
Requirements Specification and Verification of Production Tooling

by

Roland J. Ayala

Bachelor, Mechanical Engineering
Georgia Institute of Technology, 1989

Submitted to the Department of Mechanical Engineering and
the Sloan School of Management

in Partial Fulfillment of the Requirements for the Degrees of

Master of Science in Mechanical Engineering
and

Master of Science in Management

at the
Massachusetts Institute of Technology

June 1995

C Massachusetts Institute of Technology, 1995. All rights reserved.

Signature of Author - -

/ I- /

Certified b-

Certifi~

Read by

Accepted

Accepted

Department of Mechanical Engineering
MIT Sloan School of Management

May 23, 1995

John G. Kassakian
Professor of Electrical Engineering and Computer Science

Anantaram Balakrishnan
--- by 'Associate Professor of Management

Kevin N. Otto
Assistant ProfessorMof Mechanical Engineering

by '
....' tr w 'T' Ainnin

Chairman, Dep Comm1 Graduate Studies

I by

,vMASACH,HUS. ,TS S ; O- IU X

OF TECHNOLOGY

Dl a1 n Jeffrey A. Barks
Associate Dean, Master's and Bachelor's Programs

JAN 2 6 1996 "o

LIBRARIES

,_ . ,

r Ad
,v r~ A_ _

IZ

3

Requirements Specification and Verification of Production Tooling

Roland J. Ayala

Submitted to the Department of Mechanical Engineering and
the MIT Sloan School of Mechanical Engineering

on May 23, 1995, in partial fulfillment of the requirements for the Degrees of
Master of Science in Mechanical Engineering and

Master of Science in Management

Abstract

This thesis provides the motivation and development of a process for rigorously
specifying and verifying production tooling requirements. The process is most important
in industries where product lifecycles are short and production ramps must be fast. The
hard disk drive industry is one such industry. Given that hard disk drive market lives are
approaching one year in length, the success or failure of a production ramp can greatly
influence the overall profitability of a product line. In an effort to understand the factors
impairing a successful production ramp, the management at Hewlett-Packard's Disk
Memory Division has identified problematic production tooling as a leading contributor
to production ramp delays. The management at Disk Memory Division feel many of
these problems result from poor requirements specification and verification
methodologies.

In developing the process for requirements specification and verification, this thesis
explores some of the methodologies used by the requirements engineering profession to
specify and verify the requirements of software and systems. We will apply these
methods to the requirements specification and verification process that this thesis
proposes. Two of these methods, object-oriented analysis and quality factors analysis,
are used to support rapid specification development and organizational learning.
Moreover, we will show how the Standard Generalized Markup Language (SGML) can
be used to create a system that supports the proposed requirements specification and
verification process.

The author's experiences at Hewlett-Packard's Disk Memory Division are used
throughout this thesis to motivate the need for the requirements specification and
verification of production tooling and are key factors influencing the design of this
process.

Thesis Advisors:

Dr. Anantaram, Balakrishnan, Associate Professor of Management
Dr. John G. Kassakian, Professor of Electrical Engineering and Computer Science

5

Acknowledgments

I would like to thank the people at Hewlett-Packard's DMD for their time and constant

willingness to share information with me. Without their help, this thesis would not have

been possible. Thanks also to Anantaram Balakrishnan and John Kassakian, my thesis

advisors, for their patience and guidance. Their ideas and questions where extremely

helpful to me during my internship and while writing this thesis. Finally, a special thanks

to my family and friends for their support and encouragement while writing this thesis.

7

Table of Contents

LIST OF FIGURES11

1 INTRODUCTION ... 13

1.1 Motivation ... 13

1.2 Production Tooling and its Role in the Manufacturing Process ... 14

1.3 The Purpose of Requirements Specification and Verification .. 15

1.4 The Importance of Requirements Specification and Verification ... 16

1.5 Thesis Overview .. 20

2 REQUIREMENTS ENGINEERING PRINCIPLES .. 23

2.1 Introduction .. 23

2.2 The System Development Lifecycle Model .. 25

2.3 Problem Analysis ... 27

2.3.1 Methodology: Hierarchy Definition, Allocation, and Flowdown .. 28

2.4 Requirements Documentation ... 30

2.4.1 Modifiable .. 31

2.4.2 Verifiable ... 31

2.4.3 Traceable .. 32

2.4.4 Annotated .. 32

2.5 Verification and Validation ... 33

2.5.1 Verification ... 34

2.5.2 Validation ... 34

2.6 Summary .. 35

3 THE REQUIREMENTS SPECIFICATION AND VERIFICATION PROCESS AT

HEW LETT-PACKARD'S DMD .. 39

3.1 Introduction .. 39

3.2 Case Study: DMD's Semi-Automated Head-Merge Workcell .. 41

3.3 DMD's Tooling Development Cycle ... 50

3.3.1 Requirements Phase ... 50

3.3.2 Design Phase .. 52

3.3.3 Build Phase ... 54

3.3.4 Verification Phase ... 54

8

3.3.5 Installation Phase .. 55

3.3.6 Summary ... 55

3.4 Problem Analysis ... 56

3.4.1 Methodology .. 56

3.5 Requirem ents Documentation ... 58

3.5.1 Methodology .. 58

3.6 DM D's Requirem ents Verification and Validation Process .. 63

3.6.1 Verification 63

3.6.2 Validation ... 65

3.7 Conclusions ... 66

3.8 Sum m ary .. 67

4 FRAMEWORK AND TOOLS FOR A LEARNING ORGANIZATION 71

4.1 Introduction .. 71

4.2 An Object-Oriented Approach to Requirements Specification . ..71

4.2.1 Object Orientation ... 72

4.2.2 Object-Oriented Analysis (OOA) ... 73

4.3 Creating a Knowledge Base Using Quality Factors ... 80

4.3.1 The Quality Factors Matrix (QFM) ... 80

4.3.2 The Quality Factor Recipe (QFR) .. 83

4.4 Using the 00OO Framework as a Knowledge Index .. 85

4.5 Sum m ary .. 86

5 SPECIFYING AND VERIFYING PRODUCTION TOOLING REQUIREMENTS: A

NEW PROCESS ... 91

5.1 Introduction .. 91

5.2 Process Overview .. 92

5.3 The New Process: Step by Step .. 95

5.3.1 Allocate Requirements .. 95

5.3.2 Preliminary Concept Review ... 97

5.3.3 Transformation and Documentation of Requirements ... 101

5.3.4 Develop Concept ... 107

5.3.5 Specify Requirements (Final) .. 108

5.3.6 Design Tool and Verify .. 108

5.3.7 Build Tool and Verify ... 109

5.3.8 Install Tool and Validate .. 109

5.4 The Value of Organizational Learning ... 110

9

5.5 Summary .. 111

6 USING SGML TO SPECIFY PRODUCTION TOOLING REQUIREMENTS 115

6.1 Introduction .. 115

6.2 SGML Basics ... 116

6.3 Using HyperText to Support Organizational Learning ... 117

6.4 Using SGML to Support the Requirements Specification Process 119

6.4.1 RML Document Type Definition (DTD) .. 119

6.5 An SGML Based Requirements System .. 121

6.5.1 The SGML Database ... 121

6.5.2 The SGML Parser .. 122

6.5.3 Application Library ... 122

6.6 Conclusion ... 123

7 CONCLUSION ... 125

REFERENCES ... 125

APPENDIX A - EXAMPLE CLASSIFICATION HIERARCHIES FOR TWO
DIFFERENT INDUSTRIES ... 127

APPENDIX B - EXPANDED CLASSIFICATION HIERARCHY FOR A HARD
DISK DRIVE MANUFACTURER ... 131

APPENDIX C - DOCUMENT TREE AND STRUCTURE FOR THE RML 135

APPENDIX D - DOCUMENT TYPE DEFINITION ... 137

APPENDIX E - EXPLANATION OF RML RULE SET ... 139

APPENDIX F - EXAMPLE RML DOCUMENT SHOWING MARKUP AND DATA 141

11

List of Figures

Figure 1.1 - The Cumulative Effects of Error (CEE) model applied to a production tooling specification 19

Figure 2.1 - Production tooling as a sub-system of the manufacturing process ... 24

Figure 2.2 - The activities of the Requirements Phase used for system development 25

Figure 2.3 - The five phase Standard Waterfall model used for software and systems development 26

Figure 2.4 - The five phase Incremental Development model used for software and systems development

(Dorfman, 1990, p.5) .. 27

Figure 2.5 - System hierarchy (breakdown) of a manufacturing process .. 29

Figure 2.6 - Iteration in partitioning, allocation, and flowdown of requirements .. 30

Figure 2.7 -The verification and validation (V&V) cycle for a production tool (adapted from Thayer and

Royce, 1990, p. 94) .. 35

Figure 3.1 - A cutaway view of a typical hard disk drive (Goodman, 1993, p. 36) .. 40

Figure 3.2 - A typical view of the spindle, media, and head-stack assembly (Goodman, 1993, p. 110) 42

Figure 3.3 - A view of an arm-stack assembly showing the arms that position the heads over the surface of

the disks ... 42

Figure 3.4 - A view of the HSA with the heads positioned over the landing zone (Goodman, 1993) 43

Figure 3.5 - A simplified, partial process flow of DMD's production line ... 44

Figure 3.6 - A rough view of DMD's head-merge workcell .. 45

Figure 3.7 - A view of the hard disk drive after the HSA has been inserted into the baseplate assembly (left)

and after the HSA has been rotated into position just prior to merge (right) 46

Figure 3.8 - Rod assemblies used to support and position the mirrors for the head-merge workcell 48

