that are defined at the LSL level. This connection
between a Larch interface specification and an LSL specification is made by a link
in the interface specification. Relations on program states, exceptions, and other
programming language dependent features are specified at the interface level.

The specification of a procedure is modeled as a predicate on a sequence of states. In
the special case of sequential programs, this is a relation between two states, the state
before and after the execution of the procedure.

2.2 LCL Basics

Since LCL specifications describe the effects of c-callable interfaces, the semantic model of
LCL supports that of c. Each scope in a c program has an environment that maps program
variables to typed locations. A c function can read and modify the contents of a memory
store, which maps locations to values. Since c uses call by value, the callee cannot affect
the environment of the caller. Therefore, the state of a c computation can be modeled as a
store. In addition to supporting the basic computational view provided by c, the semantic
model of LCL also supports abstractions of locations, called objects. Like memory locations,
objects are containers of values. Locations can be viewed as a special kind of object whose
operators are predefined by the c programming language. The binding of objects to their
values is a state.

LCL is statically typed: the type of value that can be assigned to an LCL object in a
state is fixed. A type is viewed as a collection of values with a set of operations that can
act on those values. There are two categories of types in LCL. LCL exposed types are the
built-in types of c, and abstract types are data abstractions that can be specified in LCL

and implemented in c. Since exposed types are not used extensively in this thesis, their
description is not given here. A tutorial-style description is given in [15], and their finer
semantic details are given in Chapter 7 and Appendices B and C.

LCL supports two kinds of abstract types: mutable and immutable types. Instances of
an immutable type cannot be modified; they are analogous to mathematical values and c
ints or chars. Instances of a mutable type can be modified by c function calls.

2.3 LCL Function Specification

The basic specification unit in LCL is a c function specification. A key feature of LCL function
specifications is that each of them can be understood independently of other specifications.
The state before a function is invoked is called the pre state, and the state after the function
returns is called the post state.

Figure 2-1 shows the LCL specifications of a c global variable named count, an LCL spec
variable named hidden, and a simple c function named add. c global variables can be read
and changed from any program context, and they are exported to modules that import the
module containing the above specifications. Spec variables are like global variables, except
that they are private to the module that defines them. They are specification constructs,
and are not exported. As such, they need not be implemented.

26

int count;

spec int hidden;
int add (int i, int j) int count, hidden; (

requires hiddenA < 100;

modifies count, hidden;
ensures result = i + j A count' = countA + 1 A hidden' = hiddenA + 1;

Figure 2-1: Simple examples of LCL specifications.

The specification of add indicates that it takes two integer formals, accesses a global
variable named count, a spec variable named hidden, and returns an integer. The requires
clause indicates that a precondition is needed; the value of the hidden variable must be
less than 100 in the pre state. The modifies clause specifies which of the input objects
may potentially be changed. In this case, it says that count and hidden may be changed.
The ensures clause describes the effects this function is supposed to achieve. The reserved
word result is used to refer to the returned value of the function. The symbol is used
to extract the value of an object in the pre state, and the symbol ' is used to extract its
value in the post state. The specification says that add returns the sum of its formals, and
increments both count and hidden by one. An LCL function specification has an implicit
ensures clause that the function terminates if the requires clause is satisfied. The meaning
of an LCL function specification is: if the preconditions specified in the requires clause hold,
then the relation specified by the modifies clause and the ensures clause must hold between
the pre and the post states.

Since c function calls pass parameters by value, the formal parameters of a c function
denote values. An exception to this rule is c arrays: they can be viewed as pass by reference.
As such, LCL models c arrays as objects so that any change to an array is visible outside
the function. Since changes to global and spec variables contain values that persist across
function invocations, they always denote objects. Hence, the formal parameters i and j
in Figure 2-1 are used without state decorations whereas count and hidden need state
decorations to extract their values from the pre or the post state.

The input arguments of a function consist of the formal parameters and the global
variables the function accesses. The set of objects that appear explicitly or implicitly in
the modifies clause of a function specification is called its modified set. The output results
of the function consist of result and the modified set of the function.

While LCL can be used to specify programs in which only c built-in types are used, it is
not best suited for specifying such programs. LCL is designed for specifying the behaviors
of a class of c programs in which abstract types play a major role.

2.4 LCL Abstract Type Specification

An interface can contain global and private variable declarations, type specifications, and
function specifications. An interface serves three functions. It is used to group c variables,
types, and functions together so they can be imported or exported as a single unit. Second,
an interface supports data encapsulation: only the functions exported by the interface can
access private data that are declared within it. Third, an interface can define an abstract
data type.

27

mutable type intset;

uses set (int, intset);

intset create (void) {

ensures result' = {} A fresh(result);
}
int choose (intset s) {

requires sA 0 {};

ensures result E sA;
}
bool add (int i, intset s) {

modifies s;

ensures (result = i E sA)

}
A

bool remove (int i, intset s) {
modifies s;

ensures (result = i E sA) A
}

s = insert(i, sA);

s = delete(i, sA);

Figure 2-2: The LCL specification of an abstract type.

The specification of an interface defining an abstract data type is shown in Figure 2-2.
The first line in Figure 2-2 declares a new mutable abstract type named intset. Clients
of intset do not have direct access to the implementation of this type; they manipulate
instances of the intset type by calling functions exported in the intset interface. The
second line links operators used in the specification to an LSL specification. In this case,
the LSL specification is the set trait shown in Figure 2-3. The trait parameters E and C are
instantiated as int and intset respectively in the intset interface.

set (E, C): trait

introduces

{}: - C
insert, delete: E, C - C

__ E__: E, C - Bool
asserts

C generated by {}, insert

C partitioned by E
V s: C, e, el, e2: E

- (e E {});
el E insert(e2, s) == el

el E delete(e2, s) == el

= e2 V el E s;
O e2 A el E s;

Figure 2-3: The set trait.

The set trait in Figure 2-3 introduces a number of sorts, operators, and axioms that
constrain the meaning of the operators. LSL sorts are used to model LCL types. The lines
that follow the introduces construct give the signatures of the operator symbols. The
next section adds different kinds of axioms. There are two special kinds of axioms: the
generated by clause asserts that all values of the C sort can be generated by the operators
{} and insert. This provides an induction schema for the C sort. The partitioned by
clause asserts that all distinct values of the C sort can be distinguished by E. Terms of

28

the C sort that cannot be distinguished by E are equal. The rest of the axioms are in the
form of universally quantified equations. The precise semantics of LSL traits is given in [15].
It suffices to know that a trait provides a multi-sorted first-order theory with equality for
the operators and sorts that the trait introduces, plus any given induction schemas for the
sorts.

The rest of the intset interface in Figure 2-2 contains the specifications of the functions
it exports. These functions create, modify, and observe intset's. The built-in operator
fresh is used to indicate objects newly created by a function, i.e., objects that are not
aliased to any existing object. The specification of create says that create takes no
arguments and returns a fresh intset object whose value in the post state is the empty
set. A function that returns some instances of a type is termed a creator of the type. The
create function is a creator of the intset type.

An omitted modifies clause, like that in choose, means that the abstract value of no
reachable object can be modified. However, the representation of these reachable objects
may be changed; only their abstract values must remain the same. This allows for benev-
olent side-effects. For example, choose may re-arrange the order of the elements in the
representation of the input set without affecting its abstract set value. The choose func-
tion in the interface illustrates non-determinism in the specification: the returned integer
can be any element in the given intset. The specification does not constrain which one. A
function that does not produce or modify instances of a type is termed an observer of the
type. The choose function is an observer of the intset type.

A mutator of a type is a function that may modify some instance of the type. The add
function inserts an integer and returns true if the integer was already in the set. The input
set is modified if the integer was not already in it. Similarly, remove deletes an integer from
the set and returns true if the integer was already in the set. They are both mutators of
the intset type.

2.5 Historical Note

The design of the LCL language described in this thesis, LCL Version 2.4, builds on and
supersedes a previous design, LCL Version 1.0, described in [14]. The chapter on LCL in [15]
adopted a previous version of our current design. There are many differences between the
version 1.0 and version 2.4; the following are the key ones:

* A Description of LCL Semantics: The previous design explains the features of LCL
through examples, but no formal or informal semantics are given. Our current design
provides a more rigorous and detailed description of LCL semantics. In particular, we
provide induction rules for deriving type invariants from the specifications of abstract
types.

* A Richer Abstract Type Model: The previous design supports only mutable abstract
types. Our current design adds another kind of abstract type, the immutable types.
Immutable abstract types are useful because they are simpler, and they suffice for
abstractions where modifications are not needed.

* A Better Parameter Passing Convention: The previous design requires abstract values
be passed to and returned from functions indirectly by pointers. This requirement is

29

dropped, making abstract types more like c native types. It also makes LCL specifi-
cations easier to read and understand. Furthermore, it allows more implementation
freedom for immutable types.

* Checks clause: A new kind of clause, the checks clause, is added to LCL. The checks
clause is a compact way of specifying checks that the implementor of a function
specification must carry out.1 It helps to highlight the difference between programmer
errors and user errors, and promote defensive programming.

* Exposed Types with Constraints: Specifiers can associate a constraint with an exposed
type via a typedef declaration. This feature allows specifications to be more compact,
and hence easier to read.

* Type Checking of Exposed Types: The type checking of exposed types was changed
from type equivalence by name to type equivalence by structure. This makes LCL

more compatible with c type checking.

* Modifies Clause Extensions: The previous design does not have a way of conveniently
permitting modification of a collection of objects. Our current design allows the
modifies clause of a function specification to accept a type name (denoting a mutable
type). This indicates that all instances of the named type may be modified by the
function. This is useful in specifications involving a type whose instances contain
other mutable objects. For example, suppose we have a type that is a stack of mutable
intset's, and a function that may modify any set in its input stack. We can then
specify this in the modifies clause as modifies intset. 2 The information in the
modifies clause can be easily extracted by LCLint so that in principle, LCLint can
perform better checks on the implementation of the function specification.

* Claims: A new syntactic category called the claims clauses is added. An LCL claim
is intended to be a logical conjecture about an LCL specification. A new construct is
also added to support claims that pertain to an entire interface. The form and uses
of claims are discussed in Chapter 5.

'Our checks clause is inspired by a similar construct in Larch/Modula-3 for specifying Modula-3's checked
run-time errors: an implementation must ensure that a failed checks clause must result in a checked runtime
error.

2The ensures clause can be used to more concisely restrict the scope of modifications to the sets that are
contained in the input stack.

30

Chapter 3

Supporting Programming Styles

Software, if written in a good programming style, is easier to maintain and reuse. The tra-
ditional way of encouraging a desired programming style is to design a new programming
language with features that codify that style. In this chapter, we describe a different ap-
proach: we show how a specification language, together with some programming conventions
and a checking tool, can support a programming style.

The c programming language is a portable and flexible programming language. Two
important shortcomings in c are a weak notion of interface and no support for abstract
data types. An explicit design goal of LCL is to address these weaknesses through a stylized
use of c with the help of a checking tool, called LCLint [5]. Another goal of the design is to
support a desired programming style without changing the programming language so as to
retain the versatility of c.

Chapter 2 described the LCL as a formal specification language. In this chapter, we show
how LCL specifications can be used to support a style of c programming based on specified
interfaces and data abstraction.

3.1 Specified Interfaces and Data Abstraction

A software module is a collection of procedures and data. In general, an interface of a
software module is a description of the module that provides a defined means of interaction
between the module and its clients.l An interface describes the types of the data and the
procedures that are exported by the module. An interface isolates some implementation
details of a module from its clients. Clients use the module by calling the procedures
exported by a module without relying on the implementation details. The type information
provided by an interface can enable some static type checking of procedure calls in clients
in the absence of the implementation module.

A specified interface is an interface with a precise description of the behavior of the
interface. It contains sufficient information so that clients can rely on a valid implementation
of the interface without looking at the actual implementation.

A special kind of specified interface is an abstract data type [26]. The interface provided
by an abstract type is narrow: clients can only manipulate the instances of the abstract
type by calling the procedures that are exported by the type. They do not have access

1This notion of interface is compatible with and more general than our notion of LCL interface introduced
in the previous chapter.

31

to the representation of the type. This barrier promotes program modularity by allowing
the implementor of an abstract type to modify the representation type without affecting
programs that use the abstract type.

3.2 Supporting Specified Interfaces in C

A c interface is a function prototype. It consists of the returned type of the function and
the types of the input parameters.

The prototypes of c functions are kept in c header files. They are included by clients
to enable type checking by the c compiler. Since a type must be defined before it is
used, the types used in an implementation must be provided in the header file too. This
means that client programmers have access to implementation information. This reduces
the independence between the clients and the implementation of a module.

3.2.1 LCL Interface Convention

LCL separates interface information from implementation details by putting interface in-
formation in LCL specifications and disallowing clients access to the header files. An LCL

specification contains all the information its clients will need and can rely upon. The im-
plementor is free to change the implementation as long as the specification is satisfied.

client
reads

0 0 |intset.lcl

writes

client.c

#includes

LCLint
generates

implementor

reads

-wri

wri

Figure 3-1: LCL interface conventions.

The conventional way of using an LCL interface is illustrated in Figure 3-1 using the
intset example introduced in the last chapter. The LCL specification of the intset mod-
ule is contained in the file intset.lcl, the code implementing the functions exported by

32

tes

des

F

P. intset.lh

the intset module in intset.c, and the header file of the intset module in intset .h.

As usual, intset.c includes the header file intset.h, and so do client code such as
client. c. The headers of specified functions and any specified exposed type declarations in
intset. lcl are extracted by the LCLint tool to produce an intset. lh file. This file should
be included in intset.h so that the compilation of both intset.c and client.c have
the appropriate type information. Specified functions can be implemented as macros; their
macro implementations should be placed in the header file. Clients of the intset module
should only consult the LCL specifications of intset; they should not rely on information
in intset.h. This achieves the goal of effecting a clear separation between the clients and
the implementation of an LCL interface.

3.3 Supporting Abstract Types in C

LCL interface conventions provide a physical separation between the clients and the imple-
mentation of a c module. Without abstract types, however, it only hides an extra piece
of information that was unavailable in the c header file convention: whether a function is
implemented as a macro or not. This is because to specify the functions in a module, the
specifier inevitably needs to declare the types involved. This means that the client still has
much of the information about the exposed types used. The introduction of abstract types,
however, requires the strict isolation of information about the types used to implement
abstract types from clients.

3.3.1 Design Goals

A few goals guide our design of LCL abstract types. First, from the clients' perspective, the
semantics of an abstract type must be independent of the type chosen to implement the
abstract type, called the rep type.

Second, c programs using abstract types should be syntactically similar to those using
exposed types. This makes learning abstract types in c easier, and provides a more elegant
introduction of abstract types in c. In particular, variables of abstract types should be
declarable and assignable in client programs, and instances of abstract types can be passed
to and returned from function calls.

3.3.2 Implementing Abstract Types in C

LCL design goals and the language constraints of c combine to motivate two guidelines that
the implementor of an LCL abstract type must follow in order to give a uniform semantics
to abstract types.

First, since a variable of an abstract type must be assignable, the rep type of an abstract
type must be assignable in c. This excludes the use of c arrays as rep types. Pointers can,
of course, be used instead.

There are two kinds of abstract types in LCL. Since instances of an immutable type
cannot be modified, their sharing properties are immaterial to the semantics of the type.
The implementor is free to choose any assignable c builtin type or other abstract types to
implement an immutable type.

The semantics of mutable types, however, requires that assignments cause sharing. For
example, in Figure 3-2, after the assignment of s2 to s, the two names denote the same
object so that any change to one is observable in the other.

33

{ intset s, s2;

s = create();

s2 = s;

add(1, s); /* s2 sees the change in s */

}

Figure 3-2: Assignments of mutable types cause sharing.

However, c assignments have copying semantics. This motivates the second implemen-
tation requirement of LCL abstract types: the rep type of a mutable type must be chosen
so that c assignments of its instances cause sharing. This can be achieved in at least three
ways:

One, a mutable type can be implemented using C pointers. Two, a mutable type can
be implemented using handles. A handle to an object is an index into some privately main-
tained storage that stores the object. The storage must be local to the module implementing
the abstract type so that the only way it can be modified is through the exported functions.2

These exported functions can hence interpret a handle in a consistent and shared manner.
Three, a mutable type can be implemented by some other mutable type.

#if !defined(INTSET_H)

#define INTSET H

typedef struct _list int data; struct _list *next;} list;

typedef struct {int size; list *contents;} setRep;

typedef setRep *intset;

#include "intset.lh"

#define choose(s) ((s)->contents->data)

#endif

Figure 3-3: A C type implementing the intset abstract type.

Figure 3-3 shows a particular rep type of the intset type given in the previous chapter.
The rep type is a pointer to a structure that contains the set cardinality, and a linked list
of the members of the set. The choose operation is implemented as a macro in the header
file. The implementation of the intset interface using this rep type is ordinary, and hence
it is not given.

3.4 Tool Support: LCLint

It is possible to use LCL conventions effectively without tool support. Tool support, however,
is desirable to allow errors to be detected earlier and quickly. LCLint is a lint-like tool that
performs additional checks on c programs without affecting the compilation of the programs.
Like lint, it is designed to find errors in programs quickly [5].

34

2It can be declared static in c.

The use of LCLint to generate function prototypes from LCL specifications for compilation
has already been mentioned. One key function of LCLint is to detect abstract type barrier
violations in clients.

3.4.1 Checking Abstract Types

LCLint ensures that the only way client programs use an abstract type is through interfaces
defined by the type. This is achieved by the following checks.

First, LCLint treats an abstract type as a new type, and does type checking by name.
Second, LCLint disallows type casting to and from abstract types.
Third, instances of abstract types cannot be used with any c built-in operator except

the assignment operator (=). In particular, the comparison operator (==) cannot be used. It
does not have a consistent meaning on immutable types: its meaning could depend on the
choice of the rep type of the abstract type. Furthermore, it can cause potential confusion
when it is exported for mutable types. Should it mean object identity or value equality? To
preserve the uniformity of the semantics of abstract types, the comparison operator is not
exported automatically. Like other user defined functions, it can be exported if the user
specifies it. Its implementation can be made efficient through the use of macros.

Besides checking the clients of an abstract type, LCLint also performs some checks on
the implementation of the type. As explained in the previous section, a valid representation
of an abstract type must be assignable in c. LLint ensures that the chosen rep type is not
an array. It is not possible to check if the rep type chosen for a mutable type is such that
assignments cause sharing.

3.4.2 Additional Program Checks

Up to this point, the use of programming convention and specifications for supporting
abstract types offers few added advantages to the language design approach. There is,
however, one important difference: an LCL specification contains information that can be
used to check its implementation. LLint supports the following additional checks that can
be turned on or off by the programmer:

Macro Checking: Clients of a specified function should not rely on whether the func-
tion is implemented by a macro or by a function. This entails additional checks on macros
that implement specified functions. LCLint treats macros implementing a specified func-
tion as if they are c functions. Additional safety checks are performed on such macros.
For example, each parameter to a macro implementing a specified function must be used
exactly once in the body of the macro. This ensures that side-effects on its arguments
behave as expected. While the syntax of a c macro definition does not allow the types of
macro parameters to be included, LCLint can obtain the necessary information from the
specifications of the function being implemented by the macro.

Global Variable Checking: LCL requires that each global variable a function accesses
be listed in the specification of the function. This information enables two checks on the
implementation of the function: LCLint checks that every global variable used in the im-
plementation is in the global list of the function, and that every global variable listed is
potentially accessed by the implementation.

Complete Definition Checking: LCLint ensures that every function exported from a
module is specified, and every specified function is implemented in the module.

35

Modification Checking: The modifies clause in the specification of a c function
highlights the side-effects of the function. This information can easily be extracted from
LCL specifications. It can be used to detect potential errors in code. For example, consider
the specifications given in Figure 3-4. The specification of P states that its input set must
not be modified, and the contrary is true in the specification of Q. Figure 3-5 illustrates a
potential error in the implementation of P: the implementation of P passes its input set to
a call to Q, which may modify the set.

void P (intset s)

modifies nothing;

ensures ...;

void Q (intset s) (

modifies s;

ensures ...;

Figure 3-4: Modifies checking illustration Part I: specifications.

void P (intset s) {

Q(s); ...
}

Figure 3-5: Modifies checking illustration Part II: unsafe code.

There are a number of difficulties in checking object modifications. Since LCL specifica-
tions only constrain the abstract values of objects, it is possible for a program to modify
the concrete representation of an object without changing the abstract value of the object.
Thus, the only reliable way to tell if the abstract value of an object has changed requires
proving that the concrete value has changed in a way that makes the abstract value dif-
ferent. In addition, checking object mutation using the modifies clause requires aliasing
analysis. The problem is undecidable in general. Despite these difficulties, we believe that
detecting potential errors in object modification is useful in practice.

3.5 Summary

We have described how LCL supports a C programming style based on specified interfaces
and abstract types. The traditional approach towards supporting programming styles is
through the design of a new programming language. We take a different approach: we
use a specification language, together with programming conventions and a checking tool,
to support the desired programming style. This approach retains the characteristics of
the programming language, and orthogonally adds the strengths of the programming style
introduced.

In some ways, LCL can be viewed as an attempt to address inadequacies of c. To
the extent that it does this, it can be used as a model for other situations where specific
programming styles are desired but are inadequately supported by the chosen programming
language or platform.

36

Our approach is distinguished by the use of specifications, which contain information
useful for performing certain consistency checks between the specifications and their clients,
and between the specifications and their implementations. Such checks help uncover pro-
gramming mistakes.

37

38

Chapter 4

Specification Techniques and
Heuristics

In this chapter, the LCL specifications of the key modules of an existing, working, 1800-line
c program are described. The program has been in use for several years. The specifications
describe the reengineered version of the program. The new version of the program is the
result of a reengineering process to be described in Chapter 6, where the two versions of
the program are also compared.

The specification of the program is used to discuss some specification issues and illustrate
specification techniques. Hence, we also refer to the reengineering exercise as a specification
case study. In addition, the presentation of the specification provides the background nec-
essary for better understanding the next chapter, which uses the specification to illustrate
the various uses of redundant information in specifications.

While some issues raised in this chapter are specific to Larch specifications, most issues
are not. Users of other specification languages are likely to find correspondences in their
favorite languages.

The organization of the chapter is as follows. A brief description of the functionality
of the specified program, pm, is given first. Next, the design of the program is sketched,
and the specification of the key modules of PM are described in a bottom-up fashion. If an
abstraction we specify is a familiar one, we describe its LCL interfaces before describing its
supporting traits. Otherwise, we introduce the abstraction by describing some traits before
describing the interfaces that use the traits.

The details of some interfaces are omitted in the chapter. The description is intended
to highlight the techniques used to specify the interfaces. The complete specifications in
the case study are given in Appendix D. The specifications have been checked by the LSL
checker and the LCLint tool for syntax and type correctness. The implementation of the
specification has been checked by the LCLint tool.

4.1 Requirements of the Program

We name the program we have specified PM, for portfolio manager. It keeps track of the
portfolio of an investor. It processes a sequence of financial security transactions, checks
their consistency, and summarizes the portfolio. It handles stocks, bonds, options, Treasury
bills, and cash transactions. Securities can be bought and sold. Stocks pay dividends; they
may be split, and their cost bases may be changed. Treasury bills are redeemed when they

39

Yang Meng Tan, Acct 1
CommonX B 10 1.00 10 1/1/92 from John

CommonX B 10 2.00 20.0 1/1/92 2

CommonX B 20 3.00 60 3/1/92 3

CommonX S 25 4.00 100 4/1/93 3,1

CommonY B 10 1.00 10 LT 1

CommonY C 10 2.00 12/1/92 1
MuniZ B 1000 92.113 92113 11/1/82 i 9.4%

MuniZ IM 1000 4700 1/04/93

MuniZ S 1000 102 102000 1/01/93 1
TBi1192 B 10 90 900 1/2/92
TBi1192 M 10 100 1/2/93 1

Figure 4-1: An example input file to the PM program.

mature, and bonds pay interests. The program handles different kinds of interest payments:
government, municipal, and others.

PM takes in an ASCII file of transactions and produces three files summarizing the port-
folio that results from the transactions. It also accepts two numbers: the year for which
the summary is to be used for filing tax returns, and the holding period, for the purpose of
calculating long and short term capital gains. The holding period is measured in days, and
is greater than zero but less than or equal to 365. It produces a tax file that shows, for each
security, the different kinds of interest payments received, the dividends received, and the
capital gains realized for the tax year. It also sums up the respective categories of annual
income. PM produces a second file listing the securities that are still being held along with
their cost bases. A third file lists not only the breakdowns for the income in the tax year,
but also the cumulative income for the transactions.

Figure 4-1 shows an example input file to PM. The first line is taken to be a documen-
tation string, intended to identify the user and the investment account. Subsequent lines
record transactions grouped according to the securities involved. Each group of transactions
is sorted by the transaction date. The figure shows four groups of transactions. Each line
records a transaction and has a fixed format, with each field separated by a space. It shows
in order: the security name, the transaction kind encoded by one or two characters, the
amount of the transaction, the unit price of the security, the net of the transaction, the
transaction date, the lot number, and the comment field. For certain transaction kinds,
some fields may be empty. This shows up as consecutive blank spaces.

The second line in Figure 4-1 shows a transaction buying ten shares of CommonX stock at
the share price of one dollar a share. This gives a net of ten dollars, and the transaction took
place on January 1st, 1992. The transaction for this security is designated lot number one.
The rest of the line, from John, is taken to be a comment string. The second transaction is
similar to the first except that the share price has doubled on the same day. To distinguish
the two different buys, there is a unique lot number associated with each transaction of the
same security. In this case, the second buy transaction of CommonX is designated lot number
two. The lot numbers do not have to be in any order, but they must be unique within the
buy transactions of the same security.

The fifth line of Figure 4-1 shows a sell transaction. Its format is similar to that of
a buy transaction except that multiple lots may be sold. The lots in the sell transaction

40

identify the specific lots of the security sold. This is significant for reporting capital gains
in tax returns. The order of the lots recorded is also important because partial lots may
be sold. The interpretation of the lot field of a sell transaction is as follows: the complete
amount of all lots but the last one in a sell must be sold, but part or all of the last lot can
be sold. In this sell transaction, all of lot number three is sold and half of lot number one
is sold. This can be computed from the amount of the sell transaction. The sixth line in
Figure 4-1 shows a buy transaction of CommonY security. Its transaction date is LT, which
stands for long term. The special date is used to record buy transactions that took place
an indefinitely long time in the past.

A key requirement of the PM program is the consistency checking of input transactions.
Since PM users may accidentally mistype security names, dates, and the various amounts,
PM performs checks on user inputs. For example, for a buy transaction, PM requires the user
to supply the number of shares, the price of each share, as well as the net of the transaction.
It checks that the product of the amount and the price is sufficiently close to the net. PM

also checks that users do not sell securities they do not own.
Other transaction kinds illustrated in Figure 4-1 include capital distribution of secu-

rity CommonY, the municipal interest payment of MuniZ, and the Treasury bill maturity of
TBil192. A few other kinds of transactions supported by PM are not shown in the figure.
Some are discussed later in the chapter.

Income Yang Meng Tan, Acct 1 Printed \today

CommonX 0.00 0.00 0.00 0.00 35.00 Sold'25.00-netting~0.00-on-4/1/93-

' 'LT-Gain-of20.00-{\it-vs}. Purchase-of-0.00-costing-O.O0~on3/1/92

-'LT-Gain-ofl5.00'{\it'vs}. Purchase-of-O.O00costing-O.00-on-1/1/92
MuniZ 0.00 0.00 4700.00 0.00 9887.00 Sold'lOOO.OOnetting~.00on-1/01/93 ~

' 'LT-Gain-of-9887.00-{\it-vs}.'Purchase-of-0.00costing-O.O0-on-11/1/82

TBi1192 0.00 0.00 0.00 100.00 0.00

TOTAL 0.00 0.00 4700.00 100.00 9922.00

Figure 4-2: Output tax file of the PM program.

Open Lots Yang Meng Tan, Acct 1 Printed \today

CommonX 5 1.00 5 1/1/92 from-John

CommonX 10 2.00 20 1/1/92

\cline{2-4}

- 15 1.67 25

\halfline
CommonY 10 0.80 8 LT

\halfline
TOTAL 33.00

Figure 4-3: Output open lots file of the PM program.

Figure 4-2 and Figure 4-3 show two output files generated by the PM program from the
input given in Figure 4-1.1 They are not intended to be read directly the user. A separate

1The current tax year of 93 and the holding period of 182 are used to generate the output files.

41

formatting program, not specified in the case study, turns them into LATEX sources from
which prettier outputs are generated. The formatted output corresponding to Figure 4-2
and Figure 4-3 are shown in Figure 4-4 and Figure 4-5.2

Income Yang Meng Tan, Acct 1 Printed May 11, 1994

Security Div Tax Int Muni Int Gov't Int Cap Gn Transactions
CommonX 0.00 0.00 0.00 0.00 35.00 Sold ...
MuniZ 0.00 0.00 4,700.00 0.00 9,887.00 Sold ...
TBill92 0.00 0.00 0.00 100.00 0.00

TOTAL 0.00 0.00 4,700.00 100.00 9,922.00

Figure 4-4: Processed output tax file of the PM program.

Open Lots Yang Meng Tan, Acct 1 Printed May 11, 1994

Security Amt Cost/Item Cost Basis Date Comments
CommonX 5 1.00 5 1/1/92 from John
CommonX 10 2.00 20 1/1/92

15 1.67 25

CommonY 10 0.80 8 LT

TOTAL 33.00

Figure 4-5: Processed output open lots file of the PM program.

4.2 The Design of the PM Program

The PM program is made up of the following basic modules. The security module models
financial securities. The date module hides the representation of transaction dates. The
lot_list module hides the representation of a lot and supports operations on lists of lots.
The trans module represents transactions, and the trans_set module supports operations
on sets of trans's. The genlib module collects a few useful supporting operations for the
program. The format module supports the printing routines for generating output files.

The central module of the program is the position module. It is built out of the
above mentioned modules. A position summarizes a snapshot of the current portfolio. It is
updated by new transactions. It contains all the relevant information needed to generate
the three output files. It contains the income breakdowns for the tax year, the cumulative
income breakdowns, and the open lots of the portfolio. The open lots of a position are the
lots owned by the user, that is, the lots that have been bought but have not been sold.

The specification case study consists of the LCL specifications for the following interfaces:
genlib, date, security, lot list, trans, transset, and position. The following are
the main traits supporting the interfaces: genlib, date, security, lot, lotlist, kind,
trans, transset, income, and position. The complete list of traits used by the interfaces

2In Figure 4-4, the the display of the transaction field is elided for brevity.

42

are given in Appendix D. These traits use traits from the Larch LSL handbook described
in [15]. They are briefly mentioned where they are used in the case study.

Our specifications exclude the format module because its specification is tedious and
it does not offer significant utility. A good specification of a program does not necessarily
specify every detail of the program. It is adequate for the purposes the specification is
intended for. In our case, the specification is intended to formally document the design of
the PM program so that the specifier can analyze the design, and the implementor can make
use of the design to implement the main modules. The format module deals with what we
consider to be secondary issues of pretty-printing the output of the program.

Since many specifications in the case study are straightforward, they are not discussed
in this chapter. The rest of the chapter presents specifications of the following four modules:
date, trans, transset, and position.

4.3 The date Interface

The date interface, in Figure 4-6, exports an immutable abstract type date. The date
interface uses the date trait.

The date interface exports nine functions. The date_parse function parses an input
string, and returns a boolean flag indicating whether the parse is successful. It returns the
parsed date via a pointer passed from the caller. It takes another string that is used only if
an error occurs. This latter string is intended to be a line from a user's input from which
the date string is extracted. The createnulldate function creates a special date. The
other functions are observers of the date type.

The date interface imports the genlib interface which defines a number of useful ex-
posed types and exports some generic library functions. Pertinent to the date interface is
the introduction of two exposed types, cstring and nat, which have constraints associated
with them. The specification of cstring from the genlib interface is shown below:

typedef char cstring[] {constraint V s: cstring (nullTerminated(s))};

The specification defines cstring to be an abbreviation for the c type char [] and as-
sociates a constraint with the type name cstring. It does not define a new type; it is
only a shorthand for associating a constraint with an exposed type. The LSL operator
nullTerminated is defined in the cstring trait; nullTerminated(s) is true when the
character string s contains a null character. Hence, the specification codifies the c conven-
tion of treating character arrays as strings.

The cstring type provides a compact way of specifying operations involving c strings.
For example, in Figure 4-6, the specification of the date_parse function shows that two of
its formal parameters (indate and inputStr) have the cstring type. The use of cstring
as the type of a parameter implicitly adds the constraint to the specification:

requires nullTerminated(indateA) A nullTerminated(inputStrA);

If the type appears as the output of a function specification, its semantics is to add the
corresponding constraint to the ensures clause to the specification:

nullTerminated(result')

The getString operator is often used with c strings to extract the string content of a c
character array. It is defined in the string trait given in Appendix D.

43

imports genlib;

immutable type date;

uses date (cstring for String);

bool date_parse (cstring indate, cstring inputStr, out date *d) FILE *stderr; {

let dateStr be getString(indateA),

fileObj be *stderrA;

modifies *d, fileObj;

ensures result = okDateFormat(dateStr)

A if result then (*d)' = string2date(dateStr) A unchanged(fileObj)
else 3 errm: cstring (appendedMsg(fileObj', fileObjA,

inputStrA II errm));

}
date create_null_date (void) {

ensures result = null_date;
}
nat date_year (date d) {

checks isNormalDate(d);

ensures result = year(d);

claims result < 99;

}
bool is_null_date (date d) {

ensures result = (d = null_date);
}
bool date_is_LT (date d) {

ensures result = isLT(d);
}
bool date_same (date dl, date d2) {

ensures result = (dl = d2);
}
bool date_is_later (date dl, date d2) {

ensures result = (dl > d2);
}
bool is_long_term (date buyD, date sellD, nat hp) {

checks isNormalDate(buyD) A isNormalDate(sellD);

ensures result = (buyD sellD A hp < 365

A ((year(sellD) - year(buyD)) > 1 V (sellD - buyD) > hp));
}
char *date2string (date d) {

let res be getString(result[]');

ensures fresh(result []) A nullTerminated(result []')

A (isNormalDate(d) => res = date2string(d))
A (isLT(d) z= res = "LT")

A (isNullDate(d) = res = "null");

Figure 4-6: date.lcl.

44

Since c functions cannot return multiple values directly, a common c programming idiom
is to return a value indirectly via a pointer passed to the function, like the date pointer in
dateparse. The out parameter type qualifier, which is applicable only to pointer types,
formalizes the idiom. It indicates to the implementor that in the pre state, what an out
pointer points to is storage that is allocated but not necessarily initialized. It is an error to
use the initial value of an out pointer. The distinction between out pointers and non-out
pointers is important in inductive reasoning. For example, it means that date_parse can
be treated as a primitive constructor for the date abstract type. A primitive constructor
for a type T builds an instance of T from other non-T types. Primitive constructors form
the bases for deriving inductive properties of abstract types.

The modifies clause of date_parse says that the input date pointer may be made to point
to a different date and that the standard error stream may be modified. The ensures clause
of date_parse illustrates a specification technique for avoiding a common specification
mistake: over-specification. In the case of a bad date string, the specification of date_parse
requires that the input line and some error message be written out to the standard error
stream. It does not constrain the details of the error message. It gives the implementor of
date_parse more freedom in generating the error message.3

bool dateparse2 (cstring indate, cstring inputStr, out date *d) FILE *stderr; {
let fileDbj be *stderrA,

dateStr be getString(indateA);

modifies *d, fileObj;

ensures result = okDateFormat(dateStr)

A if result then (*d)' = string2date(dateStr)
else 3 errm: cstring (appendedMsg(fileObj', fileObjA,

inputStrA I errm);

Figure 4-7: An example of under-specification.

The dual of the over-specification mistake is under-specification. Omissions in a spec-
ification say as much as the explicit constraints the specification states. The specification
of date_parse2, in Figure 4-7, is identical to that of date_parse in Figure 4-6, except for
the conditional expression in the ensures clause. The assertion unchanged(fileObj) is
omitted in the consequent clause of the conditional. This means that the implementor of
date_parse2 is free to print error messages to the standard error stream even when the
date string has the right format. Unchanged assertions are often omitted inadvertently.

