
A Computer Simulation Model Suite for the Analysis of
All Optical Networks

by
Gregory S. Campbell

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Science and Engineering and
Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

Copyright 1995 Gregory S. Campbell. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in

part, and to grant others/the ri/hyfo do so.

A uthor ~ _"'".. .C. 7 " "... ..
· epfment of Electcal Egneering and Computer Science

/ ., / ~ ,/? May 26, 1995

Certified by,........
Steven G. Finn

Principal Research Scientist

\ . t ~ . A, Thesis Supervisor

Accepted by;........N .. I.
F.R. Morgenthaler

Chairman, Departmental ommittee on Graduate Students
IASSACHUSETS INST! i i'rUL:

OF TECHNOLOGY

AUG 1 01995

LIBRARIES

2

A Computer Simulation Model Suite for the Analysis
of All Optical Networks

by
Gregory S. Campbell

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1995, in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Science and Engineering and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis a suite of models has been developed for the simulation of All Optical Net-

works (AONs) in the OPNET simulation tool. The models are based on the propagation of

pulses through the AON. Pulses are modeled as complex pulse envelopes on a central fre-

quency carrier. As pulses propagate through the network, optical components transform

them and delay them appropriately. Probes can be inserted to view the pulses at specific

points in the network. This knowledge can help an AON engineer make informed deci-

sions about AON design thereby allowing him to more rapidly test possible network con-

figurations.

Thesis Supervisor: Steven G. Finn

Title: Principal Research Scientist

3

4

Acknowledgments

I would first like to thank Dr. Steven Finn for both his technical and personal inspiration,

guidance and understanding in helping me produce this work. Without his help this thesis

would never have been possible.

I would also like to thank Dr. Roe Hemenway for introducing me to the wonders of non-

linear optics, and helping me understand the dynamics of optical components. This thesis

is much greater thanks to his inspiration.

My parents and family receive my greatest gratitude for helping me come to M.I.T. and

supporting me in all my endeavors. Without them, none of this would have been possible.

5

6

Contents

1 Introduction
1.1 Background
1.2 AON Model Suite Objectives

2 Simulation Concepts
2.1 OPNET Concepts

2.1.1 Packets
2.1.2 Links
2.1.3 Nodes.........
2.1.4 Processes

2.2 Probing and Analysis
2.3 A Simple AON Example

3 Simulation Structure
3.1 Simulation Global Variables
3.2 Pulse Structure
3.3 Noise Structure
3.4 Ports and Port Structures ..
3.5 Simulation Flow

4 Component Models
4.1 Transmitter
4.2 Optical Fiber...........

4.2.1 Fiber Parameters
4.2.2 Propagation Delay
4.2.3 Split-Step Fourier
4.2.4 Linear Effects...
4.2.5
4.2.6

Non-Linear effects c
Non-Linear effects c

4.3 Fused Biconical Coupler ...
4.4 Star Coupler
4.5 Optical Amplifier
4.6 ASE Filter
4.7 Fiber Fabry-Perot Filter ...
4.8 Mach-Zehnder Filter......
4.9 Wavelength Division (De)Mu
4.10 Wavelength Router
4.11 Probe
4.12 Receiver

5 Simulation Results
5.1 Fiber Model

5.1.1 Dispersion in Linear

.................................... 17

.................................... 17

.. 18

................ 19

................ 19
................ 21
................ 21
................ 21
................ 22
................ 22

................ 23

..................................... 25
ethod..................................... 47
..................................... 27
..................................... 29
..................................... 4930
..................................... 34

tipee................................ 37
..................................... 39
..................................... 44
..................................... 45

..................................... 47
lethod 47
...... 4 8
caused by the Pulse 48
caused by Pulses at other Frequencies 49
.. 5 1
..................................... 54
..................................... 56
... 5 8
..................................... 60
................. 63
ltiplexer 66
..................................... 68
... 7 1
..................................... 7 3

.........
r Regime.

............................ 75

............................ 76

............................ 76
5.1.2 Non-linearities at the Zero Dispersion Point 80

7

..

......................

......................

......................

......................

......................

......................

N

5.2 Filters
5.2.1 Fabry-Perot Filter ...
5.2.2 Mach-Zehnder Filter

5.3 Fused Biconical Coupler

...................... 83
...................... 83
...................... 86
...................... 89

6 Conclusion 93

Appendix A Component Proci
A.1 aon_xmt0
A.2 aon_xmtseq
A.3 aon_xmt0_sech...
A.4 aon_xmt_sechseq
A.5 aon_fib
A.6 aon_fbc.........
A.7 aon_stc
A.8 aon_amp........
A.9 aon_ase.........
A. 10 aonfabry
A.11 aon_mzf
A.12 aon_wdm
A.13 aon_rou........
A. 14 aon_probe......
A.15 aon_rcv........

ess Model Reports
. .

.

.....................

........... *..........

........... e.........

.......... e......e....

... *.......e.*...ee...

......................

e..e.....e....e....e.

... *..ee..ee....ee...ee

......................

...... ,.e...*....e..e.

.. e....e....e....e....

......................

......................

...................... 95
...................... 96
...................... 98

..................... 101

..................... 103

..................... 106

..................... 110

..................... 113

..................... 117

..................... 121

..................... 124

..................... 127

..................... 130

..................... 134

..................... 138

..................... 141

Appendix B Supporting Code
B.1 Transmitter Support Code

aon_xmt.ex.h . .

aon_xmt.ex.c . .

B.2 Optical Fiber Support Code
aon_fib.ex.h
aon_fib.ex.c

B.3 Fused Biconical Coupler Support
aon_fbc.ex.h
aon_fbc.ex.c

B.4 Star Coupler Support Code
aon_stc.ex.h . .

aon_stc.ex.c . .

B.5 Optical Amplifier Support Code
aon_amp.ex.h
aon_amp.ex.c

B.6 ASE Filter Support Code
aon_ase.ex.h . .

aon_ase.exc . .

B.7 Fabry-Perot Filter Support Code
aonfab.ex.h
aon-fab.ex.c

..................

..................

..................

Code

..... e.....*....e..

... e..e.,.ee......

..................

.................
. . . .

. . . .

,

. . .

.

.

. . . .

. . . .

8

.... 145

.... 146
·. 146

·. 146

.... 148
·. 148
·. 150

.... 164
·. 164

·. 164

.... 167
. 167
. 167

.... 169
·. 169

·. 170

.... 174
. 174
. 174

.... 176
. 176
. 176

..........

.

.

.

.

.

.

.

B.8 Mach-Zehnder Filter Support Code
aon_mzf. ex. h
aon_mzf.ex.c

B.9 Wavelength Division (De)Multiplexer Sup
aon_wdm.ex.h

aon_wdm.ex.c
B.10 Wavelength Router Support Code

aon_rou.ex.h

aon_rou.ex.c

B. 11 Receiver and Probe Support Code
aon_rcv.ex.h

aon_rcv. ex. c
B. 12 Complex Mathematics Support Code

cma th . ex .h
cma th. ex. c

B. 13 Linear Transfer Function Support Code .
aon_lin.ex.h

aon_lin. ex. c
B. 14 Pipeline Stages

aon_ps . ex. h
aon_propdel .ps. c .
aon_proprcv. ps. c .
aon_txdel .ps . c .
aon_ txrcv. ps. c .

. .

port Code
...

. . .
.....

..

. . .
.....

.. *

. . .

. . .

.....

. . .

. . .

. . .

.

. .

....... ...178

........... 178
................ 180

....... ...180 180
................. 182

....... ...182

....... ...182

................. 184
....... ...184

....... ...184

................. 188
....... ...188

....... ...188

................. 193
....... 193
.......193

................. 195
....... ...195

....... ...195

....... ...197

....... ...198

Appendix C Usage Comments 201

9

.......... 199

178

V

10

List of Figures

Figure 2-1: Network level model of a metropolitan area All Optical Network 19

Figure 2-2: Node level model of a FBC node. Packets enter the node through point to point
receivers and exit the node through point-to-point transmitters. The components in
the node send packets to each other through packet streams. 20

Figure 2-3: Process level model of a simple FSM containing one forced state (init) and one
unforced state (steady). .. 21

Figure 2-4: Simple AON Example to demonstrate how the AON Model Suite and OPNET
work together to simulate an All Optical Network 24

Figure 3-1: The pulse shape is defined by complex samples over a span of AonI_Duration
seconds. Here, AonI_Nu = 5 and AonI_Duration = 300 ps. 28

Figure 3-2: Mach-Zehnder Filter port layout 30

Figure 3-3: Flow diagram for linear component 34

Figure 3-4: Flow diagram for non-linear component 35

Figure 4-1: AON Transmitter icon and port layout. Incoming packets on port 0 are discard-
ed ... 39

Figure 4-2: Gaussian pulse amplitude (m = 1, to = 100 ps, P0 = 0.1 W). 40

Figure 4-3: Super-Gaussian pulse amplitude (m = 3, to = 100 ps, P0 = 0.1 W) 40

Figure 4-4: Hyperbolic-secant pulse amplitude (m = 1, to = 100 ps, P0 = 0.1 W) 41

Figure 4-5: Four-bit Finite Sequence Machine: given a non-zero initial state, this machine
will generate all four bit sequences for a total sequence length of bits [Pet, 148].
This particular machine has an initial state equal to 1, and a pn connections param-
eter equal to 3 because connections 0 and 1 are connected. In this machine, bit 3 in
state n+ 1 is equal to the exclusive or of the connected bits. 43

Figure 4-6: AON Fiber icon and port layout 44

Figure 4-7: AON Fused Biconical Coupler icon and port layout. 51

Figure 4-8: Amplitude of H(f) of Fused Biconical Coupler 53

Figure 4-9: AON Star Coupler icon and port layout. 54

Figure 4-10: AON Amplifier icon and port layout. The amplifier is a unidirectional device.
Incoming packets on port 1 are discarded 56

Figure 4-11: AON ASE Filter icon ... 58

Figure 4-12: Amplitude of H(f) of ASE Filter. (FSR = 0.5 THz, a = dB, W = 0.25 THz) 59

11

Figure 4-13: AON Fiber Fabry-Perot icon 60

Figure 4-14: Amplitude of H(f) of Fabry-Perot Filter for three different values of finesse.
FSR = 0.5 THz, T(f)max = 0.9. 62

Figure 4-15: Phase of H(f) of Fabry-Perot Filter for three different values of finesse. FSR
= 0.5 THz, T(f)max = 0.9. .. 62

Figure 4-16: AON Mach-Zehnder Filter icon and port layout. 63

Figure 4-17: Amplitude of Hacr(f) and Hopp(f) of Mach-Zehnder Filter for FSR = 0.5
THz .. 65

Figure 4-18: Phase of Ha(f) and Hopp(f) of Mach-Zehnder Filter for FSR = 0.5 THz. . 65

Figure 4-19: AON Wavelength Division (De)Multiplexer icon and port layout. 66

Figure 4-20: AON Router icon and port layout 68

Figure 4-21: AON Probe icon and port layout. 71

Figure 4-22: AON Receiver icon .. 73

Figure 5-1: Network and Node Level descriptions of test network. The links in this net-
work are simplex. This is because the object of the experiment is to study the effects
of dispersion on receivability in the absence of other effects 76

Figure 5-2: A pulse is flattened due to dispersion after going through sections of fiber with
a positive group velocity dispersion coefficient. The flattened pulse is chirped by.
The original pulse is reconstructed by going through a section of fiber that "un-
chirps" the pulse by inducing an equal and opposite amount of chirp 77

Figure 5-3: The bit stream coming out of the transmitter. The eye is fully dilated, with a
maximum opening of 1 mWatt. The signal can be received easily. 78

Figure 5-4: The bit stream after going through 50 km of dispersive fiber. The eye is still
quite dilated, with a maximum opening of 0.43 mWatts. The signal can still be re-
ceived. ... 78

Figure 5-5: The bit stream after going through 100 km of dispersive fiber. The eye is nearly
shut, with a maximum opening of 75 microWatts. The signal can be received only
with difficulty. ... 79

Figure 5-6: The bit stream after reconstruction. The eye is fully dilated, with a maximum
opening of 0.95 mWatts. The signal can again be received easily 79

Figure 5-7: Node level description of network for testing non-linearities at the zero disper-
sion point. The links in this model are simplex. This is because the object of the
model is to examine the effects of SPM on the complex phase envelope in the ab-
sence of other effects. .. 80

12

Figure 5-8: Pulse amplitude before and after traveling through the fiber. The pulse ampli-
tude has not changed appreciably 81

Figure 5-9: Pulse phase before and after traveling through the fiber. SPM has altered the
pulse phase considerably 81

Figure 5-10: Fourier Transform Amplitude of the pulse before and after traveling through
the fiber. SPM has broadened the spectrum significantly 82

Figure 5-11: Fourier Transform phase of the pulse before and after traveling through the
fiber. SPM has had a profound effect 82

Figure 5-12: Node level description of network for testing the Fabry-Perot filter. The pulse
entering the filter is the same pulse generated in section 5.1.2, a gaussian chirped
by SPM 83

Figure 5-13: The pulse amplitude before and after going through the Fabry-Perot filter. Be-
cause the carrier frequency lies centered on a passband of the Fabry-Perot filter,
more energy is lost in sections of the pulse where the spectral components are fur-
ther from the carrier frequency. Because this pulse was chirped by SPM, the sec-
tions of the pulse where the absolute value of the slope of the complex pulse
envelope is high are the sections of the pulse with spectral components far from the
carrier frequency .. 84

Figure 5-14: The pulse phase before and after going through the Fabry-Perot filter. . . 84

Figure 5-15: The amplitude of the Fourier Transform of the pulse before and after going
through the Fabry-Perot filter. The large side lobes of the Fourier Transform are at-
tenuated considerably by the filter 85

Figure 5-16: The phase of the Fourier Transform of the pulse before and after going
through the Fabry-Perot filter .. 85

Figure 5-17: Node level description of network for testing the Fabry-Perot filter. The pulse
entering the filter is the same pulse generated in section 5.1.2, a gaussian chirped
by SPM. .. 86

Figure 5-18: The pulse amplitude coming in through port 0 and leaving through ports 2 and
3 of the Mach-Zehnder filter. Because the carrier frequency lies centered on a FSR
of the Mach-Zehnder filter, the pulse is split into two pulses with one pulse getting
almost all of the energy. A null of the transfer function for the pulse going to RCV
lies directly on the carrier frequency, and this creates a null for components of the
pulse with frequencies equal to the carrier frequency. This corresponds to flat sec-
tions of the pulse. This is the reason for the null in the center of the pulse. 87

Figure 5-19: The pulse phase coming in through port 0 and leaving through ports 2 and 3
of the Mach-Zehnder filter 87

13

Figure 5-20: The amplitude of the Fourier Transform coming in through port 0 and leaving
through ports 2 and 3 of the Mach-Zehnder filter. Because the carrier frequency lies
centered on a FSR of the Mach-Zehnder filter, the pulse is split into two pulses with
one pulse getting almost all of the energy. A null of the transfer function for the
pulse going to RCV lies directly on the carrier frequency, and this creates a null in
the amplitude of the Fourier Transform at the carrier frequency. 88

Figure 5-21: The phase of the Fourier Transform coming in through port 0 and leaving
through ports 2 and 3 of the Mach-Zehnder filter 88

Figure 5-22: Node level description of network for testing the Fused Biconical Coupler.
The pulse entering the FBC is the same pulse generated in section 5.1.2, a gaussian
chirped by SPM ... 89

Figure 5-23: The pulse amplitude coming in through port 0 and leaving through ports 2 and
3 of the Fused Biconical Coupler. Because the carrier frequency lies near an area of
the FBC transfer functions where the two pulses are split roughly evenly the pulse
power is split roughly evenly. Because the slopes of the transfer functions are so
great in this area, the one pulse receives most of its energy from the higher frequen-
cy spectral components, while the other pulse receives most of its energy from the
lower frequency spectral components 90

Figure 5-24: The pulse phase coming in through port 0 and leaving through ports 2 and 3
of the Mach-Zehnder filter. ... 90

Figure 5-25: The amplitude of the Fourier Transform of the pulse coming in through port
0 and leaving through ports 2 and 3 of the Fused Biconical Coupler. The FBC trans-
fer functions send most of the higher frequency energy to RCV, and most of the
lower frequency energy to RCVB 91

Figure 5-26: The phase of the Fourier Transform of the pulse coming in through port 0 and
leaving through ports 2 and 3 of the Fused Biconical Coupler 91

14

List of Tables

Figure 3-1: Simulation Global Variables 26

Figure 3-2: Pulse Structure ... 29

Figure 4-1: Standard Transmitter Parameters 39

Figure 4-2: Additional Parameters for Gaussian Transmitter 41

Figure 4-3: Additional Parameters for Hyperbolic Secant Transmitter 41

Figure 4-4: Additional Parameters for Single Pulse Transmitter 42

Figure 4-5: Additional Parameters for Single Pulse Transmitter 42

Figure 4-6: Optical Fiber Parameters 45

Figure 4-7: Fused Biconical Coupler Parameters 51

Figure 4-8: Star Coupler Parameters 55

Figure 4-9: Optical Amplifier Parameters 57

Figure 4-10: ASE Filter Parameters .. 58

Figure 4-11: Fiber Fabry-Perot Filter 61

Figure 4-12: Mach-Zehnder Filter ... 64

Figure 4-13: Wavelength Division (De) Multiplexer 67

Figure 4-14: Wavelength Router .. 69

Figure 4-15: Probe ... 72

Figure 4-16: Receiver ... 73

15

16

Chapter 1: Introduction

1.1 Background

All Optical Networks (AONs) are data networks in which nodes are connected end-to-end

optically. Other types of networks use optical links, but AONs are unique in that once an

end node transfers the data stream into an optical signal, the optical signal is not converted

back into electrical voltages in an electronic circuit until it reaches its destination. Other

types of networks (e.g. SONET) which utilize optical components make this transforma-

tion at each intermediate node in the network.

While in traditional networks which use optical links an optical signal is electrically

"regenerated" at each node, in an AON any transformations that the signal undergoes in

transit are propagated through the network. This leads to some interesting problems in

AONs. Some of these problems are aggravated analogs to problems seen in traditional

optical networks, while some are entirely specific to AONs. For example, in a standard

optical network dispersion and non-linearities in the fiber limit the distance-bitrate product

by smearing nearby optical signals together [Gre, 39]. A standard network can counteract

this by placing intermediate nodes closer together in order to limit the distance-bitrate

product for a given link. In an AON, this is not a valid solution -- as an optical signal goes

through an optical node in an AON, it is not regenerated. Specific to AONs is the optical

routing problem. This problem deals with the networks ability to direct data flow between

two end-points. Standard networks using optical links are not concerned with optical rout-

ing.

In order to make effective decisions on the design of AONs, the AON engineering team

should be able to rapidly prototype and test ideas. Unfortunately, testing on a real AON

testbed is time consuming, and resources are expensive. Therefore, simulation can be an

important and useful tool in the development of AON technology. Simulation can help the

AON engineering team to determine which experiments to actually perform on the test-

bed, aiding in the efficient design of the AON, and shortening the development cycle. In

17

this thesis a powerful set of models is developed for the simulation of AONs in order to

aid in their development.

1.2 AON Model Suite Objectives

The three most important characteristics of a simulation tool are ease of use for rapid pro-

totyping, simulation accuracy and speed, and ease of use in the display and analysis of

simulation results. This thesis attempts to address these critical areas while accurately

modeling pulse transmission in AONs.

The AON Model Suite is built on the OPNET simulation platform. OPNET (OPtimized

Network Engineering Tools) is a product of MIL3, Inc. designed as a simulation engine

geared towards data networks. The AON Model Suite/OPNET combination provides a

stable, efficient, easy to use simulation platform which allows:

* Rapid prototyping of an All Optical Network

* Accurate and fast simulation

· Powerful graphical analysis tools

Additionally, OPNET has been designed to provide a high level of modeling flexibility in

model development, allowing for efficient further development of complex AON compo-

nents without sacrificing model accuracy.

18

Chapter 2: Simulation Concepts
The All Optical Network Model Suite is built on top of the OPNET simulation platform.

The OPNET simulation platform yields a stable, efficient simulation environment on

which to place the AON Model Suite. OPNET has a number of concepts used by the AON

Model Suite. Additionally, OPNET provides powerful probing and analysis capabilities.

2.1 OPNET Concepts

OPNET divides the modeling hierarchy into three logical levels called the Network level,

the Node level and the Process level. These levels each deal with a different aspect of a

network. The Network level is composed of nodes specified in the Node level. Likewise,

the Node level is composed of components, some of which have processes specified in the

Process level. Components communicate with each other through the use of packets.

The Network level (See Figure 2-1) deals with the spatial and topological distribution of

OPNET nodes and the links between those nodes. Nodes have inputs and outputs and are

connected by links. Nodes are designed at the Node level. Links are connections between

nodes along which packets travel. As a packet goes through a link a series of procedures

operate on the packet. These procedures are defined in the AON Model Suite to model

optical fiber.

local ooal 2

looa 3 ocatr 4

Figure 2-1: Network level model of a metropolitan area All Optical
Network.

The Node level (See Figure 2-2) deals with the logical connection of components within a

node. Components are connected by packet streams. Packet streams are logical connec-

tions between components along which packets travel. Packet streams merely deliver

19

packets with no delay. Some Node level components exhibit properties, such as propaga-

tion delay and insertion loss, which can be modeled with a process designed at the Process

level. Other Node level components are used only as connections to links at the Network

point-to-
transm

Streams

Node A

Figure 2-2: Node level model of a FBC node. Packets enter the node
through point to point receivers and exit the node through point-to-
point transmitters. The components in the node send packets to each
other through packet streams.

level. These components are called point-to-point transmitters and receivers.

The Process level (See Figure 2-3) allows for the design of Finite State Machine pro-

cesses found in many components in the Node level. This is where one finds the heart of

the AON Model Suite. These FSM based processes alter and delay the packets entering

the component in order to model the effects of the component.

This hierarchy lends itself easily to the development of the AON Model Suite. The Net-

work and Node level hierarchy allow for easy organization of an AON, while the Process

level allows for precise modeling of the optical components.

20

Figure 2-3: Process level model of a simple FSM containing one forced
state (init) and one unforced state (steady).

2.1.1 Packets
Packets are the primary means of communication in OPNET. Packets travel along links

and packet streams. The AON Model Suite uses packets to simulate the movement of light

in an AON. A packet either holds a single pulse or holds data representing a change in the

noise level.

2.1.2 Links
Links are connections between nodes at the Network level. Each link represents an optical

fiber or a bundle of optical fibers. Optical power travels along links in packets. A link is

defined by a number of procedures called the Transceiver Pipeline that, in the AON

Model Suite, modify traversing packets and calculate propagation delay in order to simu-

late light traveling through an optical fiber.

2.1.3 Nodes
Nodes are structures which are designed at the Node level and instantiated at the Network

level. Nodes are composed of components. While OPNET provides a wide variety of com-

ponent classes, the AON Model Suite only uses three -- the processor class, the point-to-

point transmitter class and the point-to-point receiver class. The point-to-point transmit-

ter class and point-to-point receiver class each supports only one type of component in the

AON Model Suite. The point-to-point transmitter class supports the point-to-point trans-

mitter component. The point-to-point receiver class supports the point-to-point receiver

component. The processor class, on the other hand, supports a large number of component

types, such as star couplers, optical fibers and optical amplifiers. These component types

are differentiated by the process specified for the processor class based component.

21

The point-to-point transmitter component sends packets along links at the Network level.

The point-to-point receiver component receives packets from links at the Network level.

The processor class based components manipulate packets according to a process

designed in the Process level.

2.1.4 Processes
In the AON Model Suite, processes are designed to model the properties of an optical

component. These processes are designed as Finite State Machines at the Process level,

and are made up of:

* Unforced states

* Forced states

* Transitions between states

Both types of states contain two sequential sections of C program code. When a process

enters an unforced state, it executes the C code in the first section of the state and then

exits. The unforced state resumes where it left off upon being woken up either by a packet

arrival or some other event, such as an event scheduled by the process itself, and executes

the C code in the second section of the state and progresses along a transition to the next

state. When a process enters aforced state, it executes the C code in both of the sequential

sections of the state and progresses along a transition to the next state. The transition

taken can depend upon the current state of the process.

2.2 Probing and Analysis

OPNET allows for the collection of statistics through the use of the Probe Editor. One can

specify probes in the Probe Editor in order to log statistics written out by components in

the simulation. Each processor class component in an OPNET simulation has an array of

outstats. An outstat is a variable that changes with time. Each probe records an outstat

from a single component in a singe node in the network. In the AON Model Suite there are

two component types used to probe outstats. These are the probe component and the

receiver component.

22

2.3 A Simple AON Example

The following is a simple example to show how the AON Model Suite and OPNET work

together to simulate an All Optical Network. The example is an amplifier - fiber - filter

network (See Figure 2-4). The first event in the simulation is the transmission of a pulse

packet by the transmitter component. A pulse packet is represented by the symbol IJ.

This pulse (E) travels over a packet stream to an EDF Amplifier component. The

amplifier modifies the packet by multiplying the signal by a complex transfer function in

the Fourier domain, and sends it on with a specified delay (n]). Additionally, the ampli-

fier generates a noise packet (;). A noise packet is represented by the symbol .

These packets travel over a packet stream to the point-to-point transmitter component, the

device used to put packets on the optical fiber represented at the Network level by a point-

to-point link. The point-to-point transmitter component sends the pulse and noise packets

(7)over the link. These packets travel over the link, causing the AON Model Suite

defined Pipeline Stages to execute. These procedures simulate the fiber effects by altering

the pulse and noise packets. The link then forwards the modified packets (IZ) to the

point-to-point receiver component. The point-to-point receiver component forwards these

packets (~) to the fiber Fabry-Perot filter component, which modifies the packets by

passing them through a complex transfer function and sends them () with a speci-

fied delay to the receiver component. The receiver component collects statistics and

destroys the packets.

23

Figure 2-4: Simple AON Example to demonstrate how the AON Model Suite and
OPNET work together to simulate an All Optical Network.

24

Chapter 3: Simulation Structure
In order to model an All Optical Network, one must have a model of the optical signals

traveling through the system, as well as models of each of the optical components. The

AON Model Suite is based on the propagation of pulses and noise through optical compo-

nents. As a pulse travels through the AON, it is passed from component to component and

manipulated appropriately depending upon the component type and parameters. Noise

also passes from component to component and is handled appropriately according to the

component type and parameters.

3.1 Simulation Global Variables

Several variables are maintained in the AON Model Suite that need to be accessed by

every component. These global variables describe the standard parameters of the pulse

and noise data, and are used by the components in manipulating the pulse and noise data.

The following global variables are maintained by the AON Model Suite:

* Aonl_Nu describes the number of complex samples per pulse. 2 is the number of

complex samples per pulse. The number of samples per pulse is described this way

as a result of the use of the radix-2 Fast Fourier Transform algorithm throughout

the model suite.

* Aonl_Len is the cached value of 2 , the number of complex samples per pulse.

* AonI_Duration is the number of picoseconds sampled for each pulse. While pulses

may have a shorter duration than AonI_Duration, a longer duration results in alias-

ing of pulse data.

* AonI_Low_Freq is the lowest noise frequency, in THz, tracked by the AON Model

Suite.

25

· Aonl_High_Freq is the highest noise frequency in THz tracked by the AON Model

Suite.

· AonlN Segment is the number of noise frequency bands tracked by the AON Model

Suite. Increasing AonI N Segment increases the accuracy of the results due to

noise in the model suite.

· AonI_Min_Power is the minimum significant power in the simulation. Pulse and noise

packets with power less than AonI_Min_Power are not transmitted.

· Aonl_Min_Change is the minimum significant percentage change of noise power in a

noise band in the simulation. If the noise power changes by a smaller percentage

than AonI_Min_Change, the change will not be propagated.

· AonI_Connectors is a flag indicating whether or not connectors are to be modeled in

the simulation. If AonI_Connectors is set, attenuation and reflection will occur at

connections between optical components.

· AonI_Attenuation is the power attenuation factor of a connector. This variable is only

significant if Aonl_Connectors is set.

· Aonl_Reflection is the power reflectance factor of a connector. This variable is only

significant if AonI_Connectors is set.

* Aonl_Delay is the delay associated with a connector. This variable is only significant

if AonI_Connectors is set.

· AonI_Unco_Refi is the power reflection factor of an unterminated or unconnected port.

Table 3-1:Simulation Global Variables

Name Type Units Description

AonI_Nu integer N/A Each pulse shape is described by

2 complex samples.

26

Table 3-1:Simulation Global Variables

Name Type Units Description

AonI_Len integer N/A Cached value of 2".

AonI_Duration double ps The number of picoseconds sam-
pled for each pulse.

AonI_Low_Freq double THz Lowest noise frequency tracked by
models.

AonI_High_Freq double THz Highest noise frequency tracked
by models.

AonI N Segment integer N/A Number of frequency bands into
which the noise spectrum is
divided.

AonI_Min_Power double W Minimum power propagated
through the system.

AonI_Min_Change double N/A Minimum percentage change of
noise power propagated through
the system.

AonI_Connectors integer N/A Enables modeling of connectors
when not equal to 0.

AonI_Attenuation double dB Attenuation factor of connectors.
Only valid when AonI_Connectors
is set.

AonI_Reflection double N/A Reflectance of connectors. Only
valid when AonI_Connectors is
set.

AonIDelay double ps Delay of a connector. This variable
is only significant if
AonI_Connectors is set.

AonI_Unco_Refl double N/A Reflectance of unconnected port.

3.2 Pulse Structure

Pulses are the core of the AON Model Suite. Pulses are described by a data structure, the

most important field of which describes the shape. This field holds a pointer to an array of

2" complex values. Each element in the array corresponds to a sample of the complex

27

envelope of the pulse. The complex envelope of the pulse describes the pulse shape in

terms of amplitude and phase (See Figure 3-1). One advantage to keeping track of the

complex envelope is the ability to transform the pulse using both linear and non-linear

models of pulse propagation. The choice of 2 samples is for efficiency in computing the

Fast Fourier Transform algorithm.

atts
A on .LI0. U.

0.3

0.25

0.2

0. 15

0. 1

0.05

n

..-

...... E__ _

........ .i .i. i *.. i

* i i i i i "~~~~~~~~, he~~~~~~~~~·

0 0.5 1 1.5 2 2.5 3

ti () (xle-07)

Figure 3-1: The pulse shape is defined by 2 complex samples over a span of
AonI_Duration seconds. Here, Aonl_Nu = 5 and AonI_Duration = 300 ps.

