
Variational-Bound Finite-Element Methods for
Three-Dimensional Low-Reynolds-Number

Porous Media and Sedimentation Flows
by

Matteo Pedercini

B.S., University of Virginia (1993)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1995

© Matteo Pedercini, MCMXCV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper

and electronic copies of this thesis document in whole or in part, and to grant others the

right to do so.

Author .· ,.

Author ....... ........ ,- .: . ......... .... ...........
Department of Mechanical Engineering

August 25, 1995

Certified by ........... .........
Anthony T. Patera

Professor of Mechanical Engineering
Thesis Supervisor

Accepted by........... ...............
-,A.SAGIC iUSETIS INSTITUTE

OF TECHNOLOGY
Chairman,

SEP 2 11995

LIBRARIES

Ain A. Sonin
Departmental Committee on Graduate Students

Barker WE



Variational-Bound Finite-Element Methods for

Three-Dimensional Low-Reynolds-Number Porous Media

and Sedimentation Flows

by

Matteo Pedercini

Submitted to the Department of Mechanical Engineering
on August 25, 1995, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract
Two phase media are of great importance in science and engineering. In general,
two phase systems can be divided into particulate and fibrous materials. This thesis
focuses on the former type of material, in which many inclusions are dispersed in
a continuous matrix. In particular, we analyze three-dimensional porous media and
sedimentation flows at negligible Reynolds numbers, when the particulate phase con-
sists of monodisperse spheres. Because of the complex microstructure of such systems,
it is convenient to focus on their macroscopic behavior rather than on their detailed
microscopic workings: it is common practice to replace the inhomogeneous materi-
als with a homogenized medium having the appropriate effective property. For this
reason, we focus on procedures that yield the permeability and the average settling
speed that characterize porous media and suspensions, respectively.

Our methodology consists of the analysis of three scale-decoupled subproblems:
the macro-, meso-, and micro-scale subproblems. In the macro-scale analysis the
bulk quantity of interest is determined by using the effective property. The meso-
scale subproblem yields the effective macroscopic property of interest, provided the
statistics related to the spatial distribution of the inclusions are known. In fact, the
solution is achieved by solving the transport equations over a statistically significant
periodic cell extracted from the original medium. The solution of the governing
equations is approximated by the finite-element solution over the appropriate spaces.
Lastly, the micro-scale treatment is useful when two or more meso-scale inclusions are
very close to each other. This geometrically stiff problem is alleviated by introducing
geometry changes that also have bounding properties on the effective property of
interest.

Although our methodology can treat statistically random distributions of spherical
inclusions, we focus on very simple periodic sphere distributions to validate our porous
media and sedimentation formulations.
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Chapter 1

Introduction

1.1 Motivation

Multicomponent media are of great importance in science and engineering. Among

multicomponent media, two phase materials are the simplest and most common. In

general, two phase systems can be divided into particulate and fibrous materials. In

this thesis we focus on the former type of materials, in which a great number of

particles is dispersed in a continuous matrix. More specifically, we concern ourselves

with highly viscous flow through porous media and low Reynolds number sedimenta-

tion. The former process is of relevance in filtering, ground water flow, oil recovery

and powder metallurgy, among others [44]. The latter is used to separate particles

from a fluid, as well as to separate particles having different settling speeds [12].

Because of the complex microstructure of such systems, it is convenient to focus on

their macroscopic behavior rather than on their detailed microscopic workings. In

fact, it is common engineering practice to replace the original particulate media with

a homogeneous material having an appropriate effective property. For this reason,

we focus on procedures that yield the permeability and average settling speed that

characterize porous media and suspensions, respectively.

Most analytical and numerical methods have serious shortcomings in determining

these macroscopic properties. On one hand, the first class of methods have diffi-

culty with random distributions of particles, specially at non-dilute concentrations.
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Moreover, in Stokes flows, the fluid motion induced by a moving boundary decays

very slowly with distance, so far field conditions have to be modeled correctly. On

the other hand, numerical methods are limited by the number of particles that can

be modeled. In addition, the presence of disparate length scales results in excessive

degrees-of-freedom. Even experimental procedures are not always successful since

they provide results that are only valid for the tested specimens.

The analytico-computational method we propose is able to overcome many of these

obstacles. However, our methodology must still assume that a probabilistic particle

distribution is given. Whereas most porous media analyses rely on this assumption,

many sedimentation analyses do not. In fact, many researchers strive to determine

the particle distribution by dynamically tracking the motion of a suspension [16] [32].

We, on the other hand, follow the approach of other researchers, such as Batchelor

12], that argue that the particle distribution can be assumed and the particle motions

determined statistically by averaging over several "snapshots" of the system.

In the next section, some previous efforts to determine the effective permeability

and average settling rate are reviewed.

1.2 Previous Work

There have been many efforts to calculate the effective properties of interest. The

methods vary from purely analytical to purely computational. What follows is a brief

discussion of some investigations.

Porous Media

One of the most useful approaches, specially before the advent of the digital com-

puter, is to obtain bounds on the effective property. Early on, Prager [40] developed

bounds on the effective permeability that only required the volume concentration of

the inclusions as input. Although these bounds offer the advantage of being general

and not requiring data that typically cannot be obtained, they are crude since they do

not depend on the micro-structure of the porous media. More recently, Torquato [48]
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has reviewed advances in determining sharper bounds on the permeability by using

n-point correlation functions that characterize a random media. Unfortunately, these

bounds are presently potentially sharp, since high order correlation functions cannot

be measured by modern technology.

Some researchers have tried to provide exact analytical solutions. Unfortunately,

their results are either limited to highly regular periodic arrangements of the inclu-

sions or to dilute particle concentrations. For example, Zick & Homsy [49] solve for

the drag exerted on a regular array of spheres by transforming the differential equa-

tions that govern the flow into integral equations and then using a Galerkin method

to arrive at the solution. Batchelor [3] discusses random particulate media limited to

low concentrations. Brady & Bossis [5] and Durlofsky, Brady & Bossis [15] propose

a dynamic simulation technique applicable to a variety of particulate media prob-

lems. Their method, "Stokesian dynamics", relies on mobility-resistance functions

for Stokes flows. Unfortunately, their simulation techniques are not always exact.

For instance, they compare their permeability results for a regular cubic array of

spheres with those of Zick & Homsy [49] and show that for high concentrations the

results can be off by about 50%.

With the advent of fast computers, part of the research community has pursued

a purely computational approach to multicomponent media. Some authors employ

classic numerical techniques such as the finite volume method to resolve the flow

around an array of spheres [10]. The main drawback of such methods is the limited

number of inclusions that can be modeled. A different approach is used by authors

such as Rothman [41] who applies the lattice-gas automata to the porous media

problem. This method uses fictitious particles of identical mass that hop from site

to site on a regular lattice undergoing ideal collisions. Lattice-gas methods are still

in their infancy, and it is not clear that they always model the underlying physics

correctly.

Ultimately, permeability results have to be compared with experimental data.

Permeability measurements can be performed quite simply by means of Darcy's law.

However, these results are not very general unless they can be related to the micro-
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structure of the material being tested [44]. To date, there is much uncertainty on the

type of micro-structure that characterizes a particulate medium.

Sedimentation

As for the porous media problem, some authors describe general extremum principles

to bound the settling speed of a suspension. For example, Keller, Lester & Rubenfeld

[28] give a lower bound for spheres settling in a regular cubic array and prove that the

Stokes flow for inertia-free sedimenting particles minimizes viscous dissipation [24].

A sharper mathematical analysis is attempted by authors such as Batchelor [2]

and Saffman [42], who have been able to analyze random distributions of inclusions

as long as their volume concentration is low. The method of Stokesian dynamics

described earlier can be applied to sedimentation with the same limitations of porous

media flow [5] [15]. Note also that the results presented by Zick & Homsy for porous

media are extendible to sedimentation of regular periodic arrays of spheres.

A third approach, is to rely on numerical methods such as finite element [16] and

boundary element methods [25] to solve the conservation equations of the system.

As mentioned, these approaches are limited by the number of particles that can be

modeled.

Experimental verification of theory is complicated by the fact that settling velocity

data is hard to obtain. For example, it is difficult to track a particle in highly

concentrated suspensions. Moreover, truly monodisperse suspensions are difficult to

obtain [20], [14].

1.3 Objectives

In this thesis, we extend the (two-dimensional) fibrous porous media work of Cruz,

Ghaddar & Patera [8] to (three-dimensional) particulate media. In addition, we

formulate and validate the low Reynolds number sedimentation methodology. Both

problems are solved by (i) analyzing a unit periodic cell that contains enough particles

to capture the characteristics of the original medium; (ii) bounding the effective
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property in cases that are too geometrically stiff. The actual solution procedure

relies upon the variational formulation of the problems and subsequent finite-element

treatment of the discrete variational equations.

Our methodology overcomes many limitations of previous analytical and numeri-

cal studies. First, although we presently analyze highly regular inclusion distributions

to validate our methodology, we can readily include random arrangements of parti-

cles. Second, we ae capable of determining the permeability and settling speed of

particulate media of any concentration. Third, although we limit our study to mate-

rials consisting of identical spherical inclusions dispersed in a continuous matrix, we

can modify our procedure to include non-spherical bodies. Finally, we can include

fluid inertia, as done by Ghaddar for two-dimensional fibrous porous media [17].

The main goals of this thesis are:

* Calculate the permeability of simple cubic arrays of spheres and compare the

results to known analytical solutions to validate our methodology.

* Develop and implement variational bounding procedures for geometrically stiff

porous media problems. This allows us to achieve maximum packing density

and compute the fluidization velocity of the regular array.

* Calculate the settling speed of a simple cubic array of spheres and relate it to

the permeability results for validation.

* Calculate the settling speed of other periodic arrays of spheres in which a unit

cell contains two or three spheres. These problems should provide more physi-

cally interesting results.

* Develop and implement variational bounding procedures for geometrically stiff

sedimentation problems.

Although our methodology can treat statistically random particulate media, we

only analyze highly regular particle distributions in order to validate our procedures

for inertia-free porous media and sedimentation problems. For this reason we do not
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focus on other aspects of our methodology, such as parallel processing and Monte-

Carlo methods, which extend directly from the works of Cruz & Patera [9] and Cruz,

Ghaddar & Patera [7].

1.4 Outline

This thesis is divided into five chapters. In Chapter 2, the scale decomposition pro-

cedure that yields the permeability and the settling speed is presented. In Chapter

3, we develop the bounding procedures for geometrically stiff problems. In Chapter

4, the numerical methods used for the solution of the problems are discussed. In

Chapter 5, we present the results of our investigation and draw some conclusions.
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Chapter 2

Formulation of Problems

In this chapter we develop the mathematical formulations of the low Reynolds num-

ber porous media and sedimentation problems. It should be noted that the scale

decomposition procedure of Section 2.1 is discussed in detail by Cruz & Patera [9],

and in a more general fashion by Bensoussan, Lions & Papanicolaou [4] and Mei &

Auriault 36]. Nevertheless, we discuss this procedure to establish the framework for

the formulation of the problems of Sections 2.2 and 2.3. Furthermore, although we

concern ourselves with highly regular particulate media, Section 2.1 deals with the

more general case of random multicomponent media.

2.1 Scale Decomposition Procedure

As shown in Figure 2-1, our scale decomposition procedure applies to two phase

materials that consist of monodisperse spherical inclusions (of volume fraction c)

dispersed in a continuous matrix. When, the macroscopic length scale of the medium

L is much greater than the sphere diameter d, i.e. d/L < 1, we are faced with a

multi-scale problem which exhibits a clear separation of scales.

In general, one might be interested in predicting the behavior of the material

when a known gradient is applied over the macro-scale. For example, if the material

is composed of a heat conducting matrix and insulating inclusions, one might need to

quantify the heat flow through the material for a given imposed temperature gradient
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[9] [13] [33]. However, solving Laplace's equation is often impossible for such multi-

scale problems. In fact, modern analytical methods only succeed with simple spatial

distributions of the inclusions. Moreover, numerical solutions of multi-scale problems

require so much computer time and memory that they are virtually unattainable.

Fortunately, by replacing the multi-scale problem with a homogenized medium and

the appropriate effective property, the problem has a tractable solution.

In order to use a scale decoupling procedure, we postulate the existence of a

joint probability density function (JPDF) that adequately describes the spatial ar-

rangement of the inclusions. Another important assumption is that there exists an

intermediate meso-scale length A (d < A < L), that is large enough to capture the

statistics of the medium, but small compared to the macro-scale ( A/L < 1)

(Figure 2-2). These assumptions allow us to capture the macroscopic properties of

the medium by analyzing the tractable meso-scale problem. Through this analysis,

the original two phase material can be replaced by a one phase material that has an

equivalent effective property. Returning to our heat conduction example, we would

solve for the temperature field in a cube of side A, calculate the effective conductivity

[13] [34] [43], and then calculate the heat flux on the homogenized macro-scale for a

given temperature gradient using Fourier's law.

Finally, it should be pointed out that in some meso-scale problems two or more

inclusions can be so close to each other that the distance separating them is much

smaller than d. For such geometrically stiff cases, the meso-scale numerical solution

remains difficult. In order to alleviate this problem, we introduce numerically favor-

able changes in the meso-scale geometry that provide bounds on the effective property

of interest.

What follows is a more detailed description of the three scale decoupled problems:

the macro-, meso-, micro-scale subproblems.

Macro-scale

The macro-scale subproblem consists of replacing the original multicomponent medium

with a homogeneous material having an effective property. One can then calculate

14



the needed bulk quantity (e.g. heat flux, volume flowrate) by using the appropri-

ate macroscopic phenomenological relation (e.g. Fourier's law, Darcy's law) and the

calculated effective property (e.g. conductivity, permeability).

Meso-scale

The meso-scale analysis yields the appropriate effective property. As mentioned ear-

lier, we assume that the statistics of the original medium can be captured by analyzing

a periodic unit cube of side A. At this point, the appropriate transport equations are

formulated first in their strong form and, subsequently, in their variational weak form.

The latter formulation is the natural one for the finite element method and it allows

us to prove bounding procedures for the effective property of interest.

When dealing with random media two other steps must be considered. First,

due to the statistical nature of the problem, one needs to compute the mean effective

property for a given cell size A and concentration c. This is accomplished by sampling

the JPDF with Monte-Carlo methods. Second, the size of the meso-scale cell needs

to be increased until the effective property of interest reaches an asymptotic value

(i.e., the cell is large enough to capture the characteristics of the original medium).

In practice, this thesis does not deal with random media, so the last two steps do not

apply to our analysis. Furthermore, note that the meso-scale subproblem represents

the bulk of our computational effort.

Micro-scale

In many instances, particularly when dealing with random media, our numerical

procedure might fail due to the proximity of two or more particles. In the worst case,

the particles might be so close that a mesh cannot be generated. In less severe cases,

an excessive number of degrees-of-freedom are needed to resolve the small gap between

the particles: as a consequence, the size of the discretized problem is too large, and the

system matrices are ill-conditioned. Our approach is to geometrically modify the nip

region (the gap between two close neighbors) to make the problem tractable. In doing

so, we are no longer able to precisely calculate the effective property of interest, but

15



we are able to bound it (typically sharply). A detailed discussion of these nip-element

methods is given in the next chapter.

2.2 Creeping Flow through Porous Media

Figure 2-3 represents an example of a porous material. The continuous matrix Qc

consists of an incompressible Newtonian fluid of density Pco and viscosity ,co. The

inclusions Qdi are rigid spheres held fixed in space. The fluid is set in motion by a

pressure gradient AP/L that extends over the macroscopic length scale L. Moreover,

the Reynolds number based on the average fluid velocity and the diameter of the

spheres is negligible.

Macro-scale

The two phase medium can be replaced by a homogeneous material that has an

effective permeability . Through Darcy's law, one can then relate the macroscopic

velocity (and volume flowrate) to the pressure gradient in the following way:

1<u>v= -- K'< Vp>v, (2.1)
Ico

where u is the local fluid velocity vector; is the permeability tensor; Vp is the local

pressure gradient; and <>v represents a volume average. Obviously, for isotropic

materials, is just a scalar quantity.

To calculate the local pressure gradient, one can solve the homogenized steady-

state creeping flow equation, which, from Darcy's Law and incompressibility, reads

09 Ko(c(x)) t9 Pma
-9 -[ 1=0 ( )) 9& ] 0 in Qma, (2.2)

where x = (x 1,x 2 , x3 ) represents the Cartesian coordinate system of figure 2-3. The

Dirichlet and Neumann conditions on the boundaries shown in figure 2-3 read

Pma = Pin on rin, (2.3)
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Pma = Pout on rout ,

and
IKij Pma

,j "m n,= O onJr7, (2.5)
AC xjn/0onF,

where Pma(x) is the macro-scale pressure (which is the pressure field over the ho-

mogenized medium); fQma is the region occupied by the entire multi-scale medium

(fma = Qco U Qdi); Fri , Prout and ru are the inflow, outflow and wall boundaries re-

spectively; X _ ij(c), i, j = 1, 2, 3, is the permeability tensor-concentration function;

n = ni denotes the unit outward normal to the fluid; and the summation convention

over repeated indices is assumed. In general, the problem defined by (2.2) - (2.5) is

solvable with the aid of commercial software packages. The reader should note that

henceforth we deal only with isotropic materials, so that we only consider an effective

scalar permeability a.

