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Abstract 
Efficient allocation of the communication resources such as frequency bandwidth is 
an important problem in multiple access technique. In this thesis, we explore the 
potential of code-division multiple-access (CDMA) as an efficient resource-sharing 
technique. We explore recently proposed receivers and develop a unified vector space 
interpretation. Bit error rates of each receiver in the simple two user case are devel- 
oped and compared. 

The decorrelating detector is subject to a capacity decrease when the number 
of active interfering users is small compared to the number of potential users. We 
propose an algorithm to modify the decorrelating detector so that a capacity increase 
is achieved when the signal-to-noise ratios of interfering users are very high. We 
analyze the algorithm in a simple case and provide results of Monte-Carlo simulation 
to demonstrate the viability of the algorithm. 
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Chapter O 

Not at ions 

In this thesis, many equations are written in terms of ma.trices and vectors. We will 

exclusively use boldface letters for these matrices and vectors. 

8 A boldface capital letter denotes a mahrix. P, O, . . 

0 A boldface lowercase letter denoted a column vector. b,  p, . . 

In addition, many subscripts are used in the thesis. To avoid asny confusion which 

may be caused by multiple subscripts, we will use braces for elements of matrices and 

vectors. 

0 The ( i ,  j) element of a matrix A will be denoted a,s A{i ,  j). 

e The i  th  element of a vector b will be denoted as b{i). 



Chapter 1 

Introduction 

As demand for a wide range communication services is growing rapidly, efficient al- 

location of limited communication resources such as frequency bandwidth and power 

emerges as an important problem. The classical resource allocating techniques in- 

clude FDMA and TDMA. CDMA, a potentially more efficient technique, has been 

suggested. It has attracted considerable attention in the contest of a new standard 

for digital mobile communication. For example, R.O. Korea has adopted the CDMA 

technique as its national standard for the commercial radio telecommunication net- 

work. In this thesis, we explain how CDMA works in wireless communication network. 

We introduce some different types of CDMA receivers, and adopt a vector space in- 

terpretation of each receiver in order to explain their difference~ and similarities. We 

also suggest an algorithm for improving the interference rejection characteristic of 

these receivers. 

1.1 What is CDMA ? 

Spread Spectrum is a transmission methodology in which the signal occupies band- 

width in excess of the minimum necessary to send information. The spreading of 

the band is accomplished by means of a code which is independent of the data. 

Synchronized reception with the code at the receiver is used for despreading and 

subsequent data recovery [I]. The initial application of the spread spectrum system 



was in military anti-j amming tactical communications and to anti-multipath systems. 

Multiple access refers to techniques with which two or more independent infor- 

mation sources (transmitters) transmit information through one physical channel to 

their counterparts (receivers). Interference among the signals requires a receiver which 

extracts desired information out of the received signal by suppressing the interference. 

Spread spectrum techniques have been proposed for code division multiple access 

(CDMA) in order to support simultaneous digital communication among a large num- 

ber of users. With the Direct-Sequence Code-Division Multiple-Access (DS CDMA), 

each user is given its own pseudo-random code or signature form, which is quasi- 

orthogonal (i. e., has low correlation) with the codes of the other users. Receivers use 

the same codes to suppress the interference. While all users use disjoint frequency 

bands in Frequency-Division Multiple-Access (FDMA) or transmit sequentially in 

time in Time-Division Multiple-Access (TDMA), users of the CDMA system are al- 

lowed to transmit simultaneously in time and to occupy the same frequency band as 

well. 

In order to explain briefly how the CDMA system achieves the multiple access task, 

we will compare the CDMA system with the heuristic TDMA system in a noise-free 

environment. Suppose that there are two transmitters and two receivers. The first 

transmitter (user 1) tries to send one bit to the first receiver (receiver 1)) and the 

second transmitter (user 2) tries to send one bit to the second receiver (receiver 2). 

Bits sent by transmitters are either 1 or -1. Assume that the bit that user 1 wants 

to send is 1, and the bit that user 2 wants to send is -1. The TDMA system, whose 

model is given in figure l . l(a) ,  works as follows. For the first time slot, switches at 

both ends of the channel connect the user 1 to the receiver 1 through the channel. 

Then user 1 sends the desired bit to receiver 1 through the channel, while user 2 

and receiver 2 are disconnected from the channel. During the second time slot, the 

switches connect user 2 to receiver 2. It is a very simple way to share a common 



user 1 

"\ 
receiver 1 

/ 

receiver 2 
- 1 - 1 

(a) A TDMA system 

(b) A CDMA system 

Figure 1-1: System models for multiple access. 



channel between two or more users. It is also very easy to see that synchronization 

between users is crucial for TDMA systems. 

The CDMA system adopts a more complicated modulation/demodulation method 

than the TDMA system. A simplified CDMA system model is depicted in fig- 

ure l . l(b).  User 1, who wants to send 1, spreads the bit into the two time slots 

by multiplying 1 with its signature sequence, say [& %I. User 2, who wants to send 

-1, also spreads the bit into two time slots by multiplying -1 with its signature se- 

quence, say [-1 1 . Those two spreaded sequences now add up and get transmitted Jz JZ] 
through the common channel to their destinations. After the transmitting waveform 

reaches its receivers, it gets multiplied by the same signature sequence as those at the 

1 1  1 1  for receiver 2. These multipli- transmitters, i. e. [z z] for receiver 1 and [- - JZ JZ 
ers, which operate as matched filters, will produce 1 for receiver 1 and -1 for receiver 2. 

1.2 Why CDMA ? 

While the FDMA and TDMA techniques also provide good multiple access flexibility, 

CDMA offers some unique advantages which are listed below. 

a When the code for a particular user group is only distributed among authorized 

users, the CDMA process can provide some degree of communication privacy, 

since the transmissions are less easily intercepted by unauthorized users without 

the code. 

a If a particular portion of the spectrum is characterized by fading, signals in that 

frequency range are attenuated. In an FDMA scheme, a user who was unfortu- 

nate enough to be assigned to the fading portion of the spectrum may experi- 

ence highly degraded communications for as long as the fading persists. Time- 

selective fading can cause the same problem in TDMA. In a CDMA scheme, 

however, all users occupy the frequency band and time equally. Therefore, 



degradation caused by fading is shared among all users. 

There is no need for precise time coordination among the various simultaneous 

transmitters with CDMA schemes. Of course, time coordination information 

increases capacity when available, but it is not critically important. On the 

contrary, the TDMA system largely depends on a common clock for coordinating 

the transmission because only one transmitter can send a symbol at a given time. 

However, requiring two spatially isolated transmitters to share a common clock 

is, although not impossible, non-trivial. 