The pulse data structure consists of seven fields:

* The source field holds the component identifier of the transmitter component that gen-

erated the pulse.

* The timestamp field holds the time at which the pulse was transmitted.

* Thefreq field holds the pulse carrier frequency.

* The id field holds an integer that identifies the pulse. Each pulse has a unique id upon

transmission, and this number identifies the pulse. When a pulse is split or other-

wise copied, this number is also copied.

* The peakpower field holds the peak power of the pulse.

28

· The width field holds the FWHM (full width half-maximum) width of the pulse.

* The shape field holds an array of the complex samples of the pulse. There are 2 com-

plex samples per pulse, where v is equal to AonI_Nu. The samples cover

AonI_Duration picoseconds.

Table 3-2:Pulse Structure

Name Type Units Description

source integer N/A Transmitter component identifier

timestamp double ps Simulation time at pulse transmis-
sion

freq double THz Frequency of the pulse carrier

id integer N/A Pulse identifier

peak_power double W Peak pulse power

width double ps FWHM pulse width

shape array N/A Array of complex samples

3.3 Noise Structure

Noise is tracked in a number of evenly distributed frequency bands, specified by

AonlN Segment, between the low frequency specified by AonI_Low_ Freq, and the high

frequency specified by Aonl_High_Freq. Noise is treated throughout the models as inco-

herent and of low power. These assumptions allow for ignoring non-linear effects with

respect to noise. Noise data travels through the system in packets. Each noise packet holds

a noise data structure. The noise data structure includes the following two fields:

29

· freq_bin is an integer from 0 to (Aonl NSegment - 1) that indicates which frequency

band this structure describes. The center frequency of the noise band is

fbin = AonLowFreq+ Anl N Se0.5nt (Aon_I High_F req - Aonl_Low_Freq)

· power is the optical power level of the noise in the band.

Noise travels through the simulation absolutely. That is, packets holding noise information

hold the current noise in a band. Noise in a noise band Bf at a port is equal to the power

value in the last noise packet describing that band:

Nsf = Nsf, last

where Naf, last is the noise information in the last packet describing the noise band.

3.4 Ports and Port Structures

Each component in the AON Model Suite communicates with other components using

packets which travel over packet streams or links. Each packet stream is associated with a

source port and a destination port. Components send packets over packet streams by send-

ing them through ports (See Figure 3-2).

in in
P P2
poOU p out

pi in -p3in
out out

Figure 3-2: Mach-Zehnder Filter port layout.

30

When packets containing pulse or noise data arrive at a port they are transformed and

delayed by the component.

In a linear component with N ports, let

pout (t) P= (t
out in (t))

be the port outputs and inputs.

The data coming in at a port can be divided into pulse and noise data, and each type is

dealt with differently. Because pulses travel through the simulator as complex amplitude

envelopes on a central carrier frequency, when a pulse is passed through a port it is manip-

ulated by a transformation matrix as follows:

Ppuse(t) Spulseuse (t - D) where Spulse = ... T N
1t N ... T NJ

where Ti j is a transformation of amplitude, and D is a delay. Depending upon the compo-

nent, the delay D can be either dependent upon the pulse frequency (D (f)), or upon the

pulse frequency and component state (D (f, state)).

Noise, on the other hand, travels through the simulation as power. Thus, when noise is

passed through a port it is manipulated by a transformation matrix as follows:

out in IT, N, 112pi
Pnose (t) = noiseoise (t - D) where Snoise = ...

Ti, A2 ... ITN

31

where Tirj2 is a transformation of power, and D is a delay. Again, depending upon the

component, the delay D can be either dependent upon the pulse frequency (D (f)), or

upon the pulse frequency and component state (D (f, state)).

The pulse and noise transformations in a linear system are described in general by the lin-

ear N x N S matrices

I, 1 (/) ... HN I f *IH () IH (f) N.
SL, pulse and SL, noise

H1 N .) * HN, N H() i, ... IH (f)Nij

where H (f) is a linear complex transfer function. The delay in a linear system, D (f),

imposed by the component is a function of signal or noise frequency.

The transformation in a non-linear system is described in general by the N x N matrices

SNL, pulse

SNL, noise -

HI, 1 (f' state) ... HN, 1 (f, tate)

...
HI, N (f, state) ... HN, N V, state)

IH (f, state) 1, 1 2 .. IH (state)
...

I IH (f, state), 1 AJ ... IH (,
L -,I..' I

where state describes the state of the component. H (f, state) is a non-linear complex

transfer function. The delay in a non-linear system, D (f, state) , imposed by the compo-

nent is a function of signal or noise frequency and the component state.

In order to maintain the state of each source and destination port, the AON Model Suite

instantiates the following port structures:

32

and

* Port Pulse: This structure holds a list of pulses associated with the times they arrived.

This type of structure is necessary in non-linear models in order to maintain an

accurate representation of the state of the pulses coming into a port.

* Port Noise In: This structure holds an array of AonlN Segment noise power values.

This type of structure is necessary in order to maintain an accurate representation

of the state of the noise coming into a port.

· Port Noise Out: This structure holds an array of AonI_NSegment noise power values

that represent the power leaving a port in addition to an array of Aonl_NSegment

noise power values that track the noise power values that the component has sent

through that port to the adjacent component. Essentially, when a change in the

noise power value in a specific frequency band

APchane - INsf.current - Nf, last transmittedl

change f,current + NSf, last transmitted

is less than AonI_MinChange

AP < AonI_MinChange

the change is deemed insignificant and is not sent. No changes are sent until the

current state is significantly different from the transmitted state. This structure,

while not strictly necessary, can improve the performance of the simulation signif-

icantly.

33

Figure 3-3: Flow diagram for linear component

3.5 Simulation Flow

Simulation flow is determined by the flow of pulses and noise through the AON compo-

nents. Pulses and noise travel in OPNET packets along OPNET packet streams and point

to point links. When a pulse or noise packet arrives at a component input port, the compo-

nent identifies the packet type and handles the data appropriately. If the component is lin-

ear (See Figure 3-3), such as a filter or star, the pulse or noise data is transformed, the

ports are updated, and the pulse is sent along to the next component. If the component is

34

Initialize Module

Wait for event

Manipulate data
and send packet

Extract pulse or
noise data

Store data in port
data structure

Schedule interrupt for future time when
pulse or noise data will be manipulated

and forwarded to an output port

I

Figure 3-4: Flow diagram for non-linear component

non-linear the pulse or noise data is stored in a port structure, and an event is scheduled for

a time in the future when the pulse or noise data is to be passed on to the next component

(See Figure 3-4).

35

_ _

aket arriv -emp
orschedule -
interrup

Airr va

.

36

Chapter 4: Component Models
The All Optical Network Model Suite includes a number of component models. There are

essentially six fundamental component types:

· The transmitter components generate pulses. They are the only components that can

initiate a pulse travelling through the network.

· The receiver component destroys pulses. It is the only component that causes pulse or

noise data to stop propagating in the network.

· The probe component probes pulse and noise data.

· The point-to-point transmitter and point-to-point receiver send and receive pulse and

noise data over links representing optical fiber.

· Linear components receive pulse and noise data, transform it, and then send it on with

a delay to the appropriate component in the network.

· Non-linear components receive pulse and noise data, remember it, and set an interrupt

for the time when they are supposed to transmit the pulse or noise data. At this

point, the non-linear effects have been determined, and the component transforms

the pulse or noise data appropriately.

These six component types are divided into three classes:

· Essential: These components are essential to every simulation. The essential compo-

nents are the transmitter components, the probe component and the receiver com-

ponent.

* Fully Specified: These components have well defined complex transfer functions. The

fully specified components are the fiber component, the fused biconical coupler

component, the Fabry-Perot filter component and the Mach-Zehnder component.

37

* Partially Specified: These components are not well defined in terms of having an accu-

rate or complete complex transfer function. The partially specified components are

the star coupler, the ASE filter, the amplifier, the wavelength division multiplexer

and the wavelength router.

38

4.1 Transmitter

out

Fi]gure 4-1: POin
Figure 4-1: AON Transmitter icon and port layout.

Incoming packets on port 0 are discarded.

Transmitters are the only AON component that can spontaneously generate optical sig-

nals. Transmitters generate a pulse with a given shape, and transmit that pulse to another

component in the AON. All transmitters share the following standard parameters:

· source ID is the source identification number of the transmitter. Each pulse generated

holds the source identification number in its source field.

· frequency is the pulse carrier frequency in THz.

· peak power is the maximum intensity of the pulse.

· to is a parameter related to the width of the pulse in picoseconds. For a gaussian pulse,

the Full Width at Half Maximum (FWHM) pulse width is equal to 1.763 to.

Table 4-1:Standard Transmitter Parameters

Name Type Default Description
(Units)

source ID integer 0 (N/A) Identification number of transmit-
ter

frequency double 192.0 (THz) Carrier frequency of transmitted
pulse

peak power (Po) double 0.1 (W) Peak power of transmitted pulse

to (t0) double 100 (ps) Parameter of pulse width

There are currently two classes

There is the gaussian transmitter

of transmitters, classified by the pulse shape generated.

class, and the hyperbolic-secant transmitter class.

39

The gaussian transmitter class generates gaussian (See Figure 4-2) and super-gaussian

(See Figure 4-3) pulse shapes defined by the following equation [Agr, 61]:

-1 +jCt ' 2m

A (t) = /0e 2

* m controls the degree of pulse sharpness. Higher values of m sharpen the pulse edges,

and cause the pulse to have a squarer shape. m is one for a gaussian pulse.

* C controls the linear chirp of the pulse. C is zero for an unchirped pulse.

rul. AAplltdu

0.3

0.25

0.2

0. 15

0. 1

0.05

ao

Figure 4-2: Gaussian pulse amplitude (m =

to (p) lO1000O

1, to = 100ps, PO = 0.1 W).

rulue IAtlitUs

0.85

0.3

0.25

0.2

0. 15

0.1

0.05

0

tim (II (Cw 1000)

Figure 4-3: Super-Gaussian pulse amplitude (m = 3, to = 100 ps,
Po =0.J1 W).

40

I -- ---- __ ._ __._

L- i...............

0.25 . .5
0 0. 25 0. 5 0. TS I

............ ...

.................

0-- --- 7------ 0I : 1Ii·
0 ~ ~~~~~~~ 02 05 0

I

I

Table 4-2:Additional Parameters for Gaussian Transmitter

Name Type Default Description
(Units)

m (m) integer 1 (N/A) Degree of gaussian.

C (C) double 0 (N/A) Initial chirp of pulse.

The hyperbolic-secant transmitter class generates pulses with the hyperbolic-secant shape

(See Figure 4-4). This shape is important because it is the shape of a soliton. The hyper-

bolic-secant shape is defined by the following equation [Agr, 59]:

jCt2

A(t) = 4 u0 sech(2t.to)

C controls the linear chirp of the pulse. C is zero for an unchirped pulse.

Pula p.it. l d

0.35

0.3

0.25

0.2

0. 15

0.1

0.05

0
0 0.25 0. 5 0.5 1

tim ps) (lOOO)

Figure 4-4: Hyperbolic-secant pulse amplitude (m = 1, to = 100 ps,

Po = 0.1 W).

Table 4-3:Additional Parameters for Hyperbolic Secant Transmitter

Name Type Description
(Units)

C (C) double 0 (N/A) Initial chirp of pulse.

41

I~~~~~~~
---t---------~~ ~~~ -- S---t------
_ I----e--T -----

Each transmitter class includes two transmitter models. For each class, there is a model

that transmits a single pulse, and a model that transmits a finite pulse stream. The single

pulse model for each class has the following additional attribute:

· time is the transmission time of the leading edge of the single pulse.

Table 4-4:Additional Parameters for Single Pulse Transmitter

Name Type Default Description
(Units)

time double 0 (ps) Transmission time of the leading
edge of the pulse.

The pulse stream model for each class has the following additional attributes which

describe a finite sequence machine:

· start time is the time in picoseconds of the first transmission.

· spacing is the amount of time in picoseconds between pulse transmissions.

· repeat is a flag that when set indicates that the finite sequence should be repeated until

the end of the simulation.

* initial state is the initial state of the finite sequence machine that generates the pulse

stream.

· pn connections describes the connections in the machine.

· state bits is the number of state bits in the machine.

Table 4-5:Additional Parameters for Single Pulse Transmitter

Name Type Default Description
(Units)

start time double 0 (ps) Transmission time of the leading
edge of the first bit.

spacing double 400 (ps) Time between transmission of bits.

42

Table 4-5:Additional Parameters for Single Pulse Transmitter

Name TypeDefalt Description
(Units)

repeat integer 0 (N/A) Flag indicating whether or not to
repeat the finite sequence until the
end of the simulation.

initial state integer 1 (N/A) Initial state of the Finite Sequence
Machine.

pn connections integer 3 (N/A) Connections in the Finite
Sequence Machine.

state bits integer 4 (N/A) Number of state bits in the Finite
Sequence Machine.

A finite sequence machine generates a pseudo-random stream of bits. For example, the

four-bit finite sequence machine shown below (See Figure 4-5) generates a 2- 1 = 15

bit long stream before repeating.

Connection 3f---- ---- -_AS
Connection 2
. ----- A\

Connection 1

on 0

)lltnlt
bit 3 bit 2 bit 1 bit 0O

Figure 4-5: Four-bit Finite Sequence Machine: given a non-zero initial state, this
machine will generate allfour bit sequences for a total sequence length of

2 - 1 bits [Pet, 148]. This particular machine has an initial state equal to 1,

and a pn connections parameter equal to 3 (= 23c3 + 22c2 +2 c1 +2 c0)

because connections 0 and 1 are connected. In this machine, bit 3 in state n+1 is
equal to the exclusive or of the connected bits.

43

I , .

V%.I %l %.] % %,

4.2 Optical Fiber

in out
0
out in

Figure 4-6: AONFiber icon andport layout.

Optical fibers transmit pulses over distances in the AON Model Suite. Optical fibers

receive pulse and noise data at an input port, transform that data, and after a delay, send

the data out to an output port.

By default, the optical fiber model in the AON Model Suite models a single mode optical

fiber with a core area of approximately 65 ,gm2 , and a zero dispersion wavelength of 1.33

gm.

The optical fiber model takes into account both linear and non-linear optical phenomena.

The following effects are modeled:

* Attenuation is an effect that results in diminished pulse and noise power as a pulse or

noise travels along a fiber.

* propagation delay is the delay a pulse or noise experiences traveling along the fiber.

* dispersion is an effect resulting from the varying value of the index of refraction of the

fiber experienced by different wavelengths of light. This effect can alter a pulses

width and peak power.

* Self Phase Modulation (SPM) is a non-linear effect that results from a pulses intensity

modulating the phase of the pulse. SPM results in generation of new spectral com-

ponents to the pulse.

44

· Cross Phase Modulation (XPM) is a non-linear effect that results from the intensity of

a different pulse modulating the phase of the pulse. XPM results in the generation

of new spectral components to the pulse.

· Stimulated Raman Scattering (SRS) is a non-linear effect that results in the transfer-

ence of power from a high frequency pulse to a low frequency pulse.

4.2.1 Fiber Parameters
Optical fibers in the AON Model Suite are defined by a number of parameters (See Table

4-6).

Table 4-6:Optical Fiber Parameters

Name Type Default Description
(Units)

Length (L) double 100 (kmn) Length of optical fiber.

freql (fi1) double 192.0 (THz) First reference frequency.

freq2 (f2) double 225.0 (THz) Second reference frequency.

B1 at freql (1) double 4875 (Ps First term of dispersion relation-
km ship at fi THz.

B 1 at freq2 (1, 2) double 4872 s First term of dispersion relation-
km ship at f2THz.

B2 at freql (Pi2 j) double 2 Second term of dispersion rela-
-20 (m) tionship at fi .

B2 at freq2 (u2 2) double 2 Second term of dispersion rela-
0 (km) tionship at f 2 .

B3 (f3) double 3 Third term of dispersion relation-
0 (E- ship.km

alpha (a) double 0.2 (dB/km) Attenuation per km.

A eff (Aeff) double 65 (m 2) Effective area of fiber core.
6(!m)

45

Table 4-6:Optical Fiber Parameters

Name Type Default Description
(Units)

n2 (n 2) double 3.2x10-16 The non-linear index coefficient.

2
cm

T Raman (TR) double 0.005 (ps) The Raman gain time coefficient.

granularity double 1 (N/A) Iterations of the spit step Fourier
method per length scale.

Grmax (gRmax) double 1016(km Maximum Raman gain.

Frmax (AfRmax) double 12 (THz) Width of linear section of Raman
gain spectrum.

The following parameters are derived from these parameters:

* P1 (carrier) or P1,f is the value of the first term of the dispersion relationship such

that:

P1,f- P1 (fcarrier) -= 1, + f carrier fi)f2 4fi

* Vg (fcarrier) is the group velocity of signal or noise power as a function of frequency.

1

vg Vg (fcarrier) - 1 (carrier)

* y is the non-linearity coefficient [Agr, 40]:

7 (fcarrier) =
n2 21tfcarrier

CAeff

46

4.2.2 Propagation Delay
Propagation delay of a pulse or of noise power is a function of the carrier frequency of the

pulse or the frequency of the noise band. The propagation delay as a function of frequency

is:

D (fcarrier) =- = L 1i where 1 =
Vg V

4.2.3 Split-Step Fourier Method
The fiber model utilizes a method called the split step fourier method [Agr, 44] to propa-

gate pulses. The split step Fourier method is a method used to numerically approximates

the simultaneous effects of both the linear and non-linear effects of the fiber. The split step

Fourier method essentially approximates the simultaneous effects of the linear and non-

linear effects of the fiber by assuming that over a short distance, the linear and non-linear

effects can be assumed to act independently of each other [Agr, 44]. It is named the split

step Fourier method because it performs the linear effects in the Fourier domain, and the

non-linear effects in the time domain.

The length scales over which the fiber model propagates the pulse depend on the peak

power and width of the pulse. There is a length scale associated with dispersion, and a

length scale associated with the non-linear effects. Essentially, the fiber is chopped up into

sections according to these length scales. The dispersion length is given by [Agr, 52]:

LD= 1021

where To is the current FWHM width of the pulse. The non-linear length is given by [Agr,

52]:

1

LNL = YP

47

where Po is the current peak power of the pulse.

4.2.4 Linear Effects
The linear effects are modeled by the following equation [Agr, 45]:

A (z + h, T)
ehb^A~ J2 _ 1 =3 3

eA (z,T) whereD = ,L28-+P3T 3

where [Agr, 42]

T = t- = t- PlZ
Vg

describes a frame of reference moving with the pulse at the group velocity of the pulse.

This equation is easily solved in the Fourier domain using the following relationship [Agr,

45]:

ehDB(Z, T) = {Fleh(i)F} B (z,t)

where F indicates the Fourier transform operation.

4.2.5 Non-Linear effects caused by the Pulse
The non-linear effects that are modeled within the pulse are SPM, SRS and the self-steep-

ening effect that results from the slowly varying non-linear polarization [Agr, 42]. The

non-linear effects are modeled by the following equation [Agr, 45]:

A(z+h, T) = ehA (z, T) where N = j AI2 + 2j 6(IAI2A - T 61A1

Again, T represents a frame of reference moving at the group velocity of the pulse.

48

4.2.6 Non-Linear effects caused by Pulses at other Frequencies
SRS and XPM effects are modeled between pulses. A walkoff length scale is required

[Agr, 225]:

Lw =

where ,B i is equal to [31 at the first pulse carrier frequency, and l, j is equal to at the

second pulse carrier frequency.

This equation can be used to determine the interaction length between overlapping sam-

ples in different pulses:

h -=L AonI Duration/2v
h interactio n PI, i- Pi jl

where AonI_Duration/2 v is the time between pulse samples. As pulse samples pass

through each other they interact due to XPM and SRS according to the following equa-

tion:

Si(z+h, T) = I(hUy + gR (Afii)]s (z I) Si (Z, T)

where S1 is the amplitude of the sample of pulse 1 and S2 is the amplitude of the sample

of pulse 2. The SRS gain as a function of carrier frequency difference, gR (Afij), is

described by:

Afi,.
gRmax- Af a for Af, j > 0

0 foRmax

o for fi j <

where fi,j = fj-fi

49

gR (Afi,j) =

where gRmax is the maximum SRS gain, Afi j is the difference in the frequency of the car-

rier signal, and AfRmax is the width of the linear part of the Raman gain spectrum.

50

4.3 Fused Biconical Coupler
in

P 0o
out

0

in

oP ut
1

out
2

in
P2

p out

P3
3

Figure 4-7: AON Fused Biconical
Coupler icon and port layout.

The fused biconical coupler is a linear device in which two fibers are fused in such a way

as to produce coupling between them such that pulse energy from one fiber can be trans-

ferred to the other. A pulse coming into the fused biconical coupler is split into two pulses,

one on each fiber. Each pulse is the product in the Fourier domain of the original pulse and

a transfer function. This transfer function is determined by three parameters [Gre, 70]:

* r The core radius of the coupling region.

* Z The length of the coupling region

· Ar The difference in core radii in the coupling region

Table 4-7:Fused Biconical Coupler Parameters

Name Type Default Description
(Units)

Core radius (r) double 8 (m) The core radius of the coupling
region.

Length (Z) double 10000 (m) The length of the coupling region.

delta r (Ar) double 0 (gm) The difference in core radii in the
coupling region.

Power Loss (a) double 0 (dB) Insertion power loss in dB.

Delay (D) double 10 (ps) Delay of FBC.

These three parameters in turn define [Gre, 70]:

51

F2 =[1+ [(234r 3 1(r 2

215 / 2
21X

7/2r

¢where = The core diameter difference effectf

The coupling effect

The operation of the component can be described by the following matrix operation for

pulses [Gre, 70]:

0

apulse(t) = 0a(d) 0
j AIa

where

a2= F2sin 2)

The operation of the component can be described by the following matrix operation for

noise:

a (dB) 0
_out 1 0
Pnoise (t) = 10 0 -1-a

[a

0 1-a a
0 a 1- in

a 0 0 no

1-a O O

52

o jra I1 pn
0 j J-, la I 0 pulse (t - D)

i o o,fi Z-~ a 0

The amplitude of the complex transfer function of the FBC is shown below (See Figure 4-

8).

O Sa

28 THz:>.8

Figure 4-8: Amplitude of H(f) of Fused Biconical Coupler. (Ar = 0, r = 8,
Z=8716.0)

53

4.4 Star Coupler
pin

out
P

in
PN- 1

out
P r sN-1 'Z N-1

Figure 4-9: AON Star Coupler icon and port layout.

The star coupler is modeled as a linear device that consists of a number of coupling

devices that yield even power distribution over the N outputs. The star coupler model is a

partially specified model in that its transfer function over-simplifies the effects of a star

coupler. A pulse or noise packet entering a port of the star coupler is essentially attenuated

due to insertion power loss, copied N-1 times, and N copies, each with power 1/N are sent

out to each of the N output ports of the device. The transfer function is:
a (dB)

10 10H(f)=
N

The operation of the component is modeled by the following matrix operation for pulses:

out
pulse -

- 0

...

0

H(f)
...(f)

_H(f)

... 0

·

... 0

... H(f)

... ...

... H(f)

H(f)

H(f)
0

0O
.

... H(f)-

.. . ..

... H(f)

... 0

o.

... 0

Ppulse

54

The operation of the component is modeled by the following matrix operation for noise:

out
noise =

'0 0

0

IH() 12

0

.. IH) 12

.IHC(12 ·*.. IH() 12

IH() 12

IH (f) 12

0

... IH(fl1 2

IHf)1 2

0

00

in
Pnoise

Table 4-8:Star Coupler Parameters

Name Type Default Description
(Units)

Power Loss (a) double 0 (dB) Power loss

N integer 2 (N/A) Number of inputs and outputs. The
device has a total of 2N ports.

55

4.5 Optical Amplifier
in out

POut [in

Figure 4-10: AONAmplifier icon and port layout. The amplifier is
a unidirectional device. Incoming packets on port 1 are
discarded. The amplifier model does not use the port 0 output.

The optical amplifier is modeled after an Erbium doped fiber amplifier (EDF Amplifier)

with an optical isolator on one end. The optical isolator effectively makes the amplifier a

unidirectional device. An EDF amplifier is a non-linear device. The gain characteristics

and noise output vary with the average incident power over a time period. Gain is calcu-

lated as such [Cha, 64]:

t - tarrival

GO E
G (Win) = where Win Pnoise + tota' e

1 + in pulses

sat

Go (dB)

where G = 10 is the gain when Win is zero, and Pat is the saturation point.

Etotal is the energy of the pulse in picojoules, tarrival is the arrival time of the pulse, and

X is an EDF amplifier specific time constant that describes the relaxation period of the

amplifier.

Pulses and noise going through the EDF amplifier experience a gain equal to G (Win).

Additionally, the EDF amplifier generates spontaneous noise power. This generated noise

power is given by the following relation [Cha, 64]:

PASE (G (Win), f) = G (Win) hfNf

56

AonI High .req - AonI Low Freqwhere f = A AonHighFreq-AonILowFreq is the optical bandwidth of the noise
AonI N Segment

band, h = 6.626x10- 34 (Joules. seconds) is planck's constant, f is the center frequency

N(dB)

of the noise band, N = 10 10 is the EDF amplifier noise figure and PASE is the ASE

noise power.

Table 4-9:Optical Amplifier Parameters

Name Type Default Description
(Units)

Gain (G o) double 10 (dB) Base power gain

Saturation Power double xl1- 6 | Input Satuattion Power

(Psat)

Noise Coef. (N) double 5 (dB) Noise Coefficient of amplifier

Relax Time () double 109 (ps) Relaxation time of amplifier

Delay double 1.5x105 Delay of amplifier component

(ps)

delta noise percent double 1 (percent) The noise level is updated every
time it changes at least by delta
noise percent.

57

4.6 ASE Filter

in p out
Po

out 1E - P in
P - 11 % .. J0 i

Figure 4-11: AONASE Filter icon

The ASE filter component is modeled by an ideal multiple-passband filter. The ASE filter

model is a partially specified model in that its transfer function over-simplifies the effects

of a filter. The ASE filter is defined by its free spectral range (FSR), its insertion loss atten-

uation (a), its passband bandwidth (W) and its delay (D). In the passbands, the signal is

attenuated by a dB. Outside of the passband, the signal is not passed at all.

Table 4-10:ASE Filter Parameters

Name Type Default Description
(Units)

Attenuation (a) double 1 (dB) Insertion Power Loss.

FSR double 0.05 (THz) Free Spectral Range.

Bandwidth (W) double 0.01 (THz) 3 dB bandwidth of filter.

Delay (D) double 10 (ps) Delay of filter.

As a pulse traverses the ASE filter,

complex transfer function:

it is multiplied in the Fourier domain by the following

a (dB)

H (f) = 10 , iff in passband
0, iff not in passband

where

f in passband - - + kFSR <f< W + kFSR for any k
2 o

58

The operation of the component can be described by the following matrix operation for

pulses:

p out 0 H (O in
pulse (t) H H(f]Piuls e(t- D)

The operation of the component can be described by the following matrix operation for

noise:

pout O tPnoise (t) =
H(1 2f)

IH f) 2] inIP 12 pnoise (t-D)
0

The complex transfer function of the ASE filter is periodic over the frequency spectrum

with period FSR ().

191.25 191.5
Figure 4-12: Amp

W = 0.25 THz)

191.75
litude of H(f)

192 192.25
of ASE Filter (FSR

59

I.V

0.75

0.5

0.25

nln
192.5

= 0.5 THz,

_- TIu,
192. 75 3 "

1dB,

VV S l . - - - - .-

I .^·

.-

4.7 Fiber Fabry-Perot Filter
in

p out K EPo ~
poutPI

in
Pi

Figure 4-13: AONFiber Fabry-
Perot icon

The Fiber Fabry-Perot filter is a tunable filter used in All Optical Networks. The primary

attribute of a Fiber Fabry-Perot filter is its finesse:

F n R1-R

where R is the power reflectivity of the mirrors of the Fiber Fabry-Perot filter cavity.

Finesse is a measure of the sharpness of the Fiber Fabry-Perot's etalons.

The free spectral range of a Fiber Fabry-Perot filter is:

1 nx
FSR = - where = n

2,r c

where X is the one-way propagation time through the filter.

The maximum transference of a Fiber Fabry-Perot filter is:

T (f) max= [1 R]

where A is the power attenuation of the mirrors of the Fiber Fabry-Perot filter cavity.

60

From F, FSR and T (f) max the three basic Fiber Fabry-Perot parameters that describe

the transfer function, R, and A, can be found.

As a pulse traverses the Fiber Fabry-Perot filter, it is multiplied in the Fourier domain by

the following complex transfer function:

1 -A-R -j2
1H (Rej4 f

This corresponds to the following matrix operation for pulses:

out in
pulse (t) = [H 0 pulse (t- D)

The operation of the component can be described by the following matrix operation for

noise:

pout F0
noise (t) =

UH(f)

IH(12
in

Pnoise (t - D)

Table 4-11:Fiber Fabry-Perot Filter

Name Type Default Description(Units)

Finesse (F) double 20 (N/A) Finesse

FSR (FSR) double 0.05 (THz) Free Spectral Range

Tmax (T (f) max) double 0.9 (N/A) Maximum Transference

Delay (D) double 10 (ps) Delay of filter

61

The complex transfer function of the Fabry-Perot filter is periodic over the frequency

spectrum with period FSR (See Table 4-14, See Figure 4-15).

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

,
191.2 191.4 191.6 191.8 192 192.2 192.4 192.6 192.AHZ

Figure 4-14: Amplitude of H(f) of Fabry-Perot Filterfor three different values of
finesse. FSR = 0.5 THz, T(f)max = 0.9.

1 .5

1

0.5

0

-0.5

-1

-1 .
'i91.2 191.4 191.6 191.8 192 192.2 192.4 192.6 192.8f/Z

Figure 4-15: Phase of H(f) of Fabry-Perot Filter for three different values of
finesse. FSR = 0.5 THz, T(f,,ma = 0.9.

62

I I I I I I I

-

a
. ---

rr

4.8 Mach-Zehnder Filter

in out
P P2
Pout0

in

P out

inP In
2

p out
in

- in

-1 13
Figure 4-16: AONMach-Zehnder Filter icon andport

layout.