Meso-scale

In order to solve problem (2.2)-(2.5), one needs the effective permeability, which is

produced by the meso-scale analysis. As shown in Figure 2-4, we extract a periodic

unit cell of size A that contains N spheres and solve the appropriate meso-scale Stokes

equations. To arrive at the governing equations, we assume that the pressure solution

for the original multi-phase problem can be written as (Mei & Auriault [36])

porig(X,Y) = Pma(x) + p(x, y) + O(e2), (2.6)

APwhere Pma = -xl; e= AlL << 1; p is the periodic perturbation component of porig;

and y x/e is the rapidly varying coordinate of figure 2-4. Plugging (2.6) into the

Stokes equations for the original two phase problem, we arrive at

a0 (pc , = L iAP in fQme for i = 1, 2,3, (2.7)
Yj) + -- =0 inp(2.7)

ui
- a -= 0 in fme (2.8)ayi

17
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where ij is the Kronecker delta; and Qme is the fluid region of the meso-scale cell.

Clearly, this equation shows that, on the meso-scale, the macroscopic pressure gradi-

ent is seen as a forcing term. The no-slip Dirichlet and periodic boundary conditions

are

u = 0 on 0tme, (2.9)

and

u(y) = u(y + A(mlel + m2e2 + m3e3 )) on # #, (2.10)

p(y) = p(y + A(mlel + m2e2 + m3e3)) on ffl#, (2.11)

where (e1 , e2, e3 ) are the unit vectors of the coordinate system (, Y2, Y3); Yi is the

arbitrarily chosen direction for the driving pressure gradient; a'me and af2# are the

fluid-particle and periodic meso-scale cell boundaries respectively; and ml, m2 , m3 are

integers. Since adding a constant to the pressure solution yields another solution we

require, for uniqueness, that

n pdy = 0, (2.12)
mc

where dy = dyldy 2dy3.

We non-dimensionalize the pressure by APL, the velocity by ,P , and the lengthsL j~~~~~oL'anthlegs

by d. (From this point to the end of the section, all quantities are implicitly non-

dimensional.) As a result, (2.7) and (2.8) become

-,92 + -= li in me for i = 1, 2, 3, (2.13)

Oui- -- = 0 inQme (2.14)
'9 yi

The dimensionless permeability (which is non-dimensionalized by d 2), is de-

rived by using (2.1), recognizing that < Vp > = AP e1 and that < u >

3 fme uldy, since < u2 >, = < U3 >v = 0 due to periodicity. The result is

18



A= 1 f-- uldy. (2.15)

At this point, we pursue the variational statement of the meso-scale problem.

Helmholtz's minimum dissipation theorem states that flow with negligible inertia has

a smaller rate of dissipation than any other incompressible velocity field compatible

with the boundary conditions of the problem. Mathematically, for the porous media

problem, we have

u = argmin(-Jn(v)) = argmaxJn(v), (2.16)
VEZ VEZ

where

JnP(v) = 2 vldy - Ov avYi dy,' (2.17)
fn 19~~yk iyk

and

Z = {(v, v2, v3) (H#(m))3 div = 0}, (2.18)

where HO#(fQme) is the space of all square-integrable functions that vanish on 9Ame,

are periodic (of period A), and whose derivatives are square-integrable over Qme By

multiplying (2.13) by u, integrating over lme, and using the divergence theorem along

with (2.14), we arrive at

L uld = Jn.m(u)= Jme yj dyj (2.19)
ine ~ ~~~fnn 19i 1uJY '

which states that
IjP

= 4L Js (u) (2.20)

The permeability is thus always non-negative, and is proportional to the maximum

value of the functional Jn.me In fact, from (2.16) and (2.20) it follows that

1
= -3 max Jn,(v) (2.21)

VEZ me

In order to arrive at the appropriate velocity field u, we transform the constrained

maximization problem of (2.16) into an unconstrained saddle-problem by introducing
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a Lagrange multiplier q to impose the incompressibility constraint. We have the

Lagrangian La,

L(v, q) = J(v) + q vdy. (2.22)

By taking the first variation of the Lagrangian, and setting it equal to zero for sta-

tionarity, we look for a solution (u,p) E {(Ho#(flme)) 3, Lo(Qme)} that satisfies

au y- OvJ,/mI ~. dyf 5y pdy = 6i vidy V(vl,v2, v3) (H#(e))3
Yjmc iYj 19Qme Yz ime

(2.23)
aui2

-. q aYi dy = Vq L o0 (me) (2.24)

where L 2, 0 (fme) is the space of all A-triply periodic functions q(y) which are square-

integrable over f2me (note that candidate pressures need not be continuous), and for

which fn,, q dy = 0. Note that solving (2.23) and (2.24) for u and p is equivalent to

solving the strong form of the porous media problem (2.13), (2.14), which, together

with the negative-definiteness of the quadratic part of JQ, proves (2.16). Indeed,

multiplying (2.13) by v and integrating by parts over me we get (2.23). Similarly,

by multiplying (2.14) by q and integrating over Qme we obtain (2.24) [6].

Equations (2.23) and (2.24) constitute the meso-scale subproblem that is solved

to yield the permeability as defined in (2.15).

Micro-scale

In order to successfully solve a geometrically stiff meso-scale problem, we choose to

replace the nip region with very simple models that provide us with lower and upper

bounds for the permeability. In short, we argue that a lower bound can be achieved

by blocking the flow through the nip region, whereas an upper bound is achieved by

facilitating the flow between two close neighbors (i.e., by enlarging the nip region).

A complete discussion of these bounds is provided in Section 3.1.
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2.3 Low-Reynolds-Number Sedimentation

Figure 2-5 is a schematic of particles settling under gravity. As in Section 2.2, the

continuous matrix consists of an incompressible Newtonian fluid of density pc, and

viscosity. The inclusions are non-colloidal monodisperse spheres of density Pdi

(> p,) that settle under the action of gravity. We assume that inertia plays no

role in the fluid and particle motions. Moreover, we require that the particle and

fluid motions are quasi-static. This means that if the system is perturbed it quickly

reaches a new equilibrium without the particles rearranging themselves considerably.

The conditions for this are

VpOp < d and VpO < d, (2.25)

where Vp is the characteristic speed of a particle (i.e. the Stokes settling speed);

Op and Of are the characteristic particle and fluid times, respectively; and d is the

sphere diameter. 0p can be estimated as (d2 di) and Of as (12 P), where is the

characteristic inter-particle distance. Op is the time constant associated with the

exponential decay of the velocity of a sphere in an unbounded fluid whose motion

is retarded by Stokes drag. Using the expression for Op we can rewrite the first

condition of (2.25) as Rep < 1, where Rep = pdiVpd is the particle Reynolds number.I ,co
The second condition of (2.25) can be restated as Ref < 1, where Ref = P is

I~cod

the fluid Reynolds number. In other words, the quasi-static assumption is fulfilled

by sedimenting suspensions for which the two Reynolds numbers, Rep and Ref, are

negligible. This is equivalent to the assumption of inertia-free fluid and particle

motions. The quasi-static assumption allows us to replace the self consistent motion

of the suspension with a JPDF that we sample by taking "snapshots" of the system,

as proposed by Batchelor [2].

As shown in figure 2-5, when a suspension is sedimenting in a container three

distinct regions of different particle concentration are observed. The upper clarified

region consists of fluid with no particles; the lower compression zone is where the

particles accumulate; and the middle region is the suspension filled sub-domain. We
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focus our attention on the latter region. Note that since the settling process occurs

in a closed tank, we require zero net (fluid and particle) volume flowrate at any

horizontal surface [31].

In general, when tackling a sedimentation problem, we would assume a JPDF for

the particle distribution and find a statistically steady-state settling speed. However,

as discussed in Chapter 5, we limit ourselves to a maximum of three particles in a

meso-scale cell to validate our methodology.

Macro-scale

Our homogeneous, quasi-static, quantity of interest is the average sedimentation speed

(or settling rate), U. Since this quantity defines our macro-scale subproblem, we pass

directly to the meso-scale formulation. It should be noted that for other suspension

flows the macro-scale problem is more complex. For example, for duct flow of partic-

ulate suspensions, we need to model the flow of a homogenized fluid with an effective

viscosity.

Meso-scale

As in Figure 2-4, we extract a unit periodic cell of size A that contains N spheres.

Again, we derive the meso-scale equations from the Stokes equations that govern the

flow in the original multi-scale medium, which are as follow,

a* 1 co a i + aj + Z + pcogj2iei = 0 in 1'orig for i = 1, 2,3, (2.26)

aui
= 0 in Qori,,g (2.27)

9xi

where g is the acceleration of gravity which acts in the -e 2 direction; and ,orig is the

fluid region in the original multi-scale problem. Note that instead of using the usual

Laplacian operator on the velocity in (2.26) we use an equivalent "stress formulation",

which allows us to incorporate the boundary conditions naturally in our variational
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weak form.

On the meso-scale, the pressure can be written as p = Po- Pco9Y2 - TY2 + p'(y),

where P0 is a reference pressure, r is the (positive) fluid "backflow" pressure gradient,

and p'(y) is the periodic perturbation pressure. The "backflow" pressure gradient

results from imposing zero volume flowrate. In fact, it can be viewed as the pressure

gradient responsible for the upward movement of fluid as the particles settle. Plugging

the expression for p in (2.26), we arrive at the meso-scale Stokes equations,

ay[ -OUi + aj] + a- r2i = 0 in Qme for i = 1,2,3, (2.28)

Oyi~~~~~~~~1y
aui--- 0 in fme. (2.29)

The zero net flowrate requirement is expressed as,

If i~~rd 3
N

j U2 dy + - - (U2)k = 0, (2.30).me 6k=1

where Uk is the translational velocity vector of particle k = 1, .. , N. Equation (2.30)

can be obtained by writing the zero net flowrate condition at a Y2 = constant surface

of the meso-scale cell and integrating it from Y2 = 0 to Y2 = A. We also require for

uniqueness that

f| uldy = f u3dy = 0, (2.31)
me fme

and

J p'dy = 0. (2.32)

Turning now to boundary conditions, the no-slip boundary condition must be

consistent with solid body translation and rotation of the spheres such that

U1an = Uk + Wk X (y-yk), k = 1,...,N, (2.33)
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where a9 k is the surface of sphere k; Wk is the rotational velocity vector of particle

k; () x () denotes the cross product; and Yk denotes the center (of mass) of sphere k.

An additional requirement on u is that it must be A-triply periodic. Our quasi-static

analysis also requires zero net force on each particle, which can be written as

(T': n) ds = 7k1, , N N (2.34)
nk 6'''

where Ti'j = ,uo(ui/ayj + Ouj/ay) - P'6ij is the "perturbation" stress tensor; (T':

n) = T/4j nj; and W = (di -po.,)grd
3/6 is the buoyancy corrected weight of a sphere,

which accounts for the hydrostatic pressure gradient -p,ge 2 since only p' is included

in T'. So (2.34) requires that, for each particle, the integral of the surface stresses

described by the stress tensor Tij be in equilibrium with the buoyancy corrected weight

and the additional buoyancy created by the backflow pressure gradient. Finally, we

require zero net torque on each sphere, which reads

( ( y- yk) (T ' :n) ds = 0, k=i,...,N. (2.35)
~k

Note that r and (Uk, Wk) are not specified, but, rather, are part of the solution.

In essence, the zero net volume flux and particle force equilibrium equations, (2.30)

and (2.34)-(2.35), respectively, are the complementary conditions from which the

backflow gradient and particle velocities can be deduced. The strong-form equations

(2.28)-(2.35) are the point of departure from Batchelor's analysis [2].

In the sedimentation problem, the effective property of interest is the average

settling speed of the particles which, by virtue of horizontal (x1 - -x 3 plane) homo-

geneity, is defined as

U- NW ... (u), (2.36)

where, for v satisfying VIofk = Vk + Zk x (y- k),

N

I(V) = - E (V2)k* (2.37)
k=l
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We also introduce the dissipation functional Jn(v),

JnS (v) 2I(v)- CO 2 L y + ayi } a + dy. (2.38)

By multiplying equation (2.28) by u, integrating by parts over Qme, and using (2.29)-

(2.35), we derive (see Appendix A for details)

In (u) = JnL (U) = o 2 f (a yj + yi ,yj a+ dy) (2.39)

From (2.36) and (2.39) it is clear that the average settling velocity U is always positive.

As for the creeping flow problem, we can prove that (see Appendix A)

u = arg max J (v), (2.40)
VEB

where

B = vEYldivv=0, v2 dy - }IS(v)= , (2.41)

and

Y = {(VI v 2 3 ) E (H#(2me))3 E dy = =0, L v3 dy =0,

and Vk E {1,...,N},vlnk = Vk + Zk (y-yk),Vk E 7 3,Zk E Z3}.

From (2.36), (2.39), and (2.40) we can derive the following expression for the settling

velocity,
1

NW VEB Jnme(v) (2.42)

Related variational expressions for the sedimentation problem can be found in Hill

& Power [24]; Keller, Rubenfeld & Molyneux [28]; and Kim & Karrila 130]. Related

extremum statements for the settling velocity can be found in Keller, Rubenfeld &

Molyneux [28]. In order to arrive at (2.40), we multiply (2.28) by the test function

v E B, and integrate over Qme,. By integrating by parts, using (2.34), (2.35) and the

attributes of the space B, we obtain that the first variation of Jnme (u) is equal to
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zero. Since the second variation is always negative, we are extremizing JSm (v) as

described in (2.40) (see Appendix A).

Similarly to the previous section, we proceed by converting the constrained max-

imization problem into an unconstrained extremization problem by introducing a

Lagrangian Ls ,

rf ~~id 3 l
L(v,q,) = -J()- q-ydy - Lv2 dy- In(v)j , (2.43)

where v E Y, q E L#, 0(Q), and 77 E R. Taking the first variation of the Lagrangian

and setting it equal to zero, we find that (u,p',r) E (Y, L2,0(), 1) is a stationary

point. Moreover, it maximizes the functional Jns with respect to solenoidal admissible

velocity fields. The variational weak form is thus

r avi aui /uAd avi r r d3 
a) y P -dy -T V2 dy -6W I ()fnm, -19~~y3y 89y2 flm-'9jfme U6j

= IS(v) Vv E Y, (2.44)

aui2
- qI ay dy = 0 VqEL# 0o(Dm), (2.45)

F! d i~rd3 ~~
7 [me u2 y - 6W (0 VEu)]R (2.46)

Note that solving (2.44)- (2.46) for u, p and r is equivalent to solving the strong form

of the problem (2.28)- (2.35). Indeed, multiplying (2.28) by v E Y and integrating

by parts over Ome we get (2.44). Similarly, by multiplying (2.29) by q L 0 and

integrating over Qme we obtain (2.45). Lastly, (2.46) results from multiplying (2.30)

by E R. It is important to notice that the zero net force and torque requirements of

(2.34) and (2.35) appear as natural boundary conditions in the variational formulation

of the sedimentation problem (see Appendix A). This constitutes a great advantage

for the numerical implementation of this method.

Choosing v = (0,1, 0) E Y, we derive from (2.44) that r is given by
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NWtt' (2.47)

where Vtot = (Nird 3/6 + fane dy) = A3 is the total volume of the meso-scale cell. Note

that we have determined one of the unknowns of the problem, so it seems we have

too many equations. However, from a mathematical viewpoint, (2.44)-(2.46) are all

necessary. In fact, (2.44) is not solvable without r (try v = (0, 1, 0) E Y). Although

we have determined r, which is associated with the Lagrange multiplier , we still

need (2.46) to prevent the velocity solution u2 from floating, that is, ensuring that

(U2 + constant) is not a solution. Note that both the sedimentation problem and the

porous media problem have unique solutions since they are positive-definite problems.

The backflow pressure gradient r depends only on the buoyancy corrected weight

and concentration of the particles, not on their spatial distribution. This can be

understood by carrying out a y2 -momentum balance for a control volume that consists

of the meso-scale cell. It is clear that the hydrostatic pressure distribution balances

the weight of the fluid and is responsible for the buoyant forces on the particles.

The only other surface force that can balance the buoyancy corrected weight of the

inclusions NW is, therefore, rVtot . So that, indeed, NW = TVtot as claimed in (2.47).

Lastly, the variational weak form should be non-dimensionalized. The velocities

are no-dimenionalied by(Pdi-pc°)gd2 are non-dimensionalized by (Pdi-Pco)9d; the pressure by (di - pc)gd; and lengths by

d. The resulting non-dimensional equations are:

ym '9 j 
0 yj aYi / 'mc idj Lfme 6 k=

7rN
- )k Vv E Y (2.48)
6 k=l

f_ | q'U idy = 0 Vq E Lo(Qme),) (2.49)

[Lme2dY+ (U 2 )k =0 V E , (2.50)un~ 6dy
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where c = y3 is the sphere volume fraction.