In a multiple access environment with bursty users, such as voice communica- 

tion, it is typical that at a given time, only few of a large number of potential 

users are actively transmitting. FDMA (TDMA, respectively) allocates stati- 

cally nonoverlapping frequency bands (time slots) to all potential users. Hence, 

as the ratio of simultaneously active users to the number of potential users de- 

creases, FDMA (TDMA) becomes increasingly inefficient due to the increase in 

the number of unused frequency bands (time slots). On the contrary, the signa- 

ture waveforms of the CDMA users overlap in both the frequency and the time 

domains. Therefore, as the ratio of active users to potential users decreases, 

CDMA becomes more efficient due to the decrease in the inter-user interfer- 

ence. In essence, CDMA is a dynamic channel sharing strategies which perform 

better in bursty user environments. 

1.3 Thesis Outline 

The traditional CDMA receiver, or the matched filter receiver, suffers from the near- 

far problem caused by the different distances of spatially distributed transmitters to 

the receiver. Recently, a lot of receivers which overcome the near-far problem have 

been proposed [5]-  [9]. 

In Chapter 2, we introduce a model of a CDMA system. We describe three syn- 



chronous linear CDMA receivers and explore their characteristics. We also consider 

the differences between these three receivers and show that one receiver converges to 

another in some special cases. We present the bit error rates of each receiver and 

include a graph that shows the bit error rates of detectors in various situations. 

In Chapter 3, we address the dynamic multi-access aspect of the CDMA system. 

Two of the three CDMA receivers introduced in Chapter 2 experience some capacity 

increases as the interference decreases while the other one does not have this property. 

We investigate this behavior of the receiver and suggest an algorithm to modifies the 

detector so that it overcomes this shortcoming. Moreover, by analyzing a simple case 

and using the Monte-Carlo method, we show that the algorithm results in a capacity 

increase in high interference situations. 

Chapter 4 concludes the thesis by summarizing the results and presenting some 

possible directions for further work. 



Chapter 2 

CDMA Receivers 

CDMA is increasingly of interest for use in wireless communication environments. Un- 

like wired communication where signals travel through the wire without substantial 

attenuation, wireless communication involves major signal attenuation. In general, 

the power at the receiver is inversely proportional to the cube of the distance between 

the transmitter and the receiver, referred to as path loss. This path loss, as well as the 

fact that wireless communication is mostly used in mobile communication sys tems, 

makes it hard to achieve reliable wireless communication. This leads to the near-far 

problem [5], which we develop in the next section, and has been the major obstacle 

in building high performance CDMA receivers. 

2.1 Model for a Wireless CDMA Communication 

System 

In a typical multiple access wireless communication scenario, there are many spatially 

distributed transmitters and a central base station. The goal of each transmitter is 

to send symbols to the base station. Each transmitter radiates symbols modulated 

by a waveform. The base station receives the transmitted waveforms and detects all 

or some of the transmissions. The signal from each transmitter, scattered spatially in 



an uncoordinated manner, reaches the base st at ion with various energies depending 

on the distances between the transmitter and the base station. 

Let assume that there are M users transmitting symbols. The received signal at 

the base station is the sum of the M transmissions plus additive noise. Throughout 

the thesis, we will assume that the noise is a stationary white Gaussian process. The 

received signal due to the user j is given by 

where Pj is the power of the user j ,  b[n] is the symbol to be transmitted, s j ( t )  is 

the signature waveform of the user j, T is the symbol interval, and vj E [O, T) is the 

delay of the user j .  L1 and Lz  in (2 . la )  denote the points where transmissions start 

and stop, respectively. We will restrict bj[n]  to be independent and equally likely to 

be 1 or -:L. Without loss of generality, we assume that J:S; ( t )  dt = 1 for all j .  The 

received signal due to all M users is then given by 

where n(t) is white Gaussian noise with power spectral density of No/2. 

When the base station receives the waveform (2.1), it extracts all or some of the 

bj[n]  from the received waveform. In this thesis, the ultimate goal of the receiver is 

to detect the transmission of user 1, bl [n], which will be referred to as the desired 

transmission. To achieve this goal, the base station has some or all of the following a 

priori knowledge. 

The signature waveform of the desired user, s  1 (t  ) . 

The signature waveforms of the interfering users, s z ( t ) ,  , s M ( t ) .  

The timing of the desired user, ul. 



The timing of each of the interfering users, u2, , UM. 

a The received power of each user, PI, , PM. 

2.2 Synchronous Linear CDMA Receiver 

In this section, we will introduce three CDMA receiver structures. We assume that 

the transmission is symbol synchronous, i. e, y = . = VM = 0. Though synchronous 

CDMA systems are not typical, the extension of this analysis to the asynchronous 

case can be done without any conceptual difficulty. When the users are synchronous, 

it is sufficient to consider the one-shot version of (2. I) ,  

The receivers of this section are linear CDMA receivers, i.e., they have the form 

Let's denote as the estimate of the bit bl. Then 

where dl(t) is a linear combination of the signature waveforms. Note that the deci- 

sion (2 .3~)  is invariant to positive scaling of dl@). The splitter (2 .3~)  appears in each 

detector that we present in the section. The difference among the three receivers is 

the correlating waveform dl (t ). We sometimes consider the detector waveform dl (t) 

as the detector itself. 



2.2.1 Matched Filter Detector 

The matched filter detector is the linear CDMA detector with the detector waveform 

of dl,mtch = s l ( t )  Note that the matched filter detector does not exploit any knowl- 

edge of the signature waveforms of the interfering users when detecting the desired 

transmission. The matched filter detector is the maximum-likelihood detector when 

the signal is corrupted only by white Gaussian noise and no multiple access interfer- 

ence [13]. Due to its simplicity, the matched filter detector is often used even when 

the noise is not white Gaussian. In the multiple access system of the previous sec- 

tion, the overall interference is not white Gaussian because of the interference from 

undesired users. The output of the matched filter detector is 

The third term in (2.4) represents the effect of the interfering users. In theory, the 

effect of the multiple access interference component can be eliminated by choosing 

the signature waveform to be orthogonal, i.e., $,Tsi(t)sj(t) dt = 0. In practice, how- 

ever, orthogonal signal constellations are more the exception than the rule because of 

limited bandwidth. The asynchronism between users also makes this orthogonality 

difficult to impose. In the asynchronous case, the correlations have to remain small 

for all possible relative delays. There has been extensive research looking for sets of 

sj(t)'s which have minimal correlation among s j  (t)'s for all possible delays [15]. For 

the thesis, it is sufficient to mention making the signatures waveforms orthogonal is 

not typical. 

