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Abstract
In this thesis a suite of models has been developed for the simulation of All Optical Net-

works (AONs) in the OPNET simulation tool. The models are based on the propagation of
pulses through the AON. Pulses are modeled as complex pulse envelopes on a central fre-
quency carrier. As pulses propagate through the network, optical components transform
them and delay them appropriately. Probes can be inserted to view the pulses at specific
points in the network. This knowledge can help an AON engineer make informed deci-
sions about AON design thereby allowing him to more rapidly test possible network con-

figurations.
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Chapter 1: Introduction

1.1 Background

All Optical Networks (AONSs) are data networks in which nodes are connected end-to-end
optically. Other types of networks use optical links, but AONs are unique in that once an
end node transfers the data stream into an optical signal, the optical signal is not converted
back into electrical voltages in an electronic circuit until it reaches its destination. Other
types of networks (e.g. SONET) which utilize optical components make this transforma-

tion at each intermediate node in the network.

While in traditional networks which use optical links an optical signal is electrically
“regenerated” at each node, in an AON any transformations that the signal undergoes in
transit are propagated through the network. This leads to some interesting problems in
AONSs. Some of these problems are aggravated analogs to problems seen in traditional
optical networks, while some are entirely specific to AONs. For example, in a standard
optical network dispersion and non-linearities in the fiber limit the distance-bitrate product
by smearing nearby optical signals together [Gre, 39]. A standard network can counteract
this by placing intermediate nodes closer together in order to limit the distance-bitrate
product for a given link. In an AON, this is not a valid solution -- as an optical signal goes
through an optical node in an AON, it is not regenerated. Specific to AONS is the optical
routing problem. This problem deals with the networks ability to direct data flow between
two end-points. Standard networks using optical links are not concerned with optical rout-

ing.

In order to make effective decisions on the design of AONs, the AON engineering team
should be able to rapidly prototype and test ideas. Unfortunately, testing on a real AON
testbed is time consuming, and resources are expensive. Therefore, simulation can be an
important and useful tool in the development of AON technology. Simulation can help the
AON engineering team to determine which experiments to actually perform on the test-

bed, aiding in the efficient design of the AON, and shortening the development cycle. In
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this thesis a powerful set of models is developed for the simulation of AONs in order to

aid in their development.

1.2 AON Model Suite Objectives

The three most important characteristics of a simulation tool are ease of use for rapid pro-
totyping, simulation accuracy and speed, and ease of use in the display and analysis of
simulation results. This thesis attempts to address these critical areas while accurately

modeling pulse transmission in AONSs.

The AON Model Suite is built on the OPNET simulation platform. OPNET (OPtimized
Network Engineering Tools) is a product of MIL3, Inc. designed as a simulation engine
geared towards data networks. The AON Model Suite/OPNET combination provides a

stable, efficient, easy to use simulation platform which allows:
» Rapid prototyping of an All Optical Network
* Accurate and fast simulation

* Powerful graphical analysis tools

Additionally, OPNET has been designed to provide a high level of modeling flexibility in
model development, allowing for efficient further development of complex AON compo-

nents without sacrificing model accuracy.
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Chapter 2: Simulation Concepts
The All Optical Network Model Suite is built on top of the OPNET simulation platform.

The OPNET simulation platform yields a stable, efficient simulation environment on
which to place the AON Model Suite. OPNET has a number of concepts used by the AON
Model Suite. Additionally, OPNET provides powerful probing and analysis capabilities.

2.1 OPNET Concepts

OPNET divides the modeling hierarchy into three logical levels called the Network level,
the Node level and the Process level. These levels each deal with a different aspect of a
network. The Network level is composed of nodes specified in the Node level. Likewise,
the Node level is composed of components, some of which have processes specified in the

Process level. Components communicate with each other through the use of packets.

The Network level (See Figure 2-1) deals with the spatial and topological distribution of
OPNET nodes and the links between those nodes. Nodes have inputs and outputs and are
connected by links. Nodes are designed at the Node level. Links are connections between
nodes along which packets travel. As a packet goes through a link a series of procedures
operate on the packet. These procedures are defined in the AON Model Suite to model
optical fiber.

Figure 2-1: Network level model of a metropolitan area All Optical
Network.

The Node level (See Figure 2-2) deals with the logical connection of components within a
node. Components are connected by packet streams. Packet streams are logical connec-

tions between components along which packets travel. Packet streams merely deliver
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packets with no delay. Some Node level components exhibit properties, such as propaga-
tion delay and insertion loss, which can be modeled with a process designed at the Process

level. Other Node level components are used only as connections to links at the Network

point-to-point
receiver

point-to-point
transmitter

Node A

Figure 2-2: Node level model of a FBC node. Packets enter the node
through point to point receivers and exit the node through point-to-
point transmitters. The components in the node send packets to each
other through packet streams.

level. These components are called point-to-point transmitters and receivers.

The Process level (See Figure 2-3) allows for the design of Finite State Machine pro-
cesses found in many components in the Node level. This is where one finds the heart of
the AON Model Suite. These FSM based processes alter and delay the packets entering

the component in order to model the effects of the component.

This hierarchy lends itself easily to the development of the AON Model Suite. The Net-
work and Node level hierarchy allow for easy organization of an AON, while the Process

level allows for precise modeling of the optical components.
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V/

vV

Figure 2-3: Process level model of a simple FSM containing one forced
state (init) and one unforced state (steady).

2.1.1 Packets

Packets are the primary means of communication in OPNET. Packets travel along links
and packet streams. The AON Model Suite uses packets to simulate the movement of light
in an AON. A packet either holds a single pulse or holds data representing a change in the

noise level.

2.1.2 Links

Links are connections between nodes at the Network level. Each link represents an optical
fiber or a bundle of optical fibers. Optical power travels along links in packets. A link is
defined by a number of procedures called the Transceiver Pipeline that, in the AON
Model Suite, modify traversing packets and calculate propagation delay in order to simu-

late light traveling through an optical fiber.

2.1.3 Nodes
Nodes are structures which are designed at the Node level and instantiated at the Network

level. Nodes are composed of components. While OPNET provides a wide variety of com-
ponent classes, the AON Model Suite only uses three -- the processor class, the point-to-
point transmitter class and the point-to-point receiver class. The point-to-point transmit-
ter class and point-to-point receiver class each supports only one type of component in the
AON Model Suite. The point-to-point transmitter class supports the point-to-point trans-
mitter component. The point-to-point receiver class supports the point-to-point receiver
component. The processor class, on the other hand, supports a large number of component
types, such as star couplers, optical fibers and optical amplifiers. These component types

are differentiated by the process specified for the processor class based component.
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The point-to-point transmitter component sends packets along links at the Network level.
The point-to-point receiver component receives packets from links at the Network level.
The processor class based components manipulate packets according to a process

designed in the Process level.

2.1.4 Processes
In the AON Model Suite, processes are designed to model the properties of an optical

component. These processes are designed as Finite State Machines at the Process level,

and are made up of:

*  Unforced states
o Forced states
e Transitions between states

Both types of states contain two sequential sections of C program code. When a process
enters an unforced state, it executes the C code in the first section of the state and then
exits. The unforced state resumes where it left off upon being woken up either by a packet
arrival or some other event, such as an event scheduled by the process itself, and executes
the C code in the second section of the state and progresses along a transition to the next
state. When a process enters a forced state, it executes the C code in both of the sequential
sections of the state and progresses along a transition to the next state. The transition

taken can depend upon the current state of the process.

2.2 Probing and Analysis

OPNET allows for the collection of statistics through the use of the Probe Editor. One can
specify probes in the Probe Editor in order to log statistics written out by components in
the simulation. Each processor class component in an OPNET simulation has an array of
outstats. An outstat is a variable that changes with time. Each probe records an outstat
from a single component in a singe node in the network. In the AON Model Suite there are
two component types used to probe outstats. These are the probe component and the

receiver component.
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2.3 A Simple AON Example

The following is a simple example to show how the AON Model Suite and OPNET work
together to simulate an All Optical Network. The example is an amplifier - fiber - filter

network (See Figure 2-4). The first event in the simulation is the transmission of a pulse

packet by the transmitter component. A pulse packet is represented by the symbol

1

This pulse ( ) travels over a packet stream to an EDF Amplifier component. The

amplifier modifies the packet by multiplying the signal by a complex transfer function in

the Fourier domain, and sends it on with a specified delay (|%/\ |). Additionally, the ampli-

fier generates a noise packet (@ ). A noise packet is represented by the symbol .

These packets travel over a packet stream to the point-to-point transmitter component, the
device used to put packets on the optical fiber represented at the Network level by a point-

to-point link. The point-to-point transmitter component sends the pulse and noise packets

( ﬂ!" Jover the link. These packets travel over the link, causing the AON Model Suite

(YRUNTYY

defined Pipeline Stages to execute. These procedures simulate the fiber effects by altering

the pulse and noise packets. The link then forwards the modified packets () to the

TRy

point-to-point receiver component. The point-to-point receiver component forwards these

packets () to the fiber Fabry-Perot filter component, which modifies the packets by

i

passing them through a complex transfer function and sends them (%) with a speci-

fied delay to the receiver component. The receiver component collects statistics and

destroys the packets.
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Transmitter Amplifier

Node A Node B

Figure 2-4: Simple AON Example to demonstrate how the AON Model Suite and
OPNET work together to simulate an All Optical Network.
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Chapter 3: Simulation Structure

In order to model an All Optical Network, one must have a model of the optical signals
traveling through the system, as well as models of each of the optical components. The
AON Model Suite is based on the propagation of pulses and noise through optical compo-
nents. As a pulse travels through the AON, it is passed from component to component and
manipulated appropriately depending upon the component type and parameters. Noise
also passes from component to component and is handled appropriately according to the

component type and parameters.

3.1 Simulation Global Variables

Several variables are maintained in the AON Model Suite that need to be accessed by
every component. These global variables describe the standard parameters of the pulse

and noise data, and are used by the components in manipulating the pulse and noise data.

The following global variables are maintained by the AON Model Suite:

* Aonl_Nu describes the number of complex samples per pulse. 2° is the number of
complex samples per pulse. The number of samples per pulse is described this way
as a result of the use of the radix-2 Fast Fourier Transform algorithm throughout

the model suite.

* Aonl_Len is the cached value of 2", the number of complex samples per pulse.

* Aonl_Duration is the number of picoseconds sampled for each pulse. While pulses
may have a shorter duration than Aonl_Duration, a longer duration results in alias-
ing of pulse data.

» Aonl_Low_Freq is the lowest noise frequency, in THz, tracked by the AON Model

Suite.
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Aonl_High_Freq is the highest noise frequency in THz tracked by the AON Model
Suite.

Aonl_N_Segment is the number of noise frequency bands tracked by the AON Model
Suite. Increasing Aonl_N_Segment increases the accuracy of the results due to
noise in the model suite.

Aonl_Min_Power is the minimum significant power in the simulation. Pulse and noise
packets with power less than Aonl_Min_Power are not transmitted.

Aonl_Min_Change is the minimum significant percentage change of noise power in a
noise band in the simulation. If the noise power changes by a smaller percentage
than AonI_Min_Change, the change will not be propagated.

Aonl_Connectors is a flag indicating whether or not connectors are to be modeled in
the simulation. If AonI_Connectors is set, attenuation and reflection will occur at
connections between optical components.

Aonl_Attenuation is the power attenuation factor of a connector. This variable is only
significant if AonI_Connectors is set.

Aonl_Reflection is the power reflectance factor of a connector. This variable is only
significant if Aonl_Connectors is set.

Aonl_Delay is the delay associated with a connector. This variable is only significant
if Aonl_Connectors is set.

Aonl_Unco_Refl is the power reflection factor of an unterminated or unconnected port.

Table 3-1:Simulation Global Variables

Name Type Units Description

Aonl_Nu integer N/A Each pulse shape is described by

2" complex samples.
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Table 3-1:Simulation Global Variables

Name Type Units Description

Aonl_Len integer N/A Cached value of 2°.

Aonl_Duration double ps The number of picoseconds sam-
pled for each pulse.

Aonl_Low_Freq double THz Lowest noise frequency tracked by
models.

Aonl_High_Freq double THz Highest noise frequency tracked
by models.

Aonl_N_Segment | integer N/A Number of frequency bands into
which the noise spectrum is
divided.

Aonl_Min_Power | double w Minimum power propagated
through the system.

Aonl_Min_Change | double N/A Minimum percentage change of
noise power propagated through
the system.

Aonl_Connectors | integer N/A Enables modeling of connectors
when not equal to 0.

Aonl_Attenuation double dB Attenuation factor of connectors.
Only valid when Aonl_Connectors
is set.

Aonl_Reflection double N/A Reflectance of connectors. Only
valid when Aonl_Connectors is
set.

Aonl_Delay double ps Delay of a connector. This variable
is only significant if
Aonl_Connectors is set.

Aonl_Unco_Refl double N/A Reflectance of unconnected port.

3.2 Pulse Structure

Pulses are the core of the AON Model Suite. Pulses are described by a data structure, the

most important field of which describes the shape. This field holds a pointer to an array of

2" complex values. Each element in the array corresponds to a sample of the complex
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envelope of the pulse. The complex envelope of the pulse describes the pulse shape in
terms of amplitude and phase (See Figure 3-1). One advantage to keeping track of the

complex envelope is the ability to transform the pulse using both linear and non-linear

models of pulse propagation. The choice of 2" samples is for efficiency in computing the

Fast Fourier Transform algorithm.
Watts

0.35

0.3 w ¥

0.25

0.2 0} n

0.05 o m.is

a L L

0 0.3 1 1.5 2 2.5 3
tims (sec) ([x1e-0T)

Figure 3-1: The pulse shape is defined by 2" complex samples over a span of
Aonl_Duration seconds. Here, Aonl_Nu = 5 and Aonl_Duration = 300 ps.

The pulse data structure consists of seven fields:

The source field holds the component identifier of the transmitter component that gen-
erated the pulse.

» The timestamp field holds the time at which the pulse was transmitted.

» The freq field holds the pulse carrier frequency.

» The id field holds an integer that identifies the pulse. Each pulse has a unique id upon

transmission, and this number identifies the pulse. When a pulse is split or other-

wise copied, this number is also copied.

» The peak_power field holds the peak power of the pulse.
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* The width field holds the FWHM (full width half-maximum) width of the pulse.

* The shape field holds an array of the complex samples of the pulse. There are 2" com-

plex samples per pulse, where v is equal to Aonl_Nu. The samples cover

Aonl_Duration picoseconds.

Table 3-2:Pulse Structure

Name Type ) Units Description
source integer N/A Transmitter component identifier
timestamp double ps Simulation time at pulse transmis-
sion
freq double THz Frequency of the pulse carrier
id integer N/A Pulse identifier
peak_power double W Peak pulse power
width double ps FWHM pulse width
shape array N/A Array of complex samples

3.3 Noise Structure

Noise is tracked in a number of evenly distributed frequency bands, specified by
Aonl_N_Segment, between the low frequency specified by Aonl_Low_Freq, and the high
frequency specified by Aonl_High_Freq. Noise is treated throughout the models as inco-
herent and of low power. These assumptions allow for ignoring non-linear effects with
respect to noise. Noise data travels through the system in packets. Each noise packet holds

a noise data structure. The noise data structure includes the following two fields:
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* freq_bin is an integer from O to (AonI_N_Segment - 1) that indicates which frequency

band this structure describes. The center frequency of the noise band is

freq_bin+0.5
Aonl_N_Segment

fb in = Aonl_Low_Freq + ( ) (Aonl_High_Freq— Aonl_Low_Freq)

* power is the optical power level of the noise in the band.

Noise travels through the simulation absolutely. That is, packets holding noise information
hold the current noise in a band. Noise in a noise band Of at a port is equal to the power
value in the last noise packet describing that band:

last

where Ny .o is the noise information in the last packet describing the noise band.

3.4 Ports and Port Structures

Each component in the AON Model Suite communicates with other components using
packets which travel over packet streams or links. Each packet stream is associated with a
source port and a destination port. Components send packets over packet streams by send-

ing them through ports (See Figure 3-2).

Poin P2
P in ""'-“'H P in
Pllout / \ P:;out

Figure 3-2: Mach-Zehnder Filter port layout.
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When packets containing pulse or noise data arrive at a port they are transformed and

delayed by the component.

In a linear component with N ports, let

be the port outputs and inputs.

The data coming in at a port can be divided into pulse and noise data, and each type is
dealt with differently. Because pulses travel through the simulator as complex amplitude
envelopes on a central carrier frequency, when a pulse is passed through a port it is manip-

ulated by a transformation matrix as follows:

out in

Ppu,se(t) =Sp P, ... (t—D) where S

ulse” puls pulse =

where T; ; is a transformation of amplitude, and D is a delay. Depending upon the compo-

nent, the delay D can be either dependent upon the pulse frequency (D (f) ), or upon the

pulse frequency and component state (D (f, state) ).

Noise, on the other hand, travels through the simulation as power. Thus, when noise is

passed through a port it is manipulated by a transformation matrix as follows:

T, 1|2 o [Ty, 1|2

out in

Pnoise (t) = SnoisePnoise (t - D) where S =

noise

T, o - Ty o

31



where |T : ,-|2 is a transformation of power, and D is a delay. Again, depending upon the

component, the delay D can be either dependent upon the pulse frequency (D (f) ), or

upon the pulse frequency and component state (D (f, state) ).

The pulse and noise transformations in a linear system are described in general by the lin-
ear N X N S matrices

2 2
H () ... Hy () IHU)I,II |H(f)N,1|

and

SL, pulse = L, noise —

HiyO o Hy g HO A e [HO A

where H (f) is a linear complex transfer function. The delay in a linear system, D (f) ,

imposed by the component is a function of signal or noise frequency.

The transformation in a non-linear system is described in general by the N X N matrices

Hlil(f,state) HMl(f,state)

SNL,puzse =
H, \ (f; state) ... Hy \(f, state)
and
2 2
|H (f, state) | ||” ... |[H(, state) 1l
SNL, noise =

|H (f, state) 1,1v|2 |H(f, state) N,N|2

where state describes the state of the component. H (f, state) is a non-linear complex

transfer function. The delay in a non-linear system, D (f, state) , imposed by the compo-

nent is a function of signal or noise frequency and the component state.

In order to maintain the state of each source and destination port, the AON Model Suite

instantiates the following port structures:
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*  Port Pulse: This structure holds a list of pulses associated with the times they arrived.
This type of structure is necessary in non-linear models in order to maintain an
accurate representation of the state of the pulses coming into a port.

*  Port Noise In: This structure holds an array of Aonl_N_Segment noise power values.
This type of structure is necessary in order to maintain an accurate representation
of the state of the noise coming into a port.

s Port Noise Out: This structure holds an array of Aonl_N_Segment noise power values
that represent the power leaving a port in addition to an array of Aonl_N_Segment
noise power values that track the noise power values that the component has sent
through that port to the adjacent component. Essentially, when a change in the

noise power value in a specific frequency band

AP _ IN Sf,current — NSf, last transmitted
change ~

N current * V5f, last transmitted

is less than Aonl_Min_Change

AP < Aonl_Min_Change

the change is deemed insignificant and is not sent. No changes are sent until the
current state is significantly different from the transmitted state. This structure,
while not strictly necessary, can improve the performance of the simulation signif-

icantly.
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Initialize Module

"

Wait for packet on an input port

Y

Extract pulse or noise data

Multiple
Output Ports?

Copy pulse or noise
data for each port

Manipulate data appropriately for
output port

Y

Packetize data and send with
specified delay

Figure 3-3: Flow diagram for linear component

3.5 Simulation Flow

Simulation flow is determined by the flow of pulses and noise through the AON compo-
nents. Pulses and noise travel in OPNET packets along OPNET packet streams and point
to point links. When a pulse or noise packet arrives at a component input port, the compo-
nent identifies the packet type and handles the data appropriately. If the component is lin-
ear (See Figure 3-3), such as a filter or star, the pulse or noise data is transformed, the

ports are updated, and the pulse is sent along to the next component. If the component is
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Initialize Module

"y

Wait for event

Manipulate data

or scheduled and send packet

Extract pulse or
noise data

Y

Store data in port
data structure

Y

Schedule interrupt for future time when
pulse or noise data will be manipulated
and forwarded to an output port

Figure 3-4: Flow diagram for non-linear component

non-linear the pulse or noise data is stored in a port structure, and an event is scheduled for
a time in the future when the pulse or noise data is to be passed on to the next component
(See Figure 3-4).
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Chapter 4;: Component Models

The All Optical Network Model Suite includes a number of component models. There are

essentially six fundamental component types:

The transmitter components generate pulses. They are the only components that can
initiate a pulse travelling through the network.

* The receiver component destroys pulses. It is the only component that causes pulse or
noise data to stop propagating in the network.

* The probe component probes pulse and noise data.

* The point-to-point transmitter and point-to-point receiver send and receive pulse and
noise data over links representing optical fiber.

* Linear components receive pulse and noise data, transform it, and then send it on with
a delay to the appropriate component in the network.

* Non-linear components receive pulse and noise data, remember it, and set an interrupt

for the time when they are supposed to transmit the pulse or noise data. At this

point, the non-linear effects have been determined, and the component transforms

the pulse or noise data appropriately.

These six component types are divided into three classes:

* Essential: These components are essential to every simulation. The essential compo-
nents are the transmitter components, the probe component and the receiver com-
ponent.

* Fully Specified: These components have well defined complex transfer functions. The
fully specified components are the fiber component, the fused biconical coupler

component, the Fabry-Perot filter component and the Mach-Zehnder component.
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* Partially Specified: These components are not well defined in terms of having an accu-
rate or complete complex transfer function. The partially specified components are
the star coupler, the ASE filter, the amplifier, the wavelength division multiplexer

and the wavelength router.
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4.1 Transmitter

- >

in
' PO

out

Py

Figure 4-1: AON Transmitter icon and port layout.
Incoming packets on port 0 are discarded.

Transmitters are the only AON component that can spontaneously generate optical sig-

nals. Transmitters generate a pulse with a given shape, and transmit that pulse to another

component in the AON. All transmitters share the following standard parameters:

source ID is the source identification number of the transmitter. Each pulse generated

holds the source identification number in its source field.

* frequency is the pulse carrier frequency in THz.

* peak power is the maximum intensity of the pulse.

1o is a parameter related to the width of the pulse in picoseconds. For a gaussian pulse,

the Full Width at Half Maximum (FWHM) pulse width is equal to 1.763 t,.

Table 4-1:Standard Transmitter Parameters

Default N
Name Type (Units) Description

source ID integer 0 (N/A) Identification number of transmit-
ter

frequency double 192.0 (THz) | Carrier frequency of transmitted
pulse

peak power (Py) double 0.1(W) Peak power of transmitted pulse

t0 () double 100 (ps) Parameter of pulse width

There are currently two classes of transmitters, classified by the pulse shape generated.

There is the gaussian transmitter class, and the hyperbolic-secant transmitter class.

39



The gaussian transmitter class generates gaussian (See Figure 4-2) and super-gaussian

(See Figure 4-3) pulse shapes defined by the following equation [Agr, 61]:

1+ jC( t )2'"
tO

AW = [Fpe

* m controls the degree of pulse sharpness. Higher values of m sharpen the pulse edges,
and cause the pulse to have a squarer shape. m is one for a gaussian pulse.

e C controls the linear chirp of the pulse. C is zero for an unchirped pulse.

Pulse Amplitnde
0.35

0.3 £\

[\

[ |\

D4 N

0 0.25 0.5 0.75 1
time (pe) (x1000)

Figure 4-2: Gaussian pulse amplitude (m = 1, t, = 100 ps, Py = 0.1 W).

rulse Amplitude

0.3 0%
1

0 0.25 0.5 0.15 1
time (pe) (x1000)

Figure 4-3: Super-Gaussian pulse amplitude (m = 3, ty = 100 ps,
Py=0.1W).



Table 4-2:Additional Parameters for Gaussian Transmitter

Default .
Name Type (Units) Description
m (m) integer 1 (N/A) Degree of gaussian.
C@O double 0 (N/A) Initial chirp of pulse.

The hyperbolic-secant transmitter class generates pulses with the hyperbolic-secant shape
(See Figure 4-4). This shape is important because it is the shape of a soliton. The hyper-

bolic-secant shape is defined by the following equation [Agr, 59]:
s

22
A1) =J17;)sech(t£)e o
0

* C controls the linear chirp of the pulse. C is zero for an unchirped pulse.

Pulse Amplitnde

0 0.2% 0.3 0.13 1
time (ps) (x1000)

Figure 4-4: Hyperbolic-secant pulse amplitude (m = 1, t, = 100 ps,
Py=0.1W).

Table 4-3:Additional Parameters for Hyperbolic Secant Transmitter

Name Type 1(35:’3:1:; Description
C (O double 0 (N/A) Initial chirp of pulse.

41



Each transmitter class includes two transmitter models. For each class, there is a model
that transmits a single pulse, and a model that transmits a finite pulse stream. The single

pulse model for each class has the following additional attribute:

* time is the transmission time of the leading edge of the single pulse.

Table 4-4:Additional Parameters for Single Pulse Transmitter

Name Type ]()Sﬁrsl)t Description
time double 0 (ps) Transmission time of the leading
edge of the pulse.

The pulse stream model for each class has the following additional attributes which

describe a finite sequence machine:

e start time is the time in picoseconds of the first transmission.

* spacing is the amount of time in picoseconds between pulse transmissions.

* repeat is a flag that when set indicates that the finite sequence should be repeated until
the end of the simulation.

 initial state is the initial state of the finite sequence machine that generates the pulse
stream.

» pn connections describes the connections in the machine.

o state bits is the number of state bits in the machine.

Table 4-5:Additional Parameters for Single Pulse Transmitter

Default .
Name Type (Units) Description
start time double 0 (ps) Transmission time of the leading
edge of the first bit.
spacing double 400 (ps) Time between transmission of bits.
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Table 4-5:Additional Parameters for Single Pulse Transmitter

Default .
Name Type (Units) Description

repeat integer jr() (N/A) Flag indicating whether or not to
repeat the finite sequence until the
end of the simulation.

initial state integer 1 (N/A) Initial state of the Finite Sequence
Machine.

pn connections integer 3 (N/A) Connections in the Finite
Sequence Machine.

state bits integer 4 (N/A) Number of state bits in the Finite
Sequence Machine.

A finite sequence machine generates a pseudo-random stream of bits. For example, the

four-bit finite sequence machine shown below (See Figure 4-5) generates a 2 _1=15

bit long stream before repeating.

Connection 3 Connection 2 Connection 1
(unconnected) (unconnected) Connection 0

Ot——»| O0}—» 0 1 !l »

Output

bit 3 bit 2 bit 1 bit 0

Figure 4-5: Four-bit Finite Sequence Machine: given a non-zero initial state, this
machine will generate all four bit sequences for a total sequence length of

24 — 1 bits [Pet, 148]. This particular machine has an initial state equal to 1,

. 3 2 1 0
and a pn connections parameter equal to 3 (=2"c;+27°c, +2 ¢, +2 ¢;)

because connections 0 and 1 are connected. In this machine, bit 3 in state n+1 is
equal to the exclusive or of the connected bits.
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4.2 Optical Fiber
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Figure 4-6: AON Fiber icon and port layout.
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Optical fibers transmit pulses over distances in the AON Model Suite. Optical fibers
receive pulse and noise data at an input port, transform that data, and after a delay, send
the data out to an output port.