Equations (2.36) and (2.48)-(2.50) constitute the sedimentation meso-scale prob-

lem that is solved numerically.

Micro-scale

As discussed for the porous media problem, the methodology can be hindered by

excessively disparate length scales within the meso-scale. When two or more spheres

are too close to each other, we replace the nip region with simple models that yield

lower and upper bounds for the average settling speed. A lower bound is achieved by

rigidly connecting a pair of particles with a cylindrical connection; an upper bound

is achieved by shrinking the spheres while keeping their buoyancy corrected weight

constant. A complete discussion of these methods is presented in Section 3.2.
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Figure 2-1: The original multi-scale problem.
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Figure 2-2: Decomposition of the original multi-scale problem.
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Chapter 3

Variational Bounds: Micro-Scale

Problem

In general, the micro-scale analysis can be of two types: the modeling of interfacial

phenomena between the inclusions and the continuous matrix; and the development

of bounding procedures that alleviate the geometrical stiffness present when two or

more inclusions are very close to each other. The former is important in cases such

as thermal conduction in composites with significant contact resistance between the

two phases, or in fluid flow problems where the inclusions are drops or bubbles that

are contaminated by surfactants. In our study the inclusions are solid spheres, so

interfacial phenomena are irrelevant.

As discussed earlier, our meso-scale analysis may be hindered by the proximity

of two or more spheres. In order to circumvent the problem, a variational-bound

methodology is introduced: we simply modify the geometry of the meso-scale problem

and prove that such modification bounds the effective property of interest. The proofs

are based on the extremizing properties of the scalar permeability K and the average

settling speed U. Once the bounds are established, we show what modifications, if any,

need to be made to the original meso-scale formulation to include the bounds. Note

that our micro-scale analysis does not approximate the fluid flow in the nip region

very well; however, it can provide reasonably sharp bounds on the macroscopic scale

(i.e., the effective property). Moreover, the proofs rely on previously used variational
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techniques of space restriction and expansion [24] [28].

In Section 3.1 we present the bound proofs for the porous media problem: we

discuss the lower bound in Section 3.1.1 and the upper bound in Section 3.1.2. The

proofs are, at first, for a pair of particles, then they are generalized to clusters of many

particles which is important if we want to analyze close-packed geometries. Section

3.2 follows a similar logic for the sedimentation bounds, although the variational

meso-scale formulation needs to be modified.

3.1 Porous Media Problem

Figure 3-1 shows the simple geometric modifications proposed for the porous media

case. To obtain a lower bound, the two spheres are connected with a solid cylinder

whose axis coincides with the line of centers (figure 3-la). The modified fluid region

C is now the old fluid region Q minus the nip region V (C = \ D). Figure 3-lb

depicts the upper bound geometry, which consists of two shaved spheres. In this case,

the fluid region C occupies region V as well as the old domain Q (C = Q U D). The

porous media proofs follow the arguments made by Cruz, Ghaddar & Patera [8] for

two-dimensional porous media (i.e. cylinders in a cross-flow).

3.1.1 Lower Bound

Physically the lower bound is achieved by blocking the flow between selected particle

pairs; mathematically the proof is based on variational arguments. The following

proof is for a meso-scale comprised of N spheres, only two of which are considered for

the micro-scale treatment. We define three motions (figure 3-2): motion 1 corresponds

to the solution of the original geometrically stiff problem over the fluid region Q;

motion 2 corresponds to the solution over the modified geometry C; and motion 3

corresponds to the velocity field of motion 2 and the geometry of motion 1 ( we remove

region V and replace it with fluid at rest). The velocity field of motion 3 (u( 3)) is

an admissible, but non-maximizing, candidate to the porous media problem (2.16)-

(2.18) defined over the region Q. To show this, we need to prove that U(3) E Z over
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Q as defined in (2.18) (with Qtme replaced by 0). Indeed, u (3 ) is an incompressible,

periodic continuous function which vanishes at the sphere surfaces. So for the fluid

region 2 we can say that

JnP(U(1 )) > J(U( 3)), (3.1)

where u( ) is the velocity solution of motion 1. Furthermore, motions 2 and 3 produce

the same amount of viscous dissipation, since the quiescent fluid in region V of motion

3 does not dissipate energy. It follows that

JC(u(- ) = J (( 3 )) (3.2)

where u(2) is the velocity solution of motion 2 which maximizes Jc (v), v E Z over

C. From (3.1), (3.2), and the extremum statement of (2.21) we can write

KLB < , (3.3)

where LB is given by the solution of motion 2; and r is the permeability of motion 1.

Although we have not said anything about the size of region D, it can be shown

that by decreasing the radius of the nip region a sharper bound is obtained. Moreover,

the above proof readily extends to multiple nips and the bound gets more crude as the

number of nips increases for a given geometry and nip radius. In general, the lower

bound proof relies on the simple argument of space restriction: we are restricting

the candidate functions to have a value of zero over , so the maximum value of JP

over the restricted class of functions cannot be greater than the original maximum of

motion 1.

3.1.2 Upper Bound

The physical argument in favor of the proposed nip-enlargement technique is that the

new geometry enhances the flow through the nip. We prove this mathematically for a

pair of spheres in a meso-scale comprised of N spheres. As for the lower bound proof,
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envision three motions (figure 3-3): motion 1 consists of the solution of the original

meso-scale problem in region Q; motion 2 is the solution of the porous media problem

over the modified geometry C = Q U V; and motion 3 consists of the fluid geometry

C with a velocity field of motion 1 (the nip region V) is filled with quiescent fluid).

The velocity field of motion 3 (u( 3 )) is an admissible, non-maximizing, candidate to

the porous media problem (2.16)-(2.18) defined over the region C. In fact, U(3 ) Z

over C since it is a divergence-free, periodic, and continuous function which vanishes

at the inclusion surfaces. So for the fluid region C we have

jP (U(2)) > jCP(U(3))' (3.4)

where u (2) is the velocity solution of motion 2 which maximizes JcP(v) , v e Z over

C. In addition, motions 1 and 3 disperse the same amount of energy through viscous

dissipation. We can thus write

JP(u(1)) =- JcP(u(3)), (3.5)

where u) is the velocity solution of motion 1. From (3.4), (3.5), the extremum

statement of (2.21), and (3.3) we can write

/LB < t _< CUB, (3.6)

where KUB is given by solving the permeability problem of motion 2.

Again, by increasing the size of region D for a given meso-scale geometry, the upper

bound becomes more crude. Moreover, the addition of multiple nips still generates an

upper bound. This can be proved by using a space enrichment argument: by replacing

part of a sphere with fluid we increase the number of admissible test functions v E Z;

as a result, the maximum of JP cannot be smaller than the maximum of the original

problem (motion 1).

The implementation of the bounds is straightforward: one only needs to change

the geometry of the inclusions and then solve the meso-scale equations (2.23), (2.24),

and (2.15).
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3.2 Sedimentation Problem

As shown in figure 3-4, the geometries of the proposed micro-scale models are simple.

Figure 3-4a is a sketch of the lower bound geometry which is obtained by rigidly

connecting a pair of spheres by means of region D. This region consists of a non-

buoyant cylinder whose axis coincides with the line of centers and whose spherical end-

caps are removed. Figure 3-4b shows the upper bound geometry, which is obtained

by reducing the diameter of the spheres while holding their centers Yk in the same

location and their buoyancy corrected weights W constant.

3.2.1 Lower Bound

To prove the lower bound on the settling speed of N meso-scale spheres, two of which

are affected by the geometric changes described, we use the same procedure used for

the porous media proofs. Figure 3-5 shows the pair of modified spheres for three

different meso-scale motions. Motion 1 is the original motion of the N sedimenting

spheres in the fluid region Q. Motion 2 consists of the motion of (N- 1) sedimenting

particles, one of which is the "dumbbell" obtained by connecting two particles of the

previous geometry. The fluid occupies region C = Q \ D. Lastly, motion 3 is the

"dumbbell" motion 2 extended to the larger fluid domain Q of motion 1.

The proof follows the same logic of the porous media lower bound proof. However,

due to the added particle dynamics, we present a more detailed derivation. We first

consider each motion in more detail.

Motion 1 is characterized by

S )Z('Lk I f (au1) u(., L4% au.J(u1) = -2I_ k k- 2 In I\O5- + ' -5 +- -- dy (3.7)JnUk=)j u =2 Yj + yi 0, (3. )

|u(l) dy =|u(1) dy = O., (3.8)
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rd 3
(3.9)

where u(') is the fluid velocity and U (1) is the translational velocity of particle k =

1, .., N. In addition, the velocity field must satisfy all the requirements of (2.41) over

region Q, and be such that

u ) - arg ma Js(v).
VEB

(3.10)

The settling speed is given by (2.42), which can be written as

u( = 1 N J ((1)). (3.11)

In motion 2 we treat the two particles that make up the "dumbbell" as a single

particle with buoyancy corrected weight of 2W. Motion 2 satisfies the following strong

form

-j ( ayj 
+ a - 62i = 0 inC for i = 1,2,3,

'9yi

-Ou? = 0 in C,
ayi

where r - k = W, since

by

the buoyancy corrected weight of particle k is given

W
Wk={

2W

if k =

if k =

1,.., ND - 1

ND

where ND = N - 1 is the number of particles; and k = ND represents the dumbbell.

The zero net flowrate requirement is expressed as,

- f u2)dy + Vk(2))k = 0,
k=1

(3.14)
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where U2) is the translational velocity vector of particle k = 1, .., ND. The volume

of particle k is given by

rd3 if k = 1,..,ND-1
Vk- 6

2 d3 + Vip if k = ND

where V,,,ip is the volume of the nip region V. We also require for uniqueness that

j (2)dy = j u(2)dy - 0, (3.15)

and

Jp(2)dy = 0 (3.16)

Turning now to boundary conditions, the no-slip boundary condition reads

U(2)n = U(2)+ W( ) x (y-Yk), k=1,...,ND, (3.17)

where Wk2) is the rotational velocity vector of particle k; and Yk denotes the center

(of mass) of particle k. An additional requirement on u (2) is that it must be A-triply

periodic. Our quasi-static analysis also requires zero net force on each particle, which

reads

(T (2) : n) ds = (r Vk-Wk) e2, k = 1, ,ND (3.18)
~k

Finally, we require zero net torque on each particle, which can be written as

|o ( Y - y k ) x (T'( 2): n)ds = 0, k=l,. .. ,ND (3.19)
flk

In the lower bound problem, the effective property of interest is the average settling

speed of the particles, defined as

I I .= s(U(2))u() - 1 I(u ( 2)) - I (3.20)
Wk= Nk
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(we have used E l Wk = NW) where for v satisfying Vlank = Vk + Zk x (y - Yk),

ND

ICS(v) = -E Wk(V2)k -
k=1

The dissipation functional JcS(v) is defined as in (2.38) to be

JCS(v) = 2 ICS(v) - co + OvY i
19yj i

(avi
8Yj

(3.21)

(3.22)+ avj dy.

By multiplying equation (3.12) by u(2), integrating by parts over C, and using (3.13)-

(3.19), we derive

1Ig(u(2 )) = JS(u(2)) =
I(a(2) aUj2) ( alJ au j 2 i + a a i
C f -Y-j '9yi -5y + ayi dy.

From (3.20) and (3.23) it is clear that the settling velocity U(2) is always positive.

As for the original sedimentation problem, we can prove that (see Section 2.3)

(2) = arg max Jc(v),
VEB

(3.24)

E Y I div v = 0 , fcv2dy +

Y = {(V1, V2, V3 ) E (H(C))3

and Vk E {1,. .. ,ND}, VIAnk = Vk + Zk

ND

E Vk(V2)k =
k=l

I fvldy = 0,

(3.25)

V3 dy = 0,

X (y- Yk),Vk E 3,Zk ER3 ) .

From (3.20) and (3.23) we can derive the following expression for the settling velocity,

4(2) = 1NW S(u2)),
NW C~u')

(3.26)
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which in view of (3.24), becomes

U(2) 1 max JcS(v). (3.27)
NW vEB

In order to arrive at (3.24), we multiply (3.12) by the test function v E B, and

integrate over C. By integrating by parts, using (3.18), (3.19) and the attributes of

the space B over C, we obtain that the first variation of JC (u(2)) is equal to zero.

Since the second variation is always negative, we are extremizing JC (v) as described

in (3.24).

Finally, in motion 3 the fluid region is enlarged to contain the nip region D with

a velocity field that consists of motion 2 extended to region D as follows

3)/ u( 2) in f \ V
( U(2) + W(2 ) X (Y - YN) in (3.28)

We introduce motion 3 to prove that motion 2 provides a lower bound for the settling

speed of N spheres (motion 1). First, we show that the velocity field of motion 3

is an admissible variation of the original meso-scale problem of motion 1. In other

words, we want to prove that U(3) E B over the domain Q. In order to satisfy (3.8),

we need to shift the velocity field (( 3))' in the following manner

(3) u(2) - Ael - Ce3 in Q \ E
U ~ ~· T (2) W(2)

U ,+WN x(y-yN)-Ael-Ce 3 in D

where A -= (U(2))ND Vnip; C = (U(2))ND VN"- ; and V. is the volume of region Q. Since1 Dvn Vn3 ND 'O 

we have not added a shift in the e2 direction, motion 3 does not violate the zero

net volume flowrate condition (3.14) satisfied by motion 2. In fact, condition (3.14)

requires that the integral of the velocity in the e2 direction at every point in the meso-

cell (fluid and particles) vanish. Since the velocity components in the e2 direction

of motions 2 and 3 are identical at each point within the meso-scale cube of volume

A3, it follows that motion 3 satisfies the zero net flowrate condition. Moreover, the

velocity field is still continuous and A-triple periodic (i.e. it is in (H?(Q))3). The fluid
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motion is consistent with solid body motion of the particles and the no-slip boundary

condition. In addition, u(3 ) is still divergence-free since the fluid in region D is in

solid body motion. Having showed that U(3) E B over region Q, it follows from (3.10)

that

JS(u(1)) > JS(u( 3)). (3.29)

Second, we show that the velocity field of motions 2 and 3 create the same amount

of viscous dissipation, since solid body rotation and translation of the fluid in region

V of motion 3 does not dissipate energy. Physically, it is intuitive that translation

does not dissipate energy. Moreover, even solid body rotation does not dissipate

energy. In fact, imagine a bucket of water that is rotating on a frictionless turntable.

In steady state, no energy input is needed to sustain the motion. In addition, since

ICS(U(2)) = Is(u(3)), it must be that

JS(U(2 )) = JS(u(3)). (3.30)

From (3.11), (3.26), (3.29) and (3.30), we can assert that U(2) < U(1), which we

rewrite as

ULB U, (3.31)

where ULB = U(2 ) and U = U(1) . Note that we are able to make this comparison

because the two settling speeds have the same proportionality to their corresponding

dissipation integrals due to our requirement that the weight of the dumbbell is the

same as the weight of two spheres.

Unlike for the porous media problem, the modified geometry requires certain

changes in the dimensional formulation of the meso-scale equations (2.44)-(2.46) that

lead to changes in the dimensionless formulation of the problem (2.48)-(2.50). Let us

examine the case of N spheres two of which are rigidly connected. Equation (2.44)

changes to
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(~i aU(2) aU(2) a~i NW ND

Ic8 u + dy | V2 dy + E Vk(V2)k
___j ___ ___ I C ayiYvC k=c

ND

- -E Wk(V2)k v E Y, (3.32)
k=l

where we have replaced r with expression (2.47) since the total weight of the particles

does not change. By non-dimensionalizing (3.32) we obtain

r 8v1 ( 2) Du2)\ NI y ~
ayj i0 +~yi 9 ) dy - lp(2) yidy C dy + 6 k

-rNV 2V)ND = - (V2)k Vv E Y (3.33)6 Vt6'

where c =6 3Ni is the sphere volume fraction previous to the addition of the nip;

and (V2)N (V2)ND since the two spheres of the dumbbell, treated separately in the

summations of (3.33), must conform to the original dumbbell rigid body motion. In

the case of N = 2, (3.33) reduces to

j [(-uY) + dy - p dy -p(2) dy - 2c' -(V2)ND
ayj iyj aYi c /Y c 6

6~~~~~
= -26(V2)ND VvE Y, (3.34)

where c' = /+Vi is the volume fraction occupied by the entire dumbbell.

