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Abstract
The performance demands on analog-to-digital converters for high speed, high accu-
racy, low power, and small die area are continuously increasing. Overdrive recovery
time of the comparator is a speed-limiting factor in high bit accuracy successive ap-
proximation analog-to-digital converters. The bottleneck is most severe when a large
input is followed by a small input of the opposite polarity. Output clamping is one
way of improving overdrive recovery time. A single stage, folded cascode amplifier
with clamping and auto-zeroing is presented. Active clamping is explored in detail
and an auto-zeroing scheme is presented for a 12 bit analog-to-digital converter in
a 0.8 micron technology. The optimized clamped folded cascode amplifier is then
compared with existing comparator gain stages.
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Chapter 1

Introduction

1.1 Motivation

Applications for high speed comparators in analog-to-digital converters (ADC's) range

from High Definition Television to ultrasound imaging. Because the world is inher-

ently analog, there will always be a need for faster and better ADC's to keep pace

with the newest digital processing circuitry.

At the heart of analog to digital conversion is the comparator. The comparator is

frequently the speed limiting factor in high bit accuracy ADC's. Overdrive recovery

time is often the cause of speed loss. For example, in a 12 bit converter with a

2V input range, the comparator must be able to sense and amplify voltages ranging

from under 0.49mV (an LSB) to a full scale 2V. Without careful comparator design,

overdrive will inevitably occur and prevent accuracy at a high sampling rate.

The issue of overdrive recovery has not been thoroughly examined for folded cas-

code amplifiers with respect to clamping. Improving the overdrive performance for a

folded cascode amplifier, using a non-cascoded amplifier as a reference, is an interest-

ing and challenging technical problem.
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1.2 Background

1.2.1 Sequential Successive Approximation ADC Architec-

ture

In the sequential successive approximation (SSA) architecture, the ADC input voltage

is successively compared to binary weighted voltages. The value compared to the

input signal in each successive cycle is based on the outcome of the previous cycle. For

an N bit converter, the digital output will be available after N clock cycles. Because

the SSA architecture requires only one comparator, it is efficient in terms of die area

consumption. For reference, an N bit flash type ADC requires 2 N comparators. A

flash architecture works by simultaneously comparing each possible input level to

the actual input voltage. For high bit accuracy converters, a full flash structure

is impractical, while an SSA type remains perfectly reasonable. For more general

information on ADC's, refer to [15] or [8].

To increase the throughput of an SSA converter, the comparator may be du-

plicated. If N comparators are used, the converter can simultaneously process N

inputs,resulting in an N cycle latency and a throughput of 1 output per cycle. Addi-

tional cycles for autozeroing or error-correction may increase the latency.

1.2.2 The Comparator

A comparator is comprised of a gain stage and a latch (usually regenerative) for

converting the output of the amplifier to a digital level. The amplifier explored in

this thesis is designed for an existing latch used in other ADC designs at the David

Sarnoff Research Center. This latch has a worst case input offset voltage of 5mV.

This offset voltage is large because input accuracy has been traded for lower power

consumption. The Sarnoff latch consumes approximately mW of power and converts

an input of 5mV to a digital level in approximately 1.5ns.

Because the comparator is destined for large digital integrated circuits, a fully dif-

ferential design is required to satisfy noise immunity constraints. Ease of manufacture
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is also important; consequently it is assumed that no laser trimming or specialized

devices, such as Schottky or high frequency diodes, are available.

1.3 Simulation Environment

To verify and improve the theoretical comparator design, Mentor Graphics Falcon

Framework, Design Architect schematic editor, and Accusim simulator were used for

simulations. The technology simulated was a 0.8 micron, 5V, double metal, N-well

process. The SPICE modelfile was developed from measurements taken on previously

fabricated chips from the vendor. Representative SPICE models are included in

Appendix A.

1.4 Outline

Chapter 2 clarifies the fundamentals of the folded cascode, such as gain, parasitic

output capacitance, and biasing. The MOS device models used are also included.

Chapter 3 examines passive and active clamping for the folded cascode amplifier.

Clamping theory is developed, and related problems are addressed.

Chapter 4 explains the autozeroing circuitry. This circuitry is important because a

large input referred offset due to sizing mismatch or threshold variations is anticipated.

Chapter 5 compares David Sarnoff's existing 12 bit non-cascoded multistage am-

plifier with the clamped folded cascode. The evaluation metric is speed. Conclusions

and suggestions are presented.

12



Chapter 2

The Non-Clamped Folded

Cascode

2.1 Introduction

A folded cascode architecture has the potential for very high gain, with more output

swing than a non-folded cascode. As a result, the folded cascode is useful not only

in the 5V technology being used for the simulations in this thesis, but also in 3V

processes. An additional benefit of a cascoded design is the small back coupling from

the outputs to the inputs.

In the following sections, the theoretical gain, capacitive loading, unclamped over-

drive recovery time, transient response, and biasing of the folded cascode amplifier

are explained. Equations are developed to enable easy modification of the folded

cascode's characteristics via device sizing.

2.2 Device Modeling

The low frequency small signal transistor model used to characterize the folded cas-

code is shown in Figure 2-1. Equations defining the transconductance, source-drain

resistance, and quiescent current are as follows:

9m = I2IDj1COL
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r - 1 _ 1
° kAID go

where ID =

IC" - (VGS - Vt) 2 , when VDS > VGS - Vt > 0;

tCo L (VGs - Vt) VDS - VDS] when (VGS - Vt) > VDS > 0;

0, when VGS < Vt.

Appendix B explains the variables in the equations and models, and relates them

to the SPICE model parameters in Appendix A.

A complete MOS device model is shown in Figure 2-2. The capacitances were

considered open circuits for the gain calculations. The backgate transconductance,

gmb, did not have a large impact on the gain (at most a few percent) and was thus

ignored for the gain calculation.

D

G Ii

S

S

G D

D

G

Vv
gs

S

D

I 0

g v r
m gs o

Figure 2-1: Low Frequency Small Signal Model
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Figure 2-2: Complete Small Signal Model

2.3 Folded Cascode Gain

The fully differential folded cascode circuit is shown in Figure 2-3. A half circuit,

shown in Figure 2-4, is used to calculate the small signal gain. In the half circuit,

the resistances of M1 and M3 have been represented by ri, which equals r 1 l1ro2.

Assuming no mismatch, the complete differential gain is equal to the half circuit

gain. The impact of mismatch on circuit performance is addressed in more detail in

Chapter 4.

The common node is grounded in the half circuit because any change in voltage on

that node would be reflected as common mode gain, and thus would have no impact

on the differential gain. For further discussion on the common node virtual grounding

approach, refer to [14, pages 255-257 ].