By default, the optical fiber model in the AON Model Suite models a single mode optical

fiber with a core area of approximately 65 um2 , and a zero dispersion wavelength of 1.33

wm.

The optical fiber model takes into account both linear and non-linear optical phenomena.

The following effects are modeled:

Attenuation is an effect that results in diminished pulse and noise power as a pulse or
noise travels along a fiber.

» propagation delay is the delay a pulse or noise experiences traveling along the fiber.

» dispersion is an effect resulting from the varying value of the index of refraction of the

fiber experienced by different wavelengths of light. This effect can alter a pulses

width and peak power.

Self Phase Modulation (SPM) is a non-linear effect that results from a pulses intensity
modulating the phase of the pulse. SPM results in generation of new spectral com-

ponents to the pulse.



* Cross Phase Modulation (XPM) is a non-linear effect that results from the intensity of
a different pulse modulating the phase of the pulse. XPM results in the generation
of new spectral components to the pulse.

»  Stimulated Raman Scattering (SRS) is a non-linear effect that results in the transfer-
ence of power from a high frequency pulse to a low frequency pulse.

4.2.1 Fiber Parameters
Optical fibers in the AON Model Suite are defined by a number of parameters (See Table

4-6).
Table 4-6:Optical Fiber Parameters

Default .
Name Type (Units) Description
Length (L) double 100 (km) | Length of optical fiber.
freql (f;) double 192.0 (THz) | First reference frequency.
freq2 (f,) double 225.0 (THz) | Second reference frequency.
B1 at freql (B, ;) double 4875 (P First term of dispersion relation-
’ Gem? | ship at £, THz
B1 at freq2 (B, ,) double 4872 First term of dispersion relation-
’ G ship at f, THz.
B2 at freql (Bz, ) double 20( Iﬁ) Sfeconfi term of dispersion rela-
m tionship at f, .
B2 at freq2 (B, ,) | double Second term of dispersion rela-
( ) tionship at f, .
B3 (B;) double Third term of dispersion relation-
0 ( ) ship.
alpha (o) double 0.2 (dB/km) | Attenuation per km.
Aceff (A ) double 65 (umz) Effective area of fiber core.
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Table 4-6:Optical Fiber Parameters

Name Type l()&t;a:tusl)t Description
n2 (n,) double 3.9%10716 The non-linear index coefficient.
cm®
( W )
T Raman (T ) double 0.005 (ps) The Raman gain time coefficient.
granularity double 1 (N/A) Iterations of the spit step Fourier
method per length scale.
Grmax (gg,,...) double 10716 (k__m ) Maximum Raman gain.
w
Frmax (Afg,,.,,) double 12 (THz) Wi_dth of linear section of Raman
gain spectrum.

The following parameters are derived from these parameters:

J Bl (Farrier) OF Bl f is the value of the first term of the dispersion relationship such

that:
Bl 27 l31 1
l3l,fE B1 (fcarrier) = B1, 1+ _’f;_—fl_— (fcarrier —fl)
v, (f.arrier) 18 the group velocity of signal or noise power as a function of frequency.

1
v=v (f . )= ————
8 § Tearmer ﬁ 1 (fcarrier)

e v is the non-linearity coefficient [Agr, 40]:

n,2nf,

carrier

Y (fcarrier) = c Aeff
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4.2.2 Propagation Delay

Propagation delay of a pulse or of noise power is a function of the carrier frequency of the
pulse or the frequency of the noise band. The propagation delay as a function of frequency
is:

1

L
D prrier) = v = Lﬁl where B1 = v
8 4

4.2.3 Split-Step Fourier Method
The fiber model utilizes a method called the split step fourier method [Agr, 44] to propa-

gate pulses. The split step Fourier method is a method used to numerically approximates
the simultaneous effects of both the linear and non-linear effects of the fiber. The split step
Fourier method essentially approximates the simultaneous effects of the linear and non-
linear effects of the fiber by assuming that over a short distance, the linear and non-linear
effects can be assumed to act independently of each other [Agr, 44]. It is named the split
step Fourier method because it performs the linear effects in the Fourier domain, and the

non-linear effects in the time domain.

The length scales over which the fiber model propagates the pulse depend on the peak
power and width of the pulse. There is a length scale associated with dispersion, and a
length scale associated with the non-linear effects. Essentially, the fiber is chopped up into
sections according to these length scales. The dispersion length is given by [Agr, 52]:

7y

L,= 2%
° IRy

where T is the current FWHM width of the pulse. The non-linear length is given by [Agr,
52]:
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where P, is the current peak power of the pulse.

4.2.4 Linear Effects
The linear effects are modeled by the following equation [Agr, 45]:

2 3
o

8T e 5T 2

A(z+hT) = e" A(z,T) where D = —]Bz

where [Agr, 42]

describes a frame of reference moving with the pulse at the group velocity of the pulse.

This equation is easily solved in the Fourier domain using the following relationship [Agr,
45]:

P, 1) = {(F'PF1B (2 1)

where F indicates the Fourier transform operation.

4.2.5 Non-Linear effects caused by the Pulse
The non-linear effects that are modeled within the pulse are SPM, SRS and the self-steep-

ening effect that results from the slowly varying non-linear polarization [Agr, 42]. The

non-linear effects are modeled by the following equation [Agr, 45]:

2
A(z+hT) = e" A(Z,T) where N "JV{|A| + OAST(IAI A) QISI%]

Again, T represents a frame of reference moving at the group velocity of the pulse.
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4.2.6 Non-Linear effects caused by Pulses at other Frequencies
SRS and XPM effects are modeled between pulses. A walkoff length scale is required

[Agr, 225]:

T,

L. = —_9
Yo By, =By,

where B, ; is equal to B, at the first pulse carrier frequency, and B, j isequal to B, atthe

second pulse carrier frequency.

This equation can be used to determine the interaction length between overlapping sam-

ples in different pulses:

_ Aonl_Duration/ 2"
interaction ~ IBI _ Bl |
’ l ’]

h =1L

where Aonl_Duration/2’ is the time between pulse samples. As pulse samples pass
through each other they interact due to XPM and SRS according to the following equa-

tion:

. 2
S;(z+hT) = I_I(eh""kﬂ"Lg"(Af""')”S"(Z’nl )S,- (z, T)

j#i

where S, is the amplitude of the sample of pulse I and S, is the amplitude of the sample

of pulse 2. The SRS gain as a function of carrier frequency difference, g z (&; j) , 18

described by:

g Afi”' for Af, .>0
gr(Af, ) = Rmax A omax “J° " where Af,; = fi-f,

OforAfl.jSO
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where g, is the maximum SRS gain, Af, i is the difference in the frequency of the car-

rier signal, and Afp,  is the width of the linear part of the Raman gain spectrum.
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4.3 Fused Biconical Coupler

in out
Poout P2 in
P P
0 2
) \ =2= < out
P P
Plout / P3 in
1 3

Figure 4-7: AON Fused Biconical
Coupler icon and port layout.

The fused biconical coupler is a linear device in which two fibers are fused in such a way
as to produce coupling between them such that pulse energy from one fiber can be trans-
ferred to the other. A pulse coming into the fused biconical coupler is split into two pulses,
one on each fiber. Each pulse is the product in the Fourier domain of the original pulse and

a transfer function. This transfer function is determined by three parameters [Gre, 70]:

* r The core radius of the coupling region.

* Z The length of the coupling region

* Ar The difference in core radii in the coupling region

Table 4-7:Fused Biconical Coupler Parameters

Name Type I()Sf;??sl)t Description

Core radius (r) double 8 (um) The core radius of the coupling
region.

Length (Z) double 10000 (um) | The length of the coupling region.

deltar (Ar) double 0 (um) The difference in core radii in the
coupling region.

Power Loss (a) double 0 (dB) Insertion power loss in dB.

Delay (D) double 10 (ps) Delay of FBC.

These three parameters in turn define [Gre, 70]:
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3 7-1
. F2 = [1 + (234; )(g) ] where A = ch The core diameter difference effect
A

5/2
_21A .
C= —7/7— The coupling effect

The operation of the component can be described by the following matrix operation for
pulses [Gre, 70]:

—~ @5 0 0 J1-o jJo
out

P =A10 ° | 0 0 o Ji-a
Ji-o jdoo 0 0

| jdo J1-a 0 0

P'pr:llse (t_D)

where
2 2.2 CZ)
o = F’sin (——F

The operation of the component can be described by the following matrix operation for
noise:

_a(4B) 0 0 1-0 o
Pout;‘ ® = 10 10 0 0 o 1-
nowse -0 o« O O

o 1l-a O 0

ol nin
Pnoise (t—D)

52



The amplitude of the complex transfer function of the FBC is shown below (See Figure 4-
8).

1 O Ju

OJ1-a

- s - 2 s 2 l .
131.2 191.4 191.6 191.8 192 192.2 192.4 192.6 192.8 THy

Figure 4-8: Amplitude of H(f) of Fused Biconical Coupler. (Ar =0, r = §,
Z=8716.0)
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4.4 Star Coupler

Poout PN in

PO PN
P--- in P out

N- 1aut 2N-1 in
PN— 1 P2N— 1

Figure 4-9: AON Star Coupler icon and port layout.

The star coupler is modeled as a linear device that consists of a number of coupling
devices that yield even power distribution over the N outputs. The star coupler model is a
partially specified model in tl}at its transfer function over-simplifies the effects of a star
coupler. A pulse or noise packet entering a port of the star coupler is essentially attenuated
due to insertion power loss, copied N-1 times, and N copies, each with power 1/N are sent

out to each of the N output ports of the device. The transfer function is:

The operation of the component is modeled by the following matrix operation for pulses:

-0 0 H( H
Pout _ 0 0 H(f) H(f) Pin
pulse =V H(f H 0 o | Pubse
LH (f) HY 0 0 |
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The operation of the component is modeled by the following matrix operation for noise:

—

out

0

0
noise ~ 2
1:463)

H(p)?

2 27
0 |H ()| |H ()]

2 2 in
wor "O7 T WOThL
IH®N 0 0 |

Table 4-8:Star Coupler Parameters

Name Type ]()Sﬁ?sl)t Description
— afpmp
Power Loss (a) double 0 (dB) Power loss
N integer 2 (N/A) Number of inputs and outputs. The
device has a total of 2N ports.
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4.5 Optical Amplifier
P in out
0
P out H P
0 - v 1
Figure 4-10: AON Amplifier icon and port layout. The amplifier is

a unidirectional device. Incoming packets on port 1 are
discarded. The amplifier model does not use the port 0 output.

The optical amplifier is modeled after an Erbium doped fiber amplifier (EDF Amplifier)
with an optical isolator on one end. The optical isolator effectively makes the amplifier a
unidirectional device. An EDF amplifier is a non-linear device. The gain characteristics
and noise output vary with the average incident power over a time period. Gain is calcu-
lated as such [Cha, 64]:

t—t

~ “arrival

E

total

G(W,) = where W,, = P, ...+ . e

1+ in pulses
P

sat

G, (dB)

10 . . . . . .
where G, = 10 is the gain when W, is zero, and P_,, is the saturation point.

t
E,,,, is the energy of the pulse in picojoules, ¢ , ., is the arrival time of the pulse, and

T is an EDF amplifier specific time constant that describes the relaxation period of the

amplifier.

Pulses and noise going through the EDF amplifier experience a gain equal to G (W,) .

Additionally, the EDF amplifier generates spontaneous noise power. This generated noise

power is given by the following relation [Cha, 64]:

P,z (G(W,),f) = G(W,)hfNOf
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Aonl_High_Freq — Aonl_Low_Freq

where Of =

Aonl_N_Segment

is the optical bandwidth of the noise

band, A = 6.626x10>* (Joules - seconds) is planck’s constant, f is the center frequency

of the noise band, N = 10

noise power.

N(dB)
10

is the EDF amplifier noise figure and P, ¢, is the ASE

Table 4-9:0ptical Amplifier Parameters

| Default .
Name Type (Units) Description

Gain (G,) double 10 (dB) Base power gain

Saturation Power double 1x10°5 W) Input Saturation Power

(Psat )

Noise Coef. (N) double 5 (dB) Noise Coefficient of amplifier

Relax Time (T) double 10° ) Relaxation time of amplifier

Delay double 1.5%10° Delay of amplifier component

(ps)

delta noise percent | double 1 (percent) | The noise level is updated every
time it changes at least by delta
noise percent.
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4.6 ASE Filter

in
P, @—>P1_

out
-
PO

Figure 4-11: AON ASE Filter icon

The ASE filter component is modeled by an ideal multiple-passband filter. The ASE filter
model is a partially specified model in that its transfer function over-simplifies the effects
of afilter. The ASE filter is defined by its free spectral range (FSR), its insertion loss atten-
uation (a), its passband bandwidth (W) and its delay (D). In the passbands, the signal is
attenuated by a dB. Outside of the passband, the signal is not passed at all.

Table 4-10:ASE Filter Parameters

Name Type ]()stllsl)t Description
Attenuation (a) double 1 (dB) Insertion Power Loss.
FSR double 0.05 (THz) | Free Spectral Range.
Bandwidth (W) double 0.01 (THz) | 3 dB bandwidth of filter.
Delay (D) double 10 (ps) Delay of filter.

As a pulse traverses the ASE filter, it is multiplied in the Fourier domain by the following

complex transfer function:

_a(dB)
H{) = {A}lo 19" if fin passband

0, if f not in passband

where

fin passband =— %’ +kKFSR<f< % + kFSR for any k
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The operation of the component can be described by the following matrix operation for

pulses:

P;:;se(t) = [H?f) Ho(f)]P;';lse(t—D)

The operation of the component can be described by the following matrix operation for

noise:

2] .
out 0 H in
Pnoise (t) = 2 l (f)l Pnoise (t—'D)
H()| 0

The complex transfer function of the ASE filter is periodic over the frequency spectrum

with period FSR ().
1.

0.75)

0.5

0.25

25 191.5 191.75 192 192.25 192.5 192.75 THz
Figure 4-12: Amplitude of H(f) of ASE Filter. (FSR = 0.5 THz, a = 1dB,
W=0.25THz)

S

59



4.7 Fiber Fabry-Perot Filter

in out

0 >@ —

P
out
P 4—x

Figure 4-13: AON Fiber Fabry-
Perot icon

The Fiber Fabry-Perot filter is a tunable filter used in All Optical Networks. The primary
attribute of a Fiber Fabry-Perot filter is its finesse:

|

B
a
By

|
=

where R is the power reflectivity of the mirrors of the Fiber Fabry-Perot filter cavity.

Finesse is a measure of the sharpness of the Fiber Fabry-Perot’s etalons.

The free spectral range of a Fiber Fabry-Perot filter is:

FSR = —l—where't = X
21 c

where T is the one-way propagation time through the filter.

The maximum transference of a Fiber Fabry-Perot filter is:

A 12
T max = [1 —1—_13]

where A is the power attenuation of the mirrors of the Fiber Fabry-Perot filter cavity.
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From F, FSR and T(f),,,, the three basic Fiber Fabry-Perot parameters that describe

the transfer function, R, T and A, can be found.

As a pulse traverses the Fiber Fabry-Perot filter, it is multiplied in the Fourier domain by

the following complex transfer function:

1-A-R -jont
€

H(f) = —L2=1
1-Re7*™*

This corresponds to the following matrix operation for pulses:

PZ:;se(t) = I:H(zf) Hén]P;';lse(t-D)

The operation of the component can be described by the following matrix operation for

noise:
out 0 |H () |2 in
Pnoise (0 = 2 Pnaise (t—D)
HHP* o
Table 4-11:Fiber Fabry-Perot Filter

Name Type ]()It;ﬁ?sl)t Description
Finesse (F) double 20 (N/A) Finesse
FSR (FSR) double 0.05 (THz) | Free Spectral Range
Tmax (T (f) ,,.,,.) double 0.9 (N/A) Maximum Transference
Delay (D) double 10 (ps) Delay of filter
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The complex transfer function of the Fabry-Perot filter is periodic over the frequency

spectrum with period FSR (See Table 4-14, See Figure 4-15).

1 — — —

0
N
T
1

o
[
T
1

o.5} F=3

o
1N
T
!

0.3 -

SN e

1812 191.4 191.6 191.8 192 192.2 192.4 192.6 192.dHz

Figure 4-14: Amplitude of H(f) of Fabry-Perot Filter for three different values of
finesse. FSR = 0.5 THz, T(f)pax = 0.9.

1.5 T

4812 191.4 191.6 191.8 192 192.2 192.4 192.6 192.6/Hz

Figure 4-15: Phase of H(f) of Fabry-Perot Filter for three different values of
finesse. FSR = 0.5 THz, T(f)pax = 0.9.

62



4.8 Mach-Zehnder Filter

in out
Poout P2 in
0 2
==
P 1out / ; in
1 3
Figure 4-16: AON Mach-Zehnder Filter icon and port
layout.

The Mach-Zehnder filter is a four-port device that filters light by taking advantage of
interference effects due to interfering light with itself after splitting the light and having it
travel over two slightly different path lengths.

As a pulse or noise packet passes through the Mach-Zehnder filter, it is copied. The origi-
nal copy of a pulse is multiplied in the Fourier domain by the following complex transfer

function:

_ 1 —jenfr )
Hacr(f) = i(e -1

and sent off to the port across from the one that it came in through. That is, if a pulse
comes in through port zero, it will leave through port two. The pulse copy is multiplied in

the Fourier domain by the following complex transfer function:

_ 1( —j2nft )
Hopp(]‘) = z] e +1

and sent off to the port opposite from the one that it came in through. That is, if a packet

comes in through port zero, it will leave through port three.
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Noise packets are dealt with in nearly the same way. The noise slices in the original packet

are multiplied by:
2
Heer D

and sent to the port across from the one that it came in through. The noise slices in the

noise copy are multiplied by:

2
[Hopp O

and send to the port opposite from the one that it came in through.

Table 4-12:Mach-Zehnder Filter

Default .
Name Type (Units) Description
FSR double 0.5 (THy) Free Spectral Range.
Delay (D) double 10 (ps) Delay of filter component.
The matrix describing the operation of the MZF on pulses is:
- .
0 0 H acr N H opp 9
e =| 0 0 D ROt p)
H,,H H,,{ 0 0
_Hopp # He, (N 0 0 J




The matrix describing the operation of the MZF on noise is:

[ N
2 2
0 0 |H, D |H,, 0]
2 2
Po = | O VO P Olpn (i)
e O [Hopp D] 0 0
2 2
[Hopp D" [Hoer D" 0 0 |

The complex transfer function of the Fabry-Perot filter is periodic over the frequency

spectrum with period FSR (See Figure 4-8, See Figure 4-15).

1 —

. O Hacr (f)

| OHp O

2 s s L " —
1%1.2 191.4 191.6 191.8 192 192.2 192.4 192.6 192.8 THz

Figure 4-17: Amplitude of H,.(f) and H,,(f) of Mach-Zehnder Filter for FSR =
0.5 THz.

3r -
2 .

—2F -

-3l 4

— 1

—4 s L L L L
191.2 191.4 191.6 191.8 192 192.2 192.4 192.6 192.8 Hz

Figure 4-18: Phase of H,.(f) and H,(f) of Mach-Zehnder Filter for FSR = 0.5
THz.
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4.9 Wavelength Division (De)Multiplexer

124

Poout
PO \ onut
P in / — P in
P 1out / 2

1

Figure 4-19: AON Wavelength Division
(De)Multiplexer icon and port layout.

The wavelength division (de)multiplexer is a device that can be used to multiplex or
demultiplex an optical signal based on its frequency. The wavelength division multiplexer
is a partially specified model. Phase shift is not taken into account, and the physical pro-
cesses behind the device are modeled only qualitatively. Let

_a(dB) 5 f
10 . T
Hl (f) = N10 Sln(m)

and let

_a(dB)
10 COS( 2nf )

HZ(f) = 10 F—'EE

The operation of the component is modeled by the following matrix operation for pulses:

0 0 H®
, .
Puise ® = | 0 0 Hy()|Pputse (t=D)
H ) H,($ O

The operation of the component is modeled by the following matrix operation for noise:

[ 2

0 o |H )|

out in

Pnoise (t) = 0 0 le(f)lz Pnoise(t_D)

|5, 0" |7, »]F o

-



Table 4-13: Wavelength Division (De) Multiplexer

Name Type I()Sﬁa:?sl)t Description
FSR double 32 (THz) Free Spectral Range
Delay (D) double 10 (ps) Delay of WDM.
Attenuation (a) double 0 (dB) Insertion power loss
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4.10 Wavelength Router

out N,
in
PO PN
in out
PN— 1out PZN_ 1 in
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Figure 4-20: AON Router icon and port layout

The wavelength router is a device that routes different wavelengths to different output
ports using a diffraction grating. The wavelength router is a partially specified model.
Phase shift is not taken into account, and the physical processes are not modeled directly.
Essentially, the diffraction grating directs certain wavelengths towards certain ports. The

following parameters define a wavelength router in the AON Model Suite.

The operation of the wavelength router is based on the following transfer function:

sin————(f_iaf) A
H,() = [a| (1-k) ]%____(FSI?Q/N +k
sin U= iON™
FSR

where

is the frequency range between adjacent channels,

_a(dB)
1
a=10
is the attenuation, and
k(dB)
k=10 "°

is the extinction ratio.
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The operation of the component is modeled by the following matrix operation for pulses:

out

Ppulse(t) =

0 0 0

Hy(Hh H(H Hy()

An-1) Hy_, () Hy_; ()

Hy() Hy_ () Hy_, ) ...
Hl(.f) Ho(j) HN—I(f) e
. Hy ()

0 Hy(
0 H() Hy®
0

0 Hy_,() Hy_,() Hy_s() ...

H ()
H,()

o Hy )

0
0
0

Hy () Hy_, () ...
Hy (O ...
H() H O Hy\

0
0
0

0
0
0

- Hy (D

H, (]
H, ()

Hy(H
0
0
0

Pin

pulse

(¢-D)

The operation of the component is modeled by the following matrix operation for noise:

out

noise —

-

0 0 0
0 0 0
0 0 0
0 0 0

2
o |H0

2

2 2
Hy D" |Hy_ 1D [Hy_, O] -

2

2 2
H O |HoWO|" |[Hy_, D] -
2
|H, |

2 2 2
[Hy_1 O Hy_2 O [Hy_s O -

S © O

2 2 2
H 0" [HyOD| [Hy_ O] -

2 2 2
Lol #ol Hol -

2 2 2
AOTRAC AT

0 |111,\,(f)g2 Iy O [Hy_, O -

;o
#, [

AT

o 0|
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The transfer function of the wavelength router is periodic over the frequency spectrum
with period FSR (See Figure 4-21).

] ——i=0
—_i=
_1
..4
0.1 A A L L L . )
i91.2 191.4 191.6 191.8 192 192.2 192.4 192.6 192.8 THz

Figure 4-21: Amplitude of H(f) of the wavelength router for two values of i. (FSR
= 1.0 THz, N=4, k=14.7 dB, a=0 dB)

Table 4-14:Wavelength Router

Default .
Name Type (Units) Description

Attenuation (a) double 0 (dB) Insertion power loss.

N integer 2 (N/A) Number of input ports and number
of output ports. Total number of
ports is 2N.

FSR double 0.5 (THz) Free spectral range.

Extinction Ratio (k) | double 16 (dB) Extinction ratio of router.

Delay (D) double 10 (ps) Delay of router.
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4.11 Probe

in out
@

Figure 4-22: AON Probe icon and port layout.

The AON Probe component is a passive component that allows for the collection of infor-

mation about the pulses and noise that go through it. The AON Probe writes these values

to OPNET local statistics which can be probed using the OPNET Probe Editor and ana-
lyzed using the OPNET Analysis Tool. The AON Probe writes out the following informa-
tion:

* Received power is a measure of the instantaneous power going through the probe. This
power can either be calculated assuming all pulses are coherent, or that the pulses
are incoherent. If the pulses are considered coherent, the received power is equal to
the square of the sum of the complex amplitudes. Otherwise, the received power is
equal to the sum of the squares of the complex amplitudes. Received power is
written out to the AON Probe’s local outstat[0].

* Noise power is a measure of the instantaneous noise power going through the probe.
Noise power is written out to the AON Probe’s local outstat[1].

* Eye power is a statistic that generates an “eye chart” based on the instantaneous power
going through the probe. An eye chart is an analysis tool that shows the ability of a
receiver to convert optical signals into digital signals. The instantaneous power at

time ¢ is mapped onto the eye time, 7, such that

Loye = (t-1ty) modulo eye width
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Essentially, the instantaneous power is “wrapped” around the eye chart. Eye power
is written out to the AON Probe’s local outstat[2]. For best results, the eye width
parameter should be set equal to the spacing parameter of the transmitter whose
signal is of interest.

Pulse amplitude and phase are two statistics that show the amplitude and phase of a
single pulse. Each pulse has it’s amplitude and phase written out to a unique set of
outstats. The amplitude and phase of pulse n are written out to outstat[4n+3] and
outstat[4n+4] respectively.

Pulse Fourier Transform amplitude and phase are two statistics that show the ampli-
tude and phase of the Fourier transform of a single pulse. Each pulse has the
amplitude and phase of its Fourier transform written out to a unique set of outstats.
The amplitude and phase of the Fourier transform of pulse n are written out to

oustat[4n+5] and outstat[4n+6] respectively.

Table 4-15:Probe
Default .
Name Type (Units) Description

eye width double 400 (ps) Width of eye chart in picoseconds.
This should be set equal to the
spacing parameter of the transmit-
ter whose signal is of interest.

coherent integer 0 (N/A) If set, the probe performs interfer-
ence on complex envelopes, other-
wise, the separate powers are
summed.

Signal ID integer 0 (N/A) Source ID of signal power; other
received power is noise for SNR
calculations
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4.12 Receiver

P, _____.,.

Figure 4-23: AON Receiver icon. The receiver
component model does not use the port 0 output.

The receiver acts exactly like a probe, except that it destroys any packets that enter it,

instead of forwarding them.

Table 4-16:Receiver

Default L
Name Type (Units) Description

eye width double | 400 (ps) | Width of eye chart in picoseconds

coherent integer 0 (N/A) If set, the receiver performs inter-
ference on complex envelopes,
otherwise, the separate powers are
summed.

Signal ID integer 0 (N/A) Source ID of signal power; other
received power is noise for SNR
calculations
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Chapter S: Simulation Results

The component models can be classified into three different groups:

* Essential: These models are critical to the operation of the simulation and are well
defined. Essential models include the transmitter models, the probe model and the
receiver model. These models are well tested, and the validity of all other models
depends on the validity of these models. Simulation results specific to these mod-
els are not explicitly shown in this chapter. All simulations depend upon the accu-
racy of these models, and so simulation results for these models are implicit in all
simulation results.

*  Fully specified: These models are fully specified in terms of having a well defined
complex transfer function, or other mode of operation. The Fully specified models
include the fiber model, the fused biconical coupler model, the Fabry-Perot filter
model and the Mach-Zehnder filter model. These models are tested explicitly in
this chapter and in-depth results and analysis for each model are presented individ-
ually.