The Mach-Zehnder filter is a four-port device that filters light by taking advantage of

interference effects due to interfering light with itself after splitting the light and having it

travel over two slightly different path lengths.

As a pulse or noise packet passes through the Mach-Zehnder filter, it is copied. The origi-

nal copy of a pulse is multiplied in the Fourier domain by the following complex transfer

function:

Hacr(f) = l (ei -Jf 1)

and sent off to the port across from the one that it came in through. That is, if a pulse

comes in through port zero, it will leave through port two. The pulse copy is multiplied in

the Fourier domain by the following complex transfer function:

Hpp () = 2je + 1)

and sent off to the port opposite from the one that it came in through. That is, if a packet

comes in through port zero, it will leave through port three.

63

Noise packets are dealt with in nearly the same way. The noise slices in the original packet

are multiplied by:

IHacr, f) 2

and sent to the port across from the one that it came in through. The noise slices in the

noise copy are multiplied by:

IHpp (n 12

and send to the port opposite from the one that it came in through.

Table 4-12:Mach-Zehnder Filter

Name Type Default Description
(Units)

FSR double 0.5 (THz) Free Spectral Range.

Delay (D) double 10 (ps) Delay of filter component.

The matrix describing the operation of the MZF on pulses is:

o Hacr (I) Hopp ()

0 Hpp (f) Hacr (f)

0

0

0

0

in
pulse (t - D)

64

0

0out
pulse (t)

Hacr (f) Hopp (f)
Hopp

V() Hacr (t)

The matrix describing the operation of the MZF on noise is:

0 Hacr () 2 Hopp (f) 12

0 VIHOPP()12 Hacr) 12

0 0

0 0

Pnoise (t-D)

The complex transfer function of the Fabry-Perot filter is periodic over the frequency

spectrum with period FSR (See Figure 4-8, See Figure 4-15).

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

11 .2

Figure
0.5

3

2

1

0

-1

-2

--3

OHacr (f)

[Hopp ()

191.4 191.6 191.8 192 192.2 192.4 192.6 192.8

4-17: Amplitude of Hacr(f) and Hopp() of Mach-Zehnder Filter for FSR =
THz.

191.2 191.4 191.6 191.8 192 192.2 192.4 192.6
Figure 4-18: Phase of H,,,(f) and Hopp(f) of Mach-Zehnder Filterfor FSR

THz.

THz

192.8 "

= 0.5

65

0

0out
noise (t)

IHacr 2 IHOpp (f 12

JHopp ()l2 Hcr l2

0

y
r

_s L -_e I rr
i J_M_

4.9 Wavelength Division (De)Multiplexer
in

Po
p out

0

in

- out

p out
2

in
P2

Figure 4-19: AON Wavelength Division
(De)Multiplexer icon and port layout.

The wavelength division (de)multiplexer is a device that can be used to multiplex or

demultiplex an optical signal based on its frequency. The wavelength division multiplexer

is a partially specified model. Phase shift is not taken into account, and the physical pro-

cesses behind the device are modeled only qualitatively. Let

a(dB)

H1 I() = 10 10 sin 27c)

and let

I _a(dB)

H2()= 10 10 cos 2sf)

The operation of the component is modeled by the following matrix operation for pulses:

o O H1 (f)

pulse (0) O 0 H2(f) Pulse (t -t- D)

H1(f) H2 (f

The operation of the component is modeled by the following matrix operation for noise:

0 0 IH1 (f)12
_out in
Pnoise (t) = 0 Pnoise (t- D)

H1 (1 2 IH 2 ()1 2 0

66

Table 4-13:Wavelength Division (De) Multiplexer

Name Type Default Description
(Units)

ISR double 32 (THz) Free Spectral Range

Delay (D) double 10 (ps) Delay of WDM.

Attenuation (a) double 0 (dB) Insertion power loss

67

4.10 Wavelength Router
in

P0
out

0

in
PN- P out
N-1

out
N

in
N

p out
2N- 1

in
2N- 1

Figure 4-20: AON Router icon and port layout

The wavelength router is a device that routes different wavelengths to different output

ports using a diffraction grating. The wavelength router is a partially specified model.

Phase shift is not taken into account, and the physical processes are not modeled directly.

Essentially, the diffraction grating directs certain wavelengths towards certain ports. The

following parameters define a wavelength router in the AON Model Suite.

The operation of the wavelength router is based on the following transfer function:

Hi(= (l- sin (FSR)/N +
sin f-iSf)

where
FSR

f= N

is the frequency range between adjacent channels,

a (dB)

a= 10

is the attenuation, and
k (dB)

k = 10 10k=10

is the extinction ratio.

68

The operation of the component is modeled by the following matrix operation for pulses:

o o 0

o 0 0

o 0 0

... o Ho (HN- l() HN-2C ... H (f)

... 0 H1 () H0 (f) N- 1 () ." H2 ()

... 0 H2 H1 (HO (f) H3 (f)

0 0 0 ... 0 HN-(f) HN-2(0 HN_ 3 (n ... HO(f)

o o 0

o 0 0

o 0 0

HO(fJ) HN 1 (Cf) HN- 2 (J) ... Hl ()

H 1() Ho (f) HN-I (... H2)

H2 (f) H 1(f) HO (f) ... H3)
...

HN- I) HN- 2) HN- 3) . HO) 0 0 0 ... 0

The operation of the component is modeled by the following matrix operation for noise:

0

0

0

0

0

0

.. IH/)12 IHN()12 IHNI() 2 ... IH2 1

.0 iH (1 2 H 12 (f) 12 ... H3 (f) 12

0 ... 0 IH3 ()I 2 UIH2()12

0

IHI (f)12 ·. IJH4 (f)

o ... HN()1 IHN ()1 2 HN2()1 2 ... IH1I (12 in
noise

IHo(t)12 IHN1 ()12 IHN2 (n)12 ... IH () 12

IHN-I 12 ... IH2 (f) 12

IH2 ()1
2 IH1)12 IHo () 12 ·.. I3(/12

0

O O

O O

0 ... 0

0 ... 0

0 ... 0

,HNL () HN2 2)1 IHN-3 ()12
2-- IHoO(12

69

put
]D-ulse (t) =

in
PpuIse(t - D)

0

0

0

0

0

0

out
noise -

0

0 0 0 ... 0

I

JH (f 12 HO U12

The transfer function of the wavelength router is periodic over the frequency spectrum

with period FSR (See Figure 4-21).

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

rt ..
"i 51.2 191.4 191.6 191.8 192 192.2 192.4 192.6 192.8 THZ

Figure 4-21: Amplitude of H(f) of the wavelength routerfor two values of i. (FSR
= 1.0 THz, N=4, k=14.7 dB, a=O dB)

Table 4-14:Wavelength Router

Name Type Default Description
(Units)

Attenuation (a) double 0 (dB) Insertion power loss.

N integer 2 (N/A) Number of input ports and number
of output ports. Total number of
ports is 2N.

FSR double 0.5 (THz) Free spectral range.

Extinction Ratio (k) double 16 (dB) Extinction ratio of router.

Delay (D) double 10 (ps) Delay of router.

70

-- i=O

- i=2

4.11 Probe

in out
P 0 P1

Figure 4-22: AON Probe icon and port layout.

The AON Probe component is a passive component that allows for the collection of infor-

mation about the pulses and noise that go through it. The AON Probe writes these values

to OPNET local statistics which can be probed using the OPNET Probe Editor and ana-

lyzed using the OPNET Analysis Tool. The AON Probe writes out the following informa-

tion:

· Receivedpower is a measure of the instantaneous power going through the probe. This

power can either be calculated assuming all pulses are coherent, or that the pulses

are incoherent. If the pulses are considered coherent, the received power is equal to

the square of the sum of the complex amplitudes. Otherwise, the received power is

equal to the sum of the squares of the complex amplitudes. Received power is

written out to the AON Probe's local outstat[O].

· Noise power is a measure of the instantaneous noise power going through the probe.

Noise power is written out to the AON Probe's local outstat[l].

· Eye power is a statistic that generates an "eye chart" based on the instantaneous power

going through the probe. An eye chart is an analysis tool that shows the ability of a

receiver to convert optical signals into digital signals. The instantaneous power at

time t is mapped onto the eye time, teye, such that

teye = (t- to) modulo eye width

71

Essentially, the instantaneous power is "wrapped" around the eye chart. Eye power

is written out to the AON Probe's local outstat[2]. For best results, the eye width

parameter should be set equal to the spacing parameter of the transmitter whose

signal is of interest.

· Pulse amplitude and phase are two statistics that show the amplitude and phase of a

single pulse. Each pulse has it's amplitude and phase written out to a unique set of

outstats. The amplitude and phase of pulse n are written out to outstat[4n+3] and

outstat[4n+4] respectively.

· Pulse Fourier Transform amplitude and phase are two statistics that show the ampli-

tude and phase of the Fourier transform of a single pulse. Each pulse has the

amplitude and phase of its Fourier transform written out to a unique set of outstats.

The amplitude and phase of the Fourier transform of pulse n are written out to

oustat[4n+5] and outstat[4n+6] respectively.

Table 4-15:Probe

Name Type Default Description
(Units)

eye width double 400 (ps) Width of eye chart in picoseconds.
This should be set equal to the
spacing parameter of the transmit-
ter whose signal is of interest.

coherent integer 0 (N/A) If set, the probe performs interfer-
ence on complex envelopes, other-
wise, the separate powers are
summed.

Signal ID integer 0 (N/A) Source ID of signal power; other
received power is noise for SNR
calculations

72

4.12 Receiver
in

Po
out

P _ z z7 1 J

Figure 4-23: AON Receiver icon. The receiver
component model does not use the port 0 output.

The receiver acts exactly like a probe, except that it destroys any packets that enter it,

instead of forwarding them.

Table 4-16:Receiver

Name Type Default Description
(Units)

eye width double 400 (ps) Width of eye chart in picoseconds

coherent integer 0 (N/A) If set, the receiver performs inter-
ference on complex envelopes,
otherwise, the separate powers are
summed.

Signal ID integer 0 (N/A) Source ID of signal power; other
received power is noise for SNR
calculations

73

74

Chapter 5: Simulation Results
The component models can be classified into three different groups:

· Essential: These models are critical to the operation of the simulation and are well

defined. Essential models include the transmitter models, the probe model and the

receiver model. These models are well tested, and the validity of all other models

depends on the validity of these models. Simulation results specific to these mod-

els are not explicitly shown in this chapter. All simulations depend upon the accu-

racy of these models, and so simulation results for these models are implicit in all

simulation results.

· Fully specified. These models are fully specified in terms of having a well defined

complex transfer function, or other mode of operation. The Fully specified models

include the fiber model, the fused biconical coupler model, the Fabry-Perot filter

model and the Mach-Zehnder filter model. These models are tested explicitly in

this chapter and in-depth results and analysis for each model are presented individ-

ually.

· Partially specified: These models are not well defined in terms of having accurate

complex transfer functions. The Partially specified models include the star coupler

model, the ASE filter model, the amplifier model, the wavelength division (de)

multiplexer model and the wavelength router model. These models have been

tested only qualitatively, and no results or analysis is presented in this chapter.

For all of the results in this chapter the default component parameters are used, except as

otherwise indicated.

75

5.1 Fiber Model

5.1.1 Dispersion in Linear Regime
This test is designed to show the validity of the fiber model in the linear regime of a fiber.

In order to stay in the linear regime the pulse traveling over the fiber links must be of very

low power. The network being tested (See Figure 5-1) consists of a transmitter, three fiber

links and a receiver. Additionally, there are probes for the collection of statistics. Links are

not duplex in this model, disabling reflections, as the object of the model is to study the

effects of dispersion on pulse receivability in the absence of other effects. This network

shows the effects of dispersion in both the normal and anomalous regimes of optical fiber.

The transmitter transmits a bit stream of gaussian pulses with an initial to of 100 ps, and P0

of 0.001 W on a carrier frequency of 192.0 THz. After 50 kilometers of fiber with

2

P2 (192.0THz) = -10P-- the pulse has been flattened due to dispersion (See Figure 5-

2). The pulse is further flattened after another 50 kilometers of fiber with

2

02 (192.0THz) = -10PkS. This flattened pulse then goes through 50 kilometers of fiber

2

with p2 (192.OTHz) = 20- s and regains its shape.

Hb b 2\ ibize _ rp_

probe prbe_2 prbe 3

Figure 5-1: Network and Node Level descriptions of test network. The
links in this network are simplex. This is because the object of the
experiment is to study the effects of dispersion on receivability in the
absence of other effects.

Dispersion has a profound effect on the receivability of a bit stream. This can be seen by

looking at an "eye diagram." By looking at the eye diagram one can determine what the

received power threshold is for the bit stream. In this simulation, the is fully open coming

out of the transmitter (See Figure 5-3). The eye contracts over the first 100 km of fiber

76

(See Figure 5-4, See Figure 5-5), and then re-opens upon reconstruction (See Figure 5-

6).

o Pul.g AmplitudE at rl
O PrLe AmpLitidE at 2

o rPule JAmlitude at 3
A Pruge Apitude t Icv

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
0.5 1.5 2.5

tim (P) (xlOOO)

0 2

Figure 5-2: A pulse is flattened due to dispersion after going through sections of
fiber with a positive group velocity dispersion coefficient (02) The flattened

pulse is chirped by 100km x 10ps2/km. The original pulse is reconstructed by
going through a section offiber that "unchirps" the pulse by inducing an equal
and opposite amount of chirp.

77

I I I
....................... I.. ...

.... -- -- -- --- -- --.- t --..--...---.-t.-.--.--.---.-.-.---.--.-.--.-.--.-

.. -----......------------ ---.- -- ---.--.--.-.t

i i K i~~~~~~~~~~~~~~~~~~.
1

aa.d P-e at PI (0. 001)

i -'

- -

-.....-. ----- ---I_ _

1.25

1

0.75

0.25

O.S3

zu PoR r at 11 l(.001)

. ..

i - !
i__i

ll i l /
.=-__

l "

] 2 5 4 5 S 0 100 200 300

ti a.) (l1OO0)

Figure 5-3: The bit stream coming out of the transmitter. The eye is fully
dilated, with a maximum opening of 1 mWatt. The signal can be received
easily.

400
tim Lou)

.od rowr at 2 (O.0001)

.4 1 t .

I
.... I __ ... I.

.44 45 2. 4 245 2.48 2.49 2.5 2.51 2.52

lf Porr rt 12 zxO.0001)

tia a u (100000) xlOOOOt

Figure 5-4: The bit stream after going through 50 km of dispersive fiber
2

(B I (f) = -1 OP) . The eye is still quite dilated, with a maximum opening

of 0.43 mWatts. The signal can still be received.

78

1.25

1

0.75

0.15

0.

5

4

3

a

I

a2.

(P.)

0

a

Xlnd ra r a r3 tx0. 0001)

4.09 4.9 4.91 4.92 4.94 4.9S 4.90
tie (.) t(xiO000o

0

tim (p.)

Figure 5-5: The bit stream after going through 100 Ian of dispersive fiber
2

(I (f) = -k). The eye is nearly shut, with a maximum opening of 75

p Watts. The signal can be received only with difficulty.

aRod aMr A. CV (e1.0001)

. 2 '7.3 7.34

p. rTOer a wiv (0. 0001)

10

4

a
'7.5 7. f T. 7 . .T. S

t.m bPj) (.x00000)
0 100 200 800 400

tiU (P)

Figure 5-6: The bit stream after reconstruction. The eye is fully dilated, with a
maximum opening of 0.95 mWatts. The signal can again be received easily.

79

i I

;_

V

la

I

19

0

......... I

I -~.....AA~~~~~~~ _

__t--- 4------- - - - -- -

.I - -

I ..I . _- ------ -

.1 --- ..- 1

________ I *'*-'*----

........ --..

r

, :

I. .

i
I

i

- - ---

i-··

__ . I I I .

c

*p or i r$ (0.0001)

5

IIX
`- -
. 1 .to

0 A~4.:

_

5.1.2 Non-linearities at the Zero Dispersion Point
This test is designed to show the validity of the fiber model in the zero dispersion regime

of a fiber. The network being tested (See Figure 5-7) consists of a transmitter, a fiber and

a receiver. Additionally, there is a probe on the output of the transmitter in order to collect

baseline data. The links in this model are not duplex as the object of the model is to exam-

ine the effects of Self Phase Modulation on the complex pulse envelope. This network

show the effect of Self Phase Modulation at the zero dispersion point. Because we are

interested in the pulse shape, the transmitter sends a single pulse across the fiber. This

pulse is a gaussian (m = 1) with an initial to of 100 ps, and P0 of 0.11 W on a carrier fre-

2

quency of 192.0 THz. After 50 km of fiber with 02 (192.0THz) = Oks, the pulse has

Figure 5-7: Node level description of network for testing non-
linearities at the zero dispersion point. The links in this model are
simplex. This is because the object of the model is to examine the
effects of SPM on the complex phase envelope in the absence of
other effects.

been altered by Self Phase Modulation. Self Phase Modulation does not alter the pulse

amplitude (See Figure 5-8), but rather manipulates the pulse phase (See Figure 5-9). The

change in the pulse phase has a profound effect on the spectral composition of the pulse

(See Figure 5-10, See Figure 5-11). By altering the pulse phase, SPM generates new

spectral components. While this does not directly alter the receivability of a signal, as the

pulse shape doesn't change, these spectral changes can cause problems by exacerbating

dispersive effects and pushing pulse energy beyond filter passband limits (See Figure 5-

13).

80

o rul.s Aplitud at orab.
O rul Amlitude at Yu±ver

I I
.. . -----

__ _ _71_ 7L_._._

__ I - - t

75 2 2.25 2.5 2.75 3 S.

tp) (lOOO1000)

Figure 5-8: Pulse amplitude before and after traveling through the fiber. The
pulse amplitude has not changed appreciably.

o ulS. Ph* at Prcb

0 ? rhM at Ba Lvdswr

.__ O 22.5-___ _ $__. -o 2 25 2. 2. ' - -

.5 2 2.252 2.3 2. 5 3 3.

tim (Pw (000!

Figure 5-9: Pulse phase before and after traveling through thefiber SPM has
altered the pulse phase considerably.

81

0.aS

0.3

0.25

0.2

O. 15

0. 0. 1

0.05

0
1. 25

4

3

-2

-3
1. 25

o raourir rmflrm Aqitukd t PrCb.

O mourier Trauuform ApLltud at oiLver

12.5

10

7.5

5

2.5

191.0 191.05 191.9 191.95 192 192.05 192.1 192.15 1IZ. Z

Figure 5-10: Fourier Transform Amplitude of the pulse before and after
traveling through the fiber. SPM has broadened the spectrum significantly.

O lourler Trafor h"eS at rrbe

O rourler Trenfor Ph. at Mo.lver

4

3

2

1

0

-1

-2

-3

-4
19 191.05 191.9 191.95 192 192.05 192.1 192.15 192.2

TIS

Figure 5-11: Fourier Transform phase of the pulse before and after traveling
through the fiber. SPM has had a profound effect.

82

IT
I II

..

!-"-... ----------...---..-..'- '-------- '---- ------ -

t- ------------ --

I i It z_

-- ---. --- .-- o ---
O~~~~~~b

. -. ----- :.- : _ + - . . A...........t~ toI%~~~,- Z iW -.-~~~~o

......................

.
_ IIilIi0 L. - - --

).0
_

5.2 Filters

5.2.1 Fabry-Perot Filter
This test is designed to show the validity of the Fabry-Perot filter model. The input to the

ribv apry by-b s rt

Figure 5-12: Node level description of network for testing the
Fabry-Perotfilter. The pulse entering the filter is the same pulse
generated in section 5.1.2, a gaussian chirped by SPM.

Fabry-Perot filter is the gaussian pulse chirped by SPM generated in section 5.1.2. The

links in this model are not duplex as the object of the model is to examine the effects of the

Fabry-Perot filter on the complex pulse envelope. The filter in this model has the follow-

ing parameters:

* FSR = 0.5 THz

· Finesse = 10.0

* Tmax) = 1.0

The filter has a significant effect on the complex pulse envelope, as seen below (See Fig-

ure 5-13).

83

o ulse IAplitude it Pr b

0 PruLt A Litrds at lrwcver

1

.3 1.715 2 2.25 2.3 2.75 3 3.25 3.

tie Ip) IxlO0o)

Figure 5-13: The pulse amplitude before and after going through the Fabry-
Perotfilter Because the carrierfrequency lies centered on a passband of the
Fabry-Perotfilter, more energy is lost in sections of the pulse where the
spectral components are furtherfrom the carrier frequency. Because this
pulse was chirped by SPM, the sections of the pulse where the absolute value
of the slope of the complex pulse envelope is high are the sections of the
pulse with spectral components far from the carrier frequency.

o Prule Phi at rrdb

O Pulr w Ph t rLcWor

----------....... i -........ --- ,- --.......... -.
.................

T--I--"-':----t---------------- ----.....................-_--
75 2 2.25 2.5 2.15 a 3.:

ti p) xlOOO)

Figure 5-14: The pulse phase before and after going through the Fabry-Perot
filter

84

0.35

0.3

0.25

0.2

0. 15

0.1

0.05

0

I

-1

-2

-3

-4
1. 25

1 s

o rLrr TrAmform Alltude t rrb
O rairlir TrrMforz Apltudo It Iminr

3.5

3

2.5

2

1.5

1

0.5

01

Ii I_

___I -_h --- ---.------.--.----

--- --- - --- *--------------t----L-7 9 t-- --- --------191.05 191.9 191.95 192 192.05 192.1 192. 151.0

Figure 5-15: The amplitude of the Fourier Transform of the pulse before and
after going through the Fabry-Perotfilter. The large side lobes of the
Fourier Transform are attenuated considerably by the filter.

o frrier Trmfom rhme t rrdo
O ourier Trmfom he it Zroevwr

4

3

21

1

0

-1

-2

-3

-4
1{ 1S2.1 192.15 192.2

TAS

Figure 5-16: The phase of the Fourier Transform of the pulse before and after
going through the Fabry-Perotfilter.

85

192.2
TE

- 61 O'.

4z�, 4 �

Iw A

I
1.a 1{1.05 191. 191.95 192 192.0S

5.2.2 Mach-Zehnder Filter
This test is designed to show the validity of the Mach-Zehnder filter model. The input to

rlow

m rFi.ber prcI r

Figure 5-17: Node level description ofnetworkfor testing the
Fabry-Perotfilter: The pulse entering the filter is the same pulse
generated in section 5.1.2, a gaussian chirped by SPM.

the Mach-Zehnder filter is the gaussian pulse chirped by SPM generated in section 5.1.2.

The links in this model are not duplex as the object of the model is to examine the effects

of the Mach-Zehnder model on the complex pulse envelope. The filter in this model has

the following parameters:

* FSR = 0.5 THz

The filter has a significant effect on the complex pulse envelope, as seen below (See Fig-

ure 5-18).

86

o u lmpL. E t A ud at rob
o0 uan Alplltude at c

o PUle Ampittude at
0.35

0.a

0.25

0.2

0. 15

0.1

0.05

0
1.

Figure 5-18: The pulse amplitude coming in through port 0 and leaving
through ports 2 and 3 of the Mach-Zehnderfilter. Because the carrier
frequency lies centered on a FSR of the Mach-Zehnderfilter, the pulse is split
into two pulses with one pulse getting almost all of the energy. A null of the
transfer function for the pulse going to RCV lies directly on the carrier
frequency, and this creates a null for components of the pulse with
frequencies equal to the carrier frequency. This corresponds to flat sections
of the pulse. This is the reason for the null in the center of the pulse.

o0 Pul rhn at Probe

a am 1hm at CV
4

3

2

1

0

-1

-2

-3

-4
1.

ti (p) (x1000)

Figure 5-19: The pulse phase coming in through port 0 and leaving through
ports 2 and 3 of the Mach-Zehnderfilter.

87

/A

I

. , 4 r.cJ r.J A. .

tim lye 1.1000)

"t

o Four.rr Trasfor Aplitudoe t rrbe

Frourier Trasform A tlitad at IrCv

O rourier Tramfore Alitut st acu

4

3.5

3

2.5

1.5

1

0.5

0
1S 1.0

I Il- IJQi _ A h j'N ._. -. -----I A._----- a1-------

… .-- -.--: _ tt -.- …- ----- …

1.55 131. 131.3 1-- 1. 1--- -- .--- 1-.--- -- .--

Figure 5-20: The amplitude of the Fourier Transform coming in through port
O and leaving through ports 2 and 3 of the Mach-Zehnderfilter Because
the carrierfrequency lies centered on a FSR of the Mach-Zehnderfilter, the
pulse is split into two pulses with one pulse getting almost all of the energy.
A null of the transfer function for the pulse going to RCV lies directly on
the carrierfrequency, and this creates a null in the amplitude of the
Fourier Transform at the carrier frequency.

O Foucrer TrmAforK PhsM at Probe

O Fourir Trmfo Phie at nV
O Fourier TrmfoXr hef at rM

4

2

0

-1

-2

-3

-4
is1.0 1i1.65 131.3 191.95 1S2 192.05 192.1 192.15 192.2_

5-21: The phase of the Fourier Transform coming in through port 0
leaving through ports 2 and 3 of the Mach-Zehnderfilter

88

I I ,

{ F 'OV

Di >5 S <A; >v~we____-_
;;.--'-' - ~~ i D o , - _

-x; L °k R7)w--

Figure
and

131.05 l1l..J 13531Z IVZ.U3 IVZ. M.13 l30S

5.3 Fused Biconical Coupler

This test is designed to show the validity of the Fused Biconical Coupler model. The input

-t o~nr Pa Ar

Figure 5-22: Node level description of network for testing the Fused
Biconical Coupler. The pulse entering the FBC is the same pulse
generated in section 5.1.2, a gaussian chirped by SPM.

to the Fused Biconical Coupler is the gaussian pulse chirped by SPM generated in section

5.1.2. The links in this model are not duplex as the object of the model is to examine the

effects of the Fused Biconical Coupler model on the complex pulse envelope. The FBC in

this model has the following parameters:

* r= 8m

* Ar = Om

· Z = 8716jtm

The FBC has a significant effect on the complex pulse envelope, as seen below (See Fig-

ure 5-23).

89

0.35

0.3

0.25

0.2

0. 15

0.1

0.05

0

o rulw AMpaLtud at rr.

* Pua AWIts at AM

o Prul Aplit t raICV

, -. ------..-----.. t - -t-------------.

1.1 2 2.25 2.5 2.75 3 5.25
ti- (P) X1000)

Figure 5-23: The pulse amplitude coming in through port 0 and leaving through
ports 2 and 3 of the Fused Biconical Coupler Because the carrier frequency lies
near an area of the FBC transferfunctions where the two pulses are split roughly
evenly the pulse power is split roughly evenly. Because the slopes of the transfer
functions are so great in this area, the one pulse receives most of its energy from
the higher frequency spectral components, while the other pulse receives most of
its energy from the lower frequency spectral components.

o rawu Phu at rrbe

Prul.. hN rat

4

2

0

-1

-2

-3

-4
1. 25

ti. (P) (1000)

Figure 5-24: The pulse phase coming in through port 0 and leaving through
ports 2 and 3 of the Mach-Zehnderfilter.

90

o ruirier Trnfom Aulitu. t rbe
raourler Traf ou Amp LLtb t CV

o rurier Tr mforn ARpLitiu at V
4

3.5a.S

3

2.5

2

1.5

1

0.5

0
15 1Z.

Figure 5-25: The amplitude of the Fourier Transform of the pulse coming in
through port 0 and leaving through ports 2 and 3 of the Fused Biconical
Coupler The FBC transfer functions send most of the higher frequency energy
to RCV, and most of the lowerfrequency energy to RCVB.

o rourier TrMfor rhase at rbe

O Fourie r Trm fon rhae at rcv
O Fourier Traneform Phas t CVB

4

I

_21

-3

-4
191 192. 15 192.2

T][S

Figure 5-26: The phase of the Fourier Transform of the pulse coming in through
port 0 and leaving through ports 2 and 3 of the Fused Biconical Coupler.

91

::---:::---:X----~~~~ ~~~~~~ -- t --- ------: ------
t Ptt--~~~~~~~~~~~~~~~~~-----------^~ ~ ~ ~~~- - -- -- -- -- -- -- - -- -- s

I - I&
I x -

i

1.o 17.0 . 11.1 13 01 I~Z l!Z.uO LSZ.i lVZ.1

1.a 121.5 191.* 1S1.95 192 12. 05 192 1

92

Chapter 6: Conclusion
The AON Model Suite was designed to allow for the rapid prototyping of All Optical Net-

works. In combination with the OPNET simulation platform, the AON Model Suite effec-

tively addresses the three key issues involved in simulating AONs:

* Ease of use for rapid prototyping

* Simulation accuracy and speed

· Ease of use in the display and analysis of simulation results

The AON Model Suite characterization of pulses allows for accurate modeling of pulse

transmission through the optical devices found in an AON. By modeling the complex

amplitude of a pulse, both linear and non-linear effects of the optical components can be

accurately modeled.

Further work can done on the Model Suite in order to increase the accuracy of the simula-

tions. Polarization is not currently tracked due to the seemingly random fluctuations of

polarization state in optical fibers. The AON Model Suite could be improved by:

· Keeping track of the polarization state. This would require modeling polarization

change in the optical components, and modeling the effects of polarization. This

would allow for the accurate modeling of Four Wave Mixing and a number non-

linear effects.

· Developing a stochastic model that would approximate the effects of polarization.

Additionally, all of the component models could be improved. Non-linearities are cur-

rently only modeled in the fiber.

These improvements can be made relatively easily due to the modular design of the AON

Model Suite and the flexibility provided by the OPNET simulation platform.

93

94

Appendix A: Component Process Model Reports
This appendix contains the process model reports of each of the models included in the

AON Model Suite. Detailed information about the concepts behind the models including

model attributes can be found in chapter four. The following process model reports are

included:

· aon_xmtO The AON Model Suite Transmitter model (single gaussian pulse).

* aon_xmt_seq The AON Model Suite Transmitter model (sequence of gaussian pulses).

aon_xmtO_sech The AON Model Suite Transmitter model (single hyperbolic secant

pulse).

· aon_xmt_sech...seq The AON Model Suite Transmitter model (sequence of hyperbolic

secant pulses).