The specification of date_year in Figure 4-6 returns a result that has type nat. Like
cstring, nat is an exposed type with a constraint defined in the genlib interface:

typedef long nat {constraint V n: nat (n > 0)};

The type nat is defined to be the integers that are greater than or equal to 0, or the natural
numbers. Using nat in the specification of date_year allows the specification to be more
compact: it specifies that the function should return an integer that is non-negative.

The specification of date_year also illustrates the use of the checks clause in LCL. The
function is designed to be used only on a normal date, not on LT or null_date. The checks

3 There are, of course, situations in which more exact specifications of error messages are appropriate.

45

clause is a convenient shorthand for specifying conditions that the implementor must check.
If the conditions are not met, the implementor should print an error message, and halt the
program without modifying any other objects. That is, the semantics of a LCL function
specification with the checks clause is:

RequiresP
(ModifiesP

A if ChecksP then EnsuresP A StdErrorChanges
else halts A ModifiesP

A 3 errm: cstring (appendedMsg((*stderrA)', (*stderrA)A,

FatalErrorMsg || errm)))

where RequiresP stands for the requires clause of the function, ChecksP, the checks clause,
ModifiesP, the translation of the modifies clause, and EnsuresP, the ensures clause. stderr
is c's standard error file pointer. The object *stderrA is implicitly added to the modifies
clause and the list of global variables accessible by the function. StdErrorChanges is defined
to be true if the specifier explicitly adds *stderrA to the modifies clause or if the checks
clause is absent, and unchanged(*stderrA) otherwise. This semantics allows a specifier to
override the default assumption that the standard error stream is unchanged if the checks
clause holds by explicitly adding the standard error stream on the modifies clause. An
omitted checks clause means ChecksP = true.

nat date_year (date d) FILE *stderr; {
let fileObj be *stderrA;

modifies fileObj;
ensures if isNormalDate(d)

then result = year(d) A unchanged(fileObj)

else 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm));

Figure 4-8: Specification of dateyear without the checks clause.

The specification of date_year could be written without using the checks clause, as
illustrated in Figure 4-8. The checks clause, however, codifies a common specification idiom.
It is useful for specifying checks that are aimed at detecting a class of programmer errors:
a client programmer calls a function without ensuring that the conditions of the call are
respected. An alternative is to use the requires clause to outlaw such calls. The semantics
of the requires clause, however, is very weak: the implementor is free to do anything if the
requires clause is false. For example, the function is not required to terminate. It is desirable
to take a more defensive approach whenever feasible. The checks clause encourages such
defensive design by making the specification more concise.

Besides preventing programmer errors from doing damage to the program state, a func-
tion often has to check for errors in the inputs it ordinarily receives from the user. We term
such errors user errors. For example, the specification of date_parse requires the function
to check that the date string has an appropriate format. Otherwise, an error message is
generated and the function returns normally. By separating programmer errors from input
errors, the checks clause makes a specification easier to read and understand.

46

4.4 The date Traits
The theory formalizing dates is constructed in three traits. The dateBasics trait codifies
the meanings of operators on normal dates. A normal date is a tuple of month, day, and
year. It is shown in Figure 4-9. Our PM program requires two other special encodings of
dates: a special date given as "LT", for long term, and null_date, which is used to mark
an uninitialized position. The date trait in Figure 4-10 extends date operators to handle
these two special dates.

A few operators in the dateBasics trait need brief mention. The dayOfYear of a date
gives the ordinal of the date in a year. For example, the day0fYear of January 1t is 1,
and the day0fYear of February 2nd is 32. The daysToEnd of a date is the complement of
the day of year: it gives the number of days until the end of the year. For example, the
daysToEnd of December 31st is 0.

The normal dates codified by the dateBasics trait has one unorthodox aspect: the
month or the day of a date may be zero. For example, "0/0/93" represents the indeter-
minate month in the year 1993 and "1/0/93" represents the indeterminate day in January
1993. The indeterminate month of a year is arbitrarily chosen to be before january in the
year with respect to the <: date, date - Bool strict total order. Similarly, the inde-
terminate day of a month and year is chosen to be before the first day of the month and
year. We do not constrain dates with a zero month but a non-zero day.

The date trait uses a supporting trait named dateFormat. The dateFormat trait,
in Figure 4-11, includes the dateBasics trait and the genlib trait. It defines the string
format of a date in the PM program. The isNormalDateFormat operator defines what input
date format is acceptable to PM. It accepts dates written in the style of "mm/dd/yr". Days,
months and years that are less than ten can (but need not) be prefixed by zero. For example,
the following are examples of valid dates: /1/1, 01/01/01, 12/31/93. Indeterminate dates
are acceptable date formats except that a date with a zero month must have zero as its day.

Figure 4-10 gives the LSL specification of the date trait. It includes the supporting trait
dateFormat trait in Figure 4-11, but with date renamed to ndate. It also includes the
Larch handbook trait TotalOrder, which introduces and mutually constrains the following
four operators on dates: <=, <, >, >=:date, date - Bool. The TotalOrder trait also
defines <=:date, date - Bool as a total order.

The date trait defines the sorts and operators needed to specify the date interface. A
date sort is a tagged union of a normal date, with the tag normal, and a boolean with the
tag special.

The semantics of most operators in the date trait are ordinary. There is one key
difference from ordinary interpretation of dates: the interpretation of the year in a date
string is unusual. It is traditional to have a two-digit encoding of the year. The impending
turn of the century, however, imposes some difficulties. Should the year encoding 00 indicate
the year 1900 or the second millennium? In this date trait, the latter interpretation is used.
The difference shows up in the definition of the supporting operator fixUpYear.

4.5 The trans Traits

The trans trait defines the format and interpretation of the inputs accepted by the PM pro-
gram. It is shown in Figure 4-12, and is built out of three supporting traits. It includes the
transParse trait which describes how an input string representing a transaction is parsed
and converted into a transaction. The transParse trait in turn includes the transFormat

47

dateBasics: trait

includes Integer, TotalOrder (date)

date tuple of month, day, year: Int % unknown month is 0, jan 1, ... dec 12.

introduces

isInLeapYear: date -+ Bool

isLeapYear: Int -+ Bool

validMonth: Int -+ Bool

__ - __ : date, date -+ Int

daysBetween: Int, Int -+ Int

dayOfYear, daysToEnd: date -+ Int

dayOfYear2: Int, Int, Int, Int -+ Int

daysInMonth: Int, Int -+ Int

asserts V d, d2: date, k, m, yr, yr2: Int, mth, mth2: Int

isInLeapYear(d) == isLeapYear(d.year);

isLeapYear(yr) == mod(yr, 400) = 0 V (mod(yr, 4) = 0 A mod(yr, 100) ~ 0);

validMonth(mth) == mth > 0 A mth < 12;

d < d2 == d.year < d2.year

V (d.year = d2.year A dayOfYear(d) < dayOfYear(d2));
d > d2 =
d - d2 = (if d.year = d2.year then dayOfYear(d) - dayOfYear(d2)

else daysToEnd(d2) + dayOfYear(d) +

daysBetween(succ(d2.year), d.year));

yr yr2

daysBetween(yr, yr2) =

(if yr = yr2 then 0

else (if isLeapYear(yr) then 366 else 365) + daysBetween(succ(yr), yr2));

(validMonth(d.month) A (d.month 0 V d.day = 0)) =

dayOfYear(d) = (if d.month = 0 then 0
else dayOfYear2(d.month, 1, d.day, d.year));

(validMonth(mth) A validMonth(mth2))

dayOfYear2(mth, mth2, k, yr) =

(if mth = mth2 then k

else dayOfYear2(mth, succ(mth2), k + daysInMonth(mth2, yr), yr));

validMonth(d.month)

daysToEnd(d) = (if isInLeapYear(d) then 366 else 365) - dayOfYear(d);

(validMonth(mth) A mth 0) =

daysInMonth(mth, yr) =

(if mth = 2 then if isLeapYear(yr) then 29 else 28

else if mth = 1 V mth = 3 V mth = 5 V mth = 7 V mth = 8 V mth = 10

V mth = 12

then 31 else 30);

implies

converts isInLeapYear, isLeapYear

Figure 4-9: dateBasics.lsl.

48

date: trait

includes dateFormat (ndate for date), TotalOrder (date)
date union of normal: ndate, special: Bool
introduces

nulldate: --+ date % serves as an uninitialized date.
isLT, isNullDate, isNormalDate, isInLeapYear: date -+ Bool

year: date - Int
__ - __ : date, date -+ Int
islongterm: date, date, Int -+ Bool
string2date: String - date

date2string: date -+ String
fixUpYear: Int -+ Int

asserts V d, d2: date, s: String, i, day, yr: Int

nulldate == special(false);

isNullDate(d) == d = null_date;

isLT(d) == tag(d) = special A d.special;

isNormalDate(d) == tag(d) = normal;

isNormalDate(d) = isInLeapYear(d) = isInLeapYear(d.normal);
isNormalDate(d) = year(d) = d.normal.year;

(isNormalDate(d) A isNormalDate(d2)) =~ (d - d2 = d.normal - d2.normal);
(isNormalDate(d) A isNormalDate(d2))

islongterm(d, d2, i) = ((d.normal - d2.normal) > i);
(isNormalDate(d) A isNormalDate(d2)) => (d < d2 = d.normal < d2.normal);
(isLT(d) A isNormalDate(d2)) = (d < d2);

nulldate < d == not(d = nulldate); % non-reflexive
okDateFormat(s) =>

string2date(s) =
(if (len(s) = 2 A s[O] = 'L' A s[i] = 'T') then special(true)
else normal([string2int(NthField(s, 1, 'slash')),

string2int(NthField(s, 2, 'slash')),

fixUpYear(string2int(NthField(s, 3, 'slash')))]));

yr > 0 = fixUpYear(yr) = (if yr < 50 then 2000 + yr else 1900 + yr);

isNormalDate(d) => string2date(date2string(d)) = d;

implies
V d: date

isNormalDate(d) = dayOfYear(d.normal) + daysToEnd(d.normal) =

(if isInLeapYear(d) then 366 else 365)

Figure 4-10: date.lsl.

49

dateFormat: trait

includes genlib, dateBasics

introduces

okDateFormat, isNormalDateFormat: String -+ Bool

validDay: Int, Int, Int - Bool

asserts V s: String, i, m, yr: Int

okDateFormat(s) == (len(s) = 2 A s[O] = 'L' A s[1] = 'T')

V isNormalDateFormat(s);

isNormalDateFormat(s) == (len(s) > 5) A (len(s) < 8)

A countChars(s, 'slash') = 2 A NthField(s, 1, 'slash') != empty

A isNumeric(NthField(s, 1, 'slash'))

A validMonth(string2int(NthField(s, 1, 'slash')))

A NthField(s, 2, 'slash') != empty

A isNumeric(NthField(s, 2, 'slash'))

A NthField(s, 3, 'slash') != empty

A isNumeric(NthField(s, 3, 'slash'))

A validDay(string2int(NthField(s, 2, 'slash')),

string2int(NthField(s, 1, 'slash')),

string2int(NthField(s, 3, 'slash')));

validDay(i, m, yr) == (i > O) A (i < 31)

A ((m = 0 A i = O) V % reject O/non-O-day/yr format
(m > 0 A m 12 A i daysInMonth(m, yr)));

implies converts okDateFormat, isNormalDateFormat, validDay

Figure 4-11: dateFormat.lsl.

trait which defines the valid format of a string representing a transaction. All three traits
directly or indirectly include the transBasics trait shown in Figure 4-13. The transFormat
and transParse traits are given in Appendix D and are not discussed here.

In Figure 4-13, the transBasics trait defines the abstractions used in the trans inter-
face. A trans is a tuple of a security, a transaction kind, the amount, price, and net of the
transaction, the transaction date, a list of lots, and two documentation strings.

In Figure 4-12, the transIsConsistent operator codifies the non-syntactic constraints
a transaction must maintain. They are mostly numerical constraints on the fields of a
transaction. The constraints are different for each transaction kind. The <= operator
imposes a partial order on trans. It is useful for supporting the processing of transactions
in order. It is lexicographically derived from the order on securities, and the order on dates.

Specifications are intended to be read by humans. The first and foremost criterion of
a good specification is readability. As such, attention should be paid to making it easy for
humans to read and understand. In particular, there is a style of LSL specifications that make
traits easier to read. Observe the separate equations that jointly define transIsConsistent
in Figure 4-12. It is an algebraic style of defining a function acting on arguments of disjoint
cases one at a time, each by a separate equation. A different specification style using a
deeply nested conditional would make the specification more difficult to read.

4.6 The trans Interface

The trans interface shown in Figure 4-14 exports two types: kind, an exposed type, and
trans, an abstract type. The kind interface illustrates the use of LCL exposed types. In

50

trans (String): trait

includes transParse

introduces

transIsConsistent: trans, kind - Bool

_ < : trans, trans -+ Bool
asserts V t, t2: trans

transIsConsistent(t, buy) == t.net > 0 A t.amt > 0 A t.price > 0
A length(t.lots) = A withinl(t.amt * t.price, t.net);

% sell amount may be 0 to handle special court-ordered settlements.
% also cannot give away securities for free.
transIsConsistent(t, sell) == t.net > 0 A t.amt > 0 A t.price > 0
A isNormalDate(t.date) A uniqueLots(t.lots)
A (t.amt > 0 = withinl(t.amt * t.price, t.net));

transIsConsistent(t, cashdiv) == t.amt > 0;
transIsConsistent(t, exchange) == t.amt > 0 A length(t.lots) = ;
transIsConsistent(t, cap_dist) == t.net > 0 A t.amt > 0

A length(t.lots) = 1;
transIsConsistent(t, tbillmat) == t.net > 0 A t.amt > 0

A uniqueLots(t.lots);
% negative interests arise when bonds are purchased between their interest
% payment periods.
transIsConsistent(t, interest);

transIsConsistent(t, muniinterest);
transIsConsistent(t, govt_interest);
transIsConsistent(t, new_security);
- transIsConsistent(t, other);
t < t2 == (t.security < t2.security)

V (t.security = t2.security A t.date < t2.date);
implies converts transIsConsistent, __ __: trans, trans - Bool

Figure 4-12: trans.lsl.

Figure 4-14, the type kind is defined to be a c enumeration of the following transaction
kinds: buy, sell, dividend payment, capital distribution, maturity of a Treasury bill, secu-
rity exchange, ordinary interest payment, municipal interest payment, government interest
payment, new security, and other. A new-security kind is used to introduce the name of
a security. The other kind is used to indicate an error in the creation of a transaction.

The trans type could be specified as a c struct type. An abstract type is used instead
because doing so limits the kind of changes the client can make to trans instances. This
makes it possible for the interface to maintain invariants about the trans type that would be
impossible if an exposed type were used. For example, an invariant that the trans interface
maintains is: a buy transaction has non-negative net, amount, and price, and the product

transBasics: trait

includes genlib, date, kind, security, lot_list
trans tuple of security: security, kind: kind, amt, price, net: double,

date: date, lots: lot_list, input: String, comment: String

Figure 4-13: transBasics.lsl.

51

of its amount and its price is within one of its net. Such invariants are useful because they
serve as checks on the intermediate values the program calculates. In addition, an abstract
type is preferred because a client does not need to know the specific implementation of
the trans type. The kind type is specified as an exposed type because it has no useful
invariants, and making it abstract involves exporting many trivial interfaces.

The two types could have been specified in separate modules. We choose to put them in
the same module because the two types go together conceptually: every client of the kind
type is a client of the trans type.

The interface exports an integer constant maxInputLineLen. This represents the max-
imum length of the input line representing a transaction. The key function the trans
interface exports is trans_parse_entry, which converts a valid c string into a trans. The
function returns true if the string has an acceptable format and the information given in
the string corresponds to a valid trans. The abbreviations in an LCL let clause nest, that
is, an earlier abbreviation can be used in a later one.

Besides transparse_entry, two other functions in the interface can create trans
instances: trans_adjustnet and trans_adjust_amt_andnet. The latter function can
achieve its effect if it is given either the new amount or the new net. It takes both as
arguments in order to check that they are consistent with the old price. Both functions are
specified to maintain the invariants. The other functions exported by the trans interface
are simple observers of transactions.

4.7 The trans_set Interface and Trait

The transset interface supports operations on sets of trans's that are buy transactions.
It is shown in Figure 4-15 and is built using the transset trait shown in Figure 4-16. The
specification of the trans_set interface is adapted from a similar example in Chapter 5 of
[15]. The basic LSL trait for modeling an iterator is reused, and the approach of specifying
different functions for coordinating the iteration process in c is also adopted. There are
minor differences in the way clients use the interfaces. The specification of transset
illustrates an important principle in writing specifications: specifications should be reused
whenever appropriate.

The transset interface defines two mutable types: trans_set and transset_iter.
Together, these two types support ordinary set operations and iterations over sets. A
trans_set_iter records the state of a set iteration. In Figure 4-16, it is modeled as a pair
consisting of a transset object and the elements of the set that have yet to be yielded.
It supports multiple simultaneous iterations over a trans_set, such as those occurring in
nested loops.

The syntax obj trans_set in the uses construct in Figure 4-15 needs some explanation.
An LCL mutable type is modeled by two underlying sorts: an object sort that represents the
object identity of a mutable object, and a value sort that represents the value of the mutable
object in some state. By default, an LCL type in a uses clause is implicitly mapped to the
value sort of the type, unless the obj type qualifier is used. The uses clause in Figure 4-15
says that the object sort modeling the trans_set LCL type should be used to rename the
second parameter of the transset trait, that is, the transset_obj sort in the trait. A
more detailed explanation of the implicit mapping of LCL types to LSL sorts is given in
Section 7.3.2.

In Figure 4-15, the first five functions support set operations to create, modify, copy,

52

imports security, date, lot_list;

typedef enum (buy, sell, cash_div, capdist, tbill_mat, exchange, interest,

muni_interest, govtinterest, new_security, other} kind;

immutable type trans;

constant nat maxInputLineLen;

uses trans (cstring, kind for kind);

bool trans_parse_entry (cstring instr, out trans *entry) FILE *stderr; (

let input be prefix(getString(instrA), maxInputLineLen),

parsed be string2trans(input),

fileObj be *stderrA;

modifies *entry, fileObj;

ensures result = (okTransFormat(input)

A transIsConsistent(parsed, parsed.kind))

A if result then (*entry)' = parsed A unchanged(fileObj)
else 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm));

}
trans trans_adjustnet (trans t, double newNet) {

checks t.kind = buy A newNet > 0;

ensures result = set_price(setnet(t, newNet), newNet/t.amt);

trans trans_adjust_amt_and_net (trans t, double newAmt, double newNet) (

checks t.kind = buy A withinl(newNet/newAmt, t.price) A newNet > 0

A newAmt > 0;

ensures result = set_amt(set_net(t, newNet), newAmt);
}
bool trans_match (trans t, security s, lot e) (

ensures result = (t.security = s A length(t.lots) = 1 A car(t.lots) = e);
}
bool trans_less_or_eqp (trans ti, trans t2) (

ensures result = (tl < t2);
}
double transget_cash (trans entry) (

ensures if isCashSecurity(entry.security) A entry.kind = buy

then result = entry.net

else result = 0;
}
char *trans_input (trans t) (

ensures nullTerminated(result[]') A getString(result[]') = t.input

A fresh(result[]);
}
char *trans_comment (trans entry) (

ensures nullTerminated(result[]') A getString(result[]') = entry.comment

A fresh(result]);
}
lot_list trans_lots (trans entry) (

ensures result' = entry.lots A fresh(result);

security trans_security (trans entry) (

ensures result = entry.security;

Figure 4-14: trans.lcl, part 1

53

kind trans_kind (trans entry) {
ensures result = entry.kind;

}
double trans_amt (trans entry) {

ensures result = entry.amt;
}
double trans_net (trans entry) {

ensures result = entry.net;

date trans_date (trans entry) {

ensures result = entry.date;

bool trans_is_cash (trans entry) {

ensures result = isCashSecurity(entry.security);
}

Figure 4-14: trans.lcl, part 2.

and destroy a set object. The trans_set_insert function adds a trans only if the trans
is single-lot and if there are no elements already in the set with the matching security and
lot. This ensures that each element in a trans_set has a unique identifier made up of its
security and its lot. The transset type is designed to represent the open lots of a security.
The open lots of a security has the uniqueness property. The trans_set_deletenmatch
removes all elements with the matching security and lot. The trans_setfree should only
be called with a set object that will never be referenced again. The trashed(s) assertion
indicates that nothing can be assumed about the object s upon the return of the function.
The function is used to deallocate storage occupied by set objects.

The last four functions exported by the transset interface in Figure 4-15 together sup-
ports iteration over transset's. The transset_iter_start function takes a transset
object and returns a transset_iter object in which the set to be yielded is the value of
the trans_set object. It also increments the number of active iterators associated with
the transset object by one. When the function transset_yield is called with the
transset_iter object, it produces an element of the set and updates the object by remov-
ing the element from the set of elements yet to be yielded. The function should only be called
if there are still elements to be yielded. The function transset_itermore tells if there are
more elements in a trans_set_iter to be yielded. For each call to trans_set_iter_start,
a client of the trans-set module is expected to call a matching transsetiterf inal
function which restores the state of the trans_set object back to its original state before
the iteration started. A typical way to use them is illustrated in the code fragment shown
in Figure 4-17.

There is one feature in the design of the transset operations that differs from ordinary
set interfaces: transset mutators can only be called on a transset object if the set is not
being iterated over. The specifications of the set mutators use the checks clause to make
sure that the requirement is met. The transset trait in Figure 4-16 defines a transset
to be a pair consisting of a tset and an integer indicating the number of iterations that are
currently being performed on the trans_set.

It is harder to specify an iterated set that allows mutations in the midst of an iteration;
an example can be found in [14]. The constraint on set iteration enables more efficient
implementations of such iterated sets.

54

imports trans;

mutable type trans_set;

mutable type trans_set_iter;

uses trans_set (cstring, obj transset);

transset trans_setcreate (void) {

ensures result' = [{}, 0] A fresh(result);
}
bool trans_set_insert (trans_set s, trans t) {

checks s.A activeIters = 0;

modifies s;

ensures (result = matchKey(t.security, car(t.lots), sA.val)
A length(t.lots) = 1)

A if result then unchanged(s) else s' = [insert(t, sA.val), 0];
}
bool trans_set_delete_match (trans_set s, security se, lot e) {

checks s.A activeIters = 0;

modifies s;

ensures result = matchKey(se, e, s.val) A s'.activeIters = 0
A s'.val C sA.v al

A V t:trans (t E s . val =

if t.security = se A car(t.lots) = e
then - (t E s'.val)

else (t E s'.val));
}
trans_set trans_setcopy (trans_set s) {

ensures fresh(result) A result' = [sA.val, 0];
}
void trans_setfree (transset s) {

modifies s;

ensures trashed(s);

trans_set_iter transset_iter_start (trans_set ts) {

modifies ts;

ensures fresh(result) A ts' = startIter(tsA) A result' = [tsA.val, ts];
}
trans trans_set_iter_yield (transset_iter tsi) {

checks tsiA.toYield # {};
modifies tsi;

ensures yielded(result, tsiA, tsi')

A V t: trans (t E tsi'.toYield = result t);
}
bool trans_set_iter_more (trans_set_iter tsi) {

ensures result = (tsiA.toYield ~ {});
}
void trans_set_iterfinal (trans_set_iter tsi) {

let sObj be tsiA .setObj;

modifies tsi, sObj;
ensures trashed(tsi) A sObj' = endIter(sObjA);

}

Figure 4-15: transset.lcl

55

trans_set (String, trans_set_obj): trait

includes trans, Set (trans, tset)

trans_set tuple of val: tset, activeIters: Int

trans_set_iter tuple of toYield: tset, setObj: trans_set_obj

introduces

yielded: trans, trans_set_iter, trans_set_iter -+ Bool

startIter: trans_set -+ trans_set

endIter: transset -+ transset
matchKey: security, lot, tset -+ Bool

findTrans: security, lot, tset -+ trans
sum_net, sumamt: tset -+ double

asserts V t: trans, ts: tset, s: security, e: lot, trs: trans_set,

it, it2: trans_set_iter

yielded(t, it, it2) ==

(t E it.toYield) A it2 = [delete(t, it.toYield), it.setObj];

startIter(trs) == [trs.val, trs.activeIters + 1];

endIter(trs) == [trs.val, trs.activeIters - 1];

- matchKey(s, e, {});

matchKey(s, e, insert(t, ts)) ==

(s = t.security A length(t.lots) = 1 A e = car(t.lots))

V matchKey(s, e, ts);

matchKey(s, e, ts) (findTrans(s, e, ts) E ts

A car(findTrans(s, e, ts).lots) = e A findTrans(s, e, ts).security = s

% buy trans has single lots, only interested in matching buy trans
A length(findTrans(s, e, ts).lots) = 1);

sum_net({}) == 0;

t E ts = sum_net(insert(t, ts)) = sumnet(ts);

_ (t ts) = sum_net(insert(t, ts)) = t.net + sum_net(ts);

sum_amt({}) == 0;

t E ts -= sum_amt(insert(t, ts)) = sum_amt(ts);

_ (t ts) = sum_amt(insert(t, ts)) = t.amt + sum_amt(ts);

implies converts matchKey, sum_net, sum_amt

Figure 4-16: trans-set.lsl

In the transset trait, three operators are defined to support the specification of the
position module: sumnet, sum_amt, and findTrans. The first two sum up the net and
amount fields of the elements in a trans_set. The findTrans operator finds a trans in a
transset with the matching security and lot.

The specification of findTrans illustrates a potentially subtle and common error in LSL
specifications, i.e., definitions by induction when the generators are not free. Consider a
similar-looking specification of findTrans below:

matchKey(s, e, insert(t, ts))

findTrans(s, e, insert(t, ts)) =

if (t.security = s A length(t.lots) = 1 A car(t.lots) = e)

then t else findTrans(ts, e);

Since a tset is inductively constructed by {} and insert, the above definition of
findTrans is expected. The guard on the definition ensures that it is applied only when a
match exists. The sort tset is partitioned by the membership test, E. This fact comes from

56

trans tr;

transset ts;

trans_set_iter tsi;

tsi = trans_setiterstart(ts);
while (transsetitermore(tsi)) {
tr = transsetiteryield(tsi);
/* body of loop uses tr */

}
trans_set_iterfinal(tsi);

Figure 4-17: Code fragment showing the use of transset iterator functions.

the Set handbook trait, which includes the SetBasics trait shown in Figure 4-18. From
the tset axioms, we can prove that the order of set insertions does not matter. For exam-
ple, there are two equivalent representations of a two-element set: insert (el, insert (e2,
{})) and insert(e2, insert(el, {})). The problem with the definition of findTrans
lies in its order-dependence: it finds the first matching trans in a tset. But since two
tsets may be equal without having the same representation, it is possible to derive a con-
tradiction if both happen to have matching security and lot. This is because we can use the
partitioned by axiom to show that two matching trans must be equal even though they
may disagree with each other in other fields.

SetBasics (E, C): trait
introduces

{}: - C

insert: E, C -+ C

-_ E __: E, C --+ Bool
asserts

C generated by {}, insert

C partitioned by E
V s: C, e, el, e2: E

-(e E {});
el E insert(e2, s) == el = e2 V el E s

implies

InsertGenerated ({} for empty)

V e, el, e2: E, s: C

insert(e, s) {};

insert(e, insert(e, s)) == insert(e, s);

insert(ei, insert(e2, s)) == insert(e2, insert(el, s))

converts E

Figure 4-18: The Larch handbook trait: SetBasics.

An inconsistency can be viewed as an extreme form of over-specification. The mistake
discussed above lies in over-constraining the findTrans operator. For convenience, we
reproduce our specification of findTrans from Figure 4-16 below:

matchKey(s, e, ts) => (findTrans(s, e, ts) E ts
A car(findTrans(s, e, ts).lots) = e A findTrans(s, e, ts).security = s

A length(findTrans(s, e, ts).lots) = 1);

57

The above axiom does not define the value of findTrans. It only constrains the value of
findTrans(s, e, ts) to have the relevant properties when matchKey(s, e, ts) holds.

The mistake also raises a specification issue that is specific to Larch's two-tiered ap-
proach. There are often two theories being developed in the Larch specification process.
An LCL interface specification typically uses some underlying LSL trait. Both an LCL in-
terface and the LSL trait it uses define logical theories. The two theories are, in general,
different but related. The LSL theory is often strictly weaker than the LCL theory because
we can derive inductive properties based on data type induction at the interface level.

The LSL operators specifiers write are often motivated by the design of the interfaces they
have in mind. For example, in the design of the trans_set interface, a trans_set has the
special property that its elements have unique security and lot fields. This is maintained as
an invariant of the interface. This means that our order-dependent definition of findTrans
is not wrong for the interface theory since, at the interface level, findTrans would yield a
unique trans for the trans_set's that maintained the invariant. Unfortunately, findTrans,
defined as an LSL operator, introduces the inconsistency in the LSL theory discussed in
the preceding paragraphs. Failure to appreciate the distinction between the two theories
contributes to the mistake.

A special transset trait that has the property that its tset elements have unique
security and lot fields could be written. This approach is not taken because it tends to be
less robust. It is easy for interface specifications to violate such invariants, and it is difficult
to detect such inconsistencies. Further discussion of this issue is given in Section 5.10.

4.8 The position Traits

The position trait defines the processing of valid transactions for the PM program. It is
the largest trait in the case study. In this section, we describe the overall function and
structure of the traits; the complete specifications is given in Appendix D.

The position module performs most of the processing the PM program is required to
do. The specification of the position trait is large because many different kinds of trans-
actions have to be supported. The specification is structured into seven different parts to
make it easier to understand. The main trait shown in Figure 4-19 includes the follow-
ing four traits: positionExchange, positionReduce, positionSell, and positionTbill
They describe how exchange, capital distribution, sell, and Treasury bill maturity transac-
tions are processed, respectively. As an example, the positionExchange trait is shown in
Figure 4-20. Other transaction kinds are handled within the main trait. The four trans-
action kinds are kept in separate traits because their processing is more complicated than
the others. All four traits include the positionMatches trait in Figure 4-21, which defines
predicates for detecting transaction processing errors. The positionMatches trait includes
the positionBasics trait in Figure 4-22, which defines the basic data structures that are
used to model a position. The processing of some transaction kinds share similar process-
ing patterns, updating the same fields each time. Hence, a few supporting operators are
introduced to capture the common processing steps in the positionBasics trait.

In Figure 4-22, a position is a tuple consisting of six fields. The fields are the security,
amount, income, last transaction date, open lots, and a tax documentation string of the
position. The postionBasics trait includes the income trait in Figure 4-23, which defines a
tuple named income consisting of different kinds of incomes derivable from financial security
transactions. An income is a tuple with nine fields, each recording one type of income

58

obtainable from security transactions. The fields can be conveniently classified into two
categories. First, there are fields keeping cumulative incomes: the capital gain, dividends,
and total interest of an income. Second, there are fields keeping current year incomes: the
long-term capital gain, short-term capital gain, dividends, tax interest, municipal interest,
and government interest of the income. The income trait also defines operators that codify
how the different fields of an income are adjusted by different kinds of interest payments,
dividend payments, and capital gains.

The main operators used by the position interface are the predicates for detecting
input errors and the update operators. The predicates for checking if a transaction has
encountered an error are defined separately from the operators that define the processing
of the transaction. An alternative is to mix the two. We choose to separate them to make
the specification simpler and more direct. Our specifications, of course, do not require an
implementation to have separate checking and processing steps. The separation of checking
and processing is one freedom specifiers can exploit at their convenience.

The workhorse for detecting input errors is validMatch, given in the positionMatches
trait. It takes a position and a trans, and returns true if two conditions hold. First,
the input trans must have only one lot. Second, the open lots of the position, which is a
trans_set, must contain a trans whose security and lot match those of the input trans.
While validMatch finds a match for a single lot, the operator validMatches finds matches
for all the lots given in the input transaction. The operator ensures that there is a matching
trans in the open lots of the position for each lot in the given transaction. In addition, the
amounts sold must be covered by all the lots, and if there is a partial lot, it must be the last
one. The third argument validMatches takes is a boolean value that indicates whether the
match on the last lot must be a complete lot.

An example of an update operator is updatebuy given in the position trait. It updates
a position with a transaction as follows: it increments its amount field by the amount of
the transaction, adds the new transaction to its open lots, and sets its the last transaction
date as the date of the transaction. There is an update operator for each transaction kind.

4.9 The position Interface

The specification of the position interface is given in Figure 4-24. It exports two types:
income, an exposed type, and position, a mutable abstract type. The position type is
mutable so that positions can be updated in place. It also declares a constant, maxTaxLen,
which is the maximum length of documentation strings the functions in the interface gen-
erate. The interface declares three spec variables. The spec variables, cur_year and
holding-period, hold the two constants, the current year and the holding period, needed
for updating positions. These constants are established at module initialization, by calling
position_initMod. 4 Alternatives would be to store the constants in global variables ac-
cessible to every module in the program, or to pass them as input parameters to functions
that need them. Using spec variables to specify them allows them to be encapsulated in
the module that needs them without the penalty of passing them around in function calls.
These two spec variables are most easily implemented as c static variables in the position
module.

4 LCL conventions require that if a module has an initialization procedure, the initialization procedure
must be called by its client before any other procedures of the module can be invoked.