* Partially specified: These models are not well defined in terms of having accurate
complex transfer functions. The Partially specified models include the star coupler
model, the ASE filter model, the amplifier model, the wavelength division (de)
multiplexer model and the wavelength router model. These models have been
tested only qualitatively, and no results or analysis is presented in this chapter.

For all of the results in this chapter the default component parameters are used, except as

otherwise indicated.
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5.1 Fiber Model

5.1.1 Dispersion in Linear Regime
This test is designed to show the validity of the fiber model in the linear regime of a fiber.

In order to stay in the linear regime the pulse traveling over the fiber links must be of very
low power. The network being tested (See Figure 5-1) consists of a transmitter, three fiber
links and a receiver. Additionally, there are probes for the collection of statistics. Links are
not duplex in this model, disabling reflections, as the object of the model is to study the
effects of dispersion on pulse receivability in the absence of other effects. This network
shows the effects of dispersion in both the normal and anomalous regimes of optical fiber.
The transmitter transmits a bit stream of gaussian pulses with an initial 7, of 100 ps, and P,

of 0.001 W on a carrier frequency of 192.0 THz. After 50 kilometers of fiber with

2
B,(192.0THz) = —IOp-k—':n- the pulse has been flattened due to dispersion (See Figure 5-

2). The pulse is further flattened after another 50 kilometers of fiber with

2
B, (192.0THz) = —10%% . This flattened pulse then goes through 50 kilometers of fiber

2
with B, (192.0THz) = 20% and regains its shape.

Figure 5-1: Network and Node Level descriptions of test network. The
links in this network are simplex. This is because the object of the
experiment is to study the effects of dispersion on receivability in the
absence of other effects.

Dispersion has a profound effect on the receivability of a bit stream. This can be seen by
looking at an “eye diagram.” By looking at the eye diagram one can determine what the
received power threshold is for the bit stream. In this simulation, the is fully open coming

out of the transmitter (See Figure 5-3). The eye contracts over the first 100 km of fiber
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(See Figure 5-4, See Figure 5-5), and then re-opens upon reconstruction (See Figure 5-
6).

¢ Pulse Asmplitude at Pl
< Pulse Asplitude at 2
O Pulse Amplitude at P3
A Pulse Amplitude at ACV
0.035

0.03 //A\\
§ )
7N
FAAERINN

1} 0.5 1

0.02%

tims (pe) (x1000)

Figure 5-2: A pulse is flattened due to dispersion after going through sections of
fiber with a positive group velocity dispersion coefficient (B, ). The flattened

pulse is chirped by 100km x 10ps2/ km . The original pulse is reconstructed by
going through a section of fiber that “unchirps” the pulse by inducing an equal
and opposite amount of chirp.
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Figure 5-3: The bit stream coming out of the transmitter. The eye is fully
dilated, with a maximum opening of 1 mWatt. The signal can be received

M B
B ar
IBIAVILLAR! (I

2.44 2.45 2.46 2.47 2.48 2.49 2.5 2.51 2.52 e 0 100 200 800 400
time (pe) (x100000) tiwe (ps)

Figure 5-4: The bit stream after going through 50 km of dispersive fiber

2
B, = —10%% ). The eye is still quite dilated, with a maximum opening

of 0.43 mWatts. The signal can still be received.
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Figure 5-5: The bit stream after going through 100 km of dispersive fiber

2
( Bl N = —IOPﬁ ). The eye is nearly shut, with a maximum opening of 75

WWatts. The signal can be received only with difficulty.
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Figure 5-6: The bit stream after reconstruction. The eye is fully dilated, with a
maximum opening of 0.95 mWatts. The signal can again be received easily.
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5.1.2 Non-linearities at the Zero Dispersion Point
This test is designed to show the validity of the fiber model in the zero dispersion regime

of a fiber. The network being tested (See Figure 5-7) consists of a transmitter, a fiber and
a receiver. Additionally, there is a probe on the output of the transmitter in order to collect
baseline data. The links in this model are not duplex as the object of the model is to exam-
ine the effects of Self Phase Modulation on the complex pulse envelope. This network
show the effect of Self Phase Modulation at the zero dispersion point. Because we are
interested in the pulse shape, the transmitter sends a single pulse across the fiber. This
pulse is a gaussian (m = 1) with an initial #, of 100 ps, and Pyof 0.11 W on a carrier fre-

2
quency of 192.0 THz. After 50 km of fiber with B, (192.0THz) = Opk—‘;l- , the pulse has

mt prebe riber rov

Figure 5-7: Node level description of network for testing non-
linearities at the zero dispersion point. The links in this model are
simplex. This is because the object of the model is to examine the
effects of SPM on the complex phase envelope in the absence of
other effects.

been altered by Self Phase Modulation. Self Phase Modulation does not alter the pulse
amplitude (See Figure 5-8), but rather manipulates the pulse phase (See Figure 5-9). The
change in the pulse phase has a profound effect on the spectral composition of the pulse
(See Figure 5-10, See Figure 5-11). By altering the pulse phase, SPM generates new
spectral components. While this does not directly alter the receivability of a signal, as the
pulse shape doesn’t change, these spectral changes can cause problems by exacerbating
dispersive effects and pushing pulse energy beyond filter passband limits (See Figure 5-
13).
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Figure 5-8: Pulse amplitude before and after traveling through the fiber. The
pulse amplitude has not changed appreciably.
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Figure 5-9: Pulse phase before and after traveling through the fiber. SPM has
altered the pulse phase considerably.
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Figure 5-10: Fourier Transform Amplitude of the pulse before and after
traveling through the fiber. SPM has broadened the spectrum significantly.
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Figure 5-11: Fourier Transform phase of the pulse before and after traveling
through the fiber. SPM has had a profound effect.
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5.2 Filters

5.2.1 Fabry-Perot Filter
This test is designed to show the validity of the Fabry-Perot filter model. The input to the

B—E—e—8—8
probe Tov

e riber Fabry-rerct.

Figure 5-12: Node level description of network for testing the
Fabry-Perot filter. The pulse entering the filter is the same pulse
generated in section 5.1.2, a gaussian chirped by SPM.

Fabry-Perot filter is the gaussian pulse chirped by SPM generated in section 5.1.2. The
links in this model are not duplex as the object of the model is to examine the effects of the
Fabry-Perot filter on the complex pulse envelope. The filter in this model has the follow-
ing parameters:

e FSR=05THz

* Finesse =10.0

* T{max)=10

The filter has a significant effect on the complex pulse envelope, as seen below (See Fig-
ure 5-13).
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Figure 5-13: The pulse amplitude before and after going through the Fabry-
Perot filter. Because the carrier frequency lies centered on a passband of the
Fabry-Perot filter, more energy is lost in sections of the pulse where the
spectral components are further from the carrier frequency. Because this
pulse was chirped by SPM, the sections of the pulse where the absolute value
of the slope of the complex pulse envelope is high are the sections of the
pulse with spectral components far from the carrier frequency.
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Figure 5-14: The pulse phase before and after going through the Fabry-Perot
filter.
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Figure S5-15: The amplitude of the Fourier Transform of the pulse before and
after going through the Fabry-Perot filter. The large side lobes of the
Fourier Transform are attenuated considerably by the filter.
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Figure 5-16: The phase of the Fourier Transform of the pulse before and after
going through the Fabry-Perot filter.
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5.2.2 Mach-Zehnder Filter
This test is designed to show the validity of the Mach-Zehnder filter model. The input to

Figure 5-17: Node level description of network for testing the
Fabry-Perot filter. The pulse entering the filter is the same pulse
generated in section 5.1.2, a gaussian chirped by SPM.

the Mach-Zehnder filter is the gaussian pulse chirped by SPM generated in section 5.1.2.
The links in this model are not duplex as the object of the model is to examine the effects
of the Mach-Zehnder model on the complex pulse envelope. The filter in this model has

the following parameters:

e FSR=05THz

The filter has a significant effect on the complex pulse envelope, as seen below (See Fig-
ure 5-18).
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Figure 5-18: The pulse amplitude coming in through port 0 and leaving
through ports 2 and 3 of the Mach-Zehnder filter. Because the carrier
Jfrequency lies centered on a FSR of the Mach-Zehnder filter, the pulse is split
into two pulses with one pulse getting almost all of the energy. A null of the
transfer function for the pulse going to RCV lies directly on the carrier
Jrequency, and this creates a null for components of the pulse with
Jfrequencies equal to the carrier frequency. This corresponds to flat sections
of the pulse. This is the reason for the null in the center of the pulse.
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Figure 5-19: The pulse phase coming in through port 0 and leaving through
ports 2 and 3 of the Mach-Zehnder filter.
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Figure 5-20: The amplitude of the Fourier Transform coming in through port
0 and leaving through ports 2 and 3 of the Mach-Zehnder filter. Because
the carrier frequency lies centered on a FSR of the Mach-Zehnder filter, the
pulse is split into two pulses with one pulse getting almost all of the energy.
A null of the transfer function for the pulse going to RCV lies directly on
the carrier frequency, and this creates a null in the amplitude of the
Fourier Transform at the carrier frequency.
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Figure 5-21: The phase of the Fourier Transform coming in through port 0
and leaving through ports 2 and 3 of the Mach-Zehnder filter.
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5.3 Fused Biconical Coupler

This test is designed to show the validity of the Fused Biconical Coupler model. The input

(&

Figure 5-22: Node level description of network for testing the Fused
Biconical Coupler. The pulse entering the FBC is the same pulse
generated in section 5.1.2, a gaussian chirped by SPM.

to the Fused Biconical Coupler is the gaussian pulse chirped by SPM generated in section
5.1.2. The links in this model are not duplex as the object of the model is to examine the
effects of the Fused Biconical Coupler model on the complex pulse envelope. The FBC in

this model has the following parameters:

 r=8um
* Ar = Oum
e Z = 8716um

The FBC has a significant effect on the complex pulse envelope, as seen below (See Fig-
ure 5-23).
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Figure 5-23: The pulse amplitude coming in through port 0 and leaving through
ports 2 and 3 of the Fused Biconical Coupler. Because the carrier frequency lies
near an area of the FBC transfer functions where the two pulses are split roughly
evenly the pulse power is split roughly evenly. Because the slopes of the transfer
functions are so great in this area, the one pulse receives most of its energy from
the higher frequency spectral components, while the other pulse receives most of
its energy from the lower frequency spectral components.
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Figure 5-24: The pulse phase coming in through port 0 and leaving through
ports 2 and 3 of the Mach-Zehnder filter.
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Figure 5-25: The amplitude of the Fourier Transform of the pulse coming in
through port 0 and leaving through ports 2 and 3 of the Fused Biconical
Coupler. The FBC transfer functions send most of the higher frequency energy
to RCV, and most of the lower frequency energy to RCVB.
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Figure 5-26: The phase of the Fourier Transform of the pulse coming in through
port 0 and leaving through ports 2 and 3 of the Fused Biconical Coupler.
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Chapter 6: Conclusion
The AON Model Suite was designed to allow for the rapid prototyping of All Optical Net-

works. In combination with the OPNET simulation platform, the AON Model Suite effec-
tively addresses the three key issues involved in simulating AONSs:

» Ease of use for rapid prototyping

* Simulation accuracy and speed

* Ease of use in the display and analysis of simulation results

The AON Model Suite characterization of pulses allows for accurate modeling of pulse
transmission through the optical devices found in an AON. By modeling the complex
amplitude of a pulse, both linear and non-linear effects of the optical components can be

accurately modeled.

Further work can done on the Model Suite in order to increase the accuracy of the simula-
tions. Polarization is not currently tracked due to the seemingly random fluctuations of
polarization state in optical fibers. The AON Model Suite could be improved by:

* Keeping track of the polarization state. This would require modeling polarization
change in the optical components, and modeling the effects of polarization. This
would allow for the accurate modeling of Four Wave Mixing and a number non-
linear effects.

* Developing a stochastic model that would approximate the effects of polarization.

Additionally, all of the component models could be improved. Non-linearities are cur-

rently only modeled in the fiber.

These improvements can be made relatively easily due to the modular design of the AON

Model Suite and the flexibility provided by the OPNET simulation platform.
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Appendix A: Component Process Model Reports

This appendix contains the process model reports of each of the models included in the

AON Model Suite. Detailed information about the concepts behind the models including

model attributes can be found in chapter four. The following process model reports are

included:

aon_xmt0 The AON Model Suite Transmitter model (single gaussian pulse).

aon_xmt_seq The AON Model Suite Transmitter model (sequence of gaussian pulses).

aon_xmt0_sech The AON Model Suite Transmitter model (single hyperbolic secant
pulse).

aon_xmt_sech_seq The AON Model Suite Transmitter model (sequence of hyperbolic
secant pulses).

aon_fib The AON Model Suite Fiber model.

aon_fbc The AON Model Suite Fused Biconical Coupler model.

aon_stc The AON Model Suite Star Coupler model.

aon_amp The AON Model Suite Amplifier model.

aon_ase The AON Model Suite ASE Filter model.

aon_fabry The AON Model Suite Fabry-Perot Filter model.

aon_mzf The AON Model Suite Mach-Zehnder Filter model.

aon_wdm The AON Model Suite Wavelength Division (De) Multiplexer model.

aon_rou The AON Model Suite Router model.

aon_probe The AON Model Suite Probe model.

aon_rcv The AON Model Suite Receiver model.
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A.1 aon_xmt0

Process Model Report: aon_xmt0

[ Tue May 30 14:46:19 1995 | Page 1 of 2

All Optical Network Model Suite

Process Model Attributes

| attribute valug type default value
to promoted double 1.0 (ps)
peak power promoted double 0.1 (W)
frequency promoted double 192 (THz)
m promoted integer 1
chimp promoted double 0.0
time promoted double 1.0 (sec.)
source ID promoted integer 1
Header Block
/% AON Model Suite */
/* Greg Campbell */
#include *cmacth.h"
5 | #include "acn_base.ex.h*
#include *aon_xmt.ex.h"
[State Variabie Block
/* State variable */
Objid \my_id:
double \frequency;
double \xmt_time;
5 {AonT_Xmt_Gaussian \gaussian;
int \source_id:
| Temporary Variable Block
Packet* pkptr;
CmathT_Complex*shape;
AonT_Pulse* pulse;
forced state _init
attribute value type defauit value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist {empty)
|_status forced toggle unforced

| enter execs _init

/* Determine unique ID. ¥/
my_id = op_id_self ();

/* Determine simulation data */
5 | Aon_Simulation_Data_Get ();

/* Determine module specific artributes.

*

op_ima_obj_attr_get (my_id, "t0*, &(gaussian.t0));
op_ima_obj_attr_get (my_id, "peak power*, &(gaussian.peak_power));
10 | op_ima_obj_attr_get (my_id, - £requency", &frequency);

op_ima_obj_attr_get (my_id, *m*, &(gaussian.m));
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Process Model Report: aon_xmt0 | Tue May 30 14:46:19 1995 | Page20f2

All Optical Network Model Suite

op_ima_obj_attr_get (my_id, *chirp*, &(gaussian.chirp));

op_ima_obj_attr_get (my_id, *time*, &xmt_time);

op_ima_obj_attr_get (my_id, “scurce ID*, &source_id);

15

/* Send single pulse ¥/

shape = Aon_Xmt_Gaussian (&gaussian);

pulse = Aon_Pulse_Create (source_id, op_sim_time (),
frequency, shape, gaussian.peak_power);

pkptr = Aon_Puise_Packet_Create (pulse);

20

op_pk_send_delayed (pkptr, 0, xmt_time);

| transition _init -> rest

attribute value type default value
name tr.2 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toqale spline

| unforced state rest

|_attribute value type default value
name rest string st
enter execs (empty) textlist {empty)
exit execs (empty) textlist (empty)
status unforced togale unforced
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A.2 aon_xmt_seq

Process Model Report: aon_xmt_seq [ Tue May 30 14:47:26 1995 | Page 10f 3
All Optical Network Model Suite
Process Model Attributes
| attribute value type default value
to promoted double 1.0 (ps)
peak power promoted double 0.1 (W)
frequency promoted double 192 (THz)
m promoted integer 1
chirp prormoted double 0.0
start time promoted double 1.0 (psec.)
source 1D promoted integer 1
spacing promoted double 100 (psec.)
initial state promoted integer 1
n connections promoted integer 1
state bits promoted integer 5
|_repeat promoted integer 0
Header Block
/* AON Model Suite */
/* Greg Campbell */
#include "emath.h” -
5 | #include "aon_base.ex.h*
#include "aon_xmt.ex.h*
State Variable Block
/* State variable */
Objid \my_id;
double \frequency:
double \start_time;
5 | AonT_Xmt_Gaussian \gaussian;
AonT_Xmt_Seq \seq;
int \source_id;
double \spacing;
int \repeat;
10 | AonT_Pulse* \pulse;
int \initial_state;
Temporary Variable Block
Packet* pkptr;
CmathT_Complex*shape;
AonT_Pulse* new_pulse;
int out;
forced state _init
| aftribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced
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Process Model Report: aon_xmt_seq

| Tue May 30 14:47:27 1995 | Page 20f 3

.

All Optical Network Model Suite

15

20

30

enter execs  init
/* Determine unique [D. */

my_id = op_id_self ();

/* Determine simulation data */
Aon_Simulation_Data_Get ();

/* Determine module specific attributes. 4
op_ima_obj_attr_get (my_id, *t0*, &(gaussian.t0));
op_ima_obj_attr_get (my_id, *peak power*, &(gaussian.peak_power));
op_ima_obj_attr_get (my_id, * frequency", &frequency);
op_ima_obj_attr_get (my_id, *m*, &(gaussian.m));
op_ima_obj_attr_get (my_id, "chirp*, &(gaussian.chirp)):
op_ima_obj_attr_get (my_id, *start time=, &start_time);
op_ima_obj_attr_get (my_id, *source ID", &source_id);
op_ima_obj_attr_get (my_id, *spacing", &spacing);
op_ima_obj_attr_get (my_id, "initial stata*, &initial_state);
op_ima_obj_attr_get (my_id, *pn connections®, &(seq.connections));
op_ima_obj_attr_get (my_id, “state bits", &(seq.n));
op_ima_aobj_attr_get (my_id, “repeat*, &repeat);

/* Set initial state. */
seq.state = initial_state;

/* Set self-interrupt for start time. %/
op_intrpt_schedule_self (start_time, 0);

/* Generate pulse template. */

shape = Aon_Xmt_Gaussian (&gaussian);

pulse = Aon_Pulse_Create (source_id, op_sim_time (),
frequency, shape, gaussian.peak_power);

transition__init -> rest

99

|_attribute value type default value
name tr 2 string tr
condition string
executive string
color RGB333 color RGB333
i drawing style spline toggle spline
unforced state__rest
|_aftribute value type default value
name rest string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced
exit execs rest
/* Determine whether a zero or *
/* one should be transmitted. */
out = Aon_Xmt_Seq (&seq):




Process Model Report: aon_xmt_seq

[ Tue May 30 14:47:27 1995 | Page 30of 3

All Optical Network Mode! Suite

10

15

if (out==1)

/* Copy and packetize pulse for transmission. */

new_pulse = Aon_Puise_Copy (pulse);
new_pulse->timestamp = op_sim_time ();

pkptr = Aon_Pulse_Packet_Create (new_pulse);

/* Transmit pulse. */
op_pk_send (pkptr, 0);
}

/* Set interrupt for next pulse transmission. */
if ({seq.state != initial_state) Il (repeat))

op_intrpt_schedule_self (op_sim_time () + spacing, 0);

transition__rest -> rest

| attribute vaiue type default value
name tr_3 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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A.3 aon_xmtQ_sech

Process Model Report: aon_xmt0_sech

[ Tue May 30 14:46:39 1995 | Page 10of 2

All Optical Network Model Suite

Process Model Attributes

attribute

value type

defauit value

t0

chirp
time

promoted double

peak power promoted double
frequency promoted double

promoted double
_promoted double

1.0 (ps)
0.1 (W)
192 (THz)
0.0

source 1D _promoted integer

1.0 (sec.)
:

Header Block

/* AON Model Suite */
/* Greg Campbell */

#include *cmath.h*
#include “aon_base.ex.h"
#include "aon_xmt.ex.h"

Sta

e Variable Block

/* State variable */

Objid \my_id;
double \frequency;
double \xmt_time;
AonT_Xmt_Sech \sech;

int \source_id;

Temporary Variable Block

Packet* pkptr;
CmathT_Complex*shape;
AonT_Puilse* pulse;

forced state _init

|_aftribute

value type

default value

name

status

init string

enter execs (See below.) textlist
exit execs (empty) textlist

forced toggle

st
(See below.)

(empty)
unforced

enter execs _init

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data */
Aon_Simulation_Data_Get ();

/* Determine module specific antributes. *
op_ima_obj_attr_get (my_id, “t0", &(sech.t0));
op_ima_obj_attr_get (my_id. "peak power*, &(sech.peak_power)});
op_ima_obj_attr_get (my_id, * frequency*, &frequency);
op_ima_obj_attr_get (my_id. "chirp", &(sech.chirp));
op_ima_obj_attr_get (my_id, *time", &xmt_time);
op_ima_obj_attr_get (my_id. *source ID".&source_id);
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Process Model Report: aon_xmt0_sech

[ Tue May 30 14:46:39 1995 | Page 2 of 2

All Optical Network Model Suite

20

/* Send single pulse */

shape = Aon_Xmt_Sech (&sech);

pulse = Aon_Pulse_Create (source_id, op_sim_time (),
frequency, shape, sech.peak_power);

pkptr = Aon_Pulse_Packet_Create (pulse);

op_pk_send_delayed (pkptr, 0, xmt_time);

transition _init -> rest

attribute value type default value
name tr 2 string tr

condition string

executive string

color RGB333 coler RGB333
drawing style spline toggle spline
unforced state _rest

attribute value type default value
name rest string st

enter execs (empty) textlist (empty)

exit execs (empty) textlist {empty)
status unforced togale unforced
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A.4 aon_xmt_sech_seq

Process Model Report: aon_xmt_sech_seq T Tue May 30 14:47:01 1995 ]T’age 10of3
All Optical Network Model Suite
Process Model Attributes
attribute value type default value ‘
to promoted double 1.0 (ps)
peak power promoted double 0.1 (W)
frequency promoted double 192 (THz2)
chirp promoted double 0.0
start time promoted double 1.0 (psec.)
source ID promoted integer 1
spacing promoted double 100 (psec.)
initial state promoted integer 1
pn connections promoted integer 1
state bits promoted integer 5
repeat promoted integer 0
Header Block
/* AON Model Suite */
/* Greg Campbell %/
#include *cmach.h"
5 |#include *aon_base.ex.h*
#include "aon_xmt.ex.h*
[State Variabie Block
/* State variable */
Objid \my_id;
double \frequency;
double \start_time;
5 | AonT_Xmt_Gaussian \sech;
AonT_Xmt_Seq \seq;
int \source_id;
double \spacing;
int \repeat;
10 | AonT_Pulse* \pulse;
int \initial_state;
Temporary Variable Block
Packet* pkptr;
CmathT_Complex*shape;
AonT_Pulse* new_pulse;
nt
forced state _init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced




Process Model Report: aon_xmt_sech_seq

| Tue May 30 14:47:01 1995 | Page 2 of 3

All Optical Network Mode! Suite

enter execs _init

10

15

20

30

/* Determine unique ID. */
my_id = op_id_seif ();

/* Determine simulation data */
Aon_Simulation_Data_Get ();

/* Determine module specific artributes. *
op_ima_obj_attr_get (my_id, “t0", &(sech.t0));
op_ima_obj_attr_get (my_id, *peak power*, &(sech.peak_power));
op_ima_obj_attr_get (my_id, *frequency*, &frequency);
op_ima_obj_attr_get (my_id, *chirp", &(sech.chirp));
op_ima_obj_attr_get (my_id, *start time*, &start_time);
op_ima_obj_attr_get (my_id, *source ID*, &source_id);
op_ima_obj_attr_get (my_id, *spacing*, &spacing);
op_ima_obj_attr_get (my_id, "initial state-, &initial_state);
op_ima_obj_attr_get (my_id, “pn connections*, &(seq.connections));
op_ima_obj_attr_get (my_id, “state bits*, &(seq.n));
op_ima_obj_attr_get (my_id, "repeat", &repeat);

/* Set initial state. */
seq.state = initial_state;

/* Set self-interrupt for start time. */
op_intrpt_schedule_self (start_time, 0);

/* Generate pulse template. */

shape = Aon_Xmt_Gaussian (&sech);

pulse = Aon_Pulse_Create (source_id, op_sim_time (),
frequency, shape, sech.peak_power);

transition__init -> rest

attribute value type defauit value
name tr_ 2 string tr
condition string
executive string
color RGB333 color RGB333
drawing stvle spline toqgle spline
unforced state _rest
attribute value type default value
name rest string st "
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced
exit execs _rest
/* Determine whether a zero or */
/* one should be transmitted. */

out = Aon_Xmt_Seq (&seq);

5 lif(out==1)
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{

/* Copy and packetize pulse for transmission. */
new_pulse = Aon_Pulse_Copy (pulse);
new_pulse->timestamp = op_sim_time ();

10 pkptr = Aon_Pulse_Packet_Create (new_pulse);

/* Transmit pulse. ¥/

op_pk_send (pkptr, 0);

}

15

/* Set interrupt for next pulse transmission. */

if ((seq.state != initial_state) Il (repeat))
op_intrpt_schedule_self (op_sim_time () + spacing, 0);

transition__rest -> rest

attribute value type default value
name tr_3 string tr

cendition string

executive string

color RGB333 color RGB333
drawing style spline toqggle spline
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Process Model Attributes
_attribute value type default value
T Raman promoted double 0.005 (ps)
B1 at freq1 promoted double 4,875 (ps/km)
B1 at freq2 promoted double 4,871.67 (ps/km)
B2 at freq1 promoted double <20.0 (ps2/km)
B2 at freq2 promoted double 0.0 (ps2/km)
B3 promoted double 0.0 (ps3/km)
alpha promoted double 0.2 (dB/km)
Length promoted double 100 (km)
granularity promoted double - 10 (iter/L)
A eff promoted double 65 (micron2)
n2 promoted double 3.2E-16 (cm2/W)
freq1 promoted double 192 (THz)
freq2 promoted double 225 (THz)
Grmax promoted double 1E-16 (km/W)
Frmax promoted double 12 (THz)
Header Block
/* AON Model Suite */
/* Greg Campbell */
#include *cmach.h*
5 | #include "aon_base.ex.h*
#include *aon_fib.ex.h”
[State Variable Block
/* State variable */
AonT_Fib_Desc \fib_desc;
AonT_Port_Pulse* \port[2];
AonT_Port_Noise_Out* \noise_out{2];
5 {double \last_time;
Temporary Variable Block
int event_type;
Packet* pkptrs
int port_index;
int type;
S | AonT_Pulse *pulse:
AonT_Noise *noise;
Objid my_id:
_forced state _init
| attribute value type default value
name init string st
enter execs (See beiow.) textlist (See below.)
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exit execs (empty)

status

forced

textlist
togagle

(empty)
unforced

15

20

30

enter execs _init

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
Aon_Simulation_Data_Get ();