· aon-fib The AON Model Suite Fiber model.

· aonfbc The AON Model Suite Fused Biconical Coupler model.

· aon_stc The AON Model Suite Star Coupler model.

· aon_amp The AON Model Suite Amplifier model.

· aon_ase The AON Model Suite ASE Filter model.

· aonfabry The AON Model Suite Fabry-Perot Filter model.

· aon_mzf The AON Model Suite Mach-Zehnder Filter model.

* aon_wdm The AON Model Suite Wavelength Division (De) Multiplexer model.

* aon_rou The AON Model Suite Router model.

* aonrobe The AON Model Suite Probe model.

* aon_rcv The AON Model Suite Receiver model.

95

A.1 aon_xmtO

Process Model Report: aon_xmt0 i Tue May 30 14:46:19 1995 Page 1 of 2
All Optical Network Model Suite

Process Model Attributes
attribute value type default value
tO promoted double 1.0 (ps)
peak power promoted double 0.1 (W)
frequency promoted double 192 (THz)
m promoted integer 1
chirp promoted double 0.0
time promoted double 1.0 (sec.)
source ID promoted integer 1

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include cma h. h
5 #nclude aonbase.ex.h^

#indude * an_xmt. ex. h

State Variable Block
/* State variable */
Objid \my-id:
double \frequency;
double \xmt_time;

5 AonTXmt_Gaussian \gaussian;
int \source_id:

Temoorarv Variable Block
Packet* pkptr,
CmathT_Complex*shape;
AonT_Pulse* pulse;

forced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs init

10

/* Determine unique ID. V/
my_id - op_id_self ();

/* Determine simulation data */
Aon_SimulationData_Get O;

/* Determine module specific attributes. */
op_ima obj_attrget (myid, to, &(gaussian.tO));
op_imaobj_attr..get (my_id, 'peak power, &(gaussian.peakpower));
op_ima_obj_attr et (myjd, - frequency, &frequency);
op_ima_obj_attrget (myjd, m-, &(gaussian.m));

96

Process Model Report: aon_xmtO i Tue May 30 14:46:19 1995 Page 2 of 2

All Optical Network Model Suite

op_ima.objattrget (my_id. chirp', &(gaussian.chirp));
op_ima_objattr..get (my_id time, &xmt_time);
opma_objattrget (myjd. source D', &sourcejd);

15
/* Send single pulse */
shape = AonXmtGaussian (&gaussian);
pulse = Aon_Pulse_Crate (sourceid, opstim_time 0,

frequency, shape, gaussian.peak._power);
20

pkptr = Aon_Pulse_Packet_Create (pulse);

oppksenddelayed (pkptr. 0, xmttime);

transition init -> rest
attribute value type default value
name tr_2 string tr
condition string
executive string
color RGB333 color RGB333
drawinq style spline togqle spline

unforced state rest
attribute value type default value
name rest string st
enter execs (empty) textlist (empty)
exit execs (empty) textlist (empty)
status unforced toale unforced

97

A.2 aon_xmt_seq

Process Model Report: aonxmt seq | Tue May 30 14:47:26 1995 Page 1 of 3

All Optical Network Model Suite

Process Model Attributes
attribute value tyve default value
tO promoted double 1.0 (ps)
peak power promoted double 0.1 (W)
frequency promoted double 192 (THz)
m promoted integer 1
chirp promoted double 0.0
start time promoted double 1.0 (psec.)
source ID promoted integer 1
spacing promoted double 100 (psec.)
initial state promoted integer 1
on connections promoted integer 1
state bits promoted integer 5
repeat promoted integer 0

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include cath. h
5 #include aon.bas e. ex. h

#include aon_,xmt. ex.h'

State Variable Block
/* State variable */
Objid mnyid;
double frequency;
double Lstarttime;

5 AonTXmt_Gaussian \gaussian;
AonTXm..tSeq \seq;
int sourceid;
double spacing;
int vrpeat;

10 AonTPulse* \pulse;
int \initialstate;

Temoorarv Variable Block
Packet* pkptr;
CmathT_Complex* shape;
AonTPulse* new_pulse;
int out;

forced state init
attribute value tpe default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

98

Process Model Report: aon_xmt_seq | Tue May 30 14:47:27 1995 | Page 2 of 3

All Optical Network Model Suite

enter execs init
/* Determine unique ID. */
myid = op_id.self ();

/* Determine simulation data */
5 Aon_SimulationDataGet 0;

/* Determine module specific attributes. */
op_ima_obLattrget (myid, to-, &(gaussian.tO));
op_ima_objattrget (my_id. peak power', &(gaussian.peakpower));

10 op_ima_obj_attrget (myid. frequency', &frequency);
op_ima_obj_attrget (myjd. mn. &(gaussian.m));
opjima_.bj_attr_get (my_id, chirp , &(gaussian.chirp));
opima_obj_attrget (my_id, start time', &starttime);
op_ima_objattrget (my_id, source ID', &source_id);

15 opima_obj_attrget (myid, spacing', &spacing);
opima_objattr get (myid. 'initial state', &initialstate);
op_imaobjattrget (myid, 'pn connections', &(seq.connections));
op_ima_objattrget (myid. state bits', &(seq.n));
opjma_objattr..get (my_id, repeat', &repeat);

20
/* Set initial state. */
seq.state =: initialstate;

/* Set self-interruptfor start time. */
25 op_intrpt scheduleself (start_time, 0);

/* Generate pulse template. */
shape = Aon_Xmt_Gaussian (&gaussian);
pulse = Acn_PulseCreate (source_id, op..sim_time (),

30 frequency, shape, gaussian.peakpower);

transition init -> rest
attribute value type default value
name tr_2 string tr
condition string
executive string
color RGB333 color RG8333
drawinq stvle spline toggle spline

unforced state rest
attribute value type default value
name rest string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toqle unforced

I exit execs rest
/ Determine whether a zero or
/* one should be transmitted.
out = AonXmtSeq (&seq);

5/

99

Process Model Report: aonxmtseq Tue May 30 14:47:27 1995 Page 3 of 3
All Optical Network Model Suite

S if(out =l)
I
/ Copy and packize pulse for transmission. */
new.pulse = Aon-PulseCopy (pulse);
newpulse->timestarnmp = opsimtime ();

10 pkptr = AonPulse..PacketCreate (new-pulse);

/* Transmit pulse. */
op_pk.send (pkptr, 0);

IS
/* Set interrupt for next pulse transmission. */
if ((seq.state != initialstate) II (repeat))

op_intrpt_scheduleself (opsimtime 0 + spacing, 0);

transiion rest-> rest
attribute value type default value
name tr_3 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

100

A.3 aon_xmt0_sech

Process Model Report: aon_xmt0_sech _ Tue May 30 14:46:39 1995 Page 1 of 2
All Optical Network Model Suite

Process Model Attributes
attribute value type default value
tO promoted double 1.0 (ps)
peak power promoted double 0.1 (W)
frequency promoted double 192 (THz)
chirp promoted double 0.0
time promoted double 1.0 (sec.)
source ID promoted inteqer 1

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include cmat:h.h'
5 #include aon_,base.ex.h'

#include ·aon_ xmt. ex. h

State Variable Block
/* State variable */
Objid \my-id;
double \frequency;
double \xmttime;

5 AonT_Xmt_Sech \sech;
int \source_id;

Temporary Variable Block
Packet* pkptr;
CmathTComplex*shape;
AonT_Pulse* pulse;

forcedstate init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toqqle unforced

enter execs init

5

10

/* Determine unique ID. */
myid = op_id_self 0;

/* Determine simulation data */
Aon_Simulation_Data_Get ();

/r Determine module specific attributes. */
opjma_obj_attr,_get (myjd. to, &(sech.tO));
op_ima_obj_attr_get (myid. 'peak power', &(sech.peak_power));
op imaobj_attrget (myid. 'frequency', &frequency);
opjmaobj_attr..get (myjid. 'chirp'. &(sech.chirp));
op_ima_obj_attr,.get (myid. time , &xmttime);
op_ima_obj_attrzet (mv_id. 'source ID,. &sourceid);

101

Process Model Report: aon_xmtO_sech Tue May 30 14:46:39 1995 Page 2 of 2
All Optical Network Model Suite

15 /* Send single pulse */
shape = Aon_Xmt_Sech (&sech);
pulse = Aon.Pulse-Create (sourceid, opsim_time (),

frequency, shape, sech.peakpower);

20 pkptr = Aon_Pulse_Packet_Create (pulse);

op_pksend_delayed (pkptr, 0, xmt_time);

transition init -> rest
attribute value type default value
name tr_2 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state rest
attribute value type default value
name rest string st
enter execs (empty) textlist (empty)
exit execs (empty) textlist (empty)
status unforced toggle unforced

102

A.4 aon_xmt_sechseq

Process Model Report: aon_xmt_sech_seq Tue May 30 14:47:01 1995 I Page 1 of 3
All Optical Network Model Suite

Process Model Attributes
attribute value type default value
tO promoted double 1.0 (ps)
peak power promoted double 0.1 (WN)
frequency promoted double 192 (THz)
chirp promoted double 0.0
start time promoted double 1.0 (sec.)
source 0ID promoted integer 1
spacing promoted double 100 (psec.)
initial state promoted integer 1
pn connections promoted integer 1
state bits promoted integer 5
repeat promoted integer 0

Header Block
/*AON Model Suite */
/* Greg Campbell */

#include cmath.h
5 #include aon_base.ex.h-

#include aon.._nt. ex. h

State Variable Block
/* State variable */
Objid \myid;
double \frequency;
double %start_time;

5 AonT_Xmt_Gaussian \sech;
AonTXmtSeq \seq;
int \source_id;
double \spacing;
int \repeat;

10 AonT_Pulse* \pulse;
int \initialstate;

Temporarv Variable Block
Packet* pkptr,
CmathTComplex*shape;
AonT_Pulse* newpulse;
int out;

forced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

103

Process Model Report: aon_xmtsechseq Tue May 30 14:47:01 1995 Page 2 of 3

All Optical Network Model Suite

enter execs init
/* Determine unique ID. */
my_id = opidself ();

/* Determine simulation data */
5 Aon_Simulation_Data_Get 0;

/* Determine module specific attributes. */
op_ima_obj_attrget (my_id, - to, &(sech.t0));
op_ima_obj_attr get (my_id, 'peak power', &(sech.peak_power));

10 op_imaobj_attr.get (my_id, 'frequency', &frequency);
op_ima obj_attrget (myid, 'chirp', &(sech.chirp));
op_ima_obj_attr get (my_id, 'start time', &starttime);
op_ima_obj_attrget (myid, 'source ID', &source_id);
op_ima_obj_attr_get (my_id, 'spacing', &spacing);

15 op_imaobj_attrget (my-id, 'initial state', &initialstate);
op_ima_obj_attrget (my_id, 'pn connections', &(seq.connections));
op_ima_obj_attrget (my_id, 'state bits', &(seq.n));
op_ima_obj_attr get (my_id, 'repeat', &repeat);

20 /* Set initial state. */
seq.state = initial_state;

/* Set self-interruptfor start time. */
opintrpt_schedule_self (start_time, 0);

25
/* Generate pulse template. */
shape = Aon_Xmt_Gaussian (&sech);
pulse = Aon_Pulse_Create (source_id, opsim_time (),

frequency, shape, sech.peak..power);
30

transition init -> rest
attribute value type default value
name tr_2 string tr
condition string
executive string
color RGB333 color RGB333
drawinq style spline toqqle spline

unforced state rest
attribute value type default value
name rest string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toqqle unforced

exit execs rest
/* Determine whether a zero or
/* one should be transmitted.
out = AonYmt_Seq (&seq);

5 if(out == 1)

C/

C'

104

Process Model Report: aon_xmt_sech_seq Tue May 30 14:47:02-1995 Page 3 of 3
All Optical Network Model Suite

1* Copy and packetize pulse for transmission. */
newpulse = AonPulse_Copy (pulse);
new_pulse->timestamp = op simtime ();

10 pkptr = Aon_Pulse_Packet..Create (new_.pulse);

/* Transmit pulse. */
op_pksend (pkptr, 0);

15
/* Set interrupt for next pulse transmission. */
if ((seq.state != initial_state) II (repeat))

op_intrpt_scheduleself (op_sim_time () + spacing, 0);

transition rest-> rest
attribute value tyve default value
name tr_3 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toqgle spline

105

A.5 aon_fib

Process Model Report: aonfib J Tue May 30 14:39:26 1995 Page 1 of 4

All Optical Network Model Suite

Process Model Attributes
attribute value type default value
T Raman promoted double 0.005 (ps)
B1 at freql promoted double 4,875 (ps/km)
B1 at freq2 promoted double 4,871.67 (ps/km)
B2 at freql promoted double -20.0 (ps2/km)
B2 at freq2 promoted double 0.0 (ps2/km)
B3 promoted double 0.0 (ps3/km)
alpha promoted double 0.2 (dB/km)
Length promoted double 100 (km)
granularity promoted double 10 (iter/L)
A eff promoted double 65 (micron2)
n2 promoted double 3.2E-16 (cm2/W)
freql promoted double 192 (THz)
freq2 promoted double 225 (THz)
Grmax promoted double 1 E-16 (km/W)
Frmax promoted double 12 (THz)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include cmath. h
5 #include aon._base.ex.h'

#include aon_fib. ex. h'

State Variable Block
/* State variable */
AonTFibDesc \fibdesc;
AonTPortPulse* \port[21];
AonT-PortNoiseOut* \noiseout[21;

5 double Uast-time;

iTeporarv Variable Block
int eventtype;
Packet* pkptr,
int port_index;
int type;

5 AonTPulse *pulse;
AonT_Noise *noise;
Objid myid;

forced state init
attribute value tvye default value
name
enter execs

init
(See below.)

string
textlist

st
(See below.)

106

Process Model Report: aon_fib Tue May 30 14:39:27 1995 Page 2 of 4
All Optical Network Model Suite

exit execs (empty) textlist (empty)
status forced toaale unforced

enter execs init
/* Determine unique ID. */
my_id = op_dself ();

/* Determine simulation data */
5 AonSimulationData.Get 0;

/* Determine module specific attributes. */
op_ima_obj_attr.get (myid, T Raman', &(fib_desc.T_Raman));
op_ima_obj_attr_get (my_id. -reql', &(fibdesc.fl));

10 op_imaobj_attrget (myid, freq2, &(fibdesc.f2));
op_ima_obj_attr..get (myid. 'sl at freql', &(fib_desc.Bl_fl));
opima..obj_attr..get (my_id, 'sl at freq2', &(fib_desc.Bl_f2));
op_ima_obj_attr_get (my_id, 2 at freql', &(fib_desc.B2_fl));
opima_obj_attr get (myjd, 2 at freq2', &(fib_desc.B2_f2));

15 op_ima_objattrget (my-id, '3', &(fib_desc.B3))
op_ima_objattrget (myid, alpha', &(fib_desc.alpha));
opima_obj_attr_get (myid, 'Length-, &(fib_desc.Length));
op_imaobj_ttrget (myid, granularity-, &(fib_desc.granularity));
op_ima_objattr_get (myid, A eff', &(fib_desc.Aeff));

20 op_ima_objattr _et (myid, n2 , &(fib_desc.n2));
opimaobjattrget (my_id, 'Grmax', &(fib_desc.grmax));
op_imaobjjttrget (myid, Frmax.x, &(fibdesc.frmax));

25 /* Initialize variables. */
fibdesc.alpha = 1.0 - cmathdB (fibdesc.alpha);

noiseout(0] = AonPort_Noise_Out_Create();
noiseout[l] = Aon_Port_Noise_Out_Create(0;

30
port(0] = AonPonrPulseCreate 0;
port[I = Aon_Port_Pulse_Create ();

lasttime = 0.0:;

transition init -> steady
attribute value ty e default value
name tr_O string tr
condition string
executive string
color RG8333 color RG8333
drawing style soline toggle spline

unforced state steady
attribute value type default value
name
enter execs

s:eady
(empty)

string
textlist

st
(empty)

107

I

Process Model Report: aon_fib I Tue May 30 14:39:28 1995 Page 3 of 4 I

All Optical Network Model Suite

exit execs (See below.) textlist (See below.)
I status unforced tocale unforced I

exit execs steadyv
Aon_Flb_Prop_Port (port[O], &fibdesc, lasttime, op_sim_tlme());
Aon_Fib_Prop_Port (port(l], &fibdesc. last_time, op_simtlmeo);
lasttime = opsimtime 0;

/ Get event */
event_type = opintrpttype ();

if (event_type = OPC_NTRPT_SELF)

/* Do module specific actions. *
port-index = op_intrptcode 0;
pulse = Aon_Fib_Exit-Pulse (port[portindex], &fib_desc,

op_sim_time 0);
pkptr = Aon_PulsePacket_Create (pulse);
Aon_Pulse_Packet_SendDelayed (pkptr, port-index, 0.0);

if (eventtype = OPC_INTRPTSTRM)

portindex = op_intrptstrm (;

if (port_index > 1)
opsimend (nvalid port index, ', , · *);

pkptr = op_pk-get (portindex);

type = Aon_Event-Packet-Type (pkptr);

if (type = AONCPKPULSE)

pulse = AonPulse.PacketGet (pkptr);
Aon_Port_PulseAppend (port [port-index], pulse);
op_ntrpt_scheduleself (opsimmtime 0 + AonFibDelay (pulse, &fibdesc),

- portindex);
Aon_Pulse_PacketDestroy (pkptr);

else

noise = AonNoisePacketGet (pkptr);
noise->power = noise->power * exp ((-1.0)*fib_desc.alpha);
Aon_Port_NoiseOutHandleAbsReuse

(noise_out[1 - port-index], pkptr, I - portindex,
Aon_Fib_B ((AonILow_Freq +
((double) noise->freq_bin / (double) Aonl_N_Segment) *
(AonI_HighFreq - AonI_Low_Freq)),

&fib-desc) ' fibdesc.Length);

108

5

10

15

20

25

30

35

40

45

Process Model Report: aonfib Tue May 30 14:39:28 1995 Page 4 of 4
All Optical Network Model Suite

transition steady -> steady
attribute value type default value
name tr_l string tr
condition string
executive string
color RGB333 color RGB333
drawinq style spline toggle spline

109

A.6 aon_fbc

Process Model Report: aonfbc Tue May 30 14:42:32 1995 | Page 1 of 3
All Optical Network Model Suite

Process Model Attributes
attribute value tVe default value
Core radius promoted double 8.0 (micron)
Length promoted double 10 (micron)
delta r promoted double 0.0 (micron)
Power Loss promoted double 1.0 (dB)
Delay promoted double 10 (s)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include cmath.h
5 #include aonbase.ex.h'

#include aon_fbc. ex. h

State Variable Block
/* State variable */
AonT_Port_NoiseOut* \noise_out[4];
AonTPort_NoiseIn* \noisein[4];
AonT_FBC_Desc' fbc_desc;

5 double \delay;

Temloorary Variable Block
int event..type;
Packet* pkptr,
int port_index;
int type;

5 AonT_Pulse *pulse;
AonT_Pulse *newpulse.
AonT_Noise *noise;
AonTNoise *new_noise;
Objid myid;

10 double r,
double delta_r,
double z;
double a;

forced state init
attribute value tvye default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced togqle unforced

110

Process Model Report: aon_fbc Tue May 30 14:42:33 1995 Page 2 of 3
All Optical Network Model Suite

enter execs init
/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
5 Aon_Simulation_Data_Get 0;

/* Determine module specific attributes. */
op_ima_objattrget (my_id, 'Core radius', r);
op_ima_obj_attrget (myid, delta r, &deltar);

10 op_imaobj_attr_get (my_id, 'Length', &z);
op_imaobj_attr_get (myid, 'Power Loss', a);
op_ima_obj_attr get (my_id, Delay', &delay);

/* Initialize variables. */
15 fbc_desc = Aon_FBC_Create (r, delta_r, z, a);

noise_out[0] = Aon_PorttNoise_Out_Create ();
noise_out[1] = Aon_Port_Noise_Out_Create ();
noise_out[2] = Aon_PortNoise_Out_Create ();
noise_out[3] = Aon_Port_Noise_Out Create ();

20
noise_in[0] = Aon_Port-Noise_In_Create 0;
noise_in(l 1] = Aon_Port_Noise_In_Create ();
noise_in2] = AonPort_Noise_In_Create ();
noise_in[3] = Aonort_Noise_In_Create ();

25

transition init -> steady
attribute value type default value
name tr_0O string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced

exit execs steady
/* Get event */
event_type = op_intrpt_type ();

if (event_type == OPC_INTRPT_SELF)

/* Do module specific actions. */

if (event_tvpe == OPC_NTRPTSTRM)

5

111

Process Model Report: an_fbc Tue May 30 14:42:33 1995 Page 3 of 3

All Optical Network Model Suite
...

112

port_index = op_intrptstrm ();

if (port_index > 3)
op_sim_end (invalid port index', , ,);

pkptr = op_pkget (port_index);

type = Aon_Event_Packet_Type (pkptr);

if (type = AONC_PKT_PULSE)

pulse = Aon_Pulse_PacketGet (pkptr);
new_pulse = Aon_Pulse_Copy (pulse);
Aon_FBC_Pulsel (pulse, fbc_desc);
Aon_FBC_Pulse2 (new_pulse, fbc_desc);
Aon_Pulse_Packet_Send_Delayed (pkptr,

(port_index + 2) % 4, delay);
pkptr = Aon_Pulse_Packet_Create (new_pulse);
Aon_Pulse_PacketSend_Delayed (pkptr,

(3 - port_index), delay);

else

noise = Aon_Noise_PacketGet (pkptr);
noise->power = Aon_Port_Noise_In_Handle

(noise in [portindex], noise);
new_noise = Aon_Noise_Copy (noise);
Aon_FBCNoisel (noise, fbc_desc);
Aon_FBC_Noise2 (new_noise, fbc_desc);
Aon_Port_Noise_Out_Handle_Dif_Reuse

(noiseout [(port_index + 2) % 4], pkptr,
(port_index + 2) % 4, delay);

pkptr = Aon_Noise_Packet_Create (newnoise);
Aon_Port_Noise_Out_Handle_Dif_Reuse

(noise_out [3 - portindex], pkptr,
(3 - port_index), delay);

10

15

20

25

30

35

40

45

transition steadv -> steady
attribute value tvype default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawina style spline togale spline

A.7 aon_stc

Process Model Report: aon_stc Tue May 30 14:45:31 1995 Page 1 of 4
All Optical Network Model Suite

Process Model Attributes
attribute value type default value
N promoted integer 2
insertion loss promoted double 0.0 (dB)
Delav promoted double 10 (s)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include "cr.lath.h
5 #include 'acn_base. ex.h'

#include aonstc.ex.h'

State Variable Block
/* State variable */
AonT_STC_Desc* \stc_desc;
AonT_Port_Noise_Out_Ptr* \noise..out;
AonT_Port_Noise_In_Ptr* \noisein;

Temoorarv Variable Block
int event_type;
Packet* pkpu;
int portnindex;
int type;

5 AonT_Pulse *pulse;
AonT_Pulse *newpulse;
AonT_Noise* noise;
AonT_Noise* new_noise;
Objid myid;

10 int i;
double loss;
int N;
double delay;

forced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toqqle unforced

enter execs init
/ Determine unique ID. /
my_id = op_id.self ();

/* Determine simulation data. */
5 AonSimulationDataGet O;

113

Process Model Report: aon_stc Tue May 30 14:45:32 1995 Page 2 of 4
All Optical Network Model Suite

/* Determine module specific attributes. */
op_ima_obj_attrget (myid, N', &N);
op_imaobj_attr..get (myid, delay-, &delay);

10 op_ima_obj_attr_get (my_id, insertion loss-, &loss);

/* Initialize variables. */
stc_desc = Aon_STC_Create (N, loss, delay);

15 noise_out = (AonTPort_Noise_Out_Ptr*) malloc
(2 * N * sizeof (AonT_Port_Noise_OutPtr));

noisein = (AonT_PortNoiseIn_Ptr) malloc
(2 * N * sizeof (AonT_Port_Noise_In_Ptr));

20
for (i = 0; i < 2*N; i++)

(*(noise_out + i)) = AonPort_Noise_Out_Create 0;
(*(noise_in + i)) = AonPort_Noise_In_Create 0;

25 }

transition init -> steady
attribute value type default value
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced

exit execs steadv

10

10

15

/* Get event */
event_type = opjintrpttype ();

if (event_type = OPC_INTR_ SELF)

/* Do module specific actions. */

if (event_type = OPC_NTRPT_STRM)

portindex = op_intrpt_strmnn ();

if (port_index >= 2*stc_desc->N)
opsim_end ('Invalid port index', ", ', ");

pkptr = op_pk get (port_index);

114

rocess Model Report: aon stc I Tue May 30 14:45:32 1995 Page 3 of 4
All Optical Network Model Suite

_.-

type = Aon_Event_Packet_Type (pkptr);

if (type == AONC_PKT_PULSE)

pulse = Aon_Pulse_Packet_Get (pkptr);
Aon_STC_Propagate (pulse, stc_desc);
if (portindex < stcdesc->N)

[
Aon_Pulse_Packet_Send_Delayed (pkptr,

stc_desc->N, stc_desc->delay);

else

Aon_PulsePacket_Send_Delayed (pkptr,
0, stcdesc->delay);

I
for (i = 1; i < stc_.desc->N; i++)

new_pulse = Aon_Pulse_Copy (pulse);
pkptr = Aon_Pulse_Packet_Create (new_pulse);

iif (port_index < stc_desc->N)

Aon_Pulse_Packet_SendDelayed (pkptr,
i + stc_desc->N, stcdesc->delay);

else

Aon_Pulse_Packet.SendDelayed (pkptr,
i, stc_desc->delay);

else

noise = Aon_Noise_PacketGet (pkptr);
noise->power = Aon_Port_Noise_In_Handle

(*(noise_in + port_index), noise);
Aon_STC_NoisePropagate (noise, stc_desc);

if (port_index < stcdesc->N)
1:
Aon_Port_Noise_Out_Handle_Dif_Reuse

(*(noise_out + stc_desc->N), pkptr,
stc_desc->N, stc_desc->delay);

else

Aon_Port_Noise_OutHandle_DifReuse
(*(noiseout + 0), pkptr,
0, stc_desc->delay);

for (i = 1; i < stc_desc->N; i++)

new_noise = Aon_Noise_Copy (noise);
pkptr = Aon_Noise_Packet_Create (new_noise);

if (port_index < stc_desc->N)

115

20

25

30

35

40

45

50

55

60

65

70

75

Process Model Report: aon_stc Tue May 30 14:45:32 1995 Page 4 of 4
All Optical Network Model Suite

Aon_Port_Noise_OutHandleDif..Reuse
(*(noise_out + i + stc_desc->N). pkptr,
i + stc_desc->N, stcdesc->delay);

80 !
else

AonPortNoise_Out_Handle_Dif_Reuse
(*(noise_out + i), pkptr,

85 i. stc_desc->delay);

transition steady -> steady
attribute value type default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

116

A.8 aon_amp

Process Model Report: aon_amp | Tue May 30 14:39:57 1995 Page 1 of 4
Alli Optical Network Model Suite

Process Model Attributes
attribute value tye default value
Gain promoted double 10 (dB)
Saturation promoted double 0.1 (W)
Noise Coef promoted double 1.0 (dB)
Relax Time promoted double 1,000 (ps)
Delay promoted double 10 (ps)
delta noise percent promoted double 10 (percent)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include math. h
5 #include cmat:..h"

#include aon_base. ex. h'
#include aon_amp. ex.h'

State Variable Block
/* State variable /
double \old_time;
AonT_Amp_Desc \amp;
Evhandle \update_event;

5

Temporarv Variable Block
int eventtype;
Packet* pkptr,
int port_index;
int type;

5 AonTPulse *pulse;
AonT_Noise *noise;
Objid my_id;
double nextupdatetime;
double amp gain;

10 double amp_noise;
double amp_sat;
double amp_tau;
double amp_delay;
double amp_dnoise;

frced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toqqle unforced

117

Process Model Report: aon_amp Tue May 30 14:39:58 1995 | Page 2 of 4
All Optical Network Model Suite

enter execs init
/* Determine unique ID. */
myjid = op_id_self 0;

/ Determine simulation data. */
5 AonSimulationDataGet 0;

/* Create amplifier description structure. */
amp = Aon_Amp_DescCreate 0;

10 /* Determine module specific attributes. /
op_imaobjattrget (myid, 'Gain', &..gain);
opjima_obj_attrget (myid, saturation', &sat);
op_imaobj_attr_get (myd, 'Noise Coef', &_noise);
opima_objattrget (myid, 'Relax Time', &tau);

15 op_ima_obj_attr_get (myid, Delay', &delay);
opima_objattr_get (myid, 'delta noise percent', &d_noise);

/* Initialize variables. */
amp->gain = cmath_dB ((-1.0) * amp_gain);

20 amp->sat = amp-sat;
amp->noise = cmath_dB ((-1.0) * amp_noise);
amp->tau = amptau;
amp->delay = ampdelay;
amp->d_noise = ampd_noise / 100.0;

25
/* Set time of last update to 0.0. */
old_time = 0.0;

Aon_Amp_Noise_Update (amp, opsimtime ());
30

transition init -> steady
attribute value tNe default value
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawinq style spline togle spline

unforced state steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced

exit execs steady
/* Determine average pulse power. */
amp->pulse_power = amp->pulse_power *

exp ((old_time -opsimtime () / amp->tau);

5 /* Get event */

118

Process Model Report: aonamp Tue May 30 14:39:58 1995 Page 3 of 4
All Optical Network Model Suite

..-. _

eventtype = opjntrpttype ();

if (eventtype = OPC_INTRPT_SELF)
{
if (opjntrpt code != AONCAMP_UPDATE)

AonAmpPulse_PowerjnterruptGet (amp);

if (event_..type = OPC_NTRPT_STRM)

/* Cancel pending update event, if there is one. */
if (op_ev_valid (updateevent))

opevcaneel (update_event);

portindex : opintrptstrm ();

if (portindex != 0)
op_sim_end (Invalid port index', , ,);

pkptr = op_pk et (port-index);

type = AonEventPacketType (pkptr);

if (type = AONC_PKTPULSE)

pulse = AonPulsePacketGet (pkptr);
Aon_Amp_Pulse_Power_lnterrupt_Set (amp, pulse);
AonAmp_Pulse (amp, pulse);