Figure 3.9 - A view of a rod assembly with the connectors that provide various degrees of freedom

depending on the number of connectors used ... 49

Figure 3.10 - The five phases of the tooling development cycle at Hewlett-Packard's DMD 50

Figure 3.11 -The Requirements Phase in DMD's tooling development cycle ... 50

Figure 3.12 -The Design Phase in DMD's tooling development cycle .. 53

Figure 3.13 - DMD's Requirements Phase with and without feedback ... 64

Figure 4.1 - Definition of the specification class production_tool .. 75

Figure 4.2 - The production_tool class and three instances of it (a, b, and c) .. 75

Figure 4.3 - Specification classes created for four different types of a production tool 76

Figure 4.4 - Class hierarchy developed from the base class, production_tool .. 77

Figure 4.5 - New class definition developed using multiple inheritance .. 79

Figure 4.6 - Quality Factors Matrix (QFM) for production tooling showing the needs of the manufacturing

process (Qualify Factors) versus a tool's technical attributes (Quality Sub-Factors) 82

Figure 4.7 - The quality factor 'maintainability' broken down into its five sub-factors 83

Figure 4.8 - Example QFR for software maintainability ... 83

Figure 4.9 - Using the specification classes as an index to the knowledge of the organization 86

12

Figure 5.1 - The process flow for a new requirements specification and verification process 93

Figure 5.2 - The process flow for DMD's current requirements specification and verification process 94

Figure 5.3 - The five phases of DMD's tooling development cycle ... 94

Figure 5.4 - The five phase Incremental Development model for production tooling 95

Figure 5.5 - Requirements of the head-merge process ... 96

Figure 5.6 - Allocating the requirements of head-merge process among its sub-processes 97

Figure 5.7 - Example tooling request form following the allocation of requirements from process to tool97

Figure 5.8 - Inputs and outputs to the Preliminary Concept Review ... 98

Figure 5.9 - The requirements specification package for a production tool .. 99

Figure 5.10 - Requirements allocation among automated (workcell) and non-automated tasks 100

Figure 5.11 -Tooling requirements specification based on the second round of requirements allocation. .100

Figure 5.12 - The process flow for "Specify Requirements." ... 102

Figure 5.13- Plugging existing specifications into the new head-merge specification 104

Figure 5.14 - Head-merge workcell class (fully expanded) ... 105

Figure 5.15 - Head-merge workcell class showing the vision system class plugged in." 108

Figure 6.1 - An SGML document showing how tags can be used to format text .. 117

Figure 6.2 - An SGML document as viewed from an application that interprets and displays SGML

documents .. 117

Figure 6.3 - The four basic subsystems of an SGML system .. 122

13

1

Introduction

1.1 Motivation

Today's US manufacturers are in the midst of a manufacturing crisis. Forced to compete

in the global marketplace, emphasis has shifted from product to process in an effort to

become more competitive in the areas of cost, quality, and delivery. Furthermore, where

technology driven markets are concerned, the rate of technological innovation and new

product introduction have also become critical success factors. Shapiro (1991), after

having studied Hewlett-Packard's New Product Introduction (NPI) process, states that

"The ability to quickly respond to customer demands with new product introductions is

critical to [HP's] success. 'There is evidence that without dramatically improving the

ability to reduce time to market, the US will fall hopelessly behind foreign competition in

the next decade' (Dertouzos et al. 1989, Skinner 1986, and Thurow 1987)." Hewlett-

Packard's Disk Memory Division (DMD), a manufacturer of hard disk drives,

understands the importance of NPI and has mounted a large scale effort to improve its

NPI process. Part of this effort involves improving the process used to specify and verify

production tooling requirements. The reason: problematic production tools are adversely

affecting DMD's production ramp times. DMD's management feels many of these

problems are the result of poor requirements specification and verification methods.

14

DMD is not the first organization to understand the importance of requirements

specification and verification. Almost thirty years ago, in the wake of the software crisis,

the software industry launched investigations to determine why so many software

projects were failing. Merlin Dorfman (1990) reports that:

"These investigations determined that requirements deficiencies were among the

most important contributors to the problem: in nearly every software project that

fails to meet performance and cost goals, requirements inadequacies play a major

and expensive role in project failure, and development of the requirements

specification in many cases seems trivial, but is probably the part of the process

which leads to more failures than any other. (Dorfman, 1990, p. 4)"

These findings led to the birth of the requirements engineering profession. In Chapter 2,

we will introduce some of the methods requirements engineers use to specify and verify

system requirements, and apply these methods to the requirements specification and

verification process that develops for production tooling in Chapter 5. The remainder of

this chapter discusses the role of production tooling in the manufacturing process, the

purpose of requirements specification and verification, and the importance of

requirements specification and verification.

1.2 Production Tooling and its Role in the Manufacturing Process

In this thesis, the term production tool shall be used to mean any hardware, or hardware-

software combination that supports a manufacturing process (e.g., assembly fixture,

automated workcell, milling machine). More abstract than hardware is the concept of

software as a production tool. At Hewlett-Packard's DMD, software modules are used to

add value to a hard disk drive assembly-hardware is present only as an interconnect

mechanism between the hard disk drive assembly and the functionality of the software.

One example of a software tool is an electronic configuration module that writes

configuration data to the non-volatile, read-only memory portion of a hard disk drive's

printed circuit assembly. The electronic configuration data varies according to the

15

customer of each hard disk drive being processed. The software module communicates

with the hard disk drive to determine its identification number, cross-references this with

a customer, downloads the customer configuration data, writes this data to the read-only

memory, and then verifies the configuration. In this case, it is the software configuration

module that acts in the capacity of a production tool because it is adding the value, not

the interconnect hardware.

DMD makes a point of distinguishing between a manufacturing process and a production

tool. A production tool is only part of the system defined by a manufacturing process

(i.e., a production tool is a subsystem of the manufacturing process). We will elaborate

on this important distinction in Section 2.1.

1.3 The Purpose of Requirements Specification and Verification

A requirements specification is a precise definition of the specific attributes a system

must possess (Keller and Kahn, 1990). Its purpose is to:

1. Communicate the requirements of the system among its customers, users,
analysts', and designers.

2. Support the verification and validation of the system.

3. Control the evolution of the system.

In Chapter 2, we will introduce the branch of science known as requirements engineering

and discuss some of the methods requirements engineers 2 use to create requirements

specifications for software and systems. The output of the requirements specification

process is a requirements specification document and it is this document that enables the

communication, support, and control listed above.

A requirements analyst is the person or one of the persons responsible for determining the needs of a
system and transforming these needs into a systems requirements specification.

2 The terms requirements engineer and requirements analyst are interchangeable. Analyst is often used to
mean either because it is syntactically less cumbersome.

16

The complement of requirements specification is requirements verification. Verification

occurs throughout the development cycle of a system and its purpose is to determine

whether the products of a given phase3 fulfill the requirements established in the previous

phase (Thayer and Royce, 1990). Verification differs from validation in that validation is

concerned about whether the completed system satisfactorily meets the needs of its
4customers and users4 . The combination of verification and validation is commonly

referred to as the verification and validation (V&V) cycle and it will be discussed in

Section 2.5.

1.4 The Importance of Requirements Specification and Verification

"One of the most common reasons systems fail is because the definition of system

requirements is bad." (Scharer, 1981). If this is true, it follows that having a good system

requirements specification is important. In Chapter 3, we will show how the failure to

specify a good set of requirements for a production tool can have a negative impact on the

manufacturing process using this tool. This will be shown using an actual case study of a

head-merge workcell procured by DMD (Section 3.2). A production tool that fails to

meet the needs of the manufacturing process, and ultimately the production system, can

be very costly. Let us assume that, as a manufacturer, we have production tools that fail

to meet their requirements for throughput, quality, and safety. The costs associated with

these failures goes beyond the costs involved in replacing or repairing them; we will call

these costs the real cost of a production tool that fails to meet its requirements. Included

in the real cost must also be the costs of lost production, decreased quality, and injury.

Perhaps the greatest contributor to the real cost of a production tool are those costs that

are not easily quantifiable. These costs can include the amount of customer goodwill lost

from missed delivery targets and poor product quality, and lowered work force morale

stemming from unsafe and difficult to use production tools. Given the real cost of a

3 The development phase concept is introduced in Section 2.2.

4The needs of a system are not necessarily reflected in the requirements of a system.

17

production tool that fails to meet its requirements, the author feels that it is important to

have a good requirements specification because it will empower the tool's purchaser to

determine objectively whether the tool satisfactorily meets the manufacturing process. It

is the real cost of a production tool that fails to meet its needs that has sparked DMD's

interest in the requirements specification and verification process. Davis (1990) further

motivates the importance of requirements specification. He states:

1. The later in the development lifecycle that a [system] error is detected, the
more expensive it will be to repair.

2. Many errors remain latent and are not detected until well after the stage at
which they are made.

3. There are requirements errors being made.

4. Errors made in requirements specifications are typically incorrect facts,
omissions, inconsistencies, and ambiguities.

5. Requirements errors can be detected.

To support his first claim, Davis compiles the results of three independent studies

performed by GTE, TRW, and IBM. Even though these companies were completely

unaware of each other's activities regarding the studies on the importance of

requirements, they all reached roughly the same result. Davis tabulates the results of

these investigations in Table 1.1 where he arbitrarily assigns a cost to the effort required

to repair an error during the coding stage and expresses the repair costs in the other stages

in terms of the coding repair effort. During the author's interviews with DMD's

engineers and managers, most agreed that a similar profile exists for their production

tools while the others felt that this profile is conservative (i.e., the cost of repairing a

tooling error in the maintenance phase exceeds 20 times the cost of repairing it when it is

in the build phase).