For bl,mtCh (or ~ g n ( y ~ , ~ ~ ~ ~ ) )  to be a reliable estimate of bl, the sum of the second 

term and the third term in (2.4) has to be small compared to the first term. Arbitrarily 

small correlations between users can be achieved by making the signature waveforms 

longer, implying greater bandwidth. However, the ratio of Pj to Pl is determined 



by the ratio of the geometrical distance between the receiver and the user j to the 

distance between user 1 and the receiver. When CDMA is used for mobile radio 

communication network, the distances between the users and the base station cannot 

generally be controlled by the receiver. When the distance between the desired user 

and the receiver is much bigger than the distance between user j and the receiver, the 

third term in (2.4) dominates gl,mtch, thereby making the estimate unreliable. This 

problem, referred to as the near-far problem, makes the matched filter an inadequate 

receiver unless Pj's are made small. 

2.2.2 Power Control 

The near-far problem is caused by the big interfering signal power of the undesired 

users which happen to be much closer to the receiver than the desired user is. Reduc- 

ing the interfering signal power makes the matched filter receiver perform better. The 

interfering power, however, cannot be reduced to zero because an interfering user for 

one receiver is a desired user for another one. In most cases, matched filter receivers 

for all users are located at the central base station. 

With the power control method [2], the central base station measures the geo- 

metrical distance between the receiver and each transmitter. The base station then 

controls the power with which each transmitter sends its signals so that the power of 

each received signal becomes the same for all users. Using the previous notation, the 

power control method makes all Pj's equal. This power control method, combined 

with a low correlation constellation between signature waveforms, can be used with a 

matched filter receiver to get reasonably good performance. However, although this 

power control scheme suppresses the near-far problem greatly, it is self-defeating in 

a sense that the transmitted powers of the strong users should be reduced in order 

for the weaker users to achieve reliable communication, which decreases the over-all 

capacity of the resources. 



2.2.3 Decorrelating Linear Detector 

As we have seen, the traditional matched filter receiver for CDMA communication 

suffers from the near-far problem. The power control method with low mutual cor- 

relations between the user signature waveforms is the only remedy implemented in 

practice to cure the near-far problem [6]. However, the near-far problem is not an 

inherent characteristic of CDMA systems. Rather, it is the inability of the conven- 

tional mat ched-filter receiver to exploit the structure of t he mult iple-access interfer- 

ence. Recently, the decorrelating detector has been proposed [ 5 ] .  It is based on a 

priori knowledge of the signature waveforms of interfering users which is not required 

for the conventional matched filter detector, and overcomes the near-far problem. 

The decorrelating detector dlYd,(t) is a function which is orthogonal to all the 

interfering signature waveform, sz(t) ,  , sM(t). The third term in (2.3b) is made to 

be zero for the decorrelating detector dl ,deC(t). This ensures that the decorrelating 

detector avoids the near-far problem. 

Let dl,dec(t) be a linear combination of sl(t),  sz(t),  . , sM(t), i.e., 

From the orthogonality of dlYdec(t) to the interfering signature waveform, we have 

following M - 1 equations, 

We will restrict our attention to the case in which s l ( t )  is not a linear combination 

of s2(t), - . . , sM(t). Without loss of generality, we assume 



Define a matrix R whose (i, j )  component is the correlation between user i and user j ,  

R{i, j }  = Ji;i'si(t)sj(t) dt .  

Define a vector a whose j th  component is aj .  The vector a specifies the decorrelating 

detector dl,dec(t) for the desired user. The M equations (2.6) can now be expressed 

in a concise vector equation, 

R a =  ul 

where ul = [I 0 0 . . -  0lt. For the synchronous CDMA communication system, the 

synchronous decorrelating detector has been shown to be the generalized maximum- 

likelihood detector for the white Gaussian noise channel [5]  when no knowledge of the 

power is assumed. 

2.2.4 MMSE Linear Detector 

The minimum mean-square-error linear detector dl,mm,, is defined as the signal dl (t) 

that minimizes the MSE 

Let dl,m,s,(t) be a linear combination of sl(t), s2(t), . . , sM(t), i.e., 

Equation (2.9) is then 

No t MSE = Pl - ~ P ~ ( R u ~ ) ~ c  + C ~ R P ~ R C  + -C RC 
2 



where P = diag{fl, a, , and c is a column vector whose j th  component 

is c j .  The MMSE detector dl,,,,(t) is specified by c.  The vector c which minimizes 

(2.11) is obtained by differentiating (2.11) with respect to c and setting the derivative 

equal to zero 

c = p l  (2.12) 

The MMSE detector c can be calculated from (2.12) if the receiver knows a priori 

the signature waveform and power of each user. If the receiver does not have the 

necessary a priori knowledge, the MMSE detector waveform dl,,,,, can be obtained 

adaptively by finding the waveform which minimizes the mean square error function 

over training sequences. The typical operation of the MMSE linear detector requires 

each transmitter to send a training sequence at start-up which the receiver uses for 

initial adapt ation. After the training phase ends, adaptation during actual data trans- 

mission occurs in a decision-directed mode: i.e., the estimates of symbols are used to 

minimize the mean square error function. While the decorrelating detector waveform 

can be also obtained adaptively, it can be done only by estimating unknown signature 

waveforms because there is no simple projection function which the decorrelating de- 

tector solely minimizes. One drawback of the MMSE detector is that any time there 

is a drastic change in the interference environment, the decision-directed adaptation 

becomes unreliable, the data transmission of the desired user must be temporarily 

suspended and a fresh training sequence must be used. This drawback has been 

shown to be avoidable in a recent paper in which the MMSE detector was obtained 

without the start-up training phase [lo]. 

Before concluding the subsection, we will show that the MMSE detector converges 

to either the decorrelating detector or the matched filter detector in special cases. 

Fact 2.1 The MMSE detector converges to the decorrelating detector when the noise 

level goes to zero. 

tgy the notation diag{al, a2, . . . , a M )  we mean an M x M diagonal matrix whose diagonal 
elements are a l ,  a2, . . . , a ~ .  



Proof: From (2.12), 

since P l P - 2 ~ 1  = ~ 1 .  

Fact 2.2 The MMSE detector converges to the matched filter detector when the 

relative power of interfering users to the desired users goes to zero. 

Proof: From (2.12), 

since ulultR + &/2P11 is an upper trianglular matrix, whose inverse is also an 

upper trianglular matrix [14]. The proof is completed by the invariance of the MMSE 

detector to positive scaling. 