A Norton equivalent circuit approach is used to calculate the gain of the half cir-

cuit. In a Norton equivalent circuit, shown in 2-5, the behavior of a more topologically

complex circuit is exactly modelled as a current source and resistor in parallel.

Figure 2-6 shows the circuit used to determine the short circuit current. Figure

2-7 shows the circuit used to calculate the equivalent resistance.

15
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Figure 2-3: Fully Differential Folded Cascode Circuit
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Figure 2-7: Circuit for Ro,up Calculation

The short circuit current is calculated as follows:

ISc = 9mSVgs5 + Vgss5/ro5 - -gmlVin - Vgs5/rin

-Vin~mlvgs5 =
VSC = Vin5 ( gm+go i min

(g.m9+gor,+go,in) g l)

In order to calculate Rout RoUp and Ro,dovm must also be calculated. The gm's and

ro's specified in Figure 2-7 are for Roup as noted in Figure 2-4. Roup is calculated

as follows:

Itet = gm5sVg,5 + vtet+Vg5 = -vg5/ri

vg.5(gm5 + go5 + go,in) = -Vtestgo5
Vteatgosgoin

Itest - (s5 +go5 +go,in)

//,p= Vtat /test = (g'_+g°__+go,__D YZ I - Sm6go5 go,jinoRu =Viestl test -:::: (go+gor,inj

Since Ro,down has an identical topology:
-o~o~.~ =(gm7+9o+g7)

Rosdown - gOm1+9g+9,
go7g o9

Thus,

Rout = Ro,dow ilRoup

If the transistors are in the saturation region (when Vd. > (Vg, - Vt)), then it can

be assumed that g << gn, such that the expressions for IShortCkt and Rout simplify

to:

ISC =-Vingml

Ro t= ( Gn )1I( g- 
go905go,,in go0 7go90
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Putting the two results together, the total gain is
,ur+ -vou *- gm[ ) 9- )]
vin+ -vin- - gmi K 9.ogo,-n go7go9

For the circuit shown in Schematic A, the simulated DC gain is 880. For a 12 bit

converter, in dc operation such a gain will amplify half an LSB (.24mV) to 4 times

the latch offset voltage.

Transistors M9A and M1OA in Schematic A are used in the autozeroing circuitry

and can be temporarily ignored for the gain calculation. The device sizing shown

results in quiescent currents of approximately 100/tA in each transistor, which yields

a transconductance value of:

gml = .92mS

Drain-source conductance is difficult to accurately hand-calculate, so the simulator

was used to determine the exact gain. Working backwards from the calculated gml

and the simulated gain gives a value of Rout = 0.96MQ. Appendix C contains dc

operating points for the folded cascode, and Appendix B contains the equations used

to generate gmi. It is important to have a estimate of Rout for speed considerations

because the dominant time constant for a folded cascode amplifier is due to the output

loading.

2.4 Output Capacitance

Just as an accurate output resistance value is important, an output capacitance value

is necessary to predict the circuit's behavior. The following equation models the

capacitive loading at the negative output terminal:

If M5 and M7 are in saturation:

Cload = Cdb,5 + Cgd,5 + Cdb,7 + Cgd,7 + Cmisc.

Appendix B gives equations for drain-to-bulk and gate-to-drain capacitances.

Cmisc represents the miscellaneous loading due to any following stages and the un-

modeled parasitic capacitance from the wiring.

It is important to note that the drain-to-bulk and gate-to-drain capacitances vary

proportionally with W. To avoid unnecessary loading, the width of devices M5, M6,

19



M7, and M8 should be kept as small as possible. At equilibrium (when Vot- =

Vout+ = 2.5V), for the device sizes shown in Schematic A,

Cgd,7 0.47fF

Cdb,7 3.4f F

Cgd,5 = .84f F

Cdb,5 = 6.8fF

With an estimated value of 10fF for CmisC this gives a value of Cload = 21.5fF.

2.5 Transient Analysis

The worst case overdrive recovery time occurs when a large input is followed by an

LSB input of the opposite polarity. Assuming temporarily that the output equilibrium

occurs at Vo0 t- = Vot+= OV, Vo0 t_(t) can be modeled as follows for a positive LSB

following a negative MSB:

Vout-,O, -2.5 volts

VoIt(t) = [-2.5e + 0.22(1 - e )] volts, t > 0

The first term of Vot- is a decaying exponential due to the state created by the

negative MSB; this term exists until Vot- passes through 0 volts. The second term

is a rising exponential caused by the new input. The 0.22V final voltage is the result

of multiplying the gain (880) by half of an LSB (0.24mV for an input voltage swing

of 2V). The value of half of an LSB is used because the circuit is fully differential,

and the other half of the circuit is operating in exactly the same way, but with the

opposite polarity. The dominant time constant is due to the output load, where

r = RoutCload = (960KQ)(21.5fF) 21ns for the circuit shown in Schematic A.

By solving for t when Vot- = 25mV, the time it takes to reach the latch offset of

50mV (assuming Vt+ is undergoing similar changes in the opposite direction), the

maximum comparison time necessary to trigger the latch can be found. For the values

mentioned above, it theoretically takes 52ns to reach a differential output of OV and

2.5ns more to reach a 50mV differential output. The total theoretical comparison time

is thus 54.5ns. Simulation A shows the actual unclamped folded cascode transient
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response for this case. The simulated time from the new input to the 50mV necessary

for latching was measured as 57ns, just 2.5ns off of the predicted value. The extra

delay is probably due to the changing gate-to-drain and drain-to-bulk capacitances,

but could also be the result of a slight error in the estimate of Rout.

2.6 Biasing

The biasing scheme, consisting of transistors M12, M13, M14, and M15 as shown in

Schematic A, consists of 4 diode connected transistors. It was chosen for its simplicity

and lack of fixed voltage requirements. The current in the bias leg of the transistor

is approximately 10 A. This current is mirrored and scaled up to - 100,uA in all

transistors except M9A, M1OA, M3, M4, and Mll. Transistors M9A and M1OA have

smaller currents than the other devices because they are for output level adjustment

only; M9 and M10 carry most of the current in the parallel combination. M3, M4,

and Mll have currents of approximately 200 A. IM7 and IM8 were set slightly larger

than IMl and IM2 to avoid a situation where there is not enough current to meet the

demands of the input transistors.
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Chapter 3

The Clamped Folded Cascode

3.1 Introduction

The goal of clamping the outputs of an amplifier is to limit the differential output

voltage as quickly as possible. The unclamped 12 bit overdrive recovery time discussed

in Chapter 2 is unacceptable for high frequency applications. This chapter explores

how to most effectively clamp a folded cascode amplifier to drive a regenerative latch

with a 5mV worst case input offset.