The conclusions drawn from Table 1.1 are only concerned with the cost of the repair

itself-it does not reflect the real cost associated with the error. Davis explains the

apparently dramatic cost of repair increase shown in Table 1.1 using the Cumulative

18

Effects of Error (CEE) model (Mizuno, 1983) which is shown in Figure 1.1. Davis

explains the model:

"[Assume] that we begin with a real problem [and] then write a requirements

specification. Some part of that specification will be correct and the

remainder erroneous. Then we move on to design. During the design stage,

design based on the erroneous specification will certainly be incorrect;

meanwhile design based on correct requirements specification will result in

part in correct design and in part in erroneous design. Then we move on to

implementation. During implementation, [tools] based on design originating

from erroneous requirements specification will certainly be incorrect; [tools]

based on erroneous design will certainly be incorrect. Meanwhile, [tools]

based on correct design will result in [parts of the tool being correct and the

other parts being incorrect]. Then we move on to testing. During testing, the

part of the [tool] that is correct will hopefully be demonstrated to work

correctly. Some errors will be detected and corrected, some will be detected

and left uncorrected, and some will not be detected at all (Davis, 1990)." 5

Table 1.1 - Cost (effort) to repair software as a function of the time of detection in its development cycle.

The hidden errors shown in Figure 1.1 are the worst type of errors because the purchaser

of the tool accepts its delivery thinking the tool meets its needs. It is not until the tool is

being installed or in operation that the errors are actually realized. From Figure 1.1, it is

5 Davis' explanation has been reworded in the context of a production tool.

Stage Relative Cost of Repair

Requirements 0.1-0.2
Design 0.5

Coding 1

Unit Test 2

Acceptance Test 5
Maintenance/Ops 20

19

apparent that the only path to hidden errors is through errors in the requirements

specification 6 .

Problem/Need

Correct Erroneous
Specification Specification

o,-.a,<:,,... .~ ~,,~: **.~, se~

D Ig Correct
Design Design

Build

Verify

I

Correct Incorrec Tool Based Tool Based
Correct Incorrect | On Erroneous On Erroneous

Tool Tool j~ Design Specification

Correct Correctable Uncorrectable Hidden
Operation Errors Errors Errors

Figure 1.1 - The Cumulative Effects of Error (CEE) model applied to a production tooling specification.

Given the CEE model, the author feels that most important reason for having a good

requirements specification is to eliminate the presence of hidden errors. Only when a

production tool has been determined to be error free is it accepted by its purchaser. Those

errors which are hidden, however, will escape detection and will be present in the tool

upon its acceptance. It will not be until the tool is being installed or in operation that

these errors will become apparent. If an error is sufficiently severe, the purchaser may

have to delay the integration of the tool with the manufacturing process in the case where

the error becomes apparent at installation, or the purchaser may have to interrupt

production in the case where the error becomes apparent during the tool's operation.

6 An error in the requirements specification does not apply only to those instances where a requirement is
explicitly stated incorrectly in the requirements specification document (e.g., the weight of a tool is
specified as 15 pounds maximum when it was supposed to be 10 pounds maximum). An error in a
requirements specification can also apply to those instances where a requirement should have been
specified but was not.

Erroneo Design Based
Derronos On Erroneous

Specification
T=C:='d -··.;�BPBL&&a(i6�k�l�LMll�a� �h�g�a� bat-

(I

20

Given either of these two scenarios, it is clear how a production tool that is accepted in

the presence of hidden errors can have a negative impact on the ramp time of the

production line using this tool.

1.5 Thesis Overview

The goal of this thesis is to demonstrate a need, create a process, and develop a set of

tools and methods for specifying and verifying production tooling requirements. Chapter

2 introduces the requirements engineering profession and some of the methodologies they

use to specify and verify system requirements. Requirements engineering is the science

and discipline concerned with analyzing, documenting, and verifying system

requirements. We will show how a manufacturing process is a system and motivate the

use of the proven requirements engineering methods in a process for specifying and

verifying production tooling requirements.

Chapter 3 describes the process being used by Hewlett-Packard's Disk Memory

Division (DMD) to specify and verify production tooling requirements. The author spent

six months at DMD as part of a internship made available to the Fellows of the MIT

Leaders for Manufacturing Program (LFM). The charter of this internship was to

understand the process used by DMD to specify and verify the requirements of its

production tooling and to develop a new process based on those areas with the greatest

opportunities for improvement. The description of DMD's requirements specification

and verification process is based on the author's internship experience with DMD. A

description of the new process is given in Chapter 5, but only after the set of tools and

methods that will be used in this new process are complete.

Chapter 4 develops a set of tools and methods that can be used to help with the process of

specifying and verifying production tooling requirements. Included in these tools and

methods are Object-Oriented Analysis (OOA) and the development of a Quality Factors

Matrix (QFM). The purpose of OOA and the QFM is to address the need for

organizational learning in the process of specifying and verifying production tooling

21

requirements. This need was determined in the analysis of DMD's process in Chapter 3.

As we will see, however, the usefulness of OOA extends well beyond that of an aid to

organizational learning.

Chapter 5 develops a new process for specifying and verifying production tooling

requirements. In developing this process, we draw from what has been learned and

developed in Chapters 2, 3, and 4. The new process emphasizes organizational learning

as the means to developing good requirements specifications.

Finally, Chapter 6 shows how the Standard Generalized Markup Language (SGML) can

be used to create a requirements specification and verification system that supports the

process developed in Chapter 5.

2

Requirements Engineering Principles

This chapter introduces the requirements engineering profession and some of the

methodologies it uses to specify and verify system requirements.

2.1 Introduction

Requirements engineering is "the science and discipline concerned with analyzing and

documenting requirements, including needs analysis, requirements analysis, and

requirements specification (Thayer and Dorfman, 1990, p. 1)." There are two branches

of requirements engineering, systems and software, but they share a common

methodology in their approach to requirements specification and verification. This

chapter briefly explains those methodologies that we will draw upon in the chapters that

follow7. We shall apply the methodologies that are discussed in this chapter to the

requirements specification and verification process that develops for production tooling in

Chapter 5. This is possible because a manufacturing process is a system and a production

tool, if one is used, is a sub-system of it. Thayer and Dorfman define a system as:

"... a collection of hardware, software, people, facilities, and procedures organized

to accomplish some common objectives (Thayer and Dorfman, 1990, p. 662)."

7 For a more thorough explanation, see Dorfman (1990), and Davis (1990).

24

Given this definition, a manufacturing process is clearly a system. It organizes hardware,

software, people, facilities, and procedures for the purpose of manufacturing a product.

In Section 1.2 we discussed the role of production tooling in the manufacturing process

and how it can be a hardware component, or a combination of hardware and software.

Figure 2.1 shows the manufacturing process and how production tooling is a sub-system

of it. Given this relationship, it makes sense that we should want to apply the

methodologies of the requirements engineering profession to the process of specifying

and verifying production tooling requirements. The requirements engineering profession

has spent almost thirty years learning how to develop good requirements specifications

and we want to leverage the methods that they have developed.

Production Tooling

.

Ileopl r Iocedues Hardware Software Facities

.................................

............................. The M anufacturing Process

Figure 2.1 - Production tooling as a sub-system of the manufacturing process

Thayer and Dorfman describe the role of systems requirements engineering:

"Systems requirements engineering is the science and discipline concerned with

analyzing and documenting system requirements. It involves transforming an

operational need into a system description, system performance parameters, and a

system configuration through the use of an iterative process of analysis, trade-off

studies, and prototyping (Thayer and Dorfman, 1990, p. 1)."

In this chapter we will discuss the three major activities that take place in the

transformation of an operational need into the evolved system. These activities are:

problem analysis; requirements documentation; and verification and validation. Before

we can discuss these activities however, the concept of the system development lifecycle

25

model must be introduced. Analysts use the system development lifecycle model to

analyze and manage the development of a system.

2.2 The System Development Lifecycle Model

As a system develops, it passes through a series of phases in its transformation from need

to finished product. These phases characterize the major activities of a system's

development at any point in time, but do not exclude the possibility that some of the

activities of a previous phase may carry over into the next phase or vice versa. Given that

the subject of this thesis is requirements specification and verification, we will dedicate a

significant portion of it to the activities that take place in the Requirements Phase. The

two major activities that take place in the Requirements Phase are problem analysis and

requirements documentation. These activities are shown in Figure 2.2 and each is

discussed separately in Sections 2.3 and 2.4. We shall call the activities that take place

during the Requirements Phase requirements specification.

.............................

System Need , Problem
Identified * Analysis

A Relatively Complete
Understanding of the Requirements

.. Requirements Phase

Figure 2.2 - The activities of the Requirements Phase used for system development.

Incorporating the Requirements Phase are several lifecycle models which have been

developed by the requirements engineering profession; two of the better known models

I

I
i

i

I
I I

26

are the Standard Waterfall model and the Incremental Development model (Dorfman,

1990, pp. 4-6). Analysts use these models to help analyze and manage the development

of the system. The Standard Waterfall model shown in Figure 2.3 breaks a development

effort into five distinct phases: requirements, design, construction, test, and integration.

Ideally, requirements activities are confined to the Requirements Phase. It is normal,

however, for a system's requirements to be enhanced, changed, or deleted after the

project has progressed beyond the Requirements Phase. As a system's design begins to

unfold, it is likely that changes to the requirements specification will be necessary. This

is the reason for the iterative loop shown between the Requirements Phase and the Design

Phase. This scenario can be extended to each of the development phases. Unlike the

requirements specification, verification activities take place at each phase in the

development lifecycle. Section 2.5 discusses the role of verification and validation in the

development lifecycle. In Chapter 3, we will show how the lifecycle model used for the

tooling procured by DMD is very similar to the Standard Waterfall Model.

