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Scheduling of Manufacturing Systems Based on
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by

Velusamy Subramaniam

Submitted to the Department of Mechanical Engineering on August 11, 1995
in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Abstract

Two scheduling methods based on Extreme Value Theory (SEVAT) and Genetic

Algorithms (GA) are developed. The SEVAT approach is a schedule building approach

that creates a statistical profile of schedules through random sampling and predicts the

potential' of a schedule alternative. The GA approach, on the other hand, is a schedule

permutation approach, in which a population of schedules are initially generated, and

through some operations, good traits of these schedules are combined to produce better

schedules.

These two scheduling methods were applied to two static benchmark job shop

problems (the Muth and Thompson 6x6 and lOx 10 problems). The results compare

favorably with the optimal solutions, and the solutions obtained using some common

dispatch rules and a scheduling approach based on Fuzzy Logic, which is representative of

current scheduling research.

A dynamic scheduling problem was designed to reflect a real job shop scheduling

environment closely. Two performance measures, viz, Mean Job Tardiness and Mean Job

Cost, were used to demonstrate multiple criteria scheduling. Three factors were identified,

and varied between two levels each, thereby spanning a varied job shop environment. A

factorial design of experiments comprising of 8 experiments were then designed. The

SEVAT and GA approaches were applied to these 8 experiments and the results compared

with several common dispatching rules and the Fuzzy Logic Approach. The results of this

extensive simulation study, overwhelmingly indicate that the SEVAT and GA scheduling

approaches produce better scheduling performance than the other methods.

Thesis Supervisor: Professor George Chryssolouris
Title: Associate Professor of Mechanical Engineering
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Chapter 1
Introduction

The operation of a manufacturing system is the complex task of planning the material and

information flows in the system. Proper material flow is what enables a manufacturing

system to produce products on time and in sufficient quantity. It is a direct consequence of

the system's information flows: command information from human planners or from the

planning software prescribes the material flow in the system, while sensory information

about the status of the system's resources is used to decide on the appropriate commands.

The fundamental activity in the operation of a manufacturing system is thus to determine the

commands that prescribe the material flow in the system [Chryssolouris, 1992].

Command information flows can be organized into a bi-level hierarchy. High level

commands dictate the flow of materials into the manufacturing system. Therefore they

determine the system's workload - namely, how many of each type of part to manufacture

in each time period, which are typically long, in the order of days or weeks. For this

reason, the decision-making activity of generating high level commands is called long-term

planning [Chryssolouris, 1992].

Low-level commands dictate the flow of materials within and out of a

manufacturing system. They determine which production resources are to be assigned to

each operation on each part, and when each operation is to take place. The role of lower-

level commands is to resolve contention for the resources of a manufacturing system. This

contention occurs among the parts released into the system as a consequence of long term

planning decisions. Because low-level commands control individual operations, they must

be generated much more frequently than high-level commands. The time between

commands is typically on the order of seconds or minutes. For this reason, the decision

making activity of generating lower-level commands is called short-term dispatching and is

concerned with the detailed assignment of operations to production resources

[Chryssolouris, 1992].
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1.1 The Problem

The practice of scheduling in industry has been dominated by the use of dispatch

rules. These rules are easy to apply and are quick in generating schedules. However, there

are some shortcomings to using dispatch rules. First, dispatch rules do not consider all of

the available resources at the same time. The common practice is to employ an additional

rule to first select a resource and then apply the dispatch rule. This contaminates the

effectiveness of the dispatch rule and the cumulative effect of these two types of rules

(resource selection and dispatch rules) can only be determined through extensive

simulation. Second, dispatch rules do not allow for the use of multiple criteria in the

scheduling process. Dispatch rules often influence only one performance measure,

whereas scheduling in industry usually requires the meeting of several objectives

simultaneously. Third, the rigid structure of dispatch rules excludes the use of other useful

information that may be available for scheduling. Fourth, there is no single universal

dispatch rule. The literature reports hundreds of such rules, and the choice of a suitable

dispatch rule depends on the nature of the scheduling problem and the performance

measure of interest. Because the scheduling environment itself is dynamic, the nature of

the scheduling problem will change over time and therefore, the dispatch rule will also need

to change over time.

Academic research in production scheduling has been based primarily on operations

research techniques (more specifically, mathematical programming). Recently, many

research efforts have employed artificial intelligence techniques, especially rule-based

systems. Unfortunately, the use of academic results in industry has been minimal; many

academic approaches make assumptions that do not reflect reality. Actual manufacturing

environments are extremely variable, and usually cannot be rigidly classified into one of the

classical scheduling models often assumed in academic research. In perhaps no other field

is the dichotomy between academic research and actual practice more pronounced

[Chryssolouris, 1992].

1.2 Characterization of the Scheduling Problem

The academic literature contains an abundance of theoretical work on a number of

classical scheduling problems. The entities to be scheduled are typically referred to as jobs.

Usually, each job corresponds to an individual part and consists of one or more production

16



operations. Classical scheduling problems can be categorized on the basis of the following

dimensions [Graves, 1981].

* Requirements generation

Processing complexity

Scheduling criteria

The scheduling problem in most production environments is stochastic and dynamic;

however, most models for scheduling problems are deterministic and static [Graves,

1981].

Another perspective in the characterization of the manufacturing scheduling problem

is presented in [Parunak, 1991]. Scheduling in a manufacturing environment is viewed as

cartesian product of three sets; viz, 'What' tasks are to be done, 'When' are these tasks to

be done, and 'Where' (resources) are these tasks to be done.

1.3 Research Contribution

The contribution of this thesis to the field of scheduling in manufacturing systems is

to bridge the wide gap between academia and industry. This thesis develops scheduling

methods to overcome the shortcomings associated with dispatch rules and avoid making the

simplistic assumptions associated with academic approaches. The scheduling methods

developed will be for the job shop scheduling problem because it is the most difficult

scheduling problem amongst manufacturing systems. The methods and tools that are

developed and evaluated in this research have the following characteristics:

Modeling Ease

The theoretical principles underlying each of these approaches are relatively

simple and would be very easy to model for a particular manufacturing

scheduling problem.

Encompassing many problems

Each of the methods and tools investigated in this research should also be

applicable to most manufacturing problems, be they as varied as Product

Design, Production Planning or Process Control.

17



Quality versus Speed

The methods and tools should allow the tradeoff between decision quality

and computational speed. Academicians have been overly concerned about

the accuracy of their methods in predicting the optimum solution and have

not placed any constraints on the computational time. On the other hand, in

the industry, the accuracy of the solution may not be as crucial. What is

crucial, is finding a solution to a problem in some specified time.

Two methods are investigated in this research, and they are based on

Extreme Value Theory

Genetic Algorithms

1.4 Job Shop Scheduling

The formal job shop problem is defined as [Rodammer and White, 1988]

"N jobs are to be processed on M machines. Each job consists of a set of M

operations, one operation uniquely associated with each of the M machines. The

processing time for an operation cannot be split. Technological constraints demand

that the operations within each job must be processed in a unique order. The

scheduling problem involves determining the sequence and timing of each operation

on each machine such that some given performance criterion is maximized or

minimized."

In this thesis, the formal job shop scheduling problem will be restated, so that it is more

general and reflects the actual job shops in industry. Particularly, the constraint that there

be M operations for each job (where M is also the number of machines available) will be

reformulated. Jobs will be assumed to have some random number of operations each.

Furthermore, each operation will not be constrained to have only one available machine to

process it. This thesis will explore the job shop where multiple machines could process an

operation. Details of the job shop scheduling problem investigated in this thesis will be

discussed in the following chapters.
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In [Mckay et al, 1988], a survey of job shop schedulers is reported. This survey
identifies several common themes that had prevailed, viz,

* Scheduling uses information that is often incomplete, ambiguous, biased,

outdated or erroneous.

* The job shop is seldom stable for longer than half an hour.

* Schedulers have various tools at their disposal to deal with variability and

constraints, e.g., they can change both the long and short term capacity,

alter the long and short term processing logic etc.

* Schedulers use intuition, including sensory data, such as sight, sound and

touch, to "fill in the blanks" about what is happening on the shop floor.

* Many constraints or issues can affect the scheduling of different parts of the

job shop at different times for different reasons.

* Schedulers use simple dispatching rules, like SPT (Shortest Processing

Time) or FCFS (First Come First Served).

The relationship between a job shop and other forms of manufacturing systems is
discussed in [MacCarthy and Liu, 1993] and is summarized below in Figure 1.1. In a job

shop, each job has its own individual flow pattern or specific route through the machines.
In a flow shop, each job has an identical flow pattern, whilst in an open shop, there is no

specified flow pattern for any job. In a flow shop, if the order of processing of the jobs are
the same, then that system is referred to as the permutation flow shop. When all the
machines are identical and viewed as a single stage processing facility, then that
manufacturing system is referred to as a parallel machine. Finally, when there is only one

machine available, the system is refered to as the single machine (shop).

1.5 Static vs Dynamic Scheduling

In Chapter 2, a literature survey of the current job shop scheduling approaches is
presented. A common feature that appears in this survey, is that most of the approaches are

designed to work with static scheduling problems. In this section, the distinctions between

static and dynamic scheduling problems will be explored.
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Figure 1.1: Relationships Between Different Machine Environments [MacCarthy

and Liu, 1993].

In most static problems, the job shop scheduling problem is one where all the jobs

arrive at time zero, i.e., all the jobs that need to be scheduled are already available at the

outset of the scheduling problem. The problem also assumes that there are no machine

breakdowns, and no operations are pre-empted (i.e. once an operation is started, it may not

be interrupted). The processing times of all the operations of all jobs are known a priori

and the set up times for the various operations are assumed included in the processing

times.

A variation of the static job shop problem accommodates arrival of jobs at non-zero

time. However, the arrival times are deterministic and are known a priori. Scheduling

decisions take into account the future arrivals.

The dynamic scheduling problem, on the other hand, tend to reflect more of the

actual job shop conditions. In this problem, the job arrivals are not known a priori.

Scheduling decisions cannot make use of future arrival information and are further

complicated by the breakdown and the repair of resources (machines). The arrivals of jobs

and, the breakdown and repair of resources are assumed to be described by statistical

distributions. These details will be discussed in greater detail in Chapter 5. Figure 1.2,

shows the distinctions between static and dynamic job shop scheduling problems.

20



Figure 1.2: Distinctions between Static and Dynamic Job Shop Scheduling

1.6 Scope of Thesis

This thesis began with a brief introduction into the manufacturing scheduling

problem and discussed the gap that exists between academia and industry. The objectives

of this thesis were then stated as an attempt to bridge this gap, by developing scheduling
techniques and applying them to the job shop scheduling problem. In the next chapter, a
survey of the current job shop scheduling techniques in the last five years will be
presented. This survey is not exhaustive and the categorization of the scheduling methods

21
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fails fails repaired
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is not necessarily unique. Following the survey, the research framework will be laid out.

A suitable methodology from the literature will be identified to serve as a basis of

comparison of the performance of the scheduling methods developed in this thesis. In

Chapters 3 and 4, the Extreme Value Theory and the Genetic Algorithms scheduling

approaches will be discussed in detail and applied to a static problem. The performances of

these approaches will be analyzed and compared. In Chapter 5, a dynamic scheduling

problem will be designed and the various scheduling approaches will be applied to this

problem and their performances will be discussed. This thesis will then conclude with a

summary of the significant results.
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Chapter 2
Current Job Shop Scheduling Approaches

This chapter presents a survey of the current job shop scheduling approaches that have
been reported in the literature in the last five years. These approaches have been organized

broadly into five categories (Figure 2.1). Following the survey, a research framework is
formulated. A suitable job shop scheduling methodology from the survey is selected and

used as a basis of comparison for the performance of the two scheduling methods

developed in this thesis.

2.1 Heuristic Rules

The most common approach to job shop scheduling in industry is to use
dispatching rules. In the literature, the terms priority rules, scheduling rules and heuristic
rules are used synonymously for dispatching rules. These terms are used to determine the

ranking of the order in which the jobs waiting in machine queues are to be processed when

the machines become available. [Ramasesh, 1990] makes a distinction between the terms
'priority rules', 'scheduling rules' and 'heuristics'. A priority rule represents the technique
by which a number is assigned to each job in the queue; a heuristic represents rules of
thumb; and scheduling rules represent a combination of one or more priority rules and
heuristics [Ramasesh, 1990]. In this chapter, the term heuristics or dispatching rules will
be used synonymously and the above distinction can be drawn from the context of the

scheduling problem.

Dispatching rules were first proposed in the 1950s and were attractive in terms of
their simplicity. However, with the advance in computer technology, these simple rules
have been modified or combined to make use of other available information from the job
shop floor. This has continued to be the current focus of scheduling research in the area of

23



heuristic rules. The broad classification of 'heuristic rules' can be further categorized

(Figure 2.2).

Figure 2.1: Characterization of Current Scheduling Approaches

Figure 2.2: Categorization of Heuristic Rules
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Dispatching rules can also be classified based on whether the priority value changes

over time or not. A dispatching rule is referred to as a dynamic rule if the priority value

calculated at a particular instant differs from the value calculated at a later time, e.g. the least

slack rule. If the priority value once calculated remains the same throughout, it is referred

to as a static rule, e.g. the earliest due date (EDD) rule [Raghu and Rajendran, 1993].

Another dimension of categorizing dispatching rules, is the type of information that

is required to calculate the priority of jobs. Local rules require information about jobs

currently waiting for the machine under consideration, whereas global rules make use of

information about other machines in the shop floor in addition to the machine under

consideration [Raghu and Rajendran, 1993].

2.1.1 Modification of Dispatching Rules

This section discusses the research attempts to modify existing dispatching rules to

enhance performance. The modification attempts can be categorized as:

* combination of dispatching rules.

* expediting and truncating dispatching rules.

Good performance of individual dispatching rules is limited to certain shop load

conditions. For example, the earliest due date (EDD), minimum slack time (MST) and the

slack per remaining work (S/RPT) rules perform reasonably well with light load levels but

deteriorate in congested job shops, whereas SPT performs well in congested shops with

tight due dates but fails with low load levels and loose due dates. The failure of simple

rules to be effective over a wide range of due date tightness and shop utilization, have been

recognized for a long time, and has motivated researchers to combine two or more of these

simple dispatching rules into a single rule in order to harness their individually excellent

performance characteristics [Anderson and Nyirenda, 1990].

Two combination dispatching rules for minimizing the tardiness (positive difference

between the completion time and due date of a job) in a job shop are presented in

[Anderson and Nyirenda, 1990]. Both rules are closely related to the modified due date

(MOD) rule. The first rule is a combination of the shortest processing time (SPT) rule and
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the critical ratio (CR) rule, and the second is a combination of the the SPT rule and the

slack per remaining work (S/RPT) rule. These rules do not require any parameter

estimation. These composite rules have been shown to work well over other dispatching

rules and over various job shop conditions. However, these rules are only effective when

minimizing the tardiness performance measure.

In [Benton, 1993], a composite rule called the modified value added composite rule

(VMOD) is proposed. This rule is defined as the ratio of the value added to a job to the

total value of the job. This work is implemented for a specific purpose, namely to solve

scheduling problems with cost and time based performance measures. Despite its

attractiveness as a composite rule, this approach will suffer from all the shortcomings of

dispatch rules discussed earlier in Chapter 1.

A dynamic dispatching rule is proposed in [Raghu and Rajendran, 1993], where the

processing time and due date components of a job are weighted as a function of shop

utilization level. This dynamic rule is attractive, because it takes into account the shop floor

conditions when dispatching jobs to machines. However, this rule was designed for flow

time and tardiness performance measures, it will not be effective in situations where there

are performance measures that are not related to flowtime or tardiness. Furthermore, one

of the implicit assumptions of this approach is that it does not consider jobs with alternative

machine routings.

In [Kannan and Ghosh, 1993], the interaction between truncation schemes and

dispatching rules is studied. Truncation is a term that is applied to reducing the set of jobs

in a machine queue to a set of (fewer) priority jobs on which the dispatching rules are then

applied. For example, the truncation rule, SPTT, truncates jobs that have been waiting in

the machine queue for a time al and puts these jobs in a priority queue. A certain amount

of truncation is beneficial, but too much or too little truncation can compromise

performance, depending on the performance measure.

[Ye and Williams, 1991] discuss a SPT-related dispatching rule, referred to as the

CEXSPT rule. The CEXSPT rule partitions the jobs waiting at a queue into three queues.

All the jobs that are late are placed in the first queue. All the jobs that are not late, but with

the next operation being late, is placed in the second queue. In the last queue, all the jobs

that are ahead of schedule are placed. The selection of which job to process next is as

follows: The job with the smallest processing time in the first queue is processed next,
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unless doing so creates at least one new late job, in which case, the job with the smallest

processing time in the second queue goes next, provided it does not create a new
operationally late job. If it does, the job with the smallest processing time in the third

queue is processed next.

The CEXSPT rule was modified to control the scheduling of jobs with long
processing times, and its performance is reported to be better than the pure SPT or other
due-date based rules. This is due to the fact that late jobs are given priority over jobs that
are behind schedule, and jobs that are behind schedule are always given priority over jobs
that are ahead of schedule [Ye and Williams, 1991]. However, it is only after the jobs with

the long processing times become late or operationally late that these jobs have a chance to

be paced through the job shop. There is no guarantee that these jobs can be completed on

time [Ye and Williams, 1991 ].

2.1.2 Iterative Heuristic Rules

This section examines heuristic rules that adopt an iterative scheme for job shop

scheduling. These approaches may be classified as:

multiple-pass heuristic rules

look-ahead heuristic rules

rescheduling heuristic rules.

In the previous section on the modification of dispatching rules, the rules were all
single-pass, i.e., jobs in a machine queue are prioritized according to some criteria and the
rule with the highest priority is scheduled. In multiple pass heuristics, two or more passes
are used. The first pass is usually one in which a preliminary schedule is created using a

dispatching rule and in the second pass, this preliminary schedule is then altered to ensure
schedule improvement.

One such approach is proposed in [Vancheeswaran and Townsend, 1993], which
consists of two independent stages consisting of a heuristic and followed by a non-
enumerative schedule improvement method. This approach was designed to minimize the
makespan (total production time) of the schedule. The first stage, consists of a priority
rule, termed the modified urgency criterion and is applied to all jobs that will be worked on
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the machine of interest, including those that have not reached the machine queue. The

modified urgency criterion is defined as the ratio of the total remaining processing time of a

job (inclusive of the processing time of the present operation) to the psuedo processing time

(PPT) of the job. The PPT is defined as the sum of the processing time of the present

operation and the time required to complete work on previous machines.

The second stage of this approach uses the critical job perturbation procedure

(CJPP) to improve on the schedule. The critical job is defined as the job that finishes last

in the shop and therefore determines the makespan. The CJPP reviews the queues of all

the operations of the critical job. If an operation of the critical job was prioritized late in

one of the machine queues, this operation is then exchanged with an operation of a non-

critical job to improve on the schedule. During the perturbation, the schedule performance

may or may not improve or a new critical job may arise. If the schedule performance does

not improve, then the previous schedule is kept and a different perturbation is considered

on a different machine queue. If the schedule performance is improved and a new critical

job arises, then this new job is replaced with the previous critical job and the CJPP is once

again applied. The CJPP is terminated when all of the operations on the critical job have

the highest priority or if an iteration limit is exceeded [Vancheeswaran and Townsend,

1993].

The drawback of this approach is that it is designed for the minimum makespan

performance measure only. Neither the modified urgency criterion, nor the CJPP will

work for multi-criteria scheduling problem.

Another multiple-pass heuristic algorithm is proposed in [He et al, 1993], where the

performance measure is total job tardiness. This heuristic consists of two phases; in phase

1, a dispatching rule is used to generate a feasible schedule, and in phase 2, operations are

selected from a group of predetermined promising operations. The initial schedule is then

improved by left-shifting the start times of these predetermined operations and rearranging

the other operations in the schedule.

The advantage of this approach is that it has a very simple formulation. However,

there are several drawbacks with this approach. First, this heuristic works for only one

scheduling criterion, namely, to minimize total job tardiness, and therefore, may not be

suitable for problems with multiple performance criteria. Second, in a general job shop,

many operations can be worked on other alternative machines. This algorithm does not
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address this issue. Finally, the time taken to improve on the schedule is large compared to

the initial schedule generation.

One of the serious drawbacks of using dispatching rules, is that they do not

consider the additional information that is available on the shop floor. Look-ahead

strategies overcome this shortcoming by considering possible future occurrences in the

current dispatching decisions.

A two-fold look ahead search method is proposed in [Itoh et al, 1993]. This

method essentially creates a decision tree. There are two stages to this search technique. In

the first stage, referred to as the local-look-ahead, the tree is completely expanded so that all

short-term future states (say, a horizon of two operations) are considered. For each

expanded node of the tree, the next stage of the search method, known as the global-look-

ahead is applied. In the global-look-ahead stage, a rough evaluation strategy, which is

essentially a dispatching rule, is applied to the scheduling problem, to obtain a global

performance measure of each of the nodes. The node with the most superior global

performance measure, is kept and the rest of the tree is then pruned. The two-fold look

ahead search is then once again applied, with the node that was found to be the most

superior in the previous stage, as the starting node. This process is then continued until all

the operations are scheduled.