Equation (2.45) still holds in region C, as does (2.49). However, (2.46) does

change and so does the dimensionless (2.50). For N particles, a pair of which forms

a dumbbell, we have

-7 [u(2)dy + Vk(U2))k] = 0 V7E7Z. (3.35)

k=1

By non-dimensionalizing this equation we obtain
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[(2)d + rN Vni (2 
- 7 ]u ) dy+k + 6 + np(U( )ND =0 V En X (3.36)

where (U(2))N - (U(2))ND. For the case of two spherical inclusions (N = 2 and

ND = 1) (3.36) reduces to

- ([U2dY + r Vnip. (U~22) =
L7 ( dy + 2- + 0 E7Z (3.37)

Equations (2.49),(3.34) and (3.37) describe the two particle (N = 2) problem that is

solved and described in Chapter 5 to show the lower bound results.

It should be mentioned, that introducing multiple nips still produces a lower bound

on the settling speed. In fact, whenever two spheres are connected, we effectively

remove six degrees-of-freedom from the original suspension (three translational and

three rotational). Having restricted the space of admissible functions, the maximum

of the new problem cannot be greater than the maximum of the original problem,

and since the total buoyancy corrected weight of the particles is constant, we indeed

have a lower bound on the settling speed.

3.2.2 Upper Bound

The upper bound proof follows closely the lower bound one. Again, we are concerned

with the settling speed of N meso-scale spheres two of which are affected by the

geometric changes described. Figure 3-6 shows three different motions. Motion 1

is the original motion of the N sedimenting spheres in fluid region Q. Motion 2

consists of the motion of the same N sedimenting particles, two of which are shrunk

to a smaller diameter d'(< d) but preserve the same buoyancy corrected weight and

center of mass. The fluid occupies region C = 2 U VD; where = U/) N k is the= = [-J~~k=N-1 f i th
region of fluid obtained by shrinking the spheres k = N- 1 and k = N (see figure 3-4).

Region Q' is the spherical shell of inner diameter d' and outer diameter d obtained

by shrinking sphere k. Lastly, motion 3 consists of motion 1 extended to the larger
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fluid domain C of motion 2. We now characterize the three motions in more detail.

Motion 1 is described in Section 3.2.1 by equations (3.7)-(3.11). In motion 2 we

have N spheres, two of which are shrunk (k = N - 1 and k = N). Motion 2 satisfies

the following strong form

+ 0 )+ qp2- Tr62i = 0 inC for i = 1, 2, 3, (3.38)
~Y~j C 3

8Y lyi 19y 2

- = 0 in C, (3.39)
9 yi

where = -N. The zero net flowrate requirement is expressed as,

N

- (u2 dy + E Vk(U2))k = , (3.40)
k=1

where U2) is the translational velocity vector of particle k = 1, .. , N. The volume of

particle k is given by

I { ~ d3 if k = 1,.., (N- 2)

.d3 if k=(N-1),N

To ensure uniqueness of the solution we require

|C 1 Y |C 3 Y 7 ~~~~~~(3.41)ju2)dy = ju2)dy = 0, (3.41)

and

Jp,(2)dy = 0. (3.42)

Focusing now on boundary conditions, the no-slip boundary condition reads

u()~ = U ?k) + Wk ) x (y-yk), k= 1,...,N, (3.43)

where WV2) is the rotational velocity vector of particle k; and Yk denotes the center

(of mass) of particle k. In addition, we require that u (2) is A-triply periodic. Our
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quasi-static analysis also requires zero net force on each particle, which reads

(T'() ): n) ds = ( Vk - W) e2 ,
nk

(3.44)

and zero net torque on each particle, which can be written as

I (Y -Yk) (T'(2) :n)ds = 0,
ank

k = 1,...,N.

In the upper bound problem, the effective property of interest is the average

settling speed of the particles, defined as

(3.46)U() = NW c( ),

where, for v satisfying vlank = Vk + Zk X (y - Yk),

N

ICS(v) = -w E (V2)k -
k=1l

The dissipation functional JS(v) is defined as in (2.38) to be

Jd(v) = 2 (v) - co 2 
o9vi vq\
t~yj Dyil

(vj
09Yi

+ )vj dy.
09Yj

By multiplying equation (3.38) by u(2), integrating by parts over C, and using (3.39)-

(3.45), we derive

IS(u(2)) = JS(U(2)) 1o a~i }\+ 3

Again, we can prove that (see Section 2.3)

u(2)- arg max JC(v),
vEB

where

B = {vEYIdivv=O,
N

fc V2 dy + Vk(V2)k =
k=1

46

(3.45)

(3.47)

(3.48)

dy. (3.49)
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and

Y = {(V1,v 2 ,v 3) E (H#(C))3 I jvi dy=O.v3 dy=o,

and VkE{1,...,N},v Iak = Vk + Zk (y-yk),Vk E 3 , ZkE7Z3 }.

From (3.46) and (3.49) we can derive the following expression for the settling velocity,

1
C ~~~~~~~~(3.52)1(2)= N- Jc(u(2)) (3.52)

which in view of (3.50), becomes

U(2) = NW max Jc (v). (3.53)
NVEvE-

Finally, motion 3 consists of motion 1 with region D replaced by fluid. This motion

is first defined as

(U( 3))- U-1 ) in C \ (3.54)
{u W() X (Y - Yk) ' k = N- 1,N

Then, in order to satisfy (3.41) we need to shift this velocity field in a similar fashion

to the lower bound problem:

u3) 0) - De - Fe3 in C \ 
U ) + W 1) X (Y - Yk) - D el - F e3 in Q, k = N - 1, N

where DEN (U)k adFvN r()V,where D = N-(U ) and F k= ))kV are the shifts. We have

used Vn, to denote the volume of the spherical shell of inner diameter d' and outer

diameter d, and Vc to denote the volume of region C. Notice that the velocity field

U(3 ) of motion 3 consists of the velocity field u0) over Q and the solid body rotation

and translation of the two unshrunk spheres extended to the fluid region V (plus the

discussed shifts). First, we show that the velocity field of motion 3 is an admissible

candidate to the upper bound problem of motion 2. In fact, the concocted field U(3 )

satisfies (3.41) by construction, and is continuous, A-triply periodic, and divergence-
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free. In addition, it is consistent with no-slip at the fluid-particle interface and it

satisfies zero net flowrate in the e2 direction since motion 1 satisfies this requirement.

In fact,

N

jU2 dy + E Vk(U2( k

N

In k=N-1 ic 

7rd3 N-2

k=1

u 1)dy + (1))k
6 =1

(3.55)

+ [W() (y-Yk)]2} dy +

7Fdt3 N 
+ - ())k=

k=N-1

= O

where we used (3.54) and the fact that fn [W ( ) x (y -Yk)] 2dY = 0. In conclusion, the

proposed velocity field U(3) is an admissible candidate for the sedimentation problem

defined over the geometry C. This translates as

(3.56)

It can also be shown that the velocity field of motion 3 creates the same amount of

viscous dissipation as the field of motion 1, since solid body rotation and translation

of the fluid in region D in motion 3 do not dissipate energy. From this, and the fact

that IC(u()) ICS(u(3)), it follows that

Js(u(1)) = JS(u(3)) (3.57)

From (3.11), (3.52), (3.56), (3.57), and the fact that all particles weigh the same, we

realize that U() < U(2), which is written as

U < UUB, (3.58)

where UUB = U(2) and U = U(). The reader should be aware of the fact that this

is a bound on the dimensional settling speed. Non-dimensional speeds are discussed
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later in the section.

The modified geometry requires certain changes in the dimensional formulation

of the meso-scale equations (2.44)-(2.46), that lead to changes in the dimensionless

formulation of the problem (2.48)-(2.50). Again, let us examine the case of N spheres

two of which are shrunk while keeping their buoyancy corrected weight constant.

Equation (2.44) changes to

(2)~ ~ ~ ~ ~ ~ ~ ~~~vd +N-.,V)avi IN() 82) 19(2)avi dy NWV 
PCO k~y +-- ~y } dy - f p' 2 d2 y 1 kMcayj j ai aYi Y Vtot + Vk(V2)k

N

= -WZ(V2)k Vv E Y, (3.59)
k=l

where we have replaced r with expression (2.47) since the total weight of the particles

does not change. When non-dimensionalizing (3.59) we use d' as the length scale of

the problem. This leads to

j ov ( &$2 +a dy - dy C [V 2 dY + 6 E (2)k
cyj -Yj aYi y-c i c6 k=(N-1)

N-2 7N
-c6 E (V2)k (E2)k V E y (3.60)

6k=l k=1

N-7rd3
a Nz'd's N-where c = N- 3 ; = N6d 3 ; and the summation k=l vanishes for N = 2. In the

case of N = 2, (3.60) reduces to (2.48) by replacing c with c'.

Equation (2.45) still holds in region C, as does (2.49). However, (2.46) does change

and so does the dimensionless (2.50). For N particles, a pair of which is shrunk, we

have

N 1

r u 2 dy + V-k(U2 ))k = 0 V E 7. (3.61)

k=By non-dimensionalizing this equation we obtain (using d' as the length scale)
By non-dimensionalizing this equation we obtain (using d as the length scale)
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(2) dy + 7r N 7r d Ns
7 c U2 6 E (U2) ))k + _-(_)3 E (U2(2))k ¥Vl ,- ~7 u? )dy + 6 k=(N-1) 6 =0 (3.62)

which for the case of two spherical inclusions N = 2 reduces to (2.50). Equations

(2.48)-(2.50) describe the two particle problem (N = 2) that is solved and described

in Chapter 5 to show the upper bound results, taking care of using c' as the particle

concentration.

Notice that we use c' instead of c for particle concentration. Since we use a

different length scale to non-dimensionalize the upper bound problem, we have to

take care when comparing the settling speeds. In fact, our upper bound proof applies

to the dimensional settling speeds U and UUB. Since our numerical procedure relies

on the dimensionless formulation of the sedimentation problem we need to state what

happens to the dimensionless settling speeds U* and UB. In motion 1, the velocities

are non-dimensionalized by (APCd 2 ) = (-Wd); whereas in the upper bound problem

we use ,Wd,). It follows from (3.58) that

U* < d (3.63)

for N particles in a cell.

Since in this study we only implement the micro-scale treatment for the case

N = 2, we choose to non-dimensionalize the upper bound equations (3.59) and (3.61)

by using d' as the length scale. In this fashion, the variational weak form reduces to

the original meso-scale equations (2.48)-(2.50). In general, when N > 2, we might

non-dimensionalize (3.59) and (3.61) with d so that (3.63) reduces to U* < U B.

It should be mentioned that shrinking more than two spheres still produces an

upper bound on the settling speed. In fact, whenever the diameter of a sphere is

reduced, we effectively enrich the space B so that the maximum of JS has to be

greater than, or equal to, the maximum of the original problem. Since the buoyancy

corrected weight is constant, the settling speed for the modified problem has to be

greater or equal than that of the original problem.
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a) b)

Figure 3-1: Porous media nip-region modification:
bound); b) nip-region enlargement (upper bound).

motion 1 motion 2

a) nip-region blockage (lower

motion 3

Figure 3-2: Porous media lower bound proof.
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motion 2

Figure 3-3: Porous media upper bound proof.

I_- -_

Qk=N /\

~/ \
k=N-1 ( I

/I~~~~" \ _\
\ _ D~~7 ~ ~/j~~~

a) b)

Figure 3-4: Sedimentation nip-region modification: a) connecting two spheres to make
a dumbbell (lower bound); b) shrinking two spheres (upper bound).
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motion 2

Figure 3-5: Sedimentation lower bound proof.

// \

\
/

motion 1 motion 2 motion 3

Figure 3-6: Sedimentation upper bound proof.
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Chapter 4

Numerical Methods

In this chapter we implement the finite element method to solve the variational weak

forms of the porous media and sedimentation problems. In Section 4.1 we review some

fundamental notions with the aid of a model problem: Poisson's equation. The section

discusses the discrete finite element matrix equations, the solution algorithm, and the

mesh generation procedure. In Section 4.2 we build on Section 4.1 to formulate the

porous media discrete equations and solution scheme. Finally, in Section 4.3 we

extend the discussion to the sedimentation problem.

4.1 Three-Dimensional Finite-Element Methods:

Discretization and Solution of Poisson's Equa-

tion

4.1.1 Discretization at a Global Level

We discuss a finite element discretization and solution of the following Poisson prob-

lem defined over the meso-scale region £me

-V 2u = f in Qme, (4.1)
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where u(y) is the unknown scalar field and f(y) is the forcing term. The boundary

conditions are Dirichlet on the sphere boundaries 0 Qme and periodic on the cube

boundaries aQ# (see figure 2-4).

u = 0 on 9Qme, (4.2)

u(y) = u(y + A(mlel + m2e2 + m3e3)) on OQ# (4.3)

where (el, e2, e3) represent the unit vectors of the coordinate system (, Y2, Y3); and

ml, m2, m 3 are integers. The variational weak form associated with the problem is

given by

a(v,u) = (v, f) Vv E X, (4.4)

where

a(v,u) = 9 a a__dY (4.5)
me O9yk ayk

and

(v, f) = n vfdy. (4.6)

The space X = {v E Hol#(Qme)} is the space of all A-triply periodic square-integrable

functions that vanish at the surface of a sphere and whose first derivatives are square-

integrable.

We subdivide the fluid region £2me into K conforming tetrahedra £2ke such that

K

Ome = U Qk ke = 1 .. ,K . (4.7)
ke=l

We introduce the discrete approximation of X: Xh = {VInk, E Pgo(Qk')} n H#(Qme)

where PVrO are polynomials of total degree Jo = 1, 2 defined on the tetrahedra Qke.

The intersection with H#((Qme) guarantees that v is a continuous function across

55



elements. Although first order elements (o = 1) suffice for Poisson's problem, we

introduce second order elements (o = 2) because they are needed in Sections 4.2

and 4.3. Note that the function v E Xh does not have to vanish at the surface of a

sphere: we take care of the Dirichlet boundary condition in our solution scheme of

Section 4.1.3.

We now introduce the global basis functions i E Xh

qi(yj) = ij , 1 < i,j < Ngn, (4.8)

where Ng, is the total number of global nodes; and yj is the coordinate of the jth

global node. We can use the basis Xi to represent a function v over Qme

Ngn

v(y) = E vqi(y), (4.9)
i=1

where vi = v(yi). Note that span{0i} = Xh.

If we use (4.9) to expand all the functions of the variational form (4.4) (except for

f(y) which can be discontinuous), we obtain the linear matrix equation

Au-h = f, (4.10)

where the global matrix A = Aij = a(i, bj) is the discrete Laplacian operator; uh

is the global vector of the unknown nodal values of the discrete field uh(y) E Xh;

and f = fnme qifdy is the forcing vector. If f(y) is a continuous function, we can

approximate f as _f

f ~ f = Mf, (4.11)

where M = Mij = (i, j) is the mass matrix; and f is the vector of the values of

f(y) at the global nodes.

It follows from (4.5) and (4.2) that the matrix A is symmetric and positive-

definite. This allows us to use the conjugate gradient iteration to solve (4.10) as

discussed Section 4.1.3.
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4.1.2 Elemental Constructs

In order to solve the discrete equation (4.10), we form the system matrices (A, M)

at an elemental (local) level. We then use direct stiffness summation to sum all the

elemental contributions of the problem. We first introduce three types of elements:

the linear (Pi) tetrahedron; the bilinear (P2) subparametric tetrahedron; and the

bilinear (P 2 ) isoparametric tetrahedron. We introduce a local to global mapping gke,

which takes as input the element number (ke = 1, .., KC) and the local node number

(a = 1, .., NloL, where NloCal = 4 for Pi and Nloca = 10 for P 2) and outputs the

corresponding global node number. A description of tetrahedral elements can be

found in many finite element books [50] [27] [29]. In this subsection we follow the

discussion of triangular elements presented in the lecture notes of Prof. Patera's

course "Computational Fluid Dynamics" [38].

Pl-Linear Tetrahedron

Each linear tetrahedron has four local nodes, one at each vertex. We define a set of

barycentric coordinates (1, C2, (3, C4) for a point y in the tetrahedron ke

vol(y 2 3 4)
volke

vol(y 1 3 4)
volke

vol(y 1 2 4)
volke

4 = vol(y 12 3) (4.12)
volk,

where vol(y 1 2 3) is the volume of the tetrahedron formed by the vertices at node 1,

node 2, node 3, and point y; and volke is the volume of element ke. It follows that

0 < a < 1, a = 1, 2,3,4 and (I + (2 + 3 + 4= 1. Every element f2ke is mapped

onto the reference element Q by using the affine transformation (4.12). We write it

as y = Fke(() where C = (, (2, (3) does not include (4 since only three barycentric

coordinates are independent. In matrix form the affine transformation is
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3

C = C + E Dky,
f3=1

(4.13)

where Cke and D ,a -= 1, .., 4, = 1,.., 3, are defined in Appendix B. We also have

the inverse of (4.13): y - (Dk)-- (Dk)-lCke, where we exclude the last row of

Cke and Dke. It follows that dy = JId( where J = det(Dk ) -1 is the Jacobian. Note

that, for this transformation

y = E k(Cg (4.14)

where Sry is the coordinate vector of local node a of element ke.

function §kce () we have

0 7ke
19y,

3 a§k. a¢m

= ' Oym
i=l YM

Moreover, for a

= 3 We Dke

i=1 "i
(4.15)

At this point we introduce the elemental basis functions h,( ), a = 1, .., 4

hi = (l, h2 = 2 ,h3 = 3 ,h4 = 1 - 1 - - G (4.16)

Thus for any E P1, we have

4

=
ck'-I

(4.17)

and we have

h.((F k)-l(y)) = g9 e (Y)Inke. (4.18)

The elemental versions of the global matrices A and M are

Ak = ha ho dy
M6 ke 9yam 0 ym

k
fn1~ h,hpdy,M. = ~,e

(4.19)

(4.20)

where m = 1,2,3; 1 a, ,3 < 4; and we sum over the repeated index m. By
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transforming the element ke to the reference Q, and recognizing that IJI = 6 volke

we arrive at

3
Ak = olke E Dm DTXke (4.21)

m=l

Mp = 20O (1 + ). (4.22)

The direct stiffness algorithm used to sum the local contributions is described

after the discussion on P2 elements.