/* Determine module specific attributes. */

op_ima_obj_attr_get (my_id, *T Raman*, &(fib_desc.T_Raman));
op_ima_obj_attr_get (my_id, " freql-, &(fib_desc.f1));
op_ima_obj_attr_get (my_id, "freq2*, &(fib_desc.f2));
op_ima_obj_attr_get (my_id, *B1 at freql®, &(fib_desc.B1_f1));
op_ima_obj_attr_get (my_id, *B1 at freq2*, &(fib_desc.B1_f2));
op_ima_obj_attr_get (my_id, *B2 at freql®, &(fib_desc.B2_f1));
op_ima_obj_attr_get (my_id, *B2 at freq2-, &(fib_desc.B2_f2));
op_ima_obj_attr_get (my_id, "83~, &(fib_desc.B3));
op_ima_obj_attr_get (my_id, "alpha*, &(fib_desc.alpha));
op_ima_obj_attr_get (my_id, *Length*, &(fib_desc.Length));
op_ima_obj_attr_get (my_id, "granularity*, &(fib_desc.granularity));
op_ima_obj_attr_get (my_id, "A eff", &(fib_desc.A_eff));
op_ima_obj_attr_get (my_id, *n2~, &(fib_desc.n2));
op_ima_obj_attr_get (my_id, *Grmax-, &(fib_desc.grmax));
op_ima_obj_attr_get (my_id, *Frmax*, &(fib_desc.frmax));

/* Initialize variables. %/
fib_desc.alpha = 1.0 - cmath_dB (fib_desc.alpha);

noise_out{0] = Aon_Port_Noise_Qut_Create();
noise_out{1} = Aon_Port_Noise_QOut_Create();

pont{0] = Aon_Port_Pulse_Create ();
port(1] = Aon_Port_Pulse_Create ();

last_time = 0.0;

transition _init -> steady

attribute

value

type

default value

name

tr 0

condition
executive

color

RGB333

drawing style spline

string -

string
string
color

togale

tr

RGB333
spline

unforced state _steady

attribute

value

type

default value

name

teady

enter execs (empty)
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string
textlist

st

(empty)
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status

exit execs (See below.) textlist (See below.)

unforced togale unforced

exit execs steady

15

20

30

35

40

45

Aon_Fib_Prop_Port (port{0], &fib_desc, last_time, op_sim_time());
Aon_Fib_Prop_Port (port{1], &fib_desc, last_time, op_sim_time());
last_time = op_sim_time (});

/* Get event */
event_type = op_intrpt_type ();

if (event_type == OPC_INTRPT_SELF)

/* Do module specific actions. */

port_index = op_intrpt_code (); .

pulse = Aon_Fib_Exit_Pulse (port{port_index], &fib_desc,
op_sim_time ();

pkptr = Aon_Pulse_Packet_Create (pulse);

Aon_Pulse_Packer_Send_Delayed (pkptr, port_index, 0.0);

}

if (event_type == OPC_INTRPT_STRM)
{
port_index = op_intrpt_strm ();

if (port_index > 1)
op_sim_end (*Invalid port index®,"®,"",*");

pkptr = op_pk_get (port_index);
type = Aon_Event_Packet_Type (pkptr);
if (type == AONC_PKT_PULSE)

{

pulse = Aon_Pulse_Packet_Get (pkptr);

Aon_Port_Pulse_Append (port {port_index], pulse);

op_intrpt_schedule_self (op_sim_time () + Aon_Fib_Delay (pulse, &fib_desc),
1 - port_index);

Aon_Pulse_Packet_Destroy (pkptr);

}

else

{
noise = Aon_Noise_Packet_Get (pkptr);
noise->power = noise->power * exp ((-1.0)*fib_desc.alpha);
Aon_Port_Noise_Out_Handle_Abs_Reuse
(noise_out(! - port_index], pkptr, 1 - port_index,
Aon_Fib_B1 ((AonI_Low_Freq +
((double) noise->freq_bin / (double) AonI_N_Segment) *
(AonI_High_Freq - AonI_Low_Freq)),
&fib_desc) * fib_desc.Length);
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transition _steady -> steady
|_aftribute value type default value |
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawing style . spline toggle spline
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Process Model Attributes

attribute

value

type

default value

Core radius
Length
deltar
Power Loss
Delay

promoted
promoted
promoted
promoted
promoted

double
double
double
double
double

8.0 (micron)
10 (micron)
0.0 (micron)
1.0 (dB)

10 (ps)

Header Block

/* AON Model Suite */
/* Greg Campbell */

#include *cmath.h"

5 |#include *aon_base.ex.h"
#include "acn_fbc.ex.h"

)
e
)

te Variable Block

/* State variable */
AonT_Port_Noise_Out*
AonT_Port_Noise_In*
AonT_FBC_Desc*

S |double

\noise_out[4];
\noise_in[4];
\fbc_desc;
\delay;

Temporary Variable Block

int event_type;
Packet* pkptr;

int port_index;
int type:

5 | AonT_Pulse *pulse;

AonT_Pulse
AonT_Noise
AonT_Noise
Objid

10 | double
double
double
double

*new_pulse;
*noise;
*new_noise;
my_id;

r

delta_r;

z,

a;

forced state _init

| attribute

value

type

default value

name

enter execs
exit execs
status

init
(See below.)
(empty)

forced

string

textlist
textlist
toggle

st
(See below.)

(empty)
unforced
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enter execs _init

10

15

| 20

25

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
Aon_Simulation_Data_Get ();

/* Determine module specific attributes. ¥/
op_ima_obj_attr_get (my_id, *Core radius*, &r);
op_ima_obj_attr_get (my_id, *delta r*, &delta_r);
op_ima_obj_attr_get (my_id, *Length-, &2);
op_ima_obj_attr_get (my_id, *Power Loss®, &a);
op_ima_obj_attr_get (my_id, *Delay*, &delay);

/* Initialize variables. */

fbc_desc = Aon_FBC_Create (r, delta_r, z, a);
notse_out{0] = Aon_Port_Noise_Out_Create ();
noise_out[1] = Aon_Port_Noise_Out_Create ();
noise_out{2] = Aon_Port_Noise_Out_Create ();
noise_out{3] = Aon_Port_Noise_Out_Create ();

noise_in[0] = Aon_Port_Noise_In_Create ();
noise_in{1] = Aon_Port_Noise_In_Create ();
noise_in{2] = Aon_Port_Noise_In_Create ();
noise_in{3] = Aon_Port_Noise_In_Create ();

transition__init -> steady

attribute value type default value
name tr 0 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
unforced state _steady

attribute value type default value
name steady string st

enter execs (empty) textlist (empty)

exit execs (See below.) textlist (See below.)
status unforced toggle unforced

exit execs steady

/* Get event */
event_type = op_intrpt_type ();

if (event_type == OPC_INTRPT_SELF)
{

/* Do module specific actions. */

}

if (event_type == OPC_INTRPT_STRM)
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10 {

15

30

else

35

40

45

port_index = op_intrpt_strm ();

if (port_index > 3)

op_sim_end (*Invalid port index",*",**,"*);

pkptr = op_pk_get (port_index);
type = Aon_Event_Packet_Type (pkptr);

20 if (type == AONC_PKT_PULSE)

{

pulse = Aon_Pulse_Packet_Get (pkptr);

new_pulse = Aon_Pulse_Copy (pulse);

Aon_FBC_Pulsel (pulse, fbc_desc);

Aon_FBC_Pulse2 (new_pulse, fbc_desc);

Aon_Pulse_Packet_Send_Delayed (pkptr,
(port_index + 2) % 4, delay);

pkptr = Aon_Pulse_Packet_Create (new_pulse);

Aon_Pulse_Packet_Send_Delayed (pkptr,
(3 - port_index), delay);

}

{
noise = Aon_Noise_Packet_Get (pkptr);
noise->power = Aon_Port_Noise_In_Handle
(noise_in [port_index], noise);
new_noise = Aon_Noise_Copy (noise);
Aon_FBC_Noisel (noise, fbc_desc);
Aon_FBC_Noise2 (new_noise, fbc_desc);
Aon_Port_Noise_Out_Handle_Dif_Reuse
(noise_out [(port_index + 2) % 4], pkptr,
(port_index + 2) % 4, delay);
pkptr = Aon_Noise_Packet_Create (new_noise);
Aon_Port_Noise_Out_Handle_Dif_Reuse
(noise_out [3 - port_index], pkptr,
(3 - port_index), delay);

transition _steady -> steady

attribute value type default value
name tr_1 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
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Process Model Attributes

attribute

value

type

default value

N

Delay

insertion loss

promoted
promoted
promoted

integer
double
double

2
0.0 (dB)
10 (ps)

Header Block

/* AON Model Suite */
/* Greg Campbell */

#include *cmath.h"
#include *aon_base.ex.h*
#include ~aon_stc.ex.h"

Stat

e Variable Block

/* State variable */
AonT_STC_Desc*
AonT_Port_Noise_Out_Ptr*
AonT_Port_Noise_In_Ptr*

\stc_desc;
\noise_out;
\noise_in;

Temporary Variable Block

10

int event_type;
Packer* pkptr;

int port_index;
int type;
AonT_Pulse *pulse;
AonT_Pulse *new_pulse;
AonT_Noise* noise;
AonT_Noise* new_noise;
Objid my_id;

int i;

double loss;

int N;

double delay;

forced state _init

attribute

value

type

default value

name

status

enter execs
exit execs

init
(See below.)

(empty)
forced

string

textlist
textlist
toggle

st
(See below.)
(empty)

unforced

enter execs _init

b

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
Aon_Simulation_Data_Get ();
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20

/* Determine module specific artributes. */
op_ima_obj_attr_get (my_id, *N=, &N);
op_ima_obj_attr_get (my_id, *delay", &delay);
op_ima_obj_attr_get (my_id, *insertion loss*, &loss);

/* Initialize variables. */
stc_desc = Aon_STC_Create (N, loss, delay);

noise_out = (AonT_Port_Noise_Out_Ptr*) malloc
(2 * N * sizeof (AonT_Port_Noise_Qut_Ptr));

noise_in = (AonT_Port_Noise_In_Ptr*) malloc
(2 * N * sizeof (AonT_Port_Noise_In_Ptr));

for (1=0;1<2*N; i++)
{
(*(noise_out + 1)) = Aon_Port_Noise_Out_Create ();
(*(noise_in + i)) = Aon_Port_Noise_In_Create ();

}

transition__init -> steady

attribute value type default value
name tr_0 string tr
condition string
executive string
color ’ RGB333 color RGB333
drawing style spline toqgle spline
unforced state Steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced
exit execs _steady
/* Get event */
event_type = op_intrpt_type ();
if (event_type = OPC_INTRPT_SELF)
5 {
/* Do module specific actions. */
}
if (event_type = OPC_INTRPT_STRM)
10 {
port_index = op_intrpt_strm ();
if (port_index >= 2*stc_desc->N)
op_sim_end (*Invalid port index®,*","",*");
15
pkptr = op_pk_get (port_index);
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type = Aon_Event_Packet_Type (pkptr);

20 if (type == AONC_PKT_PULSE)

{

pulse = Aon_Pulse_Packet_Get (pkptr);
Aon_STC_Propagate (pulse, stc_desc);
if (port_index < stc_desc->N)

25 {
Aon_Pulse_Packet_Send_Delayed (pkptr,
stc_desc->N, stc_desc->delay):
A
else
30 {
Aon_Pulse_Packet_Send_Delayed (pkptr,
0, stc_desc->delay);
)
for (i = 1: 1 < stc_desc->N; i++)
35 [

new_pulse = Aon_Pulse_Copy (puise);
pkptr = Aon_Pulse_Packet_Create (new_pulse);

if (port_index < stc_desc->N)

40 {
Aon_Pulse_Packet_Send_Delayed (pkptr,

i + stc_desc->N, stc_desc->delay);

}

alse

45 {

Aon_Pulse_Packet_Send_Delayed (pkptr,
i, stc_desc->delay);

}

50 }
else
{
noise = Aon_Noise_Packet_Get (pkptr);
noise->power = Aon_Port_Noise_In_Handle
55 {*(noise_in + port_index), noise);
Aon_STC_Noise_Propagate (noise, stc_desc);

if (port_index < stc_desc->N)
{

60 Aon_Port_Noise_Out_Handle_Dif_Reuse
(*(noise_out + stc_desc->N), pkptr,
stc_desc->N, stc_desc->delay);

}

else

65 {

Aon_Port_Noise_Out_Handle_Dif_Reuse

(*(noise_out + 0}, pkptr,
0, stc_desc->delay);
1
70 for (i = 1; i < stc_desc->N; i++)
{

new_noise = Aon_Noise_Copy (noise);

pkptr = Aon_Noise_Packet_Create (new_noise);

75 if (port_index < stc_desc->N)

115




Process Model Report: aon_stc

| Tue May 30 14:45:32 1995 | Page 4 of 4

All Optical Network Model Suite

80

85

{

Aon_Port_Noise_Out_Handle_Dif_Reuse

(*(noise_out + i + stc_desc->N), pkptr,

i + stc_desc->N, stc_desc->delay);

}

else

(

Aon_Port_Noise_Out_Handle_Dif_Reuse

(*(noise_out + i), pkptr,
i, stc_desc->delay);

transition _steady -> steady

attribute value type default value
name tr_1 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline togale spline
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Process Model Attributes

attribute value type default value
Gain promoted double 10 (dB)
Saturation promoted double 0.1 (W)
Noise Coef promoted double 1.0 (dB)
Relax Time promoted double 1,000 (ps)
Delay promoted double 10 (ps)
delta noise percent promoted double 10 (percent)
Header Block
/* AON Model Suite */
/* Greg Campbell */
#include "math.h*
5 | #include "cmatt..h*
#include *aon_tase.ex.h"
#include *acn_amp.ex.h*
State Variable Block
/* State variable */
double \old_time; ;
AonT_Amp_Desc* \amp; '
Evhandle \update_event; .
;
Temporary Variable Block i
int event_type; :
Packet* pkptr; |
int port_index; i
int type: !
5 |AonT_Pulse *pulse: E
AonT_Noise *noise; [
Objid my_id; ;
double next_update_time; |
double amp_gain; |
10 | double amp_noise; |
double amp_sat: |
double amp_tau; !
double amp_delay; !
double amp_d_noise; i
forced state _init
attribute value type default value f
name init string st :
enter execs (See below.) textlist (See below.) {
exit execs (empty) textlist (empty) i
status forced toggle unforced '
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10

15

20

30

enter execs _init

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
Aon_Simulation_Data_Get ();

/* Create amplifier description structure. \4
amp = Aon_Amp_Desc_Create ();

/* Determine module specific attributes. %

op_ima_obj_attr_get (my_id, *Gain*, &amp_gain);

op_ima_obj_attr_get (my_id, “saturation*, &amp_sat);
op_ima_obj_attr_get (my_id, "Noise Coef", &amp_noise);
op_ima_obj_attr_get (my_id, *Relax Time®, &amp_tau);
op_ima_obj_attr_get (my_id, "Delay", &amp_delay);
op_ima_obj_attr_get (my_id, "delta noise percent*, &amp_d_noise);

/* Initialize variables. %/

amp->gain = cmath_dB ((-1.0) * amp_gain);
amp->sat = amp_sat,

amp->noise = cmath_dB ((-1.0) * amp_noise);
amp->tau = amp_tau;

amp->delay = amp_delay;

amp->d_noise = amp_d_noise / 100.0;

/* Set time of last update to 0.0. %/
old_time = 0.0;

Aon_Amp_Noise_Update (amp, op_sim_time ());

transition__init -> steady

attribute value type default value
name tr_ 0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toagle spline
unforced state _steady
|_attribute value lype default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
L_status unforced toggle unforced

exit execs _steady

5

/* Determine average pulse power. */
amp->pulse_power = amp->pulse_power *
exp ((old_time - op_sim_time ()) / amp->tau);

/* Get event %/
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15

20

30

35

45

50

55

event_type = op_intrpt_type ();
if (event_type == OPC_INTRPT_SELF)
{

if (op_intrpt_code () != AONC_AMP_UPDATE)
Aon_Amp_Pulse_Power_Interrupt_Get (amp);
}

if (event_type == OPC_INTRPT_STRM)

{
/* Cancel pending update event, if there is one. */
if (op_ev_valid (update_event))

op_ev_cancel (update_event);

port_index = op_intrpt_strm ();

if (port_index !=0)
op_sim_end (*Invalid port index®,*",*", *");

pkptr = op_pk_get (port_index);
type = Aon_Event_Packet_Type (pkptr);

if (type == AONC_PKT_PULSE)
{
pulse = Aon_Pulse_Packet_Get (pkptr);
Aon_Amp_Pulse_Power_Interrupt_Set (amp, pulse);
Aon_Amp_Pulse (amp, pulse);

Aon_Pulse_Packet_Send_Delayed (pkptr, 0, amp->delay);

}

else
{
noise = Aon_Noise_Packet_Get (pkptr);
amp->rcv_noise = amp->rcv_noise + noise->power -

(*(amp->noise_in->noise_array + noise->freq_bin));

(*(amp->noise_in->noise_array + noise->freq_bin)) = noise->power;
Aon_Noise_Packet_Destroy (pkptr);
}

}

Aon_Amp_Noise_Update (amp, op_sim_time ());
old_time = op_sim_time ();

if (amp->pulse_power > AonI_Min_Power)
{

/*  next_update_time = op_sim_time () - amp->tau *
log (1.0 - amp->d_noise); */
next_update_time = op_sim_time () + Aon_Amp_Next_Update (amp);
update_event = op_intrpt_schedule_self (next_update_time,
AONC_AMP_UPDATE);
}

transition__Steady -> steady

| attribute value type default value
name tr_1 string tr
condition string
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executive string
color RGB333 color RGB333
drawing style spline togale spline
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Process Model Attributes

| aftribute value type default value
FSR promoted double 0.05 (THz)
Bandwidth promoted double 0.01 (THz)
Attenuation promoted double 1.0 (dB)
Delay promoted double 10 (ps)
| Header Block
/* AON Model Suite */
/* Greg Campbell */
#include *cmath.h*
5 | #include "aon_base.ex.h*
#include "acn_ase.ex.h*
| State Variable Block
/* State variable %/
AonT_Port_Noise_Out* \noise_out(2];
AonT_ASE_Desc* \ase_desc;
double \delay;
Temporary Variabie Block
int event_type;
Packet* pkptr;
int port_index;
int type;
5 | AonT_Pulse *pulse;
AonT_Noise *noise;
Objid my_id;
double W,
double FSR;
10 | double a;
forced state _init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs _init

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
5 | Aon_Simulation_Data_Get ();

/* Determine module specific attributes. */
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op_ima_obj_attr_get (my_id, *Attenuation®, &a);
op_ima_obj_attr_get (my_id, *Fsr*, &FSR);

10 | op_ima_obj_attr_get (my_id, *Bandwidth*, &W);
op_ima_obj_attr_get (my_id, "Delay", &delay);

/* Initialize variables. */

ase_desc = Aon_ASE_Create (FSR, W, a);

15 | noise_out{0] = Aon_Port_Noise_Out_Create ();
noise_out{1] = Aon_Port_Noise_Out_Create ();

transition__init -> steady

122

attribute value type default value
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
unforced state steady_
|_attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced
exit execs _Steady
/* Get event */
event_type = op_intrpt_type O;
if (event_type == OPC_INTRPT_SELF)
5 {
/* Do module specific actions. ¥/
}
if (event_type == OPC_INTRPT_STRM)
10 {
port_index = op_intrpt_strm ();
if (port_index > 1)
op_sim_end ("Invalid port index*,**,*","*);
15 .
pkptr = op_pk_get (port_index);
type = Aon_Event_Packet_Type (pkptr);
20 if (type == AONC_PKT_PULSE)
{
pulse = Aon_Puise_Packet_Get (pkptr);
Aon_ASE_Pulse (pulse, ase_desc);
Aon_Pulse_Packet_Send_Delayed (pkptr,
25 1 - port_index. delay);
}
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else

noise = Aon_Noise_Packet_Get (pkptr);

30 Aon_ASE_Noise (noise, ase_desc);

Aon_Port_Noise_Out_Handle_Abs_Reuse (noise_out [port_index],
pkptr, 1 - port_index, delay);

}

transition _steady -> steady

attribute value type default value
name tr_1 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
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Process Model Attributes

attribute value type default value
FSR promoted double 0.05 (THz)
Finesse promoted double 30 (none)
Tmax promoted double 1.0 (none)
Delay promoted double 10 (ps)
Header Block
/* AON Model Suite */
/* Greg Campbell */
#include *cmath.h*
5 | #include "aon_base.ex.h"
#include "acn_fab.ex.h"
| State Variable Block
/* State variable */
AonT_Port_Noise_Out* \noise_out[2];
AonT_Fab_Desc* \fab_desc;
double \delay;
Temporary Variable Block
int event_type;
Packet* pkptr;
int port_index;
int type;
5 | AonT_Pulse *pulse;
AonT_Noise *noise;
Objid my_id;
double Finesse;
double FSR;
10 | double Tmax;
forced state _init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs _init

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
S | Aon_Simulation_Data_Get ();

/* Determine module specific attributes. */
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op_ima_obj_attr_get (my_id, "Finesse-, &Finesse);
op_ima_obj_attr_get (my_id, "Fsr", &FSR);

10 | op_ima_obj_attr_get (my_id, *Tmax*, &Tmax);
op_ima_obj_attr_get (my_id, *Delay*", &delay);

/* Initialize variables. */

fab_desc = Aon_Fab_Create (FSR, Finesse, Tmax);
15 | noise_out(0] = Aon_Port_Noise_Qut_Create ();
noise_out{1] = Aon_Port_Noise_Qut_Create ();

transition__init -> steady

attribute value type default value
name tr_0 string tr

condition string

executive string

color RGB333 color RGB333
drawing style_ spline toggle spline

unforced state _steady

attribute value type default value
name steady string st

enter execs (empty) textlist (empty)

exit execs (See below.) textlist (See below.)
status unforced togale unforced

exit execs Steady

/* Get event ¥/
event_type = op_intrpt_type ();

if (event_type == OPC_INTRPT_SELF)
5 {
/* Do module specific actions. */

}

if (event_type == OPC_INTRPT_STRM)
10 {
port_index = op_intrpt_strm ();

A if (port_index > 1)
op_sim_end (*Invalid port index*,**®,"*, "*);

15 .

pkptr = op_pk_get (port_index);

type = Aon_Event_Packet_Type (pkptr);

20 if (type = AONC_PKT_PULSE)

{

pulse = Aon_Pulse_Packet_Get (pkptr);
Aon_Fab_Pulse (pulse, fab_desc);
Aon_Pulse_Packet_Send_Delayed (pkptr,
25 1 - port_index, delay);

}
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30

else

{
noise = Aon_Noise_Packet_Get (pkptr);
Aon_Fab_Noise (noise, fab_desc);

Aon_Port_Noise_Out_Handle_Abs_Reuse (noise_out {port_index],

pkptr, 1 - port_index, delay);
}

transition _steady -> steady

attribute value type default value
name tr_1 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
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Process Model Attributes

| attribute value type default value
FSR promoted double 0.2 (THz)
Delay promoted double 10 (ps)
Header Block
/* AON Model Suite */
/* Greg Campbell %/
#include "cmath.h"
5 | #include "aon_base.ex.h*
#include "aon_mz#.ex.h*
F§_t‘§1e Variable Block
/* State variable */
AonT_Port_Noise_Out* \noise_out[4];
AonT_Port_Noise_In* \noise_in[4];
AonT_MZF_Desc* \mzf_desc;
5 | double \delay;
Temporary Variable Block
int event_type:
Packet* pkptr:
int port_index;
int type:
5 | AonT_Pulse *pulse;
AonT_Pulse *new_pulse;
AonT_Noise *noise;
AonT_Noise *new_noise;
Objid my_id:
10 | double FSR;
forced state _init
| attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs __init

/* Determine unique ID. ¥/
my_id = op_id_self ();

/* Determine simulation data. */
5 | Aon_Simulation_Data_Get ();

/* Determine module specific attributes. */
op_ima_obj_attr_get (my_id, ~Fsr*, &FSR);
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15

20

op_ima_obj_attr_get (my_id, *Delay*, &delay);

/* Initialize variables. */

mzf_desc = Aon_MZF_Create (FSR);
noise_out(0] = Aon_Port_Noise_Out_Create ();
noise_out{1] = Aon_Port_Noise_Out_Create ();
noise_out[2] = Aon_Port_Noise_Out_Create ();
noise_out{3] = Aon_Port_Noise_Out_Create ();

noise_in{0] = Aon_Port_Noise_In_Create ();
noise_in(1] = Aon_Port_Noise_In_Create ();
noise_in[2] = Aon_Port_Noise_In_Create ();
noise_in[3] = Aon_Port_Noise_In_Create ();

transition _init -> steady

attribute value type default value
name tr_ 0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
unforced state steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced
exit execs _steady
/* Get event */
event_type = op_intrpt_type ();
if (event_type = OPC_INTRPT_SELF)
5 {
/* Do module specific actions. ¥/
}
if (event_type == OPC_INTRPT_STRM)
10 {
port_index = op_intrpt_strm ();
if (port_index > 3)
op_sim_end ("Invalid port index®,**®,**,"");
15
pkptr = op_pk_get (port_index);
type = Aon_Event_Packet_Type (pkptr);
20 if (type = AONC_PKT_PULSE)
| {
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25
30
else
35
40
45
}

pulse = Aon_Pulse_Packet_Get (pkptr);
new_pulse = Aon_Pulse_Copy (pulse);
Aon_MZF_Pulsel (pulse, mzf_desc);
Aon_MZF_Pulse2 (new_pulse, mzf_desc);
Aon_Pulse_Packet_Send_Delayed (pkptr,
(port_index + 2) % 4, delay);
pkptr = Aon_Pulse_Packet_Create (new_pulse);
Aon_Pulse_Packet_Send_Delayed (pkptr,
(3 - port_index), delay);
}

{
noise = Aon_Noise_Packet_Get (pkptr);
noise->power = Aon_Port_Noise_[n_Handle
(noise_in [port_index], noise);
new_noise = Aon_Noise_Copy (noise);
Aon_MZF_Noisel (noise, mzf_desc);
Aon_MZF_Noise2 (new_noise, mzf_desc);
Aon_Port_Noise_Out_Handle_Dif_Reuse
(noise_out [(port_index + 2) % 4], pkptr,
(port_index + 2) % 4, delay);
pkptr = Aon_Noise_Packet_Create (new_noise);
Aon_Port_Noise_Out_Handle_Dif Reuse
(noise_out [3 - port_index], pkptr,
(3 - port_index), delay);

transition _steady -> steady

attribute value type default value
name tr_1 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
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Process Model Attributes

value type

double
double
double

| attribute
FSR promoted
Delay promoted

Attenuation promoted

32 (THz)
10 (ps)
0.0 (dB)

default value

eader Block

/* AON Model Suite */
/* Greg Campbell */

#include *cmath.h*
5 |#include "aon_base.ex.h*
#include *aon_wdm.ex.h*

State Variable Block

/* State variable ¥/

AonT_Port_Noise_Out*
AonT_Port_Noise_In*
AonT_WDM_Desc*

\noise_out{3];
\noise_in[3];
\wdm_desc;

5 | double

\delay;

int

Packet*

int

int

5 | AonT_Pulse
AonT_Puise
AonT_Noise
AonT_Noise
Objid

10 | double
double

Temporary Variable Block

event_type:
pkptr;
port_index;
type:
*pulse;
*new_pulse;
*noise;
*new_noise;
my_id;
FSR;

a;

forced state _init

attribute

value

type

default value

name
enter execs
exit execs

status

init

(See below.)