This method is an improvement over dispatching rules, in that it considers the

additional information that is available by taking into account the future consequences of a

scheduling decision. However, there are several disadvantages to this approach. First,

this approach is described as a multi-criteria approach. This approach is not truly a multi-

criteria approach. This method incorporates an additional criterion by labeling it a

secondary criterion. The reason why the the decision criteria are labelled as primary and

secondary criteria is because of the exclusive use of dispatching rules in arriving at the

global-look ahead values. The secondary criterion is only used in breaking ties when

making a scheduling decision. Moreover, this approach assumes that there is no routing

flexibility and does not handle the situation where operations may be worked on several

alternative machines. The next shortcoming of this approach is that it considers a node as a

single machine-operation assignment. In the case of Job Shop Scheduling, there will arise

situations where several machine-operation assignments can be made simultaneously.

Finally, this approach uses a dispatch rule to compute a measure of the global look ahead
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performance. Similar approaches, such as MADEMA. have used random sampling instead

of dispatch rules, thereby to considering decisions that are affected by multiple criteria.

Another look ahead dispatching procedure is proposed in [Zeestraten, 1990]. This

approach takes into account scheduling problems with routing flexibility (i.e. when an

operation can have more than one alternative machines to be worked upon) and deals with

the makespan performance measure.

This approach performs a search in the space of possible states that the system can

reach within approximately, twice the average cycle time. The actual state of the system at

that point in time is used as a starting point for the search. Possible future system states

can be rated using an evaluation function. On the basis of the evaluation function the

system selects one of these states and the partial schedule that leads to that state The partial

schedule specifies only a few operations for each machine in the production system.

During the next phase, the production control system implements the first part of the partial

schedule. At most, one operation will be implemented on each machine. Whenever the

need for yet another operation arises, the state space search will be repeated. Any

disturbances that may have occured in the meantime will be reflected in the current system

state, and thus can be taken into account when a next partial schedule is produced

[Zeestraten, 1990].

The approach formulated works best for the makespan performance measure.

However, most job shop scheduling problems are multi-criteria and modifying this

approach for such criteria may not be straightforward, or the advantage obtained in looking

forward to only, twice the average cycle time will be sufficient. Expanding the search

space to large search horizons will cause an explosion of states that need to be considered.

The job shop, is a dynamic environment which is constantly affected by factors that

makes the change of existing schedules inevitable. Rescheduling is a term that is often

used in the literature to describe the constant change of schedules. A rescheduling heuristic

is proposed in [Li et al, 1993]. Factors that necessitate revisions to existing schedules, are

termed as rescheduling factors and include the following:

a) machine breakdown

b) interruption due to the arrival of 'very urgent' jobs.

c) shortage of materials
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d) quality problems

e) over or under estimating process times

f) cancellation of jobs

g) changes in the due dates of jobs

An encounter with a rescheduling factor results in two kinds of disrupted

operations. First, there are the directly affected operations (e.g. the operation that is being

currently worked on a machine when it breaks down). Second, there are the indirectly

affected operations (e.g. when a machine breaks down, the next operation to be operated

on the machine and the subsequent operation of the job that was on the machine when it

broke down are indirectly affected operations) [Li et al, 1993].

The rescheduling heuristic creates a "scheduling binary tree" beginning with a

directly affected operation and creating branches of indirectly affected operations. These

operations are then rescheduled, by computing the new start times and end times of the

affected operations. The indirectly affected operations may in turn, affect other operations

in the schedule. As a result the branches of the previous tree may grow and add on newer

branches. The heuristic continues to reschedule all the operations that are part of the tree.

The rescheduling terminates when all the branches of the scheduling tree have been

traversed [Li et al, 1993].

The advantage of this heuristic is that it provides a 'quick-fix' to existing schedules.

By creating a scheduling tree, it does not tamper with unaffected operations and only

concentrates on operations that have been affected. On the other hand, the heuristic

assumes that the operation sequence of each machine remains unchanged. This may not be

the case in real job shop situations, where the operation sequence of machines may change

due to the arrival of new jobs, and when operations may be worked on several alternative

machines. In such situations, it may still be necessary to regenerate the schedule, instead

of rescheduling.

2.1.3 Other Heuristic Rules

In this section two approaches, viz, constrained based heuristics and efficient

solution heuristics will be discussed.
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The dominant constraints in a job shop are the temporal activity precedence and the

resource capacity constraints. The activity precedence constraints, along with the job's

release date and due date, restrict the set of acceptable start times for each activity. The

capacity constraints restrict the number of activities that can use a resource at any particular

point in time and create conflicts among activities that are competing for the use of the same

resource at overlapping time intervals [Miyashita and Sycara, 1994 and Sycara et al, 1991].

The constraint-based scheduling approach views each activity as a variable. A

variable's value corresponds to a reservation for an activity. A reservation consists of a

start time and the set of resources needed by the activity. A schedule is built by

opportunistically selecting an activity to be scheduled, new constraints that reflect the

activity reservation are added to the initial scheduling constraints. These new constraints

are then propagated. If an inconsistency (violation of constraints) is detected during

propagation, the system backtracks. Otherwise, the scheduler moves on and looks for a

new activity to schedule and selects its corresponding reservation. The process goes on

until all activities have been scheduled successfully [Miyashita and Sycara, 1994].

A scheduling algorithm making use of the concept of efficient solutions for a job

shop with parallel machines is developed in [Cenna and Tabucanon, 1991]. An efficient

solution is one in which no increase can be obtained in any of the objectives without

causing a simultaneous decrease in at least one of the objectives. This approach was

applied to a job shop using two performance measures, viz, minimizing total flowtime and

minimizing maximum tardiness.

2.2 Schedule Permutation Methods

As the name of this category suggests, these scheduling methods first generate a

feasible schedule, often by using a dispatch rule. These methods systematically permutate

this initial schedule and after a period of time, return the best schedule found to date. The

manner in which the permutation is performed, lends these methods their name. Generally,

these approaches may be classified as

Genetic Algorithms

Simulated Annealing

Taboo Search.
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Some of these approaches may also be classified as AI approaches. However, their unique
problem formulation that requires the permutation of schedules, makes it appropriate to
classify them as above.

2.2.1 Genetic Algorithms

Genetic Algorithms are adaptive search techniques imitating natural selection and
genetics. The key idea here, is to maintain a set of candidate schedules, called population.
Members of the population are usually represented as strings (chromosomes) and evaluated

according to a fitness function (performance measure). The population is initialized at
random and evolves in cycles (generations). In each generation, the population is affected
by genetic operators and selection mechanism. Genetic operators such as crossover and
mutation, provide information flow among individuals, while selection promotes survival
of the fittest population members. Through recombination and selection, progressively
better strings are constructed from the best building blocks from past generations. The
evolution process thus converges to highly fit population members representing good
(near-optimal) schedules [Filipic, 1992 and Uckun et al, 1993]. The Genetic Algorithms
will be discussed in greater detail in Chapter 4.

2.2.2 Simulated Annealing

Simulated Annealing is a search procedure based on the analogy between the
process of annealing in solids, as described by the models of statistical mechanics, and the
process of combinatorial optimization. In general, when a solid is annealed, the positions
of the molecules are gradually evolved into a configuration of very low strain energy in the

solid. If we make an analogy between the molecular positions and internal strain energy of
a solid to the schedule and the quality of the schedule (measured by some performance
measure), then the statistical mechanical models which describe solid annealing can provide

a recipe for the generation of a good schedule [Chryssolouris, 1992].

A simulated annealing approach to job shop scheduling is discussed in [Musser et
al, 1993]. This approach considers both routing and the sequencing of operations. A
"two-level" stochastic descent approach, based on simulated annealing is proposed - a
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"higher" level method for routing and a lower level for sequencing. The simulated

annealing approach treats each schedule as a state in a discrete time finite state Markov

chain. The transition probabilities of the Markov Chain are selected so that the state drifts

towards the lower cost states. The simulated annealing algorithm uses a Markov process,

whereby an initial schedule is chosen at random. Next, a nearby trial schedule is chosen

and the two schedules are compared. If the trial schedule has lower cost, it is accepted as

the new state of the Markov chain. Otherwise, it is accepted with a lower probability

determined by the relative costs, which is expressed in terms of a parameter called

temperature. The schedule cost is calculated as the weighted average of the sum of three

cost components, viz, work in progress, tardiness and inventory cost. If the trial schedule

is only accepted when it has lower cost, the algorithm will remain in any local minimum it

may find. This is the case when the temperature is zero. A non-zero temperature,

however, gives the Markov chain the opportunity to escape from local minima. In the

simulated annealing process, the temperature starts of at a very high value and tends to

zero. In this approach, the trial schedules are generated by swapping adjacent operations

on a single machine.

2.2.3 Taboo Search

The taboo search procedure, is a global iterative optimization method. The search

moves from one solution to another, in order to improve the quality of the solutions visited.

When the search arrives at a local optimum, it does not terminate, but moves beyond the

local optimum by choosing the best possible neighbouring solution. A move to a

neighbouring solution involves permutating two successive operations that use the same

machine. In order to avoid cycling, the move that leads back to the local optimum (just

found) is forbidden. This is achieved in a short-term memory framework by keeping the

forbidden (taboo) moves in a taboo list. For a taboo list of a given size, when an element is

added to the taboo list, another (the oldest move) is removed. The size of the taboo list

must be large enough to avoid cycling, but small enough not to forbid too many moves.

However, it may happen that an interesting move is taboo (such a move that improves the

best solution already found). In order to perform such moves, an aspiration level is

defined (depending, for example on the current solution and the best solution found). To

ensure diversification of the search, a long-term memory mechanism is also implemented

[Taillard, 1994].
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2.3 AI Approaches

The field of Artificial Intelligence involves ideas and methods that make computers

"intelligent". Its main goals are to make computers more useful and to understand the

principles that make intelligence possible [Chryssolouris, 1992]. In the following

subsection, three artificial tools that have found increased used in the field of job shop

scheduling will be described. These tools include

* Search

Neural Networks

Fuzzy Logic

2.3.1 Search

Search methods find solutions by exploring paths. What distinguishes one search

method from another is the heuristics which decide how the exploring is to be done. In the

field of job shop scheduling, this is often done by starting with a feasible schedule. The

search process explores the schedule space, moving from schedule to schedule, evaluating

each as it is explored. The search usually uses the information from the previous schedules

to determine the path of future moves through the schedule space. In the end, the search

would have arrived at a final schedule, either because an "optimal" schedule was found or

because some limit on the computational limit has been exceeded. In any case, the final

schedule is usually better than the initial starting schedule [Chryssolouris, 1992]. There are

various search methods reported in the literature, and in this section, the application of one

such search procedure to a job shop scheduling problem will be discussed.

In the approach described in [Chang et al, 1989], the flexible job shop problem is

investigated. A flexible job shop, as opposed to the general job shop, is one in which there

is routing flexibility. A procedure is developed to identify the potential bottleneck machine

and a beam search technique is subsequently formulated to solve the job shop scheduling

problem. In [Aarts et al, 1994], the computational performance of several search

algorithms are investigated.
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2.3.2 Neural Networks

Neural Networks can perform two basic functions: they can be trained to remember

some information and they can be used to perform constraint satisfaction and optimisation

tasks [Willems and Rooda, 1994]. Neural Networks have been proposed in the literature,

to solve job shop scheduling problems that are viewed as either one of the two perspectives

mentioned above.

An example of using neural networks that are trained to remember information in

the job shop scheduling context is described in [Sim et al, 1994]. A feed-forward back

propagation neural network is designed and trained to recognize the individual

contributions of traditional dispatch rules. The neural networks are expected to learn and

store in their structure, the relative factors that influence the various considerations for

dynamic job shop scheduling. Given sufficient realistic examples, the network can be

trained to recognize how these considerations cooperate or compete in the assignment of

jobs as they mutually reinforce or nullify their influences on meeting the scheduling

objective. The network is incorporated into an expert system which activates the network

according to the prevailing shop environment.

The expert system and the neural network approaches are integrated to form an

expert neural network in order to overcome the weakness associated with each

methodology. The expert system will reduce the amount of time required for training the

artificial neural network by allowing the sub-networks to be trained separately. The neural

network will learn about and deal with the complex interactions of the scheduling

considerations without the need for the long knowledge-acquisition and development time

of expert systems.

The approach cited in [Sim et al, 1994] is an attempt to make use of the existing

dynamic conditions of the job shop in making scheduling decisions. There are several

shortcomings of this implementation. First, the jobs arrival rate in a real job shop

environment cannot be measured accurately. Perhaps, this information could have been

represented using linguistic variables such as "high", "low" or "medium" to describe the

existing workload conditions instead of a Poisson value. Second, this approach does not

use multiple criteria to make scheduling decisions. Finally, this approach may not be able

to handle the situation where there is routing flexibility, where there are more than one

alternate machines to perform an operation.
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Another example of using neural networks that are trained to remember information

is described in [Watanabe et al, 1993]. In this approach, neural networks are used to

improve the SLACK dispatch rule. The SLACK rule is used in scheduling to meet due

dates. This rule assigns the job in a queue with the shortest margin to its due date. The

margin is calculated by subtracting the operation time of the job from the remaining time to

the due date. This margin is referred to as the theoretical margin. However, the actual

margin of the job is shorter. due to the 'interference' of other jobs. Neural networks are

proposed to estimate the actual margins to the due date.

This approach is an attempt to improve a single dispatch rule with a neural network.

This method is basically a single criterion approach. The shortcomings due to dispatch

rules, discussed earlier, also apply to this approach, except that this approach uses

additional information existing or prevailing in the job shop.

Examples of neural networks used in job shop scheduling from the constraint

satisfaction and optimisation perspective are described in [Zhou et al, 1991, Foo et al,

I1994, and Willems and Rooda, 1994]. In job shop scheduling, the search for a schedule is

bound by two types of constraints. The first constraint states that the mandatory

precedence sequence of operations must be guaranteed and the second constraint states that

not more than one job at a time can be processed by a machine at the same time [Willems

and Rooda, 1994]. The job shop problem is modelled as a mixed integer linear

programming problem. The set of equations describing the linear program is exactly

identical in all these approaches, however, the structure of the network is different.

The approaches cited in [Zhou et al, 1991, and Foo et al, 1994], use the Hopfield

and Tank linear programming network, consisting of electronic elements such as diodes,

amplifiers, resisters and capacitors, to model the scheduling problem. The approach

provided by [Zhou et al, 1991] as compared to the approach of [Foo et al, 1994], has less

network complexity, however, the computations required of each neural processing

element is more extensive. The neural network in [Willems and Rooda, 1994] is not

modelled as electronic components, but rather as neurons, as in the more traditional neural

networks. This approach unlike [Zhou et al, 1991, and Foo et al, 1994] does not make use

of an energy function.
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The neural network approaches cited in [Zhou et al. 1991, Foo et al, 1994, and

Willems and Rooda, 1994] were modelled for the minimum makespan problem. In order

to accommodate multiple criteria scheduling, the cost function in the mixed integer linear

program, needs to be reformulated. Moreover, this approach works for the case where

there is routing inflexibility (i.e. operations can be performed on only one machine). The

structure that has been proposed in these approaches are best suited for the static scheduling

problem. This is not a serious disadvantage, because, the dynamic scheduling problem

could be viewed as a series of quasi-static problems and can be solved accordingly using

these approaches.

2.3.3 Fuzzy Logic

Several scheduling methodologies have been proposed in the literature that use

fuzzy logic to build up aggregated rules that achieve satisfaction of several criteria [Turksen

et al, 1993, Grabot and Geneste, 1994, and Custodio et al, 1994]. In the approach

reported by [Turksen et al, 1993], the SPT rule is selected to be one of the linguistic

variables in the fuzzy rule base, because of its favorable properties in terms of the flow time

and tardiness criteria. Another dispatch rule that is included in the rule base is the slack

time rule. This rule is complementary to the SPT rule. The slack time rule is inherently

dynamic in that it is computed based on the current time and the remaining operation time.

This approach makes two types of scheduling decisions. The first decision, is the job

release decision and this decision is made using the fuzzy variables of "priority", "slack

time" and "requested start date." The second decision is that of the job dispatch decision

and it depends on the fuzzy variables of "priority", "slack time" and "remaining processing

time." Each of these variables has linguistic values associated with them, for example

"high, low, medium etc."

In a similar approach reported in [Grabot and Geneste, 1994], two or more

dispatching rules can be combined into an aggregated rule using Fuzzy Logic, with

intermediate performance, between those of the elementary dispatch rules that compose the

aggregated dispatch rule.

In [Custodio et al, 1994], a production system with a hierarchical structure that

consists of three levels (higher, middle and lower) is proposed. These levels are each

responsible for a different production problem with a different time scale. The
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methodology approaches the tasks associated with each level, using a heuristic formulation

and solves the short-range planning and scheduling problems with a non-stationary policy.

The higher decision level determines safety stock levels used to compensate for future

resource failures. At the middle level, loading rates are computed. This is achieved

through a fuzzy controller that tends to minimize the error between the cumulative

production and the cumulative demand while keeping the work in process below acceptable

values. Finally the lower level controls the flow of parts among the resources using a

fuzzy decision method, which has the ability to use several criteria to generate a decision.

2.4 Analytical / Semi-analytical Approaches

These approaches formulate the job shop scheduling problem, in terms of

mathematical models that are described using differential or difference equations, often

highly coupled and nonlinear. Assumptions pertaining to the nature of the job shop

scheduling problem allow for simplifications to be made to these equations, so that they

become more tractable. In this section, seven such approaches (Figure 2.3) will be

discussed.

2.4.1 Control Theoretic Formulation

In classical formulations of scheduling problems, all events are assumed

controllable, and subject to constraints. However, some events such as machine failures

and material supply disruptions are not controllable and can be modelled as random events.

The goals of the hierarchical flow control formulation of scheduling problems proposed by

[Van Ryzin et al, 1991 and Gershwin, 1994] are:

to reduce computational complexity of scheduling problems by dealing with rates of

events rather than individual events, wherever possible.

to include random events (e.g. machine failures).

The machine failures are assumed to be much less frequent and of much greater duration

than the operations. This assumption allows for the hierarchical decomposition of the

scheduling problem. The hierarchy consists of three levels.
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At the highest level, the flow control strategy is determined. The flow control

strategy involves the setting of short term production rates as a function of the machine

repair states and production surplus. The flow control strategy is then implemented in the

middle level which operates on a long time scale.

Instead of viewing parts as discrete heterogeneous jobs, the middle level considers

a homogeneous material flow which is subject to random interruptions due to machine

failures. The dynamics of the material flow are represented by simple, first order

differential equations, and failures and repairs are modelled as jump Markov disruptions in

the material flow. The objective is to control the flow of parts over a long time horizon so

that demand is satisfied as closely as possible, and inventories, surpluses and backlogs are

kept low, while keeping the system within production rate constraints. At the lowest level,

the short term production rate is used as a target for the loading of parts. The actual loading

of individual jobs into machines is left to low level controllers which work at a shorter time

scale. The low level attempts to fulfil the production goals determined by the higher level

controllers.

Figure 2.3: Summary of the Analytical / Semi-analytical Approaches.
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This approach may not be suited for scheduling the production of a high variety of
jobs, where the demand for each job type may be very small and the continuous variable

approximation may be poor. In order to consider individual jobs, the discrete nature of the

job flow must be retained [Luh and Hoitomt, 1993].

2.4.2 Lagrangian Relaxation Technique

Scheduling, using the lagrangian relaxation technique, is viewed as a decision
problem with discrete variables, where an objective function is optimized subject to relevant

constraints. The decision variables are the beginning times of the various operations

required to produce jobs [Luh and Hoitomt, 1993 and Hoitomt et al, 1993].

Lagrangian relaxation is a mathematical programming technique for performing
constrained optimization. This technique is used to decompose a scheduling problem into

job or operation level subproblems, and the performance measure considered is tardiness.

The lagrange multipliers act as prices to regulate the use of machines.

This approach is quite complex and is not practical if the precedence structure
involves many operations. This method is effective for jobs with fewer than three or four

operations.

2.4.3 Mixed Integer Linear Program

In the approach discussed in [Nasr and Elsayed, 1990], the job shop scheduling
problem with alternate machine tool routings are investigated with the objective of

minimizing the mean flow time. The problem is analytically formulated as a mixed integer

program. An efficient algorithm is developed, based on this formulation, by decomposing

the original problem into smaller subproblems, that are easier to solve.

The scheduling process is viewed as a decision making process in which a decision

is made, when an operation is completed. The decision could be to either schedule the
successor of the finished operation, if the machine is available, or simply wait and not
schedule operations.
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2.4.4 Game Theoretic Formulation

The approach considered in [Leon et al, 1994], utilizes information about future

disturbances to control the schedule execution. This approach allows the use of static

schedules in an uncertain environment. This approach looks at control strategies to guide

recovery of the system from disruptions to a pre-computed schedule. The scheduling

problem is formulated as a resequencing problem to minimize the expected value of a

bicriterion function, where one criterion is the makespan and the other is the deviation from

the static, precomputed schedule.