P2 -Bilinear Subparametric Tetrahedron

In order to enrich our finite element space Xh, we pursue second order interpolants

over each tetrahedra. We therefore introduce a 10 node element (Niocal = 10), by

adding 6 nodes to the linear element at the midpoint of each edge. We still use the

barycentric coordinates used for the linear tetrahedron; however, the local basis h is

now defined to be [27]

h = (2h - 1)1, h6 = 42(3 (4.23)

h] =(22 -(2 -1)2, h7 = 4(13

h = (23 - 1)a , h = 44

h = (24 - 1)4, h9 = 4 3(4

h5 = 412 , hio = 42(4.

The elemental matrices are given by (4.19) and (4.20) as before. Since the integrals

are not as straightforward to evaluate, we use Gaussian quadrature with np number of

integration points (,j and weights lbj, j = 1,.., np defined over the reference element

Qf. We calculate the integral of a function (y) over Qfke as follows
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np
r~y~dy ' volWc E us^ (1k. ( ))k] §(y)dy - v W § (y((lj, 2j, sj,

j=1
(4.24)

In order to integrate a fifth degree polynomial exactly we need np = 15 [46]. (The

points and weights are given in Appendix B.)

P2-Bilinear Isoparametric Tetrahedron

The aforementioned elements have a common shortcoming: they cannot represent

curved surfaces accurately and, therefore, introduce a skin-error ([45] page 108). For

instance, in our case, these elements transform the surface of a sphere into a polygon.

To improve this situation, we introduce the isoparametric tetrahedron. In other

words, we use the basis ha defined in (4.23) to represent the geometry as well as any

function over C. We thus have

10

y = E keh (() (4.25)

As a result the Jacobian J is not constant within an element. The system elemental

Laplacian (4.19) can be written as

In=J[ [ n a)3
(E Ep. ak. + E Ebn ).n~ n~

=1~ ~ = =1

IEfnb)d (4-26)

EOn cn)] d(,

where En = h and- o¢

ke j n
n - DYi

0 y2

kc = J n=n 1Y

1 9Y2 O3

19(4[n+l] 19([n+2]

_ 9Y 19al Y3

( Y aY aY2= ([n+ ] O[n+2]\ 0Oyl On2]
=

_ 7Y2 y3 

09[n+2] 09[n+l]

Y y 9Y3 )
([n+l] 0([n+2]

[nY1 "'Y2

0([n+2] 0(C[n+l]
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where=[] mmod3; and O = ke___ (where [m] = mod3;an d= (yp)a d_ from (4.25) The elemental mass

matrix is

^keMl3 = h h,,IhlJld(, (4.28)

and the Jacobian is

J =9Y aY2aY3 _ 9Y2 9Y3) (4.29)
a( 1k02193 a93 a 2

&Y1 (6Y2 9Y3 _9Y 2 a3 +

j( 1911( i93 ac1,
aY1 (aY2 

0 Y3 &9Y2 9yJ3

a(,3 19(119(2 J2 ahs 9

As for the P 2 subparametric elements, we use Gaussian quadrature to evaluate (4.27)

and (4.28).

Note that we can mesh the surface of a sphere accurately since a sphere is described

by a quadratic equation. However, when deforming an isoparametric element we

need to check that we are not distorting the element too much, which can cause the

Jacobian to change sign.

4.1.3 Direct Stiffness Procedure and Iterative Solver

In order to solve (4.10) we use an iterative scheme: the conjugate gradient method

[18]. In three dimensions iterative solvers prove to be more efficient than direct

solvers, specially in terms of memory requirements. Moreover, the conjugate gradient

is robust, automatic, and minimizes data storage even more than other iterative

solvers. For simplicity, we report the conjugate gradient for global data structures:

initialization: m = 0, pick , r° =mask o (Mf -A u ), w° r °;

am = (r m )/(w m ,Aiw m); (4.30)
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uM + = u + am m; (4.31)l =Uh h+ a w ;
rm+l = mask o (rm - am A wm ); (4.32)

bm = (rm+l, rm+l)/(rm,rm); (4.33)

Wm+l = mask o (rm + bm wm), (4.34)

where m is the iteration number; uT is the mth iterate of u which is the vector of

unknowns; rm is the residual; wm is the search direction; and (., ) denotes the discrete

scalar product. The vector mask imposes the Dirichlet boundary conditions on the

sphere: if node i is on a sphere then maski = 0, otherwise maski = 1, i = 1 .... , Ngn.

Note that uh has to be consistent with Dirichlet boundary conditions. The iteration

proceeds until a stopping criterion is satisfied; typically, the incomplete iteration error

is based on the Hl-seminorm luh-uehIH , and expressed in terms of the (computable)

L2 -norm of the residual [6]. We implement the following stopping criterion

1

__ =~m2 < -iter (4.35)

where Ndof is the number of degrees-of-freedom of the system; Mi is the "lumped"

mass matrix; and iter bounds the iteration error. In fact, if we define em = -

to be the iteration error, (4.35) ensures that Citer > Je Hi. The lumped mass matrix

is given by

J/ke
M=(gke) =ZVolk.e (4.36)

ke Zm=l mm

where Mmm, m = 1,... , Nlocal , is a diagonal component of the local mass matrix;

and kCe represents the direct stiffness operation. Notice that the denominator in

(4.36) is the trace of M k .

As mentioned, we actually deal with local data structures, not global ones. Adapt-

ing the conjugate gradient to a local data structure is straightforward. All global

vectors (r, uh, w, mask) are replaced with their local representation. For example, we

replace the residual ri, i = 1 ..., Ngn with r k, C = l,..,Nlocal, ke = 1..,K. Note
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that the scalar product (., ) is now handled in a slightly different manner. We still

multiply the entries of the two arrays and add all of them; however, we need to en-

sure that we do not count the same degree-of-freedom more than once (for example,

a node that is shared by five elements would be counted five times). To avoid the

problem we create an array multi which, for each local node, gives the number of

elements that share that global node. We now multiply the ith (= gke) entries of the

two arrays, divide their product by multii and add the results.

In practice, we never assemble A. Instead, we evaluate q = As, the action of A

on a vector s, through our direct stiffness procedure, which on a local level is given

by

* calculate the elemental matrix product

set qe to zero

loop through ke = 1, ..., C

loop through 3 = 1, .., Nloca

qke = q ke + Ake Ske

* direct stiffness the array qk

osum the local contribution of qke to the global vector qi:

set qj to zero

loop through ke = 1, ..., K

loop through a = 1, .., Nocal

i=gk
qi = qi + qke

oTake care of the periodic boundary conditions:

for a given periodic node, add up all the qis and write

the sum back to all the global qis

owrite back to the local data structure

loop through ke = 1, ...,/K

loop through cQ = 1, .. , Niocal

ke

= qj
qke = qi
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The same algorithm is used to calculate the action of the mass matrix M.

4.1.4 Mesh Generation

In our mesh generation procedure we adapt the mesh generation modules of FELISA

which is a three-dimensional inviscid flow software package 39]. This mesh generator

creates an unstructured, linear tetrahedral mesh for the geometry of choice. FELISA

uses the advancing front technique to create a mesh. First, it meshes the surfaces of

the described geometry with triangles, then it creates tetrahedra by advancing the

front from one surface to the next until the entire fluid domain is meshed. The user

has control over the mesh spacing by specifying different parameters. First, one must

specify the background mesh by using one or more tetrahedra that enclose the entire

region to be meshed. We choose to enclose the region to be meshed (Qme) in one

tetrahedra that specifies uniform mesh spacing h throughout £me. Second, we use

point sources to refine the mesh in certain parts of the domain mme. The point source

mesh spacing hsph varies according to the inputs h4,Sc,DD, and the formula

h4 if r < Sc
hsph { -f-

h4e1D-sc1n2 if r > Sc

where r is the distance from the location of the point source; Sc is the radius of the

sphere centered at the point source in which the mesh spacing is constant; and DD

is the distance from the point source at which the mesh spacing is 2h4. When one or

more point sources are used, FELISA selects min(h, hsph) as the local mesh spacing.

Unfortunately, our version of FELISA does not allow for periodic boundary con-

ditions. In other words, the triangles on opposite faces of the meso-cell cube are

not mirror images of each other. In order to overcome this problem we use a two-

dimensional triangular mesh generator to mesh one face of the cube [22]. This mesh

generator allows us to control the location of the nodes on the edges of the square.

Once we have the surface mesh, we copy this face five times to obtain an admissible
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cube surface mesh. Subsequently, we input this surface mesh into FELISA and let

it mesh the surfaces of the spheres and the volume. Note that we are not able to

replicate a mesh on a square generated by FELISA because we have no guarantee that

two opposite edges of the square have periodic nodes. Of course FELISA, outputs

the coordinates of all the nodes and their local to global mapping g.

A limitation of our mesh generation procedure is that inclusions cannot intersect

the meso-cell cube. Since inclusions are meshed by FELISA and meso-cube surfaces

are meshed independently, we would have non-conforming surface meshes where the

inclusions intersect the cube. In general we avoid this problem by studying non-

intersecting geometries. However, when studying a closed-packed bed of spheres

arranged in a simple cubic array we must implement the bounding procedures of

Section 3.1. In particular, the lower bound geometry intersects each face of the meso-

cell. We create a conforming mesh by exploiting the symmetry of the problem. Figure

4-1 shows the mesh of of the meso-cell volume entirely obtained by FELISA. This

mesh is replicated to fill the entire volume resulting in a periodic mesh.

The meshes obtained as described are linear. In order to create a second order

subparametric mesh, we insert an extra node at the mid-point of each edge of each

tetrahedron. Moreover, to create an isoparametric mesh, we need to search for all

the edges of the tetrahedra whose end-nodes are on the sphere and then move the

mid-node so that it lays on the sphere instead of inside of it. It has been found

that this procedure can distort certain elements so much that the Jacobian J changes

sign within those elements, preventing the conjugate gradient from converging. To

avoid this problem we act in one of two ways. First, we can refine the mesh in the

neighborhood of the sphere surface by introducing a point source at the center of the

sphere. Second, we can replace the sphere with a slightly larger one, generate a mesh,

and then move all the nodes on the sphere to the surface of the original inclusion.

This procedure stretches the elements radially so that less deformation occurs. Both

methods solve the problem effectively; however, the first is preferred since we usually

desire a more refined mesh around the inclusions.

In Appendix C, we illustrate the method described here by solving Poisson's equa-
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tion for heat conduction through a simple cubic array of insulating spheres and de-

ducing the effective conductivity of the medium.

4.2 Porous Media

In this section we present the discretized porous media problem along with the discrete

permeability and a discussion of the Uzawa iterative solution scheme.

In solving the porous media problem we discretize the variational weak form (2.23),

(2.24). We rewrite it as

a(u, v) - b(p, v) = (f, v) Vv E (H1#(2me))3 , (4.37)

and

- b(q, u) = 0 Vq E L2o(f2me), (4.38)

where u E (HO#(Qme))3 and p E L 2,0 (me) are the velocity and pressure solutions

respectively. We also use a(u, v) = fnme . Ov dy; b(p, v) = fm Pa i dy; and (f, v) Os yj =~ Poy~ '

fame, 61ividy. For our finite element approximation we select the '1P - P2 Taylor-Hood

element which approximates the pressure Ph with linear ( 0o = 1) polynomials and

the velocity field Uh with second order polynomials (o = 2). This pressure-velocity

formulation is chosen because it satisfies the div-stability condition [19]. We introduce

two discrete spaces: Yh(Ome) = {vlak E P 2(fQk)} n H#(Qme); and Wh(f 2me) =

{qjfke E p 1 (Qk,)} n C#,0 (Qme). Note that the discrete space Wh is continuous since

C(fme) is the space of all continuous functions. The discrete solution Uh E [Yh (.me)]3

and Ph E Wh(ftme) satisfy

a(uh,v) - b(ph,v) = (f,v) Vv E (Yh(f2me))3 , (4.39)

and

- b(q, Uh) = 0 Vq e Wh(Qme) · (4.40)

We introduce a tetrahedral mesh consisting of KC elements; Ngv velocity nodes and
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NP pressure nodes. Now we define the velocity basis 0Y E Yh and the pressure basis

q E Wh. Representing our functions discretely with these bases we obtain from

(4.39) and (4.40)

Auh,- DTph = ML, i = 1,2,3, (4.41)

and

-Di h, =0, (4.42)

where A and M are the same matrices described in Section 4.1 for P2 elements; and

Di is the discrete divergence operator, which in elemental form is

( i) = J h , dy a = 1,..,4, ,=1,. 10 (4.43)

where hv and hP are the P2 and P1 elemental interpolants respectively. For unique-

ness, we require that the pressure satisfies

NVn

Phm = 0. (4.44)
m=l

Finally, the discrete permeability of (2.15) can be written as

I 1TMua= -1TMuh. (4.45)
h 3

We can also write
1 T

K = A u , Au(4.46)

where we sum over i = 1, 2, 3. Equation (4.46) is obtained by multiplying (4.41) by

uT; summing over the repeated index i; and realizing that uTDT = (Di h)T =0.
--hi- -U-'h -

Obviously, we can calculate rP both ways and compare the results to ensure that the

code is behaving correctly.

We define an error EhP - P I which can be written as

Ep 1 a(uu) - a(uh, Uh) (4.47)
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The approximation sign is due to the skin-error introduced by subparametric meshes

and the quadrature errors introduced by isoparametric elements. Note that by se-

lecting v = u in (4.37) and v = Uh in (4.39); using (4.38) and (4.40); subtracting the

resulting equations; and taking the absolute value we get

ja(u, u) - a(uh, uh) = (f, u - h)[, (4.48)

in the absence of quadrature errors. Evoking the Cauchy-Schwartz inequality [18] to

bound the right hand side of (4.48), we have

(a(u,u) - a(uh,uh) < Ilfl L2lU - UhJ|L2 , (4.49)

which in view of (4.47) gives

Eh < 3 lfllL2llu-uhL2, (4.50)

where lvilL2 = ( vvdy) / is the L2 norm. Equation (4.50) shows that the

permeability error Eht is bounded by the finite element discretization error in L2,

which is O(h2 ) for linear elements and O(h3 ) for second order elements; where h is

the mesh spacing.

In order to solve for the discrete velocities and pressure we implement the Uzawa

saddle-decoupling algorithm [35]. To obtain the saddle-decomposition, we multiply

equation (4.41) by DiA -1 and use (4.42) to obtain

SPh=- DiA-1M i, i=1,2,3, (4.51)

and

A uh = DTph + Mli , i =1, 2, 3. (4.52)

where S Di A- 1DT is a symmetric, positive-definite matrix. We solve (4.51) for

the pressure field using a procedure that relies on the conjugate gradient algorithm.

First, we compute the forcing term by solving A gi = M fi for gi using the conjugate
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gradient method; then we simply carry out the multiplication Di gi. Second, we

implement an outer conjugate gradient iteration in which the matrix to be inverted is

S. To evaluate the action of S on a vector q we rely on three inner conjugate gradient

solves used as follows

ti = DTq,

A4zi

S q

(4.53)

= ti, (solved by conjugate gradient iteration)

= Dizi -

Once the pressure is determined, we solve (4.52) for the velocity unknowns through

the use of yet another conjugate gradient iteration. Finally, we use either (4.45)

or (4.46) to determine the permeability. Note that when the local mesh spacing h

varies considerably within the meso-scale mesh, it is convenient to precondition the

outer pressure solver [18]. The diagonal lumped pressure mass matrix is a simple and

efficient preconditioner.

In closing the section, we mention the micro-scale implementation. It is actually

trivial: once the geometry has been altered, we mask all the nodes on the surface of

the inclusions and proceed as usual.

4.3 Sedimentation

We rewrite the sedimentation problem (2.48)-(2.50) as

a'(u,v)-b(p',v) = c(f,v) -(1- c)l(v) v E Y,

-b(q, u) = O Vq E Lo(Qe ),

- (f,U) + I(U)] = 0o V e7Z,

(4.54)

(4.55)

(4.56)

where u E Y and p' E L2,0(C me) are the velocity and pressure solutions respectively.