Figure 2.3 - The five phase Standard Waterfall model used for software and systems development.

Very similar to the Standard Waterfall model is the Incremental Development model 8

shown in Figure 2.4. Like the Standard Waterfall model, the Incremental Development

model has five phases: requirements, design, construction, test, and integration. The

difference between these two models is that the Incremental Development model uses

feedback from the customers and users of operational systems to affect the outcome of a

8 The Incremental Model, like the Standard Waterfall model, is iterative. The iteration loops have not been

shown in Figure 2.4 for the purpose of clarity only.

I

27

development effort. The requirements specification and verification process described in

Chapter 5 is based on the Incremental Development model.

Figure 2.4 - The five phase Incremental Development model used for software and systems development
(Dorfman, 1990, p.5).

2.3 Problem Analysis

The two major activities that take place during requirements specification are problem

analysis and requirements documentation. This section addresses problem analysis-

requirements documentation is left to Section 2.4. Davis (1990) briefly describes the

purpose of problem analysis:

"Problem analysis is the activity that encompasses learning about the problem to

be solved, understanding the needs of the potential users, trying to find out who

the user really is, and understanding all the constraints on the [system] (Davis,

1990, p. 41)."

In Chapter 3, we will show that Hewlett-Packard's DMD performs an activity similar to

problem analysis in what it calls a Preliminary Concept Review.

If the system being developed is intended to function as part of a larger system (the parent

system), problem analysis also involves understanding what is required for the system

(e.g., production tool) to work within the constraints of the parent system (e.g.,

28

manufacturing process). Moreover, if the system being developed is sufficiently

complex, it may be necessary to decompose it into a subset of smaller, more manageable

subsystems. Requirements engineers employ three methods to ensure that the

requirements of a subsystem meet the needs (i.e., requirements) of the parent system.

These methods are commonly referred to as hierarchy definition, allocation, and

flowdown (Dorfman, 1990).

2.3.1 Methodology: Hierarchy Definition, Allocation, and Flowdown

In the process of developing the requirements specification for a system, it is important to

think about the needs of the entire system. A concern voiced by DMD's managers during

the author's interviews was that they do not feel system needs (manufacturing process

and production system) are being reflected in the designs and performance of production

tooling. Requirements engineers have a well defined methodology to deal with this type

of problem. They use a process that defines a system hierarchy, allocates the

requirements of the system to each of the elements of in the hierarchy, and writes a set of

requirements for each element in response to the allocation. This process ensures that the

requirements of the system are being supported in its subsystems9 . The process starts by

defining a hierarchy which decomposes a system into smaller, more manageable

subsystems. Dorfman describes the hierarchy creation process:

"Early in the system development process, as the system-level requirements

are being generated (in itself an iterative process), requirements engineers and

others begin to consider what elements should be defined in the hierarchy. By

the time the system requirements are complete in draft form, a tentative

definition of at least one and possibly two levels should be available. This

definition will include names and general functions and elements. Definition

of the system hierarchy is often referred to as 'partitioning' (Dorfman, 1990)."

9 In the case of a manufacturing process, the subsystems may include production tooling.

29

An example system hierarchy for a manufacturing production line is shown by

Figure 2.5.

Production
System

Manufacturing
Processes

Production
Tooling

I I I
Tooling Vision Assembly User

Sub-Systems System Fixture

Figure 2.5 - System hierarchy (breakdown) of a manufacturing process.

The next step in the process is called requirements allocation. Dorfman describes the

allocation process:

"Each system-level requirement is usually allocated to one or more elements

at the next level (i.e., it is determined which elements will participate in

meeting the requirement). In performing the allocation, it will become

apparent that (a) the system requirements need to be changed (additions,

deletions, and corrections) and (b) the definitions of the elements are not

correct. The allocation process therefore is iterative, leading eventually to a

complete allocation of the system requirements (Dorfman, 1990, p. 8)."

Once all of the requirements have been allocated to the elements of the system (i.e., the

subsystems), aflowdown process occurs. Requirements flowdown involves writing a

requirements specification for each of the subsystems in response to those requirements

which have been allocated to it from above. Figure 2.6 shows the processes just

described with a series of verification steps inserted. The purpose of the verification

steps is to catch errors in the allocation and flowdown processes.

30

(Etc.)

Figure 2.6 - Iteration in partitioning, allocation, and flowdown of requirements.

2.4 Requirements Documentation

Requirements documentation is the second step in the requirements specification process.

It contains a complete description of the performance and behavior a system must possess

31

as well as the constraints being placed upon it. There are three reasons why a

requirements specification document is necessary:

1. It communicates the requirements of the system among the customers, users,
analysts, and designers.

2. It supports verification and validation of the system.

3. It controls the evolution of the system.

To be effective, Davis (1990) states nine attributes that a requirements specification

document must possess. It must be:

1. Correct 2. Nonambiguous 3. Complete

4. Consistent 5. Understandable 6. Modifiable

7. Verifiable 8. Traceable 9. Annotated

The first five attributes listed are relatively straightforward and we will briefly discuss

only the last four attributes. For an in-depth explanation on each of the nine attributes,

the author refers the reader to Davis (1990).

2.4.1 Modifiable

A requirements specification document is modifiable only if its structure and style are

such that any necessary changes to the requirements can be made easily, completely, and

consistently (IEEE, 1984).

2.4.2 Verifiable

One of the reasons for having a requirements specification document is to support system

verification and validation activities. Upon completion of a system, it will be verified

against the requirements stated in its requirements specification document. To

objectively determine whether an attribute of a system conforms to its specified

requirement, the requirement itself must be verifiable. A requirement is verifiable if and

32

only if there exists a cost effective and time effective method of determining whether it is

satisfied by the system (Davis,1990; Nelson, 1990). Davis states:

"... the statement 'The product shall have an easy-to-use human interface' is

ambiguous, that is, has multiple interpretations because opinions of what is easy

to use varies greatly from individual to individual and thus cannot be verified as

an attribute of the final product (Davis, 1990, p. 190)."

The requirements specified in the requirements specification document, then, must be

specific and quantifiable (e.g., "all locating points shall use carbide inserts", "all wires

shall be marked with a unique identification number", "the operator shall not have to

apply more than two pounds force to any component of the tool").

2.4.3 Traceable

Requirements traceability is concerned with why a particular requirement has been

specified and, in doing so, it facilitates the decision making process during the

verification and evolution of a system. A requirements specification document is

traceable only if the reason for each of its requirements is clear and if it facilitates the

referencing of each requirement in the future development or enhancement of

documentation (IEEE, 1984).

2.4.4 Annotated

Annotating requirements assigns a level of importance to each of the requirements

specified for a system. A system will almost certainly have some requirements that

supersede others in terms of importance: some requirements will be critical to the

system's correct operation while others might be superficial. By annotating the

requirements in the requirements specification document, it is made clear to the designer

what requirements are the most important and, thus, should be given the most attention.

Requirements annotations are also useful during verification activities when decisions

33

must be made about whether a tool can be allowed to progress to the next phase of

development even though it may not have met a particular requirement.

2.5 Verification and Validation

Thayer and Royce define verification and validation 0 as follows:

"Verification is the process of determining whether or not the products of a given

phase of the system development cycle fulfill the requirements established in the

previous phase. Validation is the process of ensuring that what intended to be

built corresponds to what is actually required; it is concerned with the

completeness, consistency, and correctness of the requirements (Thayer and

Royce, 1990, p. 93)."

Based on Thayer and Royce's definition, verification is not an activity that happens only

at the end of a development cycle as part of a system's test activities. At each stage of the

development process, the products of a given phase should be checked for errors before

proceeding to the next phase. The CEE model (p. 17) makes clear the need for

verification at each stage of the development process. Since the total amount of error in a

system is the accumulation of error at each of its development phases, a verification step

designed to catch these errors at the end of each phase can significantly reduce the total

amount of error in the system.

Thayer and Royce explain the need for verification and validation:

"Verification and validation (popularly called "V&V") is a group term for a set of

system tools that is used to continually monitor the processes and products of a

[tooling] development project. V&V ensures that the [tool] performs its intended

functions correctly, that it will perform no unintended functions, that it will work

within the total system, and that it will meet its intended performance, external

' 0 We are rewording their definition slightly to put it in the context of production tooling.

34

interfaces, design constraints, and quality attributes (Thayer and Royce, 1990, p.

93)."

Figure 2.7 shows the verification and validation (V&V) cycle for a production tool

(adapted from Thayer and Royce, (1990)). It makes clear the difference between

verification and validation of a production tool.

2.5.1 Verification

Verification makes sure the products of a given phase fulfill the requirements of the

previous phase. For example, before a requirements specification document should be

delivered to the tool designer, its accuracy should be verified first. This process verifies

that the requirements stated in the tool's requirements specification document accurately

reflect the needs of manufacturing process. An analogous process exists for the design

phase. Once the tool's design is complete, it must be verified that the design is consistent

with the requirements stated in the tool's requirements specification document. And

finally, once the tool's vendor feels the tool is ready for delivery, it must be verified

against its design and the requirements specified in the requirements specification

document.