MOS devices are used as the clamping devices because Schottky diodes and good

high frequency diodes are not available.

3.1.1 Passive Clamping

Passive clamping is accomplished by connecting the outputs of an amplifier to the

source and drain of a MOSFET (or the terminals of a complementary pair of MOS-

FETS's). The gate of the MOS device is tied to a fixed voltage.

Passive clamping is easier to implement than active clamping in that it requires

minimal layout complexity and is not subject to any clock feedthrough. A viable

passive clamp is shown in Figure 3-1, where Vd, is a fixed voltage (5V in most

applications).

Passive clamping improves the overdrive recovery time of an amplifier, but the

22



speed improvements are difficult to predict because MOS thresholds and saturation

Vds are not sharply defined. A MOSFET threshold voltage is dependent on the

terminal voltages and doping, which can vary widely on a single chip.

V
dc

I
V V

out+ out-

Figure 3-1: Passive Clamp

3.1.2 Active Clamping

In active clamping, the clamp gate voltage is driven by a clock, and can be with

reference to a fixed voltage, as shown in Figure 3-2. However, the clamp does not

have to be referenced to anything; it can simply connect two active nodes directly,

as in the passive clamp Figure 3-1. If the swing on each output node is very large,

a fixed voltage reference is preferable so that a charge equilibrium is reached not

far from the nominal output equilibrium value. For a circuit with a large output

swing, complementary transmission gates are needed to effectively clamp at both

the positive and negative rails. Additionally, complementary transmission gates also

partially cancel clock feedthrough.

Active clamping is more effective than passive clamping because the active clock

ensures the clamp will be turned on at a certain time. The remainder of this chapter

focuses on modeling and optimizing active clamping. The most challenging issues

involve clock feedthrough and input timing with reference to the clamp.
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CK CK

I I
Vo01 lut-

T W=2.2 T
CKN L=0.8 CKN

Figure 3-2: Referenced Active Clamp

3.2 Active Clamping Simulation Implementation

Due to the limitations of the SPICE model, the clamping scheme shown in Schematic

B had to be used. The clamp network consists of 4 transmission gates (devices MC1-

MC8) referenced to 2.5V (labelled Vfis). While only two transmission gates would be

needed in a physical implementation, a software bug necessitated simulating with 4 to

get accurate drain and source modeling. (Otherwise, the simulator yielded different

results depending on the nominal location of the drain in the schematic.) This fix

caused the parasitic capacitance to be non-symmetric for the devices and threw off the

capacitive coupling by an unrealistic amount. By placing two devices of half the nom-

inal width of 2.2pum in parallel with opposite drain locations, the simulator limitations

were overcome. The only major problem caused by the alternate simulation imple-

mentation was an increase in the source-to-bulk and drain-to-bulk capacitances due

to apparent sidewall and junction parasitic capacitances. This error is compounded

by the fact that a software designer implemented the default sidewall capacitance to
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be proportional to 2W + 2Ld, not W + 2Ld as is correct and as shown in Appendix

B. The net effect is extra capacitive loading at the output, and slightly more clock

feedthrough. Though the simulation correlation to the physical design is non-ideal,

the result is tolerable because the additional capacitance (at most a few fF) effectively

substitutes for the parasitic capacitance due to wiring that was not included in the

simulation model. For clarity of discussion, the rest of the sections in this chapter

reference the clamping scheme shown in Figure 3-2. Predicted capacitance values

will be based on the device sizes shown in Figure 3-2, but the values corresponding

to the actual implementation will be indicated when there is a noticeable discrepancy.

V Vfinal

!

I

I

/

t

Figure 3-3: Single Stage High Gain Clamped Amplifier Transient

3.3 Clamping and Gain

In Figure 3-3, to represents the time from zero seconds to the time the output has

moved enough to be latched, and is thus ready to be clamped. The dominant time

constant RCl is due to the output loading. Voltage Vfi,~ t is the product of the

25



smallest input that must be recognized and the gain of the amplifier. Voltage Vc is

the minimum value necessary to trigger the latch correctly. If it is assumed that:

VC < < Vf inal

tc reduces to A

Substituting r = RLCI and Vf = gRLVmin yields:

C gmVmn

Thus, to minimize t, gm, should be increased. This is the sensible result, since

increasing power usually increases speed. The result indicates that the specific gain

of the clamped folded cascode does not matter, as long as it is high enough such that

Vc << Vfinal. Figure 3-3 assumes an ideal clamp and does not account for clock

feedthrough.

Substituting Cl = 32fF (calculated in the next section), Vc = 50mV, g =

.92mS, and Vmin = 0.49mV results in t = 3.5ns. Simulation B shows (from top to

bottom) a plot of the clamp, the differential input voltage, and the differential output

voltage. From the time the clamp releases, it takes 5ns for the output to reach Vc

when driven by an LSB after an MSB of the opposite polarity. Part of the 1.5ns

discrepancy between theoretical and measured time delay can be attributed to the gm 1

calculation in Chapter 2. An alternate way of calculating gmin is to work backwards

from the 3dB point of the clamped folded cascode and the output load, assuming

a single dominant pole. The corresponding output resistance for f3dB = 4.67MHz

(from simulation data) and C = 32fF (theoretical) is 1.07Mg. Working backward

from the theoretical gain of gmlRout, the simulated gain of 880, and the new value of

1.07MQ for Rout yields a gm1 of 0.83mS. Substituting this gm into the t equation

yields a delay of 4ns, closer to the simulated value. The remaining discrepancy can

be partially accounted for by the extra capacitance introduced by the artificial 8

transistor clamp implementation.
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3.4 Effect of Clamping on Output Capacitance

Adding MOS clamps to the outputs of the amplifier increases the total capacitive

load. Assuming Vot- << 2.5V, the following additional capacitive components will

be present at output node Vo,,t- when the clamp is turned on:

CgdB + CdbB + CgsA + C,bA

At Vout+:

CgdD + CdbD + Cg.c + Cs.bC

Referring to Appendices A and B, and using bias points of Vdb = 2.5V, Vsb = 2.5V,

with sizing of W = 2.2, Lnmos = .645, and Lpmos = .674

ACload- = 10.5fF

ACload+ = 10.3fF

Cload = Cload,unclamped + A Cload - 32fF

The actual simulation transistors result in equal AC loads of 13.2fF, which slow

down the circuit a little.

3.5 Discharge Current

Discharge current (the current going through the clamp) determines how quickly the

clamp can minimize the difference in the outputs. When determining how long the

clamp should be on, a model is helpful. It is possible to model the clamp as a resistor,

but the value of the resistor changes so unpredictably that the model is only helpful

for general trends or when focusing on an operating point.