We also have used a'(u, v) = fne 9i (at + j ) dy; (f, v) = fnam 52ividy; and 1(v) =. O.,.yj \oyj 89yi
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Ek=(V2)k, where (V2)k is such that VQflk = Vk + Zk (y- Yk), k = 1,.., N as in

(2.41).

Since we ae still dealing with Stokes flow, we select the Pi - P2 Taylor-Hood

element for our finite element discretization. Again, we introduce a tetrahedral mesh

consisting of KC elements; NV velocity nodes and N' pressure nodes. We also intro-

duce two discrete spaces: YhS(fQme) = {Ine e. P 2 (Qke)}nY; and WhS(f2me) = {qlke E

pT(f2ke)} nC#,0 (Qme). Now we define the velocity basis OY E yhs and the pressure ba-

sis Of E Whs. Note that our velocity basis is such that OY(yj) = 6ij, 1 < i, j < Ndof,

where Ndof = Nv - Nsur + 6N is the number of one component velocity degrees-of-

freedom of the finite element mesh; and Nsurf is the number of nodes on the spheres.

In fact, all the nodes that are on the surface of a sphere (slave nodes) represent six

degrees-of-freedom (master nodes). Since the bases have to be nodal, we introduce

a master-slave mapping matrix Q that transforms the six master degrees-of-freedom

into slave nodal values that are compatible with solid body motion of the sphere [1].

We use Q in the following way

Vh Q ast (4.57)

where kh has length 3NV and Vaster has length 3Ndof. Note that in the sedimentation

formulation we need to merge all three velocity components into one vector since the

operator a'(., .) couples the three directions.

Representing our functions discretely with these bases we obtain

Q__ AQUmas- Q__TDTp = Q T cBf_- (1 - c)L, (4.58)

- DQumaster = 0, (4.59)

7N
lZ-,,masier 7r N'(2) TQuhaster + (U2)k = , (4.60)

6k=1

where A, D and B operate on the finite element nodes (i.e. the mesh nodes), and

L operates on the velocity master degrees-of-freedom. In principle, instead of storing

three matrices to evaluate QTAQVmater we could create one matrix A' = QTAQ
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and then evaluate A'vta Ster. However, it is easier to evaluate QVaster and QTv,

than QTA. For this reason, we keep the matrices separate. (See Appendix B for the

elemental constructs of Q, QT, and vh.)

The discrete Laplacian A differs from the discrete operator of the Poisson problem.

At an elemental level, the Laplacian can be written as the sum of two parts: Ak =

.ke
~keAa, + A,. The two components are given by

-_ke f 9h Oho
A(a=i')(#=j) = 5ink Y -dy (4.61)

(a=i.)(k=j) ke - (4.62)
eOyi '9 y,

where (i, j) = 1, 2,3 are the coordinate directions; and (, A) = 1,.., 10. It should be

noticed that Asp is a 30 by 30 matrix for each element ke instead of being a 10 by 10

as for the permeability problem. The matrix Dke a =1, .. , 4, / = 1, ..30, is simply

given by

Dke = (D ke D ke )ke-1 R2 _D3 ~~~~~~(4.63)

ke~~ "kwhere . is given by (4.43). Finally, B in elemental form is

(C=i)(-- = 2if)2jjk, , = 1 .. 30. (4.64)

The vector L = (T L LT)T is, on a global level, given by

62i if j is a sphere translational degree-of-freedom (4.65)
(Li)j 6 (4.65)

0 otherwise

where i = 1, 2, 3, j = 1, .., Ndof. The local representation of L is similar to that of

Vaster described in Appendix B: we have (Lmater)ke, a = 1, .., 30, ke = 1, .., C, and

(LVW,master)k, y = 1 6, k = 1, .., N. The former array is zero, and the latter is

(LVWmaster)k = 62=. Note that the right hand side of (4.58) is obtained in three

steps. First, we calculate cBf on the slave degrees-of-freedom. Second, we map the
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slave degrees-of-freedom onto the master degrees-of-freedom by operating with QT

(i.e. QTcBf). Finally, we subtract (1 -c)L to obtain the right hand side forcing

term.

The solution of (4.58)-(4.60) is obtained using the Uzawa algorithm described in

the previous section. The saddle-decomposition is obtained by multiplying (4.58) by

DQ(QTAQ). The result is

SpA (4.66)
P -iQ(Q T AQ)-(Q T cBf - (1-c)L), (4.66)

(QTAQ) uaster = QT (DTp + cBf) - (1- c), (4.67)

where S = DQ(QTAQ)-JQTDT. Note that the inner and outer conjugate gradients

invert (QTAQ) and S respectively, which are both positive-definite matrices. More-

over, in sedimentation, maski = 1 for every node since there is no Dirichlet boundary

condition.

Periodicity is achieved through the direct stiffness summing procedure, which is

the same as the one described in Section 4.1. Direct stiffness is implemented on any

local vector (actually, any two dimensional array for our elemental constructs) that

is the result of the product of a local matrix (three-dimensional array) with a local

vector. Operating with Q and QT does not require direct stiffness since these are just

master-slave "mappings".

Equation (4.60) is implemented similarly to the uniqueness conditions on the

velocities (2.31) and on the pressure (2.32). For example, (4.60) is satisfied by cal-

culating the value of the left hand side with the velocity results of a given iteration,

and subtracting the result (divided by the volume of the cube) from the velocity

field. In infinite precision arithmetic, (4.60) need only be satisfied after the solver

that inverts (QTAQ) has converged. However, to ensure that the conjugate gradient

iteration converges in finite precision arithmetic, we satisfy condition (4.60) every,

say, 100 iterations. Note that when integrating over the fluid region Qme with the

mass matrix, we are integrating over a volume Vme,,h which differs slightly from the

continuous one Vime. In the continuous formulation, the solvability of the variational
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weak form (2.44)-(2.46) is guaranteed, in part, by the backflow pressure gradient

r = (Section 2.3). In the discrete formulation, solvability is guaranteed by a

discrete backflow pressure gradient rh = NWd/6+ e Non-dimensionally, rh is equiv-
Nrd 3/6+Vme,h

N~rd3 6alent to the discrete porosity c = N7rd3/6+ h. It follows that we have to replace the

volume fraction c with ch in (4.66) and (4.67).

Finally, we discuss the implementation of the micro-scale models described in

Section 3.2 for the case of two inclusions in the meso-cell (N = 2). The lower

bound is obtained by rigidly connecting the spheres, thus creating a "dumbbell".

The variational weak form of the problem is given by (2.49),(3.34) and (3.37). After

having created a mesh, we treat the dumbbell as one particle with six degrees-of-

freedom and a center of mass located at the mid-point of the segment that joins the

centers of the spheres. The appropriate saddle problem is

S_ = -DQ(Q TAQ)- (QTchBf - 2(1 - c)), (4.68)

(QT AQ) umaster = QT(DTp' + cB f) - 2(1 - c)L, (4.69)

2i'd3 /6+ Vi,where cth = 27rd3/6+Vnip+Vm, ~ is the discrete dumbbell volume fraction; and Vnip is the27rd3/6Vntp+Ve,h

continuous volume of the part of the dumbbell between the two spheres before it is

meshed. Of course, the zero net flowrate condition changes to

TBQ aster + (26 + )(U2)ND = 0 (4.70)

where k = ND is the dumbbell.

Since the upper bounds are achieved by decreasing the radii of the two spheres,

we do not need to make any changes to (4.66), (4.67) or (4.60) provided we use the

discrete concentration of the shrunk spheres, and use (3.63) when comparing the

upper bound settling speed to the actual settling speed of the original suspension.
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Figure 4-1: Mesh of one-eight of the lower bound geometry for a simple cubic array
of spheres (porous media).
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Chapter 5

Results and Conclusions

In this chapter we present and discuss our results and make some conclusions. In

Section 5.1 we present the porous media results for a simple cubic array of spheres and

validate them with well known analytical solutions. We are able to reach maximum

packing density and discuss low-Reynolds-number fluidization by using the micro-

scale treatment of Section 3.1. In Section 5.2 the sedimentation methodology is

validated by relating the porous media results to the settling velocity of a simple

cubic array of spheres. We then look at the settling of two spheres in a meso-scale

cell and compare the results with that of a pair of spheres settling in an infinite

fluid. Subsequently, we implement the bounding procedures of Section 3.2 for the

two sphere case. Finally, the qualitative behavior of three spheres in the meso-cell is

discussed. In Section 5.3 we summarize our studies and make some conclusions which

are followed by suggestions on future work (Section 5.4).

Note that all the numerical results presented in this chapter are dimensionless;

however, for the purpose of discussion, lengths are in reference to a meso-cell cube of

unit edge.
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5.1 Porous Media Results

5.1.1 Numerical Results

Exact results for creeping flow through a simple cubic array of spheres are obtained

by Zick & Homsy [49] in the form of a drag coefficient K defined as

K _ D (5.1)
DSTOKE

where DSTOKE is the Stokes drag on a sphere moving at a constant speed UOO in an

unbounded fluid, and D is the drag on a sphere in the simple cubic array moving at

the same speed UOO in a quiescent fluid. The drag coefficient can be related to the

permeability quite simply. First, a momentum balance on the meso-scale cell tells us

that the pressure force induced by the macroscopic pressure gradient AP/L balances

the drag force D. Second, through Darcy's law Uo =- AL we relate the drag toILL

the dimensionless permeability:

1 .(5.2)
18cK

Table 5.1 shows the permeability results obtained by Zick & Homsy versus ours for

different sphere concentrations. It is apparent that the results are in good agreement.

To ensure that our code behaves correctly, we observe how a suitable error norm

behaves as the mesh size is refined for a given concentration c. This test, known as

a convergence test, is shown in figure 5-1 as a log-log plot of the error E versus the

nominal mesh spacing h for a concentration c = 0.125. The error is defined as (see

Section 4.2)

E 1 -|K-h 7, (5.3)

where K is the exact permeability and KP is the finite element discrete permeability.

Note that in the absence of skin-errors, the discrete solution r.' cannot be greater

than the exact solution K since the finite element method finds the maximum of
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JP over a restricted class of functions (i.e. polynomials). Indeed, this is what we

observe when using isoparametric elements as opposed to subparametric elements

which overestimate the permeability since they reduce the volume of the sphere.

The data of figure 5-1 is obtained by using isoparametric and subparametric P2 -

Pi (Taylor-Hood) tetrahedral elements with a nominal mesh spacing h that varies

from 0.17 to 0.07 (from about 3,000 to 25,000 one-component velocity degrees-of-

freedom) in a cube of unit side. The calculations are made on a high-end HP 9000

workstation and take from several minutes to several hours of CPU time. Finite

element theory predicts that O(h 3) convergence should be observed for Taylor-Hood

elements [50] [45], since Eh is a measure of the L2 norm (see (4.50)). Indeed, figure 5-1

shows that the convergence rate is about three for isoparametric elements. However,

subparametric elements exhibit second order convergence. This is probably due to

the skin-error associated with the surface mesh of the sphere. Notice that inequality

(4.50) might not be sharp, hence Eh might potentially converge faster than O(h3 )

for Taylor-Hood elements. In any case, the convergence rates seem well behaved and

posses the correct trends: smaller errors for isoparametric compared to subparametric

elements and decrease in error as the mesh is refined.

In order to achieve maximum packing density (c = 0.5236), we must implement the

geometry changes described in Section 3.1, since a mesh cannot be generated when

the sphere touches the sides of the meso-cell. Table 5.2 shows the bounds on the

permeability obtained with two different nip diameters. Note that as the nip region

increases in size (diameter increases) the bounds get more crude (Section 3.1) and

the problem, having fewer degrees-of-freedom, is easier to solve. Figure 5-2 depicts

part of a mesh for the lower bound geometry.

5.1.2 Physical Results

As described in the previous section, we have succeeded in reproducing the well known

results for permeability in simple cubic arrays. Although the selected geometry seldom

models the spatial distribution of inclusions in real porous media, it can still lead to

interesting analyses. For instance, we can relate the permeability of a packed bed to
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the concept of minimum fluidization velocity Umfn! = fnm (Ul)mfdy [11], which is

that average fluid velocity that creates a pressure drop across a packed bed of particles

such that the pressure drop balances the buoyancy corrected weight of the particles.

It is typically expected that a velocity greater than Umfn! leads to fluidization. Using

Darcy's law, we can write the pressure drop in terms of the minimum fluidization

velocity, the fluid viscosity, and the permeability. We thus have

Rem = c (Ga Mv), (5.4)

where Rem1 = Pca Umid is the fluidization Reynolds number; Ga = dp is Galileo's
/-Lco"C

number; and Mv = pdi-co. For cubic centered spheres (5.4) reads
PCO

Rem = 1.32 10 3 (Ga Mv), (5.5)

where ( c) = 1.32. 10-3 is obtained by using K = 0.002520 and c = 0.5236.

Empirical correlations that relate Rem!, Ga and Mv are abundant in the litera-

ture; many of them can be found in Davidson, Clift & Harrison [11]. Unfortunately,

most of the formulas are not linear in (GaMv) since they account for flow regimes

that range from low to intermediate Reynolds numbers. Nevertheless, among those

formulas that are linear, we find that the empirical coefficient ( c) varies from 8. 10-4

to 8-10 - 3 for different types of randomly packed beds, which shows that our estimate

is of the correct order of magnitude. The empirical coefficient is most probably a

strong function of the spatial distribution of the particles.

5.2 Sedimentation Results

5.2.1 Numerical Results

We start by analyzing the sedimentation of a simple cubic array of spheres and com-

pare the results to the porous media ones, since, for this geometry, the two problems

are equivalent. In fact, both flows are caused by a pressure gradient: in porous media

flow, the pressure gradient is imposed, whereas in sedimentation it is caused by the
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buoyancy corrected weight of the particles (i.e. the backflow pressure gradient). Re-

lating the settling speed of a simple cubic array to the permeability is fairly simple.

First, we adopt a coordinate system that is fixed on a sedimenting sphere and notice

that

U2,permea =- U2,sed - U2 (5.6)

where u2,permea and U2,sed are the dimensional velocity fields in the e2 directions for

the permeability and sedimentation problems respectively; and U2 is the coordinate

system shift (i.e. the vertical velocity of a sphere). Second, we use Darcy's law

U2,permea >= - - AP; where < U> e u2,permea >= f Up dY can be written as

< 2,permea >= -U 2 by using (5.6) and the zero net volume flowrate condition (2.30);

and 'P = -r = ~ in sedimenting flows. By non-dimensionalizing all quantities, it

follows that

U2 U* 57- -- = - (5.7)
C C

for simple cubic arrays, where we have used the superscript (*) to emphasize that all

quantities are dimensionless.

Figure 5-3 is a plot of Ehs -I - s I versus h for a concentration of c = 0.125 for

isoparametric P2 -P1 elements, where ns = YL. The mesh size goes from h = 0.15

to h = 0.091 in a meso-cell of unit side. The CPU time ranges from one hour to half

a day. The data points seem to suggest third order convergence as expected, since

Ehs is a measure of the discretization error I U - uh I L2.

Table 5.3 shows the sedimentation results compared to the porous media results.

Although the numerical permeability data points are close, they do not coincide. The

reason for this is that, although the formulations are equivalent in a continuous sense,

they are not in the discrete sense. In fact, in the porous media numerical procedure

we force the velocity to be zero on the sphere boundary, whereas in the sedimentation

numerical procedure we require force and torque balances on the sphere. Note that

we do not attempt to implement the nip-region bounds to achieve maximum packing
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density because the lower bound would imply that each sphere in the array is con-

nected to six others. Although the bound would work, it is a very contrived situation:

in real sedimenting flows we would not rigidly connect the entire suspension. Figure

5-4 is a plot of permeability versus concentration for our results and the analytical

ones. Note that the three sets of results are virtually indistinguishable from each

other, and that we have included the porous media maximum packing density result

as a vertical "error-bar" that represents the crudest of the bounds of table 5.2.

Next, we include a pair of particles in the meso-scale cell. Although this situation is

far from simulating the real random sedimentation problem, it shows some interesting

features of Stokes flow, which are discussed in Section 5.2.2. In this subsection we

only report numerical results. For instance, take the case of a meso-cell with edges

of unit length and two spheres of diameter d = 0.1 separated by an inter-center

distance d = 0.2. We analyze three cases corresponding to three orientations of the

line connecting the centers of the spheres. In all three cases the centers of the spheres

are on the y = 0.5 plane. Figure 5-5a shows the surface mesh for case 1 which

corresponds to the line of centers being perpendicular to the gravity vector. In case 2

the line of centers is parallel to gravity which points in the - 2-direction (figure 5-5b).