This online control problem is treated as a game, where the controller plays against

nature. The controller proposes alternative ways to schedule and nature places stochastic

events on the schedule, such as machine disruptions. The controller takes action in two

cases, determined when significant new information becomes available. First, when a

disruption occurs and second, when the system reliability falls below a certain threshold.

This approach assumes that the interarrival time distributions of disruptions of each

machine and the disruption duration are available. These parameters are used to compute

the probability of having the next disruption on a machine in a specific time interval.

Subsequently as time proceeds, the inter arrival time marginals and the distribution for the

arrival of the next disruption are updated.

2.4.5 Queuing Theoretic Formulation

The approach reported in [Enns, 1993], investigates analytical methods of due-date

setting in a job shop under conditions where Jackson's decomposition principle can be

applied, using queueing analysis. Sufficient conditions under which the Jackson's

decomposition principle may be applied are as follows:

Job arrivals are randomly generated by a Poisson process with a stationary mean.

Operation processing times are independent and generated from negative

exponential distributions with the same mean.
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The routing of jobs is specified by probabilities in a fixed transition matrix.

Jobs in queues at each machine are processed on a first come first served basis.

Previous work in the literature has lead to results which minimize squared
deviations between due-dates and actual completion times. [Enns, 1993], extend these
previous works by considering the distribution of prediction error. If the distribution of
errors associated with completion time predictions can also be determined, statistical
analysis can be used to develop a due-date setting model which allows management to

control expected delivery performance.

The use of analytical techniques such as queueing theory and other statistical
methods, usually results in some probabilistic distribution functions in the limit. The close
form solution of this functions exist, only because of the restrictive assumptions that are
necessary to make the problem tractable. For example, the assumption that Jobs in queues
at each machine are processed on a first come first served basis is a sufficient condition for

the Jackson decomposition principle to apply, but results in the literature indicate that the
FCFS dispatch rule is usually outperformed by other dispatch rules for most performance
measures. Moreover, the probabilistic distribution functions do not provide with a detail
schedule, but rather indicate the overall performance of the scheduling system in the limit,
if the restrictive assumptions are applied in practice. The analytical techniques are useful in

understanding the mechanics of the scheduling process (as per the assumptions) in the long

run, but do not provide the Job Shop with any useful schedule in the short run.

2.4.6 Extension of the Giffler and Thomson's Algorithm

The scheduling problem discussed in [Chang and Sullivan, 1990] involves
operations that can be performed on alternate machines with different operation processing
times, and therefore involves both sequencing of operations as well as routing them. This
scheduling formulation is an extension of the Giffler and Thomson's scheduling algorithm.

A feasible schedule is defined as one where the machine must be available for an
assigned operation and that the start time of the next operation of the same job does not
begin before the earlier operation is completed. Global Left-shift is an operation that moves

an operation within the schedule so that it starts as early as possible without delaying other
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operations. An active schedule is a feasible schedule where no Global Left-shift is

possible.

The Giffler and Thomson algorithm generates all active schedules for a particular

Job Shop problem. The number of active schedules is extremely large, even for a small

scheduling problem. This paper proposes an extension of the Giffler and Thomson

algorithm that reduces the number of active schedules significantly. A search method is

then employed within the reduced schedule space to find an optimal or near optimal

schedule.

This approach works best for cases where the makespan or other performance

measures that require the active schedules. There may be instances, based on other

performance measures such as cost or quality, where the delay of a particular operation

may be beneficial. By eliminating all non-active schedules, this approach may not result in

good schedules for multi-criteria scheduling.

2.5 Other Approaches

This subsection explores job shop scheduling methods that have been reported in

the literature and cannot be classified into the previous four categories. Two such

approaches will be discussed in this subsection.

The first approach deals with the problems of dynamic scheduling and integration

of a job shop and its environment [Sun and Lin, 1994]. A dynamic scheduling framework

is presented in which dynamic scheduling is carried out through a series of static backward

scheduling problems.

The backward approach is a common methodology being practiced in the field of

production planning and control. MRP systems carry out backward scheduling to

determine the order release times. JIT systems use the backward approach in the sense that

the operations are controlled by the signals from downstream workstations [Sun and Lin,

1994].

The framework facilitates the integration by establishing the relationship between

scheduling, due-date assignment and job release times through backward scheduling.
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When a job shop scheduling problem is presented as a backward scheduling problem, due

date performance improvement and inventory cost reduction, can be represented in a more

straightforward way [Sun and Lin, 1994].

The jobs' finishing times in a backward schedule are the times when the jobs

actually start their first operations in the forward time frame. In backward scheduling, if

the jobs' available times are set to be the backward times corresponding to their due-dates

in the forward time frame, the jobs' backward finishing times in the resulting backward

schedule will become the latest forward release times of jobs in the forward time frame,

i.e., if the jobs are actually released to the shop floor by those latest release times, all due-

dates can be met. As a result, the jobs' finishing times in a backward schedule can be

conveniently used to control the jobs' actual release times [Sun and Lin, 1994].

In the second approach [Chu et al, 1992], the spatial splitting up approach, in

which the job shop is split into several small and almost independent job shops (also

referred to as subsystems) is considered. The initial scheduling problem is then replaced

by a set of smaller scheduling subproblems.

The splitting up approach reported in the literature, aims at partitioning the set of

machines into a set of subsystems, the set of parts into a set of part families and,

simultaneously, at establishing a one-to-one relationship between the set of subsystems and

the set of part families in order to maximize the number of operations performed on the

parts outside the related subsystem [Chu et al, 1992].

When none of the operations on the parts is performed outside the related

subsystems (i.e. when there is no traffic between the subsystems) the partition of the

machines is said to be perfect. In that particular case, every job is manufactured using only

one subsystem. Thus the optimal schedule of the entire problem is the concatenation of the

optimal schedules of the subsystems. In general, however, some of the jobs have to visit

machines belonging to different subsystems. A heuristic algorithm is developed to manage

such links between subsystems [Chu et al, 1992].
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2.6 Research Framework

To illustrate the usefulness of the methods developed in this thesis, these methods

will be applied to two static problems that are often cited as testbeds in the literature, viz,

the Muth and Thompson 6x6 and lOxlo problems [Muth and Thomson, 1963]. The

following framework was developed for the scheduling problem:

1 Check for available machines.

2 Check for operations that can be assigned to the available machines.

3 Form alternatives that assign available operations to available machines.

4 Evaluate these alternatives (using one of the two methods developed in this

research).

5 Implement the best alternative.

6 Goto step 1, if all the operations are not assigned.

This framework is generic and will also be applied to a dynamic scheduling

problem where machines are liable to breakdown and job arrivals are random. The arrival

of jobs and machine breakdowns could be assimilated into the framework described above

and this will be discussed in greater detail in Chapter 5.

2.7 An Approach for Comparison

Based on the survey presented in this Chapter, we have seen the reasons for the

choice of dispatch rules in the industry. To summarize, dispatch rules are popular, because

they are easy to use and implement on any shop floor. The shortcomings of dispatch rules

are that there is no one single universal rule for all requirements and that dispatch rules do

not make use of the information that is available on the shop floor to improve on the

schedule quality.

We have also seen that because of the shortcomings in dispatching rules and the

advances in computer technology, research in dispatching rules has continued to grow and

the current trends in this research are to develop dynamic rules [Raghu and Rajendran,

1993] or to combine two or more simple dispatching rules into a single composite rule

[Anderson and Nyirendra, 1990]. Whilst these approaches have made improvements over

the simple dispatching rules, these new rules still suffer the same disadvantage as dispatch

46



rules, perhaps to a lesser degree. These rules were developed with specific performance

measures in mind. If these performance measures were not the ones that a scheduler may

be interested in, than these new rules become ineffective.

The concept of combining simple rules into a composite one is a very attractive one.

In order to apply this concept to a general job shop environment, the mechanism of

combining dispatching rules must be flexible. One such flexible approach to combining

dispatching rules was discussed in the Fuzzy Logic Approach [Grabot and Geneste, 1994].

The Fuzzy Logic Approach is a good approach to use as a basis of comparison of

the performances of the scheduling strategies that are being proposed in this thesis for the

following reasons:

* First, the Fuzzy Logic Approach uses dispatch rules. This is the inherent bias of

industries towards dispatching. One of the aims of this thesis is to show that the

methods develop in this thesis are a better alternative to dispatching rules.

* Second, it embodies the trends of current research in job shop scheduling.

* Third, it is a dynamic rule and is also flexible in accommodating various

performance measures, just like the approaches that will be developed in this thesis

and a fair and equitable comparison of these approaches can therefore be made.

* Finally, the prime objective of this thesis is to develop job shop scheduling methods

that would work in a dynamic environment. The Fuzzy Logic Approach is also an

approach that is well suited for the real dynamic job shop environment.

The initial process of the Fuzzy Logic Scheduling Approach is to identify the

decision making criteria. For example, in [Grabot and Geneste, 1994], the decision

making criteria were the processing times of the operation and the slack time of the job. In

the following discussion on the Fuzzy Logic Scheduling Approach, it will be assumed that

there are two decision making criteria, namely the processing time and the slack. These

criteria can be expanded to include any other decision making criteria that may be relevant

to the scheduling problem.
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To recapitulate, the scheduling problem as formulated using the Fuzzy Logic

Approach, is exactly the same problem as formulated using dispatching rules. That is, one

has to decide which of the operations that are pending at the job shop is the most suitable

one to be loaded on to the available resource. The same decision has to be continuously

applied, whenever a resource becomes available. The term alternative, is used to describe

each pending task that can be processed on the resource that has become available.

Therefore, at each decision point, one needs to compute the slack time of the jobs

that are pending at the resource and also the processing times of the operations. These

values are usually assumed known and their calculations are very trivial. The next step is

to normalize the processing times, and the slack of all the jobs that are pending at the

machine. Let the subscripts, 's' and 'p' denote variables associated with the slack time and

processing times respectively. The equations for computing the normalized slack and

processing times are

Csj =Zs - mins
max - mins (2.1)

C -= Zp - minp
Pi maxp - minp (2.2)

where the subscript j denotes the jth job pending at the machine, and max and min refer to

the maximum and minimum (slack or processing time) of all the jobs pending at the

machine.

Each of the decision variable is expressed using linguistic values contained in a set,

which will be termed the Process Term Set (PTS). For example, the PTS may include

linguistic values, such as [Mamdani et al, 1984],

{PTS} = {low (L), medium (M), high (H)} (2.3)

These linguistic values are represented by triangular membership functions, gPTS, in a

normalized universe of discourse, C = [0,1] (Figure 2.4). Note that there is no particular
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9PTS

Figure 2.4: Membership Functions of the Linguistic Values Contained in the PTS

Figure 2.5: Membership Functions of the Linguistic Values Contained in the ATS
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reason why the membership function has to be triangular, except that it makes the analysis

much simpler.

These decision variables expressed as linguistic values using fuzzy logic will be

mapped onto a set of action variables contained in the set, termed as the Action Term Set

(ATS). Like the PTS, the ATS is also expressed using the linguistic values that are

represented by triangular membership functions, ATS, in a normalized universe of

discourse, S = [0,1] (Figure 2.5). Once again the triangular membership functions were

used to make the analysis simpler. The ATS is simply the degree of suitability of loading

the job under consideration onto the available resource.

The next stage of the Fuzzy Logic Scheduling Approach requires the development

of decision rules. This is the process of transforming expert knowledge into coded

knowledge and through these decision rules, one can map the decision variables to the

action variable. The structure of a decision rule is

If { decision variable 1 is PTSi and decision variable 2 is PTSj} I THEN action variable is

ATSk

In our example the decision variables are slack and processing time, and the action

variable is scheduling suitability, one plausible set of decision rules is as summarized in

Figure 2.6. The partial matching attribute and the overlapping preconditions of the decision

rules, usually results in more than one decision rule being fired at any one time. This

situation is referred to as "fuzzy conflict" [Lee, 1990, and Qiao et al, 1992]. A

methodology, based on the Max-Min Compositional rule, may be used to choose the

precise suitability value for each job pending at an available resource.

To illustrate this methodology, assume that the normalized values of the slack and

processing time for a particular job were calculated to be 0.25 and 0.8 respectively (Figure

2.7). Using these values, the membership or truth values of each rule can be calculated

(only those rules that are fired and have non-zero truth values are shown in Figure 2.7).

The strength of each rule is the minimum of the truth values and is mapped onto the

membership function of the action variable (suitability). To determine the precise value of

the suitability, the centroid of the aggregate shape is used. The centroid is computed as

[Kosko, 1992].
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Figure 2.6: Fuzzy Decision Rules

X wiciIi

cent = 
E wiIi
i (2.4)

where Ii is the area of shape i, ci is the centroid of shape i and wi is the truth value

associated with the shape i. The choice of triangular membership functions makes the

computation of the area, centroid and truth values easy.

The Fuzzy Logic Scheduling Procedure may be summarized as follows:

A set of Fuzzy rules linking decision variables (in terms of linguistic

variables) to action variable (suitability, also expressed as linguistic

variables) must be developed a priori.
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Step I Each time a resource becomes available, compute the slack and processing

times of all the jobs that are pending at the resource. After which, normalize

the slack and processing times of each job.

Step 2 Using the normalized values for slack and processing times for each job,

apply the Max-Min Compositional rule and compute the fuzzy centroid of

the aggregated shape. The fuzzy centroid is the precise or crisp value of the

suitability of loading the job of interest on the available machine.

Step 3 Load the job on the resource that has the largest suitability value.

Step 4 Go back to step 1, if there are jobs pending at the job shop.
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Chapter 3
Job Shop Scheduling using Extreme Value Theory

In this chapter, a scheduling method based on Extreme Value Theory will be developed.

This method looks at the extrema of the distribution of feasible schedules to evaluate the

quality of candidate machine-job operation assignments. This method will be tested on the

Muth and Thompson 6x6 and lOxlO static job shop scheduling problems where the

performance measure is the makespan. The makespan obtained for these problems using

the Extreme Value approach will be compared with those obtained using some of the

common dispatching rules and the Fuzzy Logic approach (discussed in Chapter 2), which

may be considered as a representative of current scheduling approaches. The application of

the Extreme Value approach to dynamic job shop scheduling will be discussed in Chapter

5.

3.1 Introduction

Extreme Value Theory has been widely used to model the extremes of natural

phenomena and other rare events, such as in flood analysis [Smith, 1987], air quality

analysis [Chock and Sluchak, 1986], reliability analysis [Smith, 1986] and corrosion

analysis [Laycock et al, 1990]. In these applications the focus is not in the main body of

data, but rather in the probability distribution tails of the data [Guida and Longo, 1988]. A

number of techniques have been developed to predict the probability tails (which reflect the

occurrences of extrema) based on historical data [Castillo, 1988, and Gumbel, 1958].

Some of these techniques are used to develop a decision theoretic approach for solving job

shop scheduling problems. The author is not aware of any prior applications of Extreme

Value Theory to job shop scheduling problems. For the reader who may not be familiar

with Extreme Value Theory, Appendix A offers a brief overview of the main concepts

involved.
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In decision theoretic approaches, a decision point arises whenever one or more

production resources become available after completing previously assigned operations or

after repair. A resource can be any individual production unit such as a single machine, an

operator, or a manufacturing cell of machines grouped together with auxiliary devices (e.g.

robots). Resources can be grouped into work centers according to common manufacturing

functions. The decision to be made in each work center (at each decision point) is which of

the pending operations (operations that are ready to be performed) should be performed

next on each of the available resources. The partitioning of this decision making problem

into work centers renders it more computationally manageable while still allowing the

consideration of all feasible resource-operation assignments. A feasible decision alternative

is a list of resource-operation assignments in which the resources are the ones that are

available in a work center at the decision point and the operations are selected from those

pending at the work center at the decision point. For example, if two resources, R and R2

are available and three operations, T1, T2 and T3, are pending at a decision point, and

assuming that all operations can be performed on either of the two resources, then the six

possible alternatives are (Ri-TI, R2-T2), (Ril-T2, R2-Ti), (Ri-Ti, R2-T3), (Ril-T3, R2-

T 1), (Rl-T2, R2-T3) and (R -T3, R2-T2) (Figure 3.1). The schedule for the work center

can be generated by deciding on alternatives at consecutive decision points over time: the

schedule for an entire facility can be generated by combining the schedules of its constituent

work centers.

3.2 Mechanics

One simple approach to generate a schedule is to use a random procedure. In this

procedure, whenever a machine becomes available, a suitable operation (i.e. one that can be

performed on the available resource) is selected randomly and assigned from the list of

pending operations at the work center. In this manner, a schedule is obtained when all

operations are assigned to the machines. An expansion of this approach is to produce

several and the best schedule, as per some schedule measure (e.g. makespan), is then

implemented.

A similar procedure was the basis in the development of the scheduling approach

based on Extreme Value Theory. This procedure shall be referred to as SEVAT. Instead

of choosing operations randomly from queues, SEVAT uses a more systematic way of

generating the final schedule.
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The SEVAT method will be illustrated with the aid of a generic example (Figure
3.1), where there are 6 resources (R1, R2, R3, ... , R6) and 7 operations, (T1, T2, T3, ... ,

T7) that can be immediately assigned and are pending at the work center. Without the loss

of generality, let us assume that only resources R 1 and R2 are currently available and of the

pending operations, only operations T1, T2 and T3 can be assigned to the available
resources. Therefore, as per our discussion earlier, there are six possible alternatives (as
illustrated in Figure 3.1). The question then arises, "Which one of the six alternatives

should be implemented?" The SEVAT procedure addresses this question by evaluating the

potential of each of the alternatives.

The potential of an alternative is determined with the aid of simulation, by
generating random schedules that originate from that alternative. The generation of random

schedules could be

exhaustive.
In this case, the alternative under consideration is assigned to the available
resources in a simulation. This assignment will trigger the release of further

operations that can be immediately assigned into the workcenter. Since the
processing time of each operation-resource allocation is assumed to be known a

priori, the simulation can step through future decision points. At each of these
simulated future decision points, new alternatives are formed and one alternative is

randomly chosen and assigned, and this will further trigger other operations to be

released into the simulation. This form of random assignment is continued until no

more operations can be released and all operations are assigned. The total sum of

assignments in the simulation will constitute one random schedule and the quality of

this schedule is evaluated by some schedule measure (such as cost, workpiece

quality, flowtime or makespan). Several such random schedules are required to

evaluate the potential of an alternative.

partially exhaustive.
In this case, the schedules are generated by neglecting the release of further
operations in to the simulation. Only the operations that are currently pending at the

work center and that can be immediately assigned are considered in the simulation.

As soon as an alternative is assigned in the simulation, new alternatives are formed

from the remaining pending operations at the work center. At simulated future
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decision points. these alternatives are randomly assigned as before. A partial

schedule is generated when all the operations that are currently pending have been

assigned. Several of such partial schedules are required to evaluate the potential of

an alternative.

The mechanism in generating simulated random schedules for the two cases are

illustrated in Figure 3.2. The advantage of the partially exhaustive schedule is that it is

computationally less expensive than the exhaustive approach.

Figure 3.1: A Generic Scheduling Example
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Figure 3.2: (a) generation of random schedules using the exhaustive approach

(b) generation of random schedules using the partially exhaustive approach

Now, if the potential of each alternative is perfectly determined, the resulting final

schedule will be the optimal schedule. In practice, the potential cannot be perfectly

determined. However, it can be estimated by utilizing the information in the distribution of
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the quality of the simulated random schedules. The estimation procedure is based on the

principles of statistics and Extreme Value Theory.

The Extreme Value Theory uses observed extremes from samples to forecast the

extremes that are expected to occur in a future sample. The forecast is made based on the

assumption that the initial distribution from which the extremes have been drawn remain

constant from one sample to the next. Extreme value analysis is applicable to the tails of

the distribution. The tail data of a distribution can be obtained in two ways. In the classical

approach, sample extremes (maxima or minima) are used. In an approach proposed in

[Castillo, 1988], only data at the tails of the distribution are used. In this presentation, we

will limit ourselves to the classical approach.

The distribution of the tail can be described by several limit distributions (see

Appendix A). In a broad sense, extreme value analysis involves the estimation of the

parameters that describe the limit distribution [Guida and Longo, 1988, Hosking et al,

1985, and Csorgo and Mason, 1987]. The parameters could be estimated using two

approaches. The first approach involves using system identification techniques, such as

the maximum likelihood algorithm on the data. The other approach involves using

graphical techniques which are simple to implement and result in quick answers. Graphical

techniques involve plotting the probability against the extreme sample values of the random

variable. A simple parametric graphical estimation technique is to locate r points on a curve

visualized as passing through the data. The value of r corresponds to the number of

unknowns [Bardsley, 1989, and Arnell et al, 1986]. Substituting the parameter estimates

into the cumulative density function, gives a curve that passes through the specified points.