Aon_Pulse_Packet_Send_Delayed (pkptr, 0, amp->delay);

else

noise = AonNoisePacketGet (pkptr);
amp->rcv_noise = amp->rcv_noise + noise->power -

(*(amp->noisein->noisearray + noise->freq_bin));
(*(amp->noise_in->noise.._array + noise->freqbin)) = noise->power;
Aon_NoisePacket_Destroy (pkptr);
}

Aon_AmpNoiseUpdate (amp, op_sim-time ());
oldtime = op_simtime ();

if (amp->pulse_power > AonI_Min_Power)
{

/* next_updateime = op_sim_time () -amp->tau *
log (1.0- amp->d_noise); */

next_update.time = op-simtime () + AonAmp_Next_Update (amp);
update-event = opintrpt_schedule..self (next.updatetime,

AONCAMPUPDATE);
!

transition steady -> steadv
attribute value tvype default value
name tr_l string tr
condition string

119

10

15

20

25

30

35

40

45

50

55

_

Process Model Report: aon_amp Tue May 30 14:39:59 1995 Page 4 of 4

All Optical Network Model Suite
...

executive string
color RGB333 color RGB333
drawing style spline toggle spline

120

A.9 aon_ase

Process Model Report: aon_ase Tue May 30 14:40:35 1995 J Page 1 of 3
All Optical Network Model Suite

Process Model Attributes
attribute value type default value
FSR promoted double 0.05 (THz)
Bandwidth promoted double 0.01 (THz)
Attenuation promoted double 1.0 (dB)
Delay promoted double 10 (s)

Header Block
/* AON Model Suite */
/* Greg Campbel, */

#include cmat.b. h'
5 include aon_base.ex.h

#include aon_ase. ex. h'

State Variable Block
/* State variable */
AonTPort_Noise_Out* \noiseout[2];
AonT_ASE_Desc* \ase_desc;
double \delay;

Temporarv Variable Block
int eventtype;
Packet* pkptr;
int portindex;
int type;

5 AonT_Pulse *pulse;
AonT_Noise *noise;
Objid my_id;
double W;
double FSR;

10 double a;

frrced state init
a;ttribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced togqle unforced

enter execs init

5

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
Aon_Simulation Data_Get 0;

/* Determine modrule specific attributes. */

121

Process Model Report: aon-ase Tue Mav 30 14:40:36 1995 IPage 2 of 3

All Optical Network Model Suite

op_ima_obj_attrget (myid, 'Attenuation', &a);
opima_objattr get (myid, FSR-, &FSR);

10 opima..ob_attret (myid, '8andwidth, &W);
op_ima_obj_attr_get (myid, Delay', &delay);

/* Initialize variables. */
ase_desc = Aon_ASE_Create (FSR, W, a);

1S noiseout[0] = Aon_PortNoise_Out_Create 0;
noise_out[l] = Aon_Port_Noise_Out_Create 0;

transition init -> steady
attribute value tye default value
name tr_0 string tr
condition string
executive string
color RG8333 color RGB333
drawing style spline toqqle spline

unforced state steady
attribute value tvoe default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced togqle unforced

priterprc steadv

5

10

15

20

25

/* Get event */
event_type = op-intrpttype 0;

if (eventype = OPC_INTRPTSELF)

/* Do module specific actions. */
I

if (eventtype = OPCINTRPTSTRM)

portindex = opintrptstrm 0;

if(portindex > 1)
op_sim_end (' Invalid port index, ', ',);

pkptr = op.pk.get (port-index);

type = Aon_Event_Packet_Type (pkptr);

if (type = AONCPIKTPULSE)

pulse = Aon_PulsePacketGet (pkptr);
AonASE_Pulse (pulse, asedesc);
Aon_PulsePacket_Send_Delayed (pkptr,

- port_index. delay);

122

_* wv S _ ___
l . _ . .~

Process Model Report: aonase Tue May 30 14:40:36 1995 Page 3 of 3
All Optical Network Model Suite

else

noise = Aon_Noise_Packet_Get (pkptr);
30 Aon_ASENoise (noise, ase_desc);

AonPort_Noise_Out_Handle_Abs_Reuse (noiseout [portindex],
pkptr, I - portindex, delay);

transition steady -> steady
attribute value type default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawinq style spline toggle spline

123

A.10 aon_fabry

Process Model Report: aon fabry Tue May 30 14:41:26 1995 Page 1 of 3
All Optical Network Model Suite

Process Model Attributes
attribute value tvype default value
FSR promoted double 0.05 (THz)
Finesse promoted double 30 (none)
Tmax promoted double 1.0 (none)
Delav promoted double 10 (ps)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include cnath.h
5 #include aon_base.ex.h'

#include aon_fab. ex. h'

State Variable Block
/* State variable */
AonT_Port_Noise_Out* \noiseout[2];
AonT_Fab_Desc* \fab_desc;
double \delay;

Temporary Variable Block
int eventtype;
Packet* pkptr,
int portindex;
int type;

5 AonT_Pulse *pulse;
AonT_Noise *noise;
Objid myjd:
double Finesse;
double FSR;

10 double Tmax;

forced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs init

5

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
AonSimulationData_Get ();

/* Detenrine module specific attributes. */

124

Process Model Repoit: aonfabry | Tue May 30 14:41:26 1995 | Page 2 of 3

All Optical Network Model Suite

op_ima_obj_attroet (myid, Finesse', &Finesse);
op_ima_obj_attr_get (my_id, 'FSR', &FSR);

10 op_ima_objattrget (my_id, 'Tmax', &Tmax);
op_ima_objattrget (myid, Delay', &delay);

/* Initialize variables. */
fab_desc = Aon_Fab_Create (FSR. Finesse, Tmax);

15 noiseout(0] = Aon_PorT_Noise_Out_Create ();
noise_out[l] = Aon_PortNoise_OutCreate ();

Vtransition init -> steady
attribute value type default value
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toqggle soline

unforced state steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toqggle unforced

exit execs steady

5

10

15

20

25

/* Get event */
event_type = opintrpt_type ();

if (event-type == OPC_INTRP_SELF)
{
/* Do module specific actions. */
}

if (event_type -- OPC_INTRPT_ STRM)

port_index = op_intrptstrm ();

if (port_index > 1)
opsimend (' Invalid port index', , ',);

pkptr = oppk_get (port_index);

type = Aon...EventPacket_Type (pkptr);

if (type = AONCPKT_PULSE)

pulse =: Aon_Pulse_Packet_Get (pkptr);
Aon_F'ab_Pulse (pulse, fabdesc);
Aon_Pulse_PacketSend_Delayed (pkptr,

I .. port_index. delay);

125

Process Model Report: aon_fabry | Tue May 30 14:41:26 1995 | Page 3 of 3
All Optical Network Model Suite

else

noise = AonNoise Packet Get (pkptr);
30 Aon_FabNoise (noise, fab_desc);

AonPort_Noise_Out_Handle.Abs_Rcuse (noise_out [portindex],
pkptr, I - portindex, delay);

transition steady -> steady
attribute value type default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toqqle spline

126

A.11 aon_mzf

Process Model Report: aon_mzf Tue May 30 14:44:00 1995 | Page 1 of 3
All Optical Network Model Suite

Process Model Attributes
attribute value type default value
FSR promoted double 0.2 (THz)
Delay promoted double 10 (s)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include 'cmath. h
5 #include 'aon_base. ex.h

#include aon_mz . ex. h

State Variable Block
/* State variable /
AonT_PortNoise_Out* \noise_out[4];
AonT_PortNoiseIn* \noise-in[4];
AonT_MZF_Desc* \mzfdesc;

5 double \delay;

Temporary Variable Block
int eventtype:
Packet' pkptr.
int portindex;
int type;

5 AonT_Pulse *pulse;
AonTPulse *newpulse;
AonT_Noise *noise;
AonTNoise *newnoise;
Objid myid;

10 double FSR;

forced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toqgle unforced

enter execs init

5

/* Determine unique ID. */
myid = op_id_self ();

/* Determine imulation data. */
Aon_Simulation_Data_Get);

/* Determine module specific attributes. */
op_ima_obj_attrget (my_id. FSR-, &FSR);

127

Process Model Report: aon_mzf i Tue May 30 14:44:01 1995 Page 2 of 3
All Optical Network Model Suite

op_ima_objattr_get (my_id, 'Delay', &delay);
10

/* Initialize variables. */
mzf_desc = Aon_MZFCreate (FSR);
noiseout[0] = AonPortNoise_Out_Create ();
noiseoutf 1] = Aon_Port_Noise_Out_Create 0;

15 noise_out[2] = Aon_Port_Noise_OutCreate 0;
noise_out[3] = AonPort_Noise_Out Create ();

noisein[0] = Aon_Port_Noise_In_Create 0;
noise_in[1] = AonPort_Noise_In_Create 0;

20 noise_in[2] = Aon_Port_Noise_In_Create 0;
noise_in[3] = Aon_Port_Noise_InCreate 0;

transition init -> steady
attribute value type default value
name tr_0O string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toqggle spline

unforced state steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced

exit execs steadv

5

10

15

20

/* Get event */
eventtype = op_intrpttype ();

if (eventtype = OPC_INRPT_SELF)

/* Do module specific actions. */

if (eventtype = OPC_INTRPTSTRM)

portjindex = opintrpt_strm ();

if (port_index > 3)
op_sim_end (Invalid port index', , , ,);

pkptr = oppk.get (port_index);

type = Aon_Event_Packet_Type (pkptr);

if (type = AONC_PKIPULSE)
{

128

Process Model Report: aon_mzf Tue May 30 14:44:01 1995 Page 3 of 3
All Optical Network Model Suite

pulse = Aon_Pulse_Packet_Get (pkptr);
new_pulse = Aon_Pulse_Copy (pulse);
AonM.ZFPulsel (pulse, mzf..desc);

25 Aon_MZF_Pulse2 (new_.pulse, mzf_desc);
Aon_Pulse_PacketSendDelayed (pkptr,

(port_index + 2) % 4, delay);
pkptr = Aon_Pulse_Packet_Create (newpulse);
Aon_Pulse_Packet_Send_Delayed (pkptr,

30 (3 - port_index), delay);

else

noise = Aon_Noise_Packet_Get (pkptr);
35 noise->power = AonPort_Noise_In_Handle

(noise_in [port_index], noise);
new_noise = Aon_Noise_Copy (noise);
AonMZF_Noisel (noise, mzfdesc);
Aon_M7F_Noise2 (new_noise. mzfdesc);

40 Aon_Port_Noise_OutHandle _Dif_Reuse
(noiseout [(port_index + 2) % 4], pkptr,
(port_index + 2) % 4, delay);

pkptr = Aon_Noise_Packet_Create (new_noise);
AonPort_Noise_Out_Handle_DifReuse

45 (noiseout [3 - port_index], pkptr,
(3 - port_index), delay);

transition steady -> steady
attribute value type default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawinq style spline togle spline

129

A.12 aon_wdm

Process Model Report: aonwdm Tue May 30 14:45:55 1995 Pae 1 of 4
All Optical Network Model Suite

Process Model Attributes
attribute value type default value
FSR promoted double 32 (THz)
Delay promoted double 10 (ps)
Attenuation promoted double 0.0 (dB)

Header Block
/* AON Model Suite /
/* Greg Campbell */

#include cmath. h
5 #include aonbase.ex.h"

#incude aonwdm.ex.h'

State Variable Block
/* State variable */
AonT_Port_Noise_Out* \noise_out[3];
AonTPort_.NoiseIn* \noisein[3];
AonTWDMDesc* \wdm_desc;

5 double \delay;

Temporary Variable Block
int eventtype;
Packet* pkptr;
int portindex;
int type;

5 AonT_Pulse *pulse;
AonT_Pulse *newpulse;
AonTNoise *noise;
AonT_.Noise *newnoise;
Objid my-id:

10 double FSR;
double a;

forced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced togale unforced

/* Determine unique ID. */
myid = op_id_self ();

/* Determine simulation data. */
AonSimulation_Data_Get ();

130

Process Model Report: aon wdm Tue May 30 14:45:56 1995 Page 2 of 4
All Optical Network Model Suite

/ Determine module specific attributes. */
op_ima_objattr..get (my-id, FSR', &FSR);
op_ima_obj_attrget (my_id, 'Attenuation', &a);

10 op_ima_objattr.get (my_id, 'Delay', &delay);

/* Initialize variables. */
wdm_desc = Aon_WDM_Create (FSR, a);
noise_out[0] = Aon_Port_Noise_Out_Create 0;

15 noiseout[1] = AonPort_Noise_Out_Create ();
noise_out[2] = Aon_Port_Noise_Out_Crate ();

noise_in[0] = Aon_Port_NoiseIn_Create 0;
noise_in[l] = Aon-Port_NoiseIn_Create 0;

20 noise_in[2] = Aon_Port_NoiseIn_Create 0;

transition init -> steady
at'ribute value type default value
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawinq style spline tog le spline

unforced state steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toqqle unforced

exit execs steady

/* Get event */
event_type = op_intrpt_type ();

if (eventtype = OPC_NTRPT_SELF)

/* Do module specific actions. */

if (event_type = OPC_INTRPT_STRM)
{
port_index = op_intrpt_strm ();

if (port_index > 2)
opsim_end (Invalid port index, , ",);

pkptr = op_pkget (portindex);

type = Aon_Event_Packet_Type (pkptr);

if (type = AONC_PKT_PULSE)

131

5

10

15

20

. ���--� -�-�-'

Process Model Report: aon wdm I Tue May 30 14:45:56 1995 Page 3 of 4

All Optical Network Model Suite
...

pulse = AonPulse_Packet-Get (pkptr);
if (port_index = 0)

Aon_WDM_Pulsel (pulse, wdm_desc);
Aon_Pulse_PacketSendDelayed (pkptr,

2. delay);

if (portindex = 1)

Aon_WDM_Pulse2 (pulse. wdm_desc);
AonPulsePacketSendDelayed (pkptr,

2, delay);

if (port.index = 2)

new_pulse = Aon_Pulse_Copy (pulse);
Aon_WDMPulsel (pulse, wdm_desc);
Aon_Pulse_PacketSendDelayed (pkptr,

0, delay);
Aon_WDM_Pulse2 (new_pulse, wdm_desc);
pkptr = Aon_PulsePacket_Create (new_pulse);
Aon_PulsePacketSendDelayed (pkptr,

2, delay);

else

noise = Aon_NoisePacketGet (pkptr);
noise->power = Aon_Port_Noise_InHandle

(noise-in (port-index], noise);
if (portindex - 0)

Aon_WDMNoise I (noise, wdmdesc);
Aon_Port_Noise_Out_HandleDif.Reuse

(noise_out [21, pkptr, 2, delay);

if (portindex = I)
I
Aon_WDMNoise2 (new_noise, wdm_desc);
Aon Port_Noise_Out_Handle_Dif_Reuse

(noiseout [2], pkptr, 2, delay);

if (portindex = 2)

new_noise = Aon_Noise_Copy (noise);
Aon_WDMNoisel (noise, wdm_desc);
Aon_Port_NoiseOut_Handle_Dif Reuse

(noise_out [0], pkptr, 0, delay);
pkptr = Aon_Noise_Packet_Create (newnoise);
Aon_WDM_Noise2 (noise, wdmdesc);
Aon Port_Noise_Out_HandleDifReuse

(noise_out [1], pkptr. 1, delay);

}

132

25

30

35

40

45

50

55

60

65

70

75

Process Model Report: aonwdm Tue May 30 14:45:56 1995 Page 4 of 4
All Optical Network Model Suite

transition steady -> steady
attribute value type default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawing stVle spline toggle spline

133

A.13 aonrou

Process Model Report: aon_rou Tue May 30 14:45:11 1995 Page 1 of 4

All Optical Network Model Suite

Process Model Attributes
attribute value type default value
N promoted integer 2 (unitless)
FSR promoted double 0.5 (THz)
Attenuation promoted double 0.0 (dB)
Extinction Ratio promoted double 16 (dB)
Delav promoted double 10 (ps)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include cnath.h'
5 #include aonbase.ex.h'

#include aon_rou. ex. h'

State Variable Block
/* State variable */
AonT_Rou_Desc* \rou..desc;
AonT_Port_Noise_Out_Ptr* \noise_out;
AonT_Port_Noise_In_Ptr* \noisein;

Temporary Variable Block
int eventtype;
Packet* pkptr,
Packet* new pkptr;
int port_index;

5 int type;
AonTPulse *pulse;
AonT_Pulse *new_pulse;
AonT_Noise* noise;
AonT_Noise* newnoise;

10 Objid myid;
int i;
double loss;
int N;
double FSR;

15 double k;
double delay;
int outport;

forced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toqqle unforced

134

Process Model Report: aon_rou| Tue May 30 14:45:11 1995 Page 2 of 4
Alil Optical Network Model Suite

enter execs init
/* Determine unique ID. */
my_id = opid_self ();

/* Determine simulation data. */
5 AonSimulationData_Get 0;

/* Determine module specific attributes. */
op_imaobj_attr get (my_id, 'N', &N);
op_ima_objattr.get (my_id, FSR', &FSR);

10 op_ima_objattr get (myid, 'Attenuation', &loss);
op_ima_obj_attr._get (my_id, Extinction Ratio', &k);
op_ima_objattr.get (my_id, 'Delay', &delay);

/* Initialize variables. */
15 rou_desc = Aon_Rou_Create (N, FSR, loss, k, delay);

noise_out = (AonT_' Port_Noise_Out_Ptr) malloc
(2 * N * sizeof (AonT_Port_Noise_Out_Ptr));

20 noise_in = (AonT.Port_NoiseIn_Ptr*) malloc
(2 * N * sizeof (AonTPort_Noise_In_Ptr));

for (i = 0; i < 2*N; i++)

25 (*(noise_out + i)) = Aon_Port_Noise_Out_Create 0;
(*(noise-in + i)) = AonPort_Noise_In_Create ();

transition init -> steady
attribute value type default value
name tr_O string tr
condition string
executive string
coilor RGB333 color RGB333
drawinq style soline toqqle spline

un forced state steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toqqle unforced

exit execs steady

5

/* Get event */
event_type = opintrpt_type ();

if (event_type = PC_INTRPT_SELF)

/* Do module ,:pecific actions. */
I

135

� ------ -----.

Process Model Report: aon_rou Tue May 30 14:45:12 1995 Page 3 of 4
All Optical Network Model Suite
...

if (eventtype = OPC._ITRPTSTRM)

port_index = op_intrptstrm ();

if (port.index >= 2*roudesc->N)
op_sim-end ('Invalid port index', , ,);

pkptr = op_pkget (portindex);

type = Aon_Event_PacketType (pkptr);

if (type = AONC_PKT_PULSE)

pulse = Aon_Pulse_Packet_Get (pkptr);

for (i = 1; i < rou_desc->N; i++)

newpulse = Aon_Pulse_Copy (pulse);
Aon_Rou_Pulse (newpulse, rou..desc, i);
new_pkptr = Aon_Pulse_Packet_Create (new_pulse);

if (portindex < rou_desc->N)

out_.port = ((port_index + i) % rou_desc->N) +
rou_desc->N;

else

outport = (port_index + i) % rou_desc->N;

Aon_Pulse_Packet_Send_Delayed (new..pkptr,
out_port, rou_desc->delay);

Aon_Rou_Pulse (pulse, rou_desc, 0);
out_port = (port_index + rou_desc->N) %

(2 * rou_desc->N);
Aon_Pulse_Packet_SendDelayed (pkptr.

out..port, roudesc->delay);

else

noise = Aon_NoisePacketGet (pkptr);
noise->power = Aon_Port_Noise_In_Handle

(*(noise_in + portindex), noise);

for (i = I; i < rou_desc->N; i++)

new_noise = Aon_Noise_Copy (noise);
Aon_Rou_Noise (new_noise, rou_desc, i);
new_pkptr = Aon_Noise_Packet_Create (new_noise);

if (port_index < rou_desc->N)

out_port = ((port_index + i) % rou_desc->N) +
rou_desc->N;

)

136

10

15

20

25

30

35

40

45

50

55

60

65

rocess Model Report: aon rou Tue May 30 14:45:12 1995 Page 4 of 4
All Optical Network Model Suite

else

out_port = (port_index + i) % rou_desc->N;
70 1

AonPortNoise_Out_Handle_DifReuse
(*(noise_out + out_port), new..pkptr,
outport, rou.desc->delay);

75 }

Aon_Rou_Noise (noise, rou_desc, 0);
out_port = (portindex + roudesc->N) %

(2 roudesc->N);
80

Aon_Port_Noise_Out_Handle_Dif_Reuse
(*(noiseout + outport), new_pkptr,
outport, roudesc->delay);

85

transition steady -> steady
attribute value type default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
clrawinq style spline toqqle spline

137

A.14 aon_probe

Process Model Report: aon_probe Tue May 30 14:44:24 1995 Page 1 of 3

All Optical Network Model Suite

Process Model Attributes
attribute value tve default value
eye width promoted double 100 (ps)
coherent promoted integer 0 (N/A)
Signal ID promoted integer 0 (N/A)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#include cmath.h'
5 #include aon_base. ex.h

#include aonrcv. ex. h'

State Variable Block
/* State variable */
AonT_Port_Pulse* \port;
AonT_PortNoiseIn* \noisein;
double \oldtime;

5 double \rcvnoise;
double sim_duration;
int \pulse_num;
AonTRcvDesc \rcv-desc;

Temoorarv Variable Block
int event_type;
Packet* pkptr,
int portindex;
int type;

5 AonT_Pulse *pulse;
AonT_Pulse *pulsecopy;
AonT_Noise *noise;
Objid myd;

forced state init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toaale unforced

anter prPre init

5

/* Determine unique ID. */
myid = op_id_self ();

/* Determine simulation data. */
AonSimulation.Data_Get 0;

138

... iv. w_>
- .

_ _ .

Process Model Report: aon_probe Tue May 30 14:44:25 1995 Page 2 of 3

All Optical Network Model Suite

/* Determine module specific attribute. */
opjma_sim_attr..get (OPC_IMA_DOUBLE, duration', &simduration);
op_ima_objattrget (my-id, eye width', &(rcv_desc.eye_width));

10 op_ima obj_attr.get (myid. coherent , &(rcv_desc.coherent));
op_ima_obj_attrget (myid, 'Signal D', &(rcv_desc.signalid));

/* Initialize variables. */
rcv_desc.eye_origin = -1.0;

ate i nput port
/ Create input port *.
port = Aon_Port._Pulse_Create ();
noise_in = Aon_Port_Noise_In_Create 0;

20 /* Set time of last update to 0.0. /
old.ume = 0.0;

/* Set current noise level to 0.0. */
rcv_noise = 0.0;

25
/* Schedule an interrupt to finish out duration. */
op_intrptschedulesel (sim.duration - IE-9, 0);

/* Set pulse number to O. */
30 pulse_num = 0;

transition init -> steady
attribute value type default value
name tr_O0 string tr
condition string
executive string
color RGB333 color RGB333
drawin stvle spline toggle spline

unforced state steady
attribute value tve default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toaale unforced

exit execs steady

5

10

if (rcv_desc.eyeorigin = -1.0)

rcv_desc.eye_origin = opsim-time 0 + AonI_Dution / 2.0 +
rcvdesc.,eye_width / 2.0;

/* Get event */
event_type = opintrpt_type 0;

if (eventtype = OPC_INTRPT_SELF)

/* Do module specific actions. */

139

-�---- ----- �

Process Model Report: aonprobe I Tue May 30 14:44:25 1995 I Page 3 of 3
All Optical Network Model Suite

Aon_RcvUpdate (port, rcv_noise, oldtime,
opsim_time 0, &rcvdesc);

oldtime = op_simtlme ();
}

if (eventjtype = OPCNTRPT_STRM)

portindex = op-intrpt_strm ();

if (portindex != 0)
op_sim_end (I nvalid port index', ", ", ·);

pkptr = op_pk_get (portindex);

type = Aon_EventPacket_Type (pkptr);

if (type = AONCPKTCPULSE)

Aon_Rcv_Update (port, rcvnoise, oldtime,
op_sim_time 0, &rcv_desc);

oldtime = op..sim_time ();
pulse = AonPulsePacketGet (pkptr);
pulse-copy = AonPulseCopy (pulse);
Aon_Rcv.Pulse (pulsecopy, pulsenum);
Aon_Port.PulseAppend (port, pulsecopy);

else
{
noise = AonrNoisePacketGet (pkptr);
rcv..noise += Aon_PortNoise_InHandle (noisein, noise);
(*(noisein->noise_array + noise->freqbin)) = noise->power,
AonRcvUpdate (port. rcvnoise, oldtime,

op_sim_time 0. &rcv_desc);
oldtime = opsimtime 0;

oppk.send (pkptr, 0);

140

15

20

25

30

35

40

45

50

transition steady-> steady
attribute value type default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

A.15 aonrcv

Process Model Report: aonrcv0 Tue May 30 14:44:44 1995 | Page 1 of 3

All Optical Network Model Suite

Process Model Attributes
attribute value type default value
eye width promoted double 100 (ps)
coherent promoted integer 0 (N/A)
Siqnal ID promoted integer 0 (N/A)

Header Block
/* AON Model Suite */
/* Greg Campbell */

#indude cmath.h'
5 #include aon_base. ex.h'

#include aoncv. ex. h'

State Variable Block
/* State variable */
AonT_Port_Pulse* \port;
AonT_PortNoisejIn \noise..in;
double \old_time;

5 double \rcv_noise;
double \simduration;
int \pulse_num;
AonT_Rcv_Desc \rcvdesc;

Temoorarv Variable Block
int event_type;
Packet* pkptr;
int portindex;
int type;

5 AonT_Pulse *pulse;
AonT_Noise *noise;
Objid myid;

forced state init
attribute value tye default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs init

5

/* Determine unique ID. /
my_id = op_id_self ();

/* Determine simulation data. */
AonSimulation_DataGet 0;
op_imsimasiattrget (OPCIMADOUBLE, 'duration', &simduration);

141

- -

Process Model Report: aon_rcvO Tue May 30 14:44:45 1995 Page 2 of 3

All Optical Network Model Suite

/* Determine module specific attributes. */
op_imaobjiattrget (myjid, eye width', &(rcvdesc.eyewidth));

10 op_ima..objattr_get (my_id, coherent', &(rcv_desc.coherent));
op_ima_obL attr.get (myjd, signal D, &(rcvdesc.signal_id));

/* Initialize variables. */
rcv_desc.eye_origin = -1.0;

15
/* Create input port. */
port = Aon_Port_Pulse_Create ();
noise_in = Aon_Port_Noise_n_Crcate O;

20 /* Set time of last update to 0.0. */
old_time = 0.0;

/* Set current noise level to 0.0. */
rcv_noise = 0.0;

25
/* Schedule an interrupt tofinish out duration. */
op_intrpt_schedule_self (sim_duration - 1E-9, 0);

/* Set pulse number to 0. */
30 pulse_num = 0;

transition init -> steady
attribute value type default value
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state steady
attribute value tVe default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toqqle unforced

exit execs steadv
if (rcv_desc.eye_origin = -1.0)

rcv_desc.eyeorigin = op_sim_time (
rcv_desc.eye_width / 2.0;

+ AonI_Duration / 2.0 +

/* Get event */
event_type = op_intrpt_type ();

if (eventtype = OPC_INTRPT_SELF)

/* Do module specific actions. */
Aon_Rcv_Update (port. rcv_noise, old_time,

5

10

142

< . ��---- -`---'

Process Model Report: aon_rcv0 I Tue May 30 14:44:45 1995 Page 3 of 3

All Optical Network Model Suite
...

opsimtime (), &rcvdesc);
old_time = op_sim_time 0;

if (eventtype = OPCINTRPTSTRM)

portindex = opintrpLstrm ();

if (portindex = 0)
op_sim_end ('Invalid pore index', ', ,);

pkptr = op_pk get (portindex);

type = Aon._EventPacket_Type (pkptr);

if (type = AONC_PKCT_PULSE)

Aon_Rcv_Update (port, rcv._noise, old_time,
opsim_time 0, &rcvdesc);

oldtime = opsim_time ();
pulse = AonPulsePacketGet (pkptr);
Aon_Rcv_Pulse (pulse, pulse_num);
Aon_Port_Pulse_Append (port, pulse);
AonPulsePacketDestroy (pkptr);

else

noise = AonNoisePacketGet (pkptr);
rcv_noise += Aon_PortNoise_In_Handle (noise_in, noise);
(*(noisei n->noise_array + noise->freq-bin)) = noise->power,
Aon_NoisePacket_Destroy (pkptr);
Aon_RcvUpdate (port, rcv_noise, oldtime,

op_simtime (), &rcv_desc);
old_..time = op_sim_time ();

143

15

20

25

30

35

40

45

50

transition steady -> steady
attribute value tvype default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawinq style spline toqale spline

_ ----

144

Appendix B: Supporting Code
This appendix contains all of the supporting code in the AON Model Suite. Detailed infor-

mation about the concepts behind the models including model attributes can be found in

chapter four. The; following supporting code files are included:

* aon_xmt.ex.h and aon_xmt.ex.c Support for the Transmitter models.

* aon_fib.ex.h and aon_fib.ex.c Support for the Fiber model.

* aonfbc.ex.h and aonfbc.ex.c Support for the Fused Biconical Coupler model.

* aon_stc.ex.h and aon_stc.ex.c Support for the Star Coupler model.

* aon_amp.ex.h and aon_amp.ex.c Support for the Amplifier model.

* aon_ase.ex.h and aon_ase.ex.c Support for the ASE Filter model.

* aonfab.ex.h and aonfab.ex.c Support for the Fabry-Perot Filter model.

* aon_mzfex.h and aon_mzf ex.c Support for the Mach-Zehnder Filter model.

* aon_wdm.ex.h and aon_wdm.ex.c Support for the WDM model.

* aon_rou.ex.h and aon_rou.ex.c Support for the Router model.

* aon_rcv.ex.h and aon_rcv.ex.c Support for the Receiver and Probe models.

* aon_lin.ex.h and aon_lin.ex.c Support for linear transfer functions.

* cmath.ex.h and cmath.ex.c Support for complex mathematics.

* aonps.ex.h, aon_propdel.ps.c, aonproprcv.ps.c, aon_txdel.ps.c aon_txrcv.ps.c Pipe-

line stage models

145

B.1 Transmitter Support Code

All of the transmitter process models use the same basic pulse shape generation functions.