59

position (String): trait

includes positionExchange, positionReduce, positionSell, positionTbill

introduces

isInitialized: position -+ Bool

create: String -+ position

update_buy: position, trans -+ position

update_dividends, update_interest, update_cap_dist, update_tbill_mat:

position, trans, Int -+ position % need cur_year
validMatchWithBuy: position, trans -+ Bool

totalCost: position -+ double

% formatting details, leave unspecified
position2string, position2taxString, position2olotsString: position -+ String

asserts V p, p2: position, taxl, yr: Int, t: trans, s: String

isInitialized(p) == (p.lastTransDate = null_date);

create(s) == [s], , emptyIncome, null_date, {}, empty];

validMatchWithBuy(p, t) ==

if t.kind = sell then validMatches(p, t, false)

else if t.kind = tbill_mat

then validMatches(p, t, true) A tbillInterestOk(p, t)

else if t.kind = exchange
then validMatch(p, t) A findMatch(p, t).amt > t.amt

else t.kind = cap_dist A validMatch(p, t);

totalCost(p) == if p.lastTransDate = null_date V p.amt = 0 then 0

else sum_net(p.openLots);

t.kind = buy =

update_buy(p, t) =

set_amtOlotsDate(p, p.amt + t.amt, insert(t, p.openLots), t.date);

t.kind = cash_div >

update_dividends(p, t, yr) =

set_lastTransDate(
set_income(p, incDividends(p.income, t.net, year(t.date), yr)),

t.date);

isInterestKind(t.kind) =

update_interest(p, t, yr) =

set_lastTransDate(

set_income(p, incInterestKind(p.income, t.net, t.kind, yr, year(t.date))),

t.date);

implies converts create, validMatchWithBuy, totalCost, isInitialized

Figure 4-19: position.lsl

60

positionExchange: trait

includes positionMatches
introduces

matchexchange: position, trans -* tset

updateexchange: position, trans -* position
asserts V p: position, t: trans
validMatch(p, t)

matchexchange(p, t) =
(if t.amt > findMatch(p, t).amt then delete(t, p.openLots)

else updateolots(p.openLots, t, findMatch(p, t).amt - t.amt));
(t.kind = exchange A validMatch(p, t)) =

updateexchange(p, t) =
set_amt0lotsDate(p, p.amt - t.amt, matchexchange(p, t), t.date);

Figure 4-20: positionExchange.lsl

positionMatches: trait
includes positionBasics
introduces

validMatch: position, trans - Bool
validMatches: position, trans, Bool - Bool

validAllMatches: tset, security, lotlist, double, Bool -- Bool

findMatch: position, trans - trans
asserts V amt: double, p: position, e: lot, y: lotlist, se: security,

t: trans, ts: tset, completeLot: Bool
validMatch(p, t) == matchKey(t.security, car(t.lots), p.openLots)

A length(t.lots) = 1;
validMatches(p, t, completeLot) == (t.kind = sell A t.amt = 0)

% above: selling zero shares is for special court-ordered settlements.
V (t.lots nil

A validAllMatches(p.openLots, t.security, t.lots, t.amt, completeLot));
validAllMatches(ts, se, nil, amt, completeLot) ==

if completeLot then amt = 0 else amt < O;
validAllMatches(ts, se, cons(e, y), amt, completeLot) ==

amt > 0 A matchKey(se, e, ts)

A validAllMatches(ts, se, y, amt - findTrans(se, e, ts).amt, completeLot);
validMatch(p, t) = % an abbreviation

findMatch(p, t) = findTrans(t.security, car(t.lots), p.openLots);

implies converts validMatch, validMatches, validAllMatches

Figure 4-21: positionMatches.lsl

61

positionBasics: trait

includes trans_set, date, income

position tuple of security: security, amt: double, income: income,

lastTransDate: date, openLots: tset, taxStr: String

introduces

set_amtOlotsDate: position, double, tset, date -+ position

adjust_amt_and_net: trans, double -+ trans

update_olots: tset, trans, double -+ tset

__.capGain, __.dividends, __.totalInterest, __.ltCG_CY, __.stCG_CY,

__.dividendsCY, __.taxInterestCY, __.muniInterestCY,

__.govtInterestCY: position -+ double

asserts V amt: double, p: position, yr, tyr: Int, sd: date,

t, mt: trans, ts: tset

set_amtOlotsDate(p, amt, ts, sd) ==

set_amt(set_openLots(set_lastTransDate(p, sd), ts), amt);

adjust_amt_and_net(t, amt) =
set_net(set_amt(t, t.amt - amt), t.net - ((t.net / t.amt) * amt));

update_olots(ts, t, amt)

insert(adjust_amt_and_net(t, amt), delete(t, ts));

% convenient abbreviations
p.capGain == p.income.capGain;

p.dividends == p.income.dividends;

p.totalInterest == p.income.totalInterest;

p.ltCG_CY == p.income.ltCG_CY;

p.stCG_CY == p.income.stCG_CY;

p.dividendsCY == p.income.dividendsCY;

p.taxInterestCY == p.income.taxInterestCY;

p.muniInterestCY == p.income.muniInterestCY;

p.govtInterestCY == p.income.govtInterestCY;

implies converts adjust_amt_and_net, set_amtOlotsDate

Figure 4-22: positionBasics.lsl

62

income (String, income): trait

includes kind (String, kind), genlib (String, Int)

income tuple of capGain, dividends, totalInterest, ltCGCY, stCG_CY,

dividendsCY, taxInterestCY, muniInterestCY,

govtInterestCY: double
introduces

emptyIncome: -+ income

sumincomes: income, income - income

incCYInterestKind: income, double, kind -+ income

incInterestKind: income, double, kind, Int, Int - income
incDividends: income, double, Int, Int -+ income
incCapGain: income, double, double, Int, Int -- income

% formatting details, leave unspecified
income2string, income2taxString: income -+ String

asserts V amt, t, st: double, i, i2: income, yr, tyr: Int, k: kind

emptyIncome == [0, 0, 0, 0, 0, 0, 0, 0, 0];

sumincomes(i, i2) ==

Ei.capGain + i2.capGain, i.dividends + i2.dividends,

i.totalInterest + i2.totalInterest, i.ltCGCY + i2.ltCG_CY,

i.stCG_CY + i2.stCGCY, i.dividendsCY + i2.dividendsCY,

i.taxInterestCY + i2.taxInterestCY, i.muniInterestCY + i2.muniInterestCY,
i.govtInterestCY + i2.govtInterestCY];

incCYInterestKind(i, amt, interest) ==

settaxInterestCY(i, i.taxInterestCY + amt);

incCYInterestKind(i, amt, muniinterest) ==
setmuniInterestCY(i, i.muniInterestCY + amt);

incCYInterestKind(i, amt, govtinterest) ==

setgovtInterestCY(i, i.govtInterestCY + amt);

isInterestKind(k) =

incInterestKind(i, amt, k, yr, tyr) =

(if yr = tyr
then settotalInterest(incCYInterestKind(i, amt, k),

i.totalInterest + amt)
else incCYInterestKind(i, amt, k));

incDividends(i, amt, tyr, yr) ==

setdividends(if tyr = yr then setdividendsCY(i, i.dividendsCY + amt)
else i, i.dividends + amt);

incCapGain(i, t, st, tyr, yr) ==

setcapGain(if tyr = yr
then set_ltCG_CY(setstCGCY(i, i.stCG_CY + st),

i.ltCGCY + lt)
else i, st + t);

implies converts incDividends, incCapGain

Figure 4-23: income.lsl

63

The interface also declares a boolean spec variable named seenError. The seenError
variable divides the abstract state into two: one in which at least one error has been detected
by some exported function of the interface, and one in which no error has been detected.
It is used to state invariants maintained by the interface in the absence of errors.

The position interface exports many functions, most of which are observers with sim-
ple specifications or printing routines. A few functions require brief mention. Calling
position_create with a string returns a new position object with a security that has the
string as its name. The positionreset function is similar, except that no new position
is created; it reuses the position. The observer position_is_uninitialized indicates if a
position has already been updated by a transaction.

The interface is designed with a specific processing pattern in mind: its client is expected
to process transactions in groups. Each group consists of a series of transactions that involve
the same security, and the series is ordered accordingly to the dates of the transactions, with
the earliest transaction appearing before later ones. The position_initialize function is
intended to initialize the start of a new group of transactions involving a new security. It also
updates the position with its transaction argument. There are only two kinds of transactions
that can initialize a position: a buy transaction and a newsecurity transaction. Other
transaction kinds trigger an error message. This check is useful for catching errors in user's
inputs. An initialized position can subsequently be updated by calling positionupdate
with a transaction.

Since positionupdate carries out fairly complicated processing, its specification is
large. It is, however, highly structured. It requires the implementor to check that the given
position and transaction have the same security. The ensures clause is a nested conditional;
there is a case for each kind of transaction PM is required to handle. For some transaction
kinds, additional checks need to be performed. For example, if a buy transaction is given,
the condition validMatch(pA, t) must be false, and the transaction must have a single
lot. Hence, a position can only be updated by a buy transaction if the new buy lot does
not match any of the open lots of the position. This check establishes the invariant that
the lot of a trans in the open lots of a position uniquely determines the trans.

The details of how each position should be updated are described in the various position
traits. The specification of positionupdate takes a layered approach to describing the
behavior of the function. It highlights the main checks the function must perform, makes
clear that its processing is dependent on the transaction kind, and leaves out details of
how the transaction is processed. If the reader is interested in the details, they can be
obtained from the position traits. Highlighting the details in the interface level clutters
the specification.

A different design of the position interface could have exported one function for each
transaction kind. Such a design has the advantage of breaking a big specification into
smaller pieces. The design, however, simply pushes the case analysis of transaction kinds
to clients. For the convenience of the client, the latter approach is not used.

4.10 Summary

We documented some interfaces that were used to build a useful program. We used the
interface specifications to illustrate some specification techniques used to document the
interfaces. Our techniques are complementary to those discussed in [38].

By reusing specifications from [15] in the specification of trans_set, we illustrated

64

imports transset;

typedef struct {double capGain, dividends, totalInterest, ltCGCY, stCGCY,

dividendsCY, taxInterestCY, muniInterestCY,

govtInterestCY;} income;
mutable type position;

constant nat maxTaxLen;

spec nat curyear, holdingperiod;

spec bool seenError;

uses position (cstring, income for income);

bool positioninitMod (nat year, nat hp) nat curyear, holdingperiod;

bool seenError; {

modifies curyear, holdingperiod;

ensures result A - seenError' A curyear' = year A holdingperiod' = hp;
}
position positioncreate (cstring name) {

ensures fresh(result) A result' = create(getString(nameA));
}
void positionreset (position p, cstring name) {

modifies p;

ensures p' = create(getString(nameA));
}
void positionfree (position p) {

modifies p;

ensures trashed(p);
}
bool position_is_uninitialized (position p) {

ensures result = isInitialized(p^);
}
void positioninitialize (position p, trans t) FILE *stderr; bool seenError; {

let fileObj be *stderr^;

modifies p, seenError, fileObj;

ensures p' = (if t.kind = buy

then updatebuy(create(t.security.sym), t)

else create(t.security.sym))

A if t.kind = buy V t.kind = new_security
then unchanged(fileObj, seenError)
else seenError'

A 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm));
}
security positionsecurity (position p) {

ensures result = pA.security;
}
double positionamt (position p) {

ensures result = pA .amt;

}
transset positionopenlots (position p) {

ensures fresh(result) A result' = pA.openLots, 0];
}

Figure 4-24: position.lcl, part 1

65

void position_update (position p, trans t) nat cur_year, holding_period;

bool seenError; FILE *stderr; {

let fileObj be *stderrA,

report be seenError'

A 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm)),

ok be unchanged(seenError, fileObj);

checks pA.security = t.security;

modifies p, seenError, fileObj;

ensures

if pA.lastTransDate > t.date
then report

else if t.kind = buy A - validMatch(pA, t) A length(t.lots) = 1

then p' = updatebuy(pA, t) A ok
else if t.kind = cashdiv

then p' = update_dividends(pA, t, cur_yearA) A ok

else if isInterestKind(t.kind)

then p' = update_interest(pA, t, cur_yearA) A ok

else if validMatchWithBuy(pA, t)

then if t.kind = cap_dist

then p' = update_cap_dist(pA, t, cur_yearA) A ok

else if t.kind = tbill_mat

then p' = update_tbill_mat(pA , t, cur_yearA) A ok

else if t.kind = exchange

then p' = update_exchange(pA, t) A ok
else if t.kind = sell

then p' = update_sell(pA, t, cur_yearA, holding_periodA,

maxTaxLen) A ok

else report

else report;

claims (seenError') =>

((t.kind = cap_dist = (p'.dividends > pA.dividends

A p'.totalInterest = pA.totalInterest

A p'.capGain = pA.capGain))

A (t.kind = sell =

((p'.ltCGCY - pA.ltCG_CY) + (p'.stCG_CY - pA.stCG_CY))
= (p'.capGain - pA.capGain)));

void position_write (position p, FILE *pos_file) {

modifies *pos_file;

ensures (*pos_file)' = (*pos_file)A || position2string(pA);
}
void position_write_tax (position p, FILE *pos_file) {
modifies *pos_file;

ensures (*pos_file)' = (*pos_file)A || position2taxString(pA);
}
double position_write_olots (position p, FILE *olot_file) {

modifies *olot_file;

ensures (*olot_file)' = (*olot_file)A || position2olotsString(pA)

A result = totalCost(pA);
}

Figure 4-24: position.lcl, part 2.

66

income positionincome (position p) (
ensures result = pA .income;

}
income incomecreate (void) (

ensures result = emptyIncome;
}
void incomesum (income *il, income i2) (

modifies *il;

ensures (*il)' = sumincomes((*il) ^, i2);
}
void incomewrite (income i, FILE *posfile) (

modifies *posfile;

ensures (*posfile)' = (*pos_file)A^ I income2string(i);
}
void income_writetax (income i, FILE *posfile) (

modifies *posfile;

ensures (*posfile)' = (*posfile)A II income2taxString(i);

Figure 4-24: position.lcl, part 3.

reusing existing LCL specifications. Our specification of the dateBasics trait, however, is
not as reusable as we would have liked. The trait included special indeterminate dates
that are needed in specifying our program. It suggests that specification reuse is often
rather difficult. Existing specifications may be useful to serve as conceptual models for
future specification needs, but some customizations of existing specifications are likely to
be necessary before they could be reused.

We also illustrated ways to achieve more compact and easier to understand specifications
through the use of checks clauses, constraints associated with exposed types, and a flat style
of defining LSL operators. We pointed out some common errors in writing specifications. In
particular, the distinction between the theories in the two tiers in Larch specifications needs
to be kept in mind to avoid a common class of specification errors. Many of the techniques
we described are general; they are specific neither to LCL nor Larch.

67

68

Chapter 5

Using Redundancy in
Specifications

Most uses of a formal specification assume that the specification is consistent and appro-
priate, in the sense that it states what the specifier has in mind. However, both are often
false, especially when large specifications are involved. This chapter describes a technique
for testing specifications using redundant information in specifications, called claims.

Besides using claims to help test and validate formal specifications, claims can be used
in other ways. The author of a specification can use claims to highlight important or
interesting properties of the specification. Claims can serve as useful lemmas in program
verification. They can also be used to suggest useful test cases for implementations. Our
research can also be viewed as exploring the use of formal specification to detect design
errors [13, 22, 31, 10].

We study claims in the context of LCL specifications. Our focus is on checking Larch
interface specifications; complementary work has been done on checking Larch Shared Lan-
guage specifications [8].

In the next section, we describe our approach to testing specifications. In Section 5.2,
we introduce three kinds of claims expressible in LCL and their semantics. In subsequent
sections, we describe other ways claims can be useful. We draw upon the specifications
described in Chapter 4 for examples. In Section 5.9, we describe some practical experience
we have had with verifying LCL claims. In Section 5.10, we explain why we prefer to derive
a desired property of a specification as a claim rather than specify it as an axiom. In the
last section, we summarize the chapter.

5.1 Specification Testing Approach

Like programs, specifications can contain errors. We consider two related kinds of specifica-
tion problems. First, the specification aptness problem: given a formal specification, does
the specification say what is intended? Second, the specification regression testing problem:
when a specification is changed, what can be done to minimize inadvertent consequences?

Executable specification languages are designed to address these problems by allowing
specifiers to run specifications [41]. Larch specification languages are designed to be simple
and expressive, rather than executable. In place of executing specifications as a means
of testing them, logical conjectures about the specification can be stated and checked at
specification time. A Larch specification defines a logical theory. The conjectures about

69

Larch specifications are called claims. Claims contain redundant information that does not
add to the logical content of the specification.

Our general approach of tackling the specification aptness problem is: given a formal
specification, a specifier attempts to prove some conjectures that the specifier believes should
follow from the specification. Success in the proof attempt provides the specifier with more
confidence that the specification is appropriate. Failures can lead to a better understanding
of the specification and can identify sources of errors.

Our methodology addresses the specification regression testing problem as follows: we
attempt to re-prove the conjectures that were true before the specification changed. Success
in the proof attempt reassures us that the properties expressed by the verified claims are
still valid in the new specification. Failure can help uncover unwanted consequences.

While this idea is not new [13], our work provides specifiers specific guidance on how
to find conjectures that are useful for testing specifications than earlier work. We also
strengthen this methodology by adding facilities in a specification language so that a spec-
ifier can make claims about specifications. A tool can be built to translate such claims,
together with the specifications, into inputs suitable for a proof checker. The specifier can
then verify the claims using the proof checker.

Research in the past looked at generic properties of formal specifications. Two interest-
ing and useful properties are consistency and completeness. Checking these properties is,
however, impossible in general and very difficult in practice. While we know what it means
for a logical specification to be consistent, what constitutes a complete specification is not
clear [40]. While checking for the consistency and completeness of formal specifications
is possible, it does not address the original problem we have: how do we know that the
specification describes our intent?

We take a different but complementary approach: we focus on problem-specific claims
which are frequently easier to state and prove.

5.2 Semantics of Claims

A claim in an LCL specification defines a conjecture about the logical theory of the specifi-
cation. There are three kinds of LCL claims.

First, a procedure claim expresses a conjecture that is associated with an individual
function of a module. For this purpose, LCL supports a claims clause with a function
specification, which has the same syntax as the ensures clause. An example is shown in
Figure 5-1.

nat date_year (date d) {

checks isNormalDate(d);
ensures result = year(d);

claims result < 99;

Figure 5-1: An example of a procedure claim.

The semantics of a procedure claim is given by the following schema:

(RequiresP A ChecksP A ModifiesP A EnsuresP) ClaimsP

70

where RequiresP stands for the requires clause of the function, ChecksP, the checks clause,
ModifiesP, the translation of the modifies clause, EnsuresP, the ensures clause, and
ClaimsP, the claims clause.

Sometimes, there may be a number of procedure claims associated with a single func-
tion. To avoid cluttering the specification of a function, a procedure claim may be given
in a different syntactic form. An example is given in Figure 5-2. The semantics of the
dateyearRange claim is identical to the procedure claim shown in Figure 5-1. The identi-
fier result refers to the result returned by the date_year function call in the body of the
claim.

claims dateyearRange (date d) {
body dateyear(d); }
ensures result < 99;

Figure 5-2: Alternate syntax of a procedure claim.

The second kind of claims is a module claim. A module claim of an interface is a
conjecture that an invariant holds. An invariant is a property that is maintained by the
functions of the module. Module claims can be used to make claims about invariants about
abstract types, or about properties that must hold for the private state of the module. An
example of a module claim is the lotsInvariant claim shown in Figure 5-3. The claim
is from the lot list module (in Appendix D.30) which defines lot list to be a mutable
type.

claims lotsInvariant (lotlist x) {
ensures V e: lot (count(e, x) < 1);

Figure 5-3: An example of a module claim.

The lotsInvariant claim is equivalent to the interface invariant on lotlist objects:

V x: lot.listObj, e: lot (count(e, x) < i)

The symbol is a state operator; it is analogous to the pre state operator A and the post
state operator ', but it stands for any state. The module claim in Figure 5-3 says that the
lots in a lot list form a set.

Data type induction principles can be used to show that a module claim holds for an
interface. One data type principle is described in detail in Section 7.5. The gist of the
principle is as follow. First, show that all constructors in the interface produce instances
of the type that satisfy the invariant. Second, we show that all mutators of the type in the
interface preserve the invariant. Since observers do not modify the value of instances of the
type (though they may modify the representation), they cannot affect the invariant, and
hence they are not needed in the inductive proof. Furthermore, since immutable types do
not have mutators, a module invariant about an immutable type can be established using
only the constructors.

A module claim can be translated into several procedure claims about the functions
of the module. Figure 5-4 shows the translation of the lotsInvariant module claim into

71

procedure claims involving the constructor and mutators of the lotlist module. We
support such shorthands because module claims highlight properties that are preserved
by the functions of the module. They are also more modular and robust than separate
procedure claims: adding a new constructor or mutator to the module does not require
adding the corresponding procedure claim.

lot_list lot_list_create (void) {

ensures fresh(result) A result' = nil;

claims V e: lot (count(e, result') < i);
}
bool lot_list_add (lot_list s, lot x) {

requires V e: lot (count(e, s") < 1);

modifies s;

ensures result = x E sA A if result then unchanged(s) else s' = cons(x, SA);

claims V e: lot (count(e, s') < 1);

}
bool lot_list_remove (lotlist s, lot x) {

requires V e: lot (count(e, sA) < i);

modifies s;

ensures (result = x E sA) A - (x E s)
A V y: lot ((y E sA A y != x) = y E s');

claims V e: lot (count(e, s') < 1);

}

Figure 5-4: Translating a module claim into procedure claims.

Module claims that are properties about the private state of a module can be similarly
proved by module induction. The basis case of the induction involves the initialization
function of the module, and the inductive cases involve the functions that modify the
private state.

The third kind of claim is an output type consistency claim, or an output claim for short.
An output claim is a procedure claim about an output result, with abstract type T, of a
function F in a module that imports the module defining T. An output claim states that
an output result of a function satisfies the invariant associated with the type of the output
result.l Output claims are necessary consistency conditions associated with the types of
output results of a function. Figure 5-5 shows an example of an output claim about the
translots function of the trans module.

claims translots lotsInvariant;

Figure 5-5: An example of an output type consistency claim.

The claim says that the output of translots, a lotlist value in the post state, must
satisfy the lotsInvariant module invariant. If we expand the claim into a procedure claim,
it would look like:

lot_list translots (trans t) {

1In Chapter 2, we define the output results of a function to include its returned value (if any), and any
object, be it an input, a spec or a global object, listed in the modifies clause of the function.

72

ensures result' = t.lots A fresh(result);
claims V e: lot (count(e, result') <);

A key difference between the output claim and the above procedure claim is that the former
relies on the implicit definition of the lotsInvariant module claim. If the module claim
changes, the meaning of the output claim changes in tandem. 2

In the next few sections, we show the different ways LCL claims can be used.

5.3 Claims Help Test Specifications

To study how claims can be used to help test interface specifications, we carried out a
small verification exercise. We manually translated the position interface specifications
and claims into inputs suitable for LP, a proof checker [7]. We formally verified parts of
the amountConsistency and noShortPositions claim in Figure 5-6 using LP, and in the
process, discovered several errors in the specification. In this section, we characterize the
kinds of errors we found and describe a few of the errors to illustrate how claims verification
helped us uncover errors in specifications. The specifications in Appendix D give other useful
claims.

claims amountConsistency (position p) bool seenError; (
ensures (seenError~) => p.amt = sumamt(p.openLots);

claims noShortPositions (position p) bool seenError; {
ensures (seenError~) = p.amt > O;

Figure 5-6: The amountConsistency and noShortPositions module claims.

The amountConsistency claim shown in Figure 5-6 states that the amount of a position
is the total of the amounts of the transactions in its open lots. The proof of the claim requires
an induction. The basis step consists of showing that the position object created by the
position_create function satisfies the invariant. The inductive steps consist of showing
that the following mutators of position objects preserve the invariant: position-reset,
positioninitialize, and positionupdate. The noShortPositions claim states that a
position must not have negative amounts.

The errors we encountered in our specification fall into two broad kinds. First, there are
errors in stating the claims themselves. This kind of error often results from an inadequate
understanding of the specification. Some conjectures we stated as claims were false. When
they were discovered, they led us to reformulate the claims, and sometimes to change our
specification. Second, there are errors in the specification itself. There are three classes
in this kind of errors. The first class are generic modeling errors in which inappropriate
common data types are chosen to model application domain objects. The second class are
omission errors where we did not specify some necessary conditions that were intended. The
third class are commission errors where we simply stated the wrong axioms.

2 We assume that the module claim specified in an output claim expresses an invariant of the type of the
output of the function given in the output claim.

73

The various kinds of errors we uncovered can also occur in informal program specifica-
tions and other specification languages. They occur as a result of human errors, especially
in the presence of specification evolution.

Next, we describe a number of errors we encountered in our proofs of claims to illustrate
the different kinds of errors, and the contexts in which the errors arose.

5.3.1 Examples of Specification Errors

One of the first errors we uncovered lies in the statement of the claim itself. In the faulty
specification, we did not introduce the spec variable seenError, and our initial claim was

claims amountConsistencyOld (position p) bool seenError; {
ensures p.amt = sum_amt(p~.openLots);

}

The proof failed in the cases where an error occurred and the value of the position object in
the post state was not guaranteed by the specification. To correct the error, we introduced
the spec variable seenError to restrict our claim to non-erroneous states. An alternative
is to strengthen the specifications so that the position object is unchanged if an error
occurs. The latter solution is likely to force the implementor to check for input errors
before modifying the position object. Since the user of the PM program does not rely on
the results of the program if an error occurs, this approach is considered inefficient. The
error in the amountConsistency claim helps highlight the program requirement that we
care about the invariant only if no input errors occur. Errors in the claim statement itself
often help us better understand the impact of our specifications.

A modeling issue in our specification is highlighted by the failure to prove the amount
consistency claim. We initially used the handbook trait FloatingPoint to model the c
double type. The proof of the claim requires the commutative and associative laws of
floating point numbers. The addition and multiplication of floating point numbers, how-
ever, may not be associative. The lack of such numeric properties make formal reasoning
difficult. A careful modeling of double using floating point arithmetic is appropriate if we
are interested in the exact precision it offers us. Our intent is, however, more modest. The
precision requirements of our program are sufficiently met by the double precision of most
computers today. Hence, the Rational handbook trait is used to model the double type
instead.

An example of an omission error appears in the specification of positionupdate in
Figure 5-7. In the ensures clause, a buy transaction must have a lot that does not match
the open lots of the position. In our formal proof, we discovered that an additional check
is necessary: the transaction must have a single lot. The correction consists of adding the
check length(t.lots) = 1 to the buy case of positionupdate as sketched below:

if p.lastTransDate < t.date

then if t.kind = buy A - validMatch(pA, t) A length(t.lots) = i
then p' = updatebuy(pA, t) A ok

The discovery of the length check omission prompted us to re-examine the specification of
the trans_set interface where a similar matching check was made in the transset_insert
function. We found a similar omission there, and corrected it. This example illustrates how

74

void positionupdate (position p, trans t) nat curyear, holdingperiod;

bool seenError; FILE *stderr; {
let fileDbj be *stderr,

printErrorMsg be 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm)),
report be seenError' A printErrorMsg,
ok be unchanged(seenError, fileObj);

checks pA.security = t.security;
modifies p, seenError, fileObj;
ensures

if pA .lastTransDate > t.date

then report

else if t.kind = buy A - validMatch(pA, t)
then p' = update_buy(pA, t) A ok
else if t.kind = cash_div

then p' = updatedividends(pA, t, cur_year) A ok
else if isInterestKind(t.kind)

then p' = updateinterest(pA, t, cur_yearA) A ok
else if validMatchWithBuy(pA, t)

then if t.kind = capdist

then p' = updatecapdist(p^, t, curyearA) A ok
else if t.kind = tbillmat

then p' = updatetbillmat(p̂ , t, curyear) A ok
else if t.kind = exchange

then p' = update_exchange(pA, t) A ok
else if t.kind = sell

then p' = updatesell(pA, t, cur_year, holding_periodA,
maxTaxLen) A ok

else report
else report;

Figure 5-7: A faulty version of positionupdate specification.

the discovery of one error can have the desirable cascading effect of helping us find other
similar errors.

A source of common specification errors occurs in copying and editing specifications
that are similar. We often start the specification of a transaction by copying the specifica-
tion of a similar kind of transaction, and editing the copy. Sometimes, the similarities are
misconceived. We encountered a case in point in the specification of the exchange trans-
action. A valid exchange transaction must pass a check: its amount must not exceed the
matching transaction in the open lots of the position. This check was originally omitted
in our specification because we originally specified the exchange transaction by copying the
specification of the sell transaction and editing it. A sell transaction handles multiple lots
and hence the amount of the transaction can exceed a single matching transaction in the
open lots of the position. Unlike a sell transaction, an exchange transaction handles only a
single lot, and hence the check on the amount of the transaction is needed.

We discovered a subtle logical error during the proof process. It illustrates how subtle
logical errors can sometimes escape human inspection of specifications but can be detected
in a machine-checked proof. The exact details of the context in which the specification

75

error occurred are complicated to describe because it occurred in a previous version of
the position trait which is quite different from the current version. The specific details
are, however, unimportant. The gist of the specification error was the mis-statement of an
axiom. We stated an axiom of the form:

V p:position, t:trans (Q(p, t) 4: R(p, t, 0))

when what was intended was:

V p:position, t:trans (Q(p, t) X V hp:int (R(p, t, hp))

The mistake was discovered during the proof when an instantiation for the hp variable was
needed, but the given definition of Q could only work with hp equals to 0.

The various kinds of errors we encountered were uncovered when we verified claims. It
was often not difficult to figure out where and what the error was. Their discoveries suggest
that claims verification can help uncover common classes of specification errors.

5.4 Claims Help Specification Regression Testing

With changes in program requirements and improved understanding of the problem domain,
specifications change over time. Some changes have little impact on the central properties
of a specification, some may introduce unintentional changes, and others introduce intended
changes. The exact impact of a specification change is, however, often difficult to appreciate
because different aspects of a specification may be intricately related. The meaning of a
specification can change dramatically and subtly if the specification is modified slightly.
It is desirable for specifiers to have a better appreciation of the impact of specification
changes. Our approach for testing specifications extends naturally into regression testing
of specifications, as described in Section 5.1.

Errors get introduced as specifications evolve. Many careless errors occur because local
changes are not propagated throughout the specification. We encountered a simple example
in the specification of position_update. The specification of the validMatchWithBuy op-
erator used in an old version of the specification of positionupdate is given in Figure 5-8.
The relevant part of the old specification of positionupdate is given in Figure 5-9. When
the specification of positionupdate was modified so that the validMatchWithBuy opera-
tor was used to guard capital distribution transactions in addition to sell, exchange and T
bill maturity transactions as given in Figure 5-10, the specification of validMatchWithBuy
in Figure 5-8 was, unfortunately, not updated. The mistake, however, was discovered
easily during the proof of the noShortPositions claim (shown earlier in Figure 5-6).
Such careless mistakes are common as specifications evolve. The corrected definition of
validMatchWithBuy operator is given in Figure 5-11.

We believe output type consistency claims are useful for detecting ramifications of spec-
ification changes across modules. For example, the output claim about transilots in
Figure 5-5 relies on the lotsInvariant module claim in Figure 5-3. The module claim is,
in turn, dependent on the specifications of the functions exported by the lot list module
since its proof requires a data type induction on the lot-list type. If any specification in
the lotilist module changes in a way as to strengthen the lotilist invariant, and if the
change is reflected in the definition of the lotsInvariant module claim, the specification
of trans lots may not be strong enough to guarantee the new invariant. For example,
if the lotsInvariant module claim is strengthened to require that lotlist's be sorted,

76

validMatchWithBuy(p, t) ==

if t.kind = sell then validMatches(p, t, false)

else if t.kind = tbillmat
then validMatches(p, t, true) A tbillInterestOk(p, t)

else t.kind = exchange A validMatch(p, t) A (findMatch(p, t).amt > t.amt)

Figure 5-8: An old definition of validMatchWithBuy trait operator.

void positionupdate (position p, trans t) nat cur_year, holdingperiod;

ensures

if p^.lastTransDate > t.date

then report

else if t.kind = buy A - validMatch(pA, t)

then p' = updatebuy(pA, t) A ok

else if t.kind = cashdiv
then p' = updatedividends(pA, t, curyearA) A ok

else if isInterestKind(t.kind)

then p' = updateinterest(pA, t, curyear") A ok

else if t.kind = capdist

then p' = updatecapdist(pA, t, cur_year") A ok

else if validMatchWithBuy(pA, t)

then if t.kind = tbillmat

then p' = updatetbillmat(pA, t, curyear A)

else if t.kind = exchange

then p' = updateexchange(pA, t) A ok
else if t.kind = sell

then p' = updatesell(pA, t, curyear", holdi:
maxTaxLen) A ok

A ok

ngperiod,

else report

else report;

Figure 5-9: An old version of position-update specification.

as in Figure 5-12, and if the specifications of lot list insert and lotilistdelete are
changed so as to maintain the new invariant, the proof of the output claim will fail, and
alert the specifier to the inconsistency. It signals to the specifier that some changes in the
trans module may need to accompany the changes in the lot-list module.

5.5 Claims Highlight Specification Properties

Claims are a useful design documentation tool. Claims can highlight important, interesting,
or unusual properties of specifications. There are infinitely many consequences in a logical
theory. Most of them are neither interesting nor useful. It can be difficult for readers of a
specification to pick up the important or useful properties of the specification. Specifiers
can use claims to highlight these properties. Readers of a specification can use them to
check their understanding of the specification.

There are many detailed requirements about the behavior of a program. Some are more

77

void position_update (position p, trans t) nat cur_year, holdingperiod;

ensures

if pA .lastTransDate > t.date

then report
else if t.kind = buy A - validMatch(pA, t) A length(t.lots) = 1

then p' = updatebuy(pA, t) A ok

else if t.kind = cashdiv

then p' = updatedividends(pA, t, curyearA) A ok

else if isInterestKind(t.kind)

then p' = updateinterest(pA, t, curyear") A ok

else if validMatchWithBuy(pA, t)

then if t.kind = cap_dist

then p' = updatecapdist(pA, t, curyearA) A ok

else if t.kind = tbillmat

then p = updatetbill_mat(pA, t, curyearA) A ok

else if t.kind = exchange

then p' = updateexchange(pA, t) A ok

else if t.kind = sell

then p' = updatesell(pA, t, curyearA, holdingperiodA,

maxTaxLen) A ok
else report

else report;

Figure 5-10: The corrected version of positionupdate specification.

important than others. For example, in the design of the PM program, a key requirement is
to check for errors in the input of the user. This is embodied in two central program con-
straints. First, the program should not allow the user to sell short, that is, to sell securities
that the user does not own. Second, the cost basis of a security should not go below zero.
The second constraint is useful because the amount of a capital distribution may exceed
the cost basis of the security it is reducing. The excess should be recorded as dividends for
tax purposes. These properties are expressed as the noShortPositions and okCostBasis
claims in the position module, shown in Figure 5-13. The noShortPositions claim is the
same as that given in Figure 5-6; it is reproduced here for convenience.

Claims can also be used to highlight unusual properties in the design of a module. For
example, the date module adopts a special interpretation of a two-digit representation of a
year: it interprets any number over fifty as the corresponding year in the current century,

validMatchWithBuy(p, t) ==

if t.kind = sell then validMatches(p, t, false)

else if t.kind = tbillmat

then validMatches(p, t, true) A tbillInterest0k(p, t)

else if t.kind = exchange

then validMatch(p, t) A (findMatch(p, t).amt > t.amt)

else t.kind = capdist A validMatch(p, t);

Figure 5-11: The corrected definition of validMatchWithBuy trait operator.

78

claims lotsInvariant (lot-list x)

ensures sorted(x) A V e: lot (count(e, x) = 1);

Figure 5-12: A new invariant on the lotlist module.

claims noShortPositions (position p) bool seenError; {

ensures (seenError) = p.amt > 0;

claims okCostBasis (position p) bool seenError; {

ensures (seenError~) = (V t: trans (t E p.openLots = t.price > 0));

Figure 5-13: Claims express key program constraints.

and any positive number under fifty as the corresponding year in the next century. This
unusual interpretation is expressed in the assumeCentury module claim shown in Figure 5-
14. The claim says that for normal dates, the date "0/0/50" represents the smallest date,
and the date "12/31/49" represents the largest date.

claims assumeCentury (date d) {
ensures isNormalDate(d) = ((string2date("0/0/50") < d)

A (d < string2date("12/31/49")));

Figure 5-14: The assumeCentury module claim in the date interface.

The boundary conditions of a specification are an important class of specification prop-
erties. They are useful for highlighting the limits of the intent of a specification. For
example, for a property about an indexing structure, such as an array, we consider if there
is an off-by-one error in indexing. For collection types, we ask if a delete operation removes
one element or all matching elements. For functions that produce output, we make claims
about the specific length of the output produced to catch mistakes of not counting newlines
and spaces needed for formatting.

Claims can highlight the essence of a specification without giving too much detail. For
example, a capital distribution transaction updates a position in a complicated way. The
salient feature of the transaction, however, is simple: a distribution reduces the cost basis
unless the cost basis is already zero. The feature is expressed as the distributionEffect
claim in Figure 5-15.

Claims can be used to offer different views of the implications of a specification. For
example, the specification of the position module describes how a position is changed by
the different transaction kinds. The openLotsUnchanged claim in Figure 5-16 tells of the
situations under which the open lots of a position do not change.

Instead of focusing on how a position is changed by a transaction kind, the claim is
about how a specific property of the position is left unchanged by different transaction
kinds. By giving the reader of the specification different views of the same specification,
the intent and implications of the specification can be reinforced.

79

claims distributionEffect (position p, trans t) bool seenError; {

requires p^.security = t.security A t.kind = cap_dist;

body { positionupdate(p, t);}

ensures ((findMatch(pA, t).net 0) A - (seenError')) =>

(findMatch(p', t).net < findNatch(pA, t).net);
}

Figure 5-15: The claim about distribution effects in the position interface.

claims openLotsUnchanged (position p, trans t) bool seenError; {
requires t.kind = cashdiv V isInterestKind(t.kind) V t.kind = new_security;

body { positionupdate(p, t); }

ensures - (seenError') = p'.openLots = pA.openLots;
}

Figure 5-16: The openLotsUnchanged claim in the position module.