Consider an independent and identically distributed random variable, X (in the

subsequent analysis, X is analogous to the quality of schedules). Assume that four

extremes (maxima or minima) are obtained from random samples of size y, which are

drawn from X and are ranked in ascending order, i.e., xl<x2<x3<x4. The probability of a

value of X in the next draw from a sample of size y, being smaller than xl, i.e. P(X<xl) is

1/5. Similarly one can show that P(X<x2)=2/5, P(X<x3)=3/5, P(X<x4)=4/5 and

P(X>x4)=1/5. In general, if n extremes of an independent and identically distributed

random variable is drawn from samples of size y, then P(X<xm)=m/n+1 and

P(X>xm)=(n+1-m)/n+1, where m is the rank of the extreme drawn from X.
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In production scheduling, one is generally interested in the extremes. Consider the

case where the minimum value of X (e.g. cost) is of interest (the procedure described

below can be easily modified to accommodate the case where the maximum solution is of

interest).

As mentioned earlier, the distribution of the tails can be described by several limit

distributions. Of these, the Gumbel distribution is the simplest and is used in the analysis

described below. The Extreme Value Analysis basically consists of the following three

steps:

Step 1: Rank the extremes. Plot the probability, p, against the ranked extremes.

An example of such a plot is given in Figure 3.3. The probability is given

as,
p-m

Pn+l (3.1)

where m = rank of extreme

n = the number of extremes in the analysis.

Step 2: Transform the plot of Step 1 into a straight line using the Gumbel model.

This involves transforming the probability using two logarithmic functions,

as described in Eqn. 3.2. The example plot of Step 1 (Figure 3.3) is

transformed using the Gumbel model and is presented in Figure 3.4.

log(-log( 1-p)) (3.2)

Step 3: Use the straight line of Step 2 to answer one of the following two questions:

i how many additional drawings of X are required such that the
minimum value of xl is reduced by an amount A ?

The number of additional drawings is obtained by using the

estimated line to predict the ordinate value P*A, for an abscissa
value of xl-A (Figure 3.5). The ordinate value is then transformed

back to the probability, PA, using the Gumbel model, where
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PA = I - e- c - (33)

The number of additional drawings required is then computed from

the estimated probability,

PA = P(X<x I-A) = /(ax+n+l) (3.4)

where a is the additional number of drawings required for the

minimum value of x l to be reduced to x -A.

what is the minimum value of X, if the total possible outcomes of X

are finite?

Similarly, the minimum value of X could also be estimated. The

probability of achieving the minimum value of X, Pmin, may be

computed based on the number extremes (Eqn. 3.1). This

probability is transformed using Eqn 3.2 to yield P*min. Using

P*min and the straight line of Step 2, an estimate of the minimum

value of X is obtained (Figure 3.5).

Figure 3.3: Plot of probability versus value of random variable X
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The termination of the SEVAT procedure depends on the available computational

resources. We have assumed that the computational resources required for the evaluation

of a single alternative (a single drawing from X) is known. Based on this assumption, the

resources required to evaluate the additional number of drawings to improve the current
solution by A, is computed. We have also assumed that the decision maker is influenced

by a preference curve that determines the percentage of available resources that he/she is

willing to expend for an expected improvement in the quality of the solution. For the

purposes of our analysis, we have assumed that the preference function is linear (or risk

neutral). To construct the preference function, we require the decision maker to state the
value of the solution that he expects to obtain if he were to expend all his computational

resources. The preference curve (or line) is then obtained as shown in Figure 3.6. We

could also superimpose on this plot the estimated curve representing the variation in the

improvement of the solution with computational resources. The intersection of these two

plots indicates the point beyond which additional sampling would not be desirable. To the

left of this point, the improvement in the solution is larger than the assumed preference of

the decision maker and therefore further sampling should continue. To the right of the

intersection point, the expected improvement in the solution is smaller than the desired

improvement of the decision maker and this indicates that further sampling should be

discontinued.

log(-log(l-p))

a

xn
value of X

Figure 3.4: The plot of Figure 3.3 is fitted to a Gumbel distribution
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log(-log(1-p

Figure 3.5: Predicting the i) the additional number of drawings required to reduce the

minimum value by an amount A and ii) the minimum value of X

3.3 A Job Shop Problem

To illustrate the usefulness of the SEVAT procedure, this procedure is applied to

standard testbed problems, commonly cited in the literature. These problems are referred to

as the Muth and Thompson 6x6 and lOx O problems. The 6x6 problem is a static problem

in which the job shop has 6 machines and initially (at time=O), 6 jobs are pending at the job

shop. Each job has 6 operations, and each operation can be processed by a single machine

only. The precedence constraints, machine-operation requirements and the processing time

for each operation are summarized in Figures B. 1 and B.2 in Appendix B. Similarly, the

1Ox 10 problem involves 10 machines, and has 10 jobs pending initially at the job shop,

and each job has 10 operations. The relevant data for the 1Ox 10 problem are summarized

in Figures B.3 and B.4 in Appendix B.
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Figure 3.6: Decision Maker's trade-off between computational

resources and quality of solution

The following are more specific assumptions regarding the Job Shop problem.

* There are N jobs, each with multiple operations that are available for

processing at the start of the schedule (i.e. at time zero).

* Each resource is assumed to be operational at all times, i.e., delays such as

resource breakdowns will be neglected.

* The setup times for all operations are not dependant on the sequence of the

jobs and are assumed included in the processing time of the operation.

* Each operation can be performed on one or several alternative resources.

* Once a operation is performed on a resource, that operation must be

completed before the next operation is to be performed.
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Non-delay: no resource is deliberately kept idle in the presence of a waiting

operation.

As stated earlier, a decision point occurs when a resource or several resources

becomes available. An alternative at a decision point is the possible assignment of pending

operations to the available resources. Typically, there are usually a large number of

pending operations and available resources, in which case, the number of alternatives

becomes extremely large. For example, in the hypothetical case where there are 20 pending

operations and 10 available resources, and assuming that all the operations can be

performed on all the resources, then there are 6.7x 10l , (20!/(20-10)!) alternatives. In the

general case, however, not all the pending operations can be performed on all the

machines, and therefore the number of alternatives calculated above would be an upper

bound. Nevertheless, the number of alternatives grow exponentially as the number of

pending operations increase.

The evaluation of all possible alternatives in a decision theoretic framework, will

therefore become computationally burdensome. Since, the objective of the scheduling

strategy is not to seek the optimal schedule, but rather to seek a "good" schedule, the

evaluation of all the possible alternatives at a decision point is therefore not necessary. An

alternative approach, would be to adopt a "simple random sampling" strategy. In this

strategy, unbiased samples are drawn from the population of alternatives at each decision

point. The question then arises, "How many alternatives should one draw at each decision

point?".

An approximate answer to this question is obtained by incorporating the extreme

value analysis into the alternative selection process. This process requires the estimation of

the "potential" of an alternative (Figure 3.7) and begins by randomly sampling a small

number of alternatives, say 10. The potential of these alternatives are estimated (the

estimation process will be discussed later). Using these potential values, the alternatives

are ranked and the extreme value analysis is applied to the ranked data. The further number

of sample alternatives expected to improve the "current best" alternative's potential by say

10% is estimated from extreme value analysis. If the number of further alternatives

required is larger than a preset limit, then, the process will terminate as adequate

alternatives have been sampled. The preset limit can be varied according to the

computational time that is available. If the number of further alternatives required is smaller
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than the preset limit, these additional alternatives are drawn from the population of

alternatives and the process as described earlier is continued (Figure 3.7).

The next part of the problem is to examine how the potential of the alternatives

should be estimated. Once again, extreme value analysis could be used for this purpose

and the process is described in Figure 3.8.

At the current decision point. the alternative whose potential is to be estimated, is

tentatively assigned to the available resources. The scheduling process is simulated, and at

each future decision point in the simulation, new alternatives are formed based on the

pending operations and the available resources. One of these alternatives is randomly

assigned to available resources. As discussed earlier, one could allow the simulation to

progress until a complete schedule of all currently pending jobs and their respective

operations are assigned to the resources (exhaustive schedule). Alternatively, one can

generate a partially exhaustive schedule in which the simulation is progressed without

triggering further release of operations into the work center, and generating a schedule until

all the currently pending operations at the work center have been assigned. The

performance of the randomly simulated schedule (be it exhaustive or partially exhaustive) is

calculated and this calculation depends on the performance measures of interest, i.e,

tardiness, quality, cost or flowtime.

Several such random schedules, say 100, are generated and divided into groups of

say, size 10. The schedule with the best performance from each group is identified and

Extreme Value Analysis is applied to these performance values. From the Extreme Value

Analysis, one can estimate the expected performance measure, assuming that the number of

random schedules generated were doubled. This expected performance measure is the

potential of the alternative.

The overall scheduling strategy using Extreme Value Analysis is summarized in

Figure 3.9. The strategy may be viewed as having two decision loops. In the outer loop,

Extreme Value Analysis is used to ensure adequate alternatives are sampled and in the inner

loop, Extreme Value Analysis is used to evaluate the potential of each alternative.
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Apply Extreme Value Analysis to the alternatives
and compute the expected number of further
alternatives required to improve the "best"

alternative potential by, say 10%.

I

Is me expectea
No / number of further

alternatives much 
larger than some

rset liit

Yes

Terminate.
Sampling of alternatives

is adequate.

Figure 3.7: Summary of the Alternatives selection process
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Figure 3.8: Estimation of the Potential of an Alternative
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Figure 3.9: The "Dual-loop" Extreme Value Scheduling Approach
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3.4 Results and Discussion

The Muth and Thompson 6x6 and lOxlO static job shop scheduling problems

require the minimization of the makespan performance measure. The makespans obtained

using the SEVAT procedure, some common dispatching rules (such as the Shortest

Processing Time (SPT), Longest Processing Time (LPT), First In First Out (FIFO), Last

In Last Out (LIFO) and the Random rule) and the Fuzzy Logic Approach discussed in

Chapter 2, are summarized below in Figure 3.10.

Figure 3.10: Makespans obtained for the Muth and Thompson 6x6

and lOx 10O static job shop scheduling problems

The optimal makespan for the 6x6 and lOx o10 problems are 55 and 930 respectively

[Vancheeswaran and Townsend, 1993]. The makespans obtained using the SEVAT

procedure compares favorably with other approaches cited in [Vancheeswaran and

Townsend, 1993].

The Muth and Thompson 6x6 and lOx 10 job shop scheduling problems require the

minimization of the makespan performance measure, and as such do not require multiple

criteria decision making. Multiple criteria could be incorporated in the decision making

process by normalizing the performance measures and obtaining the weighted sum of these

normalized values (also known as the utility). For example, let us assume that the

performance measures of interest are, namely, cost and quality. Since minimization of cost

and maximization of quality is desired, the normalization of these performance measures

will be different. A simple linear normalization could be used as described below:
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Makespan Makespan
Method (6x6 problem) (10xlO problem)
Optimal 55 930
SEVAT 57 988
SPT 88 1074
LPT 67 1197
FIFO 74 1259
LIFO 72 1223
Random 60 1106
Fuzzy 71 1134



1 Cost - minimum Cost
* Cost: maximum Cost - minimum Cost (3.5)

Quality - minimum Quality

* Quality: maximum Quality - minimum Quality (3.6)

The maximum Cost and Quality and the minimum Cost and Quality are obtained from the
random samples at each decision point. The utility of an alternative is calculated as follows:

utility = (Normalized Cost * Weight of Cost)

+ (Normalized Quality *Weight of Quality). (3.7)

The Weights of Cost and Quality are values that range from 0 to 1.0 and the sum of these

weights must add to 1.0.
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Chapter 4
Job Shop Scheduling Using Genetic Algorithms

In this chapter, an artificial search method that mimics the natural evolution of organisms,

namely Genetic Algorithms, will be discussed and developed to solve job shop scheduling

problems. Unlike the schedule building approach of the SEVAT procedure described in

Chapter 3, this method is a schedule permutation approach. Feasible candidate schedules

are usually generated randomly and then permutated to produce a "good" schedule. A brief

survey of previous Genetic Algorithms approaches to scheduling will be presented

followed by a short discussion on premature convergence. As in Chapter 3, this method

will be applied to the Muth and Thompson benchmark problems and the results compared

with some common dispatching rules and the Fuzzy Logic approach described in Chapter

2. The application of the Genetic Algorithms approach to dynamic job shop scheduling

will be explored in Chapter 5.

4.1 Introduction

The basic idea behind Genetic Algorithms is to produce a pool of solutions, from

which the worst solutions are eliminated and the rest are modified. This process of

elimination and modification continues until a good solution is obtained.

The search of a complex solution space involves the tradeoff between exploiting

good solutions and exploring the search space. Genetic Algorithms has been said to strike

a balance between exploration and exploitation. The basic assumption of Genetic

Algorithms is that the best solutions will be found in regions of the search space containing

relatively high proportions of good solutions and that these regions can be identified by
robust sampling of the search space [Booker, 1987]. However Genetic Algorithms has

also been criticized for rapidly locating the region in the search space where the global

optimum resides, but does not locate the optimum with similar speed [De Jong, 1992].
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Genetic Algorithms mimic population genetics and assume the following:

Individuals (also referred to as chromosomes or genotypes) are fixed length strings

having finite number of possible values or alleles at each position.

A population contains a finite number of individuals.

Each individual has a fitness.

The general mechanics of Genetic Algorithms is described in Figure 4.1. The

process begins with the random generation of individuals that form the population. At each

iteration, the fitness value of each individual in the population is evaluated. The fitness

value is usually the value of the objective function to be "optimized". A genetic operator

termed "Reproduction", then stochastically reproduces members of the current population

according to their relative fitness values. Variation to the chromosomes are realised by two

other genetic operators, viz, "Crossover" and "Mutation". The resulting chromosomes

replace the chromosomes of the previous population to yield the next generation and the

above procedure is repeated iteratively, and newer generations are reproduced. The driving

force behind Genetic Algorithms, is the reproduction of individuals in proportion to fitness

together with the crossover operator. The mutation operator is only a background operator

that guarantees that no allele will be permanently lost from the population [Booker, 1987].

Termination of the iterative process of the Genetic Algorithms occurs when a maximum

number of iterations have been reached or when there is no significant improvement in the

fitness of the population in successive generations.

The implementation of Genetic Algorithms depends on several
parameters/operators. The most preferable values for these parameters/operators has been

attempted through the use of another Genetic Algorithms, by defining 19 components

[Freisleben and Hartfelder, 1993]. On further inspection, these 19 components can be

broadly classified into the following parameters/operators [Prinetto et al, 1993]:

* Coding Strategy

* Population

* Crossover
* Mutation

* Parents Selection

* Local Improvement
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Figure 4.1: A Generic Genetic Algorithm

4.1.1 Coding Strategy

Usually the most difficult task in applying Genetic Algorithms to any problem is to

represent the solutions as fixed length strings. In the case of job shop scheduling, the

representation of schedules is usually achieved through the use of binary strings. Binary

strings for Genetic Algorithms was thought to be a maximally simple representation - that it

maximizes the schemata sampled per individual of a population. This has been shown to

be not true. Expressive representations provide a more powerful apparatus for adaptation

[Antonisse, 1989].

The choice of binary representation for schedules allow for the use of the traditional

crossover and mutation operators. However, the representation of the schedule itself

becomes complex. For example, in [Nakano and Yamada, 1991], the schedule is
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represented as a bit vector for every job pair. Each bit in the vector compares an operation

of one job to the operation of the other job for each of the machines in the job shop. A

value '1' is assigned if the operation of the first job is performed prior to the operation of

the second job, and a '0' otherwise. This kind of representation requires MN(N- 1)/2 bits

for N jobs and M machines. Therefore for a reasonable sized problem of 100 jobs and 20

machines, this will require 99000 bits and this form of representation grows exponentially

with the number of jobs. This kind of representation also implicitly assumes that the job

routings are completely fixed and does not accommodate alternate job routings.

In addition to making the representation complex, the binary representation of

schedules also creates another problem. Since the precedence constraints have to be

observed in a job shop schedule, the use of traditional crossover and mutation operators

result in schedules that violate the precedence constraints. Therefore, to satisfy the

precedence constraints, an additional operator is required that makes 'illegal' schedules

(schedules that violate the precedence constraints after the crossover and mutation

operations) legal.

On the other hand, the choice of a more expressive schedule representation

(symbolic representation), makes the representation direct and simple. However, new

crossover and mutation operators that are usually problem specific, have to be designed.

Once these operators are designed, there is no need for an additional operator to ensure that

schedules are legal. In this thesis, the symbolic representation of schedules will be

adopted.

4.1.2 Population

Any implementation of the Genetic Algorithms must be careful that the initial

population contains an adequate pool of alleles for each position. It might be equally

important that there be an adequate initial pool of schemata. If the initial distribution of

points does not uniformly sample the space, crossover may never get the opportunity to

direct the search into unrepresented regions. The commonly used random number

generators are very poor when it comes to distributing samples randomly in more than one

dimension. Random number generators having this capability are very expensive

computationally. A good compromise is to produce initial populations as usual, then

subject them to repeated crossing over with uniform random pairing. If this is done to the
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point of stochastic equilibrium, we can be assured that the initial pool of schemata will be

as robust as possible [Booker, 1987].

The population is often chosen in the range of 20 to 100. Very small populations

cannot establish or maintain sufficient diversity, while in the large population good strings

may get swamped by numerous inferior strings, or close copies of themselves. Similarly,

while the mutation rate should be sufficient to prevent stagnation in the population, it must

still be low enough that the propagation of schemata is not unduly hindered [Cartwright and

Mott, 1991].

4.1.3 Crossover

Crossover is the mechanism through which promising schemata ('genetic material')

of the good individuals are propagated through the generations of individuals. The

traditional crossover operator is described as in Figure 4.2. In this operator, two parents

produce two offsprings. A random point is selected in the individual and the two parents

are dissected at this point. Either the preceding or the trailing segments of the dissected

individual are interchanged.

Traditional crossover as defined in Figure 4.2, may not always work for all

problems. Usually, crossover operators are designed for specific problems. For example,

in a textile machinery scheduling problem [Filipic, 1992], only one offspring is produced

for every two mating parents. The crossing sites are selected in the same way as with

multiple-point crossover, and one of the parents is selected to play a more dominant role

during mating. The alternate sections of the genes are copied directly from the dominant

parent to the offspring. The genes that are to be contributed by the other parent is checked

in turn for consistency. If the gene value keeps the partially built schedule legal, it is

passed on to the offspring, otherwise it is randomly altered to make the partially built

schedule legal. This approach of randomly selecting gene values also acts as the mutation

operator.

Several crossover operators are discussed in [Cleveland and Smith, 1989]. These

operators were designed for the sector scheduling problem, which refers to the automated

subcomponent of an actual computer board assembly and test facility. These operators can

also be used in job shop scheduling. Some of these crossover operators are:
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Figure 4.2: The Traditional Crossover Operator

The PMX crossover operator ensures legality of the solutions it produces by

choosing an interval on each of the solutions, swapping the intervals (probably

creating an illegal solution), and then mapping the selected intervals within each

solution (restoring the legality of each).

The subtour-swap operator, works by alternately selecting segments from the two

parent solutions and incorporating those into the offspring solutions.

The subtour-chunking operator works by selecting chunks in as much the same

way as segments are selected by the subtour-swap operator. In this case, however,

the chunks are placed in the child solution in approximately the same position that

they occupied in the parent solutions. Conflicts are resolved by trimming the

chunks and sliding them to the right and left to make them fit.
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Parent A: 9 8 4 5 6 7 1

Parent B: 8 7 1 2 3 10 9

Offspring A: 9

Offspring B: 8

8 4 2 3 10 1

10 1 5 6 7 9

3 2 10

546

657

The randomly chosen segment
is interchanged between the parents
and the resulting schedule is then
modified to make the schedule
legal

243

Figure 4.3: The PMX crossover operator

Parent A: 9 4 3268 715 0 Segments are selected from each of
the parents and are alternatively

Parent B: 3 5 8 7 0 4 6 9 2 1 concatenated to form the offspring. If
conflicts occur, then replace the

/ I I ~~conflicting allele with a random value,
Offspring 3267104such that the offspring is legal.

Offspring: 13 2 6117 10 41

Figure 4.4: The Subtour-Swap operator

Parent A: 9 4 3 2 6 8 7 5 0 Chunks are altemrnatively selected from
each parents. These chunks are placed

Parent B: 3 5 8 1046 9 2 l in the child, at positions close to where
Pa.entB 3 5 they were found in the parents. In cases

of conflict, the conflicting alleles are
Offspring: 9 310 4 6 8 7 1 5 2 trimmed.

Figure 4.5: The Subtour-Chunk operator

Parent A: 9 8 4 5 6 7 1 3 2 101 Similar segments are identified in both
parents and these segments are then

Parent B: 8 7 1 2 3 1 5 4 6 swapped.

OffspringA: 9 8 4 6 1 2 3 10 I

OffspringB: 817 1 3 2 10 9 5 4 6

Figure 4.6: The Subtour-Replace Operator
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The subtour-replace operator examines the two solutions to be crossed for similarly

located subsequences that have the same elements (and length of at least two).

When two such subsequences are found, in the respective parents, they replace

each other in the solutions.

The weighted chunking operator is exactly like the subtour-chunking operator, but

it also incorporates a bit of domain knowledge - e.g. due dates. When two chunks

collide in the child, one of the chunks is moved around the other and this decision is

made according to the due dates.