(empty)

forced

string

textlist
textlist
toggle

st
(See below.)

(empty)
unforced

enter execs _init

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
S | Aon_Simulation_Data_Get ();
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/* Determine module specific artributes. */
op_ima_obj_attr_get (my_id, *Fsr*, &FSR);
op_ima_obj_attr_get (my_id, "Attenuation®, &a);
10 | op_ima_obj_attr_get (my_id, "Delay", &delay);
/* Initialize variables. */
wdm_desc = Aon_ WDM_Create (FSR, a);
noise_out[0] = Aon_Port_Noise_Out_Create (); .
15 | noise_out[1] = Aon_Port_Noise_Out_Create (); i
noise_out{2] = Aon_Port_Noise_Out_Create (); |
|
noise_in{0] = Aon_Port_Noise_In_Create (); l
noise_in{1] = Aon_Port_Noise_In_Create (); ’
20 | noise_in[2] = Aon_Port_Noise_In_Create Q;
transition__init -> steady |
attribute value type default value |
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
unforced state _steady
attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced
exit execs _steady
/* Ger event */
event_type = op_intrpt_type ();
if (event_type == OPC_INTRPT_SELF)
5 {
/* Do module specific actions. */
}
if (event_type == OPC_INTRPT_STRM)
10 {
port_index = op_intrpt_strm ();
if (port_index > 2)
op_sim_end (*Invalid port index=®,**, **, **);
15
pkptr = op_pk_get (port_index);
type = Aon_Event_Packet_Type (pkpur);
20| if (type = AONC_PKT_PULSE) 1
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30

35

40

45

50

55

60

65

70

75

else

{
pulse = Aon_Puise_Packet_Get (pkptr);
if (port_index == Q)
{
Aon_WDM_Puisel (pulse, wdm_desc);
Aon_Pulse_Packet_Send_Delayed (pkptr,
2. delay);
}
if (port_index == 1)
{
Aon_WDM_Puise2 (pulse, wdm_desc);
Aon_Pulse_Packet_Send_Delayed (pkptr,
2, delay);
}
if (port_index == 2
{
new_pulse = Aon_Pulse_Copy (pulse);
Aon_WDM_Pulsel (pulse, wdm_desc);
Aon_Pulse_Packet_Send_Delayed (pkptr,
0, delay);
Aon_WDM_Pulse2 (new_pulse, wdm_desc);
pkptr = Aon_Pulse_Packet_Create (new_pulse);
Aon_Pulse_Packet_Send_Delayed (pkptr,
2, delay);
}
}

{
noise = Aon_Noise_Packet_Get (pkptr);
noise->power = Aon_Port_Noise_In_Handle
(noise_in {port_index], noise);
if (port_index == 0)
{
Aon_WDM_Noisel (noise, wdm_desc);
Aon_Port_Noise_Out_Handle_Dif_Reuse
(noise_out [2], pkptr, 2, delay);

if (port_index == 1)

Aon_WDM_Noise2 (new_noise, wdm_desc);
Aon_Port_Noise_Out_Handle_Dif_Reuse
(noise_out (2], pkptr, 2, delay);

if (port_index == 2)

new_noise = Aon_Noise_Copy (noise);

Aon_WDM_Noisel (noise, wdm_desc);

Aon_Port_Noise_Out_Handle_Dif_Reuse
(noise_out {0], pkptr, 0, delay);

pkptr = Aon_Noise_Packet_Create (new_noise);

Aon_WDM_Noise2 (noise, wdm_desc);

Aon_Port_Noise_Out_Handle_Dif Reuse
(noise_out [1], pkptr, 1, delay);

}
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transition _steady -> steady

attribute value type default value
name tr_1 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
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Process Model Attributes

attribute value type default value
N promoted integer 2 (unitless)
FSR promoted double 0.5 (THz)
Attenuation promoted double 0.0 (dB)
Extinction Ratio promoted double 16 (dB)
Delay promoted double 10 (ps)

Header Block

/* AON Model Suite */
/* Greg Campbell */

#include “cmach.h*
5 |#include "aon_base.ex.h*
#include "aon_rou.ex.h*

State Variable Block

/* State variable */

AonT_Rou_Desc* \rou_desc;
AonT_Port_Noise_QOut_Ptr* \noise_out;
AonT_Port_Noise_In_Ptr* \noise_in;

Temporary Variable Block

int event_type;

Packet* pkptr;

Packet* new_pkptr;

int port_index;
5 |int type;

AonT_Pulse *pulse;
AonT_Pulse *new_pulse;
AonT_Noise* noise;
AonT_Noise* new_noise;

10 | Objid my_id;
int i;
double loss;
int N;
double FSR;

15 | double k;
double delay;
int out_port;

orced state _init

attribute value type default value
name init string st

enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toqgle unforced
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ente

r execs _init

20

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
Aon_Simulation_Data_Get ();

/* Determine module specific attributes. ¥/
op_ima_obj_attr_get (my_id, *N=, &N);
op_ima_obj_attr_get (my_id, “Fsr*, &FSR);
op_ima_obj_attr_get (my_id, *Attenuation®, &loss);
op_ima_obj_attr_get (my_id, *Extinction Ratio*, &k);
op_ima_obj_attr_get (my_id, *Delay", &delay);

/* Initialize variables. */
rou_desc = Aon_Rou_Create (N, FSR, loss. k, delay);

noise_out = (AonT_Port_Noise_Out_Ptr*) malloc
(2 * N * sizeof (AonT_Port_Noise_OQut_Ptr));

noise_in = (AonT_Port_Noise_In_Pur*) malloc
(2 * N * sizeof (AonT_Port_Noise_In_Ptr));

for (i = 0; 1 <2*N; i++)
{
(*(noise_out + i)) = Aon_Port_Noise_Qut_Create ();
(*(noise_in + i)) = Aon_Port_Noise_In_Create ();

}

transition _init -> steady

attribute value type default value
name tr_0 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline

unforced state _steady

attribute value type default value
name steady string st

enter execs (empty) textlist (empty)

exit execs (See below.) textlist (See below.)
status unforced toggle unforced

exit execs _Steady

/* Get event %/
event_type = op_intrpt_type ();

if (event_type == CPC_INTRPT_SELF)
{

/* Do module ipecific actions. */

}
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if (event_type == OPC_INTRPT_STRM)
10 {
port_index = op_intrpt_strm ();

if (port_index >= 2*rou_desc->N)

op_sim_end ("Invalid port index*,**,*", **);
15
pkptr = op_pk_get (port_index);

type = Aon_Event_Packet_Type (pkptr);

20 if (type == AONC_PKT_PULSE)

(
pulse = Aon_Pulse_Packet_Get (pkptr);

for (i = 1; i <rou_desc->N; i++)

25 {

new_pulse = Aon_Pulse_Copy (pulse);
Aon_Rou_Pulse (new_pulse, rou_desc, i);
new_pkptr = Aon_Pulse_Packet_Create (new_puise);

30 if (port_index < rou_desc->N)

{

out_port = ((port_index + i) % rou_desc->N) +
rou_desc->N;

}
{

out_port = (port_index + i) % rou_desc->N;

}

35 else

40 Aon_Pulse_Packet_Send_Delayed (new_pkptr,
out_port, rou_desc->delay);

}

Aon_Rou_Pulse (pulse, rou_desc, 0);

45 out_port = (port_index + rou_desc->N) %
(2 * rou_desc->N);

Aon_Pulse_Packet_Send_Delayed (pkptr,
out_port, rou_desc->delay);

}

{

noise = Aon_Noise_Packet_Get (pkptr);

noise->power = Aon_Port_Noise_In_Handle
(*(noise_in + port_index), noise);

50 else

55
for (i = 1; 1 < rou_desc->N; i++)
{
new_noise = Aon_Noise_Copy (noise);
Aon_Rou_Noise (new_noise, rou_desc, i);
60 new_pkptr = Aon_Noise_Packet_Create (new_noise);

if (port_index < rou_desc->N)

{

out_port = ((port_index + i) % rou_desc->N) +
65 rou_desc->N;

}
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70

75

80

85 }

else

{

out_port = (port_index + i) % rou_desc->N;

}

Aon_Port_Noise_Qut_Handle_Dif_Reuse
(*(noise_out + out_port), new_pkptr,
out_port, rou_desc->delay);

}

Aon_Rou_Noise (noise, rou_desc, 0);
out_port = (port_index + rou_desc->N) %
(2 * rou_desc->N);

Aon_Port_Noise_Qut_Handle_Dif_Reuse
(*(noise_out + out_port), new_pkptr,
out_port, rou_desc->delay);

transition _steady -> steady

attribute value type default value
name tr_1 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
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Process Model Attributes

|_aftribute value lype default value
eye width promoted double 100 (ps)
coherent promoted integer 0 (N/A)
Signal ID _bromoted integer 0 (N/A)
Header Block
/* AON Model Suite */
/* Greg Campbell */
#include *cmath.h*
5 | #include "aon_base.ex.h"
#include *aon_rev.ex.h*
' State Variabie Block
/* State variable */
AonT_Port_Pulse* \port;
AonT_Port_Noise_In* \noise_in;
double \old_time;
5 |double \rcv_noise;
double \sim_duration;
int \pulse_num;
AonT_Rev_Desc \rcv_desc;
[Temporary Variable Block
int event_type;
Packet* pkptr;
int port_index;
int type;
5 | AonT_Pulse *pulse;
AonT_Pulse *pulse_copy:
AonT_Noise *noise;
Objid my_id;
forced state_init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toagle unforced

enter execs _init

/* Determine unique ID. */
my_id = op_id_self );

/* Determine simulation data. */
5 | Aon_Simulation_Data_Get ();
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20

30

/* Determine module specific antributes. */

op_ima_sim_attr_get (OPC_IMA_DOUBLE, “duration®, &sim_duration);
op_ima_obj_attr_get (my_id, *eye width*, &(rcv_desc.eye_width));
op_ima_obj_attr_get (my_id, *coherent ", &(rcv_desc.coherent));
op_ima_obj_attr_get (my_id, *Signal ID®, &(rcv_desc.signal_id));

7% Initialize variables. */
rcv_desc.eye_origin = -1.0;

/* Create input port. ¥/
port = Aon_Port_Pulse_Create ();
noise_in = Aon_Port_Noise_In_Create ();

/% Set time of last update 10 0.0. */
old_time = 0.0;

/* Set current noise level to 0.0. %
rev_noise = 0.0;

/* Schedule an interrupt to finish out duration. */
op_intrpt_schedule_self (sim_duration - 1E-5, 0);

/* Set pulse number to 0. */
pulse_num = 0;

transition _init -> steady

attribute value type default value
name tr 0 string tr
condition string
executive string
color RGB333 color RGB333

| drawing style spline toagle spline
unforced state _steady

| attribute value type default value
name steady string st
enter execs (empty) textlist (empty)
exit execs (See below.) textlist (See below.)
status unforced toagle unforced

exit execs Steady

if (rev_desc.eye_origin == -1.0)

rcv_desc.eye_origin = op_sim_time () + AonI_Duration/ 2.0 +
rcv_desc.eye_width / 2.0;
}

/* Get event */
event_type = op_intrpt_type ();

if (event_type == OPC_INTRPT_SELF)
{

/* Do module specific actions. */
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15

20

30

35

45

50

Aon_Rcv_Update (port, rcv_noise, old_time,
op_sim_time (), &rcv_desc);
old_time = op_sim_time ();
}
if (event_type == OPC_INTRPT_STRM)
{
port_index = op_intrpt_strm ();

if (port_index !=0)

op_sim_end (*Invalid port index*, **,**,"*);

pkptr = op_pk_get (port_index);
type = Aon_Event_Packet_Type (pkptr);

if (type == AONC_PKT_PULSE)
{

Aon_Rcv_Update (port, rcv_noise, old_time,

op_sim_time (), &rcv_desc);
old_time = op_sim_time ();
pulse = Aon_Pulse_Packet_Get (pkptr);
pulse_copy = Aon_Pulse_Copy (pulse);
Aon_Rcv_Pulse (pulse_copy, pulse_num);

Aon_Port_Pulse_Append (port, pulse_copy);

}
else
{
noise = Aon_Noise_Packet_Get (pkptr);

rcv_noise += Aon_Port_Noise_In_Handle (noise_in, noise);
(*(noise_in->noise_array + noise->freq_bin)) = noise->power;

Aon_Rcv_Update (port, rcv_noise, old_time,

op_sim_time (), &rcv_desc);
old_time = op_sim_time ();

op_pk_send (pkptr, 0);
}

transition__steady -> steady

|_attribute value type defauit value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
|_drawing style spline toggle spline
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A.15 aon_rcv

Process Model Report: aon_rev0
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Process Model Attributes

| attribute value

type

default value

eye width promoted
coherent promoted
Signal ID promoted

double
integer
integer

100 (ps)
0 (N/A)
0 (N/A)

Header Biock

/* AON Model Suite */
/* Greg Campbell */

#include "cmath.h*
5 | #include "aon_base.ex.h"
#include *aon_rcv.ex.h*

tate Variable Block

/* State variable */

AonT_Port_Pulse* \port;
AonT_Port_Noise_In* \noise_in;
double \old_time;

5 |double \rcv_noise;
double \sim_duration;
int \pulse_num;
AonT_Rcv_Desc \rev_desc;

Temporary Variable Block

int event_type;
Packer* pkptr;

int port_index;
int type;

5 | AonT_Pulse *pulse;
AonT_Noise *noise;
Objid my_id:

forced state _init

|_attribute value

type

default value

name init

enter execs (See below.)
exit execs (empty)
status forced

string

textlist
textlist
toggle

st
(See below.)

(empty)

unforced

enter execs _init

/* Determine unique ID. */
my_id = op_id_self ();

/* Determine simulation data. */
5 | Aon_Simulation_Data_Get ();

op_ima_sim_attr_get (OPC_IMA_DOUBLE, *duration®, &sim_duration);
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/* Determine module specific attributes. */

/* Initialize variables. */
rcv_desc.eye_origin = -1.0;
15
/* Create input port. */

port = Aon_Port_Pulse_Create ();
noise_in = Aon_Port_Noise_In_Create ();

20 | /* Set time of last update to 0.0. */
old_time = 0.0;

/* Set current noise level to 0.0. */
rcv_noise = 0.0;

/* Schedule an interrupt to finish out durarion. */
op_intrpt_schedule_self (sim_duration - 1E-9, 0);

/* Set pulse number to 0. ¥/
30 | pulse_num =0;

op_ima_obj_attr_get (my_id, eye width*, &(rcv_desc.eye_width));
10 | op_ima_obj_attr_get (my_id, *coherent*, &(rcv_desc.coherent));
op_ima_obj_attr_get (my_id, *Signal ID*, &(rcv_desc.signal_id));

transition__init -> steady

attribute value type default value
name tr_0 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline togale spline
unforced state _steady

attribute value type default value
name steady string st

enter execs (empty) textlist (empty)

exit execs (See below.) textlist (See below.)
status unforced toggle unforced

exit execs _steady

if (rcv_desc.eye_origin == -1.0)

{

rcv_desc.eye_width / 2.0;
5 }

/* Get event */
event_type = op_intrpt_type ();

10 | if (event_type == OPC_INTRPT_SELF)

(

/* Do module specific actions. */
Aon_Rev_Update (port, rcv_noise, old_time,

rcv_desc.eye_origin = op_sim_time () + Aonl_Duration/ 2.0 +
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op._sim_time (), &rcv_desc);
15 old_time = op_sim_time ();
}
if (event_type == OPC_INTRPT_STRM)
{
20 port_index = op_intrpt_strm (};
if (port_index !=0)
op_sim_end (*Invalid port index®,**,"",""),
25 pkptr = op_pk_get (port_index);
type = Aon_Event_Packet_Type (pkptr);
if (type == AONC_PKT_PULSE)
30
Aon_Rev_Update (port, rev_noise, old_time,
op_sim_time (), &rcv_desc);
old_time = op_sim_time ();
pulse = Aon_Pulse_Packet_Get (pkptr);
3s Aon_Rcv_Pulse (pulse, pulse_num);
Aon_Port_Pulse_Append (port, pulse);
Aon_Pulse_Packet_Destroy (pkptr);
}
else
40 {
noise = Aon_Noise_Packet_Get (pkptr);
rev_noise += Aon_Port_Noise_In_Handle (noise_in, noise);
(*(noise_in->noise_array + noise->freq_bin)) = noise->power;
Aon_Noise_Packet_Destroy (pkptr);
45 Aon_Rcv_Update (port, rcv_noise, old_time,
op_sim_time (), &rcv_desc);
old_time = op_sim_time ();
}
}
50
transition__steady -> steady
attribute value type default value ‘
name tr_1 string tr
condition string
executive string
color RGB333 ) color RGB333
drawing style spline toggle spline
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Appendix B: Supporting Code

This appendix contains all of the supporting code in the AON Model Suite. Detailed infor-
mation about the concepts behind the models including model attributes can be found in
chapter four. The following supporting code files are included:

* aon_xmt.ex.h and aon_xmt.ex.c Support for the Transmitter models.

* aon_fib.ex.h and aon_fib.ex.c Support for the Fiber model.

* aon_fbc.ex.h and aon_fbc.ex.c Support for the Fused Biconical Coupler model.

* aon_stc.ex.h and aon_stc.ex.c Support for the Star Coupler model.

* aon_amp.ex.h and aon_amp.ex.c Support for the Amplifier model.

* aon_ase.ex.h and aon_ase.ex.c Support for the ASE Filter model.

* aon_fab.ex.h and aon_fab.ex.c Support for the Fabry-Perot Filter model.

* aon_mzf.ex.h and aon_mzf.ex.c Support for the Mach-Zehnder Filter model.

* aon_wdm.ex.h and aon_wdm.ex.c Support for the WDM model.

* aon_rou.ex.h and aon_rou.ex.c Support for the Router model.

* aon_rcv.ex.h and aon_rcv.ex.c Support for the Receiver and Probe models.

* aon_lin.ex.h and aon_lin.ex.c Support for linear transfer functions.

* cmath.ex.h and cmath.ex.c Support for complex mathematics.

* aon_ps.ex.h, aon_propdel.ps.c, aon_proprcv.ps.c, aon_txdel.ps.c aon_txrcv.ps.c Pipe-

line stage models
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B.1 Transmitter Support Code

All of the transmitter process models use the same basic pulse shape generation functions.
These functions and their accompanying structures are found in aon_xmt.ex.h and

aon_xmt.ex.c.

aon_xmt.ex.h

/* Greg Campbell */
/* AON Model Suite */
/* aon_xmt.ex.h */
/* Transmitters */

/**** Typedefs ****/

typedef struct
{

double t0;

double peak_power;
int m;

double chirp;

} AonT_Xmt_Gaussian;

typedef struct
{

double t0;
double peak_power;
double chirp;

} AonT_Xmt_Sech;

/**** Function Prototypes ****/

CmathT_Complex* Aon_Xmt_Gaussian (AonT_Xmt_Gaussian *gaussian);
CmathT_Complex* Aon_Xmt_Sech (AonT_Xmt_Sech *sech);

aon_xmt.ex.c

/* Greg Campbell */
/* AON Model Suite */
/* aon_xmt.ex.c */

#include “/lidsfs/usr/local3/opnet-2.5-sol/sys/include/opnet.h”
#include “math.h”

#include “cmath.h”

#include “aon_base.ex.h”

#include “aon_xmt.ex.h”

CmathT_Complex*

Aon_Xmt_Gaussian (AonT_Xmt_Gaussian *gaussian)
{
CmathT_Complex *shape;
int i;
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double t_over_t0;

shape = (CmathT_Complex*) malloc (AonI_Len * sizeof (CmathT_Complex));
for (i = 0; i < AonI_Len; i++)
{

t_over_t0 = (double) (i - AonI_Len / 2) * AonI_Duration / (AonI_Len * gaussian->t0);

(shape + i)->r = sqrt(gaussian->peak_power) * exp ((-0.5) * pow (t_over_tO0,
(2*gaussian->m)));

if (gaussian->chirp != 0.0)

{
(shape + i)->theta = ((-0.5)* pow (t_over_t0, (2*gaussian->m)));

}

else

{
(shape + i)->theta = 0.0;

}
return (shape);
}

CmathT_Complex*
Aon_Xmt_Sech (AonT_Xmt_Sech *sech)

{

CmathT_Complex *shape;

int i;

double t_over_t0;

shape = (CmathT_Complex*) malloc (AonI_Len * sizeof (CmathT Complex));

for (i = 0; i < AonI_Len; i++)

{
t_over_t0 = (double) (i - AonI_Len / 2) * AonI_Duration / (AonI_Len * sech->t0);

(shape + i)->r = sqrt(sech->peak_power) * (1.0 / cosh (t_over_t0));

if (sech->chirp != 0.0)

{
(shape + i)->theta = -0.5 * sech->chirp * t_over_t0 * t_over_t0;

}
else

{
(shape + i)->theta = 0.0;

}

return (shape);
}
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B.2 Optical Fiber Support Code

The optical fiber process model and the optical fiber model in the links use the same basic
pulse propagation functions. These functions and their accompanying structures are found

inaon_fib.ex.hand aon_fib.ex.c.

aon_fib.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Defines ****/

#define AONC_FIB_DISPERSION 0
#define AONC_FIB_SPM 1
#define AONC_FIB_XPM 2
#define AONC_FIB_T_RAMAN_DEF 0.0005
#define AONC_FIB_F1_DEF 192.0
#define AONC_FIB_F2_DEF 225.0
#define AONC_FIB_B1l_F1_DEF 4875.0
#define AONC_FIB_Bl_F2_DEF 4871.7
#define AONC_FIB_B2_F1_DEF -20.0
#define AONC_FIB_B2_F2_DEF 0.0
#define AONC_FIB_B3_DEF 0.0
#define AONC_FIB_ALPHA_DEF 0.2
#define AONC_FIB_LENGTH_DEF 100
#define AONC_FIB_GRANULARITY_DEF 10
#define AONC_FIB_A_EFF_DEF 65.0
#define AONC_FIB_N2_DEF 3.2E~16
#define AONC_FIB_GRMAX_DEF 1E-16
#define AONC_FIB_FRMAX_DEF 12.0
/**** Global Variables ****/

#ifdef AON_FIB_DECS

List AonI_Fib_List;

int AonI_Fib_List_Init = 0;
#else

extern List AonI_Fib_List;

extern int Aonl_Fib_List_Init;
#endif

/**** Typedefs ****/

typedef struct
{

double T_Raman;
double £1;
double £2;
double Bl1_f1;
double Bl_f2;
double B2_f1;
double B2_f£2;
double B3;
double alpha;
double Length;
double granularity;
double A_eff;
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double n2;
double grmax;
double frmax;
} AonT_Fib_Desc;

typedef struct
{

int link_objid;
AonT_Fib_Desc* fib_desc;
int xmtl_objid;
AonT_Port_Pulse* portl;
double last_timel;
int xmt2_objid;
AonT_Port_Pulse* port2;
double last_time2;

} AonT_Fib_Link;

typedef struct
{

double time;

int type;

double d_time;
int pulsel;
int pulse?;
int offset;
double length;

} AonT_Fib_Event;

int aon_fib_event_comp (AonT_Fib_Event* aptr, AonT_Fib_Event* bptr);
AonT_Pulse*Aon_Fib_Exit_Pulse (AonT_Port_Pulse *port, AonT Fib_Desc *fib_desc,
double time);

void Aon_Fib_Prop_Port (AonT Port_Pulse *port, AonT Fib_Desc *fib_desc,
double last_time, double time);
int aon_fib_events_xpm_add (List* event_list, AonT_Port_Pulse* port,

AonT_Fib_Desc* fib_desc, int pulsel, int pulse2,
double last_time, double time);

void aon_fib_event_dispersion_add (List* event_list, int pulse_index,
double time, double length);

void aon_fib_event_spm_add (List* event_list, int pulse_index,
double time, double length);

void aon_fib_event_xpm_add (List* event_list, int pulsel, int pulse2,
double time, double d_time, int offset);

void aon_fib_event_process (AonT _Fib_Event* event, AonT_Port_Pulse* port,

AonT_Fib_Desc* fib desc);

void Aon_Fib_Pulse_Insert (Packet* pkptr);

void Aon_Fib_Pulse_Remove (Packet* pkptr);

void Aon_Fib_Prop_Self (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc,
double length);

void Aon_Fib_Dispersion (AonT_Pulse* pulse, AonT_Fib_Desc *fib_desc,
double h);

void Aon_Fib_SPM (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc, double h);

void Aon_Fib_XPM (AonT_Pulse* pulsel, AonT_Pulse* pulse2,
AonT_Fib_Desc* fib_desc, double d_time, int offset);

double Aon_Fib_Gamma (AonT_ Pulse *pulse, AonT_Fib_Desc *fib_desc);

double Aon_Fib_B2 (double freq, AonT_Fib_Desc *fib_desc);

double Aon_Fib_Bl1 (double freq, AonT_Fib_Desc *fib_desc);

double Aon_Fib_Delay (AonT_Pulse *pulse, AonT Fib_Desc* fib_desc);

AonT_Fib_Link*
Aon_Fib_Link_Attr_Get (Objid link_objid);
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aon_fib.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#define AON_FIB_DECS

#include “aon_fib.ex.h”

#define AONC_FIB_C 3.0E8

int
aon_fib_event_comp (AonT_Fib_Event* aptr, AonT_ Fib_Event* bptr)
{
if (aptr->time < bptr->time)
return (1);
else if (aptr->time > bptr->time)
return (-1);
else if (aptr->type == AONC_FIB_DISPERSION)
return (1);
else
return (-1);

AonT_Pulse*

Aon_Fib_Exit_Pulse (AonT_Port_Pulse *port, AonT_Fib_Desc *fib_desc,
double time)
{

AonT_Pulse* pulse;
AonT_Pulse* out_pulse;
AonT_Port_Entry* port_entry;

int num_pulse, i;
double dist, max_dist;
max_dist = -1.0;

num_pulse = op_prg_list_size (&(port->input));
for (i = 0; i < num_pulse; i++)
{
port_entry = (AonT_Port_Entry*) op_prg_list_access (&(port->input), i);
pulse = port_entry->pulse;
dist = (time ~ port_entry->entry_time) /
(Aon_Fib_B1 (pulse->freq, fib_desc)):
if (dist > max_dist)
{
max_dist = dist;
out_pulse = pulse;
}

return (out_pulse);
}

void
Aon_Fib_Prop_Port (AonT_Port_Pulse *port, AonT_Fib_Desc *fib_desc,
double last_time, double time)