2.5.2 Validation

There always exist the possibility that a requirements specification document will contain

errors. In this case, even if a production tool is verified to meet all of the requirements

specified by its requirements specification document, it will not satisfy all the needs of

the manufacturing process. This is the purpose of requirements validation. It asks the

question "Is the tool doing what it is supposed to be doing?" As we will see in Chapter 5,

the validation process presents the manufacturing organization with an opportunity for

learning in the area of how to develop good requirements specifications. Since validation

is concerned with the completeness, consistency, and correctness of a requirements

specification, the manufacturing organization can compare what was actually built to

35

what was actually needed. If there is no disparity between the two, it is safe to say that

the organization knows how to develop a requirements specification. If there is a

disparity, however, the manufacturing organization must ask why and take the necessary

steps to correct the problem.

Requirements
Definition

What the manufacturing process is supposed to do

Is the tool doing what it is supposed to do?

Is the process doing what it is supposed to do?

C0

>
E
a)

O0V5en)

Figure 2.7 -The verification and validation (V&V) cycle for a production tool (adapted from Thayer and
Royce, 1990, p. 94).

2.6 Summary

This chapter introduced requirements engineering methodology that we will be drawing

from throughout the remainder of this thesis. Specifically, we examined problem

36

analysis, requirements documentation, and verification and validation. We showed how a

manufacturing process is a system and how a production tool is a subsystem of it. In

analyzing the requirements of a production tool, it is important to understand the needs of

the manufacturing process first. These needs are "driven down" into the subsystems of

the manufacturing process using a requirements specification process that defines a

system hierarchy, allocates requirements to each of the subsystems, and specifies

additional requirements in response to each allocated requirement (flowdown).

Once the needs of a system are relatively well understood, a requirements specification

document must be created. In Section 2.4 we identified nine attributes a requirements

specification document must possess. If any of these attributes are not present, there will

be a negative effect on the ability of the requirements specification document to

communicate requirements, support verification and validation activities, and control the

evolution of a system.

Finally, we showed how requirements verification is an ongoing process. Its purpose is

to determine whether the products of a given phase in the system development cycle

fulfill the requirements established in the previous phase. Verification differs from

validation in that validation is concerned with whether a system meets its needs. It is

concerned with the completeness, consistency, and correctness of the requirements

specification document.

37

38

39

3

The Requirements Specification and Verification Process at

Hewlett-Packard's DMD

This chapter describes the process currently being used by Hewlett-Packard's Disk

Memory Division (DMD) to specify and verify the requirements of its production tooling.

3.1 Introduction

Hewlett-Packard's DMD has been designing and manufacturing hard disk drives since

1971. It has earned a reputation for performance and quality that allows it to compete

successfully in the high-end disk drive market 1. Two of DMD's success factors have

been (1) its ability to develop new products that keep pace with the rate of technological

change and (2) its ability to deliver these products to market on time. Today, however,

the challenge of success in the hard disk drive market is higher than ever. Technological

advances coupled with market demand are driving new product development cycles to

just over a year, making the need for fast production ramps essential. Like so many US

manufacturers, DMD has reevaluated the role of the manufacturing process in their

operations and has reacted by placing increased emphasis on it. The creation of DMD's

These markets include large servers and mainframes where the emphasis is on reliability and
performance as opposed to cost.

40

Process Development Labl2 (Process Lab) is evidence of DMD's increased emphasis on

and commitment to the manufacturing process. In an effort to decrease the amount of

time it takes to develop and launch a new product, members of DMD's Process Lab and

Product Engineering organization work together on a New Product Introduction (NPI)

team which is assembled early in the lifecycle of each new product being developed. Part

of the team's mission is to make sure that once a new product is released to

manufacturing, the production ramp proceeds smoothly and quickly. Often standing in

the way of success, however, are production tools that fail to work properly. These

failures have sparked a new concern at DMD regarding its ability to specify and verify

the requirements of its production tooling. DMD's management is committed to

understanding the requirements specification and verification process.

Figure 3.1 - A cutaway view of a typical hard disk drive (Goodman, 1993, p. 36).

This chapter starts by examining the case of a semi-automated head-merge workcell-a

production tool procured by DMD to work with a head-merge process on one of its

12 DMD's Process Lab is an engineering organization dedicated to developing DMD's manufacturing
processes.

41

production lines. The case study exposes some of the problems with DMD's current

requirements specification and verification process and sets the tone for the remainder of

the chapter. Following the case study, the development lifecycle for the tools DMD

procures is examined.'3 This chapter concludes with Sections 3.4, 3.5, and 3.6 which

map to Sections 2.3, 2.4, and 2.5 with a discussion on problem analysis, requirements

documentation, and verification and validation. The conclusions drawn regarding

DMD's process are based on a comparison of each of the paired sections.

3.2 Case Study: DMD's Semi-Automated Head-Merge Workcell

The typical hard disk drive is made up of four major sub-components: the disk-stack

assembly, the head-stack assembly, a sealed housing, and a printed circuit assembly (see

Figure 3.1 and Figure 3.2). The disk-stack assembly is a series of aluminum disks

(platters) coated with a thin layer of magnetizable material mounted on a spindle. A

single read/write head is dedicated to each of the two sides of a disk. These read/write

heads are attached to the end of an arm that positions them over the area of the disk where

data must be read or written during a read/write operation. Since most of today's hard

disk drives have more than one disk, these arms are stacked together to form an armnn-stack

assembly (Figure 3.3). Once the heads and electronic subassemblies have been attached

to the arm-stack assembly, the assembly is called a head-stack assembly (HSA). During

a hard disk drive's operation, its spindle rotates at a constant, high speed during which

time the heads are never allowed to come in contact with the surfaces of the disks. To

keep the heads off the surface a the disk while the drive is in operation, each head is

aerodynamically designed to generate lift from the airflow caused by the rotation of the

disks 14. The only place a read/write head is allowed to touch the surface of a disk is in a

3 This applies only to those tools that must be custom designed and built to meet DMD's specific
manufacturing needs. It certainly does not apply to simple, off-the-self tooling (e.g., torque drivers,
soldering irons, micrometer).

4 If a head touches a read/write surface of a hard disk drive while it is in operation, it will almost certainly
cause damage to the surface of the disk, and could lead to total drive failure (this is where saying "hard
drive crash" comes from).

42

dedicated area of the disk called the landing zone (Figure 3.4). When a hard disk drive is

shut down, it goes through a series of procedures which include positioning the heads

over the landing zone, cutting the power to the spindle motor (this cases the heads to land

because there is no more airflow to create lift), and locking the head-stack assembly into

place (this is called parking the heads). The purpose of this discussion has been to stress

the importance of a read/write head never touching surface of a disk (except in the

landing zone). This restriction also applies during the manufacture of a hard disk drive.

Figure 3.3 - A view of an arm-stack assembly showing the arms that position the heads over the
surface of the disks.

Spindle

RKadWrite
Head \

A ebtack
Assembly \

Figure 3.2 - A typical view of the spindle, media, and head-stack assembly (Goodman, 1993, p. 110).

43

The working area on the disk where
all your valuable data is staredl

The landing zone (where
&_.j_ --- ri.. - _\

The usual head-parking
strategy positions the
heads at a cylinder that
is closer to the spindle
than all the data- bearing
cylinders.

lea

/I

Figure 3.4 - A view of the HSA with the heads positioned over the landing zone (Goodman, 1993).

There comes a time in the manufacture of a hard disk drive when the heads must be

merged with the disks. The merge process involves rotating the HSA into a position that

locates the heads over their respective landing zones. While being rotated into position,

the heads must be mechanically held off the surface of the disks to avoid causing

damage15. Once the heads are in position, they are lowered onto each of their respective

5 The arms also act as a spring which applies a force to the head in the direction of the disk. This force is
not so great that it cannot be overcome by the force applied to a head from the lift generated while the
disks are spinning. The presence of the spring force is necessary but it also complicates the
manufacturing process. Since the disks are not spinning, the heads must be mechanically held off the
surfaces of the disks while the HSA is being rotated to a position that places the heads over their
respective landing zones.

-

7\

jr

44

surfaces and the tool that was used to rotate the heads into position and keep them off the

surfaces of each disk is retracted. The process just described is called the head-merge

process and it is shown in relation to its surrounding processes in Figure 3.5. Prior to

procuring a semi-automated workcell, DMD used a head-merge process that incorporated

a manual head-merge tool. However, the level of attention required by the process

operator was high and therefore quick to cause stress and fatigue. This prompted DMD

to design a more automated process which included the procurement of the semi-

automated workcell which is the subject of this case study (Figure 3.6).

Figure 3.5 - A simplified, partial process flow of DMD's production line.

During the course of procuring the new workcell, DMD identified a tooling vendor who

had developed similar systems for other hard disk drive manufacturers. DMD made the

decision to use this tooling vendor. A full description of the head-merge process was

given to this vendor along with all of the relevant engineering drawings for the hard disk

drive assembly. There was, however, no requirements specification document for the

workcell; its requirements were communicated verbally and by written correspondence.

Also included with these requirements were two boilerplate requirements specification

documents that had been developed for other production tools procured by DMD but

intended to be generic enough that they could be applied to other production tools as

well. One of these boilerplates was a workcell specification and the other was a graphical

45

user interface (GUI) specification. Upon completion of the tool's build process, a

verification team was assembled by DMD for the purpose of verifying that the workcell

met its specified requirements. There were, however, no specific set of requirements to

verify against (there was no requirements specification document), but the workcell

appeared to be in good working order. The verification team spent the day performing

head-merge operations on a set of sub-assemblies they had brought along with them. The

heads were merged without notable incident and the verification team accepted delivery

of the tool.

I AU, A qe .N rmI oA-.

(Top View)

Figure 3.6 - A rough view of DMD's head-merge workcell.