5.6 Claims Promote Module Coherence

A well-designed module is not an arbitrary collection of functions needed to support some
clients. There are often invariants that are maintained by the functions in the module.
Such invariants can be stated as claims, and proved to hold from the interfaces of the
exported functions. Organizing a module around some useful or interesting claims promotes
the design coherence of the module. It makes the designer focus more on overall module
properties, less on specific operations to meet particular client needs.

An important constraint the PM program enforces is expressed as an invariant in the
trans interface. It appears as the buyConsistency claim in Figure 5-17. It ensures that
the net, amount, price of a buy transaction are non-negative, and that the amount must
also be non-zero. It also requires that there is a single lot in a buy transaction, and that
the product of its price and its amount is sufficiently close to its net.

claims buyConsistency (trans t) {

requires t.kind = buy;
ensures t.net > 0 A t.amt > 0 A t.price > 0 A length(t.lots) = i

A withinl(t.amt * t.price, t.net);
}

Figure 5-17: The buyConsistency module claim in trans interface.

The transaction module of the original PM program provided a trans_set-net function
that sets the net field of a transaction to a given value and a trans_set_amt function
that changes the amount field of a transaction. 3 Since the net and the amount fields of
a transaction can be set to arbitrary values using these functions, the invariant expressed
by buyConsistency could not be maintained. It turned out that the operations supported
by the original transaction module were too general: all actual uses of these two functions

3As indicated in Chapter 4, our specifications were developed in the process of reengineering an existing
program.

80

in the original PM program allowed the desired invariant to be maintained. In fact, one
of them maintained it explicitly, with calls to adjust the net and the amount fields of a
transaction in tandem.

The new PM program uses a more coherent design, which replaces the two functions in
the module by a trans_adjust-net function that adjusts the net of the transaction together
with its price, and a transadjustetand_amt function that adjusts the net and amount
of a transaction together, both maintaining the intended invariants.

Claims also helped us improve the design coherence of the position module. In the
module, we specified the constraints that must hold between the different fields of a position
as claims, such as the amountConsistency claim. The claim led us to learn that the original
program was using a position in two different ways. First, a position was used to record
the incomes due to the transactions of a single financial security. In this use, a position had
book-keeping information such as the total number of shares of the security currently owned
by the PM program user. Second, a position was used to accumulate the sum of the different
kinds of incomes of all securities owned by the user. The original position module supports
this second use by exporting a function named position-sum which takes two positions and
added the different kinds of income from the second position into the respective kinds of
income in the first position. In this second use, the book-keeping properties of a position
were irrelevant. These properties include the name of the security, the last transaction date,
the number of outstanding shares, and the open lots of a position.

To ensure that the positionsum function maintained the amountConsistency claim
would force us to over-specify the behavior of positionsum. For example, we would require
that in the post state, position-sum ensures that the amount and the open lots of the first
position remained unchanged. Another arbitrary choice is to sum up the amounts and to
union the open lots of the two positions. Either choice is arbitrary because the clients of
positionsum do not rely on these properties of positions. Furthermore, we intended the
claim to apply only to positions that represent individual securities. It was clear then that
a better design is to separate the two uses of the position module. The new program
codified the position module for the first use, and added a separate income abstraction to
capture the second use.

5.7 Claims Support Program Reasoning

If a claim about a specification has been verified, it states a property that must be true
of any valid implementation of the specification, since the specification is an abstraction
of all its valid implementations. As such, claims can sometimes serve as useful lemmas in
program verification. In particular, claims about a module can help the implementor of the
module exploit special properties of the design.

claims transsetUID (transset s) {
ensures ti: trans, t2: trans

((tl E s.val A t2 E s.val A tl.security = t2.security
A tl.lots = t2.1ots) = tl = t2);

Figure 5-18: The transsetUID module claim.

For example, the specification of transset_delete-match in the transset module

81

requires that all matching transaction be removed from the input set. An implementation
strategy can rely on the transsetUID module invariant maintained by the interface: there
can only be one matching transaction in a transaction set. The claim is shown in Figure 5-18.
This means that we can stop searching for more matching transactions as soon as the first
one is found. The program optimization strategy is applicable to different implementations,
but each of them will have to rely on a lemma that is derived from the specification of
transset interface: the trans-setUID module claim. If the module claim has already
been proved, the verifier of the delete function can simply use it as a lemma. The example
also indicates that claims can help suggest optimizations to the implementor of an interface.

Claims that would be useful for formal program verification can be used for informal
program reasoning. Our description of an optimizing implementation of the set delete
function in the previous example is informal and uses the transsetUID claim. Another
example is found in the implementation of the position_write function, which writes the
fields of a position to an output file. In the original PM program, the function printed the
position only after it checked that the position had a strictly positive amount. Otherwise, it
printed an error message indicating that the position was short. In the new implementation,
the check is redundant because the amountConsistency claim in the position module
guarantees the amount of a position to be strictly positive. The new design has moved
the check to the place where the position is modified rather than where it is observed.
Reasoning about the invariant helps assure us that the check is redundant, and leads to the
removal of the check.

5.8 Claims Support Test Case Generation

When claims specify important properties of a specification, these are likely to be properties
that should be checked in an implementation. Hence, claims can be used to motivate test
cases. For example, the assumeCentury claim in Figure 5-14 suggests the creation of a
test case that can detect when the special year interpretation is violated: each normal date
should be after or equal to "0/0/50" and before or equal to "12/31/49". Figure 5-19 shows
some c code that codifies the test case. Similarly, the dateformats claim in Figure 5-20
explicitly lists some boundary cases for acceptable and invalid date formats.

bool testDate (date d) (
date minD, maxD;
date_parse("0/0/50", "", &minD);

date_parse("12/31/49", "", &maxD);

return (is_null_date(d) |j dateisLT(d) II
((datesame(d, minD) || date_is_later(d, minD)) &&

(date_same(d, maxD) j| date_is_later(maxD, d))));
}

Figure 5-19: A test case motivated by the assumeCentury module claim in the date interface.

5.9 Experiences in Checking LCL Claims

Our methodology encourages specifiers to check claims. Claims, however, are also useful
as design documentation. Even if claims are not checked, they help the readers of a spec-

82

I

claims dateformats (void) {

ensures okDateFormat ("0/0/93") A okDateFormat("1/0/93")

A - (okDateFormat("13/2/92") V okDateFormat("1/32/92")
V okDateFormat("1/2") V okDateFormat("1/1/1993"));

}

Figure 5-20: The date-formats module claim in the date interface.

ification understand the design of the specification. They also make it more likely that
specification errors will be found and detected. If resources permit, however, claims should
be checked so that specification errors can be uncovered and fixed earlier in the program
development process.

In this section, we report our experiences in verifying LCL claims using LP [7]. We
discuss how our claims methodology can be scaled up, and the kind of tools needed to
better support claims verification.

5.9.1 Assessment

Formally verifying claims with a proof checker is tedious and difficult. We have found that
while many proof steps are easy and quick, a few are difficult and slow. The difficulty
often arises from our inadequate understanding of the implications of the specification.
The key benefit of verifying claims seems to be in gaining a better understanding of our
specification. As a result of the better understanding, we are able to uncover mistakes
and propose corrections to the specification, thus enhancing its quality. We have given
examples of the kinds of specification mistakes we found by formally verifying claims about
specifications. They show that formally verifying claims can detect common classes of
specification errors.

Given that formal verification of claims requires substantial effort, is it useful to check the
claims informally, without the use of a proof checker? In a separate (informal) experiment,
we checked two module claims of the specification of an employee data base example in [14]
carefully by hand, without verification tool support. We found one error in the specification
[34]. We believe that most of the mistakes we found in the specification of PM can also be
found by meticulous informal claims checking. However, most of them are unlikely to be
uncovered by casual inspection.

There is a spectrum of efforts in checking claims informally, ranging from casual inspec-
tion to meticulous hand proofs. Informal claims checking by casual inspection is unlikely
to uncover the inappropriate choice of modeling floating point numbers using a floating
point trait. A casual inspection is likely to wrongly assume that floating point numbers are
commutative and associative in proofs. At the other end of the effort spectrum, meticu-
lous informal claims checking is just as tedious and expensive as, if not more tedious and
expensive than, claims verification with a proof checker.

We believe that the value of formal claims verification lies in the proof replay during
regression testing of specifications. Specifications evolve, and when they do, we would want
to re-check claims. Verification with the help of a proof checker reduces the effort needed
to re-check claims. Re-checking of claims is very tedious and error-prone without a proof
checker.

83

5.9.2 Modularity of Claims

An important issue about the claims methodology relates to its modularity and scalability.
Claims are designed to be modular. They are conjectures about the local properties of
a small group of modules. A procedure claim is about the local property of a function.
A module claim asserts an invariant about a single module. The proof of a module claim
depends only on the constructors and mutators of the module, which is often a small fraction
of the functions of the module. Furthermore, we expect the size of the module to be small,
on the order of tens of functions. The number of outputs produced by a function is relatively
small. Hence, the number of modules an output claim can span is also small.

The size of the proof of a claim often depends on the size of the claim. We can often
break a large claim into smaller parts. There is a limit to how useful a complicated claim
will be as it reaches our limit to understand it. As such, we do not expect the size of a
claim to pose a problem.

The most important factor with respect to proof feasibility, however, is the size of the
axiomatization the proof of a claim needs. It is limited by the size of the axiomatization of
the modules involved in the claim. The underlying LSL axiomatization of an interface can
be large. For example, the position module in the case study corresponds to about nine
hundred axioms. The size can pose a problem for some proof checkers.

While the size of a module may be big, often only a tiny fraction of the axiomatization
is actually needed in a proof. For example, many of the axioms in the position module
define operators on dates and how to parse a string into a transaction. They are not needed
in the proof of the amountConsistency claim. An operator often appears in the proof of
a claim as a condition in a case split. For example, the comparison operator on dates, _
> __: date, date -+ Bool, appears in the specification of positionupdate, and hence
in the proof of the amountConsistency claim. Its definition, however, is not needed in the
proof. In the case split of the proof, we do not need its definition to show that it is true,
we simply consider both when it is true and when it is false.

It is often useful to remove axioms not needed in a proof because the performance
of some theorem provers may degrade in their presence. The human verifier often has a
reasonably good idea about which sets of axioms are not likely to be useful in a proof. For
example, in the proof of amountConsistency, axioms from the date, string, security,
char, and lot traits are not needed. The removal of these traits and other traits supporting
them reduced the number of axioms by a quarter and quickened the proof by an eighth.
There are still, however, many axioms that are useless for the proof. To cut down the size
of the axiom set further requires substantially more effort on the part of the human verifier.
It would be far better if the verifier does not have to be concerned with this level of detail.
We will return to this issue in a later discussion on the kind of mechanical prover support
our methodology requires.

An attendant issue in claims verification is whether verified claims can be useful in
subsequent proofs of other claims. Since LCL specifications are translated into a logical
theory, they enjoy the nice properties of a logical theory: conjectures that have been proved
can be used in other proofs, and proofs can be structured modularly through the use of
lemmas.

84

5.9.3 Support for Proving Claims

There are two tools that can help in claims verification. The first is a verification condition
generator. For example, a program that translates LCL specifications and claims into LP

proof obligations, called c121p, could remove the tedium of hand translation and reduce
human translation errors. In the interest of research focus, we did not build such a translator
since it is clear how it can be done. For example, the mural system [20] generates proof
obligations corresponding to claims about VDM specifications. 4

The second tool that can help in claims verification is a proof checker. The requirements
imposed on a proof checker for verifying claims in realistic specifications are more demanding
than those intended for smaller axiom sets. The following facilities in a proof checker are
important to support the checking of claims.

Proof Control: A claims verifier needs good facilities to control the proof process. Since
the key goal of verifying claims is testing specifications, the user must have control over the
proof steps. A proof checker that takes short proof steps each time is important because
proof failures are common. An automated prover often tries too hard and fails after a long
search. In this regard, LP is good for verifying claims because each LP proof step tends to
terminate quickly.

Theory Management: As we have discussed earlier in the section, a realistic specification
often has a large number of axioms, but the proof of a claim often requires a small fraction
of them. Unfortunately, we cannot predict automatically the operators whose definitions
are needed in the proof of a claim until the proof is done. This means that a proof checker
must be able to handle a large database of axioms, many of which are passive throughout
a proof. Their presence must not degrade the performance of the prover.

It is also essential for the user to have control over the expansion of axioms. For example,
in a rewrite-based prover, axioms may be expanded into forms that are unreadable and
difficult to use. For small specifications, the axiom readability problem seldom arises. For
realistic specifications, they are the norm.

Common Theories: We believe that a large part of the specifications of many realistic
programs is not complicated. They use simple data structures such as tuples, enumera-
tions, sets, and mappings to model their application domains. They build on well-known
arithmetic theories. A proof checker should be able to reason about such data structures
efficiently and without assistance from the user. A proof checker should have support for
reasoning about simple arithmetic. Substantial proof effort and tedium can be reduced with
special facilities for reasoning about such common theories.

The translation of the position interface specification produces an axiomatization in
which a significant number of axioms are about basic facts of arithmetic and sets. Most of
the domain-specific data structures are modeled using tuples, enumerations, and sets. In
the position specification, they amount to more than a third of the LP axioms. Our proofs
in LP are burdened by the need to supply and prove simple lemmas about tuples, sets,
and linear arithmetic. About one-eighth of the position specification are axioms related to
linear arithmetics, partial orders, and transitivity. Built-in specialized decision procedures
for these theories will help in claims verification.

4 Works in traditional program verification requires a verification condition generator [17] that is more
complicated than what is needed in checking specification claims.

85

Proof Abstractions: The proofs of different invariants about a single module have a
similar outer proof structure because the sub-parts of the proof obligation corresponding to
an invariant are derived from the constructors and mutators of the module. They are the
same for a given module, no matter what the invariant is. After completing the proof of
a module invariant, it is useful to reuse the proof structure for proving other invariants of
the module. Similarly, some changes in a specification may be captured by a change in the
abstraction of the proof structure, rather than individual proofs.

While the reuse of the outer proof structure can be achieved by a program like Ic12lp
which generates the proof obligations corresponding to a claim, the proof steps within the
outer structure may benefit from proof procedure abstractions too. Some theorem provers
provide proof methods, or tactics [11], to allow proof procedures to be abstracted and reused.
Such facilities can help capture the inner structures of the proofs of module invariants and
support their reuse.

Proof Robustness: Unlike well-known mathematical theorems and theories, claims and
specifications evolve. Support for regression testing of proofs is hence more important for
claims checking than it is for checking well-known mathematical theorems. A robust proof
is one whose successful replay does not depend on incidental aspects of the axiomatization.
For example, a robust proof should not depend on the order of presentation of the axioms
to the prover, and it should not depend on prover-generated names that are not guaranteed
to be context-independent. The order of axioms has no semantic logical consequences, and
prover-generated names are implementation details that should have no semantic impact.
A robust proof is stable, and its performance is predictable.

5.10 Claims or Axioms?

There is an alternate style of LCL specifications in which the desired invariants of a module
are stated as axioms of the module. Our LCL language does not support a construct that
allows invariants be given as LCL axioms of a module. If it did, the property stated by
a module claim could have been given as an LCL axiom, rather than derived from the
specifications of the module. Even without a means of stating axioms directly at the LCL

level, a type invariant can often be given via an LSL trait by stating it as a property of
the sort that represents the type. For example, the lotsInvariant module claim in the
lot ist interface can be stated as the following LSL axiom in the lot-list trait:

V x: lotlist, e: lot (count(e, x) < i)

Stating the invariant as an axiom, whether at the LSL level or the LCL level, however, can
easily lead to inconsistencies. For example, if the lot ist_add function in the lot-list
interface were to omit the membership check, the specification would be inconsistent. The
inconsistency cannot be easily detected, producing a specification which is less robust. Con-
sideration about specification robustness led us to derive the property about the lot list
type as a data type invariant. The module claim is also useful for identifying unintended
logical consequences when changes are made to the module.

5.11 Summary

We have introduced the concept of claims to support semantic analysis of formal specifi-
cations. Claims are logical assertions about a specification that must follow semantically

86

- _ _ _ __ - ____ _ __ __ -.. --

from the specification.
Using LP to verify claims has helped to uncover errors in specifications. Some of these

errors are not easily detected by inspection. Hence, redundant information in formal spec-
ifications is useful for removing errors in the specifications.

The claims in the case study illustrate the use of claims as a documentation tool for
highlighting interesting and unusual properties of specifications. Claims can also be used to
support program reasoning, and help generate test cases. These uses also suggest specific
sources for motivating problem-specific claims for a given specification.

Through examples in the case study, we provided specifiers some practical guidelines for
using claims to improve specifications.

87

88

Chapter 6

Reengineering Using LCL

Many existing programs are written in programming languages that do not support data
abstraction. As a result, they often lack modularity. It is difficult and expensive to maintain
or extend such legacy programs. One strategy is to abandon them and build new ones, but
this strategy is often not cost-effective. An alternative is to improve the existing programs
in ways that make their maintenance easier.

Chapter 3 described how LCL is designed to support a style of c programming based on
abstract types. Chapter 5 describes how claims can be used to highlight important design
properties, support program reasoning, and promote design coherence of software modules.

In this chapter, we discuss how we apply the ideas in Chapter 3 and 5 to reengineer the
original PM program into the version described in Chapter 4. The process of improving an
existing program while keeping its essential functionality unchanged is termed reengineer-
ing. The kinds of program improvement we consider here are primarily aimed at making
programs easier to maintain and reuse.

In the next section, we describe a specification-centered reengineering process model. In
Section 6.2, we describe the effects of applying the process to reengineer the PM program
using LCL. In Section 6.3, we categorize the impact of the reengineering process on the
quality of the PM program. In the last section, we summarize this chapter.

6.1 Software Reengineering Process Model

The high-level goal of our reengineering process is to improve an existing program in ways
that make its maintenance and reuse easier, without changing its essential functionality.
Our process addresses three aspects of program improvement. First, we aim to improve the
modularity of the existing program. This means re-structuring the existing modules of the
program so that they are more independent of each other. By module independence, we
mean that the implementation of a module can be changed without affecting its clients as
long as the specification of the module remains unchanged.

Second, we formally document the behaviors of program modules. The specifications
serve as precise documentation for the modules. Specifications play two crucial roles in
software maintenance. One, the specification of a module forces the clients of the module
to use the module without relying on its implementation details. Two, it clearly defines
the kinds of program changes that must be considered when a module is modified. If
the modification causes the specification of the module to change, then the impact of the
specification change on all the clients of the module must be considered, and the effects of

89

Figure 6-1: Specification-centered software reengineering process model.

the change may propagate to indirect clients. On the other hand, if the modification to a
module does not affect the specification of the module, then the clients of the module need
not be considered since they can only rely on the specification of the module. Without
specifications, we must consider the effects of the modification on all the clients of the
module.

Third, we highlight important properties of various program modules. Such information
can help the implementor of a module reason about the correctness of the implementation
of the module. It can also guide the designer of the module towards more coherent module
designs. Furthermore, it aids in the reuse of the module by highlighting some implicit design
information of the module.

Our reengineering process model is depicted in Figure 6-1. An oval in the figure is a
step in the process, and an arrow shows the next step one may take after the completion of
a step. We outline the steps of the process below.

1. Study the existing program: First, we learn about the requirements of the program
and its application domain. In this step, we also study the program to extract the
structure of the program in terms of its constituent modules, and to understand the
intended roles and functionalities of these modules.

2. Write specifications for the modules of the program: In this step, we write LCL spec-
ifications for the modules of the program. This step is the most significant step of
the reengineering process. It involves studying the functions exported by each module
carefully, and specifying the essential behavior of most functions. Not every function
in a module needs to be specified. It is often necessary to abstract from the spe-
cific details of the chosen implementation. The major activities in this step include

90

choosing to make some existing types abstract, identifying new procedural and data
abstractions, and uncovering implicit preconditions of functions.

3. Improve code: This step is driven by the previous specification step. While the
overall requirements of the program do not change, how the requirements are met
by the modules of the program can change. The specifications of the modules of the
program may suggest a different division of labor among the different modules. Each
time the specification of a module changes, the code has to be updated. Each change
in the program is accompanied by appropriate testing to ensure that the code meets
its specification. LCLint is a useful testing tool. It performs some consistency checks
between the specification of a module and its implementation.

4. Write claims about the specifications of the program modules: In this step, we analyze
the specification of each module and its clients to extract properties about the design
of the module. We codify some of these properties as LCL claims. This step may
lead to changes in the specification of a module that make it more coherent. It may
suggest splitting an existing abstraction into different abstractions, performing new
checks to weaken the preconditions of functions, or removing unused information kept
in the implementation. Some of these specification changes may affect its clients. If a
specification changes, its implementation and its client may have to be modified.

5. Check claims: We check that the claims we wrote about a module in the previous step
are met by the specification of the module. Depending on the desired level of rigors,
this step may range from an informal argument of why a claim should hold, to a formal
proof of the claim with the help of a mechanical proof checker. This step is intended
to ensure that the specifications we wrote are consistent with the understanding of the
module design we have in mind. If this step leads to specification changes, the clients
and the implementation of the changed specification must be updated accordingly.
As indicated in Section 5.3, checking a claim can also lead to changes in the claim
statement itself. This explains the arrow from the "check claims" step to the "write
claims" step in Figure 6-1.

6.2 A Reengineering Exercise

We used LCL to specify the PM program, and we wrote claims to improve the specification.
In the process, we improved the program in many ways. In this section, we briefly describe
the specific changes we made to the program as we followed the steps of our reengineering
process outlined in the previous section.

6.2.1 Study Program

In this step, we learned about the intended application of the PM program: keeping a
portfolio of financial securities. The application domain includes some knowledge about
how different kinds of incomes from financial transactions are treated for tax purposes.

The other major activity in this step is to extract the structure of the PM program.
This is done with the help of a module dependency diagram which shows the relationships
among the major modules of the program. The module dependency diagram of the original
program is shown in Figure 6-2. Our interpretation of a module dependency diagram is
adapted from [26]. A module dependency diagram consists of labeled nodes and arcs.

91

Figure 6-2: Module dependency diagram of the original PM program.

The nodes represent the modules of the program. We draw an arc from module M1 to
module M2 if the implementation of some function in M1 uses some function in M2. A
node with a horizontal bar near its top represents an abstract type. For example, the
nodes labeled lot and lot list are abstract types. An LCL module that exports more
than one type is illustrated as a node with internal nodes representing its constituent types,
called an aggregate node. In Figure 6-2, the node containing the lot and lotlist nodes
is an aggregate node. The pm node represents the top-level routine of the PM program. 1

The diagram captures the coarse-grained structure of the program design. It shows the
modules we must consider whenever a change is made to a module. It formalizes the
change propagation we describe in the previous section.

6.2.2 Write Specifications

Given that this step is the most significant step of the reengineering process, we describe
the major activities in this step in more detail.

Making Some Exposed Types Abstract

The first thing we did in this step was to convert some exposed types into abstract types. An
abstract type offers us more modularity: we can choose to change its implementation type
without affecting its clients. An exposed type, however, can be more convenient because
its interfaces are pre-defined by the programming language, and hence, we do not have to
specify or implement them. In the PM program, we chose to make all the major types

1We leave out the genlib module in the module dependency diagram because it is used by most modules.
Including it would clutter up the diagram without giving new insights into the program structure. The
module should be considered as a general utility, like a standard c library.

92

I

abstract except for two types: the kind type, which is a c enumeration type of different
transaction kinds, and the income type, which is a c struct holding the different types
of income from security transactions. We prefer abstract types for the others because an
abstract type limits the modifications its clients can make. This allows our design of the
type to maintain module invariants that may be useful to the clients and the implementor
of the module. The kind and income types were not made abstract because we did not find
useful invariants about the types and because making them abstract would have forced us
to export many simple interfaces.

Specifying Appropriate Abstractions

By studying the functions exported by a module and its clients, it is often easy to identify
functions that are auxiliary. Such functions need not be exported or specified in the inter-
faces. For example, in the date module, we found that the day_of_year and daysto_end
functions in the original program were there to support the exported is ong_term date
function.

For those functions that must be exported, it is important to specify only their essential
behaviors, and not incidental implementation details. For example, in the original program,
the open lots of a position was represented as an array of transactions in a field of the position
type. While specifying the behavior of the position module, it became clear that the use
of an array to represent the open lots was incidental, and the open lots should be modeled
more abstractly, as a set of buy transactions. Hence, a new module, the trans_set module,
was created to codify this abstraction.

Highlighting Implicit Preconditions

One of the more difficult activities in the reengineering process is identifying the assumptions
a function or a module makes about its clients. These assumptions are often not written
down, and are difficult to infer from the code without careful analysis. The effort, however,
is useful because future program maintenance is facilitated if the assumptions are made
explicit. Once the assumptions are made explicit, we can often weaken them to make the
function or module more robust.

For example, the old position module was designed to be used in a rather specific way:
it processed batches of transactions about one security that were sorted by their dates.
Unfortunately, the key function in the module, the positionupdate function, did not check
that the security of the input position and the security of the input transaction were the
same. The function assumed that its caller would guarantee the same security precondition.
We first made explicit the precondition in the specification of the positionupdate. As
a further improvement, we weakened the precondition by adding explicit checks in the
positionupdate function so that the function is more robust.

Other examples of identifying and weakening implicit preconditions include adding
bounds checks on the input arrays in the get line function of the genlib module, adding
length checks on date formats in the date_parse function of the date module, and iden-
tifying the constraint that the date of a sell transaction must not be "LT" in the trans
module.

93

6.2.3 Improve Code

The modifications to the PM program were driven by changes made to the specification
of its constituent modules. We used the LCL specifications of the modules to improve the
program with the help of the LCLint tool. LCLint uncovered some inconsistencies between
the implementations of the modules and their specifications. The errors included type
barrier breaches, modifying objects that should not be changed, and accessing globals not
sanctioned by the specification. The LCLint tool improved the quality of the PM program
by uncovering flaws in the code.

6.2.4 Write Claims

The process of writing claims about the modules of the PM program led to a number of
program improvements. In the trans module, we specified the constraints that must hold
for the different fields of a transaction as claims. Our claims led us to add new checks on
the user's input transactions. For example, for a T bill maturity transaction, its interest
payment is checked for correctness, and partial lots are flagged as errors. In addition, a buy
transaction must have a strictly positive amount and a single lot.

The use of claims in specifications helped to promote design coherence in software mod-
ules. The effect has already been discussed in Section 5.6. In the trans module, arbitrary
changes to the net and amount fields of a transaction were replaced by controlled changes
that respect module invariants. In the position module, the second distinct use of the old
position type was extracted and codified as a separate income type.

6.2.5 Check Claims

This step is needed to ensure that the claims we made in the previous step follow from our
specifications. In our exercise, the checking of claims led to uncovering some of the new
checks in the PM program. For example, the amountConsistency claim in the position
module states that in the absence of input errors, the amount of a position should be
the sum of the amounts of the transactions in the open lots of the position, and the
noShortPositions claim says that in the absence of input errors, the amount of a po-
sition should be non-negative. When we tried to prove these claims, we realized that buy
transactions must have non-negative amounts in order for the claims to hold. On further
analysis, we decided that the amount of a buy transaction should be strictly positive because
it does not make sense to buy zero shares of a security. This constraint was not enforced
in the original program. Adding this check to the trans module changes the specification
of the trans module, and led us to consider input checks that could be performed on other
kinds of transactions.

The other improvements in the specifications of the PM program that resulted from the
checking of claims have already been described in Section 5.3. Since the specifications of the
program is an integral part of its design, the claims checking step contributed significantly
to the quality of the products of our reengineering process.

6.3 Effects of Reengineering

In this section, we summarize the effects our reengineering process had on the functionality,
structure, performance, and robustness of the program. While most of the effects to be

94

mentioned in this section have been attributed to specific steps in the reengineering process
in the previous section, some are not easily attributed to any specific step. We also discuss
the important role the formal specifications of the main modules of the PM program play
in the maintenance and reuse of the program.

6.3.1 Effects on Program Functionality

The functionalities of the original and the new programs are essentially the same. This
was one of the goals of our reengineering process. We believe that the service provided
to the user of the PM program is improved as a result of our reengineering process. The
service provided by the new program improved because the process helped to identify useful
checks on the user's inputs to the program. For example, many of the checks on transaction
and date formats were new. The new program also ensures that dividend and interest
transactions do not initialize a position. These checks help catch a class of data entry errors
in which the name of a security is misspelled.

6.3.2 Effects on Program Structure

Our reengineering process had significant impact on the structure of the PM program. We
observed three kinds of effects. Two of these effects can be illustrated by comparing the
module dependency diagrams of the two programs. The module dependency diagram of
the new PM program is shown in Figure 6-3.

The most significant effect our reengineering process had on the PM program was to
improve the modularity of the program. The original program was already designed in a
structured manner. There were clear module boundaries; for example, definitions for dif-
ferent conceptual types named by typedef were kept in different modules. There were no
global variables across modules. There was, however, no separation between the represen-
tation type and the conceptual type. As a result, if the representation of a transaction was
modified, clients such as the position module might have to change.

Abstract types create protective barriers, preventing arbitrary changes to instances of
the types. The implementation of abstract types can be modified without affecting their
clients. As the new diagram in Figure 6-3 shows, the following exposed types were made
abstract: date, trans, and position.

We observed an adverse effect of using abstract types in programming. An abstract
type necessitates the specification and implementation of more interfaces than if the type
were exposed. For example, the original PM program relied on c built-in operators of
exposed types; it resulted in a more compact source program. 2 For example, a transaction
is represented as a c struct in the original program, so there is no need to export functions
to return the respective fields of a transaction. Such functions, however, must be explicitly
specified and implemented in the new program after a transaction is made into an abstract
type. While more interfaces are needed, program efficiency is not sacrificed because many
of these extra interfaces needed in the new program are implemented as macros.

The second beneficial effect we observed in the reengineering process is that it helped
to suggest new abstractions that were overlooked in the original program. As described in
the previous section, the transset module is a new module; it did not exist in the original

2 Several other factors contributed to a larger new source program: we added new checks on the inputs
of the program, and checks to weaken the preconditions of some functions. We estimate that the use of
abstract types in the PM program caused it to increase its size by about 10%.

95

Figure 6-3: Module dependency diagram of the new PM program.

program. This change is clearly reflected in the extra node labeled transset in Figure 6-3.
In the old program, it was part of the position module.

While the new diagram looks more cluttered than the old one, it is in fact a more modular
design than the old one. The new program is more modular because changes in the choice
of rep types of the abstract types exported by the modules do not affect their clients. The
module dependency diagrams in Figure 6-2 and Figure 6-3 show that the structure of the
original PM program was retained. The new program did not introduce new dependencies
between the program modules other than those due to the additional transset module.

The third beneficial effect we observed is that the use of claims in specifications helped
to promote design coherence in software modules. The effect has already been discussed in
Section 5.6. The subtle improvement does not show up in the module dependency diagrams
of the two programs since the diagrams only capture the coarse-grained structure of the
respective designs.

6.3.3 Effects on Program Performance

While we have not carried out careful controlled experiments on the execution time per-
formance of the two programs, tests indicate that they are comparable. Since we have
not changed the basic algorithms used in the program, we do not expect any significant
difference in the execution time performance of the two programs.

96

6.3.4 Effects on Program Robustness

We believe that the reengineering process improved the robustness of the program. The
new program is more robust because the process helped to remove some potential errors in
the program. For example, the interpretation of the two-digit year code of a date relied on
the assumption that no dates go beyond the year 2000. The turn of the century, however, is
only a few years away. The new program changed the interpretation to handle this problem
while still retaining the convenience of a two-digit code.

Another error detected during the reengineering process was in the implementation of
the get line function in the genlib module alluded to in Section 6.2.2. The function
read a line from an input character stream into a caller-allocated character array. The
original program did not check the bounds of the input array. If a line in the stream was
longer than the input array, the program could crash. The potential problem showed up
easily in the specification because the rigors of formally specifying the function forced us
to make explicit the assumed preconditions. In the new program, we made getline take
an additional parameter indicating the length of the input array so that the bounds check
could be done.

Similarly, the specification of date_parse in the date module forced us to delineate the
acceptable format of transaction dates. The original program did few checks on the string
representation of a date so that bad dates with months or days that were more than two
digits could cause it to crash.

6.3.5 Documentation of Program Modules

A major product of the reengineering process is the formal specifications of the main modules
of the program. This documentation was used to improve the implementation with the
help of the LCLint tool. With modules that are documented, future changes to the program
will be easier and parts of the program are more likely to be reused than if the formal
documentation were absent.

In addition, claims are used to document properties of the modules of the program.
For example, the trans-setUID module claim in the trans-set module described in Sec-
tion 5.7 illustrates how a module claim can aid in reasoning about the implementation of
the module. The noShortPositions claim and the okCostBasis claim in the position
module described in Section 5.5 illustrate how module claims can be used to document some
central properties of the PM program. Highlighting these properties improves the quality of
the documentation of program modules in PM.

6.4 Summary

In this chapter, we gave a reengineering methodology centered around formal specifications.
It is aimed at making an existing program easier to maintain and reuse while keeping its
essential functionality unchanged.

We described the results of applying our methodology to reengineer the PM program.
The most visible product coming out of our reengineering exercise is the formal specification
of the main modules of the program. The specifications serve as precise documentation for
the modules. Besides the new specification product, the process helped to make the pro-
gram more modular, uncovered some new abstractions, and contributed to a more coherent
module design. In addition, the reengineering process improved the quality of the program

97

by removing some potential errors in the program and improving the service provided by
the program. We have achieved these effects without changing the essential functionality
or performance of the program.

While some of the benefits of the reengineering process described in this chapter could be
obtained with careful analysis and without specifications, we believe that our specification-
centered reengineering process provides a methodology by which the benefits can be brought
about systematically. Formal specifications have an edge over informal ones because of their
precision. The precision sharpens the analysis process, and leaves no room for misinterpre-
tation of the specification. Formal specifications are also more amenable to mechanical tool
support, the use of which improved the program and the specification considerably.

98

Chapter 7

The Semantics of LCL

In this chapter, we formalize some informal concepts introduced in the earlier chapters, and
describe interesting aspects of the semantics of LCL.

LCL is designed for formally specifying the behaviors of a class of sequential ANSI C [1]
programs in which abstract types play a major role.1

The semantics of LCL described in this chapter is intended for reasoning about LCL spec-
ifications, not for program verification. The latter requires a formalization of the semantics
of c which is beyond the scope of this work. As such, we do not provide a formal satisfaction
relation that can be used to formally verify that a c program meets its LCL specification.
Our approach of giving semantics to LCL builds on other works on Larch interface languages
[37, 16, 3, 36].

The basic LCL semantic concepts are described in the next section. The storage model
of LCL is formalized in Section 7.2. The type system of LCL is described in Section 7.3.
The semantics of a function specification is given in Section 7.4, and that of a module
specification is given in Section 7.5. A discussion of the assumptions made in the given
semantics of LCL, and the technical issues that arise when the assumptions are violated, are
given in Section 7.6. A summary of the chapter is given in the last section.

7.1 Basic LCL Concepts

In the semantic model of LCL, there are two disjoint domains: objects and bvalues, or
basic values. Basic values are mathematical abstractions, such as integers, sets, and stacks.
An object can contain another object as part of its value. It is an abstraction of a region of
data storage. A third domain, values, is formed by the union of objects and basic values.
The mapping of an object to its value is called a state.

Since an LCL specification is an abstraction of a class of c implementations, we call the
states that the specification constrains the abstract states. In this chapter, whenever we
refer to a state without qualification, we mean an abstract state. There is a corresponding
state for the implementation of an LCL specification; it is called the concrete state.

There are two kinds of user-definable LCL abstract types: mutable types and immutable
types. Instances of a mutable types are modeled by objects. Instances of immutable types
are modeled by basic values. The semantics of c built-in types provide the semantics of
LCL exposed types. The following gives the domain equations of our LCL semantic model.

1LCL does not support the specification of c programs that have procedure parameters.

99

values bvalues U objects

states _ objects - values
objects mutable_objects U exposed_objects

exposed_objects - locations U structs U unions U arrays U pointers

The basic unit of an LCL specification is the specification of a c function. It states
explicitly what relationship must hold between the state before the function is run (the
pre state) and the state after the function completes (the post state). A key feature of
LCL function specifications is that each of them can be understood independently of other
function specifications.