These functions and their accompanying structures are found in aon_xmt. ex. h and

aon_xmt.ex.c.

aon_xmt.ex.h
/* Greg Campbell */
/* AON Model Suite */
/* aon_xmt.ex.h */
/* Transmitters */

/**** Typedefs ****/

typedef struct

double tO;
double peak_power;
int m;
double chirp;
I AonT_Xmt_Gaussian;

typedef struct

{
double
double
double
} AonT_Xmt_Sech;

tO;
peakpower;
chirp;

/**** Function Prototypes ****/

CmathT_Complex*
CmathT_Complex*

Aon_Xmt_Gaussian (AonT_Xmt_Gaussian *gaussian);
Aon_Xmt_Sech (AonT_Xmt_Sech *sech);

aon_xmt.ex.c
/* Greg Campbell */
/* AON Model Suite */
/* aon_xmt.ex.c */

#include "/lidsfs/usr/local3/opnet-2.5-sol/sys/include/opnet.hu

#include "math.h#

#include "cmath.h"
#include "aon_base.ex.h#

#include "aon_xmt.ex.h

CmathT_Complex*
Aon_Xmt_Gaussian (AonT_Xmt_Gaussian *gaussian)

CmathT_Complex
int

*shape;

146

double t_over_tO;

shape = (CmathT_Complex*) malloc (AonI_Len * sizeof (CmathT_Complex));

for (i = 0; i < AonILen; i++)

t_over_tO = (double)(i - AonI_Len / 2) * AonI_Duration / (AonI_Len * gaussian->tO);

(shape + i)->r = sqrt(gaussian->peak_power) * exp ((-0.5) * pow (t_over_tO,
(2*gaussian->m)));

if (gaussian->chirp != 0.0)

(shape + i)->theta = ((-0.5)* pow (t_over_tO, (2*gaussian->m)));

}
else

(shape + i)->theta = 0.0;

}

return (shape);

}

CmathT_Complex*
Aon_Xmt_Sech (AonT_Xmt_Sech *sech)

{
CmathTComplex *shape;
int i;
double t_over_tO;

shape = (CmathT_Complex*) malloc (AonILen * sizeof (CmathTComplex));

for (i = 0; i < AonI_Len; i++)

t_over_tO = (double)(i - AonI_Len / 2) * AonI_Duration / (AonILen * sech->tO);
(shape + i)->r = sqrt(sech->peak_power) * (1.0 / cosh (t_over_tO));

if (sech->chirp != 0.0)

(shape + i)->theta = -0.5 * sech->chirp * t_over_tO * t_over_tO;

else

(shape + i)->theta = 0.0;

}

return (shape);
}

147

B.2 Optical Fiber Support Code

The optical fiber process model and the optical fiber model in the links use the same basic

pulse propagation functions. These functions and their accompanying structures are found

in aon_f ib. ex. h and aon_f ib. ex. c.

aon fib.ex.h
/* Greg Campbell */
/* AON Model Suite */

/**** Defines ****/
#define AONC_FIB_DISPERSION
#define AONCFIB_SPM
#define AONC_FIB_XPM
#define AONC_FIB T RAMANDEF
#define AONCFIB F1 DEF
#define AONCFIB F2 DEF

#define AONC_FIB B1 F1DEF
#define AONC_FIBBlF2_DEF
#define AONC_FIB-B2 F1 DEF

#define AONC_FIB-B2 F2 DEF

#define AONCFIBB3_DEF
#define AONC_FIB_ALPHA_DEF
#define AONC_FIB_LENGTH_DEF
#define AONCFIB_GRANULARITY_DEF
#define AONC_FIB_A_EFF_DEF
#define AONC_FIBN2_DEF

#define AONC_FIBGRMAX_DEF
#define AONCFIB_FRMAX_DEF

/**** Global Variables ****/
#ifdef AON_FIB_DECS
List AonI_Fib_List
int
#else
extern List
extern int
#endif

AonI_Fib_List_Init

AonIFib_List;
AonI_FibList_Init;

/**** Typedefs ****/

typedef struct

double
double
double
double
double
double
double
double
double
double
double
doubledouble

T_Raman;
fl;
f2;
Bl_fl;
Bl_f2;
B2_fl;
B2_f2;
B3;
alpha;
Length;
granularity;
A_eff;

0

1

2

0.0005
192.0
225.0
4875.0
4871.7
-20.0
0.0
0.0
0.2
100
10
65.0
3.2E-16
lE-16
12.0

= 0;

148

,

double n2;
double grmax;
double frmax;
} AonT_Fib_Desc;

typedef struct

int link_objid;
AonT_Fib_Desc* fib_desc;
int xmtl_objid;
AonT_Port_Pulse* portl;
double last_timel;
int xmt2_objid;
AonT_Port_Pulse* port2;
double last_time2;
} AonT_Fib_Link;

typedef struct

double time;
int type;
double d_time;
int pulsel;
int pulse2;
int offset;
double length;
I AonT_Fib_Event;

int aon_fib_event_comp (AonT_Fib_Event* aptr, AonT_Fib_Event* bptr);
AonT_Pulse*Aon_Fib_Exit_Pulse (AonT_Port_Pulse *port, AonT_Fib_Desc *fib_desc,

double time);
void Aon_Fib_Prop_Port (AonT_Port_Pulse *port, AonT_Fib_Desc *fib_desc,

double last_time, double time);
int aon_fib_events_xpm_add (List* event_list, AonT_Port_Pulse* port,

AonT_Fib_Desc* fib_desc, int pulsel, int pulse2,
double last_time, double time);

void aon_fib_event_dispersion_add (List* event_list, int pulse_index,
double time, double length);

void aon_fib_event_spm_add (List* event_list, int pulse_index,
double time, double length);

void aon_fib_event_xpm_add (List* event_list, int pulsel, int pulse2,
double time, double d_time, int offset);

void aon_fibevent_process (AonT_Fib_Event* event, AonT_Port_Pulse* port,
AonT_Fib_Desc* fibdesc);

void Aon_Fib_Pulse_Insert (Packet* pkptr);
void Aon_Fib_Pulse_Remove (Packet* pkptr);
void Aon_Fib_Prop_Self (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc,

double length);
void Aon_Fib_Dispersion (AonT_Pulse* pulse, AonT_Fib_Desc *fib_desc,

double h);
void Aon_Fib_SPM (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc, double h);
void Aon_Fib_XPM (AonTPulse* pulsel, AonT_Pulse* pulse2,

AonT_Fib_Desc* fib_desc, double d_time, int offset);
double Aon_Fib_Gamma (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc);
double Aon_Fib_B2 (double freq, AonT_Fib_Desc *fib_desc);
double Aon_FibBl (double freq, AonT_Fib_Desc *fib_desc);
double Aon_Fib._Delay (AonT_Pulse *pulse, AonT_Fib_Desc* fib_desc);
AonT_Fib_Link*

Aon_Fib_Link_Attr_Get (Objid link_objid);

149

aon fib.ex.c
/* Greg Campbell */
/* AON Model Suite */

#include <math.h>
#include "cmath.h"
#include /lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h#

#include "aon_base.ex.h
#define AON_FIB_DECS
#include "aon_fib.ex.h"

#define AONC_FIBC 3.OE8

int
aon_fib_event_comp (AonT_Fib_Event* aptr, AonT_Fib_Event* bptr)

if (aptr->time < bptr->time)
return (1);

else if (aptr->time > bptr->time)
return (-1);

else if (aptr->type == AONC_FIB_DISPERSION)
return (1);

else
return (-1);

AonT_Pulse*
Aon_Fib_Exit_Pulse (AonT_Port_Pulse *port, AonT_Fib_Desc *fib_desc,

double time)

AonT_Pulse* pulse;
AonT_Pulse* outpulse;

AonT_Port_Entry* port_entry;
int num_pulse, i;
double dist, maxdist;

max_dist = -1.0;
num_pulse = op_prg_list_size (&(port->input));
for (i = 0; i < numpulse; i++)

{
port_entry = (AonT_Port_Entry*) op_prg_list_access (&(port->input), i);
pulse = port_entry->pulse;
dist = (time - port_entry->entry_time) /

(Aon_FibB1 (pulse->freq, fib_desc));
if (dist > max_dist)

{
max_dist = dist;
out_pulse = pulse;

}

return (out_pulse);

void
Aon_Fib_Prop_Port (AonT_Port_Pulse *port, AonT_Fib_Desc *fib_desc,

double last_time, double time)

{
int num_pulse;
AonT_Port_Entry* port_entry;
int i, j;
double d_time;

150

static List
static int
AonT_Pulse*
double
double
double
int
double
AonT_Fib_Event*

event_list;
event_list_init = 0;
pulse;
L_nl, L_d;
width;
max_length,
steps;
step_time;
event;

length;

if (event_list_init == 0)

{
op_prg_list_init (&event_list);
event_list init = 1;

}

/* Perform Split-Step Fourier Method. */
numpulse = opprg_list_size (&(port->input));
d_time = time - last_time;

for (i = 0; i < numpulse; i++)
{
port_entry = (AonT_Port_Entry*) op_prg_list_access (&(port->input), i);
pulse = port_entry->pulse;

/* First determine length scales for the pulse.*/
L_nl = 1.0 / (Aon_Fib_Gamma (pulse, fib_desc) * pulse->peak_power);

if (Aon_FibB2 (pulse->freq, fib_desc) != 0.0)

{
width = Aon_Pulse_Width (pulse);
L_d = (pow (width, 2.0) / fabs (Aon_Fib_B2

}
else

L_d = max_length * fib_desc->granularity;

(pulse->freq, fib_desc)));

if (L_d < L_nl)

length = L_nl / fib_desc->granularity;

else

length = L_d / fib_desc->granularity;

}

max_length = d_time / Aon_Fib_Bl (pulse->freq,
steps = ceil (max_length / length);
length = max_length / steps;
step_time = d_time / steps;

fib_desc);

aon_fib_event_dispersion_add (&event_list, i, 0.0, length /
for (j = 0; j < steps; j++)

{

2.0);

aon_fib_event_spm_-ad (event_list, i, (j * step_time), length);
if (j < (steps - 1))

{
aon_fib_event_dispersion_add (&event_list, i,

((j * step_time) + (step_time / 2.0)), length);
}

}

aon_fib_event_dispersion_add (&event_list, i, d_time - step_time / 2.0,
length / 2.0);

}

151

/* Create XPM and SRS events. */
for (i = 0; i < num_pulse; i++)

for (j = i; j < num_pulse; j++)

aon_fib_events_xpm_add (&event_list, port, fib_desc,
i, j, last_time, time);

I

/* Sort events by time. */
op_prg_list_sort (&event_list, aon_fib_event_comp);

/* Process events. */
while (opprg_list_size (&event_list) != 0)

{
event = (AonT_Fib_Event*) op_p.rg_list_remove

(&event_list, OPC_LISTPOS_HEAD);
aon_fib_event_process (event, port, fib_desc);

free (event);

}

int
aon_fib_events_xpm_add (List* event_list, AonT_Port_Pulse* port,

AonT_Fib_Desc* fib_desc, int pulselind, int pulse2ind, double last_time,

double time)

AonT_Port{Entry*
AonT_Port_Entry*
AonT_Pulse*
AonT_Pulse*
double
double
double
int
int
double
double

port_entl;
port_ent2;
pulsel;
pulse2;
timel, time2;
Bl_l, B1_2;
Lnl, length;
i, offset, steps;
intervals;
intl, int2, overlap, d_time;

start_time, end_time, cur_time, next_time;

port_entl = (AonT_Port_Entry*) op_prg_list_access

(&(port->input), pulselind);
port_ent2 = (AonT_Port_Entry*) op_prg_list_access

(&(port->input), pulse2ind);

pulsel = port_entl->pulse;
pulse2 = port_ent2->pulse;
timel = port_entl->entry_time;
time2 = port_ent2->entry_time;

Bl_1 = Aon_Fib_Bl (pulsel->freq, fib_desc);
B1_2 = Aon_Fib_Bl (pulse2->freq, fib_desc);
if (Bl_1 == B1_2)

{
/* Degenerate group velocities.*/
L_nl = 1.0 / (Aon_Fib_Gamma (pulsel, fib_desc) *

(pulsel->peak_power + pulse2->peak_power));

length = (time - last_time) / Bl_;

steps = ceil (length / L_nl);

if (timel > time2)
/* Pulse 2 is ahead. */

{

152

if (timel > (time2 + AonI_Duration))

{
/* No overlap. */
return (1);

}
else

{
offset = (timel - time2) / (AonI_Duration / AonILen);

for (i = 0; i < steps; i++)

/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */
aon_fib_event_xpm_add (event_list, pulselind, pulse2ind,

(double)(last_time + i * (time - last_time) / steps),
(double)((time - last_time) / steps), offset);

}

}
else

/* Pulse 1 is ahead. */

{
if (time2 > (timel + AonI_Duration))

{
/* No overlap. */
return (1);

}
else

{
offset = (time2 - timel) / (AonI_Duration / AonI_Len);

for (i = 0; i < steps; i++)

{
/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */
aon_fib_event_xpm_add (event_list, pulse2ind, pulselind,

(double)(last_time + i * (time - last_time) / steps),
(double)((time - last_time) / steps), offset);

}

return (1);

}

/* intl is when the leading edge of pulse 1 meets the trailing*/
/* edge of pulse 2. The leading edge of 1 entered the fiber*/
/* at port_entl's time. The trailing edge of 2 entered the */
/* fiber at port_ent2's time + AonI_Duration. */
intl = (B1_2 * timel - B_1 * (time2 + AonI_Duration)) / (B1_2 - B1_1);

/* int2 is when the leading edge of pulse 2 meets the trailing*/
/* edge of pulse 1. */
int2 = (B_1 * time2 - B1_2 * (timel + AonI_Duration)) / (Bi_1 - B1_2);

/* overlap is when the leading edge of pulse 1 meets the */
/* leading edge of pulse 2. */
overlap = (B1_2 * timel - Bl_1 * time2) / (B1_2 - B1_1);

d_time = fabs (intl - int2) / ((double) (2 * AonI_Len - 1));
if (intl < int2)

{
/* Pulse 2 is slower than pulse 1.*/
if ((int2 < last_time) 11 (intl > time))

{

153

/* No overlap. */
return (1);

}

if (last_time > intl)
start_time = last_time;

else
start_time = intl;

if (time < int2)
end_time = time;

else
end_time = int2;

curtime = start_time;
while (cur_time < end_time)

{
intervals = floor ((cur_time - intl) / d_time);
next_time = intl + (intervals + 1) * d_time;
if (next_time > end_time)

next_time = end_time;

offset = floor ((curtime - overlap) / d_time);
if (offset > 0)

{
/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */
aon_fib_event_xpm_add (event_list, pulse2ind, pulselind,

cur_time, next_time - cur_time, offset);

}
else

{
/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */
aon_fib_event_xpmadd (event_list, pulselind, pulse2ind,

cur_time, next_time - cur_time, ((-l)*offset));

}

cur_time += d_time;

}
}

else

{
/* Pulse 1 is slower than pulse 2.*/

if ((intl < last_time) II (int2 > time))

/* No overlap. */
return (1);

if (last_time > int2)
start_time = last_time;

else
start_time = int2;

if (time < intl)
end_time = time;

else
end_time = intl;

curtime = start_time;
while (cur_time < endtime)

{
intervals = floor ((cur_time - int2) / d_time);
next_time = int2 + (intervals + 1) * d_time;

154

if (next_time > end_time)
next_time = end_time;

offset = floor ((cur_time - overlap) / dtime);
if (offset > 0)

/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */
aon_fib_event_xpm_add (event_list, pulselind, pulse2ind,

cur_time, next_time - cur_time, offset);

else

/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */
aon_fib_event_xpm_add (event_list, pulse2ind, pulselind,

cur_time, next_time - cur_time, ((-l)*offset));
}

cur_time += d_time;

}

void

aon_fib_event_dispersion_add (List* event_list, int pulse_index, double time,
double length)

{
AonT_Fib_Event* event;

event = (AonT_Fib_Event*) malloc (sizeof (AonT_Fib_Event));

event->time =
event->type =
event->d_time
event->pulsel
event->pulse2
event->offset
event->length

t:ime;

AONC_FIB_DISPERSION;
= 0.0;

:: pulse_index;
::: 0;

= 0;

::: length;

op_prg_list_insert (event_list, (void*) event, OPC_LISTPOS_TAIL);

void
aon_fib_event_spm_add (List* event_list, int

double length)

{
AonT_Fib_Event*

pulse_index, double time,

event;

event = (AonT_F'ib_Event*) malloc (sizeof (AonT_Fib_Event));

event->time = time;
event->type = AONC_FIB_SPM;
event->d_time = 0.0;
event->pulsel = pulse_index;
event->pulse2 = 0;

event->offset = 0;

event->length = length;

opprg_list_insert (event_list, (void*) event, OPC_LISTPOS_TAIL);

void
aon_fib_event_xpm_add (List* event_list, int pulsel, int pulse2, double time,

double d_time, int offset)

155

AonT_Fib_Event* event;

event = (AonT_Fib_Event*) malloc (sizeof (AonT_Fib_Event));

event->time = time;
event->type = AONC_FIB_XPM;
event->d_time = d_time;
event->pulsel = pulsel;
event->pulse2 = pulse2;
event->offset = offset;
event->length = 0.0;

op_prg_list_insert (event_list, (void*) event, OPC_LISTPOS_TAIL);

}

void
aon_fib_event_process (AonT_Fib_Event* event, AonT_Port_Pulse* port,

AonT_FibDesc* fibdesc)
{
AonT_Pulse* pulse;
AonTPulse* pulse2;

pulse = (AonT_Pulse*) op_prg_list_access (&(port->input), event->pulsel);

if (event->type == AONC_FIB_DISPERSION)

Aon_Fib_Dispersion (pulse, fib_desc, event->length);

}
else if (event->type == AONC_FIB_SPM)

Aon_Fib_SPM (pulse, fib_desc, event->length);

}
else if (event->type == AONC_FIB_XPM)

pulse2 = (AonT_Pulse*) op_prg_list_access (&(port->input), event->pulse2);

Aon_Fib_XPM (pulse, pulse2, fib_desc, event->d_time, event->offset);

}

void
Aon_Fib_Pulse_Insert (Packet* pkptr)

{

void
Aon_Fib_Pulse_Remove (Packet* pkptr)

{

void
Aon_Fib_Prop_Self (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc, double max_length)

{
double L_d;
double L_nl;
double cur_length;
double width;
double length;

double length_left;
double B2_delay;

cur_length = 0.0;

L_nl = 1.0 / (Aon_Fib_Gamma (pulse, fib_desc) * pulse->peak_power);

156

if (Aon_FibB2 (pulse->freq, fib_desc) != 0.0)

{
width = Aon_Pulse_Width (pulse);
L_d = (pow (width, 2.0) / fabs (Aon_Fib_B2

else
L_d = max_length * fib_desc->granularity;

(pulse->freq, fib_desc)));

if (L_d < L_nl)

length = L_nl / fib_desc->granularity;

else

length = L_d / fib_desc->granularity;

}

if (length > (max_length - cur_length))
length = max_length - cur_length;

/* Perform dispersion assuming no non-linearity. */
Aon_Fib_Dispersion (pulse, fib_desc, (length/2.0));
length_left = length / 2.0;

while (curlength < max_length)

printf (###cur_length = %lf\n", curlength);

/*###*/Aon_Pulse_Peak_Power (pulse);
/* Perform non-linearity assuming no dispersion.
Aon_Fib_SPM (pulse, fib_desc, length);

*/

Aon_Pulse_Peak_Power (pulse);

cur_length += length;

if (cur_length < max_length)

L_nl = 1.0 / (Aon_Fib_Gamma (pulse, fib_desc) * pulse->peakpower);
if (Aon_Fib_B2 (pulse->freq, fib_desc) != 0.0)

width = Aon_Pulse_Width (pulse);
L_d = (pow (width, 2.0) / fabs (Aon_Fib_B2 (pulse->freq, fib_desc)));

else
L_d = max_length * fib_desc->granularity;

if (L_d. < L_nl)

{
length = L_nl / fib_desc->granularity;

else

length = L_d / fib_desc->granularity;

if (length > (maxength - curlength))
length = max_length - cur_length;

else
length = 0.0;

/* Perform dispersion assuming no non-linearity. */
Aon_Fib_Dispersion (pulse, fib_desc, length_left + (length/2.0));

157

length_left = length / 2.0;

Aon_Pulse_Peak_Power (pulse);

}

void
Aon_FibDispersion (AonT_Pulse* pulse, AonT_Fib_Desc *fib_desc, double h)

{
int i;
CmathT_Complex tmp, d;
static CmathT_Complex*fft_shape;
static int fft_init;
double freq;

printf (###dispersion\n");
if (fft_init == 0)

{
fft_shape = (CmathT_Complex*) malloc (AonI_Len * sizeof (CmathT_Complex));
fft_init = 1;

}

cmath_FFT (fft_shape, pulse->shape, AonI_Nu);

for (i = 0; i < AonI_Len; i++)

{
freq = ((((i + AonI_Len/2) % AonI_Len) - AonI_Len/2) * 2.0 * CMATH_PI /

AonI_Duration);
d.r = exp ((-0.5)*h*fib_desc->alpha);
d.theta = ((0.5) * h * (Aon_Fib_B2 (pulse->freq, fib_desc)) *

pow (2.0 * CMATH_PI * freq, 2.0)) - ((1.0/6.0) * h * fib_desc->B3 *
pow (2.0 * CMATH_PI * freq, 3.0));

cmath_mult (fft_shape + i, fft_shape + i, &d);

}

cmath_inv_FFT (pulse->shape, fftshape, AonINu);

void
Aon_FibSPM (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc, double h)

{
int
double
CmathT_Complex
CmathT_Complex
CmathT_Complex
CmathT_Complex
CmathT_Complex
CmathT_Complex
CmathT_Complex
CmathT_Complex
CmathT_Complex
double
CmathT_Complex

i;
gamma;

A;
oper;
tmpl;
tmp2;
A_inv;
tmp_exp;
tmpumb;
tmp_middle;
A2A_diff;
A2_0, A2_1, A2_2;
A2A_0, A2A_1, A2A_2;

printf ("###non_linear\n");
/*cmath_vectorprint (pulse->shape, AonILen);*/

gamma = Aon_Fib_Gamma (pulse, fib_desc);

A2_1 = pow ((pulse->shape + AonI_Len - l)->r, 2.0);
A2_2 = pow ((pulse->shape)->r, 2.0);
A2A_l.r = A2_l*(pulse->shape + AonI_Len - l)->r;
A2A_l.theta = (pulse->shape + AonI_Len - l)->theta;

158

A2A_2.r = A2_2*(pulse->shape)->r;
A2A_2.theta = (pulse->shape)->theta;

for (i = 0; i < AonI_Len; i++)

A.r { (puse->shape +
A.theta = (pulse->shape + i)->theta;
A2_0 = A2_1;
A2_1 = A2_2;
A2_2 = pow ((pulse->shape + ((i + 1) % AonI_Len))->r, 2.0);
A2A_0O.r = A2A_l.r;
A2A_O.theta = A2A_l.theta;
A2A_l.r = A2A_2.r;
A2A_l.theta = A2A_2.theta;
A2A_2.r = A2_2*(pulse->shape + ((i + 1) % AonILen))->r;
A2A_2.theta = (pulse->shape + ((i + 1) % AonI_Len))->theta;

/* Set tmpl to 2i/wO. */
tmpl.r = ((2.0) / (pulse->freq * 2.0 * CMATH_PI));
tmpl.theta = CMATH_PI / 2.0;

/* Determine 1/A. */
A_inv.r = 1.0 / (pulse->shape + i)->r;
A_inv.theta = (-1.0) * (pulse->shape + i)->theta;

/* Set tmpl to 2i/wOA. */
cmath_mult (&tmp2, &tmpl, &A_inv);

/* Determine d/dT of A2A. */
/* Subtract A2A_0 - A2A_2 because time is in reverse. */
cmath_sub (&A2A_diff, &A2A_0, &A2A_2);
A2A_diff.r = A2A_diff.r / (AonI_Duration * 2.0 / (double) AonI_Len);

/* Set tmpmiddle to 2i/wOA * d/dT of A2A. */
cmath_mult (&tmp_middle, &tmp2, &A2Adiff);

/* set tmpl to A2 - Tr*d/dT A2. */
tmpl.r = A2_1 -

(fib_desc->T_Raman *

(A2_0 - A2_2) /
(AonI_Duration * 2.0 / (double) AonILen)

tmpl.theta 0.0;

/* Set tmp_umb to tmp_middle plus tmpl. */
cmath_add (&tmp_umb, &tmp_middle, &tmpl);

/* Set tmpl to i*h*gamma. */
tmpl.r = gamma * h;
tmpl.theta CMATH_PI / 2.0;

/* Set tmpexp to D from page 45 in Agrawal. */
cmath_mult (&tmp_exp, &tmpl, &tmp_umb);

/* Set the operator to e**D. */
oper.r = exp (tmp_exp.r * cos (tmp_exp.theta));
oper.theta = tmp_exp.r * sin (tmp_exp.theta);

/* Multiply the pulse envelope by the operator. */
cmath_mult ((pulse->shape + i), &A, &oper);

}

159

void
Aon_Fib_XPM (AonT_Pulse* pulsel, AonT_Pulse* pulse2, AonT_Fib_Desc* fib_desc,

double d_time, int offset)

double lengthl, length2;
double gammal, gamma2;
double Slpow, S2_pow;
double g_raman;
double raman_amp;
double ramanpower;
int i;

/* Determine the interaction length for each pulse sample.*/
lengthl = d_time * Aon_Fib_B1 (pulsel->freq, fib_desc);
length2 = dtime * Aon_Fib_B1 (pulse2->freq, fib_desc);

/* Determine the raman gain constant dependent upon the */
/* difference in pulse carrier frequencies. */
g_raman = cmath_dB ((-1.0) * fib_desc->grmax * (fabs (pulsel->freq -

pulse2->freq)) / fib_desc->frmax);

/* Determine the gamma constant for each pulse. */
gammal = Aon_Fib_Gamma (pulsel, fib_desc);
gamma2 = Aon_Fib_Gamma (pulse2, fib_desc);

/* Pulse 2 is always ahead of pulse 1. */
/* Go through each overlapping sample... */
for (i = 0; i < (AonI_Len - offset); i++)

{
/* Determine the power of the two samples in question.*/
Sl_pow = pow ((pulsel->shape + i + offset)->r, 2.0);
S2_pow = pow ((pulse2->shape + i)->r, 2.0);

/* Perform XPM calculation. */
/* If frequencies are the same, really SPM. */
if (pulsel->freq != pulse2->freq)

{
(pulsel->shape + i + offset)->theta +=

lengthl * S2_pow * 2.0 * gammal;
(pulse2->shape + i)->theta += length2 * Sl_pow * 2.0 * gamma2;

}
else

{
(pulsel->shape + i + offset)->theta += length l * S2.pow * gammal;
(pulse2->shape + i)->theta += length2 * Sl_pow * 2.0 * gamma2;

}

/* Place the sample in a known state, with positive */
/* amplitude. */
cmath_principle_val (pulsel->shape + i + offset);
cmath_principle_val (pulse2->shape + i);

/* Perform the Raman gain calculations. */
/* The higher frequency pulse amplifies the lower freq.*/
if (pulsel->freq > pulse2->freq)

{
/* Amplify pulse 2.*/
/* Determine the raman amplification. */
raman_amp = exp (length2 * g_raman * Sl_pow);
(pulse2->shape + i)->r = (pulse2->shape + i)->r * g_raman;

/* Determine the amount of power transfered. */
raman_power = pow ((pulse2->shape + i)->r, 2.0) - S2_pow;

/* By conservation, remove power from pulse 1. */

160

(pulsel->shape + i + offset)->r = sqrt (Sl_pow - raman_power);

}
else

{
/* Amplify pulse 1.*/
/* Determine the raman amplification.
raman amp = exp (lengthl * g_raman * S2_pow);
(pulsel->shape + i + offset)->r = (pulsel->shape

g_raman;

*/

+ i + offset)->r *

/* Determine the amount of power transfered. */
raman_power = pow ((pulsel->shape + i + offset)->r, 2.0) - Slpow;

/* By conservation, remove power from pulse 1. */
(pulse2->shape + i)->r = sqrt (S2_pow - raman_power);

}

double
Aon_Fib_Gamma (AonTPulse *pulse, AonT_Fib_Desc *fib_desc)

double gamma;
double gamma;

gamma = fib_desc->n2 * E-10 * pulse->freq * 2.0 * CMATH_PI * 1E3 / (AONC_FIB_C * 1E-12
* fib_desc->A_eff * 1E-18);

return (gamma);

double
Aon_Fib_Delay (AonT_Pulse* pulse, AonT_Fib_Desc* fib_desc)

double delay;

delay = Aon_Fib_Bl (pulse->freq, fib_desc) * fibdesc->Length;

return (delay);

I

double
Aon_Fib_B2 (double freq,

{
double

AonT_Fib_Desc *fib_desc)

B2;

B2 = fib_desc-:>B2_fl+ (freq - fib_desc->fl) * (fib_desc->B2_f2 - fib_desc->B2_fl) /
(fib_desc->f2 - fib_desc->fl);

return (B2);
}

double
Aon_FibBl (double freq,

{
double

AonT_Fib_Desc *fib_desc)

B1;

B1 = fib_desc->Bl_fl + (freq - fib_desc->fl) * (fib_desc->Bl_f2 - fib_desc->Bl_fl) /
(fib_desc->f2 - fib_desc->fl);

return (B1);

AonT_Fib_Link*
Aon_Fib_Link_Attr_Get (Objid link_objid)