At any given time the clamp is on, both devices are operating in the linear region,

one with a fixed gate-source voltage, and one with a gate-source voltage that varies

with the output voltage. If the output is greater than 2.5V (the voltage the clamp is

referenced to), the N device has a fixed gate-source drive. If the output is less than

2.5V, it is the P device that has a fixed drive.
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3.5.1 Resistance of the Clamp

If the VDS term is dropped from the following linear region equation:

ID = ACO [(Vg - Vt)VDS VD]

The fixed drive device can be modelled as a resistor of value

RC = _O Lg1

Mobility t is dependent on Vd,, such that the value of this Rc, decreases nonlin-

early with Vds.

The non-fixed drive device behaves according to the linear region equation noted

for the fixed drive device, but the resistance of the non-fixed drive device increases

nonlinearly with VDS. This is because the net effect of the gate-source voltage de-

creasing outweighs the changing mobility.

The total clamp resistance is equal to the parallel combination of the resistances

of the two devices.

3.5.2 Clamp Time Constant

Considering the clamp to be a variable valued resistor, the entire circuit can be

approximated by the circuit shown in Figure 3-4.

The following equation shows the transient response:
-t(1/RC+l/RL)

V. . R- (1 -e CL )RC+RL

Simulation C shows the change in outputs in response to the clamp turning on.

Within the first 2ns the clamp is on, the outputs are drawn from a full differential

output to within 0.3V of each other. After that, the clamping dramatically slows

down. The clamp transient response equation is difficult to match up to the simu-

lations and of questionable value. Nonetheless, the resistive modeling aspect of the

transient equation (the final dc response) is important to note.

The equation does reveal that because the load is not purely capacitive, the final

value due to clamping alone is not equal to the reference voltage, but a large fraction

of it. It is also important to recognize what an input drive does to the output voltage.

Such an input drive could be due to mismatch within the circuit or to an actual signal
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at the input of the amplifier. For the model shown in Figure 3-5, where Ai = gmii,

the final value output voltage is

Vo.t = AiRc + Vi,

assuming RL >> Rc

Simulation D illustrates this effect. Though the clamp turns on at 42ns, 0.5V is

maintained across the outputs until the drive on the input is removed. The input is

removed at 45ns, at which point the differential voltage starts to decay.

R
c V

V out
ref

R
L

ref 

V~~~~~~~~~~~out

L CLFigure 3-4: Clamping Circuit Representation
R

C

R 
L

Figure 3-5: Clamping Circuit Representation with Differential Drive
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3.6 Clock Feedthrough

The output voltages are directly affected by the clock transitions via coupling to

the clock, or feedthrough, as shown in Figure 3-6. The complementary devices

partially cancel each other out, but not entirely; complete cancellation can never

be depended on because process variations inevitably create some mismatch among

coupling capacitors.

If the output voltage is less than 2.5V, then the NMOS device will couple to the

output via Cg8 and the PMOS device will couple to the output via Cgd. For the

clamp sizing shown in Figure 3-2, CgA = 2.46fF and CgdB = 1.83fF. The following

equation characterizes the coupling effect:

Vout- = C gd Cd + C C = 98mV
-- Cgd+Czoa.d Jc Cgo+Clo.d

For Vot+, which has slightly different loading conditions, the net clock coupling

results in approximately 84mV. Thus the differential coupling effect comes to about

14mV.

Simulation C shows both outputs after being clamped for 20ns. No new input is

applied after an MSB input the cycle before. Both outputs drop by approximately

110mV, on the order of the predicted 98mV and 84mV. In the waveform at the bottom

of the page in Simulation E, it is possible to see the differential coupling effect when

the clamp is released at 54ns. With no new input, the differential output jumps

approximately 12mV when the clamp is released and can be seen to decay thereafter.

Simulation F shows a close-up of what happens when the outputs do not reach

the reference voltage. The PMOS and NMOS gate-to-drain and source-to-drain ca-

pacitances are not as well matched and the common mode coupling doesn't cancel as

well as in Simulation E, resulting in a common mode output drop of 0.35V. It can

be inferred that if the two output voltages are not close to each other they will not

couple uniformly, which could result in a large differential voltage change. Clamp

input timing is important in preventing such a situation.
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C~~~~~~~~V gs~~-- Vout+ ref

CgdT
' T

CKN

Figure 3-6: Clock Feedthrough Circuit

3.7 Clamp and Input Timing

The only major input timing constraint is that the last output be removed before

the clamp turns on or very soon after it turns on. This is crucial for the case of

a large input followed by a small input of the opposite polarity, as is evident from

Simulation D. The large input prevents the outputs from getting close to each other.

If the differential output is not lowered before the clamp ends, an LSB of the opposite

polarity will not be strong enough to discharge the outputs quickly.

Introducing the new input while the clamp was still on yielded the lowest time

from input turning on to output reaching the latch offset voltage. This time, shown

in Simulation B was 7.5 ns. The input was applied for 2.5ns before the clamp was

released. It took 5ns to reach the valid latch voltage after that. When the new input

was not turned on until after the clamp was off, the time delay was approximately

ins longer to reach a valid output.
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3.8 Clamp Sizing

Both the P and N clamping devices need to be sized equally so that clock feedthrough

will be minimized. Larger W ratios decrease the clamp resistance, but increase the

capacitive loading. Whether increasing the clamp size has a positive or negative effect

on the speed of the circuit depends on the SPICE parameters and the default layout

parameters. For the SPICE model used in this thesis, increasing the clamp size was

not effective. Doubling the clamp width to 4.4 /im resulted in a 3 ns increase in the

time for the outputs to reach 50mV.
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Chapter 4

Autozeroing

4.1 Introduction

Autozeroing, or autobalancing, is the cancelling of any dc offset on the output nodes,

such that the input referred offset is very small. There are two basic approaches

that can be taken to cancel these offsets. One is to feedback via a switched capacitor

network a fraction of the output such that each output is compensated independently,

but with respect to the same fixed voltage. Another technique is to cancel the common

mode and differential mode with two separate feedback loops. The former approach

was chosen because it allowed for hysteresis and non-correlation between the two legs

of the cascode, without the need for aggressive sizing techniques.

4.2 Approach

4.2.1 Background

Figure 4-1 shows the basic feedback concept, consisting of a switched capacitor low

pass filter and a single ended differential amplifier for each output. If process inac-

curacies cause an output to be too high, a high voltage is fed back to the parallel

feedback device, causing its resistance to drop and thus the output voltage to drop

also. The single ended differential amplifier, consisting of devices M16-M20, is refer-
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enced to 2.5V; and its equilibrium output is centered at 2.5V. The nominal feedback

voltage to M9A and M1OA is centered at 2.5V to produce the nominal folded cascode

output of 2.5V. The actual feedback circuit implementation is shown in Schematic C.