2.2.5 Vector Space Representation 

Roughly speaking, the matched filter detector maximizes the signal-to-noise ratio of 

the desired user while leaving the task of suppressing the interference to the power 

control method and a good signal correlation constellation design. The MMSE de- 

tector minimizes the combined effect of the interfering users and the noise while the 

decorrelating detector removes the effect of the interfering users at a cost of noise 

enhancement. 

All three detectors, dl ,mtch(t), dlYde,(t), and dl,,,, are linear combinations of the 

signature waveforms sl  ( t ) ,  . . , sM(t). If we denote V as the vector space of the signa- 

ture waveforms, then the detectors are vectors in V .  We will present three figures of 

the vector space V. In each figure, a detector and the signature waveforms are shown 

as vectors in the space. 



desired vector 

. . -  . . . . . - pa~ked-  qter detector 

Figure 2-1: Vector space representation of the matched filter detector. 

Let V' denote the interference subspace of V spanned by {s2(t), - , sM(t)}. The 

interfering vectors in the three figures are a s 2 ( t ) ,  . , &sM(t), and the desired 

vector is f l s l ( t ) .  The dots in the figures represent the white Gaussian noise. In Fig- 

ure 2-2, the matched filter detector dl,mtch(t) lies in parallel with the desired signature 

vector a s  (t ) regardless of the interference vectors. The matched filter detector 

is not changed when the interference vectors are changed in direction or in length. 

In Figure 2-3, the decorrelating detector is shown. The decorrelating detector lies in 

the direction which is orthogonal to the interfering subspace Vr. Changing lengths 

of the interfering vectors does not affect the decorrelating detector dl ,de, (t  ) . Note 

that if the desired vector is orthogonal to the subspace of interfering vectors VI, the 

decorrelating detector is the same as the matched filter detector. The direction of the 

decorrelating detector dlYde,(t) has nothing to do with the desired vector f l s l  ( t )  . 

The MMSE detector is shown in figure 2-4. The direction of the MMSE detector 

depends on all relative factors, such as the lengths and directions of the desired and 

interfering vectors and the variance of the noise power. Note that in general, the 



desired vector 

decorrelating detector /' 

Figure 2-2: Vector space representation of the decorrelating detector. 

desired vector 

Figure 2-3: Vector space representation of the MMSE detector. 



MMSE detector is neither orthogonal to the interfering subspace V1 nor in parallel 

with the desired vector in general. 

2.3 Bit Error Rate 

Various performance measures for CDMA receivers are proposed recently [3]-[6]. Per- 

haps the most relevant performance measure is the bit error rate (BER). Sometimes 

the interference transmissions contribute to the BER of a receiver ( e.g., the matched 

filter detector and the MMSE detector). For those receivers, the average BER over 

the possible interfering symbol combinations is the appropriate performance measure. 

In this section, we compare the average BER of three CDMA receivers. 

2.3.1 General Case 

The BER of the matched filter detector can be obtained from (2.4)t 

Let us denote P and P as the bit error rate and the bit error rate averaged over the 

interfering bits, respectively. Then 

t g y  x - N (m, a2) we mean that x is a Gaussian random variable with mean m and variance 
a2, i-e., one with probability density function 

1 
f&) = - exp {(x - m)2/2a2} . d%P 



where Q ( x )  = ( 2 ~ ) - ' / ~  Jp e-t2/2 dt .  The average BER is, therefore, given by 

The near-far problem that we discussed earlier is observed in (2.16) and (2.17). As 

Pj/P1 -+ rn for some j for which R{j, 1) # 0, the average BER of the matched filter 

goes to 112. The power control method controls the Pj's so that the ratios Pj/Pl 

remain equal to 1 for all j .  

The BER of the decorrelating detector can be obtained from (2.3), (2 .5 ) ,  and 

(2.8). First, 

The RER is also the average BER for the decorrelating detector because the 

interfering transmission is completely suppressed (at the cost of noise enhancement). 

The noise enhancement property of the decorrelating detector is observed in (2.18) 

since ultR-'u 2 1 with the equality when R is the identity matrix (meaning that 

the signature waveforms are orthogonal) . From (2.18), 

The BER of the MMSE detector can be obtained from (2.3), (2.10), and (2.12). 

This time, 

Note the difference between (2.20) and (2.15). The MMSE detector c in (2.20) changes 

adaptively depending on the Pi's, R{i, j)'s, and No. This adaptive change prevents 



the second term from being relatively bigger than the first term. Now the BER and 

the average BER are given in (2.21). 

2.3.2 Case of Two Users 

The three equations of average BER in the previous subsection do not make it easy 

to decide which detector is better to use in certain environments. For example, in 

some situations the matched filter detector has a lower average BER than the decor- 

relating detector, but that is not obvious from the two related equations. The reason 

is that there is a number of variables that affect the performance of each detector. 

In this subsection, we will focus on the simple two user case, where one user is the 

desired user and the other is the interfering user. Reducing the number of interfering 

users to one makes the equations very simple while effects of interference can still be 

observed. We will express the average bit error rates of each detector as functions of 

the signal to noise ratios and the correlations between signature waveforms. We will 

also compare the three detectors in some special cases. 

Let us define the signal to noise ratio of the i th user; 

The average BER of the matched filter detector can be derived from (2.16), as follows 



where p = ~:sl(t)sz(t) dt. 

The average BER of the decorrelating detector can be rewritten from (2.19), and 

is given by 

The average BER of the MMSE detector can be derived from (2.21b) [7], and is 

given by 

When p + 0 

The decorrelating detector and the MMSE detector converge to the matched filter, 

- - - 
Pmtch = Pdec = Pmmse = & (JK) (2.26) 

When p + 1 

The MMSE detector converges to the matched filter detector. The decorrelating 

detector, which is orthogonal to the interfering user, is now also orthogonal to the 

desired user because the signature waveforms of the two users are identical. Hence, 

the decorrelating detector rejects not only the interfering user but also the desired 

user. 

- 1 
Pdec = - 2 



W h e n  SNRl + 0 

- - - 1 
Pmtch = Pdec = Pmmse = - 2 

W h e n  SNRl  + oo 

W h e n  SNRz  + 0 

As we have seen, the MMSE detector converges to the matched filter detector in this 

case. The decorrelating detector, however, remains unchanged as SNRz goes to zero. 

Thus, it suffers from unnecessary performance degradation. While the interference 

becomes negligibly small as SNRz goes to zero, the decorrelating detector remains 

orthogonal to the interfering user in order to reject interference completely at the 

cost of noise enhancement. We will discuss this shortcoming of the decorrelating 

detector in the next chapter. 