{

161

AonT_Fib_Link* link;
AonT_Fib_Desc* fibdesc;

link = (AonT_Fib_Link*) malloc (sizeof (AonT_Fib_Link));

link->link_objid = (int) link_objid;
link->fib_desc = (AonT_Fib_Desc*) malloc (sizeof (AonT_Fib_Desc));
fibdesc = link->fib_desc;
link->xmtl_objid = -1;
link->xmt2_objid = -1;

if (op_ima_obj_attr_exists (link_objid, T Raman") == OPCTRUE)
op_ima_obj_attr_get (link_objid, T Raman", &(fib_desc->T_Raman));

else
fib_desc->T_Raman = AONC_FIB_T_RAMAN_ DEF;

if (op_ima_obj_attr_exists (link_objid, freql") == OPC_TRUE)
op_ima_obj_attr_get (link_objid, "freql", &(fib_desc->fl));

else
fib_desc->fl = AONC_FIBF1_DEF;

if (op_ima_obj_attr_exists (linkobjid, freq2) == OPC_TRUE)
op_ima_obj_attr_get (linkobjid, freq2", &(fib_desc->f2));

else
fib_desc->f2 = AONC_FIB_F2_DEF;

if (op_ima_obj_attrexists (linkobjid, "B1
op_ima_obj_attr_get (link_objid, B1 at

else
fib_desc->Bl_fl = AONC_FIBBi_FiDEF;

if (op_ima_obj_attrexists (link_objid, B1
op_ima_obj_attr_get (link_objid, "B1 at

else
fib_desc->Bl_f2 = AONC_FIB_B1_F2_DEF;

if (op_ima_obj_attrexists (link_objid, B2
op_ima_obj_attr_get (link_objid, B2 at

else
fibdesc->B2_fl = AONC_FIBB2_FDEF;

if (op_ima_obj_attr_exists (link_objid, B2
op_ima_obj_attrget (link_objid, B2 at

else

fib_desc->B2_f2 = AONC_FIBB2_F2_DEF;

at freql") == OPC_TRUE)
freql", &(fibdesc->Bl_fl));

at freq2") == OPC_TRUE)
freq2", &(fib_desc->Bl_f2));

at freql") == OPC_TRUE)
freql", &(fib_desc->B2_fl));

at freq2") == OPC_TRUE)
freq2", &(fib_desc->B2_f2));

if (op_ima_objattrexists (link_objid, UB3") == OPCTRUE)
op_ima_obj_attrget (link_objid, UB3", &(fib_desc->B3));

else
fib_desc->B3 = AONC_FIB_B3_DEF;

if (op_ima_obj_attr_exists (link_objid, "alpha") == OPCTRUE)
op_ima_obj_attrget (link_objid, Ualpha", &(fib_desc->alpha));

else
fib_desc->alpha = AONC_FIB_ALPHA_DEF;

if (op_ima_obj_attr_exists (link_objid, ULength") == OPCTRUE)
op_ima_obj_attrget (link_objid, "Length", &(fib_desc->Length));

else
fib_desc->Length = AONC_FIB_LENGTH_DEF;

if (op_ima_obj_attr_exists (link_objid, "granularity") == OPC_TRUE)
op_ima_obj_attrget (link_objid, granularity", &(fib_desc->granularity));

else
fib_desc->granularity = AONC_FIB_GRANULARITY_DEF;

162

if (op_ima_obj_attr_exists (link_objid, A eff') == OPC_TRUE)
op_ima_obj_attr_get (linkobjid, A eff", &(fib_desc->A_eff));

else
fib_desc->A_eff = AONC_FIB_A_EFF_DEF;

if (op_ima_obj_attrexists (linkobjid, n2') == OPC_TRUE)
op_ima_obj_attr_get (link_objid, n2', &(fib_desc->n2));

else
fib_desc-:>n2 = AONC_FIB_N2_DEF;

if (op_ima_obj_attrexists (link_objid, Grmax") == OPC_TRUE)
op_ima_obj_attr_get (link_objid, Grmax', &(fib_desc->grmax));

else
fib_desc->grmax = AONC_FIB_GRMAX_DEF;

if (op_ima_obj_attr_exists (link_objid, Frmax") == OPC_TRUE)
opima_obj_attr_get (link_objid, Frmax", &(fib_desc->frmax));

else
fibdesc->frmax = AONC_FIB_FRMAX_DEF;

return (link);

}

163

B.3 Fused Biconical Coupler Support Code

The fused biconical coupler process model uses functions that determine the output of a

fused biconical coupler due to an incident pulse. These functions and their accompanying

structures are found in aon_fbc. ex. h and aon_fbc. ex. c.

aonfbc. ex.h
/* Greg Campbell */
/* AON Model Suite */
/* aon_fbc.ex.h */
/* Fused Biconical Coupler Model support code*/

/**** Typedefs ****/

typedef struct

{
double r;
double delta_r;
double z;
double a;
} AonT_FBC_Desc;

AonT_FBC_Desc*
Aon_FBC_Create (double r, double delta_r, double z, double a);

void Aon_FBC_Pulsel (AonT_Pulse* pulse, AonT_FBC_Desc* fbc_desc);
void Aon_FBC_Noisel (AonT_Noise* noise, AonT_FBC_Desc* fbc_desc);
int Aon_FBC_Gainl (CmathT_Complex* g, double freq, void* void_fbc_desc);
void Aon_FBC_Pulse2 (AonT_Pulse* pulse, AonT_FBC_Desc* fbc_desc);
void Aon_FBC_Noise2 (AonT_Noise* noise, AonT_FBC_Desc* fbc_desc);
int AonFBCGain2 (CmathT_Complex* g, double freq, void* void_fbc_desc);

aonfbc.ex.c
/* Greg Campbell */
/* AON Model Suite */
/* aon_fbc.ex.c */
/* Fused Biconical Coupler Model support code*/
/* See section 4.3 in thesis document */

#include <math.h>
#include "cmath.h"
#include "/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h'
#include "aon_base.ex.h
#include "aon_lin.ex.h
#include "aon_fbc.ex.h'

AonT_FBC_Desc*
Aon_FBC_Create (double r, double delta_r, double z, double a)

(
AonT_FBC_Desc* fbcdesc;

164

fbc_desc = (AonT_FBCDesc*) malloc (sizeof (AonT_FBC_Desc));

fbc_desc->r = r;
fbc_desc->delta_r = delta_r;
fbc_desc->z = z;
fbc_desc->a = cmath_dB (a);

return (fbc_desc);

}

void
Aon_FBC_Pulsel (AonT_Pulse* pulse, AonT_FBC_Desc* fbc_desc)

Aon_Lin_Pulse (pulse, Aon_FBC_Gainl, (void*) fbc_desc);

I

void
Aon_FBC_Noisel (AonT_Noise* noise, AonT_FBCDesc* fbc_desc)

Aon_LinNoise (&(noise->power), noise->freq_bin, Aon_FBC_Gainl,
(void*) fbc_desc);

}

void
Aon_FBC_Pulse2 (AonT_Pulse* pulse, AonT_FBC_Desc* fbc_desc)

Aon_Lin_Pulse (pulse, Aon_FBC_Gain2, (void*) fbcdesc);

}

void
Aon_FBC_Noise2 (AonT_Noise* noise, AonT_FBC_Desc* fbc_desc)

Aon_Lin_Noise (&(noise->power), noise->freq_bin, Aon_FBC_Gain2,
(void*) fbc_desc);

}

Aon_FBC_Gainl (CmathT_Complex* g, double freq, void* void_fbc_desc)

{
AonT_FBC_Desc*
double
double
double

fbc_desc;
C, F2;
lambda;
alpha;

fbc_desc = (AonT_FBC_Desc*) void_fbc_desc;

/* In this procedure the unit for time is picoseconds,*/
/* the unit for distance is microns. C has units */
/* 1/distance, F2 is unitless. */

/* wavelength equals c (speed of light) over frequency.*/
/* frequency is in THz, so c is speed of light in */
/* microns/picosecond = 3E2. */
lambda = 3.OE2 / freq;

/* If delta r is 0.0, the F term becomes unity.
if (fbc_desc->delta_r == 0.0)

F2 = 1.0;

else

/* See section 4.3 in thesis document.
F2 = 1.0 /

(1.0 +
(234.0*pow ((fbc_desc->r /

*/

lambda), 3.0)) *

165

*/

(pow (fbc_desc->delta_r / fbc_desc->r, 2.0))

C = 21.0 * pow (lambda, 2.5) / pow (fbc_desc->r, 3.5);

alpha = sqrt (F2 * pow (sin (C*fbc_desc->z/sqrt (F2)), 2.0));

g->r = sqrt (1.0 - alpha) * fbc_desc->a;
g->theta = 0.0;

}

Aon_FBC_Gain2 (CmathT_Complex* g, double freq, void* void_fbc_desc)

AonT_FBC_Desc* fbc_desc;
double C, F2;
double lambda;
double alpha;

fbc_desc = (AonT_FBC_Desc*) void_fbc_desc;

/* In this procedure the unit for time is picoseconds,*/
/* the unit for distance is microns. C has units */
/* I/distance, F2 is unitless. */

/* wavelength equals c (speed of light) over frequency.*/
/* frequency is in THz, so c is speed of light in */
/* microns/picosecond = 3E2. */
lambda = 3.0E2 / freq;

/* If delta r is 0.0, the F term becomes unity. */
if (fbc_desc->delta_r == 0.0)

{
F2 = 1.0;
}

else

{
/* See section 4.3 in thesis document. */
F2 = 1.0 /

(1.0 +
(234.0*pow ((fbc_desc->r / lambda), 3.0)) *
(pow (fbc_desc->delta_r / fbc_desc->r, 2.0))

C = 21.0 * pow (lambda, 2.5) / pow (fbc_desc->r, 3.5);

alpha = sqrt (F2 * pow (sin (C*fbc_desc->z/sqrt (F2)), 2.0));

g->r = sqrt (alpha) * fbc_desc->a;
g->theta = CMATH_PI / 2.0;

166

B.4 Star Coupler Support Code

The star coupler process model uses functions that determine the output of a star coupler

due to an incident pulse. These functions and their accompanying structures are found in

aon_stc. ex. h and aon_stc. ex. c.

aon_stc.ex.h

/* Greg Campbell */
/* AON Model Suite */
/* aon_stc.ex.h */

/**** Typedefs ****/
typedef struct

{
int N;
double delay;
double insertion_loss;
} AonT_STC_Desc;

/**** Function Prototypes ****/

AonT_STC_Desc*
Aon_STC_Create (int N, double loss, double delay);

void Aon_STC_Propagate (AonT_Pulse* pulse, AonT_STC_Desc* stc_desc);
void Aon_STC(_Noise_Propagate (AonT_Noise* noise, AonT_STC_Desc* stc_desc);

aon_stc.ex.c

/* Greg Campbell */

/* AON Model Suite */
/* aon_stc.ex.h */

#include "/lidsfs/usr/local3/opnet-2.5-sol/sys/include/opnet.h"
#define AON_BASE_DECS
#include <math.h>
#include cmath.h#

#include aon_base.ex.h"
#include aon_stc.ex.h"

AonT_STC_Desc*
Aon_STC_Create (int N, double loss, double delay)

{
AonT_STC_Desc* stc_desc;

stc_desc = (AonTSTC_Desc*) malloc (sizeof (AonT_STC_Desc));

stcdesc->N = N;
stc_desc->insertion_loss = cmath_dB (loss);
stc_desc->delay = delay;

167

return (stc_desc);

void
Aon_STC_Propagate (AonT_Pulse* pulse, AonT_STCDesc* stc_desc)

int i;
CmathT_Complex split_self;

split_self.r = sqrt ((1.0/(double)stc_desc->N) * stc_desc->insertion_loss);

split_self.theta = 0.0;

cmath_vector_mult_vector (pulse->shape, AonI_Len, pulse->shape, &split_self);

void
AonSTC_Noise_Propagate (AonT_Noise* noise, AonT_STC_Desc* stc_desc)

noise->power = noise->power * (1.0 / (double)stc_desc->N) * stc_desc->insertion_loss;

}

168

B.5 Optical Amplifier Support Code

The optical amplifier process model uses functions that determine the output of an optical

amplifier. These functions and their accompanying structures are found in

aon_amp. ex. h and aon_amp. ex. c.

aon_amp. ex.h

/* Greg Campbell */
/* AON Model Suite */
/* aon_xmt.ex.h */
/* Transmitters */

/**** Constants ****/
#define planck 6.626E-34

#define AONC_AMP_UPDATE
#define AONC_AMP_POWER
/**** Typedefs ****/

0

1

typedef struct

{
List power_list;
int low_pulse_num;
int highpulsenum;
) AonT_Amp_Power_Interrupt_Desc;

typedef struct

f
double
double
double
double
double
double
double
double

gain;
sat;
tau;
noise;
delay;
d_noise;
pulsepower;
rcvnoise;

AonT_Amp_Power_InterruptDesc*powerlist;
AonT_Port_Noise_In* noise_in;
AonT_Port_Noise_Out* noise_out;
} AonT_Amp_Desc;

/**** Function Prototypes ****/

AonT_Amp_Desc*
void
void
void

void
double

Aon_Amp_Desc_Create ();
Aon_Amp_Noise_Update (AonT_Amp_Desc *amp, double time);
Aon_Amp-Pulse (AonT_Amp_Desc* amp, AonT_Pulse* pulse);
Aon_Amp_Pulse_Power_Interrupt_Set (AonT_Amp_Desc* amp,

AonT_Pulse* pulse);
Aon_Amp_Pulse_Power_Interrupt_Get (AonT_Amp_Desc* amp);
Aon_Amp_Next_Update (AonT_Amp_Desc* amp);

169

aonamp. ex.c
/* Greg Campbell */
/* AON Model Suite */
/* aon_amp.ex.c */

#include /lidsfs/usr/local3/opnet-2.5-sol/sys/include/opnet.h
#include "math.h"
#include "cmath.h"
#include "aon_base.ex.h"
#include "aon_amp.ex.h"

AonT_Amp_Desc*
Aon_Amp_Desc_Create ()

{
AonT_Amp_Desc* amp;

amp = (AonT_Amp_Desc*) malloc (sizeof (AonT_Amp_Desc));

amp->power_list = (AonTAmp_PowerInterrupt_Desc*) malloc
(sizeof (AonT_Amp_PowerInterrupt_Desc));

opprg_list_init (&(amp->powerlist->powerlist));
amp->power_list->low_pulse_num = 0;
amp->power_list->high_pulse_num = 0;

amp->noise_in = Aon_Port_Noise_In_Create ();
amp->noise_out = Aon_Port_Noise_Out_Create ();

amp->rcv_noise = 0.0;
amp->pulse_power = 0.0;

return (amp);

void
Aon_Amp_Noise_Update (AonT_Amp_Desc *amp, double time)

{
AonT_Noise* noise_bin;
Packet* pkptr;
double noise;
double noise_tot;
double W_in;
double gain;
double delta_f;
double freq;
int i;

W_in = amp->rcv_noise + amp->pulsepower;

gain = amp->gain / (1.0 + W_in / amp->sat);

delta_f = ((AonI_High_Freq - AonILow_Freq) / AonI_N_Segment) * 1E12;
for (i = 0; i < AonI_N_Segment; i++)

freq = (AonI_Low_Freq + ((double) i / (double) AonI_N_Segment) *
(AonI_High_Freq - AonI_Low_Freq)) * 1E12;

noise = gain * planck * amp->noise * freq * delta_f;
noise_tot = noise + gain * (*(amp->noise_in->noise_array + i));

Aon_Port_Noise_Out_Handle_Abs (amp->noise_out, i, noise_tot, 0,
amp->delay);

/* if (i == 0)

170

printf ("time = %lf ppower = %lf noise packet bin = %d noise = %lf, power =
%lf\n", time, amp->pulse_power, i, noise, noise_tot); */

}
if (time < 1001.0)

{
printf (amp sat = %lf\n", amp->sat);
printf (amp gain = %lf\n", amp->gain);
printf (gain = %lf\n W_in = %lf\n delta_f = %lf\n", gain, W_in, delta_f);

}

void
Aon_Amp_Pulse (AonT_AmpDesc* amp, AonT_Pulse* pulse)

double W{n;
double gain;
int i;
double pulse_power;

pulse_power = amp->pulse_power;

for (i = 0; i < AonI_Len; i++)
{
pulse_power = pulse_power * exp ((-1.0) * (AonI_Duration / (double) AonILen) /

amp->tau);
pulse_power += pow (((pulse->shape) + i)->r, 2.0) *

(AonI_Duration / (double) AonI_Len) / amp->tau;
W_in = amp->rcvnoise + amp->pulsepower;
gain = amp->gain / (1.0 + W_in / amp->sat);
((pulse->shape) + i)->r = ((pulse->shape) + i)->r * sqrt (gain);

}
}

void
Aon_Amp_Pulse_Power_Interrupt_Set (AonT_Amp_Desc* amp, AonTPulse* pulse)

double pulse_power_tot;
double delta_power;
double W_in;
double gain_old;
int pulse_significant;
List* pulse_powerlist;
double* list_entry;
int i;
double gain;

pulse_significant = 0;

W_in = amp->rcv_noise + amp->pulse_power;

gain_old = amp-->gain / (1.0 + W_in / amp->sat);
pulsepowertot = 0.0;

for (i = 0; i < AonILen; i ++)

{
W_in = W_in * exp ((-1.0) * (AonI_Duration / (double) AonI_Len) / amp->tau);
deltapower = pow (((pulse->shape) + i)->r, 2.0) *

(AonI_Duration / (double) AonILen) / amp->tau;

W_in += deltapower;
pulse_power_tot += delta_power;

gain = amp->gain / (1.0 + W_in / amp->sat);

if ((gain >= (gain_old * (1.0 + amp->d_noise))) II

171

(gain <= (gain_old * (1.0 - amp->d_noise))))

{
if (pulse_significant == 0)

pulse_power_list = opprg_list_create ();
pulse_significant = 1;

}

list_entry = (double*) malloc (sizeof (double));
(*(list_entry)) = pulse_power_tot;
opprg_list_insert (pulsepower_list, (void*) list_entry,

OPC_LISTPOS_TAIL);
op_intrpt_schedule_self (op_sim_time () +

((double)i/(double)AonILen)*AonI_Duration,
amp->powerlist->high_pulse_num + AONC_AMP_POWER);

printf (interrupt time = %lf, code = %d\n", op_sim_time () +
((double)i/(double)AonI_Len)*AonI_Duration,
amp->power_list->highpulse_num + AONC_AMP_POWER);

gain_old = gain;
pulsepower_tot = 0.0;

}

if (pulse_significant)

op_prg_list_insert (&(amp->power_list->power_list), pulse_powerlist,

OPCLISTPOS_TAIL);
amp->power_list->high_pulse_num++;

}
}

void
Aon_Amp_Pulse_Power_Interrupt_Get (AonT_Amp_Desc* amp)

{
int pulse_num;
int done;
List* pulsepower_list;
double* list_entry;

done = 0;

pulse_num = op_intrpt_code () - AONC_AMP_POWER;

pulse_power_list = (List*) op_prg_list_access
(&(amp->power_list->power_list),
(pulse_num - amp->power_list->low_pulse_num));

list_entry = (double*) opprg_list_remove (pulse_power_list,
OPC_LISTPOS_HEAD);

amp->pulse_power += (*(list_entry));

while (done == 0)

{
if (op_prg_list_size (&(amp->power_list->power_list)))

{
pulse_power_list = (List*) op_prg_list_access

(&(amp->powerlist->power_list), OPC_LISTPOS_HEAD);
if (op_prg_listsize (pulsepower_list) == 0)

{
pulsepowerlist = (List*) op_prg_list_remove

(&(amp->powerlist->powerlist), OPCLISTPOS_HEAD);
op_prg_list_free (pulse_powerlist);

172

amp->powerlist->low_pulse_num++;

}
else

done = 1;

else
done = 1;

}

double
Aon_Amp_Next_Update (AonT_Amp_Desc* amp)

{
double deltat;
double D;

D = 1.0 + amp->d_noise;
delta_t = (-l.0)*amp->tau*log

((((amp->sat*(1.0-D)+amp->rcv_noise+amp->pulsepower) / D) - amp->rcv_noise) / amp-
>pulse_power);

return (delta_t);

}

173

B.6 ASE Filter Support Code

The ASE filter process model uses functions to determine the output of the ASE filter due

to incident pulse and noise streams. These functions and their accompanying structures are

found in aon_ase. ex. h and aon_ase. ex. c.

aon_ase.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct

{
double F
double W
double a
} AonT_ASE_Desc;

SR;

AonTASE_Desc*
void
void
int

Aon_ASE_Create (double FSR, double W, double a);
Aon_ASE_Pulse (AonT_Pulse* pulse, AonT_ASE_Desc* ase_desc);

Aon_ASE_Noise (AonT_Noise* noise, AonT_ASE_Desc* ase_desc);

Aon_ASE_Gain (CmathT_Complex* g, double freq,
void* void_ase_desc);

aon_ase.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include
#include
#include
#include
#include
#include

<math.h>
"cmath.h"
"/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h'

"aon_base.ex.h#

"aonlin.ex.h"
"aon_ase.ex.h"

AonT_ASEDesc*
Aon_ASE_Create (double FSR, double W, double a)

{
AonT_ASE_Desc*
double

ase_desc;

ase_desc = (AonT_ASE_Desc*) malloc (sizeof (AonT_ASE_Desc));

ase_desc->FSR = FSR;
ase_desc->W = W;
ase_desc->a = cmath_dB (a);

return (ase_desc);

174

}

void
Aon_ASE_Pulse (AonT_Pulse* pulse, AonT_ASE_Desc* ase_desc)

Aon_Lin_Pulse (pulse, Aon_ASE_Gain, (void*) ase_desc);
I

void
Aon_ASE_Noise (AonT_Noise* noise, AonT_ASE_Desc* ase_desc)

Aon_Lin_Noise (&(noise->power), noise->freq_bin,
Aon_ASE_Gain, (void*) ase_desc);

I

Aon_ASE_Gain (CmathT_Complex* g, double freq, void* void_ase_desc)

AonT_ASE_DescI* ase_desc;
CmathT_Complex tmp, tmp2;
int num_freq;

ase_desc = (AonT_ASE_Desc*) void_ase_desc;

/* move freq to principal value of freq [-FSR/2, FSR).*/
num_freq = floor (freq / ase_desc->FSR);
freq = freq - numfreq * ase_desc->FSR;
if (freq > (ase_desc->FSR / 2.0))

freq = freq - ase_desc->FSR;

if (fabs (freq) < (ase_desc->W / 2.0))

g->r = ase.desc->a;

else

g->r = {0.0

g->theta = 0.0;

I

175

B.7 Fabry-Perot Filter Support Code

The Fabry-Perot filter process model uses functions to determine the output of the Fabry-

Perot filter due to incident pulse and noise streams. These functions and their accompany-

ing structures are found in aon_fab. ex. h and aon_fab. ex. c.

aon fab.ex.h
/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct

{
double tau;
double R;
double A;
} AonT_Fab_Desc;

AonT_Fab_Desc* Aon_Fab_Create (double FSR, double finesse, double Tmax);
void Aon_Fab_Pulse (AonTPulse* pulse, AonT_Fab_Desc* fab_desc);
void Aon_Fab_Noise (AonT_Noise* noise, AonT_Fab_Desc* fab_desc);
int Aon_Fab_Gain (CmathT_Complex* g, double freq,

void* void_fab_desc);

aon fab.ex.c
/* Greg Campbell */
/* AON Model Suite */

#include <math.h>
#include "cmath.h
#include "/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h"
#include "aon_base.ex.h
#include "aon_lin.ex.h"

#include "aon_fab.ex.h

AonT_Fab_Desc*

Aon_FabCreate (double FSR, double finesse, double Tmax)
{
AonT_Fab_Desc* fab_desc;
double b;

fab_desc = (AonT_Fab_Desc*) malloc (sizeof (AonTFab_Desc));

fab_desc->tau = 1.0 / (2.0 * FSR);

b = (-1.0) * (pow ((CMATH_PI / finesse), 2.0) + 2.0);

fab_desc->R = ((-1.0)*b - sqrt (pow (b, 2.0) - 4.0)) / 2.0;

176

fab_desc->A = (1.0 - fab_desc->R) * (1.0 - sqrt (Tmax));

return (fab_desc);

void
Aon_Fab_Pulse (AonT_Pulse* pulse, AonT_Fab_Desc* fab_desc)

Aon_Lin_Pulse (pulse, Aon_Fab_Gain, (void*) fab_desc);

}

void
Aon_Fab_Noise (AonT_Noise* noise, AonT_Fab_Desc* fab_desc)

Aon_Lin_Noise (&(noise->power), noise->freqbin,
Aon_Fab_Gain, (void*) fabdesc);

}

Aon_Fab_Gain (CmathT_Complex* g, double freq, void* void_fab_desc)

AonT_Fab_Desck fab_desc;
CmathT_Complex tmp, tmp2;

fab_desc = (AonT_Fab_Desc*) voidfab_desc;

tmp.r = fab_desc->R;
tmp.theta = (--.4.0) * CMATH_PI * freq * fab_desc->tau;
tmp2.r = 1.0;
tmp2.theta = 0.0;
cmath_sub (&tmp, &tmp2, &tmp);
tmp.r = 1.0 / tmp.r;
tmp.theta = (--1.0) * tmp.theta;
tmp2.r = 1.0 -- fab_desc->A - fab_desc->R;
tmp2.theta = 0.0;
cmath_mult (g, &tmp, &tmp2);
g->theta = g->theta - 2.0 * CMATH_PI * fab_desc->tau;

}

177

B.8 Mach-Zehnder Filter Support Code

The Mach-Zehnder filter process model uses functions to determine the output of the

Mach-Zehnder filter due to incident pulse and noise streams. These functions and their

accompanying structures are found in aon_mz f . ex. h and aon_mz f . ex. c.

aon_mzf.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct

{
double tau;
I AonT_MZF_Desc;

AonT_MZF_Desc*
Aon_MZFCreate (double FSR);

void Aon_MZF_Pulsel (AonT_Pulse* pulse, AonT_MZF_Desc* mzf_desc);
void Aon_MZFNoisel (AonTNoise* noise, AonT_MZF_Desc* mzf_desc);
int Aon_MZF_Gainl (CmathT_Complex* g, double freq, void* voidmzf_desc);
void Aon_MZFPulse2 (AonT_Pulse* pulse, AonT_MZF_Desc* mzf_desc);
void Aon_MZF_Noise2 (AonT_Noise* noise, AonT_MZF_Desc* mzfdesc);
int Aon_MZF_Gain2 (CmathT_Complex* g, double freq, void* void_mzf_desc);

aon_mzf.ex.c
/* Greg Campbell */
/* AON Model Suite */

#include <math.h>
#include "cmath.h"
#include "/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h"
#include "aon_base.ex.h
#include "aon_lin.ex.h"
#include "aon_mzf.ex.h"

AonT_MZF_Desc*
Aon_MZFCreate (double FSR)

AonT_MZF_Desc* mzf_desc;

mzf_desc = (AonT_MZF_Desc*) malloc (sizeof (AonT_MZFDesc));

mzf_desc->tau = 1.0 / FSR;

return (mzf_desc);

v

void

178

Aon_MZF_Pulsel (AonT_Pulse* pulse, AonT_MZF_Desc* mzf_desc)

Aon_Lin_Pulse (pulse, Aon_MZF_Gainl, (void*) mzf_desc);

void
Aon_MZF_Noisel (AonT_Noise* noise, AonT_MZF_Desc* mzf_desc)

{
Aon_Lin_Noise (&(noise->power), noise->freq_bin, Aon_MZF_Gainl,

(void*) mzf_desc);

}

void
Aon_MZF_Pulse2 (AonT_Pulse* pulse, AonT_MZF_Desc* mzf_desc)

{
Aon_Lin_Pulse (pulse, Aon_MZF_Gain2, (void*) mzf_desc);

void
Aon_MZF_Noise2 (AonT_Noise* noise, AonT_MZF_Desc* mzf_desc)

{
Aon_Lin_Noise (&(noise->power), noise->freq_bin, Aon_MZF_Gain2,

(void*) mzf_desc);
}

Aon_MZF_Gainl (CmathTComplex* g, double freq, void* void_mzf_desc)

I
AonT_MZF_Desc* mzf_desc;
CmathT_Complex tmp, tmp2;

mzf_desc = (AonT_MZF_Desc*) voidmzf_desc;

tmp.r = 0.5;
tmp.theta = (--2.0) * CMATH_PI * freq * mzf_desc->tau;
tmp2.r = 0.5;
tmp2.theta = 0.0;
cmath_sub (g, &tmp, &tmp2);

Aon_MZF_Gain2 (CmathT_Complex* g, double freq, void* void_mzf_desc)

AonT_MZF_Desc* mzf_desc;
CmathT_Complex tmp, tmp2;

mzf_desc = (AonT_MZF_Desc*) void_mzf_desc;

tmp.r = 0.5;
tmp.theta = ((-2.0) * CMATH_PI * freq * mzf_desc->tau) - (CMATH_PI / 2.0);
tmp2.r = 0.5;
tmp2.theta = (--1.0) * CMATH_PI / 2.0;
cmath_add (g, &tmp, &tmp2);

}

179

B.9 Wavelength Division (De)Multiplexer Support Code

The wavelength division (de) multiplexer process model uses functions that determine the

output of a WDM multiplexer due to an incident pulse. These functions and their accom-

panying structures are found in aon_wdm. ex. h and aon_wdm. ex. c.

aon_wdm.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct

{
double FSR;
double a;
I AonT_WDM_Desc;

AonT_WDM_Desc*
Aon_WDM_Create (double FSR, double a);

void Aon_WDMPulsel (AonT_Pulse* pulse, AonT_WDM_Desc* wdmdesc);

void Aon_WDM_Noisel (AonT_Noise* noise, AonT_WDM_Desc* wdm_desc);

int Aon_WDM_Gainl (CmathT_Complex* g, double freq, void* void_wdm_desc);

void Aon_WDM_Pulse2 (AonT_Pulse* pulse, AonT_WDM_Desc* wdmdesc);

void Aon_WDM_Noise2 (AonT_Noise* noise, AonT_WDM_Desc* wdmdesc);

int Aon_WDMGain2 (CmathT_Complex* g, double freq, void* voidwdm_desc);

aon_wdm.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>
#include "cmath.h'
#include "/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h'
#include "aon_base.ex.h
#include "aon_lin.ex.h'
#include "aonwdm.ex.h

#

AonT_WDM_Desc*

AonWDM_Create (double FSR, double a)

AonT_WDM_Desc* wdm_desc;

wdm_desc = (AonT_WDM_Desc*) malloc (sizeof (AonT_WDM_Desc));

wdm_desc->FSR = FSR;

wdm_desc->a = cmath_dB (a);

return (wdm_desc);

}

180

void
Aon_WDM_Pulsel (AonT_Pulse* pulse, AonT_WDM_Desc* wdm_desc)