Parent A: 9 4 3 2 6 8 7 1[ 5 10 same as the subtour - chunking
Parent B: 3 5 8 7 10 4 6 9 2 1 operator. Domain knowledge,

such as due dates, are used in
Ofpn 93 2 7_ the decision of placing the chunks.Offspring: 9 3 526 1 l0 4I

Figure 4.7: The Weighted Chunking Operator

The one-point, two-point and uniform crossover operators are often referred to in

the literature. These crossover operators can be distinguished by using the crossover mask

[Syswerda, 1989], which consists of a string of bits, the same size as the chromosomes to

be crossed. The parity of each bit in the mask determines, for each corresponding bit in a

child, which parent it will receive that bit from. The mask-based crossover operations are

the same for each of the three different crossover operators: The difference lies in the

masks. Each type of crossover mask has a characteristic pattern (Figure 4.8)

Figure 4.8: Crossover masks for various crossover operators.

The 1-bits in the masks for the one-point and two-point crossovers are contiguous. With

Uniform crossover, the 1-bits are uniformly distributed throughout the chromosome,

occuring at each position with a chance of 0.5.
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Another crossover operator, the order crossover, is described in [Braun, 1990].

The order crossover operator involves two parents to produce an offspring. A crossover

point is randomly chosen and the first parent string is divided into two substrings. The

elements of the second substring of the first parent are removed from the second parent

string. The concatenation of the first substring of the first parent and the remaining

substring of the second parent constitutes the offspring.

The order crossover operator was modified to produce a more general order

crossover operator. The first parent is again divided into two substrings, except now, the

crossover point is restricted to occur much closer to the starting point of the parent string.

The first substring like before is appended to the offspring and elements of the first

substring are removed from both parents. Next the procedure is repeated with the second

parent (divided into 2 substrings and the first substring is appended to the offspring and

elements of the substring are also removed from both parents). Substrings from the two

parents are alternatively extracted and appended to the offspring. This process is repeated

until the offspring is created.

Multi-point crossover has been reported in the literature to be very disruptive.

However, computational experiments show that for very small populations, the use of

uniform crossover is advantageous, whereas with larger population sizes, the 2-point

crossover approach is more advantageous than uniform crossover [De Jong and Spears,

1989].

4.1.4 Mutation

Mutation is the mechanism in which untried schemata or schemata that have been

lost due to the crossover operation are introduced into the population. This genetic

operation ensures that newer search areas are introduced into the search process.

Traditional mutation using the binary representation involves simply swapping the binary

genome to its complementary value, i.e. changing a '1' to a '' and vice versa.

Like crossover, mutation operators usually become problem-specific if the symbolic

representation of individuals is adopted. The mutation operator is not applied to every

individual in a generation. The mutation operation is made to occur very rarely in a

81



population. The mutation rate of individuals are usually assumed constant over

generations. Varying mutation rates over generations and/or across the gene representation

of the individuals was found to improve the performance in a Genetic Algorithms

application of minimizing the stackloss over a range of industrial burners [Fogarty, 1989].

The optimal mutation rate is proportional to the chromosome. Search by mutation

and crossover are complementary. The probability that mutation will give better individuals

decreases with the number of alleles that are correct, whereas, the probability that crossover

produces a better individual increases with the number of correct alleles [Muhlenbein,

1992].

4.1.5 Parents Selection

This section refers to the mechanism of reproduction. Most Genetic Algorithms use

proportionate selection as a reproduction strategy. In this strategy, the darwinian notion of

'survival of the fittest' is strictly adhered to. Each individual in the population is given a

chance of representing itself in the next generation. However, the probability of its

representation is proportional to its fitness and one individual may be represented more than

once in the next generation. This selection strategy is sometimes also referred to as the

'roulette wheel' strategy.

Some other selection strategies that are commonly used in Genetic Algorithms are

are [Thierens and Goldberg, 1994]:

Tournament Selection

A set of individuals are randomly chosen and the best is picked for reproduction.

The number of individuals in the set is usually two but larger tournament sizes can

be used to increase the selection pressure.

Truncation Selection

This is also know as block selection. All individuals are ranked according to their

fitness and the best are selected as parents. A threshold, T, is defined such that T%

best individuals are selected.
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Elitist Recombination

In this selection strategy, the selection and recombination phases are intertwined.

Competition for survival takes place at the level of each family - the mating parents

and their offsprings. For every mating pair, two offsprings are created and the best

two of these four individuals go to the next generation, so individuals can only be

replaced by other individuals with a higher fitness value.

When all the parents are deleted from the pool, and replaced by the offsprings, this is

known as generational replacement [Polant, 1992].

In the discussion so far, we had assumed that the genetic operators are applied to

the entire population. Two other models, viz, the island model and the neighbourhood

model, are also commonly used in Genetic Algorithms [Muhlenbein, 1989]. In the island

model, subpopulations are isolated. and sometimes immigrants from the other islands

arrive. In the neighbourhood model, isolation by distance is enforced. The

neighbourhoods of different individuals overlap and selection is performed only in the

neighbourhood.

One of the problems with fitness proportionate reproduction is the "scaling

problem". For example let us assume that the Genetic Algorithms is applied to a

maximization problem where the fitness varies between 100 and 1100 with an average of

550. The selective pressure toward the top ranked candidate would be 2.0 (1100/550). Let

us suppose that this is sufficient selective pressure and the search progresses and in the

later stages, the range of fitness may vary from 1000 to 1200 with an average of 1100.

Now the selective pressure is 1.09 (1200/1100), which may not be adequate and the search

may stagnate. The use of rank-based reproduction eliminates the "scaling problem." Other

parameters that affect the selective pressure include [Whitley, 1989]:

* population size

* crossover rate

* mutation rate

* generation gap

* scaling window

* selection strategy.
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The value returned by an evaluation function should not be considered as an "exact"

measure of fitness. The exact value returned can vary greatly depending on how the

function was implemented. Allocating reproduction according to rank prevents scaling

problems [Whitley, 1989].

4.1.6 Local Improvement

Genetic Algorithms have been labeled to be unsuited for fine tuning solutions that

are close to optimal. Local improvement operators, when added to the recombination

(crossover) operation, helps overcome the above mentioned shortcoming [Ulder et al,

1990]. The local search algorithm chosen for this purpose should be one that meets the

time capacity constraints. In the case of severe time restrictions, one can still use a

truncated version of the local search algorithm, such that it goes through only a small

number of iterations. Genetic Algorithms that incorporate heuristics about the problem into

the recombination operators (crossover and mutation) are also referred to a Heuristic

Genetic Algorithms [Jog et al, 1989].

4.2 Scheduling Using Genetic Algorithms

In this section, a brief survey of the attempts to apply Genetic Algorithms to

scheduling problems will be discussed. This literature survey is by no means exhaustive; it

is presented as a representative discussion of the various Genetic Algorithms strategies

adopted and reported in the literature. At the end of this section, a table summary of the

various Genetic Algorithms scheduling approaches is presented in terms of 4 dimensions,

viz, the problem investigated, individual representation, crossover operator and mutation

operator (Figure 4.9).

In [Mattfeld et al, 1994], the standard job shop problem is used to illustrate the

implementation of a Genetic Algorithms approach that mimics "social-behavior" patterns to

counter the problem of premature convergence. The standard job shop problem refers to a

static job shop scheduling problem where there are n jobs, each with m operations and

there are m machines in the job shop. The objective of the scheduling problem is to

sequence the various operations of the jobs to the machines so that the makespan is

minimized. The benchmarked, standard job shop problems in [Muth and Thompson,
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1963], viz, the lOxlO and the 20x5 problems were investigated (where nxm refers to n

jobs and m machines). The symbolic representation of individuals is used in this problem.

A gene or allele in this representation is a job and this allele is repeated m times (where m is

the number of operations and the number of machines in the workshop). The ith occurence

of an allele refers to the ith operation of the job. The crossover operator is the order-

crossover operator and mutation involves the position-based random change of alleles.

In [Tamaki and Nishikawa, 1992], Genetic Algorithms based on the

neighbourhood model is applied to a Job Shop scheduling problem. This problem differs

from the standard Job Shop problem in that the number of operations in a job, need not

necessarily equal the number of machines in the job shop. The performance measure of the

scheduling problem is makespan. The encoding of the individuals in the problem is done

with the aid of disjunctive graphs. An individual is represented as a binary string, where

the length equals the number of disjunctive arcs. The 2-point crossover operator, in which

an individual is split at two randomly selected points and its middle portion is swapped for

that of its mate, and the traditional mutation operator were used in this Genetic Algorithms

implementation.

In [Filipic, 1992], Genetic Algorithms were used to schedule 15 textile machines,

such that the total energy consumption of the machines were minimized. This problem also

includes constraints, such as, surcharge on excess power consumption and set-up times

required to initialize each job before loading onto the textile machines. The individuals

represent the schedules using symbolic representation. Each individual (schedule) is a

string of length N, where N is the total number of jobs to be executed and the value of the

ith string position denotes the set-up time of the ith job. A problem specific recombination

operator was designed that includes both the crossover and mutation aspects of Genetic

Algorithms.

In [Reeves and Karatza, 1993], Genetic Algorithms was applied to a dynamic

flowshop problem. In this problem, Genetic Algorithms was used to solve the successive

sequencing problem for those jobs that are available just before successive decision points.

The representation of individuals is symbolic and uses a sequence representation. In

addition, the parent selection was based on rank. A sequence based crossover operator and

an adaptive mutation rate was used in this problem.
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In [Husbands and Mill, 1991], Genetic Algorithms was used to 'optimize'

simultaneously, individual job process plans and the overall schedule. The Genetic

Algorithms model for this problem consists of several populations. The genotype of each

population is different and represents the solution to one of the subproblems. The fitness

of an individual takes into account the interactions with members of other populations and

the separate species co-evolve in a shared world. Possible conflicts, such as disputes over

shared resources are decided by a further co-evolving species, referred to as the

Arbitrators, and these evolve under pressure to make decisions that benefit the whole

ecosystem. Symbolic representation is used to model the individuals and the PMX

crossover operator is used. The mutation operator is a problem specific one.

In [Syswerda and Palmucci, 1991], Genetic Algorithms was used in a resource

scheduling problem, where equipment in a Navy research laboratory are to be scheduled

for use by various users. An individual in this problem is a string that consists of

permutations of tasks, and the symbolic representation is used. In this application of

Genetic Algorithms, the swap mutation (choose two positions in the individual and swap

the positions) operator and the position-based crossover operator are used.

In the Genetic Algorithms approach of [Yamada and Nakano, 1992], the

individuals are defined using the symbolic representation, using the operation completion

times of the jobs. The general Job Shop problem, using the Muth and Thompson testbed

problems, was the focus of this approach. The crossover operation is based on the Giffler

and Thompson's algorithm, which has the mutation operation built into it. The elitist

model of population propagation is used. In the crossover operation, two parents produce

two children. The best of the 4 individuals (2 parents and 2 children) is chosen to represent

in the next generation. The other representative in the next generation will be the better of

the two children or the other child if one was already chosen previously.

In the Job Shop problem of [Nakano and Yamada, 1991], the performance measure

investigated is the makespan and the Muth and Thompson benchmark scheduling problems

are used. The individual (also the schedule) is represented as a bit vector for every job

pair. Each bit in the vector compares an operation of one job to the operation on each of the

machines. A value of ' 1' is assigned if the operation of the first job is performed prior to
the operation of the second job, and '' otherwise. This kind of representation requires

MN(N-1)/2 bits for a N job and M machines problem. The binary representation was
chosen so that the conventional crossover and mutation operators could be used.
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However, an additional operation is required to make sure that the individuals that are

recombined (crossovered and mutated) are legal.

In [Bagchi et al, 1991 and Uckun et al, 1993], the performance measure

investigated is machine utilization. The representation of individuals was symbolic, and

uses the queue of job orders. The ordering of the individuals represents the scheduling

priority of the job orders. More sophistication to the representation is realized through

including the process plans and the machines required to process the jobs. The PMX,

order and position based crossover operators are used. Two mutation operators were also

used; the first is an order-based mutation operator and in the second mutation operator, a

job is randomly chosen and an alternative process plan is assigned to it.

In [Whitley et al, 1989], Genetic Algorithms were used to solve the Travelling

Salesman Problem and later extended to the Job Shop scheduling problem. In this

approach, a one at a time recombination strategy was adopted, i.e., the newly created

offspring replaces the lowest ranking individual, rather than a parent. In addition, the

reproductive trials are allocated according to rank of the individual in the population, rather

than according to proportionate fitness. The crossover operator used in this approach is

called the "edge recombination" operator that preserves edges. There was no specific

mutation operator (mutation was assumed in the recombination process). As for the job

shop scheduling problem, the approach assumes that once the first machine is sequenced,

then the remaining machines can be scheduled using simple rules. The schedule of the first

machine was treated as a Travelling Salesman Problem. A operator referred to as the

'scheduler' was developed that creates the final schedule of the job shop from the schedule

of the first machine. The fitness of the individuals (schedules of the first machine only)

was computed from the quality of the final schedules generated by the 'scheduler.'

In [Cleveland and Smith, 1989], the sector scheduling problem is investigated. The

sector scheduling problem refers to an automated subcomponent of an actual computer

board assembly and test facility. The overall facility is composed of sectors, each of which

resembles a flow line. The only control one has over the processing that takes place within

the sector is in determining the release times for jobs entering the first station. Once a job

has entered a sector, it automatically moves from station to station and jobs are processed at

each station in a first come first served manner. Individual representation was symbolic

and the generational replacement strategy was adopted. Recombination was performed
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Problem
Source (performance Representation Crossover Mutation

measure) of Individuals Operator Operator
Standard Job Postion based

[Mattfeld et Shop Problem Symbolic Order-crossover random change
al. 1994] (makespan) of alleles
[Tamaki Job Shop

and Problem binary 2-point crossover Traditional
Nishikawa, (makespan) Mutation

1992]
Textile

[Flipic, machines Symbolic A problem specific recombination
1992] (minimize operator was designed (includes

energy both crossover and mutation)
consumption)

[Reeves
and Dynamic Flow Symbolic Sequence based Adaptive

Karatza, Shop crossover Mutation rate
1993]1

Optimizing
[Husbands Process Plans Symbolic PMX crossover Problem
and Mill, and the overall specific

1991] schedule
[Syswerda Resource

and Scheduling of Symbolic Position based Swap mutation
Palmucci, Lab Equipment crossover

1991]
[Yamada Standard Job Crossover is based on the Giffler

and Shop Problem Symbolic and Thompson's Algorithm -
Nakano, (makespan) mutation is built in

1992]
[Nakano and Standard Job

Yamada, Shop Problem Binary Conventional Conventional
1991 ] (makespan) crossover Mutation

Order-based
[Bagchi et PMX, order and mutation and
al, 1991 Job Shop Symbolic position based swapping

and Uckun Problem crossover alternative
et al, 19931 operators process plans

Travelling Mutation was
[Whitley et Salesman Symbolic Edge assumed in the
al, 1989] Problem and Recombination crossover

the Job Shop operator
problem

Subtour replace,
subtour chunking,

[Cleveland Sector Symbolic subtour swap, No mutation
and Smith, Scheduling PMX and

1989] Problem weighted
chunking

[Kanet and
Sridharan, Scheduling Symbolic Problem Problem

1991] Problem Specific Specific

Figure 4.9: Summary of Genetic Algorithms application in Scheduling
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using 5 operators, viz, the subtour replace, subtour chunking, subtour swap, PMX and

weighted chunking operators. No mutation operation was discussed.

In the scheduling problem investigated by [Kanet and Sridharan, 1991], all the jobs

have a single operation. Each job has an arrival time, a nominal processing time and each

job can be processed on any one of several parallel non-identical machines. Exact

processing times are dependent on which machine the job is scheduled for. The

performance measure is cost. The Genetic Algorithms, in this problem was applied slightly

differently. A subset of the best schedules from the initial population is chosen to comprise

the mating pool. The schedules in the mating pool are then combined through a mating

process (problem specific crossover) to produce offsprings that together with the mating

pool comprise the next generation. The representation of the individuals is symbolic and

consists of an ordered list of unscheduled tasks. Mutation is performed by selecting a

member of the mating pool randomly and replacing it completely with this new randomly

generated schedule.

Figure 4.9, summarizes the application of Genetic Algorithms to scheduling

problems in terms of the problem investigated, the individual representation, crossover

operator and the mutation operator.

4.3 Premature Convergence

Premature convergence is the loss of population diversity before optimal or at least

satisfactory values have been found [Eshelman and Schaffer, 1991]. As proportions of

better schema increase in the population, the proportions of less desirable schema will

decrease. Eventually, the very best schemata and individuals occur in dominating

proportions and, in this sense, the search converges to a solution. This convergence

occurs prematurely, that is before the optimal solution is found [Booker, 1987].

Traditionally, the burden of diversity preservation as well as vigorous

recombination has been placed completely upon crossover, thereby forcing a tradeoff

between preservation and exploration. This tradeoff is not a serious constraint, provided a

very large population is used. Given a large population, it is unlikely that an individual will

be crossed over with a sibling or near ancestor, so it is very likely that the schemata from

any parent will be tested in a new context. When Genetic Algorithms are used for practical
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applications, the cost is measured in terms of total evaluations rather than generations, and

large populations become inefficient. When small populations are used, on the other hand,

operators that tend to preserve schemata, also cause rapid convergence [Eshelman and

Schaffer, 1991].

Although premature convergence can be easily avoided by an increase of the

mutation rate, a higher mutation rate, tends to break growth of the high performance

individuals as well as the poor ones [Tamaki and Nishikawa, 1992]. On the other hand, if

we restart populations when they converge, we may be able to keep the processing of

schemata high [Eshelman and Schaffer, 1991].

Strategies for maintaining population diversity can be be naturally grouped

according to where they occur in the Genetic Algorithms' reproduction-recombination-

replacement cycle [Eshelman and Schaffer, 1991]. The strategies for combating premature

convergence will be grouped as:

mating strategies

crossover strategies

population management strategies

other strategies

4.3.1 Mating Strategy

All other things being equal, children produced by crossover by diverse parents will

tend to be more diverse. An 'incest prevention' mechanism has been proposed as an

approach for preventing similar individuals from mating. Individuals are randomly paired

for mating and are only mated if their Hamming distance is above a certain threshold. The

threshold is initially set to the expected average Hamming distance of the initial population,

and then is allowed to drop as the population converges. Mating diverse individuals have

the side effect that more of the genetic schemata are disrupted by crossover, because fewer

of the schemata are shared [Eschelman and Schaffer, 1991].

Another variation of the idea of exploration versus exploitation is to view Genetic

Algorithms from the perspective of population diversity and selective pressure. Population

diversity and selective pressure are inversely related. Maintaining population diversity
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offsets the effect of increasing selective pressure and increasing selective pressure results in

a faster loss of population diversity. Many of the various parameters used to tune Genetic

Algorithms are indirect ways of affecting selective pressure and population diversity. As

selective pressure is increased, the search focuses on the top individuals in the population,

but because of this "exploitation," genetic diversity is lost. Reducing the selective

pressure, increases "exploration" because more genotypes and more schemata are involved

in the search. Selective pressure can be directly controlled by effecting reproduction

according to rank [Whitley, 1989].

Using rank allows the algorithm to maintain a relatively steady percent involvement.

There is some increased ability to discover good solutions, simply because the search is

never hampered by lack of alleles and continues longer. While the ranking method

prevents diversity from being lost too quickly, it does not allow allele proportions to

change when warranted [Booker, 1987].

By keeping the population sorted and performing selection on the basis of rank, a

constant selection differential is maintained between the best and the worst individuals in

the population. This slows down initial convergence to promising subspaces, and

increases the potential of finding the optimum solution in the final stages [De Jong, 1992].

Concepts from Taboo Search are also used in Genetic algorithms to prevent loss of

diversity in the population. The newly created individual itself can be considered to be

taboo, effectively forbidding it to reproduce until its taboo tenure has expired. This would

be an imitation of the natural process of maturation of an organism before reproduction can

occur [Reeves, 1993].

4.3.2 Crossover Strategy

The most straightforward method for making crossover more vigorous is to

increase the rate of crossover use. A more radical method for maintaining population

diversity is to use a more disruptive crossover operator, such as, uniform crossover

[Eshelman and Schaffer, 1991]. Uniform crossover is a technique that is best applied to

binary strings.
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Crossover is usually implemented by choosing one crossover point at random and

then exchanging segments between the two parent strings. Each application of the

crossover operator searches both familiar and unexplored regions of the search space. A

shortcoming of this form of crossover is that some of the schemata present in the parent

strings are "disrupted" and not transmitted to the offsprings. An immediate extension is to

use two random crossover points instead of one, which has been demonstrated to improve

performance and also enhance exploration [Booker, 1987].

Crossover becomes less effective over time as the strings in the population become

more similar. Consequently, it was speculated that the performance of the Genetic

Algorithms can be improved if crossover is constrained to always produce variations

wherever possible. More generally, for any two individuals, only the reduced substrings

containing non-matching alleles are considered. Crossover points are randomly selected

for these reduced strings, and then mapped back into the original strings [Booker, 1987].