A module specification consists of a number of global declarations. These include global
constants, global variables, and function specifications.

An LCL module is useful in three ways. First, it supports the structuring of specifications.
A module allows grouping of functions. One module can import another module. Second,
it supports the specification of abstract types. Third, it allows private specification objects
to be introduced in a module which are not exported to importing modules. Private objects
and types are called spec variables and spec types respectively. The only place spec variables
can be accessed is in the functions of the module in which they reside. Spec variables can
be used to model c static variables. Spec variables are, however, more general, and they
need not be implemented.

Each LCL specification implicitly or explicitly makes use of LSL specifications, called
traits. An LSL trait introduces sorts, or named sets of basic values, and mathematical
functions, called operators, on the sorts. Traits also contain axioms that constrain operators.
The precise semantics of LSL traits is given in [15]. To understand this chapter, it suffices to
know that a trait provides a multi-sorted first-order theory with equality for the operators
and sorts of the trait.

The semantics of LCL is greatly simplified if we assume that implementations of abstract
types do not expose the reps of the abstract types. If the reps are not exposed, a simple data
type induction schema can be derived. This induction schema allows us to deduce inductive
properties of the data type. It allows a property to be deduced locally from a module,
and it enables the property to be applied globally, in all client contexts. Such stronger
properties are often useful in reasoning about specifications and in program verification.
The semantics of LCL given in this chapter assumes that the reps of abstract types are not
exposed. Section 7.6 contains a discussion of this assumption.

7.2 LCL Storage Model

An LCL specification describes the behavior of a c function by the changes made to a state.
A state is a function that maps LCL objects to their values.

In an LCL specification, there are three predefined state variables: pre, post and any.
pre refers to the state before a c function is invoked, post refers to the state after the
function returns. An LCL function specification constrains the relationship between the pre
state and the post state of the function. In specifying invariants that are maintained across
different states, there is a need for a generic state: any is used to refer to such a state.

Certain kinds of objects are immutable; their values do not change at all. We write
them without their state retrieval functions (A, ', or).

Our model of the abstract state and typed objects is similar to that of Larch/Generic
[3].

100

7.2.1 LCL Abstract State

LCL objects are abstractions of computer memory locations. LCL and LSL constants are
modeled as basic values.

We model LCL global variables as LCL objects; they are mutable objects whose values
can change from state to state. Similarly, an LCL spec variable is also an LCL object. A
global variable must be implemented but a spec variable need not be implemented.

The storage model of LCL is formalized as an LSL trait in Figure 7-1. An LCL abstract
state is a mapping of untyped objects to their untyped values. We choose an untyped
domain primarily for ease of explanation. A secondary reason is to remind ourselves that
untyped objects correspond to bit patterns in memory locations.

state: trait
includes Set (object, objectSet)
introduces

nil: -+ state

bind: object, value, state -+ state

allocate, trash: object, state -+ state
domain: state - objectSet

__ E __: object, state - Bool
__ # __: object, state - value

asserts

state generated by nil, bind, allocate

state partitioned by E,
V st, st2: state, x, y: object, v: value

domain(nil) == {};

domain(bind(y, v, st)) == insert(y, domain(st));

domain(allocate(y, st)) == insert(y, domain(st));

x E st == x E domain(st);
x # bind(y, v, st) == if (x = y) then v else x # st;
x allocate(y, st) == x # st;

trash(x, nil) == nil;

trash(x, bind(y, v, st)) == if x = y then trash(x, st)

else bind(y, v, trash(x, st));

trash(x, allocate(y, st)) == if x = y then trash(x, st)

else allocate(y, trash(x, st));

implies V st: state, x, y: object, v, v2: value

not(x = y) = (bind(x, vi, bind(y, v2, st)) =
bind(y, v2, bind(x, v, st)));

converts domain, --__ E __: object, state - Bool, #, trash

exempting V x: object x # nil

Figure 7-1: Trait defining LCL storage model.

The domain of a state is the universe of all existing objects in that state. A new state
can be created by adding to an old state a binding of an object with the value of the object.
A new state can also be created by only adding a new object without its corresponding
value. In this case, such an object can be referenced but its value is not guaranteed to be

101

valid. The state nil is the empty state. The value of an object in a state can be retrieved
by the infix operator #. The value retrieved by # is the outermost binding, that is, the most
recently stored one. The trash operator removes all copies of an object from a state. The
operator trash removes an object from a state if the object is present in the state.

7.2.2 Typed Objects

The state described so far is an untyped one: the objects and the values are both untyped.
Like c, LCL is statically typed. Each LCL variable has a unique type. To relate typed objects
with untyped ones, we have the typedObj trait shown in Figure 7-2.

typedObj (TValue, TObject): trait

includes state

introduces

widen: TObject -+ object

widen: TValue -+ value

narrow: object -+ TObject
narrow: value -+ TValue

__ # __: TObject, state -+ TValue

__ C __: TObject, state -+ Bool
bind: TObject, TValue, state -+ state
asserts

TObject generated by narrow

TObject partitioned by widen

V to, to2: TObject, x: object, tv: TValue, v: value, st, st2: state

narrow(widen(to)) = to;
widen(narrow(x)) = x;

narrow(widen(tv)) = tv;

widen(narrow(v)) = v;

to # st == narrow(widen(to) # st);

bind(to, tv, st) == bind(widen(to), widen(tv), st);

to E st == widen(to) E st;
to = to2 == (widen(to) = widen(to2));

implies V to, to2: TObject, st: state

widen(to) # st == widen(to # st);

Figure 7-2: Trait defining typed objects.

The operator widen maps a typed object into an underlying untyped object. Its inverse
operator is narrow. These operators are overloaded to handle typed and untyped values.
For convenience, operators on untyped objects are overloaded to accept typed objects.

The typedObj trait is parameterized by two sorts: TObject and TValue. This trait is
intended to be instantiated by specific sort names such as set and set_0bj.2

2A LCL mutable abstract type is modeled by a value sort and an object sort, see Section 7.3.2.

102

7.3 LCL Type System

We provide semantics only for LCL specifications that meet the static semantics of LCL.

Fundamental to understanding this static semantics is the implicit mapping of LCL types to
their corresponding unique LSL sorts. Through this type-to-sort mapping, each LCL variable
is given a sort according to the type of the variable and its LCL type. In this section the
type system of LCL and the type-to-sort mapping are described.

Abstract Syntax

type ::= abstract I exposed
abstract ::= [mutable I immutable] type id;
exposed ::= typedef IclTypeSpec { declarator [{ constraint)])+,;

l{ struct I union } id;

constraint ::= constraint quantifierSym id : id (iclPredicate);

A type is either an abstract type or a synonym for an exposed type. Abstract types can
either be immutable or mutable. The design of abstract types in LCL is inspired by LU

[26]. The description of LCL abstract types has already been given in Chapter 3.
An exposed type can be named using a typedef in the same way types are named in

c. In addition, LCL allows a constraint to be associated with a type name introduced by
typedef. It is useful for writing more compact specifications.

The detailed syntax for declarators and clTypeSpec are given in Appendix A. It suffices
to know that they generate the type system of c, supporting the primitive types of c,
pointers, arrays, structs, unions, and enumeration types. They follow the same grammar
and semantic rules as those of c. The only new feature is the addition of the out type
qualifier for documenting outputs that are returned via an input pointer. This feature is
discussed in Section 7.5.3 when its use in data type induction is explained.

Checking

* The identifier introduced by a type declaration must be new; it must not be already
declared.

* The only state retrieval function that can appear in the IclPredicate in the constraint
production is any.

7.3.1 LCL Exposed Types

The semantics of LCL exposed types is given by the semantics of c built-in types. The
constraints on the type system of c are not described here; they can be found in the ANSI

c standard [1] or [23]. The exceptions to the type compatibility rules of c are noted below:

* The following types are considered different types: int, char, and c enumeration
types.

* An array of element type T and a pointer to T are considered distinct types.

* The following types are not distinguished: float and double.

* c type qualifiers, e.g., volatile and const, are not significant in LCL. If they appear
in an LCL specification, they are ignored.

103

These differences are not fundamental to the design of LCL.

The semantics of c aggregate types provides the following non-aliasing information:
Given a c array, each different index refers to a distinct object in the array, different from
other objects in that array. That is, we have the axiom:

V a: array, i, j:int (O < i < maxIndex(a) A 0 < j < maxIndex(a))

(i = j j a[i] = a[j])

Note that a[i] refers to the object in the array a with offset i, not the value of this
object. The latter value is obtained by applying a state function to a[i], such as a[i]̂ .

Similarly, for identically typed fields in a c struct, there are corresponding object in-
equality assertions.

Exposed Types with Constraints

An exposed type with a non-empty constraint is not a new type; it is a type synonym. The
constraint specification is useful as a shorthand for writing more compact specifications.
For example, consider the following specifications:

typedef int nat {constraint V n: nat (n > O)};

nat P (nat n) {

ensures true;

}
int P2 (int n) {

requires n > 0;

ensures result > 0;
}

The semantics of the specification of P is the same as that of P2. When nat is the type of an
input parameter of a function specification, the constraint associated with nat is assumed
to hold for the input parameter in the pre state. Similarly, if nat is the type of an output
parameter, then the corresponding constraint must implicitly hold in the post state for the
output parameter.

7.3.2 Linking LCL Types to LSL Sorts

Each LCL type is modeled by one or two LSL sorts. A mutable abstract type M is modeled
by two LSL sorts: M and MObj. The MObj sort is used to model LCL objects of type M,
and it is called the object sort of M. The M sort is used to model the value of M objects in a
state, and it is called the value sort. An immutable abstract type I is modeled by one LSL
sort, I, its value sort, since the object identities of immutable objects are not expressible in
LCL.

Since each LCL type can give rise to more than one LSL sort, we must define which
unique sort an LCL type expression corresponds to. An LCL type expression often occurs
together with an LCL variable such as when the variable is declared as a global variable or
a formal parameter. The mapping of such LCL type expressions are given in Appendix B.
In this subsection, we describe how an LCL type expression in the uses clause is mapped
to its underlying LSL sort.

Table 7.1 shows the implicit LSL sorts generated to model LCL types. Each entry in the
second column of a row is called the value sort of its corresponding first column, and the
entry in the third column is called the object sort of its corresponding first column. By

104

Table 7.1: Mapping LCL Types to LSL sorts in the LCL uses construct.

default, an LCL type expression is mapped to its value sort. If the corresponding object sort
is desired, the obj qualifier can be used.

The following example illustrates how the obj type qualifier is used to model object
identities. Consider the specifications of two c functions shown in Figure 7-3 and Figure 7-
4. Both specifications use the same stack trait; the relevant part of the stack trait is shown
in Figure 7-5. The two specifications are identical except in the two places indicated in the
figures.

mutable type mset;

immutable type stack;

uses Stack (mset for E, stack for C); /* __ E __: mset, stack -+ Bool */
bool member (mset s, stack st) {

ensures result = sA E st; /* sA: mset */
}

Figure 7-3: Modeling a stack of set values in LCL.

mutable type mset;

immutable type stack;
uses Stack (obj mset for E, stack for C); /* -__ __ : msetObj, stack -* Bool */

bool member (mset s, stack st) {

ensures result = s E st; /* s: msetObj */
}

Figure 7-4: Modeling a stack of set objects in LCL.

The first difference lies in the use of the type to sort renaming in the uses construct (in
the third lines) of Figure 7-3 and Figure 7-4. In Figure 7-3, the value sort corresponding to
the mset type is used in renaming, and in Figure 7-4, the object sort is used. The second
difference lies in the use of E in the ensures clause in the figures.

The member function in Figure 7-4 returns true if a given set object is in the input stack;
in Figure 7-3 it returns true if the value of the given set object in the pre state is in the
input stack. The two membership relations have different signatures: the first E takes a set

105

uses traitName (typeName for sortName, ...)
LCL type, T typeName = T typeName = obj T
immutable, I I ILObj
mutable, M M MObj
primitive type T T TObj
enumerated type T T TObj
pointer to T TObjPtr TObjPtrObj
array of T TVec T-ObjArr
struct _tag _tagTuple tagStruct
union tag _tagUnionVal tagUnion

Stack(E, C): trait

introduces __ E __: E, C -+ bool

Figure 7-5: Part of a Stack Trait

object and a stack whereas the second G takes a set value and a stack. The member function
in Figure 7-3 returns true whenever member in Figure 7-4 returns true, but it does so even
when the given set object does not belong to the stack but its value happens to be equal to
the value of some set in the stack.

7.4 LCL Function Specification

The LCL specification of a c function specifies a type for the return value of the function, a
name for the function, some formal parameters with their types, an optional list of global
variables that the function accesses, and a function body. The function body can have a let
clause to abbreviate common expressions, a requires clause, a checks clause, a modifies
clause, and an ensures clause.

A function specification may be preceded by some type and global variable declarations
in a module. They form the scope of the function specification. The scope includes the
declarations imported by the module enclosing the function specification.

Abstract Syntax

fcn := IclType fcnId (void I {lclType id })+ ,) { global } * { fcnBody)
global i= IclType id+, ;

fcnBody ::= [letDecl] [requires] [checks] [modify] [ensures] [claims]
letDecl ::= let { id [: lclType] be term)+,;
requires := requires IclPredicate;
checks := checks lclPredicate;
modify := modifies { nothing storeRef+,);
storeRef ::= term I [obj] IclType
ensures ::= ensures lclPredicate;
claims ::= claims lclPredicate;

Checking

* Every LCL type appearing in a function specification must already be declared in the
scope of the function.

* In the body of a function specification, each identifier must either be an LCL variable,
a variable bound by some quantifier, an operator in an used LSL trait, or a built-
in LCL operator. Each LCL variable must appear either as a formal parameter of the
function, or a listed global variable (in global) of the function, but not both. Identifiers
introduced by the let clauses are macros.

* The sort of the term in the let clause must match the sort corresponding to the
declared type.

106

* Every global variable (global) must already be declared in the scope of the function
and accessible to the function.

* In an LCL module, no two type or function declarations can declare the same name.

* The only state retrieval function that can appear in the requires clause is the pre
state.

* Every item in the modifies list is either a term or a type. If it is a term, it must denote
a mutable object. If it is an LCL type, the type must correspond to a mutable type.

Meaning
The LCL specification of a c function is a predicate on two states, the pre state and the

post state. This predicate indicates the relationship between the input arguments and the
result. Furthermore, there is always an implicit requirement that the function terminates.
If the function does not terminate, then there is no post state.

The requires clause specifies a relation among objects denoted by the formal parameters
and the global variables in the pre state. An omitted requires clause is the same as requires
true. The ensures clause is similar, except that it relates the values of these objects in the
pre and the post states. An omitted ensures clause is the same as ensures true.

The checks clause is like the requires clause except that instead of the caller ensuring that
the conditions specified are met before the procedure call is made, it is the implementor's
job to check those conditions. It is a convenient shorthand for specifying conditions that
the implementor must check. If the conditions are not met, the implementor must print an
error message on stderr (the standard error stream of c), and halt the program. If the
checks clause is present, *stderrA is implicitly added to the modifies clause and the global
list.

The let clause does not add anything new to the specification. It is a syntactic sugar
to make the specification more concise and easier to read. If a let clause introduces more
than one abbreviation, the abbreviations nest, that is, a later abbreviation can use earlier
ones in its definition.

7.4.1 Translation Schema

The meaning of an LCL function specification P is given schematically by:

RequiresP =-

(ModifiesP

A if ChecksP then EnsuresP A StdErrorChanges
else halts A 3 errm: cstring (appendedMsg((*stderr^)', (*stderrA)^,

FatalErrorMsg errm)))

where RequiresP stands for the requires clause of the function, ChecksP, the checks clause,
ModifiesP, the translation of the modifies clause, and EnsuresP, the ensures clause. The
object *stderrA is implicitly added to the modifies clause and the list of globals accessible
by the function. The StdErrorChanges is defined to be true if the specifier explicitly adds
*stderrA to the modifies clause or if the checks clause is absent, and unchanged(*stderrA)
otherwise. This semantics allows a specifier to override the default assumption that the
standard error stream is unchanged if the checks clause holds by explicitly adding the
standard error stream to the modifies clause. An omitted checks clause means ChecksP =
true.

107

We define specs(P, pre, post) to be the following logical translation of a function speci-
fication P:

specs(P, pre, post) _ RequiresP A ChecksP A ModifiesP A EnsuresP

specs(P, pre, post) is a predicate that must be true of the pre state and the post state of
successfully executing P. This abbreviation will be used in the translation of claims.

The input arguments of a function consist of the formal parameters and the global
variables that the function accesses. The set of objects that appear explicitly or implicitly
in the modifies clause of a function specification is called its modified set. The output results
of the function consist of result (which stands for the return value of the function) and
the modified set of the function.

The set of fresh objects in a function specification is called its fresh set. Similarly, the
set of trashed objects in a function specification is called its trashed set.

We view an instance of each c aggregate type as a collection of the underlying objects
that comprise it, called base objects. The type of a base object is either one of the primitive
types of c, or some abstract type. Given a function F, we define the input base arguments
as the base objects corresponding to the input arguments of F. Similarly, the output base
results are the base objects corresponding to the output results of F. Consider, for example,
the type specifications given below.

typedef struct {int first; double second;} pair;
typedef struct tri {int arr[10]; pair match; struct tri *next;} tri;

If a function F takes a single formal parameter, x, of type tri and no global or spec variables,
then its base input arguments are

{x.arr[i] I 0 < i < 10} U {x.match.first, x.match.second, x.next}

The notion of base objects is useful in formalizing the meaning of the modifies clause in
Section 7.4.3.

7.4.2 Implicit Pre and Post Conditions
There are two kinds of implicit pre and post conditions associated with a function specifica-
tion. First, we require that objects in the pre state do not disappear without being trashed
in the post state, or

(domain(pre) - trashedObjs) C domain(post)

where trashedObj s is the trashed set of the function.
Second, if a parameter of the function is an exposed type with a constraint, some

conditions are implicitly added. If the constraint predicate associated with an exposed type
T is named constraint: T -+ Bool, we conjoin to the requires clause the following conditions:

* constraint(x) [A for] if x is a non-array and x is a formal parameter of type T
of the function.

* constraint (xA) [A for] if x is an array and x is a formal parameter of type T of
the function.

* constraint(xA) [A for] if x is a global parameter of type T of the function.

108

The first condition differs from the latter two conditions because c uses pass by value in
procedure calls, except for arrays. Global variables are modeled by LCL objects. Similarly,
we conjoin to the ensures clause the following conditions:

* constraint (x) [' for]1 if x is a non-array and x is an output result of type T of
the function.

* constraint (x') [' for] if x is an array and x is an output result of type T of the
function.

* constraint (x') [for] if x is a global parameter of type T and is an output result
of the function.

7.4.3 The Modifies Clause

The translation of the modifies clause is:

V i: AllObjects ((i E domain(pre) A i modifiedObjs) =, i' = iA)

where modifiedObj s denotes the modified set of the function. AllObj ects is the disjoint
sum of the object sorts of the mutable types.

We next explain how the modified set of a function specification is constructed. The
modifies clause can take three kinds of arguments.

modifies term: Suppose the term xl of type TI is in the modifies clause. There are two
cases here. T1 can be a mutable abstract type or an exposed type. If T1 is a mutable
abstract type, then xi is a member of the modified set. If T1 is an exposed type and if xi
denotes an object that has one of c's primitive types (such as int) as its value, then xi is
a member of the modified set.

If xi denotes a struct object or an array object, the meaning of modifies xi is defined
in terms of its base objects. For example, using the specifications of the tri type given in
Section 7.4.1 and the specification of F below,

void F (tri *t) (

modifies *t;

ensures ...

}

the modifiedObjs of F is given by

{(*t).arr[i] 0 < i < 10} U {(*t).match.first, (*t).match.second, (*t).next}

An instance of a c aggregate type is simply viewed as a shorthand for its (transitive)
constituents. Note that the term (*t).next above denotes a location that contains a
pointer to a tri, not a tri itself.

modifies [obj] clType: Suppose we have modifies T1 where T1 is an LCL type. A
type is viewed as a set of objects. The meaning of the modifies clause is that all instances
of T1 may be modified. That is, we add the set {x:T1} to the modified set.

The obj qualifier is used to generate the object sort of immutable types. For example,
modifies obj int adds the set {x: intObj} to the modified set.

109

modifies nothing: This assertion constrains the function to preserve the value of all
objects accessible to the function. It defines the modified set of the function to be the
empty set.

Note that the translation of the modifies clause allows benevolent side-effects on abstract
types. The translation only constrains those instances of mutable types that are explicitly
present in the given state. If the rep type of the abstract type is not exposed, the instance
of the rep type used to represent a mutable type instance does not appear in the state.
Hence, while the translation forbids the function from changing the instances of the rep
type of the abstract type present in the state, it does not prevent benevolent side-effects.

7.4.4 Fresh and Trashed

In an ensures clause, the built-in LCL predicates fresh and trashed can be used; they are
predicates on objects. Their semantics are given below:

V x: TiObj (fresh(x) _ x domain(pre) A x E domain(post))
A V x: TObj (trashed(x) x E domain(pre) A x domain(post))

7.4.5 The Claims Clause

The claims clause does not add new logical content to the specification. It states a conjecture
that is intended to supplement the specification, and to aid in the debugging of the function
specification. If the function is named P, the conjecture the claims clause states is:

specs(P, pre, post) => ClaimsP

where ClaimsP is the condition given in the claims clause.

7.5 LCL Module

An LCL module, also called an interface, has imported LCL modules, explicitly imported
LSL traits, and export and private declarations.

Abstract Syntax

interface
import
use
export
private
constDeclaration
varDeclaration
traitRef
renaming
replace
typeName

::= import I use} * {export I private } *
imports id+,;

uses traitRef,;
constDeclaration I varDeclaration I type I fcn
spec { constDeclaration I varDeclaration I type I fn }
constant lclType { id [term])+,;
lclType { id [= term])+,
id [(renaming)]
replace+, I typeName+, replace*,
typeName for id
[obj] lclType

An export declaration is either a global constant, a global variable, a type declaration, or
a function specification. The private declarations are similar, except marked by the prefix
keyword spec. A variable declaration may include initialization. The symbols in a used

110

trait can be renamed in a similar manner as the renamings of included traits within LSL

traits. Unlike LSL trait renamings, operator renamings are not supported at the LCL level.

Checking

* There must be no import cycles. The imports clause defines a transitive importing
relation between module names.

* If a constant or variable is initialized, the sort of the initializing term must be the sort
of the constant or variable.

* The number of typeNames in a renaming must be equal to the number of sort param-
eters in the used traits. Each id in traitRef names a used trait.

Meaning

uses: The uses clause associates some LSL traits with the LCL module. The meanings of the
operators used in LCL specifications are defined in these traits. The uses clause supports
sort renaming so that LCL types may be associated with LSL sorts. This renaming is carried
out after an implicit mapping of LCL type names to LSL sort names is done, as explained
in Section 7.3.2. An optional obj qualifier indicates that the object sort corresponding to
a given LCL type is desired.

global constants: An LCL (global) constant is simply a constant in the logical semantics
of LCL. Unlike an LSL constant, LCL constants must be implemented so that clients can use
them. If an LCL constant is declared with an "initial" value (see constDeclaration in the
grammar above), it is interpreted to be an equality constraint on the declared constant.
This is often used to relate LCL constants to LSL constants.3

global variables: An LCL global variable in a module is modeled by an object in a global
state. The global state is the state that is modified by the functions specified in the module.
If a global variable is initialized, then the object is given the appropriate value in the initial
global state. Otherwise, the object is allocated but not assigned an initial value. Global
variables must be implemented since clients can use imported global variables in their code.
If the specification of a global variable has an initial value, then the initialization must occur
in the module initialization function.

spec constants, variables, types, and functions: These are private versions of global
declarations. They are treated the same as global constants, variables, types and functions,
except that they do not have to be implemented and are only accessible in the specifications
within the module. They support data and procedure hiding. In addition, each spec variable
is modeled as a virtual object. The set of all virtual objects in a module is called its spec
state. We assume that if a spec variable is implemented, the locations representing the spec
variable are disjoint from those used to represent all global variables. This is necessary to
encapsulate them in the module.

We introduce an operator, specState: moduleName, state - objectSet, to help us model
spec states. Each module encapsulates some virtual objects that are different from other
modules. The value of specState(M, st) is defined to be the set of virtual objects modeling
the spec variables declared in module M. We also introduce selection functions named after

3 LSL constants are zeroary operators, and like all LSL operators, they do not have to be implemented. In
contrast, LCL (non-spec) constants must be implemented.

111

Definition of contains*: Type -+ AbstractTypeSet
Type T contains *(T)
an abstract type {}
int, char, double, enumerated types {}
a pointer to type T2 contains*(T2)
an array of type T2 contains*(T2)
a struct or union Ufefields of T contains * (TypeOf(f)

Table 7.2: Definition of the contains* operator.

the spec variables of M for ease of reference. For example, if M contains a spec variable
named SV of type T, we introduce the operator SV: objectSet -- TObj so that we can refer
to the object modeling SV using the term SV(specState(M, st)). These operators are handy
in formulating a module induction principle that can help us deduce inductive properties
of the objects in the spec state of a module, see Section 7.5.6.

imports: If a module M1 imports another module M2, then M1 and clients of M1 have
access to the types, constants, variables, and functions exported by M2. The traits used by
M2 are also part of the specification of M1.

initialization procedures: It is an LCL convention that for each module named D, if
there is an initialization function for the module, it will be named D_initMod. It is an LCL

convention that all modules with initialization procedures must be initialized before use,
and each module initializes every module it explicitly imports. Since multiple clients may
initialize the same module in a single program context, module initializations should be
idempotent so that their effects do not depend on the number of initialization calls.

The semantics of an LCL module is given by the logical translations of the specifications
of all the functions in the module, and two induction principles. First, when a module
defines an abstract data type, we have a data type induction principle for predicates on
the abstract type. Second, when a module is used to encapsulate private data, we have a
module induction principle for predicates on the private data. The two induction principles
are orthogonal. If a module defines some abstract types and encapsulates some private
data, then the two induction principles can both be applied. These induction principles are
discussed further in the sections after the next one.

7.5.1 Type Containment

In order to provide a useful and simple induction rule for reasoning about LCL abstract
types, a notion of type containment is needed. We say that a type T contains another type
T2 if we can reach an instance of T2 from an instance of T by using c built-in operators
(without type casting). For example, a struct with a set * field contains set.

To formalize the concept of type containment, we define an operator contains*: Type -

AbstractTypeSet, which gives all the abstract types that may be contained in an instance of
the type. Note that the range of contains* consists of abstract types because we are only
interested in using the type containment information to help us derive data type invariants
for abstract types. The definition of contains* is given in Table 7.2. In the table, the
expression TypeOf(f) stands for the declared type of the field named f in a c struct or
union.

112

For example, suppose we have the following type declarations:

mutable type set;

immutable type stack;

typedef struct {int first; set second[0l]; stack *third;} triplet;
typedef triplet *tripletPtr;

then we have the following:

contains*(set) = contains*(stack) = {}
contains*(tripletPtr) = contains*(triplet) = {set, stack}

We note that in LCL, by forbidding imports cycles, we cannot have two (or more)
abstract types defined in separate modules that mutually contain each other. A module,
however, can define more than one abstract type. We term them as jointly defined abstract
types and are discussed in Section 7.5.5.

7.5.2 A Simple Type Induction Rule

There are three reasons for deriving invariants for an abstract type. First, invariants are
useful documentation. They highlight important properties of the type. Second, proving
an invariant helps specifiers debug specifications. Third, invariants are useful properties to
help clients reason about programs that use the type. To achieve these goals, it is important
to have type induction rules that are sound and simple. These two criteria motivate the
type induction rules we provide in LCL.

The basic framework for LCL type induction is as follows: Suppose we have an abstract
type T defined in module M, and the type invariant we want to prove is P: T, state - Bool.
We first derive a type induction rule for a simple case by making the following assumptions:

* No Rep Type Exposure Assumption: An implementation of an abstract type exposes
its representation type if it is possible for its client to change the value of an instance
of the abstract type without calling the interfaces of the abstract type. We assume
that the representation types of abstract LCL types are not exposed. This assumption
is essential for all type induction rules and is discussed further in Section 7.6.

* Simple Input-Output Assumption: The functions exported by M contain input argu-
ments and output results that have type T2 such that T2 = T or T contains*(T2).4

This restriction is employed to simplify the process of finding instances of T in the
input arguments and output results of functions in M. We will relax this restriction
in Section 7.5.3.

* Simple Invariant Assumption: The predicate P does not depend on the values of non-
T objects. For example, the following case is not covered by the simple induction
rule: T is the stack type whose instances contain mutable set objects, and P is the
predicate: every set object in a stack has size less than ten. We exclude this case in
order to focus on the functions exported by M alone. We relax this assumption in
Section 7.5.4.

4Note that under our definition of output result in Section 7.4.1, an object in the modifies clause of a
function is considered to be an output result of the function.

113

To specify the induction rule more formally, we first define a few terms that describe the
functions of an abstract data type T. Given a function F of T, let ins(F, T) be the input
arguments of F of type T. Let outs(F, T) be the output results of F that are of type T.

A simple basic constructor for an abstract type T is a function with empty ins(F, T)
and non-empty outs(F, T).

A simple inductive constructor for T is a function that has non-empty ins(F, T) and non-
empty outs(F, T). Simple inductive constructors are functions that take some parameters
of type T and produce results of type T. If T is a mutable type, they include mutators that
modify some input instances of T.

Let SBC be the set of simple basic constructors for T, and SIC be the set of simple
inductive constructors. We assume that SBC is non-empty. If SBC is empty, then there is
no basis for induction, and the induction rule cannot be applied. The type induction rule
for T and predicate P: T, state - Bool is:

(T1) VC: SBC specs(C,pre,post)
(Vy : T y E outs(C,T) = P(y, post))

(T2) VD: SIC (specs(D,pre,post)
A Vx : T x e ins(D,T) = P(x,pre)) =

Vy: T y C outs(D, T) = P(y, post)
(T3) Vx T, st : state revealed(x, st) = P(x, st)

First, the conclusion of the induction rule needs some explanation. We say that an
instance of an abstract type T is revealed if it can be reached from some initialized program
variable in a program context outside the module of T using c built-in operators. For
example, in a program context outside the module of T, the instance bound to an initialized
program variable of type T and the instance that is pointed to by a program variable of
type T * are both revealed. We are interested in such revealed values because they are the
ones that are accessible by the interfaces exported by T and by other built-in operations
(excluding type casting) of c. If an instance of T is hidden in some other abstract type,
and is never passed out of the module of T, the type invariant we derived above should not
be applied to it. Section 7.5.5 provides a more detailed discussion of revealed and hidden
values.

We are mainly interested in reasoning about specifications in some abstract state. To use
the induction rule to reason about specifications, we add the following implicit conditions
to the requires clause of each LCL function specification F:

* revealed(x, pre) if x is an input argument of F and it is an instance of an abstract
type.

* revealed(x, post) if x is an input argument of F, is an instance of an abstract type,
and is not trashed in the specification of F

* revealed(x, post) if x is an output result of F and it is an instance of an abstract
type.

We argue that our type induction rule is sound as follows: Instances of an abstract type
T can only be manipulated in a program context by calling functions given in the module
defining T. Since the only way instances of T can be communicated out of the T module is
through the functions of T, we only need to consider the input arguments and output results
of the functions of T. The proof obligations for simple basic constructors ensure that all

114

initial revealed T instances satisfy P. The proof obligations for simple inductive constructors
ensure that their T output results also satisfy P, given that their input T instances satisfy
P. The only other class of functions in the module are the observers of T. Since they do not
produce output results of T and they do not modify T instances, they preserve the invariant
P.

The soundness of this induction rule depends on the assumption that the rep of an
abstract type is not exposed. If the rep is exposed, then an abstract object can be modified
directly without going through the functions of the type. The key benefit of data induction
is gained by restricting the access to the rep of an abstract type so that properties deduced
locally in a type can be applied in arbitrary client contexts. If reps are exposed, local
properties need not hold in general since arbitrary changes could be made independent of
the type interfaces.

7.5.3 A Second Type Induction Rule

In this subsection, we relax the simple input-output assumption in which the functions
exported by an abstract type can only contain input arguments and output results of type
T, or have types that do not contain T. There are situations where the exported functions
of T take or return pointers to T instead of T instances directly. Since c does not support
multiple argument returns or call by reference, it is a c idiom to return values indirectly
via input pointers. An example is given in Figure 7-6.

immutable type set;
uses Set (int, set);

bool setinit (int i, out set *s)

modifies *s;

ensures result = (i = O) A if result then (*s)' = 1(} else unchanged(*s);

Figure 7-6: C idiom: returning a result via an input pointer.

The out type qualifier in the specification is useful in two ways. First, it highlights the
c idiom being used. Second, it indicates to the implementor that the value of (*s) A may
not be initialized. The term *s stands for a c location that contains a set instance, or a
set location for short. Since the set location may not be initialized, we should treat it as an
output argument, like result, and for the purpose of data type induction, we should not
assume the invariant on (*s) .

We extend the type induction rule in the last subsection to handle one-level pointers
to abstract types. There are two reasons why we choose to handle only one-level pointers
rather than arbitrary types that may contain abstract types. First, the induction rule
for handling arbitrary types is more complicated to use. Second, it is desirable to have
simpler interfaces for abstract types. If an abstract type T exports functions that deal with
complicated data structures that contain instances of T, it is often a sign that the design
is not as modular as it could be. We consider it desirable for abstract types to have simple
interfaces. We believe that there are few situations where complicated interfaces are needed
for the design of abstract types.

We assume that the second induction rule will only be applied to an abstract type
whose functions respect the following condition: every input argument or output result

115

of the function has type T2 such that T2 = T, or T2 is the c location type containing T
(T_Obj), or T ~ contains*(T2). From Section 7.5.1, we know that we can compute contains*
easily.

Now, we give the second type induction rule. Given a function F of T, let ins*(F, T)
be the input arguments of F of type T, or are T locations which are non-out. Let outs*(F,
T) be the output results of F of type T, or are T locations.

A basic constructor for an abstract type T is a function with empty ins*(F, T) and
non-empty outs*(F, T). An inductive constructor for T is a function that has non-empty
ins*(F, T) and non-empty outs*(F, T).

Let BCbe the set of basic constructors for T, and ICbe the set of inductive constructors.
As before, we assume that BC is non-empty. The type induction rule for T and predicate
P: T, state - Bool is:

(U1) VC: BC specs(C, pre,post) =

((Vy: T y E outs*(C, T) =- P(y, post))
A Vy: TObj y E outs*(C,T) = P(y',post))

(U2) VD: IC (specs(D,pre,post)
A (Vx : T x E ins*(D, T) P(x, pre))
A Vx : TObj x E ins*(D,T) => P(xA ,pre)) >

((Vy : T y E outs*(D,T) => P(y, post))
A Vy : TObj y E outs*(D,T) -- P(y',post))

(U3) Vx : T, st : state revealed(x, st) = P(x, st)

The new rule is similar to the previous one. The only difference lies in the new way in
which T instances may be passed into and out of the functions of T, via pointers. The new
way is accounted for in the induction rule by checking that if an instance of T is passed out
of the functions of T via a pointer, then the instance satisfies the predicate P.

To use this more general rule for reasoning about specifications, we add the following
implicit conditions to the requires clause of the specification of each function F, in addition
to those given in Section 7.5.2:

* revealed((*x)A, pre) if x is an input argument of F and is a non-out pointer to an
abstract type.

* revealed((*x)', post) if x is an input argument of F, is a non-out pointer to an
abstract type, and *x is not trashed in the specification of F.

* revealed((*x)', post) if x is an output result of F and is a pointer to an abstract
type.

Note that the second induction rule also makes the simple invariant assumption in which
the invariant we are trying to show does not depend on the value of non-T objects.

7.5.4 A Third Type Induction Rule

An instance of an abstract type T can have objects of another type T2 as its value. In such
a case, an invariant of type T may depend on the value of T2 objects in some state. Hence,
a mutator of the T2 type can affect the truth of the invariant. For example, suppose we
have an immutable type stack containing mutable sets and the stack invariant that each

116

set object in a stack contains only strictly positive integers. A set insert may destroy the
invariant if it is allowed to insert zero or negative integers.