4.2.2 Referred Input Offset

To avoid large output swings due to the feedback circuitry, the change in output

voltage due to the maximum possible change in feedback voltage per cycle must be

limited to much less than the change in output due to an LSB.

The gain from Vg,M9A to Vote- is, based on the same calculation methods used for

the folded cascode gain equation in Chapter 2:

lZt- - -gmaVUt - n -9gmso9Ag = 13, as measured in simulation.
Vg,M9 A gingo5 /g,7b +9o7 909 /g7,

To prevent the output from switching too rapidly, CL2 and CR2 are each 10pF,

to be implemented with depletion NMOS devices. CL1 and CR1 are each approxi-

mately 4.4fF. With these capacitance values, the maximum feedback voltage swing

is 4VCL = 1.8mV. Amplified by the feedback gain, this results in a maximum
CL2+CL1 -

voltage change of 21mV. A 21mV change referred back to the input of the amplifier

corresponds to an input of 24/KV, less than one twentieth of an LSB .

The feedback is powerful enough to compensate for large input offsets, but not in

one cycle. The scaling down of the feedback capacitors makes the system stable and

allows the feedback to work slowly over several cycles.

4.3 Simulation Results

4.3.1 Normal Operation

Simulation G shows the autozeroing circuitry functioning with no mismatch and a

default initial condition on Vg9A and VglOA of 2.5V . The key waveform in the Sim-

ulation is Vot-, the fourth waveform from the top of the page. It gradually settles

to the nominal 2.5V. The intermediate waveforms are shown above Vot- and can

be examined more closely by referring to the node names shown in Schematic C,
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if desired. The bottom two waveforms show the two stage feedback clocking. The

nominal overal period was set at 40ns, though in an actual 12-bit implementation,

the total period would be longer because the autozeroing would only occur once per

overall ADC timing cycle.

4.3.2 Mismatch Operation

To verify the effectiveness of the autozeroing, various simulations were run with sensi-

tive gate lengths changed. The success of the autozeroing circuitry depended heavily

on how the feedback timing related to the clamp timing. Simulation H shows the

result when both input devices have a nominal gate lenght of 0.85 m instead of

0.8/Lm. The format of the Simulation H plot is just like that of Simulation G. The

autozeroing circuitry eventually centers the output around 2.5V.

4.4 Autozeroing Summary

The autozeroing circuitry was pursued to determine if there existed a fundamental

problem associated with autozeroing a high gain clamped stage. While no inherent

problem was found, it is important to note that this particular autozeroing scheme

is not crucial to the clamp's operation, and hasn't been optimized to work with the

clamping. Autozeroing issues not discussed at length here include the time constant

of the feedback, its interaction with the clamping of the amplifier, and potential

feedthrough-related problems.
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T
Figure 4-1: Autozeroing Technique
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Chapter 5

Comparison and Conclusions

5.1 Review

The goal of this project was not to produce the fastest 12 bit ADC possible, but to

push the limits of affordable, low-power technology by speeding up one of the critical

paths in high bit-accuracy ADC's. The amplifier itself consumes 2.5mW of power (not

counting auto-zeroing circuitry), and the rest of the ADC circuitry would consume an

estimated 300mW, based on present Sarnoff designs. When compared to amplifiers

of this power and technology (CMOS), the clamped folded cascode outperforms them

all. However, before making a comparison, it is necessary to relate the clamped time

response to the worst case series of inputs to the potential sampling rate of the ADC

in which the amplifier will be implemented.

5.2 Impact of Improved Overdrive Recovery Time

on Sampling Rate

As mentioned in chapter one, a pipelined SSA ADC has a fundamental internal clock-

ing frequency that may also be the sampling rate. While the total period of the

multiple phase clock depends on the autozeroing and error correction schemes, the

fundamental period is foremost limited by the comparison time, and the delay around

37



the decoding and subsequent digital-to-analog(DA) conversion for the next cycle com-

parison. It would be difficult to run the internal clock any faster than the frequency

limit of the comparator-DA loop because the loading of so many comparators on the

voltage reference lines would become unmanageable. This means that the overdrive

recovery time can directly limit the sampling rate of a high bit accuracy ADC. For

a different Sarnoff ADC implemented in ltm CMOS, the delay from the output of

the latch to a new valid comparator input is approximately 12ns. With the 0.8/tm

technology simulated in this thesis, that time would probably reduce to O10ns without

any major topology changes. Thus, the fundamental period limit for the simulated

amplifier would be 17.5ns, based on a worst case delay of 7.5ns from valid amplifier

input to valid latch input plus a delay of O10ns from latching to valid DAC output.

This converts to an admirable 57MHz sampling rate limit.

5.3 Comparison to Multistage Amplifier

The single stage clamped folded cascode beat an existing 12-bit Sarnoff ADC amplifier

under worst case input voltage conditions by approximately 5ns. This two stage

clamped amplifier was implemented in l/m CMOS and was clocked (the whole ADC)

at a maximum sampling rate of 40MHz. The multistage amplifier drew 4mW of power,

more than the clamped folded cascode.

The multistage amplifier, though used for a 12-bit ADC with a 2V input swing,

only had to sense a minimum input voltage of lmV, not the 0.49mV the folded cascode

was tested at, because of clever input circuitry and amplification prior to the signal's

entrance to the comparator. If the clamped folded cascode only needed to sense

2LSB, it could potentially be clocked at 67MHz. However, this would not include

much margin for error, just as the 40 MHz sampling rate is pushing the limits of the

multistage Sarnoff comparator. It is safe to say that with similar input amplification

circuitry, the clamped folded cascode could effectively and reliably perform at 60MHz.

Razavi and Wooley [13] report a 12-bit 5-Msample/s converter implemented in

1[tm CMOS, based on a two-step flash architecture. They too employ clamping, but
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require lOOns for input sampling, and an additional lOOns for subsequent conversion.

The total power dissipated in both the coarse and fine comparators is 2.25mW, and

the overall ADC power consumption is 200mW. While this amplifier consumes slightly

less power than the clamped folded cascode, it suffers an order of magnitude decrease

in sampling rate limit.

The main delay due to comparison time occurs in the fine comparator, which is

a combined amplifier and latch within a folded cascode topology. While some of the

sampling rate limit is due to DAC conversion time and logic, a large part of the delay

could be elimated if the fine comparator were a clamped amplifier and separate latch.