Another aspect of crossover that can be beneficially manipulated is the frequency at

which it is applied. Most often, the crossover rate is kept fixed throughout the evolution.

Dynamic variation of the crossover rate may be beneficial. An entropy measure over the

entire population, is proposed in the literature. When this entropy measure increases, the

crossover rate is decreased and vice versa. The purpose for doing this is to go 'easy' with

crossover until the variation is absorbed; then introduce more variation by increasing the

crossover rate. This form of crossover rate variation has been shown to be beneficial with

classifier systems; however, their use with other applications has been questioned. The

reason being that entropy is a measure of diversity and by the time diversity has decreased,

it may be too late to halt or reverse premature convergence. A variable crossover rate is

analogous to the temperature parameter in simulated annealing [Booker, 1987].

The neighbourhood model for crossover is also proposed as a means of preventing

the loss of diversity in the population. The mates are chosen such that they are in the

neighbourhood. Therefore, the reproduction occurs locally in the neighbourhood. Even if

the fitness of an individual is relatively very high in the population, it can spread over the

succeeding populations only through an overlap of the neighbourhoods. This prohibits a

rapid increase of a relatively high performance individual and diversity in each population is

favourably maintained [Tamaki and Nishikawa, 1992].
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Another approach to preventing population diversity is to use the 'island model',

where several populations are each isolated on an island. These populations are optimized

by the Genetic Algorithms until they degenerate. The degeneration is then removed by

refreshing the population on each island through individuals of the other islands and the

evolution then continues [Braun, 1990].

4.3.3 Population Management Strategy

Duplicate checking is a strategy proposed to combat premature convergence. A

new individual is added to the population if it is not identical to any member that already

exists in the population. This strategy also has the side effect of disrupting more schemata

by crossover. This approach has a larger overhead in terms of computation than incest

prevention [Eschelman and Schaffer, 1991].

An approach, termed as the uniqueness value, has been suggested in the literature

that avoids premature convergence. The uniqueness value is defined as the minimum

Hanmming distance allowed between any offspring and all existing strings in the population.

Whenever a new individual is closer than this to an existing structure, the alleles values that

match are randomly changed in the offspring until the required distance is achieved. To

make sure the that Genetic Algorithms will eventually converge, the uniqueness value is

decreased as the search proceeds. There are two problems with the uniqueness approach.

Firstly, it becomes prohibitively expensive to implement when the population is large or

when the strings are long. The second problem is that by forcing the genetic algorithm to

sample the space robustly, parent strings are prevented from reliably transmitting good

schemata to their offspring [Booker, 1987].

Rapid convergence often occurs after an individual or small group of individuals

contribute a large number of offspring to the next generation. Since populations are finite,

a large number of offspring for one individual means fewer offspring for the rest of the

population. When too many individuals get no offspring at all, the result is a rapid loss of

diversity and premature convergence. By measuring the percentage of current population

producing offspring - a measure called percent involvement, - one can anticipate this rapid

convergence and prevent it [Booker, 1987].
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4.4 Mechanics of Genetics Algorithms for Job Shop Scheduling

In this section, a Genetic Algorithms approach to job shop scheduling will be

described, that accommodates multi-criteria decision making and is applicable to the

dynamic job shop and considers alternate job/machine routings. The general framework of

the Genetic Algorithms approach adheres to the standard 4-stage Genetic Algorithms cycle,

consisting of Evaluation, Reproduction, Crossover and Mutation (Figure 4.1). The details

of these different stages will be described below. However, it is important to discuss the

representation of individuals, prior to discussing the various stages.

4.4.1 Representation

Each individual in this Genetic Algorithms approach represents a schedule (Figure

4.10). An individual is a string of resource/job-operation pair allocations, ordered

chronologically in time. This list of resource/job-operation pairs, is devoid of the starting

time and completion times of the various operations. These information is not necessary to

define a schedule. It is also assumed that the operation allocated to a machine cannot begin

until a previously allocated operation is completed. An implicit assumption about this

representation is that no operation or job is purposely delayed. In other words, when an

operation is available to be processed on a machine, it will be processed without any delay.

This assumption results in a unique mapping between the individual as represented by

Figure 4.10, and a schedule.

The Genetic Algorithms approach begins by creating a population of individuals

based on the workload outstanding at the job shop. The population consists of schedules

that are created using the random dispatching rule, i.e., operations are randomly assigned

to available machines.

4.4.2 Evaluation

The individuals that constitute the population are evaluated based on the

performance measures of interest, say makespan, flowtime, waittime, cost or tardiness. To

facilitate multicriteria decision making, these performance measures are normalized in the

same manner as described in Chapter 3 (Eqns. 3.5-3.7). The maximum and minimum
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performance measures of the population are identified and the performance measures of an

individual are then scaled between '1' and '0' using the maximum and minimum

performance measures of the population. A composite fitness of an individual is computed

as the weighted sum of these normalized performance measures.

4.4.3 Reproduction

Based on the discussion of premature convergence in the previous section, it should

be noted that reproduction based on proportional fitness, is an inferior strategy in

combating premature convergence. This is because of the scaling problems associated with

fitness-proportionate reproduction. A better strategy as noted earlier is to perform

reproduction based on rank. However, rank based reproductive strategies do not allow for

allele proportions to change when required [Booker, 1987].

A compromise between rank-based and fitness-proportionate reproduction is to

perform the normalized fitness-proportionate reproduction. The normalization of fitness

values will eliminate the scaling problems and will maintain consistent reproductive

pressure. The reproductive probability of an individual is computed in exactly the same

manner as for fitness-proportionate reproduction, where the fitness is replaced with the

normalized fitness. The reproductive probability is equal to the ratio of the normalized

Fitness of an individual to the sum of normalized fitness of the population.

Once the probabilities of all the individuals in the population are computed, then the

'roulette wheel' strategy could be used to perform the reproduction. This strategy assumes

that a wheel is divided into sectors corresponding to the number of individuals in the

population and the size of each individual sector is proportional to its probability. This
wheel is then turned randomly and the individual that corresponds to the sector that is

reached is then reproduced in the next generation.

4.4.4 Crossover

A order-based crossover operator is proposed. In this crossover operation, two

parents produce two children (Figure 4.11). A random point is chosen and the two parents

are dissected at that point. The substrings of the parents before the dissection point are
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inherited by the children. One cannot concatenate the children substrings from the

substrings of the parents aft of the dissection point, as would have been with the

conventional crossover operation. In order to preserve the precedence constraints, a slight

modification is necessary.

The elements of the substring inherited by a child is removed from the other parent.

The order of the remaining substring of the parent is preserved and is then concatenated to

the child. For example (Figure 4.11), Child 1 inherits the substring of Parent 1 before the

dissection point. The elements of this substring is then removed from Parent 2. The

remnants of Parent 2 is then concatenated to Child 1. The same procedure is applied to

Child 2, thereby producing 2 children. The operation described here, preserves the

precedence constraints of the child. The generational replacement strategy (where children

replace parents in the next generation) is adopted.

4.4.5 Mutation

Two mutation operators are proposed (Figure 4.12). The first mutation operator is

the simple swap mutation operator where two adjacent alleles of an individual are

interchanged. This mutation operation is performed only if it does not violate the

precedence constraints of the job.

The second mutation operation is proposed to accommodate alternate machines to

process a job operation. In this operation, an allele is chosen randomly and the resource on

which the operation is to be processed is replaced with one of the alternative resources.

The mechanics of the Genetic Algorithms approach, described above is summarized

in Figure 4.13. The procedure outlined above is for solving static scheduling problems. In

the case of dynamic scheduling problems, the procedure outlined above will be modified

slightly. In the case of dynamic scheduling problems, the dynamic problem will be viewed

as a series of static problems. Whenever a dynamic event occurs, the schedule generated

using Genetic Algorithms will be regenerated by including the new dynamic event in the

previous schedule. A dynamic event consists of three distinct events, and they include job

arrivals, breakdown of machines and repair of machines. This is summarized in Figure

4.14.

96



Symbolic Representation

Figure 4.10: Representation of Individuals

Crossover

Parent 1 JITIRI JT2R2 J2T1R2

Parent 2 J2TlR2 JTIRI J2T2R1

Dissect here

J2T2R1 J31

J3TlRI J11

Child 1 JJ1TIRI JT2R2 J2TR2 J2T2R1 J3

C hild 2 J2T1R2 JTIR1 J2T2R1 J1T2R2 J3'1

'IRI

'2R2

?IRI

3
Figure 4.11: The Crossover Operator
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Figure 4.12: The Mutation Operators

The general Genetic Algorithms framework described in this thesis, to solve the

dynamic job shop problem, is similar to the approach proposed in [Reeves and Karatza,

1993]. However, the problem investigated in [Reeves and Karatza, 1993] is the dynamic

flow shop problem as opposed to the dynamic job shop problem that is investigated in this

thesis. As a result, the genetic operators described in [Reeves and Karatza, 1993] differ

considerably from those proposed in this thesis.
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Evaluation

Replace the previous generation
with the new children and evaluate

the fitness of the children.
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Figure 4.13: Summary of the Genetic Algorithms Approach for

Job Shop Scheduling Problems.
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Arrival of

Repair of
Machines

Machine
Breakdown

Regenerate new schedule if
* new job(s) arrive
* machine(s) get repaired
* machine(s) breakdown

Figure 4.14: The Genetic Algorithms Approach for Dynamic Job Shop Scheduling

The crossover operator used in this thesis is similar to the order-crossover operator

proposed in [Braun, 1990]. The author is not aware of the use of the second mutation

operator described in Figure 4.12 in job shop scheduling problems. This mutation operator

accommodates the processing of a job operation on several alternative machines. Research

in job shop scheduling, on the other hand, has primarily focused on the standard job shop

problem (Figure 4.9), where the problem is static and assumes that each job operation can

be performed on only one machine.

4.5 Results and Discussion

The Genetic Algorithms approach as outlined above was applied to the Muth and

Thompson benchmark problems. The application of the Genetic Algorithms approach to

dynamic job shop scheduling, will be discussed in Chapter 5. The specifications of the

benchmark problems are specified in Appendix B.
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As noted in Chapter 3, the performance measure of interest in the static benchmark

problems (the 6x6 and lOxlO problems) is makespan. Since this is a single criteria

scheduling problem, the standard fitness-proportionate reproduction strategy was utilized

(i.e. without normalizing the fitness values). The makespans obtained using some

common dispatch rules, the Fuzzy Logic approach discussed in Chapter 2 and the Extreme

Value Theory approach are summarized in Figure 4.15.

Figure 4.15: Makespans obtained for the Muth and Thompson 6x6

and 10x 10 static job shop scheduling problems

The Optimal makespan for the 6x6 and O10x10 problems are 55 and 930 respectively

[Vancheeswaran and Townsend, 1993]. The optimal makespan for the 6x6 problem is

relatively easy to obtain. The lO10x10 problem is reported in the literature to be much harder.

The makespan of 1006 [Chen, 1993] for the 10x10 problem, compares favourably with all

the other dispatching rules and the Fuzzy Logic Approach. This result also compares very

favourably with the results published in [Vancheeswaran and Townsend, 1993].

A makespan of 965 has been achieved using Genetic Algorithms, [Nakano and

Yamada, 1991]. The individuals in this approach were represented as a bit vector for every

job pair and as discussed earlier, this representation requires MN(N-1)/2 bits for a N job

and M machines problem. The number of bits become excessive for moderate job shops

where the number of machines could be in the order of 20 and the number of jobs could

easily reach 100 (99000 bits for the example just cited). Such an approach may solve the
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Method (6x6 problem) (10x10 problem)
Optimal 55 930
Genetic
Algorithms 55 1006
SEVAT 57 988
SPT 88 1074
LPT 67 1197
FIFO 74 1259
LIFO 72 1223
Random 60 1106
Fuzzy 71 1134



lOx10 problem with very good results, but its application to other problems may be

severely hampered. The author would like to reiterate that the purpose of the Genetic

Algorithms approach and the Extreme Value Theory approach are not to solve the

benchmark problems to optimality. Rather, these approaches are designed to be applied to

more realistic job shop problems, in particular the dynamic shop job problem. The

benchmark problems are used as a means of "calibrating" the usefulness of these

approaches and to compare them with other approaches.
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Chapter 5
Dynamic Job Shop Scheduling

A review of the job shop scheduling approaches in which Genetic Algorithms had been
applied (Figure 4.9), shows that most of the problems attempted were the standard job
shop problems (examples of which are the Muth and Thompson 6x6 and lOx10 job shop

scheduling problems). The situation is similar, based on the literature survey presented in
Chapter 2. The Muth and Thompson problems [Muth and Thompson, 1963], were
developed in the 1960s and have become a standard for many job shop scheduling
exercises. These problems are inadequate in reflecting the requirements of actual job

shops. Firstly, these problems are designed for the makespan performance measure, and

makespan is not necessarily an important performance measure in job shop scheduling as
compared to, say, cost or tardiness. Moreover, actual job shop scheduling problems are

multi-criteria in nature. Secondly, these problems are static problems, while actual job
shop scheduling problems are dynamic in nature, where the arrival of jobs are not
deterministic and resources (machines) breakdown and get repaired. Thirdly, these

problems do not consider alternate job/machine routings.

In this chapter, the dynamic job shop scheduling problem will be examined. This
problem addresses the shortcomings of the static benchmark scheduling problems
discussed above. Besides including dynamic events, the dynamic job shop scheduling

problem will be designed such that it also considers multiple performance measures

simultaneously (namely cost and tardiness) and alternate job/machine routings.

In the last twenty years or so, the primary method of analyzing the dynamic job
shop scheduling problem has been through computer simulation of real or representative

job shops [Ramasesh, 1990 and Day and Hottenstein, 1970]. The number of factors that
characterize a dynamic job shop is very large and that there is considerable variation in the

modelling and experimentation across the vast number of studies that has been reported in
the literature [Ramasesh, 1990].
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This chapter will discuss some of these factors that characterize the analysis of

dynamic job shops. After this discussion, specifications for a dynamic job shop will be

designed based on the reported studies in the literature. The two scheduling methodologies

proposed in this thesis, namely, scheduling based on Extreme Value Theory and Genetic

Algorithms, will be tested on this dynamic job shop problem and the performance of these

approaches will be compared against some common dispatching rules and the Fuzzy Logic

dispatching method as outlined in Chapter 2.

Some of the factors that characterize the analysis of a dynamic job shop are broadly

categorized as, Job Shop, Jobs, Performance Measures and Simulation Analysis (Figure

5.1). The categorization is by no means unique. Some of these factors could also be

placed in a different category than that shown.

5.1 Factors that influence the Job Shop

Some of the factors that influence the Job shop include, the size of the job shop, the

utilization of the job shop and the breakdown/repair of the machines in the job shop. This

section considers factors that influence the general makeup of the job shop. Factors that

influence the jobs, the performance measures or the simulation analysis, will be discussed

separately.

5.1.1 The Size of the Job Shop

The typical size of a real job shop ranges from about 30 to 1000 machines [Day and

Hottenstein, 1970]. Most simulation studies of dynamic job shops consider job shops

consisting of relatively small number of machines that range from about 4 to 12 (Figure

5.2). The reason for this discrepancy is that, the size of the job shop does not significantly

influence the performance of the job shop. Furthermore, it is reported in the literature that a

job shop consisting of six machines is adequate in representing the complexity involved in

a large dynamic job shop [Day and Hottenstein, 1970 and Ramasesh. 1990].
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Figure 5.1: Factors Influencing the Analysis of a Dynamic Job Shop

Figure 5.2: Size of Job Shops reported in recent Dynamic Job Shop studies.
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[Ragatz and Mabert, 1988] 5
[Karsiti, et al, 1992] 10
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[Raghu and Rajendran, 1993] 12
[Sim et al, 1994] 9
[Kannan and Ghosh, 1993] 10
[Enns, 1993] 4
[Anderson and Nyirenda, 1990] 8
[Scudder et al, 1993] 9
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[Gee and Smith, 1993] 8
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5.1.2 Job Shop Capacity / Job Shop Utilization

Most studies in the literature report that the job shop utilization levels are set by

adjusting the job arrival rates [Ramasesh, 1990]. However, it must be noted that utilization

levels so set, are by no means exact, because of the random nature of the job arrivals

[Ramasesh, 1990]. In addition, there is a very severe interdependence associated with

utilization rates set this way and the TWK (total work content) due dates assignment

approach (Eqn. 5.5). For example, due dates may be tight, even with an allowance factor,

K=7, (which in most studies are categorized as moderate or loose due dates) when the shop

load level is high at around 95%. Conversely, with K=3 (categorized as tight), due dates

may not necessarily represent tight conditions, if the shop load level is low [Ramasesh,

1990]. The relationship between job arrival rates and the shop utilization levels is given by

[Karsiti et al, 1992]:

M*~=
n*p (5.1)

where X is the job arrival rate

M is the number of machines

rl is the machine load capacity

n is the average number of operations

P is the average operation time

A summary of several studies of dynamic job shops indicate that the shop utilization

levels vary between 80% and 95% (Figure 5.3).

5.1.3 Machine Breakdowns

The largest source of randomness in many manufacturing systems is that associated

with machine breakdowns. To explicitly account for the breakdowns in a simulation

model, it is important to have an accurate assessment of mean running time and mean repair

time for the actual system [Law and McComas, 1989]. In most dynamic job shop

scheduling problems, machine breakdowns are not considered. In one of the few studies

that considers machine breakdowns [Benton, 1993], the time between failures of each
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machine was assumed to follow a erlang-distribution, with mean of 30 days and

parameter= 1, and the downtimes are exponentially distributed with a mean of 0.2 days.

Figure 5.3: Job Shop Utilization Levels reported in recent Dynamic Job Shop studies.

5.2 Factors that influence the Jobs

In this section, factors that influence the jobs in a dynamic job shop will be

discussed. Factors, such as, the job arrival process, job routings, job release policy and

the number of operations per job are examined.

5.2.1 Job arrival process

In many simulation studies of the dynamic job shop, the Poisson arrival rate has

been assumed. The mean for the Poisson distribution may be determined arbitrarily, but

the usual practice is to set it at a lower value than the mean service rate of the shop in order

to prevent continual shop overload. Given that the times of arrival occur by a Poisson

process, it can be shown that the interarrival times have a related exponential distribution.

Hence the exponential distribution is also representative of the Poisson process, but it

describes the time between arrivals, and specifies that these time arrivals are completely

random. Empirical observations of job shops have revealed that the arrival of jobs

approximates very closely to a Poisson distribution [Day and Hottenstein, 1970].
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Reference Shop Utilization
[Ragatz and Mabert, 1988] 87%
[Karsiti, et al, 1992] 90%
[Udo, 1993] 90%
[Raghu and Rajendran, 1993] 85% and 90%
[Kannan and Ghosh, 1993] 90%
[Enns, 1993] 90%
[Anderson and Nyirenda, 1990] 90%
[Scudder et al, 1993] 80% and 90%
[Vig and Dooley, 1991] ranges from 85% to

95%
[Gee and Smith, 1993] 90%



It is also reported that the Poisson distribution is a good approximation to the arrival

process if the different sources that generate job arrivals are statistically independent

[Ramasesh, 1990]. Other distributions described in the literature are the erlang, binomial,

geometric and empirical distributions. A survey of recent studies of dynamic job shop

scheduling problems is tabulated in Figure 5.4 and shows that the Poisson and exponential

distributions are extensively used to model the job arrival process.

5.2.2 Job Routings

Most studies dealing with dynamic job shop scheduling have assumed fixed job

routing. The sequence of machines that a typical job must go through for the required

operations was assumed to be given at the outset. In general, however, if one starts with a

set of job orders, only the sequence of operations can be deduced in advance from this

information and not the machine sequence [Karsiti et al, 1992].

In actual manufacturing environments, process routings can be far more complex

and even dynamic. Rarely is every job processed on every machine, as in the classical job

shop problem [Rodammer and White, 1988]. In real manufacturing systems, two or more

machines are capable of processing the same operations and therefore, there exists several

alternate routings for a job in a real job shop [Kim, 1990].

The random sequence in which a job will visit the machines in the job shop is

determined by sampling without replacement from a distribution, and the uniform

distribution has been generally used for this purpose [Ramasesh, 1990]. A heuristic rule,

known as the minimum job in queue, (MINJQ) is applied to assign jobs to machines.

From the set of machines capable of performing an operation, the machine with the

minimum number of jobs waiting in its queue will be chosen to process the job. By

assigning the job to the machine with the minimum number of jobs waiting in the queue,

the total load can be distributed fairly among all the machines [Karsiti et al, 1992].

108



Figure 5.4: Job arrival models reported in recent Dynamic Job Shop studies.