{

int num_pulse;
AonT_Port_Entry* port_entry;
int i, 3:
double d_time;

150



static List

event_list;

static int event_list_init = 0;
AonT_Pulse* pulse;

double L_nl, L_4;

double width;

double max_length, length;
int steps;

double step_time;
AonT_Fib_Event* event;

if (event_list_init

{

0)

op_prg_list_init (&event_list);

even

}

t_list_init = 1;

/* Perform Split-Step Fourier Method. */

num_pulse = op_prg_list_size (&(port->input));
d_time = time - last_time;
for (i = 0; i1 < num_pulse; i++)
{
port_entry = (AonT_Port_Entry*) op_prg_list_access (&(port->input), i);
pulse = port_entry->pulse;
/* First determine length scales for the pulse.*/
L_nl = 1.0 / (Aon_Fib_Gamma (pulse, fib_desc) * pulse->peak_power);
if (Aon_Fib_B2 (pulse->freq, fib_desc) != 0.0)
{
width = Aon_Pulse Width (pulse);
L_d = (pow (width, 2.0) / fabs (Aon_Fib_B2 (pulse->freq, fib_desc)));
}
else

L_d = max_length * fib_desc->granularity;

if (L_d < 1L_nl)
{
length = L_nl / fib_desc->granularity;
}

else
{
length = L_d / fib_desc->granularity:;
}

max_length = d_time / Aon_Fib_Bl1 (pulse->freq,
steps =

ceil (max_length / length);

length = max_length / steps;

step_time =

aon_fib_event_dispersion_add (&event_list,

for

aon_fib_event_dispersion_add (&event_list,

}

d_time / steps;

(J = 0; j < steps; j++)
{
aon_fib_event_spm_add (&event_list, i,
if (j < (steps - 1))
{

aon_fib_event_dispersion_add (&event_list,
((j * step_time) + (step_time / 2.0)),

}
}

length / 2.0);
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/* Create XPM and SRS events. */
for (i = 0; i < num_pulse; i++)

{

for (j = i; j < num_pulse; j++)

{

aon_fib_events_xpm_add (&event_list, port, fib_desc,

J.'I jl

}

/* Sort events by time. */
op_prg_list_sort (&event_ 1

/* Process events. */

while (op_prg_list _size (&event_list) !=

{
event =

last_time,

time);

ist, aon_fib_event_comp) ;

0)

(AonT_Fib_ Event*) op_prg_list_remove

(&event_list, OPC_LISTPOS_HEAD);

aon_fib_event_process
free (event);
}

int

(event, port, fib_desc);

aon_fib_events_xpm_add (List* event_list, AonT_Port_Pulse* port,

AonT_Fib_Desc* fib_desc,
double time)
{

int pulselind, int pulse2ind, double

AonT_Port_Entry* port_entl;

AonT_Port_Entry* port_ent2;

AonT_Pulse* pulsel;

AonT_Pulse* pulse2;

double timel, time2;

double B1_1, B1l_2;

double L_nl, length;

int i, offset, steps;

int intervals;

double intl, int2, overlap, d_time;
double start_time, end_time, cur_time,
port_entl = (AonT_Port_Entry*) op_prg_list_access

(& (port->input), pulselind);
port_ent2 =
(& (port->input), pulse2ind);

pulsel = port_entl->pulse;
pulse2 = port_ent2->pulse;

timel = port_entl->entry_time;
time2 = port_ent2->entry_time;
Bl_1 = Aon_Fib_Bl (pulsel->freq,
B1_2 = Aon_Fib_Bl (pulse2->freq,

if (B1_1 == Bl1l_2)
{

(AonT_Port_Entry*) op_prg_list_access

fib_desc);
fib_desc) ;

/* Degenerate group velocities.*/

L_nl =

1.0 / (Aon_Fib_Gamma (pulsel, fib_desc) *

(pulsel->peak_power + pulse2->peak power));

length = (time - last_time)

steps =
if (timel > time2)

/* Pulse 2 is ahead.
{

*/

ceil (length / L_nl);

/ B1_1;
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if (timel > (time2 + AonI_Duration))
{
/* No overlap. */
return (1);
}
else

{
offset = (timel - time2) / (AonI_Duration / RAonI_Len);

for (i = 0; i < steps; i++)

{
/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */

aon_fib_event_ xpm_add (event_list, pulselind, pulse2ind,
(double) (last_time + i * (time - last_time) / steps),
(double) ((time - last_time) / steps), offset);

}
}
}
else
/* Pulse 1 is ahead. */
{
if (time2 > (timel + AonI_Duration))
{
/* No overlap. */
return (1);
}
else
{
offset = (time2 - timel) / (AonI_Duration / AonI_Len);

for (i = 0; i < steps; i++)
{
/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */
aon_fib_event_xpm_add (event_list, pulse2ind, pulselind,
(double) (last_time + i * (time - last_time) / steps),
(double) ((time - last_time) / steps), offset);

return (1);
}

/* intl is when the leading edge of pulse 1 meets the trailing*/

/* edge of pulse 2. The leading edge of 1 entered the fiber*/

/* at port_entl’s time. The trailing edge of 2 entered the */

/* fiber at port_ent2‘s time + AonI_Duration. */

intl = (B1_2 * timel - B1l_1 * (time2 + AonI_Duration)) / (B1_2 - Bl_1);

/* int2 is when the leading edge of pulse 2 meets the trailing*/

/* edge of pulse 1. */
int2 = (B1_1 * time2 - B1_2 * (timel + AonI_Duration)) / (B1_1 - Bl_2);

/* overlap is when the leading edge of pulse 1 meets the */
/* leading edge of pulse 2. */
overlap = (B1_2 * timel - Bl1_1 * time2) / (B1_2 - Bl_1);

d_time = fabs (intl - int2) / ((double) (2 * AonI_Len - 1));
if (intl < int2)

{
/* Pulse 2 is slower than pulse 1.*/
if ((int2 < last_time) || (intl > time))

{
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/* No overlap. */
return (1);

}

if (last_time > intl)
start_time = last_time;
else
start_time = intl;

if (time < int2)
end_time = time;
else
end_time = int2;

cur_time = start_time;
while (cur_time < end_time)
{
intervals = floor ((cur_time - intl) / d_time);
next_time = intl + (intervals + 1) * d_time;
if (next_time > end_time)
next_time = end_time;

offset = floor ((cur_time - overlap) / d_time);
if (offset > 0)

{
/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */

aon_fib_event_xpm_add (event_list, pulse2ind, pulselind,
cur_time, next_time - cur_time, offset);

}
else
{
/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */

aon_fib_event_xpm_add (event_list, pulselind, pulse2ind,
cur_time, next_time - cur_time, ((-1)*offset));

else

}
cur_time += d_time;
}
}
{
/* Pulse 1 is slower than pulse 2.*/
if ((intl < last_time) || (int2 > time))
{

/* No overlap. */
return (1);

}

if (last_time > int2)
start_time = last_time;
else
start_time = int2;

if (time < intl)
end_time = time;
else
end_time = intl;

cur_time = start_time;

while (cur_time < end_time)
{
intervals = floor ((cur_time - int2) / d_time);
next_time = int2 + (intervals + 1) * d_time;

154



if (next_time > end_time)
next_time = end_time;

offset = floor ((cur_time - overlap) / d_time);

if (offset > 0)
{
/* This procedure requires that offset be positive*/
/* and that pulse 2 be ahead of pulse 1. */

aon_£fib_event_xpm_add (event_list, pulselind, pulse2ind,
cur_time, next_time - cur_time, offset);

}

else

{

/* This procedure requires that offset be positive*/

/* and that pulse 2 be ahead of pulse 1. */

aon_fib_event_xpm_add (event_list, pulse2ind, pulselind,
cur_time, next_time - cur_time, ((-1)*offset));

cur_time += d_time;

}

void

aon_fib_event_dispersion_add (List* event_list, int pulse_index, double time,
double length)
{
AonT_Fib_Event* event;

event = (AonT_Fib_Event*) malloc (sizeof (AonT Fib_Event));

event->time = time;
event->type = AONC_FIB_DISPERSION;
event->d_time = 0.0;

event->pulsel = pulse_index;
event->pulse2 = 0;
event->offset = 0;
event->length = length;

op_prg_list_insert (event_list, (void*) event, OPC_LISTPOS_TAIL);
}

void

aon_fib event_spm_add (List* event_list, int pulse_index, double time,
double length)
{
AonT_Fib_Event* event;

event = (AonT_Fib_Event*) malloc (sizeof (AonT Fib_Event));

event->time = time;
event->type = AONC_FIB_SPM;
event->d_time = 0.0;
event->pulsel = pulse_index;
event->pulse2 = 0;
event->offset = 0;
event->length = length;

op_prg_list_insert (event_list, (void*) event, OPC_LISTPOS_TAIL);
}

void

aon_fib_event_xpm_add (List* event_list, int pulsel, int pulse2, double time,
double d_time, int offset)
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{
AonT_Fib_Event* event;

event = (AonT_Fib_Event*) malloc (sizeof (AonT_Fib_Event));
event->time = time;

event->type = AONC_FIB_XPM;
event->d_time = d_time;

event->pulsel = pulsel;
event->pulse2 = pulse2;
event->offset = offset;
event->length = 0.0;

op_prg_list_insert (event_list, (void*) event, OPC_LISTPOS_TAIL) ;
}

void

aon_fib_event_process (AonT_Fib_Event* event, AonT_Port_Pulse* port,
AonT_Fib_Desc* fib_desc)
{

AonT_Pulse* pulse;
AonT_Pulse* pulse2;
pulse = (AonT_Pulse*) op_prg_list_access (&(port->input), event->pulsel);

if (event->type == AONC_FIB_DISPERSION)
;on_Fib_Dispersion (pulse, fib_desc, event->length);
else}if (event->type == AONC_FIB_SPM)
;on_Fib_SPM (pulse, fib_desc, event->length);
else}if (event->type == AONC_FIB_XPM)
éulseZ = (AonT_Pulse*) op_prg_list_access (&(port->input), event->pulsel);

Aon_Fib_XPM (pulse, pulse2, fib_desc, event->d_time, event->offset);

}
}
void
Aon_Fib_Pulse_Insert (Packet* pkptr)
{
}
void

Aon_Fib_Pulse_Remove (Packet* pkptr)
{
}

void
Aon_Fib_Prop_Self (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc, double max_length)
{

double L_d;

double L_nl;

double cur_length;
double width;
double length;
double length_left;
double B2_delay;

cur_length = 0.0;

L_nl = 1.0 / (Aon_Fib_Gamma (pulse, fib_desc) * pulse->peak_power);
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if (Aon_Fib_B2 (pulse->freq, fib_desc) != 0.0)
{
width = Aon_Pulse_Width (pulse);
L_d = (pow (width, 2.0) / fabs (Aon_Fib_B2 (pulse->freq, fib_desc)));
}
else
L_d = max_length * fib_desc->granularity;

if (L_d < L_nl)

{
length = L_nl / fib_desc->granularity;
}
else
{
length = L_d / fib_desc->granularity;

}

if (length > (max_length - cur_length))
length = max_length - cur_length;

/* Perform dispersion assuming no non-linearity. */
Aon_Fib_Dispersion (pulse, fib_desc, (length/2.0));
length_left = length / 2.0;
while (cur_length < max_length)
{
printf (“###cur_length = %1f\n”, cur_length);
/*###*/ Aon_Pulse_Peak Power (pulse);
/* Perform non-linearity assuming no dispersion. */
Aon_Fib_SPM (pulse, fib_desc, length);
Aon_Pulse_Peak_Power (pulse);

cur_length += length;

if (cur_length < max_length)

{
L_nl = 1.0 / (Aon_Fib_Gamma (pulse, fib_desc) * pulse->peak_power) ;
if (Aon_Fib_B2 (pulse->freq, fib_desc) != 0.0)
{
width = Aon_Pulse_Width (pulse);
L_d = (pow (width, 2.0) / fabs (Aon_Fib_B2 (pulse->freq, fib_desc)));
}
else

L_d = max_length * fib_desc->granularity;

if (L_d < L_nl)
{
length = L_nl / fib_desc->granularity;
}

else
{
length
}

L_d / fib_desc->granularity;

if (length > (max_length - cur_length))
length = max_length - cur_length;
}
else
length = 0.0;

/* Perform dispersion assuming no non-linearity. */
Aon_Fib_Dispersion (pulse, fib_desc, length_left + (length/2.0));

157



length_left = length / 2.0;

}

Aon_Pulse_ Peak Power (pulse):;
}

void

Aon_Fib_Dispersion (AonT_Pulse* pulse, AonT Fib_Desc *fib_desc, double h)
{
int i;
CmathT_Complex tmp, d;
static CmathT _Complex*fft_shape;
static int fft_init;
double freq;

printf (“###dispersion\n”);
if (fft_init == 0)
{
fft_shape = (CmathT_Complex*) malloc (AonI_Len * sizeof (CmathT_Complex));
fft_init = 1;
}

cmath_FFT (f£ft_shape, pulse->shape, AonI_Nu);

for (i = 0; i < AonI_Len; i++)
{
freq = ((((i + AonI_Len/2) % AonI_Len) - AonI_Len/2) * 2.0 * CMATH_PI /
AonI_Duration);

d.r = exp ((-0.5)*h*fib_desc->alpha) ;

d.theta = ((0.5) * h * (Aon_Fib_B2 (pulse->freq, fib desc)) *
pow (2.0 * CMATH _PI * freq, 2.0)) - ((1.0/6.0) * h * fib_desc->B3 *
pow (2.0 * CMATH_PI * freq, 3.0));

cmath_mult (fft_shape + i, fft_shape + i, &d);
}

cmath_inv_FFT (pulse->shape, fft_shape, AonI_Nu);

}
void
Aon_Fib_SPM (AonT Pulse *pulse, AonT Fib_Desc *fib_desc, double h)
{
int i;
double gamma ;

CmathT_Complex A;

CmathT_Complex oper;
CmathT_Complex tmpl;
CmathT_Complex tmp2;
CmathT_Complex A_inv;

CmathT Complex tmp_exp;
CmathT_Complex tmp_umb;
CmathT_Complex tmp_middle;
CmathT_Complex A2A diff;

double A2_0, A2_1, A2_2;
CmathT_ Complex A2A_ 0, A2A_1, A2A 2;

printf (“###non_linear\n”);
/*cmath_vector_print (pulse->shape, AonI_Len);*/

gamma = Aon_Fib_Gamma (pulse, fib_desc);
A2_1 = pow {(pulse->shape + AonI_Len - 1)->r, 2.0);
A2_2 = pow ({(pulse->shape)->r, 2.0);

A2A_1l.r = A2_l*(pulse->shape + AonI_Len - 1)->r;
A2A_1.theta = (pulse->shape + AonI_Len - 1)->theta;
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A2A_2.r = A2_2*(pulse->shape)->r;
A2A_2.theta = (pulse->shape)->theta;

for (i = 0; i < AonI_Len; i++)
{
A.r = (pulse->shape + i)->r;
A.theta = (pulse->shape + i)->theta;
A2_0 = A2_1;
A2_1 = A2_2;
A2_2 = pow ((pulse->shape + ((i + 1) % AonI_Len))->r, 2.0);
A2A_ O0.r = A2A_1l.r;
A2A_0O.theta = A2A_1l.theta;
A2A_1l.r = A2A_2.r;
A2A_1.theta = A2A_2.theta;
A2A_2.r = A2_2*(pulse->shape + ((i + 1) % AonI_Len))->r;
A2A_2.theta = (pulse->shape + ((i + 1) % AonI_Len))->theta;

/* Set tmpl to 2i/w0. */
tmpl.r = ((2.0) / (pulse->freq * 2.0 * CMATH_PI));
tmpl.theta = CMATH_PI / 2.0;

/* Determine 1/A. */
A_inv.r = 1.0 / (pulse->shape + i)->r;
A_inv.theta = (-1.0) * (pulse->shape + i)->theta;

/* Set tmpl to 2i/wOA. */
cmath_mult (&tmp2, &tmpl, &A_inv);

/* Determine d/dT of A2A. */

/* Subtract A2A_0 - A2A_2 because time is in reverse. */

cmath_sub (&A2A_Adiff, &A2A_0, &A2A_2);

A2A_diff.r = A2A _diff.r / (AonI_Duration * 2.0 / (double) AonI_Len);

/* Set tmp_middle to 2i/w0A * 4/A4T of A2A. */
cmath_mult (&tmp_middle, &tmp2, &A2A_diff);

/* set tmpl to A2 - Tr*d/4T A2. */
tmpl.r = A2_1 -
(fib_desc->T _Raman *
(
(A2_0 - A2_2) /
(AonI_Duration * 2.0 / (double) AonI_Len)

)i
tmpl.theta = 0.0;

/* Set tmp_umb to tmp_middle plus tmpl. */
cmath_add (&tmp_umb, &tmp_middle, &tmpl);

/* Set tmpl to i*h*gamma. */
tmpl.r = gamma * h;
tmpl.theta = CMATH PI / 2.0;

/* Set tmp_exp to D from page 45 in Agrawal. */
cmath _mult (&tmp_exp, &tmpl, &tmp_umb);

/* Set the operator to e**D, */
oper.r = exp (tmp_exp.r * cos (tmp_exp.theta));
oper.theta = tmp_exp.r * sin (tmp_exp.theta);

/* Multiply the pulse envelope by the operator. */

cmath_mult ((pulse->shape + i), &A, &oper);
}
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void
Aon_Fib_XPM (AonT_Pulse* pulsel, AonT_Pulse* pulse2, AonT_Fib_Desc* fib_desc,
double d_time, int offset)

{

double lengthl, length2;
double gammal, gamma2;
double S1_pow, S2_pow;
double g_raman;

double raman_amp;

double raman_power;

int i;

/* Determine the interaction length for each pulse sample.*/
lengthl = d_time * Aon_Fib_Bl (pulsel->freq, fib_desc);
length2 = d_time * Aon_Fib_Bl (pulse2->freq, fib_desc);

/* Determine the raman gain constant dependent upon the */

/* difference in pulse carrier frequencies. */

g_raman = cmath_dB ((-1.0) * fib_desc->grmax * (fabs (pulsel->freq -
pulse2->freq)) / fib_desc->frmax);

/* Determine the gamma constant for each pulse. */
gammal = Aon_Fib_Gamma (pulsel, fib_desc);
gamma2 = Aon_Fib_Gamma (pulse2, fib_desc);

/* Pulse 2 is always ahead of pulse 1. */
/* Go through each overlapping sample... */
for (i = 0; i < (AonI_Len - offset); i++)
{
/* Determine the power of the two samples in question.*/
S1_pow = pow ((pulsel->shape + i + offset)->r, 2.0);
S2_pow = pow ((pulse2->shape + i)->r, 2.0);

/* Perform XPM calculation. */
/* If frequencies are the same, really SPM. */
if (pulsel->freq != pulse2->freq)
{
(pulsel->shape + i + offset)->theta +=
lengthl * S2_pow * 2.0 * gammal;
(pulse2->shape + i)->theta += length2 * S1_pow * 2.0 * gamma2;
}
else
{
(pulsel->shape + i + offset)->theta += lengthl * S2_pow * gammal;
(pulse2->shape + i)->theta += length2 * S1_pow * 2.0 * gamma2;
}

/* Place the sample in a known state, with positive */
/* amplitude. */
cmath_principle_val (pulsel->shape + i + offset);
cmath_principle_val (pulse2->shape + 1i);

/* Perform the Raman gain calculations. */

/* The higher frequency pulse amplifies the lower freq.*/

if (pulsel->freq > pulse2->freq)
{
/* Amplify pulse 2.%*/
/* Determine the raman amplification. */
raman_amp = exp (length2 * g_raman * S1_pow);
(pulse2->shape + i)->r = (pulse2->shape + i)->r * g_raman;

/* Determine the amount of power transfered. */
raman_power = pow ((pulse2->shape + i)->r, 2.0) - S2_pow;
/* By conservation, remove power from pulse 1. */
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(pulsel->shape + i + offset)->r = sqgrt (Sl_pow - raman_power);
}
else
{
/* Aamplify pulse 1.*/
/* Determine the raman amplification. */
raman_amp = exp (lengthl * g_raman * S2_pow);
(pulsel->shape + i + offset)->r = (pulsel->shape + i + offset)->r *

g_raman;
/* Determine the amount of power transfered. */
raman_power = pow ((pulsel->shape + i + offset)->r, 2.0) - S1l_pow;
/* By conservation, remove power from pulse 1. */

(pulse2->shape + i)->r = sqrt (S2_pow - raman_power) ;
}

double
Aon_Fib_Gamma (AonT_Pulse *pulse, AonT_Fib_Desc *fib_desc)

{
double gamma ;

gamma = fib_desc->n2 * 1E-10 * pulse->freq * 2.0 * CMATH_PI * 1E3 / (AONC_FIB_C * 1E-12
* fib_desc->A_eff * 1E-18);

return (gamma) ;

}

double

Aon_Fib_Delay (AonT_Pulse* pulse, AonT_Fib_Desc* fib_desc)
{
double delay;

delay = Aon_Fib_Bl (pulse->freq, fib_desc) * fib_desc->Length;

return (delay);

}

double

Aon_Fib_B2 (double freq, AonT_Fib Desc *fib_desc)
{
double B2;

B2 = fib_desc->B2_fl1 + (freq - fib_desc->fl1l) * (fib_desc->B2_f2 - fib_desc->B2_f1) /
(£ib_desc->f2 - fib_desc->f1);

return (B2);

}

double

Aon_Fib_Bl (double freq, AonT_Fib_Desc *fib_desc)
{
double Bl;

Bl = fib_desc->Bl1_fl + (freq - fib_desc->fl) * (fib_desc->Bl_f2 - fib_desc->B1l_f1) /
(fib_desc->f2 - fib_desc->f1);

return (Bl);
}

AonT_Fib_Link*

Aon_Fib_Link_Attr_Get (Objid link_objid)
{
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AonT_Fib_Link* link;
AonT_Fib_Desc* fib_desc;

link = (AonT_Fib_Link*) malloc (sizeof (AonT_Fib_Link));

link~>link_objid = (int) link_objid;

link->fib_desc = (AonT_Fib_Desc*) malloc (sizeof (AonT_Fib_Desc));
fib _desc = link->fib_desc;

link~>xmtl_objid = -1;

link~>xmt2_objid = -1;

if (op_ima_obj_attr_exists (link_objid, “T Raman”) == OPC_TRUE)
op_ima_obj_attr_get (link _objid, “T Raman”, &(fib_desc->T_Raman));
else
fib_desc->T Raman = AONC_FIB_T_RAMAN_DEF;

if (op_ima_obj_attr_exists (link_objid, “freql”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, “freql”, &(fib_desc->fl));
else
fib_desc->f1 = AONC_FIB_F1_DEF;

if (op_ima_obj_attr_exists (link_objid, “freq2”) == OPC_TRUE)
op_ima_obj_attr_get (link objid, “freq2”, &(fib_desc->f2));
else
fib_desc->f2 = AONC_FIB_F2_DEF;

if (op_ima_obj_attr_exists (link_objid, "Bl at freql”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, “Bl at freql”, &(fib_desc->Bl1_f£f1});
else
fib_desc->Bl_fl1 = AONC_FIB_Bl_F1_DEF;

if (op_ima_obj_attr_exists (link_objid, *“Bl at freq2”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, *“Bl at freq2”, &(fib_desc->Bl_f2));
else
fib_desc->Bl_£f2 = AONC_FIB_Bl_F2_DEF;

if (op_ima_obj_attr_exists (link_objid, “B2 at freql”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, “B2 at freql”, &(fib_desc->B2_f£f1));
else
fib_desc->B2_f1 = AONC_FIB_B2_F1l_DEF;

if (op_ima_obj_attr_exists (link_objid, “B2 at freq2”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, *“B2 at freq2”, &(fib_desc->B2_f2));
else
fib_desc->B2_£f2 = AONC_FIB_B2_F2_DEF;

if (op_ima_obj_attr_exists (link_objid, ®“B3”) == OPC_TRUE)
op_ima_obj_attr_get (link objid, *B3”, &(fib_desc->B3));
else
fib_desc->B3 = AONC_FIB_B3_DEF;

if (op_ima_obj_attr_exists (link_objid, “alpha”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, “alpha”, &(fib_desc->alpha));
else
fib_desc->alpha = AONC_FIB_ALPHA_DEF;

if (op_ima_obj_attr_exists (link_objid, “Length”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, *Length”, &(fib_desc->Length));
else
fib_desc->Length = AONC_FIB_LENGTH_DEF;

if (op_ima_obj_attr_exists (link_objid, “granularity”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, “granularity”, &(fib_desc->granularity));

else
fib_desc->granularity = AONC_FIB_GRANULARITY_ DEF;
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if (op_ima_obj_attr_exists (link_objid, “A eff”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, “A eff”, &(fib_desc->A_eff));
else
£fib_desc->A_eff = AONC_FIB_A_ EFF_DEF;

if (op_ima_obj_attr_exists (link_objid, “n2”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, *n2”, &(fib_desc->n2});
else
fib_desc-»>n2 = AONC_FIB_N2_DEF;

if (op_ima_obj_attr_exists (link_objid, “Grmax”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, “Grmax*, &(fib_desc->grmax));
else
fib_desc->grmax = AONC_FIB_GRMAX_DEF;

if (op_ima_obj_attr_exists (link_objid, “Frmax”) == OPC_TRUE)
op_ima_obj_attr_get (link_objid, “Frmax”, &(fib_desc->frmax));
else
fib_desc-»frmax = AONC_FIB_FRMAX_DEF;

return (link);
}
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B.3 Fused Biconical Coupler Support Code

The fused biconical coupler process model uses functions that determine the output of a
fused biconical coupler due to an incident pulse. These functions and their accompanying

structures are found in aon_fbc.ex.h and aon_fbc.ex.c.

aon_fbc.ex.h

/* Greg Campbell */
/* AON Model Suite */
/* aon_fbc.ex.h */

/* Fused Biconical Coupler Model support code*/
/**** Typedefs ****/

typedef struct

{

double r;
double delta_r;
double z;
double a;

} AonT FBC_Desc;

AonT_FBC_Desc*
Aon_FBC_Create (double r, double delta_r, double z, double a);

void Aon_FBC_Pulsel (AonT_Pulse* pulse, AonT_FBC_Desc* fbc_desc);

void Aon_FBC_Noisel (AonT_Noise* noise, AonT_FBC_Desc* fbc_desc);

int Aon_FBC_Gainl (CmathT_Complex* g, double freq, void* void_fbc_desc);
void Aon_FBC_Pulse2 (AonT_Pulse* pulse, AonT FBC_Desc* fbc_desc);

void Aon_FBC_Noise2 (AonT_Noise* noise, AonT_FBC_Desc* fbc_desc);

int Aon_FBC_Gain2 (CmathT_Complex* g, double freq, void* void_fbc_desc);
aon_fbc.ex.c

/* Greg Campbell */

/* AON Model Suite */

/* aon_fbc.ex.c */

/* Fused Biconical Coupler Model support code*/

/* See section 4.3 in thesis document */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_lin.ex.h”

#include “aon_fbc.ex.h”