W h e n  SNR2 + oo 

The MMSE detector converges to the decorrelating detector when SNRz becomes 

indefinitely large. 
1 

- - 

Pdec = Pmmse = & (\/-) 
Figure 2-4 shows the average BER of the decorrelating detector and the MMSE 

detector as a function of p. The performance of the decorrelating detector, drawn 

with the solid curve, remains unchanged when SNR2 is changed. The average BER 

of the MMSE detector, drawn with the dash-dot curve, gets bigger as SNR2 becomes 



larger. However, the dash-dot curve remains below the solid curve no matter how 

large SNR2 is, telling us that the MMSE detector always performs better than the 

decorrelating detector for the two user case. The dash-dot curve converges to the 

solid curve as SNR2 becomes indefinitely large. Changing SNRl affects the scale of 

the y axis, but the general trend is preserved. 

lcori 

Figure 2-4: Comparison between the bit error rates of matched filter detector (dot 
curve), decorrelating detector (solid curve), and MMSE detector (dash-dot curve). 



Chapter 3 

Joint User Identification and 

Detection 

3.1 Motivation 

With FDMA (or TDMA), a multiple access channel is effectively partitioned into 

independent single-user sub-channels. Given a bandwidth B, the performance of the 

FDMA (or TDMA) system depends on how many sub-channels this bandwidth is 

partitioned into. Let's assume the given bandwidth B is used by M users. Each 

user will occupy B I M  bandwidth, and the performance of the system, such as the 

quality of sound for a telephone network, depends on this B J M  bandwidth of the 

sub-channel. The smaller the number of users is, the better the performance of the 

FDMA system gets. 

Let's think of the following scenario. There are six persons, namely A l ,  A2, B1, 

B2, C1, C2. A1 is connected to A2 through a public radio telephone network. Simi- 

larly, B1 is connected to B2, and C1 to C2. Assume that the company which provides 

the service adopts the FDMA technique. Each user will then occupy one sixth of the 

given bandwidth B. However, it would be rare that all six users are talking at the 

same time. It is reasonable to say that some of them listen to the other persons at a 

given time, or that a pair might not speak for a duration. Assume a situation where 



only A1 and C1 are talking at a given time t .  It would be nice if the FDMA system 

was able to assign half of the bandwidth B to each of A1 and C1, and nothing to the 

remaining users, A2, B1, B2, and C2 because we would get better performance out of 

it. However, this is hard for FDMA to do because the system would have to reassign 

the channels to a new set of active users whenever someone starts or stops talking, 

which happens very often. In practice, the FDMA system would assign one sixth of 

the bandwidth to each potential user regardless of which user is active. In this sense, 

the performance of the FDMA system is limited by the number of the potential users. 

When five are quiet and only B1 talks, the performance, or the quality of sound to 

B2, remains the same as when all six users are talking. In essence, FDMA assigns 

a sub-channel to each potential user no matter whether it is actively transmitting 

symbols or not and the performance does not improve as the number of active users 

decreases. 

Let's now turn our attention to CDMA systems. Depending on the kind of receiver 

the system uses, a CDMA system might not be limited by the number of potential 

users. For example, the performance of the matched filter receiver is not limited by 

the number of the potential users. Decrease in the number of active users brings 

decrease in interference. In turn, decrease in interference results in a better perfor- 

mance. In this sense, the matched filter receiver is limited by the number of active 

users, or by interference. The performance of the MMSE detector also depends on 

the number of active users. 

How about the decorrelating detector? Is it limited by the number of the poten- 

tial users or by the number of the active users? In this chapter, we will formulate 

and discuss this problem. We will show that the performance of the decorrelating 

detector is limited by the number of potential users. To improve the performance 

of the decorrelating detector as the number of active users decrease, we suggest an 

algorithm which first identifies the active users. By analyzing a simple case and pre- 

senting results of Monte-Carlo simulations, we show that out algorithm improves the 



performance of the decorrelating detector when the signal-to-noise ratios of the active 

interfering users are high. 

3.2 Problem Formulation 

Assume there are M potential users which are connected to the receiver, ready to 

send symbols. Only I< users are actively sending symbols (active users), while the 

other M -  Ii" users (inactive users) are not sending symbols, thus not using the chan- 

nel. Although the base station knows all the signature waveforms of the M potential 

users because they are assigned by the base station, it does not know who are the I{ 

active users. 

For this chapter, we will assume for simplicity of exposition that the users are 

synchronized. We will also assume side knowledge of the number I(, i.e., the base 

station knows the number I< although it does not know who these users are. In 

practice, an estimate of I< is often used. Sometimes, an upper bound for K is used 

when the side knowledge or an estimate of I{ cannot be obtained. 

As in the previous chapter, the goal of the receiver is to estimate the transmission 

of the desired user (user 1) with a small bit error rate. We also assume that the 

potential users switch between active and inactive so frequently that any previous 

knowledge of the active users does not help the base station to decide who the cur- 

rent active users are (frequent switch assumption). 

Assume that the M potential users are assigned M signature waveforms of sl(t),  

sz(t) ,  . , sM(t). The assumed synchronous received signal during [0, TI is given by 

The M-I< inactive users have zero signal power, i. e., Pj's are equal to zero for M-I< 



inactive users. For this chapter, the signature waveforms axe restricted to have the 

following form, 
N-I 

sj(t) = C aj[k]$(t - kTc) 
Ic=O 

where aj[k] E {-1,l) is the k th element (or chip) of the signature sequence for the 

user j, *(t) is the chip waveform, Tc is the chip interval, and N = TITc is an integer 

called the processing gain. The chip waveform ~ ( t )  in this chapter restricted to the 

pulse 

0 otherwise 

For different chip wave forms, discussions in the chapter can be applied. Note that 

3.3 Decorrelating Detector 

In this section, we will show that knowing (or identifying correctly) the active users 

helps the decorrelating detector to perform better. Then we develop vector notations 

in order to express the decorrelating detector concisley for the next section. 

3.3.1 Decorrelating Detector with Perfect Knowledge of 

Active Users 

In Subsection 2.2.3, the receiver assumes that all M users are active users, and the 

receiver dl(t) is orthogonal to all the interfering signature waveforms. However, if 

Pi = 0, dl (t) does not have to be orthogonal to sj( t)  because there is no interference 

from user j, i.e., JP,sj(t) = 0. Let's think of the case where there are three po- 

tential users whose signature waveforms are sl (t), s2(t), and s3(t). AS we know from 

Subsection 2.2.3, the decorrelating detector dl (t) is given by 



R{i, j )  = Jo si(t))s(t) dt for i, j = 1,2,3. 

However, if user 3 is not active (i.e., P3 = O) ,  the decorrelating detector can be 

T 
R{i, j }  = Jlu si(t)sj(t) dt for i, j = 1,2. 