(Side View)

Upon delivery, the workcell was integrated with the head-merge process, but there were

problems from the start. One of the problems was with the vision system16. This was

16
16 The workcell uses a vision system to verify, prior to merge (Figure 3.7), that the heads will not come in
contact with the surface of the disks while the HSA rotated into position.

46

odd because there were no apparent problems with this system while the workcell was

being verified at vendor's facility. The cause of the problem was determined to be the

high intensity lighting DMD uses on the production floor. The vision system uses a

backdrop light to create the level of contrast required by the vision system in the area of

measure. The ambient lighting on DMD's production floor, however, is sufficiently
7intense to render this backdrop light ineffective . The ambient lighting at the vendor's

facility was lower in intensity DMD's and had no apparent effect on the performance of

the vision system. Modifications were eventually made to the vision system but it has

never worked as well as originally expected. Lighting however, was not the only

problem with the vision system.

Figure 3.7 - A view of the hard disk drive after the HSA has been inserted into the baseplate assembly (left)
and after the HSA has been rotated into position just prior to merge (right).

The vision system uses an array of mirrors to create a line of reflected light that is

focused on the region of measure. Mirrors are located at various points inside the

workcell and are attached to connectors that are in turn mounted on rods (Figure 3.8). A

connector is selected based on the diameter of the rod and degrees of freedom required

for the alignment of the mirror (Figure 3.9). Once aligned, a mirror is "locked" into place

by tightening the thumb-screws on the rod assembly and the connector(s) supporting it.

17 If a person wants to measure their height by casting their own shadow against a wall, he or she would
enter a sufficiently dim room with a light source located directly behind his or her head. If somebody
walks in, however, and floods the room with light there will be no shadow and there will be no
measurement. This is effectively the problem the head-merge workcell had with DMD's bright lighting.

-

47

The locking process, however, causes a mirror to "pull back" and it is no longer properly

aligned. As a result, the alignment process is very iterative and time consuming even for

persons experienced with the alignment process. This might have been tolerable if the

alignment process was a one-time setup process, but this was not the case. During

routine cleaning operations performed by the process operator and during regularly

scheduled and unscheduled maintenance operations performed by a maintenance

technician, it is common for the mirrors to be jarred by the person performing the

1 8operations 8 . Once jarred, the time consuming process of aligning the mirrors be

repeated.

An even bigger problem than the vision system for the workcell was software related.

The operator interface was cluttered with unnecessary information and the maintenance

interface did not provide all of the required functionality. Moreover, the software code

used to program the controller which, in turn, controls the operation of the workcell was

difficult to understand and maintain. Program constants that should have been defined

globally were defined locally in each of the software modules supporting the system (e.g.,

a constant used for a dimensional offset was located in multiple software modules). This

required that changes be made in all of the software modules each time a change to a

constant was made. Not only was this time consuming, it also significantly increased the

chances of an error being made either because a change was incorrectly entered or

because a constant in one of the software modules was overlooked. To make matters

worse, these constants where often given different names in each of the software modules

(e.g., Xl, offset, and A were used to refer to the same dimensional offset). A two week

delay in the in the operational status of the workcell was attributed to the problematic

software 9 . Interestingly enough, all of the workcell's software was produced in the last

two weeks of the Build Phase.

s18 This head-merge tool continues to be used by DMD.

9 Production tooling software has gained a certain level of notoriety at DMD-the author never found a
single engineer at DMD who was satisfied with the quality of software used for production tooling and
they all had their own set of "horror" stories. Intel has currently launched an effort to improve the quality
of software on their production equipment because they have similar problems.

48

ii -

.B s - -*. 4
I - -,~*

I,- -Ji1
@ - X

49 *

STANDARD
ROD HOWER LROOe

X X MxIUM Roo ERTON DEPTHn

D1menslons I Inche (mm).

Figure 3.8 - Rod assemblies used to support and position the mirrors for the head-merge workcell.

DMD has since ordered another workcell from the same vendor. The same engineer who

was involved with the procurement of the first workcell was also involved with the

-

-I
w

� -0 -4 -�_;y Z, .4- � - -A''! 1,I, 'f 111,24, n :;, . I

49

procurement of the second workcell. This time, there was a requirements specification

document created for the workcell and all of the issues regarding the previous workcell

were addressed in the new specification. The new workcell was verified against the

requirements specified in the requirements specification document and delivered to DMD

where it was subjected to two weeks of rigorous testing. In that time the only incident

with the workcell was a loose vacuum tube. Upon completion of testing, the workcell

met or exceeded all of its performance expectations. It is the author's understanding,

after having left DMD, that the workcell has continued to meet or exceed all of its

expectations.

Wm r Rod Connectors (page 220) you can build various
rod monted conflgurations.

Figure 3.9 - A view of a rod assembly with the connectors that provide various degrees of freedom
depending on the number of connectors used.

It is doubtful that the new workcell is perfect in every respect. What is certain, however,

it that there was a significant improvement in the ability of the second workcell to satisfy

DMD's needs when compared to the first workcell. This improvement is attributed to the

improvement in the requirements specification process (not the verification process) that

50

took place as a result of the learning by the engineer who performed the requirements

specification.

3.3 DMD's Tooling Development Cycle

We can model the development cycle for the production tooling DMD procures using the

Standard Waterfall model (Section 2.2)-its five phases are: requirements, design, build,

verify, and install (Figure 3.10). This section examines each of these five phases. It

includes a statement regarding the purpose of each phase, what the major activities are,

who is involved, and what is required for advancing to the next phase. A more in-depth

discussion of DMD's requirements specification and verification process follows.

Drtotl i ar~,~m nt

Figure 3.10 - The five phases of the tooling development cycle at Hewlett-Packard's DMD.

3.3.1 Requirements Phase

The purpose of the Requirements Phase is to deliver to the tool designer the document

that specifies a tool's requirements. Figure 3.11 shows the Requirements Phase,

expanded to show its input, output, and major activities. We will discuss each of these

starting with the tool request.

Process Lab Process Team Procurement Eng

Tool Preliminary Specifiy Requirements Phs
Concept Requirements

Requirements Phase -JF~~~~~~~~~~~~~~~~~'

Figure 3.11 -The Requirements Phase in DMD's tooling development cycle.

51

The Requirements Phase officially starts when a tool request form is issued to a tooling

procurement engineer by the Process Lab. The tool request form provides the tooling

procurement engineer with the "black box" specification for the tool, and attached, is a

complete description of the process that will use this tool. The next step in the

Requirements Phase involves developing the tool's preliminary concept during a

preliminary concept review-this meeting moves the tool specification out of its "black

box" stage. Present at the preliminary concept review is a process team whose members

include at least one process engineer, production engineer, maintenance technician,

process operator, line supervisor, and the tooling procurement engineer20 . The types of

decisions that are made in the preliminary concept review include whether to automate,

whether the tool should self-verify its work, and whether the tool should handle

exceptions.

Example: Preliminary Concept Review

The Process Lab needs a tool that will center the disks (platters) around the

spindle and then lock the disks into place by installing and securing the disk

clamp. The tool must complete the operation in 60 seconds, be available 98

percent of the time, and have a process capability index (Cpk) of at least 1.33

on all critical dimensions and torques. This is the black box specification

(partial). The Process Lab fills out a tool request form and sends it to Factory

Engineering which assigns the task of procuring the tool to a tooling

procurement engineer. A Preliminary Concept Review meeting is held in the

presence of the process team. After considering many alternatives, the

process team decides this tool should be a semi-automated workcell. A

process operator will load and unload parts to and from the workcell and

handle any exceptions that arise. The workcell will not inspect its own work.

Once a tool's preliminary concept has been developed, the process team communicates to

the procurement engineer its needs. Each of the groups represented by the process team

20 If the tool's vendor has already been selected, one of its engineers may also be part of the process team.

52

has a specific set of requirements that are most important to them, and all of these needs

must be satisfied in the tool if it is to be successful. The tooling procurement engineer's

role on the team is to understand these needs so that he or she can develop a requirements

2 1specification for the tool that ensures these needs are satisfied 21.

The last major activity in the Requirements Phase is specify requirements. Once the

procurement engineer understands what the tool must do and what its need are, he or she

can start developing the requirements specification for it. This involves much more than

simply transcribing the needs the process team developed and calling it a requirements

specification. Many of these needs are too general or qualitative to be meaningful in a

requirements specification. Maintainability, for example, is a need, not a requirement

specification. The procurement engineer specifies a set of requirements that will help

ensure maintainability based on his or her own experience regarding the elements of

maintainability. Upon completion of the tool's requirements specification the

procurement engineer drafts the tool's requirements specification document. The

requirements specification document is used for bidding purposes in vendor selection

and, upon selection, communicates the requirements of the tool to its designer. The

requirements phase is complete following the completion of the requirements

specification document. The requirements specification document, however, is not a

static document; we will see in the Design Phase that requirements can be enhanced,

removed, or changed.

3.3.2 Design Phase

The purpose of the Design Phase (Figure 3.12) is to design a tool that conforms to the

requirements specified by the requirements specification document. In most cases, the

tool designer works for the vendor selected to build the tool. DMD does, however,

21 The procurement engineer also plays a valuable role while the team is developing the tool's concept
because of the expert knowledge he or she brings to the table.

53

employ a small staff of tool designers that are occasionally used for small design jobs.

The first step in the Design Phase is to finish developing a tool's concept. The concept

development process started back in the Requirements Phase during in the Preliminary

Concept Review meeting. Since the tool designer has expert knowledge with respect to

the particular aspects of the tool being procured, he or she is better qualified than DMD's

process team to develop the finer details of a tool's concept. Once a concept has been

developed, a concept review meeting is held between the process team and the tool

designer. If the concept is unsatisfactory, it will require modifications. If the concept is

satisfactory, additional requirements may be specified to reflect new details of the tool's

design.