5.2.3 Job Release

Most research reported in the literature assume that jobs are released to the shop as

they are received, thereby effectively bypassing the releasing decision. There are reasons

why jobs should not be released as they are received [Ragatz and Mabert, 1988], viz.,

v parts delivered to the finish stockroom or the assembly floor, long before they are

actually needed, tie up unnecessary capital.
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[Ragatz and Mabert, 1988] Poisson mean = 1.39 arrivals per

hour
[Karsiti et al, 1992] Poisson arrival rate is adjusted so

that machine capacity was
90%

[Udo, 1993] exponential mean = 120
[Raghu and Rajendran, exponential arrival rate adjusted so

1993] that machine utilization
levels of 85% and

95% were achieved.
[Sim et al, 1994] Poisson mean varying from 0.6 -
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[Benton, 1993] exponential adjusted to achieve total

machine utilization
[Kannan and Ghosh, exponential mean = 0lh

1993]
[Enns, 1993] Poisson adjusted to achieve

utilization rate of 90%
[Anderson and Nyirenda, Poisson not known

1990]
[Scudder et al, 1993] Poisson adjusted so that nominal

utilizations are 80%
and 90%.

[Vig and Dooley, 1991] exponential adjusted so that
nominal utilizations

are 90%
[Gee and Smith, 1993] geometric mean = 2.5 time

periods to achieve 90%
utilization



parts produced too soon. may disappear, may be damaged by excessive handling or

may occupy valuable space for too long.

jobs released too early to the shop floor will compete for resources with more

urgent jobs and may interfere with the progress of those jobs.

It has been suggested that if job release is controlled carefully, sophisticated

dispatching rules can be replaced with the FCFS (first come, first served) dispatching rule,

without any deterioration in shop performance [Ragatz and Mabert, 1988].

Some of the job releasing mechanisms reported in the literature are [Ragatz and

Mabert, 1988]:

* Backward infinite loading, (BIL): releases a job to the shop, a fixed number of

hours per job operation ahead of its due-date.

* Modified infinite loading, (MIL): gives each job a flow allowance based on the

number of operations in the job and also the number of jobs waiting in queue along

the job's routing.

* Maximum number of jobs (MNJ): jobs are released to the shop floor, one at a time,

until the number of jobs in the shop has reached a specified maximum.

* Backward finite loading (BFL): this releasing mechanism works with a planning

horizon that is broken into time buckets. The current workload profile of each

machine in the job shop is also maintained. This releasing mechanism works

backward from a job's assigned duedate (i.e., starting with the last operation in the

job and working towards the first). This mechanism attempts to fit each operation

into available capacity for the appropriate machine. If adequate capacity is not

available, the mechanism backs the operation up to an earlier time bucket. Once the

operation is loaded, the preceding operations are loaded in a like manner.

In another approach [Scudder et al, 1993], a decision variable called status is

computed as follows:
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STATUSi = dij - Apij - t

where dij = duedate of operation j of job i

t = present time

A = release multiplier

The job is placed in the inactive queue, if the status is positive. Otherwise, the job is placed

in the active queue. Jobs in the active queue can be immediately assigned to the machines.

5.2.4 Number of operations per job

In simulation studies of dynamic job shops (Figure 5.5), the number of operations

per job are usually uniformly distributed. The number of operations per job in these

studies, vary between 1 and 12.

5.3 Factors that influence the performance measures

In this section, aspects of dynamic job shop scheduling that influences the

performance measures will be discussed. In particular, performance measures that deal

with tardiness and cost are examined. Factors that influence these performance measures

are the processing times, processing cost and the due-date assignment policy.

5.3.1 Processing times

Operation times, i.e., the times for setup and for processing are set when the jobs

arrive at the job shop. Most studies have used the exponential distribution for the setup and

processing times. Setup times are usually assumed to be sequence independent and are

thus combined with the processing times [Ramasesh, 1990].

Other distributions that have been used include the normal, poisson, uniform and

erlang distributions. The nature of processing time distribution affects the performance of

the job shop significantly. For example, the exponential distribution has been found to
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favour the SPT dispatching rule [Ramasesh, 1990]. Figure 5.6 tabulates the various

models used to generate processing times for simulation studies of dynamic job shops.

Figure 5.5: Number of operations per job, reported in recent Dynamic Job Shop studies.

5.3.2 Processing cost

Most of the simulation studies of dynamic job shops deal with the tardiness

performance measure. In one of the few studies dealing with the cost performance measure

[Scudder et al, 1993], the hourly processing cost of each machine was uniformly

distributed between $6 and $12 an hour. This study also considered a setup cost of $15 an

hour. Material cost was also assumed to vary uniformly for each job between [$50,$ 100].

5.3.3 Due Dates

Research in the area of due date assignment tends to fall into two classes. One

group, assumes that ready times for jobs are given, so the research effort is directed

towards determining the flow allowance in order to set the due dates. The other group

assumes that due dates are given, so the research task becomes that of determining the lead

time in order to set ready times for the job [Udo, 1993].
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Number of
Reference Distribution Operations

per job
[Ragatz and Mabert, 1988] Random maximum limited to 8
[Karsiti, et al, 1992] Uniform [1,9]
[Udo, 1993] Uniform [4,8]
[Raghu and Rajendran, 1993] Uniform [4,12]
[Sim et al, 1994] not known [3,6]
[Benton, 1993] Uniform [2,7]
[Kannan and Ghosh, 1993] Uniform [4,12]
[Enns, 1993] Random [2,6]
[Anderson and Nyirenda, Uniform [1,8]

1990]
[Scudder et al, 1993] Random [2,7]; mean = 4
[Vig and Dooley, 1991] Uniform [1,10]
[Gee and Smith, 1993] Uniform [1,6]



Figure 5.6: Processing times, reported in recent Dynamic Job Shop studies.

For either group of approaches, the methods for setting due dates can be either

dynamic or static. The dynamic method employs job characteristics and job shop

congestion information in determining due dates. The static method, on the other hand,

considers only job content information such as arrival time, routing and processing times.

For static methods, the job flow allowance is a fixed amount for given job data and does

not depend on the workload status of the shop when the job arrives [Udo, 1993].

Due dates can also be set either exogenously or endogenously. Exogenous due

dates are set by some external agency without regard to the processing characteristics of the

shop itself, other jobs in the shop, or the dispatching rule to be used. Examples of the

exogenous duedate setting methods include the CON (constant) and RAN (random)

methods. The CON method sets the allowable shop time (difference between duedate and

arrival time for a job) as a constant amount, independent of any characteristic of the job to

which it is assigned. This method represents the case in which the salesman quotes
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[Ragatz and Mabert, 1988] exponential mean = 1 hour
[Karsiti, et al, 1992] not known mean = 2.5
[Udo, 1993] exponential mean = 120

3 cases: [1,50], [1,100] and
[Raghu and Rajendran, 1993] rectangular 25% from [50,100] and
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[Sim et al, 1994] not known [1,4]
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[Benton, 1993] processing times
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[Kannan and Ghosh, 1993] normal mean = 11.4h and standard

deviation = 2.28h
[Enns, 1993] exponential mean = 1.0
[Anderson and Nyirenda, exponential mean = 100

1990]
[Scudder et al, 1993] normal mean = 9h; var = 3h

min processing time = 0.5h
[Vig and Dooley, 1991] 2-Erlang mean = 1.0

2 step procedure
[Gee and Smith, 1993] using geometric mean processing time = 5.2

and exponential time periods
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duedates uniformly on all orders. RAN duedates, in which the allowable shop time is

assigned at random, corresponds to situations in which the duedate is chosen by the

customer and accepted by the firm's salesman [Day and Hottenstein, 1970].

Endogenous duedates are internally set based on the characteristics of the jobs (total

processing time, number of operations, etc. ) and the shop (shop utilization level, work

load etc.) is more involved because the method of assigning the due dates will affect the

performance of the job shop scheduling rules [Ramasesh, 1990].

Some of the common due-date assignment methods are as follows [Kaplan and

Unal, 1993]:

CON (constant) Di = ri + k (5.3)

RAN (random) Di = ri + ei (5.4)

TWK (total work content) Di = ri + kPi (5.5)

SLK (slack) Di = ri + Pi + k (5.6)

NOP (number of operations) Di = ri + kNi (5.7)

where Di is the due date assigned to job i;

ri is the time job i is released to the shop;

Pi is the processing time of job i;

Ni is the number of operations that job i will undergo;

ei is a random parameter;

k is a constant parameter.

The standard approach of meeting due-dates is via the use of the mean tardiness

performance measure and this ignores the consequences of jobs that complete early. The

earliness tardiness penalties approach is designed to counter this shortcoming. A basic and