The difference between (3.4) and (3.5) is that user 3 (and its corresponding sig- 

nature waveform s3(t)) is simply ignored. The correlation matrix R in (3.5) is 2 x 2 

rather than 3 x 3 as in (3.4). The question is, does dl ( t )  of (3.5) performs better than 

the dl@) of (3.4)? The following fact S.1 is true when the correlation between any 

two potential user pair is same, i.e., J-*m,~i(t)~j(t) dt = p for i # j 

Fact 3.1 Let's assume that there are K active users out of M potential users. The K 

user decorrelating detector performs better than L user detector where K < L 5 M .  

proof: The proof is given in Appendix A. 

The above fact tells us that knowing who the I( active users are out of M known 

potential users improves the performance of the receiver when the correlations are 

equal between users. Figure 3-1 shows the average bit error rate of various detectors 

when there are two active users. Changing the number of active users does not affect 

the bit error rates of decorrelating detectors. The curves of the bit error rates of the 

MMSE detector and matched filter detector change as the number of active users 

changes, but the trend is preserved. In the graph, the correlations between potential 

user pairs are same, i.e., JFmsi(t)sj (t) dt = p for i # j .  

The bit error rate of the decorrelating detector without user identification with 
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Figure 3-1: Comparison of average bit error rakes of matched filter detector (thin 
solid curve), decorrelating detector with perfect user identification (dot curve), decor- 
relating detector without user identification (dash curve) with three potential users, 
decorrelating detector without user identification with infinite number of potential 
users (dash-dot curve), and MMSE detector (thick solid curve), case of two active 
users. 



three potential users can be obtained from (2.19), and is given by 

The bit error rate of the decorrelating detector without user identification with 

infinite number of potential users can also be obtained from (2.19), and is given by 

Pa.. = Q (~mm) (3.7) 

The bit error rates of the matched filter detector, the decorrelating detector with 

perfect user identification, the mmse detector in the graph are given in (2.23), (2.24), 

and (2.25), respectively. 

3.3.2 Decorrelating Detector with Vector Notations 

In this subsection, we develop some vector notations in order to express the decorre- 

lat ing detector more concisely. We will define r and s j whose k t h elements are given 

by 

Note R{i, j )  = ~,Tsi(t)sj(t) dt = sfs j*  

Instead of the continuous received waveform r( t )  and the signature waveforms 

si(t)'s, we will utilize the vectors r and s i  to represent the received signal 



where the kth element of the vector n is defined as 

Define a matrix S whose i th column is si. Note that the correlation matrix is given 

by R = StS. Now the received vector r is given by 

where the kth element of b is bk.  The decorrelating detector dl is the vector which 

is orthogonal to all interfering signature vector s2, . , S M ,  i. e. ,  

We also assume that 

d;sl = 1. 

Equation (3.11) is equivalent to (3.12) 

The explicit expression of dl is 

Now the decorrelating detector output is given by 

(3.1 la)  



where w = dtn.  Note that 

Note also that yl is an unbiased estimate of f i b l .  The decorrelating detector 

for user j ,  d j  can be found using the same method. If we define a matrix D = SR-', 

then d j  is given by the j th  column of the matrix D. 

3.4 User Identification and Detection 

In this section, we describe receivers which jointly identify the K active users and 

their transmissions from the received waveform. The receivers proposed in the sec- 

tion operate by first to determining which M - Ii users have zero power and then 

detecting the symbols of the active users using I{-user decorrelating detector. With 

the assumption that the users are synchronous and that the users switch frequently 

between active and inactive (frequent switch assumption), all we can use to identify 

the I< active users are the received vector r, the known M potential user signature 

vectors si's and the knowledge that there are Ii' active users. 

3.4.1 User Identification by Minimizing Noise Power 

The first algorithm that we propose identifies the active users by minimizing the noise 

power. The idea of minimizing the noise power comes from the maximum-likelihood 

estimation of a Gaussian random variable. The Gaussian random vector r has a 

probability density function fr(r; P, b) 

1 (r - ~ ~ b ) ~ ( r  - SPb)  
fr(r; P, b) = (2T02)N/2 exp 2a2 



where o = JNo/2. 

The maximum-likelihood estimate of b maximizes the probability density function 

f over b given the knowledge that there are only A7 active users. While b is a random 

vector, P is an unknown power matrix. Without knowing what P is, maximizing the 

likelihood function f is ill-defined. Therefore, we will use the idea of the generalized 

maximum likelihood estimation, in which the likelihood function is maximized over 

random variable(s) and unknown parameter(s). In this problem, the generalized 

maximum-likelihood user identifier (GML identifier) maximizes f over b and P. We 

will assume that user 1 is always active because this is the desired user. 

i, = argmax max f , ( r ;P ,b)  
b ~ { - 1 , 1 ) ~  PI >O, P* >O 

r=2,-..,M 
M-K of P, 's are 0 

- max log, f,(r; P, b)  

i=2,...,M 
M-K of P, 's are 0 

min ( r -  S ~ b ) ~ ( r  - SPb)  
i=2, ..., M  

1M-K of P, 's are 0  

P and b can be combined to make (3.17~) one vector optimization problem. Define 

x = P b .  Then 

argmax (2rtsx - x t ~ x )  
x ~ R ~ , x { l ) # o  

M-I< of x,'s are 0  

Using the sub-vector and the sub-matrix notation described in Appendix B, we can 

rewrite (3.18) as 

K K - (X~i-\) arg man ( 2 ( r t ~ ) a z x a 8  
xeRM 

a, / 
i = l , 2 , . . . , ( ~ ~ ~ )  



If there is more than one x which maximizes (3.19), the x with the smallest 11x1 1 
is chosen. This assumption gives x with M - I( zero elements, which is the same 

x as in (3.18). It is possible to show that the xf which maximizes the argument 

2(rts):x: - ( x ~ ) ~  REX: is x: = (RE)-' (Str)E. 

Algorithmic Procedure of (3.19) 

[i] Choose i which maximizes (rts): (R:) ( S t r ) t .  

[ii] From the i obtained in [i], identify the active users. If j E ai, then user j is 

among the active users. 

3.4.2 User Identification by Using the Decorrelating Detec- 

tor 

The GML identifier suffers from high computational complexity when M and K are 

large. The number of the combinations over which the GML identifier has to evaluate 

In this section, a computationally less-intensive two step decorrelating detector is 

proposed. While the GML identifier applies (:I:) K-user decorrelating detectors to 

the received vector, the two step decorrelating detector applies one M-user decorre- 

lating detector and one K-user decorrelating detector to the received vector. The first 

step is to apply the M-user decorrelating detector. This first step is used to identify 

the active K users. The second step is to apply the K-user decorrelating detector 

using the K users identified in the first step. 