AonT_FBC_Desc*
Aon_FBC_Create {(double r, double delta_r, double z, double a)

{
AonT_FBC_Desc* fbc_desc;
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fbc_desc = (AonT_FBC_Desc*) malloc (sizeof (AonT_FBC_Desc));

fbe_desc->r = r;
fbe_desc->delta_r = delta_x;
fbc_desc->z = z;
fbc_desc->a = cmath_dB (a);

return (fbc_desc);
}

void

Aon_FBC_Pulsel (AonT_Pulse* pulse, AonT FBC_Desc* fbc_desc)
{
Aon_Lin_Pulse (pulse, Aon_FBC_Gainl, (void*) fbc_desc);
}

void
Aon_FBC_Noisel (AonT _Noise* noise, AonT_FBC_Desc* fbc_desc)
{
Aon_Lin_Noise (&(noise->power), noise->freq bin, Aon_FBC_Gainl,
(void*) fbc_desc):
}

void

Aon_FBC_Pulse2 (AonT_Pulse* pulse, AonT FBC_Desc* fbc_desc)
{
Aon_Lin_Pulse (pulse, Aon_FBC_Gain2, (void*) fbc_desc);
}

void
Aon_FBC_Noise2 (AonT_Noise* noise, AonT_FBC_Desc* fbc_desc)
{
Aon_Lin Noise (&(noise->power), noise->freq bin, Aon_FBC_Gain2,
(void*) fbc_desc);

}
Aorn_FBC_Gainl (CmathT_Complex* g, double freq, void* void_fbc_desc)
{
AonT_FBC_Desc* fbc_desc;
double C, F2;
double lambda;
double alpha;

fbc_desc = {AonT FBC_Desc*) void_fbc_desc;

/* In this procedure the unit for time is picoseconds, */
/* the unit for distance is microns. C has units */
/* 1/distance, F2 is unitless. */

/* wavelength equals ¢ (speed of light) over frequency.*/
/* frequency is in THz, so c is speed of light in */
/* microns/picosecond = 3E2. */
lambda = 3.0E2 / freq;

/* If delta r is 0.0, the F term becomes unity. */
if (fbc_desc->delta_r == 0.0)

{

F2 = 1.0;

}
else

{

/* See section 4.3 in thesis document. */

F2 = 1.0 /

(1.0 +

(234.0*pow ((fbc_desc->r / lambda), 3.0)) *
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(pow (fbc_desc->delta_r / fbc_desc->r, 2.0))
)
}
C =21.0 * pow (lambda, 2.5) / pow (fbc_desc->r, 3.5);

alpha = sqgrt (F2 * pow (sin (C*fbc_desc->z/sqrt (F2)), 2.0));

g->r = sqrt (1.0 - alpha) * fbc_desc->a;
g->theta = 0.0;

}
Aon_FBC_Gain2 (CmathT Complex* g, double freq, void* void_fbc_desc)
{
AonT_FBC_Desc¥* fbc_desc;
double Cc, F2;
double lambda;
double alpha;

fbe_desc = (AonT_FBC_Desc*) void_fbc_desc;

/* In this procedure the unit for time is picoseconds, */
/* the unit for distance is microns. C has units */
/* 1/distance, F2 is unitless. *x/

/* wavelength equals c (speed of light) over frequency.*/
/* frequency is in THz, so c is speed of light in */
/* microns/picosecond = 3E2. */
lambda = 3.0E2 / freq;

/* If delta r is 0.0, the F term becomes unity. */
if (fbc_desc->delta_r == 0.0)

{

F2 = 1.0;

}
else

{

/* See section 4.3 in thesis document. */

F2 = 1.0 /

(1.0 +

(234.0*pow ((fbc_desc->r / lambda), 3.0)) *
(pow (fbc_desc->delta_r / fbce_desc->r, 2.0))
)i
}

C = 21.0 * pow (lambda, 2.5) / pow (fbc_desc->r, 3.5);
alpha = sqrt (F2 * pow (sin (C*fbc_desc->z/sqrt (F2)), 2.0));
g->r = sqrt (alpha) * fbc_desc->a;

g->theta = CMATH_PI / 2.0;
}
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B.4 Star Coupler Support Code

The star coupler process model uses functions that determine the output of a star coupler
due to an incident pulse. These functions and their accompanying structures are found in

aon_stc.ex.hand aon_stc.ex.c.

aon_stc.ex.h

/* Greg Campbell */
/* AON Model Suite */
/* aon_stc.ex.h */

[***% pypedefs ***%/
typedef struct
{

int N;
double delay;
double insertion_loss;

} AonT_STC_Desc;
/**** Function Prototypes ****/

AonT_STC_Desc*
Aon_STC_Create (int N, double loss, double delay):;

void Aon_STC_Propagate (AonT_Pulse* pulse, AonT_STC_Desc* stc_desc);
veoid Aon_STC_Noise_Propagate (AonT_Noise* noise, AonT_STC_Desc* stc_desc);
aon_stc.ex.c

/* Greg Campbell */
/* AON Model Suite */
/* aon_stc.ex.h */

#include “/lidsfs/usr/local3/opnet-2.5-s0l/sys/include/opnet.h”
#define AON_BASE_DECS

#include <math.h>

#include “cmath.h”

#include “aon_base.ex.h”

#include “aon_stc.ex.h”

AonT_STC_Desc*
Aon_STC_Create (int N, double loss, double delay)

{
AonT_STC_Desc* stc_desc;
stc_desc = (AonT_STC_Desc*) malloc (sizeof (AonT STC_Desc)):;

stc_desc->N = N;
stc_desc->insertion_loss = cmath_dB (loss);
stc_desc->delay = delay;
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return (stc_desc):

}
void
Aon_STC_Propagate {(AonT_Pulse* pulse, AonT_STC_Desc* stc_desc)
{
int i;
CmathT_Complex split_self;

split_self.r = sqrt ({(1.0/(double)stc_desc->N) * stc_desc->insertion_loss);
split_self.theta = 0.0;

cmath_vector_mult_vector (pulse->shape, AonI_Len, pulse->shape, &split_self);

}
void
Aon_STC_Noise_Propagate (AonT_Noise* noise, AonT_STC_Desc* stc_desc)
{
noise->power = noise->power * (1.0 / (double) stc_desc->N) * stc_desc->insertion_loss;
}
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B.5 Optical Amplifier Support Code

The optical amplifier process model uses functions that determine the output of an optical
amplifier. These functions and their accompanying structures are found in

aon_amp.ex.hand aon_amp.ex.c.

aon_amp.ex.h

/* Greg Campbell */
/* BAON Model Suite */
/* aon_xmt.ex.h */
/* Transmitters */

/**** Constants ****/

#define planck 6.626E-34
#define AONC_AMP_UPDATE 0
#define AONC_AMP_POWER 1

/**** Typedefs ****/

typedef struct
{

List power_list;
int low_pulse_num;
int high_pulse_num;

} AonT_Amp_Power_Interrupt_Desc;

typedef struct
{

double gain;
double sat;

double tau;

double noise;
double delay;
double d_noise;
double pulse_power;
double rcv_noise;

AonT_Amp_Power_Interrupt_Desc*power_list;

AonT_Port_Noise_In*
AonT_Port_Noise_Out*

noise_in;
noise_out;

} AonT_Amp_Desc;

/**** Punction Prototypes *¥***/

AonT_Amp_Desc*
void

Aon_Amp_Desc_Create ();
Aon_Amp_Noise_Update (AonT_.

_Desc *amp, double time);

void Aon_Amp_Pulse (AonT_Amp_Desc* amp, AonT_Pulse* pulse);

void Aon_Amp_Pulse_Power_ Interrupt_Set (AonT_Amp_Desc* amp,
AonT_Pulse* pulse);

void Aon_Amp_Pulse_Power_Interrupt_Get (AonT_Amp_Desc* amp);

double Aon_Amp_Next_Update (AonT_Amp_Desc* amp);
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aon_amp.ex.c

/* Greg Campbell */
/* AON Model Suite */
/* aon_amp.ex.c */

#include ‘/lidsfs/usr/local3/opnet—2.5-sol/sys/inc1ude/opnet.h'
#include “math.h*

#include “cmath.h”

#include “aon_base.ex.h”

#include “aon_amp.ex.h”

AonT_Amp_Desc*
Aon_Amp_Desc_Create ()

{

AonT_Amp_Desc* amp;

amp = (AonT_Amp_Desc*) malloc (sizeof (AonT_Amp_Desc));

amp->power_list = (AonT_Amp_Power_Interrupt_Desc*) malloc
(sizeof (AonT_Amp_Power_Interrupt_Desc));

op_prg_ list_init (&(amp->power_list->power_list));

amp->power_list->low_pulse num = 0;

amp->power_list->high_pulse_num = 0;

amp->noise_in = Aon_Port_Noise_In_Create ();
amp->noise_out = Aon_Port_Noise_Out_Create ();

amp->rcv_noise = 0.0;
amp->pulse_power = 0.0;

return (amp);

}

void

Aon_Amp_Noise_Update (AonT_Amp_Desc *amp, double time)
{
AonT_Noise* noise_bin;
Packet* pkptr;
double noise;
double noise_tot;
double W_in;
double gain;
double delta_f£f;
double freq;
int i;

W_in = amp->rcv_noise + amp->pulse_power;
gain = amp->gain / (1.0 + W_in / amp->sat);

delta f = ((AonI_High Freq - AonI_Low_Freq) / AonI_N_Segment) * 1E12;
for (i = 0; i < AonI_N_Segment; i++)
{
freq = (AonI_Low_Freq + ((double) i / (double) AonI_N_Segment) *
(AonI_High_Freqg - AonI_Low_Freq)) * 1E12;
noise = gain * planck * amp->noise * freq * delta_f;
noise_tot = noise + gain * (*{amp->noise_in->noise_array + i));

Aon_Port_Noise_Out_Handle_Abs (amp->noise_out, i, noise_tot, 0,
amp->delay) ;

/* if (i == 0)
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printf (*time = %$1f ppower = %1f noise packet bin = %d noise = %1f, power =
$1f\n”, time, amp->pulse_power, i, noise, noise_tot); */
}
if (time < 1001.0)
{
printf (“amp sat = %1f\n”, amp->sat);
printf (“*amp gain = $1f\n”, amp->gain);
printf (*gain = %1f\n W_in = %1f\n delta_f = %$1f\n”, gain, W_in, delta_f);
}
}

void
Aon_Amp_Pulse (AonT_Amp_Desc* amp, AonT_Pulse* pulse)
{
double W_in;
double gain;
int i;
double pulse_power;

pulse_power = amp->pulse_power;

for (1 = 0; i < AonI_Len; i++)
{
pulse_power = pulse_power * exp ((-1.0) * (AonI_Duration / (double) AonI_Len) /
: amp->tau) ;
pulse_power += pow (((pulse->shape) + i)->r, 2.0) *
(AonI_Duration / {double) AonI_Len) / amp->tau;
W_in = amp->rcv_noise + amp->pulse_power;
gain = amp->gain / (1.0 + W_in / amp->sat);
((pulse->shape) + i)->r = ((pulse->shape) + i)->r * sqrt (gain);
}

void
Aon_Amp_Pulse_Power_Interrupt_Set (AonT_Amp_Desc* amp, AonT_Pulse* pulse)
{

double pulse_power_tot;
double delta_power;
double W_in;

double gain_old;

int pulse_significant;
List* pulse_power_list;
double* list_entry;

int i;

double gain;

pulse_significant = 0;
W_in = amp->rcv_noise + amp->pulse_power;

gain_old = amp->gain / (1.0 + W_in / amp->sat);
pulse_power_tot = 0.0;

for (i = 0; i « AonI_Len; i ++)
{
W_in = W_in * exp ((-1.0) * (AonI_Duration / (double) AonI_Len) / amp->tau);
delta_power = pow (((pulse->shape) + i)->r, 2.0) *
(AonI_Duration / (double) AonI_Len) / amp->tau;

W_in += delta_power;
pulse_power_tot += delta_power;

gain = amp->gain / (1.0 + W_in / amp->sat);

if ((gain >= (gain_old * (1.0 + amp->d_noise))) ||
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(gain <= (gain_old * (1.0 - amp->d_noise))))
{
if (pulse_significant == Q)
{
pulse_power_list = op_prg list_create ();
pulse_significant = 1;

}

list_entry = (double*) malloc (sizeof (double));

(*(list_entry)) = pulse_power_tot;

op_prg_list_insert (pulse_power_list, (void*) list_entry,
OPC_LISTPOS_TAIL);

op_intrpt_schedule_self (op_sim_time () +
((double) i/ (double)AonI_Len) *AonI_Duration,
amp->power_list->high_pulse_num + AONC_AMP_POWER) ;

printf (“interrupt time = %1f, code = %d\n”, op_sim_time () +
((double)i/ (double)AonI_Len) *AonI_Duration,
amp->power_list->high_pulse_num + AONC_AMP_POWER) ;

gain_old = gain;
pulse_power_tot = 0.0;
}

if (pulse_significant)
{
op_prg_list_insert (&(amp->power_list->power_list), pulse_power_list,
OPC_LISTPOS_TAIL) ;
amp->power_list->high_pulse_num++;

}
}
void
Aon_Amp_Pulse_Power_Interrupt_Get (AonT_Amp_Desc* amp)
{
int pulse_num;
int done;
List* pulse_power_list;
double* list_entry;
done = 0;

pulse_num = op_intrpt_code () - AONC_AMP_POWER;
pulse _power_list = (List*) op_prg_list_access
(& (amp->power_list->power_list),

(pulse_num - amp->power_list->low_pulse_num));

list_entry = (double*) op_prg_list_remove (pulse_power_list,
OPC_LISTPOS_HEAD) ;

amp->pulse_power += (*(list_entry));

while (done == 0)

{
if (op_prg_list_size (&(amp->power_list->power_list)))
{
pulse_power_list = (List*) op_prg_list_access
(& (amp->power_list->power_list), OPC_LISTPOS_HEAD) ;
if (op_prg_list_size (pulse_power_list) == 0)

{
pulse_power_list = (List*) op_prg_list_remove

(& (amp->power_list->power_list), OPC_LISTPOS_HEAD) ;
op_prg_list_free (pulse_power_list);
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amp->power_list->low_pulse_num++;
}

else
done = 1;

else
done = 1;

double

Aon_Amp_Next_Update (AonT_Amp_Desc* amp)
{
double delta_t;
double D;

D=1.0 + amp->d_noise;
delta_t = (-1.0)*amp->tau*log
((({(amp->sat*(1.0-D)+amp->rcv_noise+amp->pulse_power) / D) - amp->rcv_noise) / amp-

>pulse_power) ;

return (delta_t);
}
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B.6 ASE Filter Support Code

The ASE filter process model uses functions to determine the output of the ASE filter due
to incident pulse and noise streams. These functions and their accompanying structures are

found in aon_ase.ex.h and aon_ase.ex.c.

aon_ase.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct
{

double FSR;
double W;
double a;

} AonT_ASE_Desc;

AonT_ASE_Desc* Aon_ASE_Create (double FSR, double W, double a);

void Aon_ASE_Pulse (AonT_Pulse* pulse, AonT_ASE Desc* ase_desc);
void Aon_ASE_Noise (AonT_Noise* noise, AonT_ASE_Desc* ase_desc);
int Aon_ASE_Gain (CmathT_Complex* g, double freq,

void* void_ase_desc);

aon_ase.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_lin.ex.h”

#include “aon_ase.ex.h”

AonT_ASE_Desc*
Aon_ASE_Create (double FSR, double W, double a)
{

AonT_ASE_Desc* ase_desc;
double b;
ase_desc = (AonT_ASE_Desc*) malloc (sizeof (AonT ASE_Desc));

ase_desc->FSR FSR;

ase_desc->W = W;
ase_desc->a = cmath_dB (a);

return (ase_desc);
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void

Aon_ASE_Pulse (AonT_Pulse* pulse, AonT_ASE_Desc* ase_desc)
{
Aon_Lin_Pulse (pulse, Aon_ASE_Gain, (void*) ase_desc);
}

void
Aon_ASE_Noise (AonT_Noise* noise, AonT_ASE Desc* ase_desc)
{
Aon_Lin_Noise (&(noise->power), noise->freq bin,
Aon_ASE_Gain, (void*) ase_desc);
}

Aon_ASE_Gain (CmathT_Complex* g, double freq, void* void_ase_desc)
{

AonT_ASE_Desc* ase_desc;
CmathT_Complex tmp, tmp2;
int num_freq;
ase_desc = (AonT_ASE_Desc*) void_ase_desc;

/* move freq to principal value of freq [-FSR/2, FSR).*/
num_freq = floor (freq / ase_desc->FSR);
freq = freq - num_freq * ase_desc->FSR;
if (freqg > (ase_desc->FSR / 2.0))
{
freq = freq - ase_desc->FSR;
}

if (fabs (freq) < (ase_desc->W / 2.0))
{
g->r = ase_desc->a;
}

else
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B.7 Fabry-Perot Filter Support Code

The Fabry-Perot filter process model uses functions to determine the output of the Fabry-
Perot filter due to incident pulse and noise streams. These functions and their accompany-

ing structures are found in aon_fab.ex.h and aon_fab.ex.c.

aon_fab.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct
{

double tau;
double R;
double A;

} AonT_Fab_Desc;

AonT_Fab_Desc* Aon_Fab_Create (double FSR, double finesse, double Tmax);

void Aon_Fab_Pulse (AonT Pulse* pulse, AonT_Fab_Desc* fab_desc);
void Aon_Fab_Noise (AonT_Noise* noise, AonT_Fab_bDesc* fab_desc);
int Aon_Fab_Gain (CmathT_Complex* g, double freq,

void* void_fab_desc);

aon_fab.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_lin.ex.h”

#include “aon_fab.ex.h”

AonT_Fab_Desc*

Aon_Fab_Create (double FSR, double finesse, double Tmax)
{

AonT_Fab_Desc* fab_desc;

double b;

fab_desc = (AonT_Fab_Desc*) malloc (sizeof (AonT_Fab_Desc));
fab_desc->tau = 1.0 / (2.0 * FSR);

b = (-1.0) * (pow ((CMATH_PI / finesse), 2.0) + 2.0);

fab_desc->R = ((-1.0)*b - sqgrt (pow (b, 2.0) - 4.0)) / 2.0;
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fab_desc->A = (1.0 - fab_desc->R) * (1.0 - sqgrt (Tmax));

return (fab_desc);
}

void

Aon_Fab_Pulse (AonT_Pulse* pulse, AonT_Fab_Desc* fab_desc)
{
Aon_Lin_Pulse (pulse, Aon_Fab_Gain, (void*) fab_desc);
}

void
Aon_Fab_Noise (AonT_Noise* noise, AonT_Fab_Desc* fab_desc)
{
Aon_Lin_Noise (&(noise->power), noise->freq bin,
Aon_Fab_Gain, (void*) fab_desc);

}

Aon_Fab_Gain (CmathT_Complex* g, double freq, void* void_fab_desc)
{
AonT_Fab_Desc* fab_desc;
CmathT_Complex tmp, tmp2;

fab_desc = (AonT_Fab_Desc*) void_fab_desc;

tmp.r = fab_desc->R;

tmp.theta = (~-4.0) * CMATH_PI * freq * fab_desc->tau;
tmp2.r = 1.0;

tmp2.theta = ¢.0;

cmath_sub (&tmp, &tmp2, &tmp);

tmp.r = 1.0 / tmp.x;

tmp.theta = (-1.0) * tmp.theta;

tmp2.r = 1.0 -~ fab_desc->A - fab_desc->R;

tmp2.theta = 0.0;

cmath_mult (g, &tmp, &tmp2);

g->theta = g->theta - 2.0 * CMATH_PI * fab_desc->tau;
}
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B.8 Mach-Zehnder Filter Support Code

The Mach-Zehnder filter process model uses functions to determine the output of the
Mach-Zehnder filter due to incident pulse and noise streams. These functions and their

accompanying structures are found in aon_mzf.ex.h and aon_mzf.ex.c.

aon_mzf.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct
{
double tau;
} AonT_MZF_Desc;

AonT_MZF_Desc*
Aon_MZF_Create (double FSR);

void Aon_MZF_Pulsel (AonT Pulse* pulse, AonT_MZF_Desc* mzf_desc);

void Aon_MZF_Noisel (AonT_Noise* noise, AonT MZF_Desc* mzf_desc);

int Aon_MZF_Gainl (CmathT_Complex* g, double freq, void* void_mzf_desc);
void Aon_MZF_Pulse2 (AonT _Pulse* pulse, AonT_MZF Desc* mzf_desc);

void Aon_MZF_Noise2 (AonT _Noise* noise, AonT MZF_Desc* mzf_desc);

int Aon_MZF_Gain2 (CmathT Complex* g, double freq, void* void_mzf_desc);
aon_mzf.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_lin.ex.h”

#include “aon_mzf.ex.h”

AonT_MZF_Desc*
Aon_MZF_Create (double FSR)
{
AonT_MZF_Desc* mzf_desc;
mzf_desc = (AonT_MZF Desc*) malloc (sizeof (AonT_M2ZF_Desc));

mzf_desc->tau = 1.0 / FSR;

return (mzf_desc);

}

void
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Aon_MZF_Pulsel (AonT_Pulse* pulse, AonT_MZF_Desc* mzf_desc)
{
Aon_Lin_Pulse (pulse, Aon_MZF_Gainl, (void*) mzf_desc);
}

void
Aon_MZF_Noisel (AonT_Noise* noise, AonT MZF_Desc* mzf_desc)
{
Aon_Lin_Noise (&(noise->power), noise->freq bin, Aon_MZF_Gainl,
(void*) mzf_desc);

void

Aon_MZF_Pulse2 (AonT_Pulse* pulse, AonT_MZF_Desc* mzf_desc)
{
Aon_Lin_Pulse (pulse, Aon_MZF_Gain2, (void*) mzf_desc);

}

void
Aon_MZF_Noise2 (AonT_Noise* noise, AonT_MZF_Desc* mzf_desc)
{
Aon_Lin_Noise (&(noise->power), noise->freq bin, Aon_MZF_Gain2,
(void*) mzf_desc);

}
Aon_MZF_Gainl (CmathT_Complex* g, double freq, void* void_mzf_desc)
{
AonT_MZF_Desc* mzf_desc;
CmathT_Complex tmp, tmp2;

mzf_desc = (AonT_MZF_Desc*) void_mzf_desc;

tmp.r = 0.5;
tmp.theta = (-2.0) * CMATH_PI * freq * mzf_desc->tau;
tmp2.r = 0.5;

tmp2.theta = 0.0;

cmath_sub (g, &tmp, &tmp2);

}

Aon_MZF_Gain2 (CmathT_Complex* g, double freq, void* void_mzf_desc)

{

AonT_MZF_Desc* mzf_desc;
CmathT_Complex tmp, tmp2;

mzf_desc = (AonT_MZF Desc*) void_mzf_desc;
tmp.r = 0.5;

tmp.theta = ((-2.0) * CMATH_PI * freq * mzf_desc->tau) - (CMATH_PI / 2.0);
tmp2.r = 0.5;
tmp2.theta = (-1.0) * CMATH_PI / 2.0;
cmath_add (g, &tmp, &tmp2);

}
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B.9 Wavelength Division (De)Multiplexer Support Code

The wavelength division (de) multiplexer process model uses functions that determine the
output of a WDM multiplexer due to an incident pulse. These functions and their accom-

panying structures are found in aon_wdm.ex.h and aon_wdm. ex.c.

aon_wdm.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct
{
double FSR;
double a;
} AonT_WDM_Desc;

AonT _WDM_Desc*
Aon_WDM_Create (double FSR, double a);

void Aon_WDM_Pulsel (AonT_Pulse* pulse, AonT_WDM_Desc* wdm_desc);
void Aon_WDM_Noisel (AonT_Noise* noise, AonT_WDM_Desc* wdm_desc);
int Aon_WDM_Gainl (CmathT_Complex* g, double freq, void* void_wdm_desc);
void Aon_WDM_Pulse2 (AonT_Pulse* pulse, AonT_WDM_Desc* wdm_desc);
void Aon_WDM_Noise2 (AonT_Noise* noise, AonT_WDM Desc* wdm_desc);
int Aon_WDM_Gain2 (CmathT_Complex* g, double freq, void* void_wdm_desc);

aon_wdm.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_lin.ex.h”

#include “aon_wdm.ex.h”

AonT_WDM_Desc*
Aon_WDM_Create (double FSR, double a)
{
AonT_WDM_Desc* wdm_desc;
wdm_desc = (AonT_WDM_Desc*) malloc (sizeof (AonT_WDM_Desc));

wdm_desc->FSR = FSR;
wdm_desc->a = cmath_dB (a);

return (wdm_desc);
}
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void

Aon_WDM_Pulsel (RonT_Pulse* pulse, AonT_WDM_Desc* wdm_desc)
{
Aon_Lin_Pulse (pulse, Aon _WDM_Gainl, (void*) wdm_desc);
}

void
Aon_WDM_Noisel (AonT_Noise* noise, AonT _WDM_Desc* wdm_desc)
{
Aon_Lin_Noise (&{(noise->power), noise->freq bin, Aon_WDM_Gainl,
(void*) wdm_desc) ;

void

Aon_WDM_Pulse2 (AonT_Pulse* pulse, AonT_WDM_Desc* wdm_desc)
{
Aon_Lin_Pulse (pulse, Aon_WDM_Gain2, (void*) wdm_desc);
}

void
Aon_WDM_Noise2 (AonT_Noise* noise, AonT_WDM_Desc* wdm_desc)
{
Aon_Lin_Noise (&(noise->power), noise->freq bin, Aon_WDM_Gain2,
(void*) wdm_desc);

Aon_WDM_Gainl (CmathT_Complex* g, double freq, void* void_wdm_desc)
{
AonT_WDM_Desc* wdm_desc;
CmathT_Complex tmp, tmp2;

wdm_desc = (AonT_WDM _Desc*) void_wdm_desc;

g->r = wdm_desc->a * sin (2.0*CMATH_PI*freq / wdm_desc->FSR);
g->theta = 0.0;

}
Aon_WDM_Gain2 (CmathT_Complex* g, double freq, void* void_wdm_desc)
{
AonT_WDM_Desc* wdm_desc;
CmathT_Complex tmp, tmp2;

wdm_desc = (AonT_WDM_Desc*) void_wdm_desc;
g->r = wdm_desc->a * cos (2.0*CMATH_PI*freq / wdm_desc->FSR);

g->theta = 0.0;
}
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B.10 Wavelength Router Support Code

The wavelength router process model uses functions that determine the output of a wave-
length router due to an incident pulse. These functions and their accompanying structures

are found in aon_rou.ex.hand aon_rou.ex.c.

aon_rou.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/

typedef struct
{

int N;
double FSR;
double a;
double k;
double delay;
int i;

} AonT_Rou_Desc;

AonT_Rou_Desc*
Aon_Rou_Create (int N, double FSR, double a, double k, double delay);

void Aon_Rou_Pulse (AonT_Pulse* pulse, AonT_Rou_Desc* rou_desc, int i);
void Aon_Rou_Noise (AonT_Noise* noise, AonT_Rou_Desc* rou_desc, int i);
int Aon_Rou_Gain (CmathT_Complex* g, double freq, void* void_rou_desc);
aon_rou.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_lin.ex.h”