5.4 Conclusion: Single Stage Versus Multistage

Comparators

Multiple stage unclamped gain stages outperform single stage high gain amplifiers

without clamping. This statement is supported theoretically in the standard deriva-

tion of the optimal gain per stage of e, as outlined in [4], as well as supported by

the reported performance of unclamped multiple stage amplifiers at Sarnoff compared

to the unclamped folded cascode. However, it has been shown in this thesis that a

clamped single stage high gain amplifier can outperform a clamped multiple stage

amplifier. The nonlinearities of clamping and the extra loading due to the actual

clamps decrease the potential sampling rate as more stages are added.

The success of the clamped folded cascode amplifier does not have to stop at a 12

bit application. The folded cascode topology has enough gain potential to perform

superbly for a 14 bit design as well.
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Schematics
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Simulations
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Appendix A: SPICE Modelfile
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SPICE MODELFILE

* NMOS L=0.8uM
* PMOS L=0.8uM

.MODEL NE NMOS(LEVEL=3 VTO=0.7821 TOX=1.75E-8 RSH=62.5
+ NSUB=4.0121E+16 LD=7.7667E-08 UO=480.0
+ VMAX=1.3625E+05 THETA=3.9505E-02 ETA=9.9859E-03 KAPPA=0.1094
+ TPG=1 DELTA=0.7667
+ CGSO=4.740E-10 CGDO=1.561E-10 CJ=2.4E-4 CJSW=4.9E-10
+ MJ= 0.44 MJSW=0.35 )

.MODEL PE PMOS(LEVEL=3 VTO=-0.9247 TOX=1.7500E-08 RSH=138
+ NSUB=4.0116E+15 LD=6.3184E-08 UO=153.4
+ VMAX=1.5801E+05 THETA=8.2588E-02 ETA=3.1827E-03 KAPPA=1.952
+ TPG=-1 DELTA=0.5856
+ CGSO=3.718E-10 CGDO=1.6865E-10 CJ=7.1E-4 CJSW=1.87E-10
+ MJ= 0.55 MJSW=0.38 )
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Appendix B: SPICE Parameter
Explanation
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References [5], [1], and [6] contain the equations found in the appendix and can
be referred to for further clarification. Variables are listed roughly according to their
order of appearance in the text.

Yo( 82) Channel Mobility

ILff [~eff -- l+(SoVde)/(Vm 2=Letft)

1+6(Vg-VTH)

Nominal value is given as UO in SPICE model.

Co,(F2): Gate oxide capacitance

toz

Oxide thickness t, is TOX in SPICE. eo is for silicon.

W(um): Channel Width

Nominal channel width is the same as the actual channel width, to a first order
approximation.

L(jm): Channel Length

L = Lom -2Ld

On Schematics, the L shown is the nominal gate length. In all equations, L refers to
the effective gate length. Length Ld (LD in SPICE) is the overlap due to diffusion on
both the drain and source sides of the device.

V(V): Threshold Voltage

Nominal value is VTO in SPICE modelfile. The actual threshold varies with doping
and terminal voltages.

A(V- 1): Channel Length Modulation
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Difficult to calculate; depends on device current and gate length.

Cgs(fF): Gate-to-Source Capacitance

In Saturation and Cutoff Regions: gs = WLCo + CGSO W
In Linear Region: Cgs = CGSO W + WLCo

The units for the SPICE gate-to-source overlap capacitance CGSO are F/lrn2 

Cgd(f F): Gate-to-Drain Capacitance

In Saturation and Cutoff Regions: Cgd CGDO W
In Linear Region: Cgd = CGDO W + WLCo0

The units for the SPICE gate-to-drain overlap capacitance CGDO are fF/.zyr~2 ·

Csb(f F): Source-to-Bulk Capacitance

Under Zero Bias Conditions: Cbo CJSW. (W + 2Lsd) + CJ J. (WLsd)
Biased Conditions: Cb = C0O

V(1 +Vl Vs

The SPICE sidewall capacitance CJSW is in units of fF/tlm. The SPICE bottom
junction capacitance is in units of fF/Ium 2 . Length L d represents the source diffusion
extension beyond the transistor gate. The default SPICE value for b is 0.5V.

Cdb(f F): Drain-to-Bulk Capacitance

Under Zero Bias Conditions: Cdbo = CJSW. (W + 2Ldd) + CJ. (WLdd)
Biased Conditions: Cdb = C

Length L represents the drain diffusion extension beyond the transistor gate.)
Length Ldd represents the drain diffusion extension beyond the transistor gate.

Cgb(fF): Gate-to-Bulk Capacitance
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The gate-to-bulk capacitance depends on the extension of the gate area beyond
the active channel region, CJSW, and CJ. Area and perimeter values are smaller than
for Csb and Cdb so this capcitance was left out of theoretical calculations.

gmb(mS): Back-gate Transconductance

gmb 2 24 f + V bg

7 = C!v2q cNs

The backgate transconductance was ignored for all calculations. The error it
introduced was on the order of 2.5 percent. Substrate doping Ns is represented in
SPICE by NSUB and measured in units of atoms/cm 2 . For silicon, = 1.04e-12F/m.
Charge q= 1.6e-19C.
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Appendix C: DC Operating Point
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Net/Pin
//GND:v
//VDD:v
/Cl/NEG:i
/Cl/POS: i

/C2/NEG:i
/C2/POS:i
/C3/NEG: i

/C3/POS:i
/C4/NEG:i
/C4/POS:i
/ckl:v
/ckln:v
/ck2:v
/ck2n:v
/ck3:v
/ck3n:v
/M1/EO:i
/M1/MN/B:i
/M1/MN/D:i
/M1/MN/G:i
/M1/MN/S:i
/M1/TO:i
/M1/Tl:i
/M10/EO:i
/M10/MN/B:i
/M10/MN/D:i
/M10/MN/G:i
/M10/MN/S:i
/M10/TO:i
/M10/Tl:i
/M10A/E0:i
/MlOA/MN/B:i
/M10A/MN/D:i
/MlOA/MN/G:i
/MlOA/MN/S:i
/MlOA/TO:i
/MlOA/Tl:i
/Mll/EO:i
/Mll/MN/B:i
/Mll/MN/D:i
/Mll/MN/G:i
/Mll/MN/S:i
/Mll/T0:i
/Mll/Tl:i
/M12/MP/B:i
/M12/MP/D:i
/M12/MP/G:i
/M12/MP/S:i
/M12/P0:i
/M12/TO:i
/M12/Tl:i
/M13/MP/B:i
/M13/MP/D:i
/M13/MP/G:i
/M13/MP/S:i