From (3.15) and the argument following it, the vector y whose j th  component is 

the output of the j th  user decorrelating detector is 



E (y) = Pb (3.20~) 

As we can see from (3.20), y is an unbiased estimate of the power multiplied by the 

signal bits. Since the signal bits are either 1 or -1, we may decompose y into the 

estimate of the signal powers and the estimate of the signal bits by 

b = sgn (y) (3.21) 

P = I - abs (y) (3.22) 

where abs (x) = [abs(x{l}), abs(x{2}), . , a b s ( x { ~ ) ) ] ~ .  Note that P is now a biased 

estimate of P. It can be easily shown that 

However, it can also be shown that 

lim E P z z 
m,+c€l 

( A {.> *}) = P{i, i} 

Therefore, in high signal to noise ratio area, abs (y)  is an asymptotically unbiased 

estimate of the signal powers. The first step of the two step decorrelating detector 

finds the I{ biggest elements of abs(I'-'y) and identifies them as the IS? active users. 

Algorithmic Procedure for t h e  Two S tep  Decorrelating Detector  

[i] Apply the M user decorrelating detector D to r .  

[ii] Find the biggest I( elements of y = abs (Dtr)  and identify them as the K active 

users. 

[iii] Construct the sub-matrix of D ,  D,, by removing M - I{ elements of D which 

are identified as inactive users. 

[iv] Apply the smaller K user decorrelating detector Dt  to r .  



3.5 Analysis of the Two Step Decorrelating De- 

tector 

Both the GML identifier and the two step decorrelating detector identify the I< 

active users first. After identifying the Ii active users, both of them apply the I<- 

user synchronous decorrelating detector to the received vector r. Therefore, the only 

difference between the two algorithms is how they identify the I( active users. If 

the identified users are the actual active users, then the second step is the usual I< 

user decorrelating detector. If the identified users are not the actual active users, 

the second step is not the right K user decorrelating detector. We will refer to 

this as the wrong user set decorrelating detector. The number of wrong user set 

decorrelating detectors could be very large. For example, if M = 10, and I< = 3, the 

number of possible wrong user set decorrelating detectors is 35. This large number 

of combinations makes the analysis of the detector very hard. To make the analysis 

feasible, we will focus on the Ii = 2, M = 3 case. In this case, the number of possible 

wrong user decorrelating detectors is just one, simplifying the analysis. We also note 

that after a very long but tedious manipulation, it is possible to show that when 

there are two active users out of three potential users and the correlations between 

users are equal for any pair signature vectors, namely p, the two detectors are actual11 

idnetical. In more general cases, the two step decorrelating detector is generally not 

the same as the GML identifier. It is possible to get the analytic expression of the 

probability of choosing the wrong user pair for the two step decorrelating detector. 

Pr(choosing the wrong user pair) 

where SNRr is the signal to noise ratio of the interfering user. The derivation of 

(3.25) is given in Appendix C. Note that the probability depends only on the signal 

to noise ratio of the interfering user and the correlation p. 



Figure 3-2 shows the probability of choosing a wrong user pair as a function of 

the correlation p for various interfering signal to noise ratios. As the signal to noise 

ratio of the interfering user becomes large, the probability of choosing the wrong user 

becomes small. The interference from the high power user is rejected completely at 

the second step decorrelating detector once the right active user is identified. There- 

fore, the probability of error converges to the active two user decorrelating detector 

as the interfering signal to noise ratio becomes higher. 

Figure 3-2: Probability of choosing a wrong user pair, when I ?  = 2, M = 3. 

Figure 3-3 and Figure 3-4 are based on Monte-Carlo simulations. Both figures de- 

pict the case of two active users out of three potential users. The correlation between 

the signature vectors is -113 in Figure 3-3 while it is equal to 27/31 in Figure 3-4. 

In both figures we can see that the performance of the two step decorrelating de- 

tector converges to the performance of the active user decorrelating detector as the 



Figure 3-3: Comparison between the bit error rate of the two step detector (solid 
curve) with the decorrelating detector without user identification (dot line) and the 
decorrelating detector with perfect user identification (dash-dot line), when p = -113. 



SNR-I (dB) 

Figure 3-4: Comparison between the bit error rate of the two step detector (solid 
curve) with the decorrelating detector without user identification (dot line) and the 
active user decorrelating detector (dash-dot line), when p = 27/31. 



SNR of the interfering user becomes bigger. That is because as SNRI becomes bigger 

and bigger, the first step of the two step decorrelating detector identifies the active 

interfering user with less probability of error. In the range of SNRI = [7.5 151 in 

Figure 3-3 and SNRI = [5 14.51 in Figure 3-4, however, the probability of choos- 

ing wrong user is relatively big and that worsens the overall BER of the two step 

decorrelating detector. In these ranges, the performance of the two step decorrelating 

detector is even worse than that of the potential user decorrelating detector which 

does not identify the active user. In the low SNRI region, the performance of the 

two step decorrelating detector converges again to the active user decorrelating de- 

tector. The reason is not because the first step identifies the active user well, but 

mostly because the second step is a two user decorrelating detector instead of three. 

In this region, even if the first step chooses the wrong user as the active user, the 

interference from the interfering user is so small that its effect is negligible. This 

can be easily understood by looking at the following situation. Assume that there 

are three potential users. The receiver assumes that there are two active users, but 

there is actually only the desired user. After the first step, the two step decorrelat- 

ing detector chooses a non-existing user as an active interfering user. However, the 

two step decorrelating detector performs better than the potential user decorrelat- 

ing detector because it is a two user decorrelating detector instead of a three user one. 

Figure 3-5 shows the performance of the two step decorrelating detector compared 

with the three potential user decorrelating detector and the two active user decorre- 

lating detector in a power controlled situation, i. e., when SNRl = SNRI. The graph 

is shown as a function of SNR. We can see that in the power controlled situation 

the two step decorrelating detector does not perform better than the potential user 

decorrelating detector in high SNR situations. The reason is that the ABER of the 

potential user decorrelating detector decreases faster than the probability of choosing 

the wrong user for the two step decorrelating detector. 

Although the performance of the two step decorrelating detector is better as the 



SNR (dB) 

Figure 3-5: Comparison between the bit error rate of the two step detector (solid 
curve) with the decorrelating detector without user identification (dot curve) and 
the active user decorrelating detector (dash-dot curve), in the power controlled case, 
when p = -113. 