The next induction rule we provide handles the above problem and thus discharges the
simple invariant assumption. Recall from Section 7.5.2 that the simple invariant assumption
states that an invariant of type T does not depend on the values of non-T objects. Our
induction rule discharges the assumption in one specific way: it allows the invariant P to
depend on the value of objects that are mutable abstract types. It, however, assumes that
P cannot depend on the value of locations that contain LCL exposed types. For example,
we can define an abstract type, set of int *, but since exposed types have no interface
boundaries, no sound induction rule is possible for such cases.

First, we define a mutator for a mutable abstract type T to be a function in module T
whose modified set has at least one object of type T.

If invariant P contains a term mst where m denotes an instance of a mutable type T2
different from T, and st is a state variable, we define a mutator hypothesis of P and T2 as
the following proof obligation: 5

(MH) VD: MC(T2) (spec(D,pre,post) A Vx: T P(x,pre)) a Vy: T P(y,post)

where MC(T2) is the set of mutators of T2.
The third induction rule is the same as the last induction rule we gave in Section 7.5.3,

except that we add a new class of hypothesis to the induction rule in Section 7.5.3: the
mutator hypotheses of P and T2, for all such terms m#st in P. To ensure that we can
mechanically get hold of all instances of mst, we require that the only way the state
variable st appears in P is as mst. This restriction makes it easier for us to mechanically
collect all the required mutator hypotheses. For example, if the state variable st is passed
as an argument to an LSL operator K (not equal to #) that is defined in a trait, it is not
clear how to systematically collect all objects whose values K might look up in st from the
definition of K.

Our soundness argument for the third rule rests on the soundness of the second rule
and the following observation. Consider an instance of T, x, and the value of the term
P(x, pre). The only way the value of the term can change when a function is invoked is
if P depends on some object in x that gets modified by the function. Since we restrict our
attention to terms that denote objects of mutable types, we only need to check that every
possible mutator of such objects preserves the invariant. This is the statement of the above
proof obligation MH. All other functions cannot possibly modify such objects, for if they
did, they would be mutators of some abstract type, and would be covered by MH.

It is instructive to consider how the MH hypothesis can be proved in an example.
Suppose we have the following set and stack interfaces shown in Figure 7-7 and Figure 7-8.
Note that in Figure 7-8, the push function pushes a mset object onto the stack, not its
value. The traits Stack and Set are Larch handbook traits [15] which define familiar set
and stack operators.

Suppose the invariant we want to prove for stacks is

P(stk, st) Vso : setObj (so E stk =- Vi : int (i E so#st = i > 0))

The invariant says that a set object in a stack has strictly positive members. The spec-
ifications in the stack module allow us to discharge the U1 and U2 proof obligations of

5 Recall from Section 7.2.1 that the infix operator * returns the value of an object in a state.

117

mutable type mset;

uses Set (mset for C, int for E);

mset create (void) {
ensures result' = {} A fresh(result);

}
bool member (mset s, int i) {

ensures result = i E sA;

}
void insert (mset s, int i) {

requires i > 0;

modifies s;

ensures s = insert(i, sA);
}
void delete (mset s, int i) f

modifies s;

ensures s' = delete(i, SA);

Figure 7-7: mset.lcl

imports mset;

immutable type stack;

uses Stack (obj mset for E, stack for C);

stack stackCreate (void) {
ensures result = empty;

}
stack push (mset s, stack stk) {

ensures if V i: int (i sA = i > 0)

then result = push(s, stk) else result = stk;

Figure 7-8: stack.lcl

118

Section 7.5.3 easily. The invariant, however, also depends on the value of mset objects that
have been pushed onto stacks, but may still be modified by mset's insert and delete
function calls. The mutator hypothesis MHfor P is designed to check that they also respect
P. The mutator hypothesis for P and mset is given in Figure 7-9.

(MHa) (specs(insert,pre,post) A Vx stack P(x,pre)) = Vy: stack P(y,post)
(MHb) (specs(delete, pre, post) A Vx: stack P(, pre)) y : stack P(y, post)

Figure 7-9: A mutator hypothesis.

We will sketch how MHa can be discharged. Consider a stack stk before the execution
of insert; it obeys the stack invariant by assumption. Now, insert modifies a set, s, which
may or may not be in stk. There are two cases here. If s E stk, we use the specification
of insert to make sure that the invariant still holds for stk in the post state. In this case,
it does, since insert only inserts elements that are strictly positive. If the requires clause
fails, then the function does not terminate, and the conclusion is trivially true. The second
case is for s stk, where the invariant from the pre state can be invoked on stk.

7.5.5 Jointly Defined Abstract Types

The induction rules we have given above are also valid for jointly defined abstract types.
In many ways, jointly defined types behave much the same way as distinct abstract types
defined in separate modules. The only extra freedom two jointly defined abstract types T1
and T2 enjoy is that they have access to each other's rep type. The specification of object
modification, however, is independent of where the abstract types are defined. If a function
F in the module modifies an abstract object, x of type T1, the object must be listed in the
modifies clause, even if x is contained in some instance of T2. Therefore, the freedom to
access each other's rep does not affect the induction rule.

We consider one example that illustrates how our concept of revealed values avoids a
source of potential unsoundness in the rules we have given. Suppose the types stack and
mset are jointly defined in a single module as shown in Figure 7-10. The specifications of
the functions in Figure 7-10 are identical to those in Figure 7-7 and Figure 7-8 except that
in place of push, we have funnyPush, which pushes a new set object with value {0 onto
the stack.

Instead of proving the stack invariant we give in Section 7.5.4, suppose we want to show
an invariant about mset's. Suppose the invariant is: P(s) - V i: int (i E s i > 0).
The functions in the mset module easily met the invariant. Using the induction rule given
in Section 7.5.4, no other hypotheses need to be checked for this invariant since the two
stack functions do not modify mset's and there are no output results that are mset's. The
funnyPush function, however, creates a stack that contains an mset object that does not
satisfy the invariant. This is not a problem in our induction rule because the conclusion is
still sound: the mset's revealed via the interfaces of the module satisfy the invariant. There
are no interfaces in the module that reveal those mset's hidden under stacks.

Consider, however, a variant of the above module in which an additional stack function,
top, is exported. The specification of top is given in Figure 7-11. In this case, the hidden
mset's in a stack are revealed by top. Since top returns an output result that is an mset,

119

mutable type mset;

immutable type stack;

uses Set (mset for C, int for E), Stack (stack for C, obj mset for E);

mset create (void) {

ensures result' = {} A fresh(result);
}
bool member (mset s, int i) {

ensures result = i E s;
}
void insert (mset s, int i) {

requires i > 0;

modifies s;

ensures s' = insert(i, SA);
}
void delete (mset s, int i) {

modifies s;

ensures s' = delete(i, s^);
}
stack stackCreate (void) {

ensures result = empty;
}
stack funnyPush (stack stk) {
ensures 3 so: obj mset (result = push(so, stk) A fresh(so) A so' = (0});

Figure 7-10: setAndStack.lcl

top is considered to be a mset constructor, and it contributes a proof obligation to the
proof of the invariant P. Its proof will fail because the supporting lemma that the top of
any non-empty stack contains positive integers is false.

mset top (stack stk) {
requires not(stk = empty);

ensures result = top(stk);

Figure 7-11: Adding the top function to setAndStack.lcl

7.5.6 Module Induction Principle

The module induction rule can be viewed as a special case of the type induction rules we
have given in the previous sections, where the invariant is independent of the abstract type
exported by module D. Below, we give the module induction rule because it is simpler than
the other rules.

An LCL module supports data hiding using spec variables. An induction principle for
predicates on the virtual object set of a module can be derived using computational in-
duction. Suppose we have a module named D, and Exports is the set of functions of D,
excluding its initialization function. Suppose the invariant we want to prove is PO such that
PO: objectSet, state -+ Bool, where the first argument is a subset of the spec state of D. We

120

define an auxiliary operator P: state - Bool to be P(st) - PO(specState(D, st), st). The
operator P merges the two arguments of PO into one so we can apply the following module
induction rule.

(M1) specs(DinitMod, pre, post) =: P(post)
(M2) VF: Exports (specs(F,pre,post) A P(pre)) =: P(post)
(M3) st: state initializedState(D, st) . P(st)

In the conclusion of the rule, the term initializedState(D, st) is true if st is a state
in which the module initialization function DinitMod of D has already been called. The
predicate is false before DinitMod is called, and remains true after it has been called.

The induction rule says that once the invariant P is established over the virtual objects of
a module by the initialization function, it is preserved by all other functions of the module.
The soundness of this rule rests on the assumption that the spec state of a module can only
be modified by the functions of the module.

7.5.7 Module Claims

A module claim does not add new logical content to an LCL specification. It states a
conjecture that the condition given in the module claim is an invariant of the module.
A module claim is proved using one of our type induction rules given in the previous
subsections. If the invariant is independent of the abstract type exported by the module,
the simpler module induction rule in Section 7.5.6 can be used in its place. In general, a
module claim may involve both an abstract type T and some spec variable SV of type T2
in the module defining T; for example, the predicate corresponding to the module claim
may have the form of PO: T, T2_Obj, state -+ Bool. In such a case, we express PO using a
corresponding predicate P: T, state -* Bool as P(x, st) PO(x, SV(specState(D, st)), st).
The form of P is suitable for use in our type induction rules.

Consider the amountConsistency module claim we have seen in Chapter 5, which is
reproduced below:

claims amountConsistency (position p) bool seenError; (
ensures (seenError~) => p.amt = sumamt(p.openLots);

The predicate corresponding to the above module claim, PO, is

V p: positionObj, st: state, seenError: boolObj

PO(p, seenError, st) - (- (seenError#st) =>

((p#st).amt = sumamt((p#st) .openLots)))

The sorts given to the parameters of the module claim need some explanation. Recall
from Section 4.9 that position is a mutable abstract type and that an instance of a mutable
type is modeled by the object sort of the type. Hence, the parameter p in the module claim is
given the object sort of the position type, position_0bj. Next, recall from the description
of spec variables in Section 7.5 that spec variables are modeled as virtual objects, the
parameter seenError is hence given the sort of a bool location, bool_Obj.

To use the type induction rules given in the previous subsections, we express PO as
follows:

P(p, st) = PO(p, seenError(specState(position, st)), st)

where seenError(specState(position, st)) is the object modeling the spec variable,
seenError, in the position module.

121

7.6 Type Safety of Abstract Types

An implementation of an abstract type exposes its representation type if the value of an
instance of the abstract type can be changed by a client of the abstract type without calling
the interfaces of the type. Whether an implementation of an abstract type exposes its
rep type or not is an implementation property, not a specification property. As such, the
notion of rep type exposure can only be defined formally with respect to concrete program
states, which is beyond the scope of this work. Since our goal is focused on reasoning about
specifications, we discuss the problem informally and describe the typical ways in which an
implementation violates type safety in this section. Vandevoorde [35] gives a more detailed
and formal discussion of the type safety problem.

We illustrate the type safety problem with an example. Suppose we implement a mutable
abstract type, set, using an int array in c, and that there is an exported function in the set
type, intArray2set, which takes an int array and returns a set containing the elements in
the input array. An implementation of intArray2set that returns the input array directly
exposes the rep of the set type. This is because a caller of intArray2set may still hold a
reference to the input array, for example, in the following program context:

int a[10];
set s;
s = intArray2set(a);

In the program state after the execution of intArray2set, both s and a point to the
same object, that is, there is an alias across types. If the array a is modified by some
array operation after this point, the change will also appear in s. This violates the central
requirement of an abstract type: that the only way to change an abstract instance is
through the interfaces of its type. Since our data type induction principle depends on this
requirement, its soundness is compromised.

Note that we restrict our attention to program contexts that are outside of the imple-
mentation of abstract types. Within the implementation of an abstract type, type aliasing
is fundamental to data abstraction and cannot be avoided.

Another way type safety can be violated is when an object of a rep type is cast into an
abstract object. This allows a rep instance to masquerade as an abstract instance. Since a
rep object need not obey the invariants maintained by an abstract type, the soundness of the
type induction principle can be broken. One design goal of LCL is to add a stronger typing
discipline to c programs. The LCLint program checks that no rep objects are explicitly cast
from and into abstract ones. It provides guarantees similar to that of the CLU compiler [25].

7.7 Summary

We have formalized several informal concepts introduced in the previous chapters and de-
scribed interesting aspects of the semantics of LCL. Our semantics is designed primarily for
reasoning about LCL specifications and claims.

The domain of LCL values consists of basic values and objects. Objects are containers of
values. A state is a mapping of objects to values. LCL exposed types are modeled according
to the semantics of c's built-in types. LCL immutable types are modeled by basic values,
and LCL mutable types are modeled by objects. We showed how LCL types are implicitly
mapped to LSL sorts. Each LCL specification makes use of LSL traits which introduce sorts
and operators, and provide axioms that constrain the operators.

122

An LCL function specification is a predicate on two states, the pre state and the post
state. This predicate constrains the input output behavior of the function. The checks
clause and exposed types with constraints play a role in translating a function specification
into its corresponding predicate.

An LCL module can specify abstract types and encapsulate data. We provided induction
rules for deriving inductive properties of abstract types and invariants of encapsulated data.
Our induction rules relied on a notion of revealed values, which are instances of abstract
types made accessible through the interfaces of the types. This is different from a previous
approach [37] that relied on fresh objects.

123

124

Chapter 8

Further Work and Summary

In this chapter, we discuss the importance of various specification tools we have used in
writing and checking formal specifications, suggest areas where further work might be useful,
and summarize the thesis.

8.1 Specification Tool Support

The reengineering exercise would have been much harder and of lesser quality if there were
no tools to support the writing and checking of specifications. There were five kinds of
specification tools we used in the process.

The first kind of tool checks the syntax and type correctness of specifications. They
are the LSL and LCL checkers.1 They caught many careless typos and type errors in our
specifications.

The second kind of tool checks formal proofs. The proof checker we used was LP, a first-
order term-rewriting proof checker. It was used to verify LCL claims. It was instrumental in
catching the mistakes we found in the specification. As indicated in Section 5.9.1, many of
the errors were not likely to be detected by inspection, or even informal proofs. The chief
benefit of using a proof checker lies in the regression testing of specifications.

The third kind of tool translates specifications. The LSL checker has an option that
translates an LSL trait into an LP theory. This facility lessens the errors made by hand
translation, and makes it easier to do regression testing. As indicated in Section 5.9.3, a
similar program that translates LCL specifications and claims into LP inputs would also be
useful.

The fourth kind of tool is previous Larch specifications. The Larch handbook contains
many commonly used abstractions. Reusing the handbook traits saved us much specification
effort. The traits also served as models of the LSL specifications we wrote for the case study.
Similarly, we were able to reuse some LCL specifications from Chapter 5 of [15]. As the
Larch handbook and the suite of Larch specifications grow larger, we expect specification
reuse to increase.

The fifth kind of tool performs consistency checks between a specification and its imple-
mentation. As described in Section 6.2.3, the LCLint tool improved the quality of the PM

program by uncovering flaws in our implementation. A pleasant effect of LCLint was that
it also helped to uncover some specification errors. An earlier specification of dateyear

1The LCL checker is incorporated into the LCLint tool.

125

did not list stderr as one of the objects it accessed. Its implementation, however, modified
stderr when an error was encountered. The LCLint tool reported the inconsistency between
the two, and led to a correction in the specification.

8.2 Further Work

There are four directions to further our work. We suggest more specifications checks, a
few plausible program checks, directions to extend the LCL specification language to specify
a wider class of programs, and further experimentation on using formal specifications to
reengineer existing programs.

8.2.1 More Checks on Specifications

Our work on checking formal specifications has two components: a syntactic component
and a semantic component. The LSL and LCL checkers perform syntactic and type checking
on specifications. They help catch many careless errors, and improve the quality of the
specification. The semantic component is to analyze the specification by proving claims.
Below we suggest other useful checks in the two components.

More Expressive Claims: Our work focuses only on a few kinds of claims. They were
chosen for simplicity and utility. A module claim asserts properties about a single state. It
is useful to explore how claims that assert properties across several states can be proved and
used. For example, such claims can be used to sketch the intended prototypical usage of the
procedures in a module. Sometimes, the procedures in a module are designed to be used in
a cooperative manner. For example, since c does not support iterators, separate procedures
are needed to support iteration abstraction in c. A more expressive claim language would
allow the relationships between the iteration procedures to be stated. Such claims can also
express when one procedure is the inverse of another, or that a procedure is idempotent.

In the extreme, the claim language may be the c language itself. This will allow full-
fledged verification of c programs. On the other hand, it may be useful to explore a less
expressive language that still adequately expresses many relationships that specifiers desire.
For example, the claim language could be a trace-like language [2] in which properties of
various combinations of procedure calls can be stated and checked. Procedure calls could
be combined using simple regular expressions for expressing procedure call sequencing and
loops [34].

Efficient Specification Checks Enabled by Conventions: Because semantic analysis
of formal specifications is expensive, a more efficient means is desirable. Syntactic checks are
often efficient and can detect specification errors. There are, however, few sound syntactic
checks. A sound check is one that does not produce spurious error messages. One kind of
sound check is type checking of terms in Larch specifications.

Like the lint approach to checking programs, it is useful to devise efficient but not
necessarily sound checks on specifications. We can rely on specification conventions to aid
in the checking. While this approach can produce spurious error messages, it can efficiently
catch a number of careless mistakes beyond type-checking. The following are some examples
of syntactic checks on LCL function specifications.

First, if a result of a function is non-void, the specification must say what the result
should be. We can syntactically detect if the result is used in the ensures clause. We can

126

extend the check to handle conditionals: the results of a function must be set in every
branch of the conditional.

Second, if both trashed(x) and x' appear in a function specification, it is likely to be
an error.

Third, if the post state value of an object is accessed, the object must be in the modifies
clause. The check can detect a common error where the specifier inadvertently leaves out
the changed object in the modifies clause. The check is not useful unless the specifier adopts
the convention of using x A (rather than x') to refer to the value of an object that is not
changed by the procedure.

8.2.2 More Checks on Implementations

A formal specification contains information that can be used to check its implementation.
Much of the information, however, is not easily extracted or used. This prompts research
to simplify the specification language so that more useful checks can be performed on the
implementation of a specification. For example, a user of the Aspect system [18] specifies
dependencies among selected aspects of data items, and the system uses efficient data flow
analysis to check an implementation of the specification for missing dependencies. The
advantage of Aspect is that checks are efficient and specifications are simpler to write.
This, however, comes at the expense of good documentation. Dependencies do not capture
much of the intended behavior or design of procedures and modules.

Combining Aspect techniques with Larch specifications is desirable. It will reap the
benefits of both: efficient analysis allows more program errors to be found, and complete
behavioral description supports program documentation. We give an example of how the
two can be combined. The checks clause of LCL is designed with a specific purpose in mind:
the implementor of a function specification with a checks clause should ensure that the
condition specified in the checks clause holds. The condition is often simple and involves
some input arguments of the function. A kind of information that can be abstracted out
of the condition is the set of input objects that are mentioned in the condition. If an
implementation of the function never refers to an input argument in the set, it is likely that
the check has been unintentionally omitted.

8.2.3 LCL and Larch Extensions

LCL can currently be used to specify a large class of c programs. It does not, however,
support the specification of functions that takes in procedure parameters. While c does not
support type parameterization, many specifications are naturally parameterized by types.
Supporting the new features can also suggest new kinds of useful claims to be specified and
checked.

Parameterized Modules: Type parameterization is a complementary technique to proce-
dural and data abstractions. Many programs and specifications are identical except for the
types of arguments they take. A natural class of parameterized functions are functions that
operate on sequences of data, but are independent of the types of data in the sequences.

LCL specifiers can benefit by specifying only one common interface that is parameterized
by types. Since c does not support type parameterization, a specifier can instantiate type
parameters with ground types to generate a non-parameterized module which can then be
used in the same way as other non-parameterized modules.

127

Procedure Parameters: Even though procedure parameters are not essential to express-
ing computation, they are useful for capturing common processing patterns that can lead to
simpler, more modular, and more concise code. Procedures that take other procedures as
parameters are often termed higher-order functions. Specification of higher-order functions
is an area of research that has not yet been successfully addressed in Larch. Since c sup-
ports a very limited form of higher-order functions, a better avenue to study the problem
in its fullness may be in an interface language for a programming language that supports
higher-order functions, such as in Larch/ML [39].

8.2.4 Reengineering Case Studies

Our reengineering exercise revealed some beneficial effects of using LCL specification to help
reengineer existing programs. We have not, however, done careful control experiments to
measure its detailed effects. For example, we observed that using abstract types in the
new PM program increased the size of the source code. It is difficult to study the actual
increase in code size due solely to the use of abstract types because we made other changes
to the program. For example, we added new checks on the inputs of the program, and
checks needed to weaken the preconditions of some functions. Careful control experiments
are needed to measure the effects of the various code changes.

8.3 Summary

Our work is motivated by the difficulty of developing, maintaining, and reusing software. We
believe that through the design of more modular software, and by improving the quality
of software documentation, we can alleviate the problem. In this thesis, we presented
techniques for encouraging software modularity, improving software documentation, and
testing specifications.

In Chapter 2 and 3, we presented a novel use of formal specification to promote a
programming style based on specified interfaces and data abstraction in a programming
language that lacks such supports. The Larch/C Interface Language (LCL) is a language for
documenting the interfaces of ANSI C program modules. Even though c does not support
abstract data types, LCL supports the specifications of abstract data types, and provides
guidelines on how abstract types can be implemented in c. A lint-like program checks for
some conformance of c code to its LCL specification [5].

Within the framework of LCL, we introduced the concept of claims, or logically redun-
dant, problem-specific information about a specification. In Chapter 5, we illustrated how
claims can enhance the role of specifications as a software documentation tool. Claims are
used to highlight important or unusual specification properties, promote design coherence
of modules, and support program reasoning. In addition, we also showed how claims about
a specification can be used to test the specification. We took the approach of proving that
claims follow semantically from the specification. We provided a semantics of LCL suitable
for reasoning about claims in Chapter 7.

In Chapter 4, we described the LCL specifications of the main modules of an existing
1800-line c program, named PM. The main ideas of this thesis are exercised in the spec-
ification case study. The case study showed that LCL is adequate for specifying a class
of medium-sized c programs. It also motivated techniques for writing more compact and
easier to understand specifications. Some LCL features were introduced to codify some of
these techniques.

128

We verified parts of the claims in the case study using the LP proof checker [7] and, in the
process, learned about some common classes of specification errors claims can help catch.
Formally verifying claims with a proof checker was tedious and difficult. In return, however,
the process helped us gain a better understanding of our specification. Our experience
verifying claims suggests that specification errors cannot be easily found without meticulous
proof efforts. While a proof checker is not essential, it is a big book-keeping aid in the
verification process. In particular, verification with the help of a proof checker reduces the
effort needed to re-check claims. We described the features a proof checker suitable for
claims verification should provide in Chapter 5.

In Chapter 6, we gave a software reengineering process model for improving existing
programs. The process is aimed at making existing programs easier to maintain and reuse
while keeping their essential functionalities unchanged. Our process model is distinguished
by the central role formal specifications play in driving code improvement. We described
the results of applying the process to the PM program.

We improved the PM program in many ways but kept its functionality essentially un-
changed. Besides the new specification product, the specification process improved the
modularity of the program, helped to uncover some new abstractions, and contributed to a
more coherent module design. In addition, the process made the program more robust by
removing some potential errors in the program. The service provided by the reengineered
program also improved because the process helped us identify new useful checks on the
user's inputs to the program. We have achieved these effects without changing the essential
functionality or performance of the program.

We found tool support to be indispensable in writing formal specifications. We used tools
to check the syntax and static semantics of our specifications, to check aspects of consistency
between a specification and its implementation, to translate some of our specifications into
inputs suitable for a proof checker, and to verify claims. These tools helped to uncover both
simple and subtle errors. Our experience argues for the use of formal description techniques
rather than informal ones because we can build better tools to support formal description
techniques.

129

130

Appendix A

LCL Reference Grammar

Interfaces

interface
import
use
export
private
constDeclaration
varDeclaration
traitRef
renaming
replace
typeName

{import I use} {export private I claim } *
imports (id " id " < id>)+,;
uses traitRef, ;
constDeclaration I varDeclaration I type fcn I claim
spec { constDeclaration IvarDeclaration I type I fcn }
constant typeSpecifier { varId [= term] }+,;
{ [const I volatile]) IclTypeSpec { declarator [= term])+,;
id [(renaming)]
replace+, I typeName+, replace*,
typeName for { opId [: sortlId* mapSym sortld] CType)
[obj] IclTypeSpec [abstDeclarator]

Functions

fcn
global
fecnBody

letDecl
sortSpec
requires
checks
modify
storeRef
ensures
claims

::= IclTypeSpec declarator { global }* { fcnBody }
IclTypeSpec declarator+,;

::= [letDecl] [checks] [requires] [modify]
[ensures] [claims]

::= let { varId [: sortSpec] be term }+,;
= IclTypeSpec

::= requires lclPredicate;
::= checks IclPredicate ;

modifies { nothing I storeRef+, };
::= term [obj] clTypeSpec *
::= ensures lclPredicate;

::= claims lclPredicate;

Types

type
abstract
exposed

abstract exposed
[mutable I immutable] type id;
typedef IclTypeSpec { declarator [{ constraint }] }+,;
I { struct I union } id;

131

constraint ::= constraint quantifierSym id : id (clPredicate);
lclTypeSpec
structSpec

structDecl
enumSpec
typeSpecifier
CType

absDeclarator

param

declarator

parameterDecl

arrayQual

::= typeSpecifier structSpec enumSpec
::= [struct union] [id] { structDecl+ }

I [struct I union] id
::= IclTypeSpec declarator+,;

::=enum [id] id+, enum id
= id I CType+

::= void I char I double I float I int
I long I short I signed I unsigned

::= (abstDeclarator)
* [abstDeclarator]

I [abstDeclarator] arrayQual
I abstDeclarator ()
I [abstDeclarator] (param*,)

::= [out] lclTypeSpec parameterDecl
I[out] clTypeSpec declarator
I [out] IclTypeSpec [abstDeclarator]

::= varld I * declarator
(declarator)

I declarator arrayQual I declarator (param*,)
::= varId * parameterDecl

I parameterDecl arrayQual I parameterDecl (param*,)
::= [[term]]

Predicates

lclPredicate ::= term
term ::= if term then term else term I equalityTerm

I term logicalOp term
equalityTerm ::= simpleOpTerm [{ eqOp I = } simpleOpTerm]

I quantifier+ (term)
simpleOpTerm ::= simpleOp2+ secondary I secondary simpleOp2+

I secondary { simpleOp2 secondary } *
simpleOp2 ::= simpleOp *
secondary ::= primary I [primary] bracketed [: sortId] [primary]

I sqBracketed [: sortld] [primary]
bracketed ::= open [term { { sepSym I, } term }*] close
sqBracketed ::= [[term { { sepSym I , } term }*]]
open ::= { openSym
close ::= } closeSym
primary ::= (term) I varId I opId (term+,) I lclPrimary

I primary { preSym I postSym I anySym }

I primary { selectSym I mapSym } id
I primary [term+,]

I primary: sortId
lclPrimary ::= cLiteral I result I fresh (term)

I trashed (storeRef)

132

unchanged ({ all I storeRef, })
I sizeof ({ clTypeSpec I term })
I minIndex(term)
I maxIndex(term)
i isSub (term , term)

cLiteral ::= intLiteral stringLiteral singleQuoteLiteral floatLiteral
quantifier ::= quantifierSym { varId: [obj] sortSpec }+,
varId ::= id
fcnId ::= id
sortId ::= id
opId ::= id

Claims

claim ::= claims id (param*,) { global }*
{ [letDecl] [requires] [body] ensures }

I claims fcnld id;
body ::= body { fcnld (value*,); }
value ::= cLiteral varld (value)

I [value] simpleOp [value] I fcnd (value*,)

133

134

Appendix B

Relating LCL Types and LSL
Sorts

This appendix supplements the description in Chapter 7. The following sections describe
how LCL exposed types are modeled by LSL sorts, and how different kinds of LCL variables
are given appropriate LSL sorts.

B.1 Modeling LCL Exposed Types with LSL Sorts

In this section, the sorts used to model c built-in types are described. For each of the
exposed types, we define what its value sort and its object sort are.

Primitive types of C: The primitive types of c are modeled as if they are immutable
abstract types; there is one identically named LSL sort to model each of them. It is also
defined to be the value sort of the type. For instance, the sort int models the int type. The
differences between the type compatibility rules of c and LCL described in Section 7.3.1 show
up here. For example, LCL considers int, char, and enumerated types as different types.
Hence, different sorts are generated for them. Since c type qualifiers are not significant,
they are dropped in the mapping process. Finally, c float and double types are both
mapped to the double sort.

It is useful to define the object sort of c primitive types and LCL immutable types. They
are used to model memory locations that can contain such values. Such locations arise when
pointers to them are dereferenced by the * operator. Their object sorts allow us to describe
properties about these locations. If T is a c primitive type or an immutable abstract type,
then we define the sort TObj to be the object sort of T.

Pointer to type T: The type T is first mapped to its underlying sort, suppose it is TS.
Two LSL sorts are used to model a pointer type. The TSObjPtr models the pointer that is
passed to and from procedure calls, and the TS_Obj sort models the object that is obtained
when the pointer is dereferenced by the LCL operator *. TS_ObjPtr is called a pointer sort,
and is defined to be the value sort of the pointer type. Finally, when an object of sort
TS-Obj (an object sort) is evaluated in a state, a value of sort TS (a value sort) is obtained.
The object sort of the type T * is the TS_0ObjPtr_Obj sort.

c does not make any distinction between arrays and pointers. LCL views them as distinct
types.

Array of element type T: The type T is first mapped to its underlying sort; suppose it
is TS. Two LSL sorts are used to model an array type. The TSArr sort models the array

135

Let I be an immutable abstract type, M be a mutable abstract type
Let T be an LCL exposed type

LCL Types Formal Parameter Global Variable Quantified Variable
I I IObj I
M MObj MObjObj M
primitive type T T TObj T
enumerated type T T TObj T
pointer to T TObjPtr TObjPtrObj TObjPtr
array of T TObjArr TObjArr TVec
struct S _STuple _S.Struct _S-Tuple
union _U _U_UnionVal _UUnion _UUnionVal

Table B.1: Assigning sorts to LCL variables.

object, and it is the object sort of the array type. The TSVec sort models the value of the
array in a state, and it is the value sort of the array type. TSArr is called an array sort,
and TS Vec, a vector sort.

Struct type: Suppose we have the following c struct: struct S { ...). Two uniquely
generated LSL sorts are used to model a struct type. The SStruct sort, called a struct
sort, models an object of the struct type; it is the object sort of the struct type. The
STuple sort, called a tuple sort, models the value of a struct object in a state; it is the
value sort of the struct type.

Union type: The mapping for union types is analogous to that for struct types. Suppose
we have the following c union: union _U ... }. The _UUnion sort, called a union sort,
models an object of the union type; it is the object sort of the union type. The _U_UnionVal
sort, called a union value sort, models the value of a union object in a state; it is the object
sort of the union type.

Enumerated type: Unlike c, LCL views enumerated types as new types, different from
int, char, and other separately generated enumerated types. They are modeled as im-
mutable types. Suppose we have: enum _E { ...). The unique corresponding LSL sort is
_EEnum; it is called an enumeration sort. It is the value sort of the enumerated type. As
for other primitive c types or immutable types, the object sort of the enum R_ type is the
_EEnum_Obj sort.

The object sorts of LCL types are mutable sorts. Instances of these sorts represent
mutable objects. Other kinds of sorts are immutable sorts.

B.2 Assigning LSL Sorts to LCL Variables

An LCL variable is either a global variable, a formal parameter, or a quantified variable. A
spec variable is considered to be a global variable for the purpose of assigning LSL sorts.
Each variable is given an LSL sort according to its LCL type. This type-to-sort assignment
is fundamental to defining the sort compatibility constraints a legal LCL specification must
satisfy.

Table B.1 shows how LCL typed variables are assigned LSL sorts. LCL models formal
parameters and global variables of the same type differently. Since c supports only one
style of parameter passing, pass by value, each formal parameter is a copy of the argument
passed. To simplify reasoning about LCL specifications, an explicit environment to map

136

Kind of C Literal Assigned Sorts
int int
char char
C string charVec, charObjPtr
float, double double

Table B.2: Assigning sorts to C literals.

identifiers to objects is not introduced. LCL global variables are simply modeled as objects,
that is, if a global variable changes its value, we model it as a change in the mapping
between the name of the global variable and its underlying value. For example, if x is a
global variable of type int, then x is assigned the sort int_Obj. Changes to x are modeled
as changes in the state binding x to ints. c treats arrays differently from other types: an
array is not copied; it is implicitly passed as a pointer to the first element of the array. LCL

carries this exception too: a global variable and a formal parameter of the same array type
are both mapped to the same array sort.

A quantified variable is always given the value sort of its type unless the obj qualifier
is used. If the obj qualifier is present, the object sort corresponding to the type of the
quantified variable is used.

B.3 Assigning LSL Sorts to C Literals

c literals can be used in LCL specifications. The following kinds of literals are supported:
integers, strings, character literals, and floating point numbers. Single precision floating
point numbers are treated as double precision floating point numbers.

Abstract Syntax

cLiteral ::= intLiteral I stringLiteral I singleQuoteLiteral floatLiteral

By c convention, c strings are arrays of c characters terminated by a null character.
The built-in sort that models the value of c strings is char_Vec. The corresponding array
sort is charArr. Since a c string can be viewed either as an array of characters or as
a pointer to a character, c strings are overloaded accordingly. The sort assignments of c
literals are shown in Table B.2.

137

138

Appendix C

LCL Built-in Operators

A number of LCL operators are automatically generated to model LCL types. They are
generated based on the kinds of sorts used to model LCL types. Table C.1 shows the built-
in operators corresponding to each kind of sort. A number of other built-in operators such as
fresh and trashed are discussed in the semantics of a function specification in Section 7.4.

For a given kind of sort, the corresponding entry of Table C.1 shows how the built-in
operators can be generated by using some LSL traits with the appropriate renamings. These
traits are shown in Figures C-1 to C-5. For example, the row for a pointer sort (named
ps) says that the following auxiliary sorts are expected: a sort corresponding to the value
the pointer points to (value sort named s), and the object sort corresponding to s (named
os). The last column of the table, for a pointer sort, indicates that the built-in operators
can be generated by adding the following uses clause to the module: use lclpointer
(s for base, os for baseObj, ps for baseObjPtr). This corresponds to the following
operators:

__ # __: baseObj, state -+ base
nil: -+ baseObjPtr
* __: baseObjPtr -+ baseObj

__ + __, __ - __: baseObjPtr, int -+ baseObjPtr

__ + __: int, baseDbjPtr - baseObjPtr

__- __: baseObjPtr, baseObjPtr -+ int

fresh, trashed, unchanged: baseObj -+ Bool

minIndex, maxIndex: baseObjPtr -- int
sizeof: base --+ int

sizeof: baseDbj -+ int

sizeof: baseObjPtr -+ int

The nil operator is the null pointer for the pointer type. There is an operator (* __)
to dereference a pointer; its result is an object whose value can be retrieved from some
state. There are operators for pointer arithmetic, and an auxiliary operator is introduced
as a shorthand: unchanged. Its definition is given in Table C.2, together with the built-in
operator for array types, isSub.

The terms in the left hand column of the first two rows of Table C.2 can only appear in
the body of a function specification. Their equivalent assertion contains the operators, ^

and ', which are the same states as those implicitly available in the function specification.
They can simply be viewed as macros within the body of a function specification.