Voltage/Current
0

5

0

0

0

0

0

0

0

0

0

5

0
5

0

5

0

-5.534e-12
0.000111

0
-0.000111
-0.000111
0.000111

0

-4.842e-13
0.000108

0
-0.000108
-0.000108
0.000108

0

-4.848e-13
2.528e-05

0
-2.528e-05
-2.528e-05
2.528e-05

0
-8.953e-13
0.0002218

0
-0.0002218
-0.0002218
0.0002218
1.248e-12
-9.639e-06

0

9.639e-06
0

9.639e-06
-9.639e-06
3.846e-12
-9.639e-06

0
9.639e-06
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Line
0

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22
23

24
25

26
27

28
29

30

31

32

33
34

35

36
37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54



/M13/PO:i
/M13/TO:i
/M13/Tl:i
/M14/EO:i
/M14/MN/B:i
/Ml4/MN/D:i
/M14/MN/G:i
/M14/MN/S:i
/Ml4/TO:i
/Ml4/Tl:i
/M15/EO:i
/M15/MN/B:i
/M15/MN/D:i
/M15/MN/G:i
/M15/MN/S:i
/M15/TO:i
/M15/Tl:i
/M16/MP/B:i
/M16/MP/D:i
/Ml6/MP/G:i
/M16/MP/S:i
/M16/PO:i
/M16/TO:i
/M16/Tl:i
/M17/MP/B:i
/M17/MP/D:i
/M17/MP/G:i
/M17/MP/S:i
/M17/PO:i
/M17/TO: i

/Ml7/Tl:i
/M18/EO:i
/M18/MN/B:i
/M18/MN/D:i
/M18/MN/G:i
/M18/MN/S:i
/M18/TO:i
/M18/Tl: i
/M19/EO:i
/Ml9/MN/B:i
/Ml9/MN/D:i
/M19/MN/G:i
/M19/MN/S:i
/M19/TO:i
/Ml9/Tl:i
/M2/EO:i
/M2/MN/B:i
/M2/MN/D:i
/M2/MN/G:i
/M2/MN/S:i
/M2/TO:i
/M2/Ti:i
/M20/EO:i
/M20/MN/B:i
/M20/MN/D:i
/M20/MN/G:i

0
9.639e-06

-9. 639e-06

0
-3.522e-12
9.638e-06

0

-9. 638e-06

-9.638e-06
9.638e-06

0
-1.0lle-12
9.639e-06

0
-9.639e-06
-9.639e-06
9.639e-06
3.067e-12
-9.82e-05

0
9.82e-05

0

9.82e-05
-9.82e-05
2.513e-12
-9.781e-05

0
9.781e-05

0
9.781e-05
-9.781e-05

0
-2.711e-12
9.819e-05

0
-9.819e-05
-9.819e-05
9.819e-05

0
-3.265e-12
9.781e-05

0
-9.781e-05
-9.781e-05
9.781e-05

0

-5.534e-12
0.000111

0

-0.000111
-0.000111
0.000111

0

-7. 55le-13
0.000196

0
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55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70
71

72

73

74

75

76

77

78
79

80
81

82

83
84

85

86

87

88
89

90
91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109
110



/M20/MN/S:i
/M20/TO:i
/M20/Tl:i
/M21/MP/B:i
/M21/MP/D:i
/M21/MP/G:i
/M21/MP/S:i
/M21/PO:i
/M21/TO:i
/M21/Tl:i
/M22/MP/B:i
/M22/MP/D:i
/M22/MP/G:i
/M22/MP/S:i
/M22/PO:i
/M22/TO:i
/M22/Tl:i
/M23/EO:i
/M23/MN/B:i
/M23/MN/D:i
/M23/MN/G:i
/M23/MN/S:i
/M23/TO:i
/M23/Tl:i
/M24/EO:i
/M24/MN/B:i
/M24/MN/D:i
/M24/MN/G:i
/M24/MN/S:i
/M24/TO:i
/M24/Tl:i
/M25/EO:i
/M25/MN/B:i
/M25/MN/D:i
/M25/MN/G:i
/M25/MN/S:i
/M25/TO:i
/M25/Tl:i
/M3/MP/B:i
/M3/MP/D:i
/M3/MP/G:i
/M3/MP/S:i
/M3/P0:i
/M3/T0:i
/M3/Tl:i
/M4/MP/B:i
/M4/MP/D:i
/M4/MP/G:i
/M4/MP/S:i
/M4/P0:i
/M4/T0:i
/M4/Tl:i
/MS/MP/B:i
/MS/MP/D:i
/M5/MP/G:i
/M5/MP/S:i

-0.000196
-0.000196
0.000196

2.513e-12
-9.781e-05

0

9.781e-05
0

9.781e-05
-9.781e-05
3.067e-12
-9.82e-05

0

9.82e-05
0

9.82e-05
-9.82e-05

0
-2.711e-12
9.819e-05

0

-9.819e-05
-9.819e-05
9.819e-05

0
-3.265e-12
9.781e-05

0
-9.781e-05
-9.781e-05
9.781e-05

0
-7. 551e-13

0.000196
0

-0.000196
-0.000196
0.000196

3.813e-13
-0.0002442

0

0.0002442
0

0.0002442
-0.0002442
3.813e-13
-0.0002442

0
0.0002442

0
0.0002442
-0.0002442
2.897e-12
-0.0001333

0
0.0001333
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111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131
132

133

134

135

136
137

138

139

140

141
142

143

144

145

146
147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165
166



167 /M5/P0:i
168 /M5/TO:i
169 /M5/Tl:i
170 /M6/MP/B:i
171 /M6/MP/D:i
172 /M6/MP/G:i
173 /M6/MP/S:i
174 /M6/P0:i
175 /M6/TO:i
176 /M6/Tl:i
177 /M7/E0:i
178 /M7/MN/B:i
179 /M7/MN/D:i
180 /M7/MN/G:i
181 /M7/MN/S:i
182 /M7/TO:i
183 /M7/Tl:i
184 /M8/EO:i
185 /M8/MN/B:i
186 /M8/MN/D:i
187 /M8/MN/G:i
188 /M8/MN/S:i
189 /M8/TO:i
190 /M8/Tl:i
191 /M9/EO:i
192 /M9/MN/B:i
193 /M9/MN/D:i
194 /M9/MN/G:i
195 /M9/MN/S:i
196 /M9/TO:i
197 /M9/Tl:i
198./M9A/E0:i
199 /M9A/MN/B:i
200 /M9A/MN/D:i
201 /M9A/MN/G:i
202 /M9A/MN/S:i
203 /M9A/TO:i
204 /M9A/Tl:i
205 /MC1/EO:i
206 /MC1/MN/B:i
207 /MC1/MN/D:i
208 /MC1/MN/G:i
209 /MC1/MN/S:i
210 /MCl/TO:i
211 /MC1/Tl:i
212 /MC2/MP/B:i
213 /MC2/MP/D:i
214 /MC2/MP/G:i
215 /MC2/MP/S:i
216 /MC2/PO:i
217 /MC2/TO:i
218 /MC2/Tl:i
219 /MC3/EO:i
220 /MC3/MN/B:i
221 /MC3/MN/D:i
222 /MC3/MN/G:i