SNR becomes bigger, its performance does not improve as fast as the decorrelating 

detector without user identification, thus making the two step decorrelating detector 

unattractive in the power controlled case. Simulation shows that this is true for 

different I< and M values. Overall, in low desired signal power and high interfering 

signal power case the two step decorrelating detector achieves increased performance 

over the decorrelating detector without user identification. 



Chapter 4 

Conclusion 

In this thesis we have considered the problem of detecting transmissions in CDMA- 

based wireless communication system. 

Three previously proposed receivers were described and compared in the thesis. 

The matched filter detector is the maximum-likelihood detector assuming that the 

signal is embedded in a white Gaussian noise, but big interfering signals can cause 

the near-far problem, thus requiring power control to achieve reliable communication. 

The decorrelating detector removes the interference by making the detector waveform 

orthogonal to the interfering signature wa\~eforms. The MMSE detector adaptively 

changes the detector waveform to minimize the mean square error. Through an anal- 

ysis, we discussed how changes in the power of the desired user, the interfering users, 

and noise can effect the MMSE detector waveform. 

The orthogonality property of the decorrelating detector does not allow it to take 

advantage of a decrease in interference. Especially when there is a small number of 

active users out of a large number of potential users, the decorrelating detector with- 

out user identification suffers from unnecessary performance degradation. In order to 

avoid this degradation, we have suggested the two step decorrelating detector which 

first identifies the active users from the received waveform. The two step decorrelat- 

ing detector is shown by Monte-Carlo simulation and analysis to perform better than 



the decorrelating detector without user identification when the SNR of the interfering 

users is high relative to the SNR of the desired user. 

4.1 Future Work 

In this thesis, we have suggested the two step decorrelating detector which shows 

an improved performance over the simple decorrelating detector when there is a 

small number of strong interfering users. We assumed symbol synchronous detec- 

tion throughout the analysis. The effect of the asynchronism has to be addressed. 

Moreover, our analysis on the two step decorrelating detector was limited to the case 

of two active users out of three potential users. We also could find another algorithms 

which identify the active users better than the two step decorrelating detector without 

much increase in complexity. In addition, we masde the frequent switch assumption so 

that no previous knowledge about the active users is relevant to identifying current 

active users. New receiver structures, such as the MMSE detector, could be developed 

if this assumption is removed. 



Appendix A 

Proof of Fact 3.1 

Define RM as an M x M matrix which has the following form. 

For convenience, we will denote the inverse of RA4 as BM, i.e., 

From (2.19),  the average BER of the decorrelating detector is given by 

Now we have to show that B M { l ,  1) 2 B K { l ,  1) when M > K to complete the proof. 

From Cramer's rule, 



The relation between the Det (RM) and Det (Rh1-l) is given by 

Det (R1) = 1 

Det (RM) = Det (RM-1) - ( M  - l)p2(1 - p) M-2 

The explicit expression of Det (RM) can be found by solving (A.5). 

(A. 5a) 

(A.5b) 

Det (RM) = Mp(1 - p)M-l + (1 - p )  A4 
(A.6) 

After a tedious but straightforward manipulation, the following result can be ob- 

t ained. 

B M { ~ ,  1) - BAd-1{1,1) = p2(1 - p) 1 0 

Now the proof is completed because 



Appendix B 

Sub-Matrix Notation 

Let 0 = {1,2,3,... , M). Let S = {A C R 1 n(A) = K )  where n(A) is the number of 

elements of the set A and K is an given integer. The elements of S are al, a2, . . . , a M 
( I < )  

and they are numberedso that a1 = {1,2,00.,I~),a~ = {1,2,.o.,I--1,1~+1) and 

so on. For example, for R = {1,2,3,4) and K = 3, a1 = {1,2,3), a2 = {1,2,4), a3 = 

{1,3,4), a4 = {2,3,4). 

A sub-vector of a vector b is defined as the vector which can be obtained by re- 

moving some elements from b. Let x be an M x 1 column vector. A A' x 1 sub-vector 

of x is denoted as x:, where ai is an element of S. The sub-vector x: is made by 

removing M - I< elements from x. Those elements removed are specified by ai. If 

an integer j E 0 is also in R - a;, the j th element if x is removed from x to produce 

x:. The same column elimination applies to a row vector. 

Example A.l Let x = [xl x2 x3 x4 x5 xs x7It and I< = 4. Since M = 7, 

R = {1,2,3,4,5,6,7). xEl = [XI 23 $4 xs]' because all = {1,3,4,5), and conse- 

quently, R - all = {2,6,7). 

A sub-matrix of a matrix B is defined as the matrix which can be obtained by 

removing columns and/or rows of B. If B is a symmetric matrix and if a sub-matrix 

is made by removing the same rows and columns of B, the sub-matrix is called a 



symmetric sub-matrix of B. Let C is an M x h/l symmetric matrix. A K x  K symmet- 

ric sub-matrix of C is denoted as C t ,  where ai is an element of S. The symmetric 

sub-matrix CE is made from C by removing M- I< rows and M- I< columns. Those 

rows and columns removed are specified by ai,  or more exactly, by 0 - ai. If an inte- 

ger j E Cl is also in Cl-ai, the j th row and column are removedfrom C to produce CE. 

ExampleA.2 Let C is a 5 x 5  matrixand I<=3. Since M=5 ,  R = {1,2,3,4,5). 

CE is made by removing the second and fourth rows and columns from C because 

a5 = {1,3,5), and consequently, 0 - a5 = {2,4). 



Appendix C 

Derivation of (3.25) 

Without loss of generality, we assume that the active users are user 1 and user 2, i.e., 

The outputs of the first step decorrelating detector are 

yl = dir = 4 p l b l  +din 

y2 = dkr = f i b 2  +din 

y3 = dir = din. 

If 1 yzl 5 Iy31, the first step of the two step decorrelating detector chooses the wrong 

user pair. Note that ( y 2  1 < Iy31 is equivalent to yi 5 y;. Therefore, the condition of 

choosing the wrong user pair is given by 

By solving the above equation, we get 



For notational convenience, let t l  denote (dq - d i )  n and t2 denote (d; + di) n. Then 

where o = 4 ~ ~ 1 2 .  Note that tl  and t2 are independent because they are Gaussian 

random variables and E (t = 0. Without loss of generality, we assume that b2 = 1. 

Then, 

Pr (tl i: ,/z i tz) = Pr (tl < 6) Pr (t2 > 6) 
Jm 

= ( l o (  0 ) ) Q (  

J ( 1 +  p - 2p2)p2/2 
0 1 

and 

Then the probability of choosing the wrong user pair is given by 

P(choosing wrong user pair) = Pr t 1 < P2 < t2 + Pr t2 5 P2 < t ( s )  
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