Finally, figure 5-5c shows case 3 where the line of centers makes a angle with the4

horizontal. Table 5.4 summarizes the translational and rotational degrees-of-freedom

of each particle for the three cases. The meshes are obtained by using a point source

at each sphere center and the parameters: h = 0.15, h4 = 0.03, Sc = 0.10, DD = 0.15

which result in about 7,000 elements (10,000 degrees-of-freedom for each velocity

component). In addition, we keep the pair centered in the meso-cell. Note that we

have tried various sphere arrangements such that the pair is at a non-zero angle with

the y3 = 0.5 plane and found that our results remain largely invariant.

Although the three discussed cases do not require the micro-scale treatment of

Section 3.2, we implement bounding procedures anyway to take advantage of the

relatively high viscous dissipation that takes place in the nip region between the

particles. Thus, we expect that the bounds will have noticeable effects. For each

of the original cases we introduce the lower and the upper bound analysis. The
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lower bound is obtained by connecting the pair of spheres with a cylinder of diameter

d = 0.08. Note that we now have one particle: the dumbbell. The upper bound

is obtained by shrinking both spheres to a diameter d' = 0.08. While the mesh

parameters for the dumbbell remain the same, the ones for the upper bound become:

h = 0.15, h4 = 0.025, SC = 0.08, DD = 0.13 which result in about 7,000 elements.

Table 5.5 shows the dumbbell motions, and table 5.6 shows the results for two spheres

of diameter d'. Recall from Section 3.2.2 that to obtain the settling velocity bound

from table 5.6 we need to multiply (U2)k by as shown in (3.63).

Finally, we show the bounds for the settling speeds in table 5.7. As mentioned,

the three analyzed cases are not geometrically stiff, so implementing the bounding

procedures does not decrease the number of degrees-of-freedom significantly. When

the gap between the spheres is smaller, the bounds become sharper and the number

of degrees-of-freedom decreases appreciably.

5.2.2 Physical Results

The simple cubic array case is very useful in validating our code. One interesting

aspect of this well-known flow is that the settling velocity of the array is always

smaller than the Stokes velocity, which in non-dimensional form is USTOKE = . In

the limit of c -+ 0 we recover this result; for example, the smallest concentration we

reach is c = 0.000268, and the settling speed of this array is Uh = 0.04867, which is

less than, but close to, USTOKE = 0.05556. The lowest settling speed is achieved at

the maximum concentration c = 0.5236. In this close-packed limit, the settling speed

is U = Kc = 1.32. 10- 3 which is clearly less than USTOKE. This phenomena, known

as hindered settling, is common to all sedimentation processes that occur in any kind

of impermeable container. In fact, the upward flow of fluid retards the motion of

the suspension, so N particles in a meso-cell fall slower than the same N particles

in an unbounded fluid. Note that sedimentation in unbounded fluids has a peculiar

behavior: since each additional particle drags along with it some fluid and therefore

other particles, an infinite number of particles falls at an infinite speed [21].

The hindered settling argument applies to the pair of spheres discussed in the
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previous subsection. In fact, Happel & Brenner report analytical results for two

spheres falling in an unbounded fluid [21] obtained using the method of reflections. It

can be shown that our spheres are slower than the ones in the analytical study. For

example, when the sphere centers are separated by a distance that is three times their

radius, the analytical study predicts that the settling speeds are UHP,ho, = 0.07059

when the line of centers is horizontal, and UHp,ver = 0.07959 when the line of centers is

parallel to gravity. For spheres of diameter d = 0.2 and inter-particle distance = 0.3

in a meso-scale cube of edge unity, we calculate that Uh,ho, = 0.03956 < UHp,ho and

Uh,ve,. = 0.05063 < UHp,ver. Again, in the limit of zero concentration (c -+ 0), the

results should be identical.

There are some interesting qualitative remarks about the fall of two spheres in a

periodic cell. First, the translational velocity vectors of the two particles are parallel.

In other words, the inter-particle distance 1, remains constant throughout their fall.

This can be explained through the concept of kinematic reversibility of Stokes flows

([47], [37] p. 641). In such flows, by reversing the fluid and the boundary motions

as well as the pressure gradient and body forces, we are presented with a new flow

that still satisfies the equations of motion. For the case of two spheres with their line

of centers parallel to gravity it is intuitive, due to symmetry, that they have to fall

parallel to gravity. However, it is not as clear that they should not catch up with

each other (or separate from each other). In fact, if the top sphere caught up with

the bottom one, by reversing the flow (which is equivalent to reversing gravity) the

spheres diverge. This is impossible since there is no geometric up or down in this

flow: rotating the gravity vector by r should yield the same flow. In other words, we

cannot obtain qualitatively different motions by reversing the flow in such a symmetric

geometry. Thus the spheres must fall and keep their distance constant. The same

argument can be made for a pair of spheres oriented in any way. These results are

consistent with the analytical results of Happel & Brenner discussed earlier. Note

that some experiments show that the spheres actually change their center to center

distance [26], however, this is probably an indication of the presence of inertia in

the flow. For example, Feng, Hu & Joseph show phenomena such as "kissing and
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tumbling" in their dynamical simulations which are for non-zero Reynolds numbers

[16].

A second interesting fact is that a pair of spheres counter-rotate as they fall (unless

they are aligned with gravity). Due to the symmetry of the problem they could not

rotate in the same sense. Moreover, the sense of counter-rotation is consistent with

the fact that fluid tends to flow around the two spheres (as if they were a single body).

A third phenomenon is that a pair of particles in the meso-cell falls faster than one of

the particles in the meso-cell, which is qualitatively similar to the behavior of particles

in an unbounded fluid. Moreover, if the motion of the pair is compared to that of

two spheres in an unbounded fluid as we did earlier, the hindering phenomenon is

observed: the latter pair falls faster than the former.

Some comments can be made on the bounds presented in the previous section.

For instance, the lower bound is sharper than the upper bound. This is probably

because in the original flow, the spheres are close enough that there is little fluid

motion between them. So blocking the flow (creating a dumbbell) does not affect the

flow substantially. This argument also explains why the bound is sharper for the case

of the line of centers being aligned with gravity. Intuitively, the nip region should be

one of very low viscous dissipation for this orientation. Of course, as the particles get

closer together, the lower bound gets sharper. Note that when analyzing a meso-cell

with many inclusions, the nip region between two close neighbors can still be a region

of relatively high viscous dissipation if, due to the particle distribution, fluid flow is

"forced" to flow through the nip region. Clearly in this case the lower bound will not

be as sharp.

Lastly, we experiment with three spheres in a meso-scale cube. In fact, this is

the minimum number of spheres needed to observe relative motion of the inclusions.

Figure 5-6a shows the surface mesh of the geometry we analyze which consists of three

spheres on the y3 = 0.5 plane. Two lie on a Y2 = constant plane 0.4 units apart, and

the third is positioned halfway between them but at a lower Y2 location (0.10 units

below). Spheres 1 and 3 fall down and towards each others while counter-rotating.

Sphere 2 falls straight down at a higher settling speed than the other two (see table
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5.8). Table 5.9 shows the motion of the up-down symmetric flow, where the lower

sphere is placed above the other two (figure 5-6b). This is equivalent to switching

the sign of the gravity vector and the e2 unit vector in figure 5-6a. Due to kinematic

reversibility of the flow, the former action reverses the flow described in table 5.8

(i.e. all the velocity components switch signs). The latter action switches the signs

of u2 only so that we have the situation of figure 5-6b. Indeed, by performing the

described transformations on the flow of table 5.8 we obtain the flow of table 5.9.

It is important that our sedimentation formulation allows for relative motion of the

inclusions, since this is an essential feature of real sedimenting suspensions.

5.3 Conclusions

This thesis has presented a procedure to analyze three-dimensional porous media

and sedimentation inertia-free flows. The methodology relies on a variational scale-

decomposition procedure and subsequent finite element solution of the meso-scale

problem. Furthermore, we show how to efficiently treat geometrically stiff meso-

scale problems by introducing nip-region modifications that can be proven to have

variational bounding properties. Although our methodology is applicable to a random

inclusion distributions of any concentration, we focus on simple periodic geometries

to validate our procedure and show some interesting aspects of low-Reynolds-number

flows.

Our porous media analysis is validated by reproducing well known results for

simple cubic arrays of spheres. Moreover, we implement the micro-scale bounding

procedures for a packed bed of spheres which allows us to make some comments

about the minimum fluidization velocity.

The porous media results are used to validate the sedimentation formulation for

simple cubic arrays. In order to observe more interesting behavior, we include two

spheres in the meso-scale analysis. This allows us to check our results against well

known Stokes flow properties such as kinematic reversibility, and to implement the

micro-scale bounds. Finally, we observe relative motion between the particles when
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we include three particles in the meso-scale cell.

In conclusion, we have validated our analytico-numerical approaches to porous me-

dia and sedimentation flows. However, there is still much to accomplish, as discussed

in the next section.

5.4 Future Work

What follows are several suggestions regarding future work in porous media and

sedimentation flows:

* Investigate random inclusion distributions. In order to do this we need to

incorporate statistical analysis as discussed in Section 2.1, and alter the mesh

generation procedure to allow spheres to intersect the meso-scale cube boundary.

From a computational point of view, including many particles, possibly up to

100, creates serious memory and CPU speed requirements. This multi-particle

problem lends itself to parallel processing as described by Cruz, Ghaddar &

Patera [7].

* Include inertia (at intermediate Reynolds numbers).

* For sedimentation: explicitly track the particle trajectories in time, and deter-

mine a time averaged steady-state settling speed. Note that we can extend our

current methodology by explicitly updating the position of the particles at each

time step based on the quasi-static velocity field of the previous time step. We

can therefore determine the particle JPDF.

* Study polydisperse and non-spherical inclusions.

* Extend the sedimentation methodology to fluidized beds of spherical particles

at low to intermediate Reynolds numbers.
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concentration Kzick-homsy Kh

0.008 4.554 4.507
0.064 0.3089 0.3080
0.125 0.1036 0.1031
0.216 0.03456 0.03455
0.343 0.01052 0.01047
0.45 0.004394 0.004374

Table 5.1: Permeability versus concentration results for simple cubic array of spheres.

nip diameter je,hnip diameter ,LB |zick-homsy hUB
0.2 0.002459 0.002520 0.002588
0.25 0.002250 0.002520 0.002862

Table 5.2: Permeability bounds for maximum packing density.

concentration Kzick-homsy h h

0.008 4.554 4.507 4.468
0.064 0.3089 0.3080 0.3068
0.125 0.1036 0.1031 0.1028
0.216 0.03456 0.03455 0.03432
0.343 0.01052 0.01047 0.01046
0.45 0.004394 0.004374 0.004368

Table 5.3: Permeability versus concentration
sedimentation results.

results for simple cubic array of spheres:

CASE k (Ul)k (U2)k (U3)k (W1)k (W2)k (W3)k
1 1 - -0.050322 - - - -0.007421
1 2 - -0.050324 - - - 0.007412
2 1 - -0.059150 - -

2 2 - -0.059184 - -
3 1 -0.003920 -0.054733 - - - 0.005346
3 2 -0.003917 -0.054708 - - - 0.005288

Table 5.4: Two
of-freedom.
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CASE (U1) (U 2 ) (U3 ) (W1) (W2) (W3)

1 - -0.047004 ----
2 - -0.058298 ---_

3 -0.005217 -0.052605 _- - - .

Table 5.5: Two spheres falling in a periodic box: lower bound.

CASE k (Ul)k (U2)k (U3)k (W1)k (W2)k (W3)k
1 1 - -0.050980 - - - -0.004649
1 2 - -0.050981 - - - 0.004752
2 1 - -0.058560 ----
2 2 - -0.05865 ----
3 1 -0.003441 -0.054772 - - - -0.003367
3 2 -0.003456 -0.054749 - - - 0.003316

Table 5.6: Two spheres falling in a periodic box: upper bound geometry.

CASE Uh,LB Uh Uh,UB 

1 0.04700 0.05032 0.06372
2 0.05830 0.05916 0.07328

3 0.05261 0.05472 0.06845

Table 5.7: Two spheres falling in a periodic box: bound results

kI (Ul)k (U2)k (U3 )k (wl)k (W 2 )k (W 3 )k
1 0.002954 -0.04860 - - - -0.006537
2 - -0.05423 -

3 -0.002953 -0.04866 - - 0.006348

Table 5.8: Three spheres falling in a periodic box.

k (U1)k (U2)k (U3)k ()k (W2)k (W3)k
1 -0.002961 -0.04859 - - - -0.006545
2 - -0.05423 - -

3 0.002943 -0.04865 - - - 0.006352
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h, nominal mesh spacing

Figure 5-1: Convergence plot for the permeability code: Et versus h for simple cubic
array (c = 0.125).
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Figure 5-2: Permeability lower bound for maximum packing density (mesh cross-
section).
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Figure 5-3: Convergence plot for the sedimentation code: E s versus h for simple
cubic array (c = 0.125).
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Figure 5-4: Permeability K versus concentration c for simple cubic array.
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a) CASE 1

b) CASE 2

c) CASE 3

Y2

Yl

Figure 5-5: Sedimentation of two spheres in a meso-cell: surface meshes of the spheres
and a face of the meso-cell.
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a) CASE 1

b) CASE 2

Figure 5-6: Sedimentation of thre,
spheres and a face of the meso-cell.

Y2

Yl

e spheres in a meso-cell: surface meshes of the
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Appendix A

Derivation of Equations from

Chapter 2

A.1 Derivation of (2.39)

We start by multiplying (2.28) by u and integrating over Qme to obtain

-ine Ui i +_]) dy + J ui dY J -ruiJ2idy = 0. (A.1)- nmc 1 aYj a(yj+ 19Yi nmc Ui OQme

By using the vector form of Green's theorem (the equivalent of integration by parts)

[23]; rewriting ui Oi = (p'ui) - p'; and using the divergence theorem, we get28%' Oyi

-| Ui coOyi + - i J ) yd+J i (x [ i + J) dV+
n~me 9yi 19Yi Qme asj 57yi gYi

L|me puinidS - p'- dV - j ru2 dV = 0, (A.2)
fanme nm. 19Yi nme

where dV denotes an infinitesimal volume element in the fluid region, and dS is an

infinitesimal surface element on a sphere. Now we use the fact that (2.33) applies

to the velocity field in the surface integrals; we use incompressibility (2.29); the fact
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that a (b x c) = (a x b) c for vectors; and the fact that _+ _) ( + i ) =

2j ( + ) to getyj ayi 

aui + u3'
\ayj aYi 

N

E(Ui)k 

N

E Wk
k=1

(ui
ayj

+ auj dV-
aYi IM

-P i + Ao \ui + a) ] njdS+
- y )ayj [ S i] d

a ( y - Yk) X [-p'n + S n] dS,
fIC

u2dV =

where S = -ui + oi); and we have mixed tensor and vector notations to avoid

complicated indicial notation due to the vector product. Note that the integrals over

the meso-scale cube boundaries cancel out by periodicity. Observing that -p'n + S:

n = T': n we can rewrite (A.3) as

1 (9ui
1oi a+ Yi

an T': ndS +ak

({o~
NyjN

+ auj 
aYi dV - ,m u2dV =

Yk) x (T': n)dS.EWk 
k=l

Using conditions (2.30), (2.34) and (2.35) we get

2co yj + yi ayj ayi dV

which, in view of (2.38), shows that

ifme

1 ( 9ui

(9yj

which proves (2.39).
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mIne

(A.3)

Ime
N

E(Ui)k
k=1

(A.4)

,lmc

N
= -W E(U2)k,

k=l
(A.5)

JLm, () = I.me(U) = (ui
ayj

+ auj dV
oyi

(A.6)

nk (Y -

+ auj
ayi



A.2 Derivation of (2.40)

In order to arrive at (2.40), we multiply (2.28) by the test function v B, and

integrate over Q2 me. We have

[auyj + aOui j dy +
filme

dp'
vi - dy -

19yi l~me
TVi62idy = O.

As in the previous section, we integrate by parts according to Green's theorem and

use the divergence theorem to obtain

Vi yj " yiI] ) njdS +

fame
p'vinidS -

Yj .

lme
P pyidV

flme Yi

yj u + yI dV+
5Yj aYi L

- fJmerv2 dV = O.

We require that vi = 0. In addition, the test function v has to be consistent with

solid body motion of the spheres according to the no-slip kinematic condition of

(2.41). Rearranging terms, (A.8) becomes

viP( [Oui+ Ouj])dV
19Yi aYj 19Yi

lkp (Zk (y- yk))i nidS +

N

k fal ° k (2
k=l1 i

T |j v2 dV =
Qme

N

E 1f1 (Vi)kk=1 t

]k x (- Yk))i

N

_E
k=1

( co

flak
p'(Vi)knidS -

ui + auji njdS +
D9yj 9yiji

CO[aui + iJ) njdS.
,9Dy3 Dy,]

(A.9)

Using the fact that (_ + ) ( +

and Zk do not vary over OQk we have

1

- co4me (OayKayi

+ vi\ (dui
a I aI

= 2 ( + i ; and the fact that Vk
(
9
yj Oyj Oyi 

+ iy dV
Yi - T me

v2dV =
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ILk"
Via (C (A.7)

I- hme

(A.8)

Jme
N

k=l



N ~~~Oui Oui
(Vi)k l [-P'ij + ILco - + n3dS +t

k=1 k, ayi Oyi/ 
N

E Zk ( - Yk) X [-pn + S: n] dS,
k=1 k

(A.10)

where we have again mixed indicial and vector notations and used a.(b x c) = (ax b).c

for vectors. Recognizing that -p'n + S: n = T': n we rewrite (A.10) as

1

Jfme

avi
ayj

av (aui
aYi / kyi

+ Oau 
°Yi

dV - 7 fn, v2dV =

N
T': ndS+ E Zk -

k=l
k (Y- Yk) x (T': n)dS.