Figure 3.12 -The Design Phase in DMD's tooling development cycle.

Example: Preliminary Concept Review

In developing the concept of the disk center and clamp workcell, the tool

designer decides to use a vision system to verify the concentricity of the disks

to the media. During a concept review, the process team rejects the vision

system concept because of the problems experienced with vision systems in

the past. The tool designer reworks the workcell concept to use a laser

measurement system. The process team approves the revised concept even

though the cost is higher. Before the actual design process commences, an

additional set of requirements are specified by the process team in response to

the addition of a laser measurement system.

Once a tool's concept has been agreed upon and the requirements specification updated,

the design process commences. During the process of design, the tooling procurement

54

engineer follows the progress of the tool's design and is available to help solve problems

if they arise. When the tool designer feels a tool's design is complete, a design review

meeting is held in the presence of the process team and the tool designer. A design

review does not necessarily take place in a single meeting. In the case of the head-merge

workcell, there were three design reviews in a one month period. In these design reviews

22there were 58 additional requirements specified and 35 action items generated 22. These

action items often involved gathering additional information regarding the requirements

of the workcell (e.g., "prepare list of utility requirements", "send information on light

tower standards"). Once a design has been approved by the process team, the

development of a tool advances to the Build Phase.

3.3.3 Build Phase

The purpose of the build phase is to build a tool that is consistent with its design. During

the Build Phase, the procurement engineer maintains a level of contact with the tool

vendor that includes regular telephone conversations and at least two visits to the
23vendor's facility even if no problems are perceived or detected23. The purpose of these

visits is to verify that the tool's construction is on schedule and to detect any potential

problems. Unforeseen problems requiring design changes can sometimes arise. When

the tool vendor notifies DMD that the tool is ready for verification, the development of a

tool advances to the Verification Phase.

3.3.4 Verification Phase

The purpose of the verification phase is to ensure that the tool satisfactorily meets the

requirements stated in the tool's requirement specification document. A verification team

22 Another workcell, disk-stack, is included in these statistics because it was being built at the same time

that the head-merge workcell was being built; the design reviews for both were held at the same time.

23 This level of contact between procurement engineer and tooling vendor excludes simple production
tools.

55

consisting of the procurement engineer, process engineer, and a maintenance technician

visit the vendor's facility to carry out the verification activities. During the verification

process, there are usually problems which must be resolved before a tool can be accepted

for delivery. If a problem is sufficiently severe, the verification team may have to arrange

another visit in order to give the vendor time to correct the problem. Once it has been

determined by the verification team that a tool satisfactorily conforms to all of its

requirements, the tool is accepted for delivery and it advances to the Installation Phase.

3.3.5 Installation Phase

The installation phase is the final phase in a tool's development cycle. The purpose of

this phase is to integrate the tool into the manufacturing process and it requires the

involvement of the entire process team. If there are problems with the tool, it is normal

for the tool's vendor to assist DMD in correcting these problems; however, now that the

tool is at DMD, it also consumes DMD's resources. After a tool has been installed and is

determined to be in good working order, it becomes operational and exits the

development lifecycle. Upon lifecycle exit, a process team will occasionally create a

lessons learned document summarizing what it has learned throughout the development

cycle of a tool.

3.3.6 Summary

This section described the events that take place in the development cycle of a production

tool procured by DMD. The description of this process, however, is the ideal model. Not

all of these events always take place nor are all of the members of the process team

always present. This chapter continues with a closer look at DMD's requirements

specification and verification process in terms of the activities defined by the

requirements engineering profession: problems analysis, requirements documentation,

and verification and validation.

56

3.4 Problem Analysis

Recall from Section 2.3 that problem analysis is the activity in the Requirements Phase

concerned with learning about the problem a system is to solve, understanding the needs

it must fulfill, and identifying all of the constraints acting on the system. DMD performs

an activity similar to this in its Preliminary Concept Review. And while the goals may be

the same as those discussed in Chapter 2, the methodologies are not. How this disparity

in methodology impacts the effectiveness of DMD's requirements specification and

verification process is the subject of this section.

3.4.1 Methodology

Currently, DMD does not have a formal method for the problem analysis part of the

requirements specification process. In Section 2.3, we showed how requirements

engineers use a process of hierarchical definition, allocation, and flowdown (1) to make

sure the system under development will work with the larger system, and (2) to divide the

system under development into smaller, more manageable sub-systems. Rather than

attempt to describe DMD's more spontaneous approach to problem analysis, we will

simply describe its effects.

3.4.1.1 Systems Approach

Earlier, we expressed the concern DMD's management has for production tools that do

not work well with the manufacturing process. The following two examples support their

claims and emphasize the need for a systems approach to requirements specification:

1. A production tool was designed, built, and verified to meet the needs of a

manufacturing process. When it was being installed on the production line,

however, it was discovered that another part of the manufacturing process was

physically interfering with the correct operation of the tool.

57

2. A production tool was designed, built, and verified to have a given cycle time.

This specified requirement, however, did not take into account the time

required for the other procedures in the manufacturing process using this tool.

The time specified for the tool was equal to the time allotted to the entire

manufacturing process. Although the tool met its specified cycle time

requirement, it did not meet the needs of the manufacturing process.

3.4.1.2 Organizational Learning

The opportunity to improve the requirements specifications of production tooling through

organizational learning is great. Organizational learning is not the subject of most

requirements engineering texts and articles because, typically, the requirements analyst is

not the user or customer of the system. Therefore, emphasis is placed on using interviews

to learn about the needs of the users and customers of a system. Interviews are necessary

because, as an outsider, the analyst does not have an inherent understanding of what the

system needs are (i.e., its requirements). In the case of the manufacturing organization,

however, the analyst does belong to the same organization as the users and customers of

the tool-in the case of DMD, the analyst is the tooling procurement engineer. Moreover,

more often that not, production tools tend to evolve into better designs as opposed to

being developed from radically new, and unproven designs. Given the preceding

statements, we can argue that a manufacturer has a great deal to gain from having a

process in place that supports organizational learning with respect to specifying and

verifying the requirements of its production tooling. To show why, we return to our

study of the head-merge case.

In the head-merge case we saw how the learning process enabled an engineer to improve

the requirements specification for the second workcell. What the case did not mention,

however, was that a similar workcell was procured by a different engineer for a head-

merge process on another production line. The tool was procured from the same tooling

vendor and in the time frame between the two workcells mentioned in the case.

58

Following delivery of this workcell, it had the same problems with its vision system and

software as the first workcell mentioned in the case had. This suggests that while there is

individual learning taking place at DMD, the degree to which organizational learning is

taking place is questionable. In this case, if the engineer had known about the problems

with the first workcell mentioned in the case, it is likely the same problems with the

second workcell could have been avoided.

3.5 Requirements Documentation

From Section 2.4, the purpose of a requirements specification document is to

communicate the requirements of a system, support verification and validation activities,

and control the evolution of a system. Like the analyst who creates a requirements

specification document for a system, DMD's procurement engineer creates a

requirements specification document for each of the production tools DMD procures

(some of the time). The difference lies in that DMD's requirements specification

document serves only to communicate the requirements of the production tool to the tool

designer (i.e., it is single purpose). Moreover, the documentation DMD produces for the

requirements of each of its production tools does not always conform to the nine

attributes listed in Section 2.4. How these disparities impact the effectiveness of DMD's

requirements specification and verification process is the subject of this section.

3.5.1 Methodology

Like problem analysis, DMD does not currently have a formal methodology for creating

requirements specification documents for its production tooling. The role of DMD's

procurement engineer is to transform the requirements developed in the preliminary

concept review into a set of verifiable requirements that will ensure the tool meets the

needs of the production system. To do this, the procurement engineer relies heavily on

his or her own internal knowledge of production tooling to create a set of verifiable

requirements. The procurement engineer also uses his or her own "personal system" to

document the requirements of a production tool. The result of these individually applied

59

learnings and methodologies is that the quality of documentation at DMD varies in terms

of the nine attributes a requirements specification document must possess. For

production tools of similar complexity and scope, the author identified requirement
24specification documents ranging from 4 to over 50 pages in length24 . In those cases

where requirements specification documents were weak, additional requirements were

often supplied via telephone conversations and written correspondence. The problem

with requirements that are generated this way is that (1) it increases the probability that

inconsistencies will exist, (2) it makes it difficult, if not impossible, to create traceability

linkages, and (3) it results in a loosely organized set of requirements which are difficult to

follow. The remainder if this section will analyze the effectiveness of DMD's

requirements documentation process in terms of the attributes from Section 2.4.2s

3.5.1.1 Correctness

As part of an experiment, the author took a requirements specification document for a

production tool and elicited feedback from three members of its process team. This

feedback process resulted in over 60 problems and questions being brought to the

attention of the tooling procurement engineer. Of the problems, there were:

1. Six instances where the requirements specification would lead to certain
design features known to have serious problems in the past at DMD.

2. Three instances where it was felt changes to the specification could improve
the performance of the tool.

3. Three instances where the requirements specification would or could lead to a
tool that jeopardizes the quality of a hard disk drive processed by it.

4. Two instances where the requirements specification failed to reflect the near
future strategies of the Process Lab.

24
24 This is only meaningful to the extent that it is an indicator of completeness and rigor.

25
25 Not all nine attributes are analyzed; only those attributes where the greatest opportunities for

improvement exist.