#include “aon_rou.ex.h”

AonT_Rou_Desc*
Aon_Rou_Create (int N, double FSR, double a, double k, double delay)
{

AonT_Rou_Desc* rou_desc;

rou_desc = (AonT_Rou_Desc*) malloc (sizeof (AonT_Rou_Desc));
rou_desc->N = N;

rou_desc->FSR = FSR;

rou_desc->a = cmath_dB (a);
rou_desc->k = cmath_dB ((-1.0)*k);
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rou_desc->delay = delay;

return (rou_desc);

}

void
Aon_Rou_Pulse (AonT_ Pulse* pulse, AonT_Rou_Desc* rou_desc, int i)
{
rou_desc~->i = i;
Aon_Lin_Pulse (pulse, Aon_Rou_Gain, (void*) rou_desc);
}

void
Aon_Rou_Noise (AonT_Noise* noise, AonT_Rou_Desc* rou_desc, int i)
{
rou_desc->i = i;
Aon_Lin_Noise (&(noise->power), noise->freq bin, Aon_Rou_Gain,
(void*) rou_desc);

}
int
Aon_Rou_Gain (CmathT_Complex* g, double freq, void* void_rou_desc)
{
AonT_Rou_Desc* rou_desc;
double tmp, tmp2;
double FSR_N;
int chan;

rou_desc = (AonT_Rou_Desc*) void_rou_desc;

chan = rou_desc->i;
FSR_N = rou_desc->FSR / rou_desc->N;

tmp = (freq - chan*FSR_N) *CMATH_PI;

if (sin (tmp/rou_desc->FSR) != 0.0)
{
tmp2 = pow (((sin (tmp/FSR_N) / sin (tmp/rou_desc->FSR))/
(double) (rou_desc->N)), 2.0);
}
else
{
tmp2 = 1.0;
}

g->r = sgrt (rou_desc->a / ((1.0 -~ rou_desc->k)*(tmp2)+rou_desc->k));
g->theta = 0.0;
}
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B.11 Receiver and Probe Support Code

The probe and receiver process models both use functions that output statistics about the
incident pulse stream. These functions and their accompanying structures are found in

aon_rcv.ex.hand aon_rcv.ex.c.

aon_rcv.ex.h

/* Greg Campbell */
/* AON Model Suite */
/* aon_rcv.ex.h */

/**** Typedefs ****/
typedef struct
{

double eye_origin;
double eye_width;
int coherent;

int signal_id;

} AonT Rcv_Desc;

/**** Function Prototypes ****/

void Aon_Rcv_Update (AonT_Port_Pulse* port, double noise,
double 0ld_time, double time, AonT_Rcv_Desc* rcv_desc);
void Aon_Rcv_Pulse (AonT _Pulse* pulse, int pulse_num);

aon_rcv.ex.c

/* Greg Campbell */
/* AON Model Suite */
/* aon_rcv.ex.h */

#include “/lidsfs/usr/local3/opnet-2.5-so0l/sys/include/opnet.h”
#define AON_BASE_DECS

#include <math.h>

#include “cmath.h”

#include “aon_base.ex.h”

#include “aon_rcv.ex.h”

#define AONC_RCV_INSTANT

#define AONC_RCV_NOISE

#define AONC_RCV_EYE

#define AONC_RCV_AMP

#define AONC_RCV_PHASE

#define AONC_RCV_FFT_AMP
#define AONC_RCV_FFT_PHASE
#define AONC_RCV_PULSE_STAT_NUM

oW KR O

void
Aon_Rcv_Update (AonT_Port_Pulse* port, double noise, double old_time,
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double time, AonT_Rcv_Desc* rcv_desc)
{
int i, 3, k;
static CmathT_Complex *amp_sum;
static CmathT_Complex *noise_amp_sum;

static double *power_sum;
static double *noise_power_sum;
static int sum_init = 0;
double magnitude;
double noise_magnitude;
double cur_time;
AonT_Pulse *pulse;
AonT_Port_Entry *port_entry;
double eyes;
double eye_time;
double last_mag;
double last_noise_mag;
if (sum_init == 0)

{

amp_sum = (CmathT_Complex*)
malloc (AonI_Len * sizeof (CmathT_Complex));

power_sum = {(double*)
malloc (AonI_Len * sizeof (double));

noise_amp_sum = (CmathT_Complex*)
malloc (AonI_Len * sizeof (CmathT_Complex));

noise_power_sum = (double*)
malloc (AonI_Len * sizeof (double));

sum_init = 1;

}

if (op_prg_list_size (&(port->input)) > 0)
{
cur_time = old_time;
}
else
{

cur_time = time;

op_stat_local_write_t (AONC_RCV_INSTANT, noise, cur_time);

}
op_stat_local_write_t (AONC_RCV_NOISE, noise, cur_time);

while (cur_time < time)

{
for (i = 0; i < AonI_Len; i++)
{
if (rcv_desc->coherent)
{
{amp_sum + i)->r = 0.0;
(amp_sum + i)->theta = 0.0;
(noilse_amp_sum + i)->r = 0.0;
(noise_amp_sum + i)->theta = 0.0;
}
else
{
(* (power_sum + i)) = 0.0;
(*(noise_power_sum + i)) = 0.0;
}
}
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for (i = 0; i < (op_prg_list_size (&(port->input))); i++)
{
port_entry = (AonT_Port_Entry*)
op_prg_list_access (&(port->input), 1i);
pulse = port_entry->pulse;

i=0;

k = (((cur_time - port_entry->entry_time) / AonI_Duration) *
AonI_Len);

while (k < AonI_Len)
{

if (rcv_desc->coherent)
{
cmath_add ((amp_sum + j), (amp_sum + j),
(pulse->shape + k));

if (pulse->source != rcv_desc->signal_id)
{
cmath_add ((noise_amp_sum + j), (noise_amp_sum + j),
(pulse->shape + k));

}
else

{
(* (power_sum + j)) += pow ((pulse->shape + k)->r,2.0);

if (pulse->source != rcv_desc->signal_id)
{
(*(noise_power_sum + j)) +=
pow ((pulse->shape + k)->r,2.0);

}
J++; kt++;
}
if ((time - port_entry->entry_time) > AonI_Duration)
{
port_entry = (AonT_Port_Entry*)
op_prg_list_remove (&(port->input), i);

Aon_Port_Entry_Destroy (port_entry);

i--;
}
}
j=0;
last_mag = -1.0;
last_noise_mag = -1.0;
while ((cur_time < time) && (j < AonI_Len))
{
if (rcv_desc->coherent)
{
magnitude = pow ((amp_sum + j)->r, 2.0) + noise;
noise_magnitude = pow ((noise_amp_sum + j)->r, 2.0) + noise;
}
else
{
magnitude = (*(power_sum + j)) + noise;
noise_magnitude = (*(noise_power_sum + j)) + noise;
}

if (fabs (magnitude - last_mag) > AonI_Min_Power)

{
op_stat_local_write_t (AONC_RCV_INSTANT, magnitude, cur_time);

eyes = floor ((cur_time - rcv_desc->eye_origin) /
rcv_desc->eye_width) ;

186



eye_time = cur_time - rcv_desc->eye_origin -
eyes * rcv_desc->eye_width;
op_stat_local_write_t (AONC_RCV_EYE, magnitude, eye_time);

last_mag = magnitude;
}

if (fabs (noise_magnitude - last_noise_mag) > AonI_Min_Power)
{
op_stat_local_write_t (AONC_RCV_NOISE, noise_magnitude, cur_time);
last_noise_mag = noise_magnitude;
}

J++;
cur_time += (AonI_Duration / (double)AonI_Len);
}

/* If there are no more pulses left, skip to current time. */
if (op_prg_list_size (&(port->input)) == 0)
{
cur_time = time;
op_stat_local_write_t (AONC_RCV_INSTANT, noise, cur_time);
}

}

}

void

Aon_Rcv_Pulse (AonT_Pulse* pulse, int pulse_num)
{
static int fft_init = 0;
static CmathT_Complex* fft_shape;
double cur_time;
double freq;
int i;
if (fft_init == 0)

{

fft_shape = (CmathT_Complex*) malloc (AonI_Len * sizeof (CmathT_Complex));
fft_init = 1;

}

cmath FFT (fft_shape, pulse->shape, AonI_Nu);

for (i = 0; 1 <« AonI_Len; i++)
{
cur_time = (double)i * (AonI_Duration / (double)AonI_Len);
freq = pulse->freq + ((((i + AonI_Len/2) % AonI_Len) - AonI_Len/2) * 2.0 * CMATH_PI
/ AonI_Duration);
cmath_principle_val (pulse->shape + i);
op_stat_local_write_t (pulse_num * AONC_RCV_PULSE_STAT_NUM + AONC_RCV_AMP,
(pulse->shape + i)->r, cur_time);
op_stat_local_write_t (pulse_num * AONC_RCV_PULSE_STAT_NUM + AONC_RCV_PHASE,
{(pulse->shape + i)->theta, cur_time);
cmath_principle_val (fft_shape + i);
op_stat_local_write_t (pulse_num * AONC_RCV_PULSE_STAT_NUM + AONC_RCV_FFT_AMP,
(fft_shape + i)->r, freq);
op_stat_local_write_t (pulse_num * AONC_RCV_PULSE_STAT_NUM + AONC_RCV_FFT_PHASE,
(f£ft_shape + i)->theta, freq);
}
printf (“###here baby\n”);
}
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B.12 Complex Mathematics Support Code

Many of the functions in the AON Model Suite use functions that perform operations on
complex numbers or arrays of complex numbers. These functions can be found in

cmath.ex.h and cmath.ex.c.

cmath.ex.h

#define CMATH PI  3.14159265
typedef struct

{
double xr;
double theta;

} CmathT_Complex;

void cmath_assign (CmathT Complex *a, double r, double theta);
void cmath_print (CmathT_Complex *a);
void cmath_add(CmathT_Complex *aplusb, CmathT_Complex *a, CmathT_Complex *Db);
void cmath_sub(CmathT Complex *aplusb, CmathT_Complex *a, CmathT_ Complex *b);
void cmath_mult (CmathT_Complex *amultb,CmathT_Complex *a, CmathT Complex *b);
void cmath_mult_scalar (CmathT Complex *amultb, CmathT Complex *a, double b);
void cmath_vector_print (CmathT_Complex *a, int len);
void cmath_vector_mult_vector (CmathT_Complex *amultb, int len,
CmathT Complex *a, CmathT_Complex *Db);
void cmath_vector_mult_scalar (CmathT Complex *amultb, int len,
CmathT_Complex *a, double b);
void cmath_swap (CmathT Complex *a, CmathT_Complex *b);
void cmath_copy (CmathT_Complex *a, CmathT_Complex *b);
void cmath_vector_copy (CmathT Complex *a, CmathT_Complex *b, int len);
void cmath_ W (CmathT_Complex *w, int k, int N);
void cmath_FFT (CmathT_Complex *fft, CmathT_Complex *a, int nu);
void cmath_inv_FFT (CmathT Complex *fft, CmathT _Complex *a, int nu);
void cmath_principle_val (CmathT_Complex *a);
double cmath_dB (double a):;

cmath.ex.c

#include “math.h”
#include “cmath.h”

void
cmath_assign (CmathT_Complex *a, double r, double theta)
{
a->r = r;
a->theta = theta;
}
void
cmath_principle_val (CmathT_Complex *a)
{
int N;

if (a->r < 0.0)
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{

a->r = fabs (a->r);
a->theta += CMATH_PI;
}

N = ceil ((a->theta - CMATH_PI) / (2.0 * CMATH_PI));

a->theta -= (N*2.0*CMATH_PI);
}

void
cmath_print (CmathT_Complex *a)
{

printf (“R: %L1£\tTHETA: %1f\n”, a->r, a->theta);

}

void

cmath_add (CmathT _Complex *aplusb, CmathT_Complex *a, CmathT_Complex *b)

{
double X, Yi

x = a->r * cos (a->theta) + b->r * cos (b->theta);
a->r * sin (a->theta) + b->r * sin (b->theta);

y:

if (x == 0.0)
{
aplusb->r = y;
aplusb->theta = CMATH_PI / 2.0;
}

else
{
aplusb->r = hypot (x, y);
aplusb->theta = atan2 (y, x):
}

}

void

cmath_sub (CmathT_Complex *asubb, CmathT Complex *a, CmathT_Complex *b)

{

double X, Yi
X = a->r * cos (a->theta) - b->r * cos (b->theta):
y = a->r * sin (a->theta) - b->r * sin (b->theta);
if (x == 0)
{
asubb->r = y;
asubb->theta = CMATH PI / 2.0;
}
else
{
asubb->r = hypot (x, y);
asubb->theta = atan2 (y, x);
}
}
void

cmath_mult (CmathT _Complex *amultb, CmathT_Complex *a,

{

amultb->r = a->r * b->r;

amultb->theta = a->theta + b->theta;

}

void

CmathT_Complex *b)

cmath_mult_scalar (CmathT_Complex *amultb, CmathT Complex *a, double b)
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{
amultb->r = a->r * b;
amultb->theta = a->theta;

}

void

cmath_vector_print (CmathT_Complex *a, int len)
{
int i;

for (i = 0; i < len; i++)

{
cmath_print (a + i);
}
}
void

cmath_vector_mult_vector (CmathT Complex *amultb, int len, CmathT_Complex *a,
CmathT_Complex *b)
{

int i;

for (i = 0; i < len; i++)

{
cmath_mult (amultb + i, a + i, b);
}
}
void
cmath_vector_mult_scalar (CmathT_Complex *amultb, int len, CmathT_Complex *a,
double b)
{
int i;

for (i = 0; i < len; i++)
{
(amultb + i)->r = (a + i)->r * b;
(amultb + i)->theta = (a + i)->theta;

}
}
void
cmath_swap (CmathT_Complex *a, CmathT Complex *b)
{
CmathT_ Complex tmp;

tmp.r = a->r;
tmp.theta = a->theta;

a->r = b->r;
a->theta = b->theta;

b->r = tmp.r;
b->theta = tmp.theta;
}

void
cmath_copy (CmathT Complex *a, CmathT_Complex *b)
{
a->r = b->r;
a->theta = b->theta;
}

void
cmath_vector_copy (CmathT_Complex *a, CmathT_Complex *b, int len)
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int i;

for (i = 0; 1 < len; i++)
{
cmath_copy (a + i, b + i);
}

}

int
bitrev (int a, int nu)

{

int bits;

int i;

bits = 0;

for (i = 0; i < nu; i++)
{

bits = bits << 1;
bits += (a & 1);
a =a > 1;

}
return (bits);
}
void
cmath W (CmathT_Complex *w, int k, int N)
{
w->r = 1;
w->theta = (-2)*(CMATH_PI)*k/N;
}
void
cmath FFT (CmathT_Complex *fft, CmathT_Complex *a, int nu)
{
int len;
int i, j, step, num_step;
int rev;

CmathT_Complex tmpl, tmp2;
len = pow (2.0, (double)nu);

for (i = 0; i < len; i++)
{
rev = bitrev (i, nu);
cmath_copy ((fft + i), (a + rev));

}
step = 2;
while (step <= len)
{
num_step = len / step;
for (i = 0; 1 < num_step; i++)
{
for (j = ((step / 2) + 1); § < step; j++)

{

(fft + j + i*step)->theta -= 2*CMATH_PI*(j - (step / 2)) /step;
/* ### Equivalent ###

cmath W (W, (j - (step / 2)), len) ;

cmath_mult (tmp, W, (fft + j));

cmath_copy ((fft + j), &tmp) ;
*/

}

for (j = 0; j < (step / 2); j++)
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{

cmath_add (&tmpl, (fft + j + i*step),
cmath_sub (&tmp2, (fft + j + i*step),
cmath_copy ((fft + j + i*step), &tmpl);

(fft + j + i*step + (step / 2)));
(fft + j + i*step + (step / 2)));

cmath_copy ((fft + j + i*step + (step / 2)), &tmp2);

}
}
step = 2 * step;
}
}
void
cmath_inv_FFT (CmathT_Complex *fft, CmathT_Complex *a, int nu)
{
int len;
int i, j, step, num_step;
int rev;

CmathT_Complex tmpl, tmp2;

len = pow (2.0, (double)nu);
for (i = 0; i < len; i++)

{

rev = bitrev (i, nu);

cmath_copy ((fft + i), (a + rev));

}

step = 2;

while (step <= len)
{

num_step = len / step;
for (i = 0; i < num_step; i++)

(step / 2))/step;

j + i*step + (step / 2)));
j + i*step + (step / 2))});

{

for (j = ((step / 2) + 1); j < step; Jj++)
{
(fft + j + i*step)->theta += 2*CMATH_PI* (]
}

for (j = 0; j < (step / 2); j++)
{
cmath_add (&tmpl, (fft + j + i*step), (fft
cmath_sub (&tmp2, (fft + j + i*step), (fft
cmath_copy ((fft + j + i*step), &tmpl);
cmath_copy ((fft + j + i*step + (step / 2)), &tmp2);
}

}

step = 2 * step;
}
for (i = 0; i < len; i++)
{
(fft + i)->r = (f£ft + i)->r /
}

(double) 1len;

}

double

cmath_dB (double a)
{
double dB;
dB = pow (10.0, (-0.1)%*a);

return (dB);
}
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B.13 Linear Transfer Function Support Code

Many of the functions in the AON Model Suite use functions that perform linear transfer
function operations on the complex envelopes of pulses. These functions can be found in

aon_lin.ex.handaon_lin.ex.c.

aon_lin.ex.h

/* Greg Campbell */
/* AON Model Suite */

/**** Typedefs ****/
/**** Prototypes ****/

void Aon_Lin_Pulse (AonT_Pulse* pulse, Procedure lin_proc, void* lin_desc);
void Aon_Lin_Noise (double* noise_power, int noise_bin, Procedure lin_proc,
void* lin_desc);

aon_lin.ex.c

/* Greg Campbell */
/* AON Model Suite */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_lin.ex.h”

void
Aon_Lin_Pulse (AonT_Pulse* pulse, Procedure lin_proc, void* lin_desc)
{

int i;

CmathT Complex g;

static CmathT Complex*fft_shape;
static int fft_init;
double freq;

if (fft_init == Q)
{
fft_shape = (CmathT_Complex*) malloc (AonI_Len * sizeof (CmathT_Complex)

fft_init = 1;
}

cmath FFT (fft_shape, pulse->shape, AonI_Nu);
for (i = 0; i < AonI_Len; i++)
{

freq = pulse->freq + ((((i + AonI_Len/2) % AonI_Len) - AonI_Len/2) *
2.0 * CMATH_PI / AonI_Duration);
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lin_proc (&g, freq, lin_desc);
cmath_mult (fft_shape + i, fft_shape + i, &g);
}

cmath_inv_FFT (pulse->shape, fft_shape, AonI_Nu);
}

void

Aon_Lin_Noise (double* noise_power, int noise_bin, Procedure lin proc, void* lin_desc)
{
CmathT_Complex g;
double freq;

freq = AonI_Low_Freq + (({(double)noise_bin + 0.5) /
(double)AonI_N_Segment) * (AonI_High_ Freq - AonI_Low_Freq);

lin_proc (&g, freq, lin_desc);

(* (noise_power)) = (*(noise_power)) * pow (g.r, 2.0);

}
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B.14 Pipeline Stages

The Pipeline model stages that model the optical fiber in point-to-point links are based on

external functions. These functions can be found

in

aon_ps.ex.h,

aon_propdel.ps.c, aon_proprcv.ps.c, aon_txdel.ps.c, and

aon_txrcv.ps.c.

aon_ps.ex.h

/* AON Model Suite */
/* Fiber pipeline stages. */

aon_propdel.ps.c

/* Greg Campbell */
/* AON Model Suite */
/* Fiber prop delay. */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_fib.ex.h”

#include “aon_ps.ex.h”

void
aon_propdel (Packet* pkptr)
{

int tx_objid;

int link_objid;

int num_links;

int i;

AonT_Fib_Link* link;
AonT_Port_Pulse* port;

double *last_time;

int type;

AonT_Pulse* pulse;
AonT_Noise* noise;

/* Multiple channels not supported.*/
/* int ch_index; */

if (AonI_Fib_List_Init == 0)
{
op_prg_list_init (&AonI_Fib_List);
AonI_Fib_List_Init = 1;
}

tx_objid = op_td_get_int (pkptr, OPC_TDA_PT_TX OBJID) ;
link_objid = op_td_get_int (pkptr, OPC_TDA_PT_LINK_OBJID) ;

/* Multiple channels not supported. */
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/* ch_index = op_td_get_int (pkptr, OPC_TDA_PT_CH_INDEX) ;*/

/* Find link... */
num_links = op_prg_list_size (&AonI_Fib_List);

for (i = 0; i < num_links; i++)
{
link = (AonT_Fib_Link*) op_prg_list_access (&AonI_Fib List, i);
if (link->link_objid == link_objid)

break;
}
if (i == num_links)
{

/* Link not found. Instantiate new link. */
link = Aon_Fib_Link Attr_Get ((Objid) link_objid);
}

if (link->xmtl_objid == tx_objid)
{
port = link->portl;
last_time = &(link->last_timel);
}
else if (link->xmt2_objid == tx_objid)
{
port = link->port2;
last_time = &{(link->last_time2);

}
else
{
/* Port uninitialized. Instantiate port. */
if (link->xmtl_objid == -1)
{
link->portl = Aon_Port_Pulse_Create ();
link->xmtl_objid = tx_objid;
port = link->portl;
link->last_time2 = op_sim _time ();
last_time = &(link->last_time2);
}
else
{
link~>port2 = Aon_Port_Pulse_Create ();
link->xmt2_objid = tx_objid;
port = link->port2;
link->last_time2 = op_sim time ();
last_time = &(link->last_time2);
}
}

type = Aon_Event_Packet_Type (pkptr);

if (type == AONC_PKT_PULSE)
{
if ((*(last_time)) != op_sim_time ())
{
Aon_Fib_Prop_Port (port, link->fib_desc, (*(last_time)),
op_sim_time ());
(*(last_time)) = op_sim_time ();

}

pulse = Aon_Pulse_Packet_Get (pkptr):;
Aon_Port_Pulse_Append (port, pulse);

op_td_set_dbl (pkptr, OPC_TDA_PT_ PROP_DELAY,
Aon_Fib_Delay (pulse, link->fib_desc));
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}

else
{
noise = Aon_Noise_Packet_Get (pkptr);
noise->power = noise->power * exp ((-1.0) * link->fib desc->alpha *

link->fib_desc->Length) ;

op_td_set_dbl (pkptr, OPC_TDA_PT_PROP_DELAY, Aon_Fib_Bl ((AonI_Low_Freq
+ ((double) noise->freq bin / (double) AonI_N_Segment) *
(AonI_High_Freq - AonI_Low_Freq)), link->fib_desc) *
link->fib_desc->Length) ;

aon_proprcy.ps.c

/* Greg Campbell */
/* AON Model Suite */
/* Fiber prop delay. */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_fib.ex.h”"

#include “aon_ps.ex.h”

void
aon_proprcv (Packet* pkptr)
{

int tx_objid;
int link_objid;
int num_links;
int i;
AonT_Fib_Link* link;
AonT_Port_Pulse* port;
double *last_time;
int type:;
AonT_Pulse* pulse;
AonT_Noise* noise;
/* Multiple channels not supported.*/
/* int ch_index; */
if (AonI_Fib_List_Init == 0)

{

op_prg_list_init (&AonI_Fib_List};
AonI_Fib_List_Init = 1;
}

tx_objid = op_td_get_int (pkptr, OPC_TDA_PT_TX_OBJID);
link_objid = op_td_get_int (pkptr, OPC_TDA_PT_LINK_OBJID) ;

/* Multiple channels not supported.. */
/* ch_index = op_td_get_int (pkptr, OPC_TDA_PT_CH_INDEX);*/

/* Find link... */
num_links = op_prg_list_size (&AonlI_Fib List);

for (i = 0; i < num_links; i++)

{
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link = (AonT_Fib_Link*) op_prg list_access (&AonI_Fib_List, i);
if (link->link objid == link_objid)

break;
}
if (i == num_links)
{
/* Link not found. Instantiate new link. */
}

if (link->xmtl_objid == tx_objid)
{
port = link->portl;
last_time = &(link->last_timel);
}
else if (link->xmt2_objid == tx_objid)
{
port = link->port2;
last_time = &(link->last_time2);
}
else
{
/* Port uninitialized. Instantiate port. */
}

type = Aon_Event_Packet_Type (pkptr);

if (type == AONC_PKT_PULSE)
{
if ((*(last_time)) != op_sim_time ())
{
Aon_Fib_Prop_Port (port, link->fib_desc, (*(last_time)),
op_sim_time ());
(*(last_time)) = op_sim_time ();
}

pulse = Aon_Fib_Exit_Pulse (port, link->fib_desc, op_sim_time ());
op_pk_nfd_set (pkptr, “data”, pulse, Aon_Noop, Aon_Noop, 0);

op_td_set_int (pkptr, OPC_TDA_PT PK_ACCEPT, OPC_TRUE);

}
else
{
op_td_set_int (pkptr, OPC_TDA_PT_PK_ACCEPT, OPC_TRUE);
}
}
aon_txdel.ps.c
/* Greg Campbell */
/* AON Model Suite */

/* Fiber trans delay. */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h*
#include “aon_base.ex.h”

#include “aon_fib.ex.h”

#include “aon_ps.ex.h”
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void

aon_txdel (Packet* pkptr)
{
op_td_set_dbl (pkptr, OPC_TDA_PT_TX DELAY, 0.0);
}

aon_txrcv.ps.c
/* Greg Campbell */
/* AON Model Suite */

/* Fiber trans delay. */

#include <math.h>

#include “cmath.h”

#include “/lidsfs/usr/local3/opnet-2.4-sol/sys/include/opnet.h”
#include “aon_base.ex.h”

#include “aon_fib.ex.h”

#include “aon_ps.ex.h”

void

aon_txrcv (Packet* pkptr)
{
op_td_set_int (pkptr, OPC_TDA_PT_NUM_ERRORS, 0);
}
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Appendix C: Usage Comments

The AON Model Suite is based on the OPNET simulation platform, and there are two

things that must be done to set it up properly:

» All files with the suffix . ex.c must be compiled by a C compiler. The resulting .o
files must be left in a directory listed in the OPNET mod_dirs environment vari-
able. For the procedures within these files to be accessible, each network model
that uses AON Model Suite components must have the . ex. o files declared as
external object files. This can be done by using the “Declare external object files”
button in the OPNET Network Editor.

* All AON Model Suite components must have the begsim intrpt option set at the
node level. This can be done by clicking the right mouse button on all components
using AON Model Suite Process Models and selecting the begsim intrpt
menu item.

* Links at the network level must have the appropriate models specified. The txdel
model should be aon_txdel, the propdel model should be
aon_propdel, the error model should be aon_txrcv and the ecc
model should be aon_proprcv. Fiber parameters can be specified as
extended attributes of the link. Any fiber parameters not found in the

extended attributes are assumed to have the default value.
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