While the bounds of c arrays are not dynamically kept, they are useful for reasoning
about c programs and LCL specifications. A verification system can deduce such information

139

Sort Kind Auxiliary Sorts Implicitly Used Trait
any sort (s) none iclsort (s for base)
object sort (os) value sort (s) lclobj (s for base, os for baseObj)
pointer sort (ps) value sort (s) lclpointer (s for base, os for baseObj,

object sort (os) ps for baseObjPtr)
array sort (as) value sort (s) iclarray (s for base, os for baseObj,

object sort (os) as for baseObjArr,
vector sort (vs) vs for baseVec, ps for baseObjPtr)
pointer sort (ps)

Table C.1: LCL built-in operators.

Term with Built-In Operator Equivalent Assertion
unchanged(x) x'-= XA

unchanged(all) V x:AllObjects x' = x A
isSub(a, i) 0 <= i <= maxIndex(a)

Table C.2: Semantics of some LCL built-in operators.

from array declarations and pointer usage. For example, if the LCL variable declaration is
given as int xa[10], it provides the following assertion: maxIndex(xa) = 9.

The sizeof operator is a c built-in operator. It returns the number of bytes an object
occupies in an implementation of c. Its semantics is compiler-implementation-dependent.

Iclsort (base): trait
introduces

sizeof: base -- int

Figure C-1: lclsort.lsl

A struct sort has a number of operators for selecting the components of the struct. Sup-
pose we have the following: struct _pair {int i; double d;). The corresponding LSL

sorts are _pairStruct and _pairTuple. Since the c & operator can be applied to the com-
ponents of c structs, their object identities must be modeled. LCL does this by overloading
the field selector operators to extract the objects representing the components of a struct ob-
ject. For example, we have both __. i: pair_Tuple -+ int and _. i: _pairStruct -+
intObj. Other automatically generated operators are given in the lclstruct2 trait shown
in Figure C-5. In the pair struct example, the implicitly generated trait corresponds to one
with the following renaming: lclstruct2 (_pair_Tuple, _pairStruct, int, int_Obj,
double, double_0bj, i for fieldl, d for field2).

Union sorts are handled in exactly the same way as struct sorts. No additional operators
are generated for enumeration sorts.

140

lclobj (base, baseObj): trait
includes lclsort (base), typedObj (base, baseObj)
introduces

fresh, trashed, unchanged: baseObj - Bool

sizeof: baseObj -+ int

Figure C-2: lclobj.lsl

lclpointer (base, baseDbj, baseDbjPtr): trait

includes lclobj (base, baseObj)

introduces

nil: -* baseObjPtr

* __ : baseDbjPtr -+ baseObj

minIndex, maxIndex: baseDbjPtr - int

+__, __-__: baseDbjPtr, int -+ baseDbjPtr

__+__: int, baseObjPtr - baseObjPtr
-__: baseDbjPtr, baseDbjPtr -+ int

sizeof: baseObjPtr -+ int

Figure C-3: clpointer.lsl

lclarray (base, baseDbj, baseDbjArr, baseVec, baseDbjPtr): trait

includes lclpointer (base, baseObj, baseObjPtr)

introduces

__ # __: baseObjArr, state -+ baseVec
__ [__]: baseObjArr, int -~ baseObj

maxIndex: baseObjArr - int

--__ [: baseObjPtr -+ baseObjArr
unchanged, fresh, trashed: baseObjArr -~ Bool

isSub: baseObjArr, int -+ Bool

sizeof: baseDbjArr - int

__ [__]: baseVec, int -+ base

isSub: baseVec, int -+ Bool
sizeof: baseVec -+ int

Figure C-4: lclarray.lsl

141

lclstruct2 (tup, struct, fieldiSort, fieldlObj, field2Sort, field20bj): trait

includes lclobj (tup, struct)

introduces

[__, __ : fieldiSort, field2Sort -* tup

__ . field : tup -+ fieldiSort
__ . field2 : tup -* field2Sort

__ . fieldi : struct -+ fieldiObj

__ . field2 : struct -* field20bj

Figure C-5: lclstruct2.1sl

142

Appendix D

Specification Case Study

The case study consists of the LCL specifications for the following interfaces: genlib, date,
security, lot list, trans, trans-set, and position. The following are the traits supporting the
interfaces: char, string, cstring, mystdio, genlib, dateBasics, dateFormat, date, security,
lot, list, lot-list, kind, transBasics, transFormat, transParse, trans, transset, income, posi-
tionBasics, positionMatches, positionExchange, positionReduce, positionTbill, positionSell,
and position. These traits use traits from the Larch LSL handbook traits described in [15].

The main features of some interfaces and traits have already been discussed in the body
of the thesis. The complete specifications are given below. The specifications have been
checked by the LSL checker and LCLint for syntax and type correctness. While no code is
shown here, PM is a program in regular use. The program has been also checked by LCLint
against the specifications given here.

D.1 The char Trait
char (char): trait

includes Integer

introduces
isNumberp, isBlankChar: char -- Bool
char2int: char - Int
tolower: char -* char

% should be an enumeration of char's but that would cause the output
% of ls121p to blow up.

'null', 'newline', 'tab', 'escape', 'space', 'slash', 'period': - char
'minus, 'EOF', 'comma', 'leftParen', 'rightParen', '': -) char

'O, '1', '2, '3, '4', '5', 6', , '8', '9':, : -+ char

'A', 'B', 'C', 'D', 'E', 'F', 'G', '', 'I', 'J', 'K', 'L', 'M', N': - char
'0, 'P', Q ', 'T', 'U', 'V', 'W, 'X', 'Y', : char

'a', 'b', 'c', Id' e, , g 'h, 'i', j', k', , n, , : - char
'o 'p, 'q',I r', Is' , 't' u, V', ', , 'x , 'y', z: -+ char
__ < __ : char, char - Bool % ASCII collating order

asserts

V c: char

isNumberp(c) == (c = 'O' V c = '1' V c = '2' V c = '3' V c = '4'
V c = '5' V c = '6' V c = '7' V c = '8' V c = '9/);

isBlankChar(c) == (c = 'null' V c = 'newline' V c = 'tab' V c = 'escape'
V c = 'space' V c = 'EOF');

char2int('0') == 0;

143

/ ...

char2int('9') == 9;
tolower('A') == 'a';

% ...

tolower('Z') == 'z';
% for non-alphabet, tolower(c) = c

tolower('null') == 'null';

, ...

tolower('_') == '_';

implies converts isNumberp, isBlankChar

D.2 The cstring Trait
cstring: trait

includes String (char, String), Integer (int for Int)

introduces

null: -+ char
nullTerminated: String -+ Bool

throughNull: String -+ String

sameStr: String, String -- Bool

lenStr: String -+ int

asserts

V s, si, s2: String, c: char

- nullTerminated(empty);

nullTerminated(s - c) ==

c = null V nullTerminated(s);

nullTerminated(s)

=: throughNull(s H c) = throughNull(s);
- nullTerminated(s)

=- throughNull(s H null) = s null;

sameStr(si, s2) ==

throughNull(si) = throughNull(s2);

lenStr(s) == len(throughNull(s)) -

D.3 The string Trait
string (C): trait

includes cstring (C for String), char

introduces

isNumeric, nonBlank: C -+ Bool

tolower, getString: C -+ C

__ < __ : C, C -+ Bool

lastElement: C -+ char

countChars: C, char -+ Int

NthField, NthFieldRest: C, int, char - C

asserts V s, sl, s2: C, c, cc, sc: char, i: Int

null == 'null'; % relate null in cstring.lsl and 'null' in char.lsl
isNumeric(empty);

isNumeric(s c) == isNumberp(c) A isNumeric(s);

- nonBlank(empty);
nonBlank(c -I s) == - isBlankChar(c) V nonBlank(s);

tolower(empty) == empty;

tolower(c s) == tolower(c) tolower(s);

144

nullTerminated(s) =

getString(c s) =
(if c = 'null' then empty else c getString(s));

- ((cc - s2) < empty);

empty < (cc s2);

(c s) < (cc s2) == (c < cc) V (c = cc A (s < s2));

lastElement(s c) = c;

countChars(empty, cc) == 0;

countChars(c s, cc) ==

if c = cc then succ(countChars(s, cc)) else countChars(s, cc);

% NthField returns the string that is between (i-1)th and i-th sc

% character not including the sc characters. Start and end of string

% is viewed as having implicit sc characters. i starts at 1.

NthField(empty, i, sc) == empty;

NthField(c s, i, sc) ==

(if c = sc then empty else c NthField(s, 1, sc));

i > 1 NthField(c s, succ(i), sc) =

(if c = sc then NthField(s, i, sc) else NthField(s, succ(i), sc));

% NthFieldRest returns the string after the i-th sc

% character (the returned string does not include the leading sc char).

% Start of string is viewed as having an implicit sc character,

% the Oth sc character. i starts at O.

NthFieldRest(empty, i, sc) = empty;

NthFieldRest(s, O, sc) == s;

i > 0 = NthFieldRest(c s, succ(i), sc) =

(if c = sc then NthFieldRest(s, i, sc)

else NthFieldRest(s, succ(i), sc));

implies V s: C, sc: char

s Z empty >

s = NthField(s, 1, sc) (sc NthFieldRest(s, , sc));

converts isNumeric, nonBlank, tolower: C -+ C,
__ < __: C, C -+ Bool, countChars, lastElement exempting lastElement(empty)

D.4 The mystdio Trait
mystdio (String): trait

includes string (String)
introduces

peekChar: FILE -* char
canRead: FILE - Bool

-- II --: FILE, String - FILE

getLine: FILE - String

getLineNChars: FILE, Int -+ String % read up to newline or at most N chars,
removeLine: FILE, String -* FILE

% String should be a prefix of FILE, remove it from FILE
replaceNewlineByNull: String -+ String

appendedMsg: FILE, FILE, String -+ Bool

asserts V f, f2: FILE, s: String, c: char

replaceNewlineByNull(empty) == empty;
replaceNewlineByNull(c s) ==
(if c = 'newline' then 'null' else c) replaceNewlineByNull(s);

appendedMsg(f, f2, s) == (f = f2 s) A nonBlank(s);

145

implies converts replaceNewlineByNull, appendedMsg

D.5 The genlib Trait

genlib (String, Int): trait

includes mystdio, string, DecimalLiterals (double for N),

Rational (double for Q), Exponentiation (double for T, nat for N),

Exponentiation (Int for T, nat for N)

introduces

sepchar: -+ char
withinl: double, double -+ Bool

nearO: double -+ Bool

okFloatString, okNatString, isNumberOrPeriodOrComma: String --, Bool

string2double: String -+ double

double2string2: double -, String % 2 decimal points

string2int: String -, Int

string2intExponent: String, Int - Int

wholePart, decimalPart: String -+ double

keepNumbers, leftOfDecimal, rightOfDecimal: String -+ String

% skip primitive format conversion routines

int2double: Int -+ double

int2string: Int -+ String
int: double -+ Int
nat: Int -+ nat

asserts d, di, d2, eps: double, c, c2: char, s: String, i, n, p: Int

withinl(dl, d2) == abs(dl - d2) < 1;

nearO(d) == (100 * abs(d)) < 1;

okFloatString('minus' s) == countChars(s, 'period') < 1

A len(s) > 0 A isNumberOrPeriodOrComma(s);

okFloatString('period' s) == countChars(s, 'period') = 0

A len(s) > 0 A isNumberOrPeriodOrComma(s);

isNumberp(c) =E

okFloatString(c s) == countChars(s, 'period') = 1

A isNumberOrPeriodOrComma(s);
- okFloatString(empty);

okFloatString(c -I s) = (c = 'minus' V c = 'period' V isNumberp(c));

okNatString(empty);

okNatString(c - s) == isNumberp(c) A okNatString(s);

isNumberOrPeriodOrComma(empty);
isNumberOrPeriodOrComma(c s) ==

(c = 'period' V isNumberp(c) V c = 'comma') A isNumberOrPeriodOrComma(s);

okFloatString(s) =>

string2double(s) = wholePart(keepNumbers(leftOfDecimal(s))) +

decimalPart(keepNumbers(rightOfDecimal(s)));

double2string2(d) == % do truncation
(if d > 0 then empty else 'minus' empty) II

(int2string(int(abs(d))) 'period') II

int2string(int((abs(d) - int2double(int(abs(d)))) * 100));

okNatString(s) = string2int(s) = string2intExponent(s, len(s) - 1);

string2intExponent(empty, p) == 0;
(okNatString(c s) A p O) •

string2intExponent(c'4 s, p) =

(char2int(c) * (10**nat(p))) + string2intExponent(s, p - 1);

146

leftOfDecimal(empty) == empty;
leftOfDecimal(c s) ==

if c = 'period' then empty else c leftOfDecimal(s);

rightOfDecimal(empty) == empty;

rightOfDecimal(c s) == if c = 'period' then s else rightOfDecimal(s);

keepNumbers(empty) == empty;
keepNumbers(c s) ==

if isNumberp(c) then c keepNumbers(s) else keepNumbers(s);

wholePart(empty) == 0;

isNumeric(s) = wholePart('minus' s) = - int2double(string2int(s));

isNumeric(c s) =>

wholePart(c H s) = int2double(string2int(c H s));

decimalPart(empty) == 0;

isNumeric(s) =

decimalPart(s) = int2double(string2int(s)) / (10**nat(len(s)));

implies

converts withini, nearO, okFloatString, okNatString, keepNumbers,

isNumberOrPeriodOrComma, double2string2, left0fDecimal, rightOfDecimal

D.6 The dateBasics Trait
dateBasics: trait
includes Integer, TotalOrder (date)
date tuple of month, day, year: Int % unknown month is 0, jan 1, ... dec 12.
introduces

isInLeapYear: date - Bool

isLeapYear: Int - Bool
validMonth: Int - Bool

__ - __ : date, date - Int
daysBetween: Int, Int -* Int

dayOfYear, daysToEnd: date -+ Int

dayOfYear2: Int, Int, Int, Int - Int

daysInMonth: Int, Int -- Int

asserts V d, d2: date, k, m, yr, yr2: Int, mth, mth2: Int
isInLeapYear(d) == isLeapYear(d.year);

isLeapYear(yr) == mod(yr, 400) = 0 V (mod(yr, 4) = 0 A mod(yr, 100) Z 0);

validMonth(mth) == mth > 0 A mth 12;

d < d2 == d.year < d2.year

V (d.year = d2.year A dayOfYear(d) < dayOfYear(d2));
d > d2 =

d - d2 = (if d.year = d2.year then dayOfYear(d) - dayOfYear(d2)
else daysToEnd(d2) + dayOfYear(d) +

daysBetween(succ(d2.year), d.year));

yr yr2 =>

daysBetween(yr, yr2) =

(if yr = yr2 then 0

else (if isLeapYear(yr) then 366 else 365) + daysBetween(succ(yr), yr2));
(validMonth(d.month) A (d.month 0 V d.day = 0)) =

dayOfYear(d) = (if d.month = 0 then 0
else dayOfYear2(d.month, 1, d.day, d.year));

(validHonth(mth) A validMonth(mth2)) =>

dayOfYear2(mth, mth2, k, yr) =

(if mth = mth2 then k

147

else dayOfYear2(mth, succ(mth2), k + daysInMonth(mth2, yr), yr));

validMonth(d.month) =E

daysToEnd(d) = (if isInLeapYear(d) then 366 else 365) - dayOfYear(d);

(validMonth(mth) A mth 0 O) =>

daysInMonth(mth, yr) =

(if mth = 2 then if isLeapYear(yr) then 29 else 28
else if mth = 1 V mth = 3 V mth = 5 V mth = 7 V mth = 8 V mth = 10

V mth = 12
then 31 else 30);

implies

converts isInLeapYear, isLeapYear

D.7 The dateFormat Trait
dateFormat: trait

includes genlib, dateBasics
introduces

okDateFormat, isNormalDateFormat: String - Bool

validDay: Int, Int, Int -+ Bool

asserts V s: String, i, m, yr: Int

okDateFormat(s) == (len(s) = 2 A s[0] = 'L' A s[1] = 'T')

V isNormalDateFormat(s);

isNormalDateFormat(s) == (len(s) > 5) A (len(s) < 8)

A countChars(s, 'slash') = 2 A NthField(s, , 'slash') != empty

A isNumeric(NthField(s, i, 'slash'))

A validMonth(string2int(NthField(s, i, 'slash')))

A NthField(s, 2, 'slash') != empty

A isNumeric(NthField(s, 2, 'slash'))

A NthField(s, 3, 'slash') != empty

A isNumeric(NthField(s, 3, 'slash'))

A validDay(string2int(NthField(s, 2, 'slash')),
string2int(NthField(s, , 'slash')),

string2int(NthField(s, 3, 'slash')));

validDay(i, m, yr) == (i > 0) A (i < 31)

A ((m = 0 A i = 0) V % reject 0/non-0-day/yr format
(m > 0 A m < 12 A i < daysInMonth(m, yr)));

implies converts okDateFormat, isNormalDateFormat, validDay

D.8 The date Trait
date: trait

includes dateFormat (ndate for date), TotalOrder (date)

date union of normal: ndate, special: Bool
introduces

nulldate: - date % serves as an uninitialized date.
isLT, isNullDate, isNormalDate, isInLeapYear: date -+ Bool

year: date -+ Int

__ - __ : date, date - Int

islongterm: date, date, Int -+ Bool
string2date: String -+ date

date2string: date --, String

fixUpYear: Int --+ Int

148

asserts V d, d2: date, s: String, i, day, yr: Int

nulldate == special(false);

isNullDate(d) == d = null_date;

isLT(d) == tag(d) = special A d.special;

isNormalDate(d) == tag(d) = normal;

isNormalDate(d) = isInLeapYear(d) = isInLeapYear(d.normal);
isNormalDate(d) = year(d) = d.normal.year;

(isNormalDate(d) A isNormalDate(d2)) = (d - d2 = d.normal - d2.normal);

(isNormalDate(d) A isNormalDate(d2)) =

is_long_term(d, d2, i) = ((d.normal - d2.normal) > i);

(isNormalDate(d) A isNormalDate(d2)) = (d < d2 = d.normal < d2.normal);

(isLT(d) A isNormalDate(d2)) -= (d < d2);

nulldate < d == not(d = nulldate); % non-reflexive
okDateFormat(s) =>

string2date(s) =
(if (len(s) = 2 A s[O] = 'L' A s = 'T') then special(true)

else normal([string2int(NthField(s, , 'slash')),

string2int(NthField(s, 2, 'slash')),

fixUpYear(string2int(NthField(s, 3, 'slash')))]));

yr 0 = fixUpYear(yr) = (if yr < 50 then 2000 + yr else i900 + yr);
isNormalDate(d) = string2date(date2string(d)) = d;

implies
V d: date

isNormalDate(d) => dayOfYear(d.normal) + daysToEnd(d.normal) =

(if isInLeapYear(d) then 366 else 365)

D.9 The security Trait
security (String, Int): trait

includes string (String for C)

security tuple of sym: String % current model. future: add other attributes
introduces

__ < __: security, security - Bool

hasNamePrefix: security, String - Bool

isCashSecurity: security -- Bool
% these strings can obviously be defined using chars, , and empty

'AmExGvt', 'Cash', 'LehmanBrosDaily', 'SmBarShGvt', 'USTrM',

'USTrS': - String

asserts V s, s2: security, str: String

s < s2 == tolower(s.sym) < tolower(s2.sym);

hasNamePrefix(s, str) == prefix(s.sym, len(str)) = str;

isCashSecurity(s) == hasNamePrefix(s, 'AmExGvt') V hasNamePrefix(s, 'Cash')

V hasNamePrefix(s, 'LehmanBrosDaily') V hasNamePrefix(s, 'SmBarShGvt')

V hasNamePrefix(s, 'USTrM') V hasNamePrefix(s, 'USTrS');

implies converts hasNamePrefix, __ < __: security, security-- Bool,

isCashSecurity

D.10 The lot Trait
lot (String, Int): trait
includes string (String)
introduces

string2lot: String - lot

149

lot2string: lot -+ String
__ < __: lot, lot -+ Bool

asserts V x, y: lot

string2lot(lot2string(x)) == x;

x < y == lot2string(x) < lot2string(y);

implies lot partitioned by lot2string
converts __ < __: lot, lot -* Bool

D.11 The list Trait
list (E, list) :trait

includes Integer
introduces

nil: -- list

cons: E, list -+ list

car: list -- E

cdr: list - list

--__ E __: E, list -+ Bool

length: list - Int

count: E, list -+ Int

asserts

list generated by nil, cons

list partitioned by car, cdr

V x, y:list, e, f: E, i: Int

car(cons(e, x)) = e;

cdr(cons(e, x)) = x;
- (e E nil);
e E cons(f, x) == (e = f) V e x;

length(nil) == 0;

length(cons(e, x)) == succ(length(x));

count(e, nil) == 0;

count(e, cons(f, x)) == if e = f then succ(count(e, x)) else count(e, x);

implies

converts car, cdr exempting V i: int car(nil), cdr(nil)

converts --__ E __, length, count

D.12 The lot_list Trait
lot_list (String, Int): trait

includes lot (String, Int), list (lot, lotlist)

introduces

__ < __ : lotlist, lotlist -- Bool
sorted, uniqueLots: lotlist -+ Bool

asserts V e, f: lot, x, y: lotlist, s: String, c: char

nil < cons(e, y);

- (cons(e, x) < nil);

cons(e, x) < cons(f, y) == (e < f) V (e = f A (x < y));

sorted(nil);
sorted(cons(e, nil));

sorted(cons(e, cons(f, x))) == e < f A sorted(x);

uniqueLots(nil);

150

uniqueLots(cons(e, x)) == (e E x) A uniqueLots(x);
implies converts __ < __: lotlist, lotlist - Bool, sorted, uniqueLots

D.13 The kind Trait
kind (String, kind): trait
includes string (String)

kind enumeration of buy, sell, cashdiv, cap_dist, tbill_mat, exchange, interest,
muni_interest, govtinterest, newsecurity, other

introduces

validKindFormat: String -+ Bool

string2kind: String - kind
needsLot, isInterestKind: kind -+ Bool

asserts V k: kind, s: String, sc, c: char

validKindFormat(s) ==

(len(s) = 1
A (s[O] = 'B' V s[O] = 'S' V s[O] = 'E' V s[O] = 'D' V s[O] = 'I'

V s[O] = 'C' V s[O] = 'M' V s[O] = 'N'))

V (len(s) = 2 A (s[O] = 'I' A (s[l = 'M' V s[1] = 'G')));

string2kind('B' H empty) == buy;

string2kind('S' H empty) == sell;
string2kind('E' H empty) == exchange;

string2kind('D' H empty) == cash_div;

string2kind('I' H empty) == interest;

string2kind('C' H empty) == capdist;

string2kind('M' H empty) == tbill_mat;

string2kind('N' H empty) == newsecurity;

string2kind('I' H ('M' H empty)) == muniinterest;

string2kind('I' H ('G' H empty)) == govtinterest;
- validKindFormat(s) string2kind(s) = other;

needsLot(k) == (k = buy V k = sell V k = exchange V k = capdist

V k = tbillmat);
isInterestKind(k) == (k = interest V k = muniinterest V k = govt_interest);

implies converts validKindFormat, string2kind, needsLot, isInterestKind

D.14 The transBasics Trait
transBasics: trait

includes genlib, date, kind, security, lotlist

trans tuple of security: security, kind: kind, amt, price, net: double,

date: date, lots: lotlist, input: String, comment: String

D.15 The transFormat Trait
transFormat: trait
includes transBasics

fields enumeration of security, kind, amt, price, net, date, lots, comment
introduces

okTransFormat: String - Bool
okTransFormatByKind: kind, String -- Bool
hasAllFields, noPriceLotsFields, noPriceField: String -+ Bool

okLotsFormat, areNumbersOrCommas: String -- Bool

151

getField: String, fields -* String

getComment: String, kind, double -+ String

asserts s: String, sc: char, k: kind, amt: double

okTransFormat(s) == len(s) > 0 A getField(s, security) != empty

A getField(s, kind) != empty

A okTransFormatByKind(string2kind(getField(s, kind)), s);

okTransFormatByKind(buy, s) == hasAllFields(s);

okTransFormatByKind(sell, s) == hasAllFields(s);

okTransFormatByKind(exchange, s) == hasAllFields(s);

okTransFormatByKind(interest, s) == noPriceLotsFields(s);

okTransFormatByKind(muniinterest, s) == noPriceLotsFields(s);

okTransFormatByKind(govt_interest, s) == noPriceLotsFields(s);

okTransFormatByKind(capdist, s) == noPriceField(s);

okTransFormatByKind(tbillmat, s) == noPriceField(s);

okTransFormatByKind(newsecurity, s) == okDateFormat(getField(s, date));

- okTransFormatByKind(other, s);

hasAllFields(s) == okFloatString(getField(s, amt))

A okFloatString(getField(s, price)) A okFloatString(getField(s, net))

A okDateFormat(getField(s, date)) A okLotsFormat(getField(s, lots));

noPriceLotsFields(s) == okFloatString(getField(s, amt))

A getField(s, price) = empty A okFloatString(getField(s, net))

A okDateFormat(getField(s, date));
noPriceField(s) == okFloatString(getField(s, amt))

A getField(s, price) = empty A okFloatString(getField(s, net))

A okDateFormat(getField(s, date)) A okLotsFormat(getField(s, lots));

% entry ::= security kind amt price net date [lots] [comment]

getField(s, security) == NthField(s, 1, sepchar);

getField(s, kind) == NthField(s, 2, sep_char);

getField(s, amt) == NthField(s, 3, sepchar);

getField(s, price) == NthField(s, 4, sep_char);

getField(s, net) == NthField(s, 5, sepchar);

getField(s, date) == NthField(s, 6, sep_char);

getField(s, lots) == NthField(s, 7, sepchar);

getComment(s, k, amt) == if needsLot(k) V amt = 0

then NthFieldRest(s, 6, sepchar)

else NthFieldRest(s, 7, sepchar);

okLotsFormat(s) == len(s) > 0 A areNumbersOrCommas(s)

A lastElement(s) 'comma';

areNumbersOrCommas(empty);
areNumbersOrCommas(sc s) ==

(sc = 'comma' V isNumberp(sc)) A areNumbersOrCommas(s);

D.16 The transParse Trait
transParse: trait

includes transFormat
introduces

string2trans: String - trans

string2transByKind: kind, String -+ trans

withAllFields, withNoPriceLotsFields, withNoPriceField: String -+ trans

string2lotlist: String -+ lot_list

asserts V s: String

okTransFormat(s) =

152

string2trans(s) = string2transByKind(string2kind(getField(s, kind)), s);
string2transByKind(buy, s) == withAllFields(s);
string2transByKind(sell, s) == withAllFields(s);
string2transByKind(exchange, s) == withAllFields(s);
string2transByKind(interest, s) == withNoPriceLotsFields(s);
string2transByKind(muni_interest, s) == withNoPriceLotsFields(s);
string2transByKind(govt_interest, s) == withNoPriceLotsFields(s);
string2transByKind(cap_dist, s) == withNoPriceField(s);
string2transByKind(tbill_mat, s) == withNoPriceField(s);
string2transByKind(new_security, s) ==

[[getField(s, security)], string2kind(getField(s, kind)), 0, 0, 0,
string2date(getField(s, date)), nil, s, NthField(s, 7, sep_char)];

withAllFields(s) ==

[[getField(s, security)], string2kind(getField(s, kind)),
string2double(getField(s, amt)), string2double(getField(s, price)),

string2double(getField(s, net)), string2date(getField(s, date)),

string2lotlist(getField(s, lots)), s,

getComment(s, string2kind(getField(s, kind)),

string2double(getField(s, amt)))];

withNoPriceLotsFields(s) ==
[[getField(s, security)], string2kind(getField(s, kind)),

string2double(getField(s, amt)), string2double(getField(s, price)),
string2double(getField(s, net)), string2date(getField(s, date)),

nil, s, NthFieldRest(s, 6, sepchar)];

withNoPriceField(s) ==

[[getField(s, security)], string2kind(getField(s, kind)),

string2double(getField(s, amt)), 0, string2double(getField(s, net)),

string2date(getField(s, date)), string2lot_list(getField(s, lots)),

s, getComment(s, string2kind(getField(s, kind)),

string2double(getField(s, amt)))];

okLotsFormat(s)

string2lot_list(s)

(if s = empty then nil
else cons(string2lot(NthField(s, 1, 'comma')),

string2lotlist(NthFieldRest(s, 1, 'comma'))));

D.17 The trans Trait
trans (String): trait
includes transParse

introduces

transIsConsistent: trans, kind - Bool

< -_ : trans, trans -+ Bool

asserts V t, t2: trans
transIsConsistent(t, buy) == t.net > 0 A t.amt > 0 A t.price > 0

A length(t.lots) = A withinl(t.amt * t.price, t.net);

% sell amount may be 0 to handle special court-ordered settlements.

% also cannot give away securities for free.

transIsConsistent(t, sell) == t.net > 0 A t.amt > 0 A t.price > 0

A isNormalDate(t.date) A uniqueLots(t.lots)
A (t.amt > 0 = withinl(t.amt * t.price, t.net));

transIsConsistent(t, cashdiv) == t.amt > 0;
transIsConsistent(t, exchange) == t.amt > 0 A length(t.lots) = 1;

153

transIsConsistent(t, capdist) == t.net > 0 A t.amt > 0
A length(t.lots) = i;

transIsConsistent(t, tbillmat) == t.net > 0 A t.amt > 0

A uniqueLots(t.lots);
% negative interests arise when bonds are purchased between their interest

% payment periods.

transIsConsistent(t, interest);

transIsConsistent(t, muni_interest);

transIsConsistent(t, govt_interest);

transIsConsistent(t, new_security);

- transIsConsistent(t, other);
t < t2 == (t.security < t2.security)

V (t.security = t2.security A t.date < t2.date);

implies converts transIsConsistent, __ < _ : trans, trans - Bool

D.18 The transset Trait
trans_set (String, transsetobj): trait

includes trans, Set (trans, tset)

trans_set tuple of val: tset, activeIters: Int

trans_set_iter tuple of toYield: tset, setObj: transsetobj

introduces

yielded: trans, transsetiter, transset_iter -* Bool

startIter: transset -+ transset
endIter: transset -+ transset
matchKey: security, lot, tset -* Bool

findTrans: security, lot, tset-+ trans

sum_net, sum_amt: tset -- double

asserts V t: trans, ts: tset, s: security, e: lot, trs: transset,

it, it2: transset_iter

yielded(t, it, it2) ==

(t E it.toYield) A it2 = [delete(t, it.toYield), it.setObj];

startIter(trs) == [trs.val, trs.activeIters + 1];

endIter(trs) == [trs.val, trs.activeIters - i];

- matchKey(s, e, {});

matchKey(s, e, insert(t, ts)) ==

(s = t.security A length(t.lots) = i A e = car(t.lots))

V matchKey(s, e, ts);

matchKey(s, e, ts) => (findTrans(s, e, ts) E ts

A car(findTrans(s, e, ts).lots) = e A findTrans(s, e, ts).security = s

% buy trans has single lots, only interested in matching buy trans

A length(findTrans(s, e, ts).lots) = 1);

sum_net({}) == 0;

t E ts = sumnet(insert(t, ts)) = sum_net(ts);

- (t E ts) sum_net(insert(t, ts)) = t.net + sumnet(ts);

sumamt({}) == 0;

t E ts = sumamt(insert(t, ts)) = sumamt(ts);

- (t E ts) = sum_amt(insert(t, ts)) = t.amt + sumamt(ts);
implies converts matchKey, sumnet, sum-amt

D.19 The income Trait
income (String, income): trait

154

includes kind (String, kind), genlib (String, Int)

income tuple of capGain, dividends, totalInterest, ltCG_CY, stCG_CY,

dividendsCY, taxInterestCY, muniInterestCY,

govtInterestCY: double

introduces

emptyIncome: -- income

sum_incomes: income, income -+ income

incCYInterestKind: income, double, kind -+ income

incInterestKind: income, double, kind, Int, Int -+ income

incDividends: income, double, Int, Int -- income

incCapGain: income, double, double, Int, Int - income
% formatting details, leave unspecified

income2string, income2taxString: income - String

asserts V amt, lt, st: double, i, i2: income, yr, tyr: Int, k: kind

emptyIncome == [0 O, 0, O, 0, O, O, O, 0];

sum_incomes(i, i2) ==

[i.capGain + i2.capGain, i.dividends + i2.dividends,
i.totalInterest + i2.totalInterest, i.ltCG_CY + i2.ltCG_CY,

i.stCGCY + i2.stCG_CY, i.dividendsCY + i2.dividendsCY,

i.taxInterestCY + i2.taxInterestCY, i.muniInterestCY + i2.muniInterestCY,

i.govtInterestCY + i2.govtInterestCY];

incCYInterestKind(i, amt, interest) ==

set_taxInterestCY(i, i.taxInterestCY + amt);

incCYInterestKind(i, amt, muni_interest) ==

set_muniInterestCY(i, i.muniInterestCY + amt);

incCYInterestKind(i, amt, govtinterest) ==

setgovtInterestCY(i, i.govtInterestCY + amt);

isInterestKind(k) =

incInterestKind(i, amt, k, yr, tyr) =

(if yr = tyr
then set_totalInterest(incCYInterestKind(i, amt, k),

i.totalInterest + amt)
else incCYInterestKind(i, amt, k));

incDividends(i, amt, tyr, yr) ==
set_dividends(if tyr = yr then set_dividendsCY(i, i.dividendsCY + amt)

else i, i.dividends + amt);

incCapGain(i, lt, st, tyr, yr)

setcapGain(if tyr = yr
then set_ltCG_CY(set_stCG_CY(i, i.stCG_CY + st),

i.ltCG_CY + lt)
else i, st + lt);

implies converts incDividends, incCapGain

D.20 The positionBasics Trait
positionBasics: trait

includes trans_set, date, income

position tuple of security: security, amt: double, income: income,
lastTransDate: date, openLots: tset, taxStr: String

introduces

set_amtOlotsDate: position, double, tset, date - position

adjustamtand_net: trans, double -* trans

update_olots: tset, trans, double -* tset

155

__.capGain, __.dividends, __.totalInterest, __.ltCG_CY, __.stCG_CY,

__.dividendsCY, __.taxInterestCY, __.muniInterestCY,

__.govtInterestCY: position -+ double

asserts V amt: double, p: position, yr, tyr: Int, sd: date,

t, mt: trans, ts: tset

set_amtOlotsDate(p, amt, ts, sd) ==

set_amt(set_openLots(set_lastTransDate(p, sd), ts), amt);

adjust_amt_and_net(t, amt) =

set_net(set_amt(t, t.amt - amt), t.net - ((t.net / t.amt) * amt));

update_olots(ts, t, amt)

insert(adjust_amt_and_net(t, amt), delete(t, ts));

% convenient abbreviations

p.capGain == p.income.capGain;

p.dividends == p.income.dividends;

p.totalInterest == p.income.totalInterest;

p.ltCG_CY == p.income.ltCG_CY;

p.stCG_CY == p.income.stCG_CY;

p.dividendsCY == p.income.dividendsCY;

p.taxInterestCY == p.income.taxInterestCY;

p.muniInterestCY == p.income.muniInterestCY;

p.govtInterestCY == p.income.govtInterestCY;

implies converts adjust_amt_and_net, set_amtOlotsDate

D.21 The positionMatches Trait

positionMatches: trait

includes positionBasics
introduces

validMatch: position, trans -+ Bool

validMatches: position, trans, Bool -+ Bool

validAllMatches: tset, security, lot_list, double, Bool -+ Bool

findMatch: position, trans - trans

asserts V amt: double, p: position, e: lot, y: lot_list, se: security,

t: trans, ts: tset, completeLot: Bool

validMatch(p, t) == matchKey(t.security, car(t.lots), p.openLots)

A length(t.lots) = 1;

validMatches(p, t, completeLot) == (t.kind sell A t.amt = 0)

% above: selling zero shares is for special court-ordered settlements.
V (t.lots nil

A validAllMatches(p.openLots, t.security, t.lots, t.amt, completeLot));

validAllMatches(ts, se, nil, amt, completeLot) ==

if completeLot then amt = 0 else amt < O;

validAllMatches(ts, se, cons(e, y), amt, completeLot) ==

amt > 0 A matchKey(se, e, ts)