We now require that fnme v2 dV = ds Ek= (V2)k and use conditions (2.34) and (2.35)

to arrive at

1

Lne
aVi

(0yj+ Ovi
aui
ayj

N
= -W ( 2 )k

k=1
Vv EB. (A.12)

If we multiply both sides of the equation by 2, and identify v = u (which is the

variation of u), we recognize that (A.12) is the first variation of the functional Jme

set equal to zero.

In fact, let us take the first variation of J e:

Jmc (W + v) fnm. 2 CO ( ayj OYj~/~co \oy~ oyi + i + yi ) dV
-2W Ek= (V2 + V2)k,

where (w, v) E B2; and Wloak = V'k + Z'k (y - Yk). Rearranging (A.13),

1
JiSmc(w + v) =

( awi(0yj- Jnm
+ w, Oywj + Ow, 

1OYi I OYj aYiI

N
dV - 2W (V2')k

k=l

97

N

E (Vi)k l (A.11)

(A.13)

+ ujd

+ e, 9, )( 9 + fti



jL _ an + av2 (j VdV ,(* A )- LmeO d-WZ(V2)ka ty c 19y 1yj + yi }~ y y

where the terms on the second line represent the first variation of Jnme and the last

term is the second variation. Note that the second variation is always negative. It

follow from (A.14) that

JnSme(u + 6u) = JSm(u) + 6JnS (u) + 62jnse(u), (A.15)

where JS and J2 J S are the first and second variations of JS respectively. Since

6 2 JSm (u) < 0, and 6JS m(u) = 0 from (A.12), we get

JnSm(U+ 5u) = Jnsm(U) + 62JS (U)< JnSme(U) V6u e B, u # 0, (A.16)

which proves that u is the argument that maximizes JnSme (v) for all v E B, as claimed

in (2.40).

A.3 Equivalence of Strong Form (2.28)-(2.35) and

Variational Weak Form (2.44)-(2.46)

Equations (2.44) - (2.46) can also be obtained from the strong form equations. In

fact, (2.45) is obtained by multiplying (2.29) by q E L, 0 and integrating over SQme;

and (2.46) comes from multiplying (2.30) by 71 e R. To arrive at (2.44) we multiply

(2.28) by v E Y and integrate over Qme. Integrating by parts and using the divergence

theorem we arrive at (A.8). Then we use the no-slip boundary condition (2.33) to get

jf v,( [u Uj) dV- p _ dV [ - vdV
yme j Y[j jyi Q me i mfn'..~~~~~~ ~ ~ 19~Vi -n. fn=, mved
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N N

- k=l ak :ndS- k (Y - Yk) X (T: n)dS = . (A.17)

The last integral vanishes due to the torque balance condition (2.35). Finally, by using

the force balance condition (2.34) and rearranging terms we obtain (2.44), which reads

Lin avi ui +OujX dy - J ''d - V2 dy - d3 i
O iyj iys y fnm, p Yi dy m v2 dy 6W

= IS(v) VvE Y. (A.18)

We conclude by noting that the stress boundary conditions (2.34) and (2.35) are

natural boundary conditions in this formulation. This can be seen by integrating

(A.18) by parts and noticing that satisfying the new equation for any variation v E

Y implies that the stress boundary conditions (2.34) and (2.35) are automatically

satisfied.
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Appendix B

Affine Mapping; Gaussian

Quadrature; and Master-Slave

Mapping

B.1 Affine Mapping Matrices

In equation (4.13), the following affine mapping is presented

3

-Ca + D y .
/=1

The vector Ce is defined as

Ce = [Y1[+ 3,] (Y2[a+ 1 ]Y3[0 +2 ] - Y2[a+ 2 ] Y3[a+1]) - Y2+ 3] (Ylt[+l]Y3[o+ 2] - Yl[E+ 2 Y3[+lB.2)

+Y3[a+ 3] (Yl[,+l,]Y2[a+ 2] - Yl[+ 2]Y2[o+])

Dal- [Y2[a+ 3 (3[a+ 21 - Y3[a+1]) - y3[o+3 (2[+ 2 Y2[+l)
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and

/(6volke) 

(B.3)



-Y2[o+l]Y3[a+ 2] + Y2[c+2]y3[a+11] /(6 Volke) ,

Da2 = [Y1[a+ 3] (Y3[0 +2] - Y3[a+l]) + Y3[0+3] (Y1[a+2] - Yl[a+l]) (B.4)

+Yl[a+]Y3[a+ 2] - Yl[a+2]Y3[a+l]] /(6 volke)

DX = [Y3E,+3] (Y2[a+ 2 ] - Y2[c,+l]) -Y2[..+ 3 ] (Y1[ 0 + 2 - Yl[+l]) (B.5)

+Yl[a+ 2]Y2[a+l ] Yl[a+l,]Y2[a+ 2]] /(6 volke )

where yito] is the coordinate of local node a in the i direction; and [a] = amod 4

B.2 Gaussian Quadrature Points and Weights

In (4.24) we give the Gaussian integration formula in terms of points (aj and weights

j, j = 1, .., rip. To integrate a fifth order polynomial over the domain Q, we need

the fifteen points and weights shown in table B.1 [46].

B.3 Master-Slave Mapping

In Section 4.3 we introduce the matrix Q which maps the six degrees-of-freedom of a

sphere onto the finite element nodes that are on the surface of the sphere. We want

to write va = Qva ste7 with local data structures. The local representation of (vh)i,

i = 1,..,Ngn is (vh)ke, ke = 1,..,KC, a = 1,..,30 where the first 10 entries are for the

Yi components, the second decade is for the Y2 components, and the last decade is

for the 3 components. To represent (Vmaster). i = 1, .., Ndo! locally we choose to use

two arrays: (vtmaster)ke and ( VWmaster) . The first has the same structure of (Vh)ketwo arrays: 'h )a ~,h }~/'

but has a zero entry when gke corresponds to a node on a sphere. The second array

has the form ( vwmaster)k where -y = 1,.., 6 is for the six degrees-of-freedom of spherehas t~ h .
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k = 1, .., N. In more detail, we have

( vwma8ter)k = (V)k, (B.6)

(VVW~master)k = (V2)Vh )1 -- )k B6

(V -master) (V)

(VW,master)k (W)

( VWmaster)k = (W)(vh )4 = (Wl)k
(VWm~aster k ( 
Vh W, )5 (W)k·

)6 =W 

The action of the matrix _ is described by the following algorithm:

* set (Vh)k' to zero.
a

* loop ke = 1, .., C

loop a = 1, .., 10

if node ge is on sphere k then

(Vh)ke = (VVWsmaster)k + (VWmaster)k(Y 3 (gke) Y3k)
( + hu ;5(Y3(g,) - Yk)

[~VWmaster k [
-(Vh 6maste)(2(gke) - Y2k).

k, . VWmasterxk +(Vmse~(vh)(+o0) = (Vh a )2 + (V ma6te(Yl(gke) - Ylk)

-(Vh VWmaster)4k(y3(gke) -Y3k)h 4 ~~~-Y3k).
v ke _ vwaste,.k %VWate,.~k(Vh)(a+ 20 ) (( hV mater)(Y 2 (gke) - Y2k)

-(v VWmaster) k (Yj(gkeh 5 ~~~-Ylk).

else

(Vh)ke = (Vmaster)ke

( keVh 0) = (V aster)ke(Vh (xo -vh )(a+10) -
rke = (VmasterOke

(vh (+20) = ~, J (C+20)'

The matrix QT operates in the opposite direction: from slave to master degrees-of-

freedom. The structure of QT follows from that of Q. For instance, Q transcribes the

translational degree-of-freedom of a particle onto its surface nodes. Therefore, the
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matrix QT must add up all the slave nodal surface values and transcribe the result

to the translational degree-of-freedom of the particle. The action of QT is calculated

according to the algorithm

[oVW,mraster~set (VVWmaster)k to zero.

* loop ke = 1, ..,C

loop a= 1,..,10

if node gke i on sphere
VWmaster) =

(VW'master)k =

(VVWmaster)k =

(VJW~master)k =('h )1I -VW master k=VW,master)k =

( VWmaster k(Vh }A -(VW,master) -('h 45-

VW masterke (Vh ) '
(Vmnaste (ke= o.

astert -
Vmaster / ke
Vh I (a+20)=

k then

(Vh' 7 l + (vh)ae/multi(gke).
(VVwmater+k (vh ,k, /multi(g~,
(vh )2 V a+ (Vh+O) )/mUlti(. 9 ke)

(VW, master)k + )ke

(V hW ma~te)+((Vh)(a+ 2O) (Y2(g ) - Y2k)

(Vh)(+lO) (Y3(gke) - y3k))/multi(ke )*.

(VW, materk + ((vh)ce(y3(g^e - 3k)

- (Vh)(a+2 0) (Yl(gk) - ylk))/multi(ge).
VW, master)k+ ((Vh)k + 0)(Y(gke) - Ylk)

-(vh)ke ( Y2(k) - Y2k))/multi(ge)

= 0.

= 0.

Note that g = emodl(amodlO)'
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- 1j i 2j 3j 4j
1 0.118518518519 0.25 0.25 0.25 0.25

2 0.0719370837790 rl rl rl sl
3 0.0719370837790 rl rl si r1
4 0.0719370837790 rl s1 rl rl
5 0.0719370837790 sl rl rl rl
6 0.0690682072263 r 2 r 2 r 2 s2

7 0.0690682072263 r2 r2 s 2 r2

8 0.0690682072263 r 2 s2 r2 r 2

9 0.0690682072263 s2 r2 r 2 r 2

10 0.05291005291 vl ul u1 vl
11 0.05291005291 ul vl ul v1

12 0.05291005291 ul u1 v1 v1

13 0.05291005291 vl vl ul ul
14 0.05291005291 vl u1 vl ul
15 0.05291005291 ul v1 vl u1

Table B.1: Gaussian quadrature points: r = 0.091971078, s1 = 0.724086765, r2 =
0.319793627, s2 = 0.040619116, vl = 0.056350832, u, = 0.443649167
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Appendix C

Heat Conduction in Composites

We use figure 2-3 from the viscous porous media problem to describe the heat con-

duction problem. The continuous matrix Qo consists of a solid material with heat

conductivity kco. The inclusions Qdi are heat insulating spheres arranged in space ac-

cording to a given JPDF. Heat flow is induced by a temperature gradient AT/L that

extends over the macro-scale of characteristic length L. We want to determine the

effective conductivity k of the material. Note that in this appendix we use k to rep-

resent the conductivity, not the sphere number as in the sedimentation formulation.

Moreover, we only deal with isotropic media, for which the effective conductivity k is

a scalar.

In the original medium, the temperature distribution T(x) is determined by

Laplace's equation in ,~, with homogeneous Neumann (zero heat flux) boundary

conditions at the sphere surfaces and wall (&c U u) and Dirichlet boundary con-

ditions on Fin and rPt such that AT = T -T t. Cruz & Patera [9], use ho-

mogenization theory to arrive at the meso-scale strong form. By expanding T(x) =

Tma(x) + eX(x, y) + O(e2 ), where = A/L we obtain

(k~~~~~~~~~~~C1- (kco) = 0 in 2me (C.1)

with Neumann boundary condition
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- k-9rX AT-kw ani = -ko-nl on me. (C.2)

In addition we require that X be A-triply periodic and that f Xme XdY = 0 for unique-

ness. Physically, (C.2) states that the gradient in the perturbation temperature X and

the imposed macro-scale temperature gradient must balance on the adiabatic surface

0Ftme.

The non-dimensional forms of (C.1), (C.2) are obtained by non-dimensionalizing

the temperature with ATd; the conductivity with k; and the linear dimensions with

d. We rewrite (C.1), (C.2) as

82x
i 0 in Qme, (C.3)

0Oyic~yi

Ox
yni = -n 1 on Ome (C.4)

where the same symbols represent the new dimensionless quantities.

We now pursue the variational formulation of the problem. We introduce the

functional J(w)

r O~~~w~w f~
J1 C(W) w= ]In dym y - 2 yl dy. (C.5)

It can be shown that

x = arg min J. (w), (C.6)
wEH#,o(n..)

where H, 0 (Qme) is the space of all square-integrable functions w that are A-triply

periodic; that have square-integrable first derivatives; and for which fe wdy = 0.

By setting the first variation of (C.5) equal to zero, we obtain the variational weak

form of the conduction problem. We have

mv 0X dyJ= 0y dy Vv E H, 0 (me) (C.7)
m Y m QeYi

The variational weak form (.7) is equivalent to the strong form (.3), (.4). Indeed,
The variational weak form (C.7) is equivalent to the strong form (C.3), (C.4). Indeed,
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by multiplying (C.3) by v; integrating by parts; and using (C.4) we obtain (C.7). Note

that the non-homogeneous Neumann boundary condition (C.4) appears as a forcing

term in the variational formulation of the problem.

The non-dimensional effective conductivity k is expressed as [9] [6]

k = (1 -c)- Xn dy X (Cd8)

which from (C.5), (C.6) and (C.7), can be expressed as

1
k = (1-c)+ - min J& (W) (c.9)

A3 EH,(n..) (Cne

The finite element discretization of (C.7) and (C.8) is obtained as described in

Section 4.1. The system of equations to solve is represented by

AXh = f, (C.10)

where Xh is the vector of unknowns; and A is the usual Laplacian operator. The

local representation of f is

fke = k -dy, (C.11)

where a = 1, .., Nlocai depending on the choice of element (i.e. P1 or P2); and ke =

1, .. ,/CK.

The solution procedure consists of the conjugate gradient iteration with direct

stiffness summation of Section 4.1.3 with two minor modifications. First, there are

no Dirichlet boundary conditions, so the mask array is set to 1 for every node. Second,

we require uniqueness of Xh which is ensured by requiring that F,~ X = 0, where

Ngn is the number of global nodes.

The discrete effective conductivity kh is given by

kh= (1-C)- Xh Tf (C.12)

which can also be written as
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kh = (1-c)- -Xh AXh (C.13)A3h-h

We determine the conductivity of simple cubic arrays of insulating spheres using

P1 and P2 elements. Our results are compared to the analytical results of Sangani &

Acrivos [43] which are accurate to 0(c 9). We define the error Ec

Ehc = Ikh-k . (C.14)

Since Ehc is a measure of the discretization error in the H 1 seminorm [6], it is O(h2 )

for linear elements and O(h4 ) for second order elements [50] [45]. Figure C-1 is

a plot of Ec versus the nominal mesh spacing h for three types of elements: P1,

subparametric P2, and isoparametric P 2. The sphere volume fraction is c = 0.2.

Linear elements exhibit the correct convergence rate and have a higher error than

second order elements. Although we do not achieve a fourth order convergence rate

for the bilinear elements, we do observe the correct trends for isoparametric meshes:

the error is smaller than for subparametric meshes and the convergence rate is higher

(close to O(h 3)). The third order convergence of the isoparametric meshes could

be caused by a couple of phenomena: our "nodal" approximation of the actual H 1

seminorm might not be appropriate; or , due to relative coarse meshes, the results

might be pre-asymptotic. Computer memory limitations prevent us from pursuing

finer meshes to verify the latter possibility.

Figure C-2 is a plot of the effective conductivity k versus pore concentration c for

simple cubic arrays (table C.1). We compare our results with the analytical ones of

Sangani & Acrivos and the experimental ones of Lu & Kou [33]. The experimental

results where obtained using a test cube that contains one insulating sphere and

imposing Dirichlet boundary conditions on two opposite faces of the cube to create

a temperature gradient, and insulating the other four faces of the cube. Note that

these boundary conditions are not consistent with a periodic array of spheres. In any

case, their results are still in good agreement with the exact ones.

In conclusion, we have tested our methodology for the special case of simple cubic
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arrays of spheres. However, our formulation is quite general and able to handle

random inclusion distributions. Moreover, although we do not pursue the micro-

scale bounds, they can be obtained following the two-dimensional treatment of Cruz,

Ghaddar & Patera [8].
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concentration kh
0.008 0.98817
0.064 0.90704
0.125 0.82354
0.216 0.70684
0.343 0.55560
0.45 0.43275

Table C.1: Conduction versus concentration results for simple cubic array of spheres.
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Figure C-1: Convergence plot for the heat conduction code: E c versus h for simple
cubic array (c = 0.2).
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Figure C-2: Effective conductivity k versus concentration c for simple cubic array.
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