general model to incorporate both earliness and tardiness penalties is

n n

f(s) = Ei + ~ Ti
~~~~~~~~~~~i i ~(5.8)

where Ei and Ti represents the earliness and tardiness of job i and a and i are the earliness

and tardiness penalty cost respectively [Baker and Scudder, 1990].
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In an approach reported in [Ovacik and Uzsoy, 1994], due dates are assumed to be

uniformly distributed on an interval determined by the expected workload of the system and

two parameters, X and R, where c is the parameter denoting the percentage of operations

expected to be tardy and R is the parameter that determines the range of the interval.

5.4 Output Analysis

The statistical analysis of the dynamic job shop requires that the job shop be in

steady state. The transient states of the job shop will "contaminate" the estimate of the

steady state means (mean Job Cost and mean Job Tardiness). Steady state does not mean

that the output measure will take on the same value in a particular simulation run. Rather, it

means that they will all have approximately the same distribution [Law and Kelton, 1991].

To eliminate the transient effect on the steady state means, some of the initial data must be

removed and the steady state means are then calculated from the remaining data. This

process is termed "warming up the model" or "initial-data deletion."

The procedure to identify the warm-up period is discussed in [Law and Kelton,

1991]. This is a graphical procedure in which, one monitors the plot of the simulation

means and identify the point at which the plots level off at the steady state means. The

procedure requires several independent replications of the simulation runs and is

summarized in the following four steps [Law and Kelton, 1991]:

I Make n replications of the simulation run (where n>5). Each simulation run is of

length m, where m is very large. Let Yji be the ith observation from the jth

replication.

n

Yi = E Yii
2 Compute j=l , for i=1,2,3, ...m. This averaged process has the

same transient mean curve as the original process, but its plot has only (1/n) of the

variance.

3 To filter off the high frequency oscillations from the long-run trend, a moving

average operator is applied to the averaged process of step 2.
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4 The filtered-averaged data is then the plot from which the warm-up period is
identified.

To estimate the steady state means from the simulation runs, an approach called

"replication/deletion" will be applied. This approach is detailed in [Law and Kelton, 1991].

There are other alternative approaches that could also be applied, viz., the batch means

method, the autoregressive method, the spectrum analysis method, the regenerative method

and the standardized time series method.

The replication/deletion method is applied for obtaining the point estimate and the

confidence interval for the simulation means. This method requires making k replications

of the simulation runs. For each simulation run, data in the initial warm up period is

deleted.

Let Yji be the ith observation (of the reduced simulation data set, after deleting the

initial warm up period), of the jth replication. We shall define the simulation mean, Xj, as

P

Z Yji
Xj = i=l

P (5.9)

where p is the size of the reduced simulation data set. The Xj's are independent and

identically distributed random variables and are approximately unbiased estimators of the
simulation mean, and a 100(1-a) percent confidence interval for this mean is given by

X(k)__tk 1,a .2 k)
2 k (5.10)

where k is the number of simulations runs, t denotes the student's t-distribution and

k

IXi
X(k) k (5.11)=k (5.11)
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k

[x - x(k)]2

S2(k)=i=l k-1 (5.12)

5.5 Dynamic Scheduling Problem

Based on the discussion of factors that characterize the dynamic job shop in the

previous sections, a dynamic job shop problem was designed to evaluate the performance

of the scheduling methods proposed in this thesis, namely the SEVAT procedure and the

scheduling methodology based on Genetic Algorithms. The specifications of the dynamic

job shop problem will be described along the same dimensions of Figure 5.1, viz, the Job

Shop, the Jobs, the performance measures and the simulation analysis.

5.5.1 The Job Shop

Since it has been extensively reported in the literature that a job shop with six

machines is adequate to represent the complexity involved in a large dynamic job shop [Day

and Hottenstein, 1970 and Ramasesh, 1990], the dynamic job shop was designed to

consist of six machines. The performance of the scheduling methods will be evaluated

through simulation. A larger job shop will increase the simulation effort and require more

computational resources.

In the discussion of the previous sections in this chapter, it was seen that most

simulation studies of dynamic job shops assume that a job-operation can only be processed

on one machine and that all the machines in the job shop are absolutely reliable and do not

break down. Based on these assumptions, the job shop utilization level becomes a function

of the job arrival rates. The job shop can therefore be maintained at a particular utilization

level by manipulating the job arrival rates a priori. However, once the job shop is assumed

to be flexible, (i.e. a job-operation could be processed on two or more machines in the job

shop) and that the machines are unreliable (i.e. machines break down), the job shop

utilization level is no longer the function of job arrival rates alone. The utilization level now

depends on the reliability of the machines and the flexibility of the job shop. In view of

this difficulty, the dynamic job shop was designed to have a fixed arrival rate for all jobs
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and the job shop utilization level was allowed to 'float' according to the conditions of the

job shop.

The unreliability of the machines are expressed in terms of two parameters, namely,

the Mean Time Between Failure (MTBF) and Mean Time to Repair (MTTR). The failure

and repair times for the machines are assumed to follow an exponential distribution. To

infuse realism into the simulations, each of the machines were assigned different MTBFs

and MTTRs. The MTBFs and MTTRs are chosen randomly from uniform distributions in

the range of [5000, 15000] and [1000, 6000] time units respectively. These values were

chosen such that, on average, a machine is operational 65% of the time.

5.5.2 The Jobs

The number of job types to be processed by the job shop was assumed to be 20.

The number of operations per job type was assumed to vary uniformly in the range of

[2,10] operations. The job arrival rates were fixed at around 2200 time units. The job

routings in terms of operations were fixed. However, the machines to process the

operations were not unique. Two situations were examined in the dynamic job shop. In

the first case, the job shop was assumed to be absolutely flexible (all the machines were

identical and can process any operation). In the second case, a job operation could be

processed by three machines instead of all six in the job shop. The job release policy in the

job shop was assumed to be immediate and no jobs were to be delayed intentionally.

5.5.3 The Performance Measures

The dynamic job shop was designed to operate under multiple performance

measures. To this end, Mean Job Cost and Mean Job Tardiness were selected for the

dynamic job shop under consideration.

Each machine was assumed to cost a fixed amount, for each time unit of operation.

This cost rate was assumed to vary uniformly in the range of [1,6] monetary units /time

unit for the various machines in the job shop. The cost of processing a job-operation is the

product of the processing time required for the operation and the cost rate of the machine on

which the operation is processed. The job cost is simply, the sum of the individual
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operational costs incurred in processing all the operations of the job. The processing time

of any job-operation was assumed to vary in the range of [1,100] time units.

Tardiness is by definition the positive difference between the completion time and

the due date of a job. Two levels of duedates (tight and loose) were used to reflect the

'tightness' of duedates in the job shop. The duedates were exogenously set using the RAN

rule, which reflects the situation where the customer sets the due dates. The loose duedates

were assigned such that the duedate of a job on arrival, is uniformly varied between [-100,

1500] time units. The negative duedate, reflects the situation where a job is of high priority

and needs to be completed as soon as possible. The average processing time for a job is

about 300 time units. The 1500 time units for the duedates were chosen to reflect the

spread of duedates that are about five times the average job processing times. Similarly,

the tight duedates were chosen to lie uniformly between [-100, 500] time units, reflecting

the case where the duedates were spread under two times the average job processing time.

5.5.4 Simulation Analysis

The approach outlined in the previous section was applied to identify the initial

warm up period and a suitable length of simulation. For this purpose, the SPT rule was

applied to a dynamic job shop with parameters that are described in Expt. 1 of Figure 5.9.

The dynamic job shop was simulated for 3500 jobs and the filtered-moving average plots

for Job Tardiness and Job Cost are shown in Figure 5.7. 9 replications were simulated

(with a different random number seed in the simulations) and a moving window of 100

jobs was used to filter off the high frequency variations. From Figure 5.7, it may be seen,

that the Mean Job Tardiness is much more variable than the Mean Job Cost. By closer

examination of the two plots in Figure 5.7, one can roughly state that steady state begins at

around 300 jobs. Therefore, for the purposes of this thesis, a warm up period was

conservatively chosen at 500 jobs and the simulation length was made two times the warm

up period, i.e. 1000 jobs. In other words, simulation data was collected, beginning at the

completion of the 500th job and continued until 1500 jobs were completed.

A summary of the various parameters that were used to design the dynamic job

shop is presented in Figure 5.8. These parameters are classified under the four dimensions

discussed earlier, viz, the Job Shop, the Jobs, the Performance Measures and the

Simulation Analysis.
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Figure 5.7: Identifying the Warm Up Period.

5.6 The Factorial Design

In this thesis, the two scheduling methods proposed, viz, the Extreme Value

Scheduling approach and the Genetic Algorithms Scheduling approach will be compared

against some common dispatching rules and the Fuzzy Logic Scheduling method described

in Chapter 2. To ensure that the comparison of scheduling methods are performed over

varied job shop conditions, three variable factors were identified, viz,

* the number of suitable resources to process a job operation,

the 'tightness' of the duedates, and

the inclusion/disclusion of machine breakdowns.
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Figure 5.8: Summary of the Design of Experiments

Two levels were assumed for each of the factors and a full factorial experiment (23 = 8

experiments) was designed (Figure 5.9).

5.7 Results and Discussion

The dynamic job shop as described in Figure 5.8 was simulated for all the various

experiments listed in Figure 5.9. For each experiment, the following scheduling methods
were applied:

Scheduling method based on Extreme Value Theory (SEVAT).

121

Dimension Characteristic Specification

Size 6 machines

Job Shop Utilization level variable

Machine breakdowns MTBF = U[5000,15000]

MTTR = U[1000,6000]

Arrival Rate 2200 time units

# of suitable resources to 3 or 6

Jobs process a operation

Job Release Policy Immediate

# of operations per job U[2,10]

Performance Measures Cost and Tardiness

Cost rate of machine U[ 1,6]

Performance Processing time of an U[1,100]

Measures operation

Duedates loose: U[-100,1500]

tight: U[-100,500]

Simulation Method Replications/Deletions

Analysis Warm-Up period 500 jobs

Simulation period 1000 jobs



Scheduling method based on Genetic Algorithms (GA).

Scheduling method based on Fuzzy Logic.

* Shortest Processing Time (SPT) dispatching rule.

Longest Processing Time (LPT) dispatching rule.

* First-In-First-Out (FIFO) dispatching rule.

* Last-In-Last-Out (LIFO) dispatching rule.

* Random dispatching rule.

Figure 5.9: Factorial Design of Experiments

Each simulation of an experiment, for each of the scheduling methods, was

replicated 10 times, using 10 different seeds for the random number generator in the

simulations. The Mean Job Tardiness (MJT), the Mean Job Cost (MJC) and the 90%

confidence intervals for these means were computed for each experiment/scheduling

method. Subsequently, the maximum and minimum values for these means were also

identified for each of the 8 experiments listed in Figure 5.9. The maximum and minimum

values are used to normalize the means (so that the normalized means and their confidence

intervals lie between 0 and 1). The normalization equations used are:

Normalized MJT = - MT - Minimum MJT
Maximum MJT - Minimum MJT (5.13)
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# of suitable
Expt # resources to Duedates Machine

process an Breakdowns
operation

1 6 Tight Yes

2 6 Loose Yes

3 3 Tight Yes

4 3 Loose Yes

5 3 Tight No

6 3 Loose No

7 6 Tight No

8 6 Loose No



Normalized MJC = - MJC - Minimum MJC
Maximum MJC - Minimum MJC (5.14)

Since the objective of the scheduling exercise, is to perform scheduling in a

dynamic job shop with respect to both Cost and Tardiness, the performance of each

scheduling method will be measured using a composite performance measure, termed

utility and is defined as:

utility = Normalized MJT + Normalized MJC
2 (5.15)

The results of the dynamic job shop scheduling problem, using the various

scheduling methods will be presented in the form of 'high-low' plots. (Figures 5.10-5.19).

The horizontal bars on these plots denote the confidence intervals, while the dark spots

denote the means. The results of the LPT rule were consistently inferior to the rest of the

scheduling methods, and were dropped from the analysis, so that the normalization

equations (5.13 and 5.14) become more discriminatory.

A major concern with the Genetic Algorithms scheduling method is that the

simulation of the dynamic job shop may have resulted in a solution space filled with very

"rich" solutions, therefore rendering the crossover and mutation operators to be ineffective.

I[f this were true, then the results that are obtained using the Genetic Algorithms method,

may not necessarily be attributed to the Genetic Algorithms exclusively, but rather to the

rich solution space. A 3 stage approach to demonstrate the effects of the Genetic

Algorithms Approach was adopted:

1 To completely switch off the crossover and mutation operations in each generation.

At each decision point in the dynamic scheduling process, a population of

individual schedules are initialized by generating random schedules. The best of

these random schedules will be used at each decision point and the results obtained

using this approach should be compared with the "total" Genetic Algorithms

approach where the population of random schedules are permutated through

crossover and mutation.

2 To switch off the mutation operation but allow the crossover operation to function.

This will show the effect of crossover on the scheduling quality.
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3 Similarly, the crossover operation is next switched off, but allowing the mutation

operation to function. This will demonstrate the effect of mutation on the overall

schedule quality.

The three-stage approach to demonstrate the effects of the Genetic Algorithms (GA)

was performed on Experiment 2 of the eight dynamic scheduling experiments (Figure 5.9).

The results are as shown in Figure 5.10. The results of the first three stages are labelled as

"None", "Crossover" and "Mutation" respectively. The results obtained using the full GA

approach as outlined in Chapter 4 of this thesis is also included ('GA') for comparison

purposes. The 'GA' and the 'None' schemes provide very similar results. Furthermore,

on comparing the 'utility' plot of Figure 5.10, the performance of the 'GA', 'None',

'Crossover' and 'Mutation' schemes are all very similar. This clearly indicates that the

crossover and mutation operators do not contribute to the performance of the GA

scheduling approach.

The crossover operator as outlined in the thesis is clearly not effective. It is

theorized that with 'generational replacement,' sufficient improvement in the population

fitness is not realized and this contributes to the dismal performance of the crossover

operation in the overall GA scheme. If a more 'greedy' strategy, such as 'elitist

recombination' [Thierens and Goldberg, 1994] were used, there may be a significant

improvement in the performance of the crossover operation. In 'generational replacement',

the two parents during crossover are completely replaced by the two resulting children. In

'elitist recombination,' the best two individuals from the family (consisting of two parents

and the two children) replace the parents of the old generation. With 'elitist recombination'

the population is always replaced with more superior individuals in each generation.

The results obtained using this new replacement strategy during crossover is

labelled as 'New Crossover' and the resulting overall GA is labelled 'New GA'. From

Figure 5.10, it is very clearly observed that the new replacement strategy has resulted in a

significant improvement in performance compared to just using the best schedule from the

random initialization of the population at each decision point. These results are for

Experiment 2 of the 8 experiment dynamic scheduling problem (Figure 5.9), and were

found to hold for all 8 experiments.
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The Genetic Algorithms scheduling approach as outlined in Chapter 4 of this thesis,

was modified to use elitist recombination instead of generational replacement. This

modified Genetic Algorithms scheduling method together with the other scheduling

methods outlined at the beginning of Section 5.7, were then applied to the 8 dynamic job

shop experiments (Figure 5.9) and the results are shown in Figures 5.11- 5.18.

In the Extreme Value Approach, an alternative consists of job operations that can be

immediately assigned to currently available machines (Figure 3.1). To evaluate the

potential of these alternatives, random schedules consisting of job-operations that are

currently pending at the job shop are formulated. From these random schedules, the

potential of an alternative is estimated using Extreme Value Theory. A question that may

arise pertaining to the formulation of alternatives is, "What is the effect of including 'future'

assignments in the alternatives?" (i.e. the assignment of job operations on to machines that

may not be currently available).

To answer this question, a variable called Decision Horizon (dh) will be introduced

and is defined as the number of concatenations of future assignments to the alternatives.

For example, referring to Figure 3.1,

a an alternative with dh-=O is

RlTI R2T2

* alternatives with dh=1 are

RT1 R2T R2R1T3

RIT1 R2T2 R2T3

alternatives with dh=2 are

RT R2T2 R1T3 R3T4

RITI1 R2T2 R2T3 R4T4

RIT1 R2T2 R2T3 R3T4
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Effect of the various Genetic Operators on the
Performance of the Genetic Algorithms Scheduling Approach

Normalized Mean Job Tardiness

GA None Crossover Mutation New New GA
Crossover

GA Schemes

Normalized Mean Job Cost

GA None Crossover Mutation New New GA
Crossover

GA Schemes

Normalized Mean Job Utility

GA None Crossover Mutation New
Crossover

New GA

GA Schemes

Figure 5.10: Effect of the Various Genetic Operators
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Expt 1: Tight Duedates. 6 Suitable Resources to Process a job operation
and with Resource Breakdowns.

Normalized Mean Job Tardiness

I

Extreme SPT Fuzzy Random FIFO LIFO Gent

Scheduling Method

Normalized Mean Job Cost

I

tic

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Utility

Extreme SPT Fuzzy Random F

Scheduling Method

IFO LIFO Genetic

Figure 5.11: Results of Experiment 1.
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Expt 2: Loose Duedates. 6 Suitable Resources to Process a job operation
and with Resource Breakdowns.

Normalized Mean Job Tardiness

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Mean Job Cost

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Utility

Extreme SPT Fuzzy Random FIFO

Scheduling Method

LIFO Genetic

Figure 5.12: Results of Experiment 2.
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Expt 3: Tight Duedates. 3 Suitable Resources to Process a job operation
and with Resource Breakdowns.

Normalized Mean Job Tardiness

I -~~~~~~~~~~~~~~

Extreme SPT Fuzzy Random FIFO LIFO Gent

Scheduling Method

Normalized Mean Job Cost

I

. . i ! i i

etic

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Utility

Extreme SPT Fuzzy Random FIFO

Scheduling Method

LIFO Genetic

Figure 5.13: Results of Experiment 3.
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Expt 4: Loose Duedates, 3 Suitable Resources to Process a job operation
and with Resource Breakdowns.

Normalized Mean Job Tardiness

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Mean Job Cost

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Utility

Extreme SPT Fuzzy Random FIFO

Scheduling Method

LIFO Genetic

Figure 5.14: Results of Experiment 4.
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Expt 5: Tight Duedates. 3 Suitable Resources to Process a job operation
and with NO Resource Breakdowns.

Normalized Mean Job Tardiness

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Mean Job Cost

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Utility

Extreme SPT Fuzzy Random FIFO

Scheduling Method

LIFO Genetic

Figure 5.15: Results of Experiment 5.
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Expt 6: Loose Duedates, 3 Suitable Resources to Process a job operation
and with NO Resource Breakdowns.

Normalized Mean Job Tardiness

I

. i T ! ~ii
Extreme SPT Fuzzy Random FIFO LIFO Gene

Scheduling Method

Normalized Mean Job Cost

tic

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Utility

I~~~~~~~~

............... .. . ........ . ............

1. - - - - - - - - - - - - - - - --I I i : I
Extreme SPT Fuzzy Random FIFO

Scheduling Method

LIFO Genetic

Figure 5.16: Results of Experiment 6.
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Expt 7: Tight Duedates, 6 Suitable Resources to Process a job operation
and with NO Resource Breakdowns.

Normalized Mean Job Tardiness

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Mean Job Cost

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Utility

Extreme SPT Fuzzy Random FIFO

Scheduling Method

LIFO Genetic

Figure 5.17: Results of Experiment 7.
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Expt 8: Loose Duedates, 6 Suitable Resources to Process a job operation
and with NO Resource Breakdowns.

Normalized Mean Job Tardiness

I

0.8

0.6

0.4 

0.2

0

0.8 

0.6 

0.4.

0.2 

0

Extreme SPT Fuzzy Random FIFO LIFO Gene

Scheduling Method

Normalized Mean Job Cost

tic

Extreme SPT Fuzzy Random FIFO LIFO Genetic

Scheduling Method

Normalized Utility

Extreme SPT Fuzzy Random F

Scheduling Method

IFO LIFO Genetic

Figure 5.18: Results of Experiment 8.

134

a

I .

.0

a

C,--joa.N 

EIaz

.0

ol.,0

U
a
41

_ 0.8

0.6
lN

_ 0.4
a
o 0.2

0

U~~~~~~~~~~~

…~ ~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

U .
,i I [ , · ; I i .

_ . . . . . . .~~~~~~~~~~~~~~~~~~~-

I

1 _ I I } 

I---

I...I

-

I



The Extreme Value scheduling approach was applied to Experiment 2 of the
dynamic scheduling experiments (Figure 5.9), incorporating the dh. Simulations were
performed for dh=0,1,2,3,4,5 and the results are presented in Figure 5.19. At first glance
it appears that there is a deterioration in the results as the dh increases. Intuitively,

however, one should expect an increase in the performance as the dh increases.

To reconcile this anomaly, it would be useful to examine the mechanics of the
Extreme Value approach closely. In the Extreme Value approach, it is acknowledged that
the pool of alternatives is usually large and it would be impractical to evaluate all of them.
Therefore, only a sampling of these alternatives are considered. By incorporating the
decision horizon, one increases the already large pool of alternatives and by sampling from

these pool, adequate representation of the immediate assignments to currently available
machines may not be realized. To illustrate, consider once again the example of Figure
3.1. In this example, the immediate assignments to currently available machines are:

RlT1 R2T2

Random schedules will be drawn using RlT1 R2T2 as the beginning portion of the
schedules and the potential of the assignment of RT1 R2T2 will be estimated. By
increasing the decision horizon to 1, the alternatives with RlT1 R2T2 as root assignments

are

RlT1 R2T2 R1T3

RlT1 R2T2 R2T3

The concatenation has resulted in two separate "alternatives" with RlT1 R2T2 as root
assignments. When the potential of RlT1 R2T2 R1T3 and RlTl R2T2 R2T3 are
evaluated, it is the potential of the concatenated alternatives that are estimated and not that of

the immediate assignments RlTl R2T2. It must be pointed out that in a schedule building
approach, it is important to estimate the potentials of the immediate assignments and not
that of future assignments. It is this inaccurate estimation of potentials of the immediate
assignments that results in the deterioration of the performance of the schedules as the
decision horizon increases. On the other hand, if exhaustive evaluation of all alternatives
are considered, then the incorporation of the decision horizon may lead to an increase in the

schedule quality.
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Variation in Performance of the Extreme Value~~~~~~~~~~~

Variation in Performance of the Extreme Value
Scheduling Approach to an Increase in the Decision Horizon.

Normalized Mean Job Tardiness
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Figure 5.19: Effect of Decision Horizon on the Performance of

the Extreme Value Scheduling Approach
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Figure 5.20, presents the summary of the results (Figures 5.11 to 5.18). The best

two scheduling approaches in terms of the Mean Job Tardiness and Mean Job Cost and the

Utility (composite performance measure) are tabulated for each experiment.

A review of the Figure 5.20, reveals that both the Extreme Value and the Genetic

Algorithms scheduling methods have generally outperformed all the other scheduling

methods studied in this thesis. Specifically, the Genetic Algorithms method has

consistently performed best and the Extreme Value approach is consistently second best in

terms of Mean Job Cost performance measure. As for the Mean Job Tardiness

performance measure, the norm was that the Genetic Algorithms and the Extreme Value

approaches finished best and second best respectively. The exception to this norm occurs

in Experiments 3,4,7 and 8. In Experiments 3 and 4, the SPT dispatching rule performed

better than the Extreme Value Approach. Referring to Figure 5.9, Experiments 3 and 4

correspond to the case where machine breakdowns and repairs are included in addition to

the reduced number of suitable resources to process a job operation. However, referring

to the utility performance measure (composite of cost and tardiness), the Extreme Value

approach still performs second best to the Genetic Algorithms approach. In the case of

Experiments 7 and 8, the Extreme Value approach outperforms the Genetic Algorithms

approach in terms of the Mean Job Tardiness performance measure. Experiments 7 and 8

refers to the case where no machine breakdowns and repairs are considered and all the

machines are assumed capable of processing any job operation.

In addition, reviewing Figures 5.11-5.18, will indicate that the confidence intervals

of the performance (the utility) of a scheduling method increases when

machine breakdowns/ repairs are included

the number of suitable resources to process a job operation is small.

A comparative study of the computational times required for the various scheduling

methods discussed in the previous sections was conducted. This comparison cannot be

performed on the basis of computational times required for a scheduling decision made by

the various methods. This is so because, the various scheduling methods have different

scheduling mechanics and each scheduling decision for the various methods involves

different number of scheduling assignments. For example, the dispatching rules (viz,
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SPT, FIFO, LIFO and Random) make only one scheduling assignment per scheduling

decision. The Extreme Value Method and the Genetic Algorithms Method both involve

multiple scheduling assignments per scheduling decision. Therefore the average

computational time required to perform a scheduling assignment (rather than a scheduling

decision) is a more accurate measurement of computational effort for each of the scheduling

methods.

Figure 5.20: Summary of Results

The average computational time required to perform a scheduling assignment for all

the scheduling methods discussed previously are based on Experiment 1 of the 8 dynamic

scheduling experiments (Figure 5.9). The computational time data for the various

scheduling methods is recorded beginning, after the 3000th job-operation was assigned and

continued till the 4000th job-operation was assigned (i.e. 1000 scheduling assignments).
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Expt # Tardiness Cost Utility

1 GA GA GA

Extreme Extreme Extreme

2 GA GA GA

Extreme Extreme Extreme

3 GA GA GA

SPT Extreme Extreme

4 GA GA GA

S PT Extreme Extreme/SPT

5 GA GA GA

Extreme Extreme Extreme

6 GA GA GA

Extreme Extreme Extreme

7 Extreme GA Extreme

GA Extreme GA

8 Extreme GA GA

GA Extreme Extreme



This ensures that the computational time data is recorded only after the dynamic job shop

has reached steady state in the simulations. Each scheduling method was simulated for 10

different random seeds and the average computational time (in msecs) required for a

scheduling assignment, the standard deviation and the 90% confidence intervals are

summarized in Figure 5.21. The results indicate that the average computational time for the

Extreme Value Method is about an order of magnitude larger than the simple dispatching

rules and the Fuzzy Logic approach (which is a combination of dispatching rules). The

Genetic Algorithms approach, as seen earlier produced excellent results but requires about

two orders of magnitude of computational time compared to the dispatching rules.

Figure 5.21: Computational Time required for a Scheduling Assignment (in msecs).
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Method Average Std. Dev. 90% Confidence

Interval

Extreme 144.20 5.88 [140.79, 147.61]

Genetic 1105.64 285.08 [940.39, 1270.88]

SPT 18.03 0.49 [17.74,18.31]

FIFO 17.85 0.46 [17.59,18.12]

LIFO 17.83 0.50 [17.54,18.12]

Random 17.81 0.37 [17.59,18.02]

Fuzzy 19.65 0.88 [19.14, 20.16]
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Conclusions

A survey of current scheduling methods has revealed that most of these methods will not be

suitable to industry because they require assumptions that do not reflect reality. In
particular assumptions that pertain to multiple criteria scheduling, availability of alternate
resources to process job-operations, and the basic dynamic behaviour of job-shop
scheduling environments (i.e., random job arrivals, breakdown and repair of machines),
are very relevant for the application of scheduling methods to real industrial job shops.

Two scheduling methods, based on Extreme Value Theory (SEVAT) and Genetic
Algorithms (GA), were developed in this thesis to bridge the gap between academic
research and industrial use. The SEVAT approach is a schedule building approach, while
the GA approach is a schedule permutation approach.

Both these approaches were applied to static benchmark job shop scheduling
problems (the Muth and Thompson 6x6 and lOxlO problems). The results compare
favourably with the optimal solutions and with results published in the literature. In
addition, these results were found to be better than those obtained using some common

dispatching rules and a scheduling method based on Fuzzy Logic, which is a representative

approach of current scheduling research.

A dynamic scheduling problem was designed which incorporates multiple criteria
scheduling, with alternate resources to process job-operations, and includes dynamic
effects, such as stochastic job arrivals and machine breakdowns/repairs. Three factors
were identified and varied between two levels each, to reflect the simulation of varied job
shop conditions encountered in reality. The SEVAT and GA approaches were applied to
the factorial design of experiments . The results were once again compared with some
common dispatching rules and the Fuzzy Logic scheduling method. The results
overwhelmingly indicate that the SEVAT and GA approaches produce better performance
than the other methods.
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Appendix A

Extreme Value Theory, attempts to derive an approximate mathematical expression of the

probability tail. An approach commonly known as the Classical Extreme Value Theory,

expresses the probability tail in terms of 2 parameters known as the location and scale

parameters. An alternative approach, commonly known as the Generalized Extreme Value

Theory, does the same with 3 parameters, the former two plus an exponent.

The parameters of the extreme value distributions are estimated assuming that the

initial distribution of the data is unknown and that the estimation of the parameters is

performed over the population of the extrema and not the population of the data. To

achieve this, a sample of size nN is drawn from the initial population and is partitioned into

N groups of n elements. From each group, the maximum (or minimum; in the rest of the

analysis, we will refer to the maximum) datum x(n) is determined. In this way a random

sample X: (X1, X2, ... , XN) of size N from the population of maxima over n elements is

generated [Guida and Longo, 1988].

The approximate distribution of maxima based on classical extreme value theory is

derived as

FI(x) = exp[-exp[-(x-an)/bn]] (A. 1)

where an is the location parameter and bn is the scale parameter. Based on the maximum

likelihood method (ML), the estimates for an and bn are found to be

N

Z Xi exp (-Xi/bn)

bn= - i=
N

Z exp (-Xi/bn)
i=l (A.2)
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F N1

a In bn n N- exp (-Xi/bn)
i=l i(A.3)

N

X =N- 1 Xi
where i=l . The equations above can be solved by the following iteration

procedure

bn(2j+2) = bn(2j+1 ) + [bn(2j) - bn(2j+ 1)]/3 (A.4)

where bn(2j) is a tentative solution at step j to be inserted at the right hand side of equation

(1) and bn(2j+1) is the corresponding left hand side. The parameter bn is initialized in the

iterations as

bn(O) = N-1 Xi + Xin ]
Ni-1i~ (A.5)

The termination of the iteration is controlled by the difference between the solutions at two

consecutive steps. The final value of the iteration, namely the parameter bn is then

introduced into equation (A.2) to yield the other parameter an [Guida and Longo, 1988].

In the case of the Generalised Extreme Value Theory, the approximate distribution

of the maxima taken from an unknown initial population F(x) is [Guida and Longo, 1988]

F 2 (x) = exp exp [-xvn - an]}
Cn (A.6)

The maximum likelihood estimates of the three parameters, v,an' and cn' are those which

maximize the following log likelihood L:

N~ N [ !] -i
L(X:an,cn,v) = N lnv - N lnc'n - Xa n X - exp (X n

i=l Cn i=l i=l Cn (A.7)

Expressions for these parameters are:
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N /v
X, exp Xi)

Cr I --
iV Cn

i, exp( ^ )
~~~i=~ ~~ X ~C~~n ~(A.8)

an = -Cn n [N- ' exp( ) ^(9
^ i= 1 XCn (A.9)

=N 
InXi XIn XiN In X 1+ ' ext (X,, -in) -I

~i=1L LCn Cn (A. 10)

Simulation results show that the Generalized Extreme Value Theory estimator is a more
efficient extrapolation estimator of probability tails than the Classical Extreme Value Theory

[Guida and Longo, 1988].

An alternative approach to the estimation of the probability tails, besides the

analytical approaches described above is to use graphical techniques. One such technique

using a three point graphical estimation procedure will be described below [Bardsley,
1989]. This procedure is used in conjunction with the Type 2 or Type 3 Extreme Value

distributions. The distribution functions of the Type 2 and Type 3 Extreme Value

distributions are expressed as:

- N87 ~~~~~~~~~~~~~~(A. 1 1)
F(x) = exp - (x-w& k<, xw Type 23

F(x) = aexp(-.(t (Ic k>Ox•t Type (A.12)

where w and 4 are location parameters, k is the shape parameter and 6 and a are scale

parameters. The Type 1 distribution (Gumbel distribution) is a limit case for both Type 2
and Type 3 distributions for k --+ 0. Also let

y = -In (- ln[F(x)]) (A.13)

157



then, the unknown parameters are estimated using three x-y points, viz, xl,y1,x2,y2,x3,y3,

such that x < x2 < X3.

expression:

Y2- Y Y3 -YI
X2 - X X3 - X1

The type of the function is determined from the following

(A. 14)

Equation (A. 14) gives positive and negative values for Type 2 and Type 3 distributions

respectively. For the Type 2 case, the three parameters of the prediction function can be

written in terms of the three points as

= X3 - Xi

exp (-ky3) - exp (-kyl) (A. 15)

= x1 - exp (-kyl) (A.16)

with k being obtained as the specific value, k2, such that H(k2)=0, where H(k) is defined

as

H(k) = 1 - exp [-k (Y2 - Y)] 1 - exp [-k (Y3 - Y1)]
X3 - XI (A. 17)

Moreover, k2 is a unique value located within the interval

In (3 )<k2 <0

Y3 - Y2

For the Type 3 case, the corresponding expressions are

r =--- X3 - xl
exp (-kyI) - exp (-ky3)

= xl + c exp (-kyl)

with k being obtained as the specific value k3 giving H(k3)=0 and k3 is a unique value

within the interval
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1 2- X 1

0<k3<-ln Y2 - Y1 (A.21)
(A.21)

The three points may or may not coincide with the existing data points. To properly define

the curvature of the data plot, x l and X3 are likely to be located near the lower and upper

limits of the data range. The point x2 and Y2 will be best located somewhere in the middle

region of the data.
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Figure B. 1: Precedence Constraints (Machine requirements for each task) for the

6x6 problem
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Figure B.2: Process Times for each Task for the 6x6 Problem
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Figure B.3: Precedence Constraints (Machine requirements for each task) for the

lOx 10 problem
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Figure B.4: Process Times for each Task for the 1Ox 10 Problem
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