0
0.0001333

-0.0001333
2.897e-12
-0.0001333

0
0.0001333

0
0.0001333

-0.0001333
0

-2.988e-12
0.0001333

0
-0.0001333
-0.0001333
0.0001333

0
-2.988e-12
0.0001333

0
-0.0001333
-0.0001333
0.0001333

0
-4.842e-13

0.000108
0

-0.000108
-0.000108
0.000108

0
-4.848e-13
2.528e-05

0
-2.528e-05
-2.528e-05
2.528e-05

0
-5.014e-12
2.51e-12

0
2.504e-12
2.504e-12
2.51e-12

5.026e-12
-2.516e-12

0
-2.51e-12

0
-2.51e-12

-2.516e-12
0

-5.014e-12
2.504e-12

0
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223 /MC3/MN/S:i
224 /MC3/TO:i
225 /MC3/Tl:i
226 /MC4/MP/B:i
227 /MC4/MP/D:i
228 /MC4/MP/G:i
229 /MC4/MP/S:i
230 /MC4/PO:i
231 /MC4/TO:i
232 /MC4/Tl:i
233 /MC5/E0:i
234 /MC5/MN/B:i
235 /MC5/MN/D:i
236 /MC5/MN/G:i
237 /MC5/MN/S:i
238 /MC5/TO:i
239 /MC5/Tl:i
240 /MC6/MP/B:i
241 /MC6/MP/D:i
242 /MC6/MP/G:i
243 /MC6/MP/S:i
244 /MC6/PO:i
245 /MC6/T0:i
246 /MC6/Tl:i
247 /MC7/EO:i
248 /MC7/MN/B:i
249 /MC7/MN/D:i
250 /MC7/MN/G:i
251 /MC7/MN/S:i
252 /MC7/T0:i
253 /MC7/Tl:i
254 /MC8/MP/B:i
255 /MC8/MP/D:i
256 /MC8/MP/G:i
257 /MC8/MP/S:i
258 /MC8/PO:i
259 /MC8/TO:i
260 /MC8/Tl:i
261 /MSC1/MP/B:i
262 /MSC1/MP/D:i
263 /MSC1/MP/G:i
264 /MSC1/MP/S:i
265 /MSC1/PO:i
266 /MSC1/TO:i
267 /MSCl/Tl:i
268 /MSC2/EO:i
269 /MSC2/MN/B:i
270 /MSC2/MN/D:i
271 /MSC2/MN/G:i
272 /MSC2/MN/S:i
273 /MSC2/TO:i
274 /MSC2/Tl:i
275 /MSC3/MP/B:i
276 /MSC3/MP/D:i
277 /MSC3/MP/G:i
278 /MSC3/MP/S:i

2.51e-12
2.51e-12
2.504e-12
5.026e-12
-2.51e-12

0
-2.516e-12

0
-2.516e-12
-2.51e-12

0
-5.014e-12
2.504e-12

0
2.51e-12
2.51e-12

2.504e-12
5.026e-12
-2.51e-12

0
-2.516e-12

0
-2. 516e-12
-2.51e-12

0
-5.014e-12
2.51e-12

0
2.504e-12
2.504e-12
2.51e-12
5.026e-12
-2.516e-12

0
-2.5le-12

0
-2.51e-12

-2.516e-12
5.574e-12
-2.51e-12

0
-3.063e-12

0
-3.063e-12
-2.51e-12

0
-4.467e-12

2.51e-12
0

1.957e-12
1.957e-12
2.5le-12

5.022e-12
-2.51e-12

0
-2.512e-12
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279 /MSC3/PO:i
280 /MSC3/TO:i
281 /MSC3/Tl:i
282 /MSC4/EO:i
283 /MSC4/MN/B:i
284 /MSC4/MN/D:i
285 /MSC4/MN/G:i
286 /MSC4/MN/S:i
287 /MSC4/TO:i
288 /MSC4/Tl:i
289 /MSC5/MP/B:i
290 /MSC5/MP/D:i
291 /MSC5/MP/G:i
292 /MSC5/MP/S:i
293 /MSC5/P0:i
294 /MSC5/TO:i
295 /MSC5/Tl:i
296 /MSC6/E0:i
297 /MSC6/MN/B:i
298 /MSC6/MN/D:i
299 /MSC6/MN/G:i
300 /MSC6/MN/S:i
301 /MSC6/T0:i
302 /MSC6/Tl:i
303 /MSC7/MP/B:i
304 /MSC7/MP/D:i
305 /MSC7/MP/G:i
306 /MSC7/MP/S:i
307 /MSC7/PO:i
308 /MSC7/T0:i
309 /MSC7/Tl:i
310 /MSC8/E0:i
311 /MSC8/MN/B:i
312 /MSC8/MN/D:i
313 /MSC8/MN/G:i
314 /MSC8/MN/S:i
315 /MSC8/TO:i
316 /MSC8/Tl:i
317 /N$23:v
318 /N$274:v
319 /N$41:v
320 /N$44:v
321 /Netl:v
322 /Net2:v
323 /Net3:v
324 /Net4:v
325 /Net5:v
326 /vl:v
327 /v2:v
328 /v3:v
329 /v4:v
330 /v5:v
331 /v6:v
332 /vbiasl:v
333 /vbias2:v
334 /vbias3:v

0
-2 .512e-12
-2. 51e-12

0
-5.018e-12
2.51e -12

0
2.508e-12
2.508e-12
2.51e-12
5.574e-12
-2.51e-12

0
-3.063e-12

0
-3. 063e-12
-2.51e-12

0
-4.467e-12
2.51e-12

0
1. 957e-12

1. 957e-12
2.51e-12

5.022e-12
-2.51e-12

0
-2.512e-12

0
-2. 512e-12
-2.51e-12

o
-5. 018e-12
2.51e-12

0
2.508e-12
2. 508e-12
2.51e-12

2.5
0.7446

2.5

0.7446
0.8848
4.629
4.629

0.4737
0.4737
1.948

2.5

2.498
1.948

2.5
2.498
3.762
2.411
1.09
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335 /vflx:v 2.5
336 /vin+:v 2
337 /vin-:v 2
338 /vout+:v 2.494
339 /vout-:v 2.494
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