Aon_Lin_Pulse (pulse, Aon_WDM_Gainl, (void*) wdm_desc);

void
Aon_WDM_Noisel (AonT_Noise* noise, AonT_WDM_Desc* wdm_desc)

{
Aon_Lin_Noise (&(noise->power), noise->freqbin, Aon_WDM_Gainl,

(void*) wm_desc);
I

void
Aon_WDM_Pulse2 (A.onT_Pulse* pulse, AonT_WDM_Desc* wdm_desc)

Aon_Lin_Pulse (pulse, Aon_WDM_Gain2, (void*) wdm_desc);

void
Aon_WDM_Noise2 (AonT_Noise* noise, AonT_WDM_Desc* wdmdesc)

AonLin_Noise (&(noise->power), noise->freq_bin, Aon_WDM_Gain2,
(void*) wdm_desc);

Aon_WDM_Gainl (CmathT_Complex* g, double freq, void* void_wdm_desc)

AonT_WDM_Desc* wdm_desc;
CmathT_Complex tmp, tmp2;

wdm_desc = (AonT_WDM_Desc*) void_wdm_desc;

g->r = wdm_desc->a * sin (2.0*CMATH_PI*freq / wdm_desc->FSR);
g->theta = 0.0;

}

Aon_WDM_Gain2 (CmathT_Complex* g, double freq, void* void_wdm_desc)

{
AonT_WDM_Desc* wdm_desc;
CmathT_Complex tmp, tmp2;

wdm_desc = (AonT_WDM_Desc*) void_wdm_desc;

g->r = wdm_desc->a * cos (2.0*CMATH_PI*freq / wdm_desc->FSR);
g->theta = 0.0;

181

B.10 Wavelength Router Support Code

The wavelength router process model uses functions that determine the output of a wave-

length router due to an incident pulse. These functions and their accompanying structures

are found in aon rou. ex. h and aon_rou. ex. c.

aon_rou.ex.h
/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct

{
int N;
double FSR;
double a;
double k;
double delay;
int i;
I AonT_Rou_Desc;

AonTRou_Desc*
Aon_Rou_Create (int N, double FSR, double a, double k, double delay);

void AonRou_Pulse (AonT_Pulse* pulse, AonT_Rou_Desc* rou_desc, int i);

void Aon_Rou_Noise (AonT_Noise* noise, AonT_Rou_Desc* rou_desc, int i);

int Aon_Rou_Gain (CmathT_Complex* g, double freq, void* void_rou_desc);

aon_rou.ex. c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>
#include "cmath.h"
#include "/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h#

#include "aonbase.ex.h"
#include "aon_lin.ex.h"
#include "aon_rou.ex.h#

AonT_Rou_Desc*
Aon_Rou_Create (int N, double FSR, double a, double k, double delay)

{
AonT_RouDesc* rou_desc;

roudesc = (AonT_Rou_Desc*) malloc (sizeof (AonT_Rou_Desc));

rou_desc->N = N;
rou_desc->FSR = FSR;
rou_desc->a = cmath_dB (a);
rou_desc->k = cmath_dB ((-1.0)*k);

182

rou_desc->del.ay = delay;

return (rou_desc);

}

void
Aon_Rou_Pulse (AonT_Pulse* pulse, AonT_Rou_Desc* rou_desc, int i)

rou_desc->i = i;
Aon_Lin_Pulse (pulse, Aon_Rou_Gain, (void*) rou_desc);

}

void
Aon_Rou_Noise (AonT_Noise* noise, AonT_Rou_Desc* rou_desc, int i)

rou_desc->i = i;
Aon_Lin_Noise (&(noise->power), noise->freq_bin, Aon_Rou_Gain,

(void*) rou_desc);

}

int
Aon_Rou_Gain (CmathT_Complex* g, double freq, void* void_rou_desc)

{
AonT_Rou_Desc* rou_desc;
double tmp, tmp2;
double FSR_N;
int chan;

rou_desc = (AonTRou_Desc*) void_rou_desc;

chan = rou_desc->i;
FSR_N = rou_desc->FSR / rou_desc->N;

tmp = (freq - chan*FSR_N)*CMATH_PI;

if (sin (tmp/rou_desc->FSR) != 0.0)

{
tmp2 = pow (((sin (tmp/FSR_N) / sin (tmp/rou_desc->FSR))/

(double)(rou_desc->N)), 2.0);
}

else

{
tmp2 = 1.0;

g->r = sqrt (rou_desc->a / ((1.0 - rou_desc->k)*(tmp2)+rou_desc->k));
g->theta = 0.0;

I

183

B.11 Receiver and Probe Support Code

The probe and receiver process models both use functions that output statistics about the

incident pulse stream. These functions and their accompanying structures are found in

aon_rcv. ex. h and aon rcv. ex. c.

aon_rcv.ex.h
/* Greg Campbell */
/* AON Model Suite */
/* aon_rcv.ex.h */

/**** Typedefs ****/
typedef struct

{
double eye_origin;
double eye_width;
int coherent;
int signal_id;
} AonTRcv_Desc;

/**** Function Prototypes ****/

void Aon_Rcv_Update (AonTPort_Pulse* port, double noise,
double old_time, double time, AonT_Rcv_Desc* rcv_desc);

void Aon_Rcv_Pulse (AonT_Pulse* pulse, int pulse_num);

aon_rcv.ex.c

/* Greg Campbell */
/* AON Model Suite */
/* aon_rcv.ex.h */

#include "/lidsfs/usr/local3/opnet-2.5-sol/sys/include/opnet.h'
#define AON_BASE_DECS
#include <math.h>
#include cmath.h"

#include "aon_base.ex.h
#include aon_rcv.ex.h"

#define AONC_RCV_INSTANT 0
#define AONC_RCV_NOISE 1
#define AONC_RCV_EYE 2

#define AONC_RCV_AMP 3
#define AONC_RCV_PHASE 4
#define AONC_RCV_FFT_AMP 5
#define AONC_RCV_FFT_PHASE 6
#define AONC_RCV_PULSE_STAT_NUM 4

void
Aon_Rcv_Update (AonT_Port_Pulse* port, double noise, double old_time,

184

double time, AonT_Rcv_Desc* rcv_desc)

int
static CmathT_Complex
static CmathT_Complex
static double
static double
static int
double
double
double
AonT_Pulse
AonT_Port_Entry
double
double
double
double

i, j, k;
*ampsum;

*noise_amp_sum;
*power_sum;
*noise_power_sum;
sum_init = 0;

magnitude;
noisemagnitude;
cur_time;
*pulse;
*port_entry;
eyes;
eye_time;
last_mag;
last_noise_mag;

if (sum_init == 0)

amp_sum = (CmathT_Complex*)
malloc (AonI_Len * sizeof (CmathT_Complex));

power_sum = (double*)
malloc (AonI_Len * sizeof (double));

noise_amp_sum = (CmathT_Complex*)
malloc (AonI_Len * sizeof (CmathT_Complex));

noisepower_sum = (double*)
malloc (AonI_Len * sizeof (double));

sum_init = 1;

if (op_prg_list_size (&(port->input)) > 0)

cur_time = old_time;

else

cur_time = time;
op_stat_local_write_t (AONC_RCV_INSTANT, noise, cur_time);

op_stat_local_write_t (AONC_RCV_NOISE, noise, cur_time);

while (cur_time < time)
{
for (i = 0; i < AonI_Len; i++)

{
if (rcvrdesc->coherent)

(amp_sum + i)->r = 0.0;
(amp_sum + i)->theta = 0.0;
(no.iseamp_sum + i)->r = 0.0;
(noise_amp_sum + i)->theta = 0.0;

else

(*(power{sum + i)) = 0.0
(*(loisepower_sum + i)) = 0.0;

185

for (i = 0; i < (op_prg_list_size (&(port->input))); i++)

{
port_entry = (AonT_Port_Entry*)

op_prg_list_access (&(port->input), i);
pulse = port_entry->pulse;
j = 0;
k = (((cur_time - port_entry->entry_time) / AonI_Duration) *

AonILen);
while (k < AonILen)

if (rcv_desc->coherent)

{
cmath_add ((amp_sum + j), (amp_sum + j),

(pulse->shape + k));

if (pulse->source = rcv_desc->signal_id)

cmath_add ((noise_amp_sum + j), (noise_amp_sum + j),
(pulse->shape + k));

}

else

{
(*(power_sum + j)) += pow ((pulse->shape + k)->r,2.0);

if (pulse->source != rcv_desc->signal_id)

{
(*(noise_power_sum + j)) +=

pow ((pulse->shape + k)->r,2.0);

}
}

j++; k++;

}
if ((time - port_entry->entry_time) > AonI_Duration)

port_entry = (AonT_Port_Entry*)
op_prg_list_remove (&(port->input), i);

Aon_Port_Entry_Destroy (port_entry);
i--;
}

j = 0;
last_mag = -1.0;
last_noise_mag = -1.0;
while ((cur_time < time) && (j < AonI_Len))

if (rcv_desc->coherent)

{
magnitude = p ow ((noiseamp_sum + j) ->r, 2.0) + noise;

noisemagnitude = pow ((noiseampsum + j)->r, 2.0) + noise;

else

{
magnitude = (*(power_sum + j)) + noise;
noise_magnitude = (*(noise_power_sum + j)) + noise;

}

if (fabs (magnitude - last_mag) > AonI_Min_Power)

{
op_stat_local_write_t (AONC_RCV_INSTANT, magnitude, cur_time);

eyes = floor ((cur_time - rcv_desc->eye_origin) /
rcv_desc->eye_width);

186

eye_time = cur_time - rcv_desc->eye_origin -
eyes * rcv_desc->eye_width;

op_stat_local_write_t (AONC_RCV_EYE, magnitude, eye_time);

last_mag = magnitude;

if (fabs (noise_magnitude - last_noisemag) > AonI_MinPower)

{
op._stat_local_write_t (AONC_RCV_NOISE, noise_magnitude, cur_time);
last_noise_mag = noise_magnitude;

j++;
cur_time += (AonI_Duration / (double)AonI_Len);
}

/* If there are no more pulses left, skip to
if (op_prg_list_size (&(port->input)) == 0)

curtime = time;
op_stat_local_write_t (AONC_RCV_INSTANT,

}
}

void
Aon_Rcv_Pulse (AonT_Pulse* pulse, int pulse_num)

{
static int
static CmathT_Complex*
double
double
int

fft_init = 0;

fft_shape;
cur_time;
freq;
i;

current time. */

noise, cur_time);

if (fft_init == 0)

fft_shape = (CmathT_Complex*) malloc (AonILen * sizeof (CmathT_Complex));
fft_init = 1;

I

cmath_FFT (fftshape, pulse->shape, AonI_Nu);

for (i = 0; i < AonILen; i++)

{
cur_time = (double)i * (AonI_Duration / (double)AonI_Len);
freq = pulse->freq + ((((i + AonI_Len/2) % AonI_Len) - AonI_Len/2) * 2.0 * CMATH_PI

/ AonI_Duration);
cmath_principle_val (pulse->shape + i);
op_stat_local_write_t (pulse_num * AONC_RCV_PULSE_STAT_NUM + AONC_RCV_AMP,

(pulse->shape + i)->r, cur_time);
op_stat_local_write_t (pulse_num * AONC_RCV_PULSE_STAT_NUM + AONC_RCV_PHASE,

(pulse->shape + i)->theta, cur_time);
cmathprinciple_val (fft_shape + i);
op_stat_local_write_t (pulse_num * AONC_RCV_PULSE_STAT_NUM + AONC_RCV_FFT_AMP,

(fft_shape + i)->r, freq);
op_stat_local_write_t (pulse_num * AONC_RCV_PULSE_STAT_NUM + AONC_RCV_FFT_PHASE,

(fft_shape + i)->theta, freq);

p
printf ("###here baby\n#);

187

B.12 Complex Mathematics Support Code

Many of the functions in the AON Model Suite use functions that perform operations on

complex numbers or arrays of complex numbers. These functions can be found in

cmath.ex.h and cmath.ex.c.

cmath.ex.h
#define CMATH_PI 3.14159265
typedef struct

{
double r;
double theta;
I CmathT_Complex;

void cmath_assign (CmathT_Complex *a, double r, double theta);
void cmath_print (CmathT_Complex *a);
void cmath_add(CmathT_Complex *aplusb, CmathT_Complex *a, CmathT_Complex *b);
void cmath_sub(CmathT_Complex *aplusb, CmathT_Complex *a, CmathT_Complex *b);

void cmath_mult(CmathT_Complex *amultb,CmathT_Complex *a, CmathT_Complex *b);

void cmath_mult_scalar (CmathT_Complex *amultb, CmathTComplex *a, double b);

void cmath_vectorprint (CmathT_Complex *a, int len);
void cmath_vector_mult_vector (CmathT_Complex *amultb, int len,

CmathT_Complex *a, CmathT_Complex *b);
void cmath_vector_mult_scalar (CmathT_Complex *amultb, int len,

CmathT_Complex *a, double b);
void cmath_swap (CmathT_Complex *a, CmathT_Complex *b);
void cmath_copy (CmathT_Complex *a, CmathT_Complex *b);

void cmath_vector_copy (CmathT_Complex *a, CmathT_Complex *b, int len);
void cmathW (CmathT_Complex *w, int k, int N);

void cmath_FFT (CmathT_Complex *fft, CmathT_Complex *a, int nu);

void cmath_inv_FFT (CmathT_Complex *fft, CmathT_Complex *a, int nu);

void cmath_principle_val (CmathT_Complex *a);
double cmathdB (double a);

cmath.ex.c
#include math.h"
#include cmath.h"

void
cmath_assign (CmathT_Complex *a, double r, double theta)

{
a->r = r;
a->theta = theta;

}

void
cmath_principle_val (CmathT_Complex *a)

{
int N;

if (a->r < 0.0)

188

a->r = fabs (a->r);
a->theta += CMATH_PI;
I

N = ceil ((a->theta - CMATH_PI) / (2.0 * CMATH_PI));

a->theta -= (N*2.0*CMATH_PI);

}

void
cmath_print (CmathT_Complex *a)

printf ("R: %Lf\tTHETA: %lf\n", a->r, a->theta);

}

void
cmath_add (CmathT._Complex *aplusb, CmathT_Complex *a, CmathT_Complex *b)

{
double x, y;

x = a->r * cos (a->theta) + b->r * cos (b->theta);
y = a->r * sin (a->theta) + b->r * sin (b->theta);

if (x == 0.0)

{
aplusb->r = y;
aplusb->theta = CMATH_PI / 2.0;

else

{
aplusb->r : hypot (x, y);
aplusb->theta = atan2 (y, x);

}
}

void
cmath_sub (CmathT_Complex *asubb, CmathT_Complex *a, CmathT_Complex *b)

{
double x, y;

x = a->r * cos (a->theta) - b->r * cos (b->theta);
y = a->r * sin (a->theta) - b->r * sin (b->theta);

if (x == 0)

asubb->r = y;
asubb->theta = CMATH_PI / 2.0;

else

asubb->r = hypot (x, y);
asubb->theta = atan2 (y, x);

1

void
cmath_mult (CmathT_Complex *amultb, CmathT_Complex *a, CmathT_Complex *b)

amultb->r = a->r * b->r;
amultb->theta = a->theta + b->theta;

}

void
cmath_mult_scalar (CmathTComplex *amultb, CmathT_Complex *a, double b)

189

amultb->r = a->r * b;

amultb->theta = a->theta;

}

void
cmath_vector_print (CmathT_Complex *a, int len)

{
int i;

for (i = 0; i < len; i++)

{
cmath-print (a + i);

void
cmath_vector_mult_vector (CmathT_Complex *amultb, int len, CmathT_Complex *a,

CmathT_Complex *b)

{
int i;

for (i = 0; i < len; i++)

cmathmult (amultb + i, a + i, b);

}

void
cmath_vector_mult_scalar (CmathT_Complex *amultb, int len, CmathT_Complex *a,

double b)

{
int i;

for (i = 0; i < len; i++)

{
(amultb + i)->r = (a + i)->r * b;

(amultb + i)->theta = (a + i)->theta;

}

void
cmath_swap (CmathT_Complex *a, CmathT_Complex *b)

{
CmathTComplex tmp;

tmp.r = a->r;
tmp.theta = a->theta;

a->r = b->r;
a->theta = b->theta;

b->r = tmp.r;
b->theta = tmp.theta;

void
cmath_copy (CmathT_Complex *a, CmathT_Complex *b)

a->r = b->r;
a->theta = b->theta;

}

void
cmath_vector_copy (CmathT_Complex *a, CmathT_Complex *b, int len)

190

int i;

for (i = O; i < len; i++)

{
cmath_copy (a + i, b + i);

int
b]:itrev (int a, int nu)

int bits;
int i;

bits = 0;

for (i = O; i < nu; i++)

bits = bits << 1;
bits += (a & 1);
a = a >> 1;

}
return (bits);

void
cmath_W (CmathT_Complex *w, int k, int N)

w->r = 1;

w->theta = (-2)*(CMATH_PI)*k/N;

void
cmath_FFT (CmathT Complex *fft, CmathT_Complex *a, int nu)

int len;
int i, j, step, num_step;
int rev;
CmathT_Complex tmpl, tmp2;

len = pow (2.0, (double)nu);

for (i = 0; i < len; i++)

rev = bitrev (i, nu);
cmath_copy ((fft + i), (a + rev));
}

step = 2;
while (step <= len)

{
num_step = len / step;
for (i = O; i < num_step; i++)

for (j = ((step / 2) + 1); j < step; j++)

(fft + j + i*step)->theta -= 2*CMATH_PI*(j - (step / 2))/step;
/* ### Equivalent ###

cmath_W (W, (j - (step / 2)), len);
cmath_mult (tmp, W, (fft + j));
cmat:h_copy ((fft + j), &tmp);

*/

for (j = O; j < (step / 2); j++)

191

cmathadd (&tmpl, (fft + j + i*step), (fft + j + i*step + (step / 2)));
cmath_sub (&tmp2, (fft + j + i*step), (fft + j + i*step + (step / 2)));

cmath_copy ((fft + j + i*step), &tmpl);
cmath_copy ((fft + j + i*step + (step / 2)), &tmp2);

}

step = 2 * step;

}

void
cmathinv_FFT

{

(CmathT_Complex *fft, CmathT_Complex *a, int nu)

int len;
int i, j, step, num_step;
int rev;
CmathT_Complex tmpl, tmp2;

len = pow (2.0, (double)nu);

for (i = 0; i < len; i++)

rev = bitrev (i, nu);
cmathcopy ((fft + i), (a + rev));

}

step = 2;

while (step <= len)

num_step = len / step;
for (i = 0; i < num_step; i++)

for (j = ((step / 2) + 1); j < step; j++)

(fft + j + i*step)->theta += 2*CMATH_PI*(j - (step / 2))/step;

for (j = 0; j < (step / 2); j++)

{
cmath_add (&tmpl, (fft
cmathsub (&tmp2, (fft
cmathcopy ((fft + j +
cmath_copy ((fft + j +

}

step = 2 * step;

for (i = 0; i < len; i++)

{

+ j + i*step), (fft + j + i*step + (step / 2)));
+ j + i*step), (fft + j + i*step + (step / 2)));
i*step), &tmpl);
i*step + (step / 2)), &tmp2);

(fft + i)->r = (fft + i)->r / (double) len;

}

}

double
cmathdB (double a)

double dB;

dB = pow (10.0, (-0.l)*a);

return (dB);

I

192

}

B.13 Linear Transfer Function Support Code

Many of the functions in the AON Model Suite use functions that perform linear transfer

function operations on the complex envelopes of pulses. These functions can be found in

aon_ lin. ex. h and aon_ lin. ex. c.

aon_lin.ex.h
/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

/**** Prototypes ****/

void Aon_Lin_Pulse (AonT_Pulse* pulse, Procedure lin_proc, void* lin_desc);
void Aon_Lin_Noise (double* noise_power, int noise_bin, Procedure lin_proc,

void* lin_desc);

aon_lin.ex.c
/* Greg Campbell */
/* AON Model Suite */

#include <math.h>
#include cmath.h"
#include /lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h
#include aon_base.ex.h"
#include "aon_lin.ex.h

void
Aon_Lin_Pulse (AonT_Pulse* pulse, Procedure lin_proc, void* lin_desc)

int i;
CmathT_Complex g;
static CmathT_Complex*fft_shape;
static int fft_init;
double freq;

if (fft_init =- 0)

{
fft_shape = (CmathT_Complex*) malloc (AonILen * sizeof (CmathT_Complex)

fft_init = 1;

cmath_FFT (fft_shape, pulse->shape, AonINu);

for (i = 0; i < AonILen; i++)
{
freq = pulse->freq + ((((i + AonI_Len/2) % AonI_Len) - AonILen/2) *

2.0 * CMATH_PI / AonI_Duration);

193

linproc (&g, freq, lin_desc);
cmath_mult (fft_shape + i, fft_shape + i, &g);

}

cmath_inv_FFT (pulse->shape, fft_shape, AonI_Nu);

void
AonLin_Noise (double* noise_power, int noise_bin, Procedure lin_proc, void* lin_desc)

CmathT_Complex g;
double freq;

freq = AonI_Low_Freq + (((double)noisebin + 0.5) /
(double)AonI_N_Segment) * (AonI_High_Freq - AonI_Low_Freq);

lin_proc (&g, freq, lin_desc);
(*(noisepower)) = (*(noisepower)) * pow (g.r, 2.0);

}

194

B.14 Pipeline Stages

The Pipeline model stages that model the optical fiber in point-to-point links are based on

external functions. These functions can be found in aon_ps. ex. h,
aon_propdel .ps. c, aon_proprcv. ps .c, aon_txdel .ps.c,

aon_txrcv. ps. c.

aonjps.ex.h
/* AON Model Suite */
/* Fiber pipeline stages. */

aon_propdel.ps.c
/* Greg Campbell */
/* AON Model Suite */
/* Fiber prop delay. */

<math.h>
"cmath.h"
"/lidsfs/usr/local3
"aon_base.ex.h"
"aon_fib.ex.h
"aon_ps. ex. h

void
aon_propdel (Packet* pkptr)

{
int
int
int
int
AonT_Fib_Li
AonT_Port_P
double
int

AonT_Pulse*
AonT_Noise*
/* Multiple
/* int

/opnet-2.4-sol/sys/include/opnet.h"

tx_objid;
link_objid;
num_links;
i;

.nk* link;
?ulse* port;

*last_time;
type;
pulse;
noise;

channels not supported.*/
ch_.index; */

if (AonI_Fib_List_Init == 0)

{
opprg_list_init (&AonI_Fib_List);
AonI_Fib_List_Init = 1;

tx_objid = op_td_get_int (pkptr, OPC_TDA_PT_TX_OBJID);
link_objid = op_td_get_int (pkptr, OPCTDA_PT_LINK_OBJID);

/* Multiple channels not supported. */

195

and

#include
#include
#include
#include
#include
#include

/* ch_index = op_td_get_int (pkptr, OPC_TDA_PT_CH_INDEX);*/

/* Find link... */
num_links = op_prg_list_size (&AonI_Fib_List);

for (i = 0; i < num_links; i++)

link = (AonT_Fib_Link*) opprg_list_access (&AonI_FibList, i);
if (link->link_objid == link_objid)

break;
}

if (i == num_links)

/* Link not found. Instantiate new link. */
link = Aon_Fib_Link_Attr_Get ((Objid) link_objid);
}

if (link->xmtl_objid == tx_objid)

port = link->portl;
last_time = &(link->last_timel);

}
else if (link->xmt2_objid == tx_objid)

port = link->port2;
last_time = &(link->last_time2);

else

{
/* Port uninitialized. Instantiate port. */
if (link->xmtl_objid == -1)

link->portl = Aon_Port_Pulse_Create ();
link->xmtl_objid = tx_objid;
port = link->portl;
link->last_time2 = op_sim_time ();
last_time = &(link->last_time2);

else

link->port2 = Aon_Port_Pulse_Create ();
link->xmt2_objid = tx_objid;
port = link->port2;
link->last_time2 = op_sim_time ();
last_time = &(link->last_time2);
}

type = Aon_Event_Packet_Type (pkptr);

if (type == AONC_PKT_PULSE)

if ((*(last_time)) != op_sim_time ())

{
Aon_Fib_Prop_Port (port, link->fib_desc, (*(last_time)),

op_sim_time ());
(*(last_time)) = op_simtime ();

}

pulse = Aon_Pulse_Packet_Get (pkptr);
Aon_Port_Pulse_Append (port, pulse);

op_tdset_dbl (pkptr, OPC_TDA_PT_PROP_DELAY,
Aon_Fib_Delay (pulse, link->fib_desc));

196

else

{
noise = Aon_Noise_Packet_Get (pkptr);
noise->power = noise->power * exp ((-1.0) * link->fib_desc->alpha *

link-:>fib_desc->Length);

op_td_set..dbl (pkptr, OPC_TDA_PT_PROP_DELAY, Aon_Fib_B1 ((AonI_Low_Freq
+ ((double) noise->freqbin / (double) AonI_N_Segment) *
(AonIlHigh_Freq - AonI_Low_Freq)), link->fib_desc) *
link-:>fib_desc->Length);

}

aon_proprcv.ps.c
/* Greg Campbell */
/* AON Model Suite */
/* Fiber prop delay. */

#include <math.h>
#include "cmath.h"
#include "/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h"
#include "aon_base.ex.h
#include "aon_fib.ex.h"
#include "aon_ps.ex.h'

void
aonproprcv (Packet* pkptr)

{
int tx_objid;
int link_objid;
int num_links;
int i;
AonT_Fib_Link* link;
AonT_Port_Pulse* port;
double *lasttime;
int type;

AonT_Pulse* pulse;
AonT_Noise* noise;
/* Multiple channels not supported.*/
/* int ch_index; */

if (AonI_Fib_List_Init == 0)

{
op_prg_list_init (&AonIFib_List);
AonI_Fib_List_Init = 1;

}

tx_objid = op_td_get_int (pkptr, OPC_TDA_PT_TX_OBJID);
link_objid = op_td_get_int (pkptr, OPC_TDA_PT_LINK_OBJID);

/* Multiple channels not supported.e */
/* ch_index = op_td_get_int (pkptr, OPC_TDA_PT_CH_INDEX);*/

/* Find link... */
num_links = op_prg_list_size (&AonI_Fib_List);

for (i = 0; i < num_links; i++)

{

197

link = (AonT_Fib_Link*) opprg_list_access (&AonI_Fib_List, i);
if (link->linkobjid == link_objid)

break;

if (i == num_links)

/* Link not found. Instantiate new link. */
I

if (link->xmtl_objid == tx_objid)

port = link->portl;
last_time = &(link->last_timel);

I
else if (link->xmt2_objid == tx_objid)

port = link->port2;
last_time = &(link->last_time2);

else

/* Port uninitialized. Instantiate port. */

}

type = Aon_Event_Packet_Type (pkptr);

if (type == AONC_PKT_PULSE)

{
if ((*(last_time)) != op_sim_time ())

{
Aon_Fib_Prop_Port (port, link->fib_desc, (*(lasttime)),

op_sim_time ());
(*(last_time)) = op_sim_time ();
}

pulse = Aon_Fib_Exit_Pulse (port, link->fib_desc, op_sim_time ());
oppk_nfd_set (pkptr, data", pulse, Aon_Noop, Aon_Noop, 0);

op_td_set_int (pkptr, OPC_TDA_PT_PK_ACCEPT, OPC_TRUE);

else

{
op_td_set_int (pkptr, OPC_TDA_PT_PK_ACCEPT, OPC_TRUE);

}

aon_txdel.ps.c
/* Greg Campbell */
/* AON Model Suite */
/* Fiber trans delay. */

#include <math.h>
#include "cmath.h"
#include "/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.hI
#include "aon_base.ex.h"
#include "aon_fib.ex.h
#include "aon_ps.ex.hm

198

void
aon_txdel (Packet.* pkptr)

{
op_td_set_dbl (pkptr, OPCTDAPTTX_DELAY, 0.0);

}

aon_txrcv.ps.c
/* Greg Campbell */
/* AON Model Suite */
/* Fiber trans delay. */

#include <math.h>
#include "cmath.h7
#include "/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h"
#include "aon_base.ex.h"
#include "aon_fib.ex.h#

#include "aon_ps.ex.h

void
aon_txrcv (Packet* pkptr)

{
op_td_set_int (pkptr, OPC_TDAPT_NUM_ERRORS, 0);

}

199

200

Appendix C: Usage Comments

The AON Model Suite is based on the OPNET simulation platform, and there are two

things that must be done to set it up properly:

· All files with the suffix . ex. c must be compiled by a C compiler. The resulting . o

files must be left in a directory listed in the OPNET mod_dirs environment vari-

able. For the procedures within these files to be accessible, each network model

that uses AON Model Suite components must have the . ex. o files declared as

external object files. This can be done by using the "Declare external object files"

button in the OPNET Network Editor.

· All AON Model Suite components must have the begs im intrpt option set at the

node level. This can be done by clicking the right mouse button on all components

using AON Model Suite Process Models and selecting the begsim intrpt

menu item.

· Links at the network level must have the appropriate models specified. The txdel

model should be aon_txdel, the propdel model should be

aon_propdel, the error model should be aon_txrcv and the ecc

model should be aon_proprcv. Fiber parameters can be specified as

extended attributes of the link. Any fiber parameters not found in the

extended attributes are assumed to have the default value.

201

202

Bibliography

[Agr] Agrawal, Govind. "Nonlinear Fiber Optics," Academic Press, 1989.

[Izu94] Hisashi Izumita et al. "The Performance Limit of Coherent OTDR
Enhanced with Optical Fiber Amplifiers due to Optical Nonlinear Phenom-
ena," Journal of Lightwave Technology, 12(7): 1230-8, July 1994.

[Gre93] Paul E. Green, Jr. "Fiber Optic Networks," Prentice-Hall, 1993.

[Cha94] Li-Chung Chang, "A Computer Simulation Tool for the Design and Analy-
sis of All Optical Networks," Masters Thesis, Massachusetts Institute of
Technology, 1994.

[Mar94] D. Marcuse, "Dependence of Cross-Phase Modulation on Channel Number
in Fiber WDM Systems," Journal of Lightwave Technology, 12(5):885-
890, May 1994.

[Pet] Peterson, W. Wesley. "Error-Correcting Codes," The M.I.T. Press, 1961.

203