A validAllMatches(ts, se, y, amt - findTrans(se, e, ts).amt, completeLot);

validMatch(p, t) = % an abbreviation

findMatch(p, t) = findTrans(t.security, car(t.lots), p.openLots);

implies converts validMatch, validMatches, validAllMatches

156

D.22 The positionExchange Trait
positionExchange: trait

includes positionMatches

introduces

matchexchange: position, trans -- tset

updateexchange: position, trans -+ position

asserts V p: position, t: trans

validMatch(p, t) =*

matchexchange(p, t) =
(if t.amt > findMatch(p, t).amt then delete(t, p.openLots)

else updateolots(p.openLots, t, findMatch(p, t).amt - t.amt));

(t.kind = exchange A validMatch(p, t)) =>

updateexchange(p, t) =
setamtOlotsDate(p, p.amt - t.amt, matchexchange(p, t), t.date);

D.23 The positionReduce Trait
positionReduce: trait

includes positionMatches

reduceMatch tuple of profit: double, olots: tset
introduces

reducecost_basis: position, trans -+ reduceMatch

updatecapdist: position, trans, Int -+ position % need curyear

adjustnet: trans, double -+ trans
updateolotsnet: tset, trans, double -- tset

asserts V p: position, t: trans, yr: Int, amt: double, ts: tset

validMatch(p, t) =>

reducecostbasis(p, t)

[max(t.net - findMatch(p, t).net, 0),

updateolotsnet(p.openLots, findMatch(p, t),

max(findMatch(p, t).net - t.net, 0))];

(t.kind = cap_dist A validMatch(p, t)) =

updatecapdist(p, t, yr) =
set_amtOlotsDate(
set_income(p, incDividends(p.income, reduce_costbasis(p, t).profit,

year(t.date), yr)),

p.amt, reducecostbasis(p, t).olots, t.date);

adjustnet(t, amt) == setnet(setprice(t, amt/t.amt), amt);

updateolotsnet(ts, t, amt) = insert(adjustnet(t, amt), delete(t, ts));

D.24 The positionSell Trait
positionSell: trait

includes positionMatches

sellMatch tuple of profits: allProfits, taxStr: String, olots: tset

allProfits tuple of total, LT, ST: double
introduces

updatesell: position, trans, Int, Int, Int -* position

matchsell: position, trans, Int -+ sellMatch

matchSells: position, trans, Int, lotlist, double, sellMatch - sellMatch

% convenient abbreviations
updateSellMatch: sellMatch, trans, Int, Bool, trans -+ sellMatch

157

updateCapGain: position, allProfits, Int, Int, String, Int -* position
sellGain: trans, trans, double -+ double

splitProfits: allProfits, date, date, double, Int -+ allProfits

summarizeSell: trans, trans, Int, double -+ String

% summarizeSell takes a matched buy trans, a sell trans, the holding period

% and an amt, prints income from selling the lot, the cost of the lot,

% the transaction dates, and whether they are LT or ST gains.

asserts V amt: double, p: position, taxl, hp, yr, tyr: Int, s: String,

sd, bd: date, e: lot, y: lotlist, t, mt: trans, completeLot: Bool,

sm: sellMatch, ap: allProfits

(t.kind = sell A validMatches(p, t, false)) =

updatesell(p, t, hp, yr, taxl) =

set_amtOlotsDate(updateCapGain(p, matchsell(p, t, hp).profits,

year(t.date), yr,

match_sell(p, t, hp).taxStr, taxl),

p.amt - t.amt, matchsell(p, t, hp).olots, t.date);

(t.kind = sell A validMatches(p, t, false)) =>

match_sell(p, t, hp) =

(if t.amt = 0

then [t.net, t.net, 0O, empty, p.openLots] % assume LT gain, no buy date

else matchSells(p, t, hp, t.lots, t.amt, [CO 0, O, 0, empty, p.openLots]));

validMatches(p, t, false)
matchSells(p, t, hp, nil, amt, sm) = sm;

validMatches(p, t, false)

matchSells(p, t, hp, cons(e, y), amt, sm) =

(if amt > findTrans(t.security, e, p.openLots).amt

then matchSells(p, t, hp, y,
amt - findTrans(t.security, e, p.openLots).amt,

updateSellMatch(sm, t, hp, true,

findTrans(t.security, e, p.openLots)))

else matchSells(p, t, hp, y, amt - mt.amt,
updateSellMatch(sm, t, hp, false,

findTrans(t.security, e, p.openLots))));

updateSellMatch(sm, t, hp, completeLot, mt) ==

if completeLot

then [splitProfits(sm.profits, mt.date, t.date, sellGain(mt, t, amt), hp),

sm.taxStr II summarizeSell(mt, t, hp, mt.amt), delete(mt, sm.olots)]

else [splitProfits(sm.profits, mt.date, t.date, sellGain(mt, t, amt), hp),

sm.taxStr || summarizeSell(mt, t, hp, mt.amt - amt),

updateolots(sm.olots, mt, mt.amt - amt)];

sellGain(t, mt, amt) ==

if amt = 0 then t.net else min(amt, mt.amt)*((t.net/t.amt)-(mt.net/mt.amt));

splitProfits(ap, bd, sd, amt, hp) ==

if is_long_term(bd, sd, hp) then [ap.total + amt, ap.LT + amt, ap.ST]

else ap.total + amt, ap.LT, ap.ST + amt];

updateCapGain(p, ap, tyr, yr, s, taxl) ==

set_taxStr(setincome(p, incCapGain(p.income, ap.ST, ap.LT, tyr, yr)),

if tyr = yr A nearO(ap.total)

then prefix(p.taxStr II s, taxl)
else p.taxStr);

implies converts updateSellMatch, sellGain, splitProfits, updateCapGain

158

D.25 The positionTbill Trait
positionTbill: trait
includes positionMatches

TbillMatch tuple of net: double, olots: tset

introduces
updatetbillmat: position, trans, Int -- position

tbillInterestOk: position, trans -+ Bool

matchtbill: position, trans -- TbillMatch

matchTbillBuys: position, trans, lotlist, TbillMatch -+ TbillMatch
updateTBillMatch: position, trans, lot, TbillMatch -+ TbillMatch

asserts V p: position, e: lot, y: lot_list, t: trans, tb: TbillMatch,

yr: Int

(t.kind = tbillmat A validMatches(p, t, true) A tbillInterest0k(p, t)) =>

updatetbillmat(p, t, yr) =

setamt0lotsDate(setincome(p, incInterestKind(p.income, t.net, t.kind,

yr, year(t.date))),

p.amt - t.amt, matchtbill(p, t).olots, t.date);

(t.kind = tbillmat A validMatches(p, t, true)) -

tbillInterestOk(p, t) = withinl(t.net, (t.amt*100) - matchtbill(p, t).net);

validMatches(p, t, true) =>

matchtbill(p, t) = matchTbillBuys(p, t, t.lots, [O, p.openLots]);

validMatches(p, t, true) =

matchTbillBuys(p, t, nil, tb) = tb;

validMatches(p, t, true) =
matchTbillBuys(p, t, cons(e, y), tb) =

matchTbillBuys(p, t, y, updateTBillMatch(p, t, e, tb));

updateTBillMatch(p, t, e, tb) ==

Etb.net + findTrans(t.security, e, p.openLots).net,

delete(findTrans(t.security, e, p.openLots), tb.olots)];

D.26 The position Trait
position (String): trait

includes positionExchange, positionReduce, positionSell, positionTbill

introduces

isInitialized: position -+ Bool

create: String -+ position
updatebuy: position, trans -+ position

updatedividends, updateinterest, updatecapdist, updatetbillmat:
position, trans, Int -+ position % need curyear

validMatchWithBuy: position, trans -+ Bool

totalCost: position -+ double

% formatting details, leave unspecified

position2string, position2taxString, position2olotsString: position -+ String

asserts V p, p2: position, taxl, yr: Int, t: trans, s: String

isInitialized(p) == (p.lastTransDate = null_date);

create(s) == [s], 0, emptyIncome, nulldate, {}, empty];

validMatchWithBuy(p, t) ==

if t.kind = sell then validMatches(p, t, false)
else if t.kind = tbillmat

then validMatches(p, t, true) A tbillInterest0k(p, t)

159

else if t.kind = exchange
then validMatch(p, t) A findMatch(p, t).amt > t.amt

else t.kind = capdist A validMatch(p, t);

totalCost(p) == if p.lastTransDate = nulldate V p.amt = 0 then 0
else sum_net(p.openLots);

t.kind = buy =

update-buy(p, t) =
set-amtOlotsDate(p, p.amt + t.amt, insert(t, p.openLots), t.date);

t.kind = cash_div =
updatedividends(p, t, yr) =
setlastTransDate(
set_income(p, incDividends(p.income, t.net, year(t.date), yr)),

t.date);

isInterestKind(t.kind) =

updateinterest(p, t, yr) =
set_lastTransDate(

set_income(p, incInterestKind(p.income, t.net, t.kind, yr, year(t.date))),
t.date);

implies converts create, validMatchWithBuy, totalCost, isInitialized

D.27 The genlib Interface
imports <stdio>;

typedef long nat {constraint V n: nat (n > 0)};

typedef char cstring[] {constraint V s: cstring (nullTerminated(s))};

uses genlib (cstring for String);

constant char separatorchar = sepchar;

int get_line (FILE *fromfile, out char output[], nat maxLength) {

let line be getLineNChars((*from_file)A, maxLength - 1),

inline be replaceNewlineByNull(line);

requires canRead((*from_file)A) A (maxIndex(output) > maxLength);

modifies *fromfile, output;

ensures if peekChar((*fromfile)A) = 'EOF'

then result = char2int('EOF') A unchanged(*from_file, output)

else (*fromfile)' = removeLine((*fromfile)^, line)

A result = len(inline) + 1 A nullTerminated(output')

A getString(output') = inline;

bool str_to_double (char str[], nat length, out double *res) FILE *stderr; {
let instr be prefix(strA, length),

fileObj be *stderrA;

requires len(strA) > length;
modifies *res, fileObj;

ensures (result = length > 0 A okFloatString(instr))
A if result

then (*res)' = string2double(instr) A unchanged(fileObj)

else 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm));

claims okFloatString(".5") A okFloatString("-1,339.89")

160

A okFloatString("i,339.89");
}
void getParts (double d, out nat *wholePart, out double *decPart)

FILE *stderr; {

let fileObj be *stderrA;

modifies *wvholePart, *decPart, fileObj;
ensures if d > 0

then d = int2double((*wholePart)') + (*decPart)' A unchanged(fileObj)
else 3 errm: cstring (appendedMsg(fileObj', fileDbjA, errm));

claims (*decPart)' < 1.0;
}
bool withinepsilon (double numl, double num2, double epsilon) {

ensures result = (abs(numl - num2) < abs(epsilon));
}
bool nearO (double num) {

ensures result = (abs(num) < 0.01);
}
double min (double i, double j) {

ensures result = min(i, j);
}
double max (double i, double j) {

ensures result = max(i, j);
}
char *copystring (cstring s) {

ensures resultO' = sA A fresh(result[l);
}

D.28 The date Interface
imports genlib;

immutable type date;
uses date (cstring for String);

bool dateparse (cstring indate, cstring inputStr, out date *d) FILE *stderr; {
let dateStr be getString(indateA),

fileObj be *stderr^;

modifies *d, fileObj;

ensures result = okDateFormat(dateStr)

A if result then (*d)' = string2date(dateStr) A unchanged(fileObj)
else 3 errm: cstring (appendedMsg(fileObj', fileObjA,

inputStrA II errm));

date createnulldate (void) {

ensures result = nulldate;
}
nat dateyear (date d) {

checks isNormalDate(d);
ensures result = year(d);

claims result < 99;
}
bool isnulldate (date d) {

ensures result = (d = nulldate);
}
bool dateisLT (date d) {

ensures result = isLT(d);
}
bool datesame (date di, date d2) {

ensures result = (dl = d2);

161

}
bool date_is_later (date di, date d2) {

ensures result = (dl > d2);
}
bool islongterm (date buyD, date sellD, nat hp) {

checks isNormalDate(buyD) A isNormalDate(sellD);

ensures result = (buyD < sellD A hp < 365

A ((year(sellD) - year(buyD)) > 1 V (sellD - buyD) > hp));

char *date2string (date d) {
let res be getString(result[]');

ensures fresh(result[]) A nullTerminated(result[]')

A (isNormalDate(d) = res = date2string(d))

A (isLT(d) = res = "LT")

A (isNullDate(d) = res = "null");
}

/*** claims ***/

claims centuryassumption (date d) {

ensures isNormalDate(d) = ((string2date("0/0/50") < d)

A (d string2date("12/31/49")));
}

/* This claim shows the unconventional interpretation of dates. It is

useful for regression testing because if we change the interpretation

of year encodings, the claim is likely to fail. It can also be useful

for test case generation. */

claims givendayexcluded (void) {

ensures daysToEnd(string2date("12/31/93").normal) = 0

A dayOfYear(string2date("01/01/93").normal) = 1

A dayOfYear(string2date("3/1/0").normal) = 61

A dayOfYear(string2date("3/l/93").normal) = 60;
}

/* The claim illustrates: single-digit year is allowed, emphasizes the

boundary case: daystoend does not include given day, checks the

boundary case in the defn of daysToEnd. It is also useful for test

case generation. NB: 0 represents 2000 (a leap year), not 1900, a

non-leap year. */

claims dateformats (void) {
ensures okDateFormat("0/0/93") A okDateFormat("1/0/93")

A not(okDateFormat("13/2/92") V okDateFormat("1/32/92")

V okDateFormat("1/2") V okDateFormat("/1/1993"));

D.29 The security Interface
imports genlib;

immutable type security;

uses security (cstring, nat);

security securitycreate (cstring sym) {
ensures result = getString(sym^;)]

}
char *securitysym (security sec) {

ensures nullTerminated(result[]') A getString(result[]') = sec.sym

162

A fresh(result[]);

bool securitysame (security secl, security sec2) {
ensures result = (tolower(secl.sym) = tolower(sec2.sym));

bool securitylessp (security secl, security sec2) (
ensures result = seci < sec2;

bool securityistbill (security sec) {
ensures result = hasNamePrefix(sec, "TBill");

}
bool securityistnote (security sec) {

ensures result = hasNamePrefix(sec, "TNote");
}
bool securityis_cash (security s) (

ensures result = isCashSecurity(s);
}

D.30 The lotlist Interface
imports genlib;

immutable type lot;

mutable type lotlist;

uses lotlist (cstring, nat);

lot lot_parse (cstring s)

requires len(sA) > 0 A isNumeric(sA);

ensures result = string2lot(sA);
}
bool lot_equal (lot 11, lot 12)

ensures result = (1i = 12);
}
lot_list lot_list_create (void)

ensures fresh(result) A result' = nil;
}
bool lotlistadd (lotlist s, lot x) (

modifies s;

ensures result = x E sA A if result then unchanged(s) else s' = cons(x, SA);

bool lotlistremove (lotlist s, lot x) (
modifies s;

ensures (result = x E s) A (x E s')
A V y: lot ((y E s ^ A y != x) = y E s');

}
lotlist lotlistcopy (lotlist s)
ensures result' = s A fresh(result);

}
bool lotlistisempty (lotlist s) (

ensures result = (sA = nil);

nat lotlistlength (lotlist s) (
ensures result = length(sA);

}
lot lotlistfirst (lotlist s) (

requires s" : nil;

ensures result = car(sA);

bool lot_listlessp (lotlist si, lotlist s2) (
ensures result = (slA < s2A);

163

}
void lot_list_free (lotlist s) {

modifies s;

ensures trashed(s);
}

/*** claims ***/

claims lotsInvariant (lotlist x) {

ensures V e: lot (count(e, x) < 1);
}

/* This claim highlights an important property of lot_list: it is also

a set, i.e., there are no duplicate members. It is useful (a) for

debugging lot_listadd or other future functions that insert new

members into a lotlist; (b) as a program verification lemma, esp. in

lot_listremove: allow us to stop after the first match is found. */

D.31 The trans Interface
imports security, date, lot_list;

typedef enum {buy, sell, cashdiv, capdist, tbillmat, exchange, interest,

muniinterest, govtinterest, new_security, other} kind;

immutable type trans;

constant nat maxInputLineLen;

uses trans (cstring, kind for kind);

bool transparseentry (cstring instr, out trans *entry) FILE *stderr; {

let input be prefix(getString(instrA), maxInputLineLen),

parsed be string2trans(input),

fileObj be *stderrA;

modifies *entry, fileObj;

ensures result = (okTransFormat(input)

A transIsConsistent(parsed, parsed.kind))
A if result then (*entry)' = parsed A unchanged(fileObj)

else 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm));
}
trans transadjustnet (trans t, double newNet) {

checks t.kind = buy A newNet > 0;

ensures result = setprice(setnet(t, newNet), newNet/t.amt);
}
trans transadjustamtandnet (trans t, double newAmt, double newNet) {

checks t.kind = buy A withinl(newNet/newAmt, t.price) A newNet > 0

A newAmt > 0;

ensures result = set_amt(setnet(t, newNet), newAmt);
}
bool transmatch (trans t, security s, lot e) {

ensures result = (t.security = s A length(t.lots) = 1 A car(t.lots) = e);

}
bool trans_lessoreqp (trans ti, trans t2) {

ensures result = (ti < t2);
}
double trans_getcash (trans entry) {

ensures if isCashSecurity(entry.security) A entry.kind = buy
then result = entry.net

else result = 0;
}
char *trans_input (trans t) {

164

ensures nullTerminated(result []') A getString(result []') = t.input

A fresh(result [);
}
char *trans_comment (trans entry) {

ensures nullTerminated(result []') A getString(result O') = entry.comment

A fresh(result []);
}
lotlist translots (trans entry) {

ensures result' = entry.lots A fresh(result);
}
security transsecurity (trans entry) {

ensures result = entry.security;
}
kind transkind (trans entry) {

ensures result = entry.kind;
}
double transamt (trans entry) {

ensures result = entry.amt;
}
double transnet (trans entry) {

ensures result = entry.net;
}
date transdate (trans entry) {

ensures result = entry.date;
}
bool transiscash (trans entry) {

ensures result = isCashSecurity(entry.security);
}

/*** claims ***/

claims buyConsistency (trans t) {

requires t.kind = buy;

ensures t.net > 0 A t.amt > 0 A t.price > 0 A length(t.lots) = 1

A withinl(t.amt*t.price, t.net);
}

claims sellConsistency (trans t) {

/* When sell's amt is 0, it fakes capital gain in lawsuit settlements. */

requires t.kind = sell;

ensures t.net > 0 A t.amt > 0 A isNormalDate(t.date) A length(t.lots) > 1

A (t.amt > 0 = withini(t.amt*t.price, t.net));
}

/* The above 2 claims document the constraints among the fields of a

buy and sell trans. */

claims singleLot (trans t) {

requires t.kind = buy V t.kind = capdist V t.kind = exchange;
ensures length(t.lots) = 1;

}

claims multipleLots (trans t) {

requires t.kind = sell V t.kind = tbillmat;

ensures length(t.lots) > 1 A uniqueLots(t.lots);
}

/* The above 2 claims document constraints on the fields of a trans.

The first is useful as a verification lemma: we need not worry about

other members on t.lots in matching sell lots to buy lots in

positionupdate. */

165

claims amountConstraint (trans t) {

requires t.kind = buy V t.kind = tbillmat V t.kind = exchange

V t.kind = capdist;
ensures t.amt > 0;

}

claims trans_lots lotsInvariant;

/* The above output claim is useful for ensuring that the output of

trans_lots meets the invariant of the lot_list module. */

claims lotsConstraint (trans t) {

ensures V e: lot (count(e, t.lots) < 1);
}

/* The above module claim is useful for proving the earlier output type

consistency claim. */

D.32 The trans_set Interface

imports trans;

mutable type transset;

mutable type trans_set_iter;

uses trans_set (cstring, obj transset);

trans_set transset_create (void) {

ensures result' = [{}, 0] A fresh(result);
}
bool trans_set_insert (transset s, trans t) {

checks sA.activeIters = 0;

modifies s;

ensures (result = matchKey(t.security, car(t.lots), sA.val)
A length(t.lots) = 1)

A if result then unchanged(s) else s' = insert(t, sA.val), 0];
}
bool trans_set_delete_match (transset s, security se, lot e) {

checks sA.activeIters = 0;

modifies s;

ensures result = matchKey(se, e, sA.val) A s.activeIters = 0

A s'.val C sA.val
A V t:trans (t E sA .val =

if t.security = se A car(t.lots) = e

then (t E s'.val)
else (t E s'.val));

}
transset transsetcopy (transset s) {

ensures fresh(result) A result' = [sA.val, 0];
}
void trans_set_free (transset s) {

modifies s;

ensures trashed(s);
}
trans_set_iter trans_set_iter_start (transset ts) {

modifies ts;

ensures fresh(result) A ts' = startIter(tsA) A result' = [tsA.val, ts];
}
trans transsetiteryield (transsetiter tsi) {

checks tsiA.toYield {};

166

modifies tsi;

ensures yielded(result, tsiA, tsi')

A V t: trans (t E tsi'.toYield = result < t);
}
bool transsetitermore (transsetiter tsi) {

ensures result = (tsiA.toYield {});
}
void transsetiterfinal (trans_set_iter tsi) {
let sObj be tsiA.setObj;

modifies tsi, sObj;

ensures trashed(tsi) A sObj' = endIter(sObjA);
}

/*** claims ***/

claims transsetUID (transset s) {

ensures V ti: trans, t2: trans
((tl E s.val A t2 E s.val A tl.security = t2.security

A ti.lots = t2.lots) = t = t2);
}

/* The claim says: no two trans's in a transset have the same
security and lots fields. It is useful as a program verification
lemma in transsetdelete: allows us to stop after deleting the first
matched trans. */

D.33 The position Interface
imports transset;

typedef struct {double capGain, dividends, totalInterest, ltCGCY, stCG_CY,
dividendsCY, taxInterestCY, muniInterestCY,

govtInterestCY;} income;
mutable type position;
constant nat maxTaxLen;
spec nat curyear, holdingperiod;

spec bool seenError;

uses position (cstring, income for income);

bool positioninitMod (nat year, nat hp) nat curyear, holding_period;
bool seenError; {

modifies curyear, holdingperiod;
ensures result A - seenError' A curyear' = year A holdingperiod' = hp;

}
position position_create (cstring name) {

ensures fresh(result) A result' = create(getString(nameA));
}
void positionreset (position p, cstring name) {

modifies p;

ensures p' = create(getString(name^));
}
void positionfree (position p) {

modifies p;

ensures trashed(p);
}
bool positionisuninitialized (position p) {

ensures result = - isInitialized(pA);
}

167

void position_initialize (position p, trans t) FILE *stderr; bool seenError; {

let file0bj be *stderrA;

modifies p, seenError, fileObj;

ensures p' = (if t.kind = buy
then updatebuy(create(t.security.sym), t)
else create(t.security.sym))

A if t.kind = buy V t.kind = newsecurity

then unchanged(fileObj, seenError)

else seenError'

A 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm));

security positionsecurity (position p) {

ensures result = pA .security;
}
double position_amt (position p) {

ensures result = p^.amt;
}
void position_update (position p, trans t) nat cur_year, holdingperiod;

bool seenError; FILE *stderr; {
let fileObj be *stderrA,

report be seenError'

A 3 errm: cstring (appendedMsg(fileObj', fileObjA, errm)),
ok be unchanged(seenError, fileObj);

checks pA .security = t.security;
modifies p, seenError, fileObj;
ensures

if pA.lastTransDate > t.date

then report

else if t.kind = buy A validMatch(pA, t) A length(t.lots) = 1
then p' = updatebuy(pA, t) A ok
else if t.kind = cashdiv

then p' = updatedividends(pA, t, curyearA) A ok
else if isInterestKind(t.kind)

then p' = update_interest(pA, t, cur_year) A ok

else if validMatchWithBuy(pA, t)

then if t.kind = cap_dist
then p' = updatecapdist(pA, t, cur_yearA) A ok
else if t.kind = tbill_mat

then p' = updatetbillmat(pA, t, curyearA) A ok

else if t.kind = exchange
then p' = updateexchange(pA, t) A ok

else if t.kind = sell

then p' = update_sell(pA, t, curyearA, holding_periodA,

maxTaxLen) A ok

else report

else report;

claims - (seenError') =*
((t.kind = cap_dist = (p'.dividends > pA.dividends

A p'.totalInterest = pA .totalInterest
A p'.capGain = pA. capGain))

A (t.kind = sell =

((p'.ltCG_CY - pA .ltCG_CY) + (p'.stCGCY - pA .stCGCY))
= (p'.capGain - pA .capGain)));

void position_write (position p, FILE *pos_file) {

168

modifies *posfile;
ensures (*posfile)' = (*posfile)^ II position2string(pA);

}
void position_write_tax (position p, FILE *posfile) {
modifies *posfile;

ensures (*pos_file)' = (*pos_file)A II position2taxString(pA);

transset positionopenlots (position p) {
ensures fresh(result) A result' = [pA .openLots, 0];

}
double positionwriteolots (position p, FILE *olotfile) {

modifies *olot_file;

ensures (*olotfile)' = (*olot_file)A II position2olotsString(pA)

A result = totalCost(pA);
}
income positionincome (position p) {

ensures result = pA.income;
}
income incomecreate (void) {

ensures result = emptyIncome;

void incomesum (income *il, income i2) {

modifies *il;

ensures (*ij)' = sum_incomes((*ii)A, i2);
}
void income_write (income i, FILE *posfile) {
modifies *posfile;

ensures (*posfile)' = (*pos_file)A II income2string(i);
}
void income_writetax (income i, FILE *pos_file) {

modifies *posfile;

ensures (*posfile)' = (*pos_file)A II income2taxString(i);
}

/*** claims ***/

claims noShortPositions (position p) bool seenError; {
ensures - (seenError) = p.amt > 0;

}

claims okCostBasis (position p) bool seenError; {

ensures (seenError") = (V t: trans (t E p.openLots # t.price 0));
}

/* The above 2 claims document the key properties of the program,
codified in the position interface: No short selling of securities is
allowed, and the cost basis of a security cannot be negative. */

claims amountConsistency (position p) bool seenError; {
let pv be p;

ensures (seenError~) = pv.amt = sumamt(pv.openLots);
}

/* The above claim documents one key constraint among the different
fields of a valid position. */

claims openLotsTransConsistency (position p) bool seenError; {
ensures - (seenError) =>

V t: trans ((t E p.openLots) =

((t.amt > 0) A (t.net > 0) A (t.price > 0) A (t.kind = buy)
A withinl(t.amt*t.price, t.net)

169

A length(t.lots) = 1 A (t.security = p.security)
A (t.date < p.lastTransDate)));

}

claims uniqueOpenLots (position p) bool seenError; {

let olots be p.openLots;
ensures (seenError) =E

V t: trans, t2: trans

((ti E olots A t2 olots) =

(((tl.security = t2.security) A tl.lots = t2.lots) =

ti = t2));
}

/* The above claims document the key constraints on the open lots of a

position. They can be useful in regression testing if future changes

bundle different securities together in the open lot. */

claims distributionEffect (position p, trans t) bool seenError; {

requires t.kind = capdist;

body { positionupdate(p, t); }
ensures ((findMatch(pA, t).net Z 0) A - (seenError')) =

(findMatch(p', t).net < findMatch(pA, t).net);
}

/* The above claim highlights the essence of the cost basis

computation without giving much details: If the cost basis is

non-zero, capital distribution decreases it. */

claims distributionEffect2 (position p, trans t) bool seenError; {
requires t.kind = capdist;

body { positionupdate(p, t);}

ensures ((t.net > findMatch(pA, t).net) A - (seenError'))=t

p'.dividends = pA.dividends + (t.net - findMatch(pA, t).net);

/* The above claim illustrates the impact of a distribution
transaction: the excess amount in a distribution is considered as

dividends (not interest or capital gain). */

/* BELOW: In position.lsl, we specify how each transaction kind

affects each field of a position. Below we provide a complementary

view: we highlight how each field of a position is affected by

different transaction kinds. It illustrates the technique of

describing the specification in different and complementary ways: they

can help clients understand the specs and help the specifier catch

specification errors. */

claims openLotsUnchanged (position p, trans t) bool seenError; {
requires (t.kind = cashdiv V isInterestKind(t.kind)

V t.kind = newsecurity);
body { positionupdate(p, t); }
ensures (seenError') => p'.openLots = pA.openLots;

}

claims openLotsBuy (position p, trans t) bool seenError; {
requires t.kind = buy;
body { positionupdate(p, t); }
ensures (seenError') size(p'.openLots) = size(pA.openLots) + 1;

}

170

claims openLotsSell (position p, trans t) bool seenError; {

requires t.kind = sell V t.kind = exchange;
body { position_update(p, t); }

ensures (seenError') = size(p'.openLots) = size(pA.openLots) - 1;
}

claims openLotsTbill (position p, trans t) bool seenError; {
requires t.kind = tbillmat;
body { position_update(p, t); }

ensures - (seenError') => size(p'.openLots) < size(pA.openLots);
}

/* The above 4 claims illustrate how the open lots of a position is

modified by different kinds of transactions. */

claims taxUnchanged (position p, trans t) nat cur_year; bool seenError; {
requires year(t.date) cur_yearA V t.kind = exchange;

body { position_update(p, t); }

ensures (seenError') =>

(p'.ltCGCY = pA .ltCG_CY A p'.stCG_CY = pA.stCG_CY
A p.dividendsCY = pA.dividendsCY
A p'.taxInterestCY = pA .taxInterestCY
A p'.muniInterestCY = pA.muniInterestCY

A p'.govtInterestCY = pA .govtInterestCY);
}

/* Transactions that do not occur in the current year does not change

our current year tax position. An exchange does not change our tax

position either. */

171

172

Bibliography

[1] American National Standards Institute. American National Standard for Information
Systems - Programming Language C, 1989. X3.159-1989.

[2] W. Bartussek and D.L. Parnas. Using assertions about traces to write abstract specifi-
cation for software modules. In Proc. 2nd Conf. European Cooperation in Informatics,
LNCS 65, pages 211-136. Springer-Verlag, 1978. Also in Software Specification Tech-
niques, N. Gehani and A.D. McGettrick (ed.) Addison-Wesley, 1986.

[3] Jolly Chen. The Larch/Generic interface language. S. B. Thesis, Department of Elec-
trical Engineering and Computer Science, MIT, 1989.

[4] Yoonsik Cheon and Gary Leavens. The Larch/Smalltalk: A specification language for
Smalltalk. TR 91-15, Iowa State University, June 1991.

[5] David Evans. Using specifications to check source code. Master's thesis, MIT EECS
Dept., May 1994.

[6] Bob Fields and Morten Elvang-Goransson. A VDM case study in mural. IEEE Trans-
actions on Software Engineering, 18(4):279-295, April 1992.

[7] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Report 82,
DEC Systems Research Center, Palo Alto, CA, December 1991.

[8] Stephen J. Garland, John V. Guttag, and James J. Horning. Debugging Larch Shared
Language specifications. IEEE Transactions on Software Engineering, 16(9):1044-
1075, September 1990. Reprinted as DEC Systems Research Center Report 60. Super-
seded by Chapter 7 in [15].

[9] Narain Gehani and Andrew McGettrick, editors. Software Specification Techniques.
Addison-Wesley, 1986.

[10] Christopher Paul Gerrard, Derek Coleman, and Robin M. Gallimore. Formal specifica-
tion and design time testing. IEEE Transactions on Software Engineering, 16(1):1-12,
January 1990.

[11] Michael Gordon. HOL: A Proof Generating Systems for Higher-Order Logic, chapter
in VLSI Specification, Verification and Synthesis, pages 73-129. Kluwer, 1988.

[12] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verification of Ada.
IEEE Transactions on Software Engineering, 16(9):1058-1075, September 1990.

173

[13] John V. Guttag and James J. Horning. Formal specification as a design tool. In 7th
ACM Symposium on Principles of Programming Languages, pages 251-261, Las Vegas,
January 1980. Reprinted in [9].

[14] John V. Guttag and James J. Horning. LCL: A Larch interface language for C. Re-
port 74, DEC Systems Research Center, Palo Alto, CA, July 1991. Superseded by
Chapter 5 of [15].

[15] John V. Guttag and James J. Horning, editors. Larch: Languages and Tools for Formal
Specification. Texts and Monographs in Computer Science. Springer-Verlag, 1993. With
Stephen J. Garland, Kevin D. Jones, Andres Modet, and Jeannette M. Wing.

[16] David Hinman. On the design of Larch interface languages. Master's thesis, Depart-
ment of Electrical Engineering and Computer Science, MIT, January 1987.

[17] Shigeru Igarashi, Ralph L. London, and David C. Luckham. Automatic program veri-
fication I: logical basis and its implementation. Acta Informatica, 4(2):145-182, 1975.

[18] Daniel Jackson. Aspect: A formal specification language for detecting bugs. TR 543,
MIT Lab. for Computer Science, June 1992.

[19] S.C. Johnson. Lint, a C program checker. Unix Documentation.

[20] C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore. mural: A Formal Development
Support System. Springer-Verlag, 1991.

[21] Cliff B. Jones. Systematic Software Development Using VDM 2nd ed. Prentice-Hall
International, 1990.

[22] Richard A. Kemmerer. Testing formal specifications to detect design errors. IEEE
Transactions on Software Engineering, 11(1):32-43, January 1985.

[23] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, 2nd ed.
Prentice Hall, 1988.

[24] Gary T. Leavens and Yoonsik Cheon. Preliminary design of Larch/C++. In Ur-
sula Martin and Jeannette M. Wing, editors, First International Workshop on Larch.
Springer-Verlag, July 1992.

[25] B. Liskov, R. Atkinson, T. Bloom, E.M. Moss, J.C. Schaffert, R. Scheifler, and A. Sny-
der. CL U Reference Manual. Springer-Verlag, 1981.

[26] Barbara Liskov and John V. Guttag. Abstraction and Specification in Program De-
velopment. The MIT Electrical Engineering and Computer Science Series. MIT Press,
Cambridge, MA, 1986.

[27] David C. Luckham, Sriram Sankar, and Shuzo Takahashi. Two-dimensional pinpoint-
ing: Debugging with formal specifications. IEEE Software, 8(1):74-84, January 1991.

[28] David C. Luckham and Friedrich W. von Henke. An overview of ANNA, a specification
language for Ada. IEEE Software, 2(3):9-22, March 1985.

[29] Keith W. Miller, Larry J. Morell, and Fred Stevens. Adding data abstraction to Fortran
software. IEEE Software, 5(6):50-58, November 1988.

174

[30] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[31] Piotr Rudnicki. What should be proved and tested symbolically in formal specifica-
tions? In Proc. 4th Int. Workshop on Software Specifications and Design, pages 42-49,
April 1987.

[32] J.M. Spivey. An introduction to Z and formal specifications. Software Engineering
Journal, January 1989.

[33] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

[34] Yang Meng Tan. Semantic analysis of formal specifications. MIT EECS Dept PhD
thesis proposal, November 1992.

[35] Mark T. Vandevoorde. Exploiting formal specifications to produce faster code. MIT
EECS Dept. PhD thesis proposal, March 1991.

[36] Mark T. Vandevoorde. Exploiting specifications to improve program performance. TR
598, MIT Lab. for Computer Science, February 1994. PhD Thesis, EECS Dept.

[37] Jeannette M. Wing. A two-tiered approach to specifying programs. TR 299, MIT Lab.
for Computer Science, May 1983. PhD Thesis, EECS Dept.

[38] Jeannette M. Wing. Writing Larch interface language specifications. ACM Transactions
on Programming Languages and Systems, 9(1):1-24, January 1987.

[39] Jeannette M. Wing, Eugene Rollins, and Amy Moormann Zaremski. Thoughts on a
Larch/ML and a new application for LP. In Ursula Martin and Jeannette M. Wing,
editors, First International Workshop on Larch. Springer-Verlag, July 1992.

[40] Kaizhi Yue. What does it mean to say that a specification is complete? In Proc. 4th
Int. Workshop on Software Specifications and Design, pages 42-49, April 1987.

[41] P. Zave. An operational approach to requirements specification for embedded systems.
IEEE Transactions on Software Engineering, 8(3):250-269, May 1982.

175