60

The requirements specification document used in this experiment was in its final stages of

preparation just prior to being sent to the tool vendor. As a result of the experiment, the

procurement schedule was allowed to slip so that the requirements specification could be

reevaluated.

3.5.1.2 Nonambiguity

The following examples are representative of how ambiguous the requirements DMD

specifies for its production tooling can be:

1. Easy to operate.

2. Easy to understand every day error conditions.

3. Requires little operator intervention/input.

4. Easy to access.

5. Software shall be maintainable.

6. Easy to recover from errors.

These requirements come from actual requirements specification documents and by no

means exist in isolation. The problem with these requirements is that the process used to

verify them is extremely subjective (i.e., subject to multiple interpretations). For

example, what is "easy to operate" for one person is not necessarily easy to operate for

another person. These requirements cannot be objectively verified because they are too

ambiguous.

3.5.1.3 Verifiable

The following examples are representative of how unverifiable the requirements DMD

specifies on its production tooling can be26:

1. The Mean Time Between Failures (MTBF) shall by no less than 100 hours.

26 The actual data used in these examples do not accurately reflect DMD's specification.

61

2. The Mean Time To Repair (MTTR) shall be no greater than 10 minutes.

The rule for verifiability is that there must exist a cost effective and time effective method

for determining whether a system satisfactorily meets the requirements stated in the

requirements specification document. What is cost effective and time effective depend on

the system being verified. DMD specifies a requirement for the Mean Time To Failure2 7

(MTTF) for the disk drives it manufactures. In this case, time effective and cost effective

mean time frames on the order of weeks, months, and years depending on the test, and

costs that constitute a significant portion of the total development cost of a hard disk

drive.28 Through this extensive testing, DMD can statistically determine with an

acceptable degree of confidence whether the hard disk drive meets its MTTF requirement.

On average, the time frame for verifying the requirements of a production tool at DMD is

between two and three days.29 Given this time frame, the requirements specified for

MTTR and MTBF cannot be satisfactorily verified at any cost.

3.5.1.4 Traceable

DMD does not create traceability linkages for any of the requirements of its production

tools. The evolutionary nature of production tooling at DMD, however, highlights the

need for requirements traceability. As a tool continues to evolve, it inherits the

requirements of its predecessors. Not knowing why a particular requirement exists for

the preceding tool, it is often automatically transferred to the requirement specification of

the new tool.30 This requirement may be inappropriate or incorrect for the new tool. In

27 MTTF for DMD's hard disk drives are on the order of 500,000 hours (over 50 years). Drives must be
tested under normal and accelerated conditions for days, weeks, and years to verify this level of
reliability.

2s A hard disk drives differs from many products in that product testing continues even after it has been

released to market; sometimes, well into its mature production phase.

29 A single production tool at DMD can cost on the order of $250,000 and take months to design and build.
Because of the complexity and uniqueness of these tools, it is very common for a development schedule
to slip. This slippage "eats away" at the narrow window DMD has to install a tool and train personnel.
This often places a great deal of pressure on personnel to expedite the verification process.

30 If an engineer does not know why a requirement was specified, he or she is not likely to change it.

62

asking engineers why a particular requirement was specified for a production tool, it was

common to hear "I do not know." Organizational change at DMD is fast-paced with

engineers often changing positions every couple of years. It is too difficult to "chase

down" every engineer who has ever specified a requirement for a production tool to ask

them why they specified it.

Requirements traceability is also valuable during verification activities. If it is

determined that a tool cannot meet a requirement, knowing why the requirement was

specified will help determine the criticality of the nonconformance.

Finally, requirements traceability is valuable because changes to a high-level requirement

will identify those lower level requirements which are affected by the change. A good

example of an instance where lack of requirements traceability had an impact on a

requirements specification at DMD follows:

A requirements specification document was created for a new workcell based

on a boilerplate requirements specification targeted for all of DMD's

workcells. Included in the boilerplate specification was a requirement for the

maximum length, width, and height of a workcell. No reason for these

requirements where given (i.e., they were not traced back to another

requirement). As a result, when the Process Lab made the decision to reduce

factory floor space, the changes to the requirements for maximum length,

width, and height were never reflected in the boilerplate document. It was

latter determined that these changes needed to be made.

3.5.1.5 Annotated

DMD does not annotate its requirements specifications. One of the engineers the author

spoke with commented on how a tooling vendor had spent a great deal of effort trying to

satisfy a requirement that was not critical to the needs and functionality of the tool. It

was also commented that it would have been preferred that this effort was applied to

another element of the tool's design. This type of incident is precisely the purpose for

63

annotating requirements.

3.6 DMD's Requirements Verification and Validation Process

This section examines DMD's verification and validation process. Recall from Section

2.5 that requirements verification is the process of determining whether the products of a

given phase of the tooling development cycle fulfill the requirements established in the

previous phase, and that validation is the process of ensuring that what was intended to

be built corresponds to what is actually required. We start by examining the process

DMD uses to verify the requirements of its production tooling.

3.6.1 Verification

Verifications activities for the production tools DMD procures are limited to the testing

that occurs following the completion of a tool's build process.31 This contrasts sharply

with the process requirements analysts use to verify the requirements of a system. Recall

from Section 2.5 that requirements verification is an ongoing activity that should occur at

the end of each lifecycle phase (see Figure 1.3). DMD's lack of a rigorous verification

cycle is most apparent in the Requirements Phase. The last step in the Requirements

Phase is to create a requirements specification document that results in a tool being

designed and built that meets the needs communicated to the tooling procurement

engineer by the process team. However, there always exists the possibility that the

procurement engineer can misinterpret or overlook one of these needs when drafting the

requirements specification document. This is reason requirements analysts always verify

the integrity of the requirements specification document prior to releasing it to design.

3 DMD does not allow the development of a tool to proceed completely unchecked. Concept and design
reviews require that the process team approve a tool's concept and design before further development
can continue. These reviews, however, are not strictly verification activities because they lack the rigor
that verifies the requirements of a previous phase have been met.

64

Section 3.5.1.1 showed how over 60 problems and questions were brought to the

attention of the tooling procurement engineer when a verification step was introduced.

Errors in the requirements specification document are the worst types of errors because

they are hidden errors. The effects of these errors will not be realized until the after the

production tool has been delivered to the production floor. The best line of defense

against these hidden errors is the presence of a requirements verification step just prior to

releasing the requirements specification document to the tool designer. The verification

step requires that the process team verify that its needs have been accurately

communicated and are complete in the requirements specification document. In other

words, there must be a feedback loop present in the requirements specification process

(Figure 3.13). The purpose of this feedback is to reduce the amount of error in the

requirements specification document.

en Loop

MIMU LUU

Figure 3.13 - DMD's Requirements Phase with and without feedback.

Another contrast between the methods of requirements analysts and DMD is the role the

requirements specification document. Requirements analysts use the requirements

specification document when verifying the requirements of a tool. Each requirement

specified in the requirements specification document is methodically checked against the

actual system. If all of the requirements are verifiable, the process should be relatively

1- - -

65

straightforward and mundane. DMD, on the other hand, creates an independent checklist

of requirements to verify. The requirements listed on this checklist do not necessarily

map to all of the requirements communicated to the tool designer. When verifying the

requirements of the tool, DMD's engineers systematically go through each of the

requirements contained in the verification checklist. As with all of Hewlett-Packard's

engineers, they excel technically and understand how to verify quantifiable requirements

(e.g., the vision system shall be capable of measuring Dimension A with a precision of

0.001, the process capability index for the tool shall exceed 1.33). It is with the general,

qualitative requirements that problems exist (e.g., the tool shall be maintainable). If

maintainability is an important requirement, the verification team will include a

maintenance technician. However, if there are no specific set of requirements to verify,

all the maintenance technician can do is "check out the tool."

3.6.2 Validation

DMD does not currently have a validation process in place for its production tooling.

The closest thing that they have to a validation process is the creation of a lessons learned

document. This document is created following the installation of a new production tool

and it contains the lessons that the process team has learned throughout the tool's

development cycle. By having these lessons learned documents available for future

reference, DMD can leverage from its successes and avoid repeating mistakes. The

lessons learned documentation process, however, is not a required process step in the

procurement of a new production tool and more often that not, it is not generated.

Moreover, when lesson learned documents are created, they stay with the process team

that procured the tool (i.e., there is no system in place that organizes these lessons learned

and makes them available to the entire manufacturing organization).

DMD's lessons learned process, however, is not a validation process. The validation

process for a production tool is a two step process. It ensures that the tool conforms to

what is actually required and is concerned with the completeness, consistency, and

66

correctness of the requirements specification. After a tool has been delivered to DMD for

integration into the manufacturing process, it quickly becomes apparent whether the tool

built corresponds to what was actually required (i.e., the needs of the manufacturing

process). Entries into the lessons learned document are made whenever the tool fails to

satisfy its actual requirements (e.g., maintainability, usability, reliability). What the

lessons learned process fails to do, however, is go back to the tool's actual requirements

specification document and explain why it failed to deliver a tool to the production floor

that met all of its actual requirements (i.e., the lessons learned process is not concerned

with the completeness, consistency, and correctness of the requirements specification

document).

3.7 Conclusions

In the case study presented early in this chapter, we saw how an engineer was able to

improve the quality of a requirements specification, and thus the tool itself, based on

what was learned from previous experience. We also learned that while individual

learning took place on the part of one engineer, DMD failed to learn form this experience

as an organization. If requirements specification is a knowledge based discipline, and the

author believes it is, then there is a great deal to be gained from creating a requirements

specification based on the knowledge of the organization rather than on the knowledge of

the individual. These gains not only include better requirements specification, but also

help overcome the effects of organizational change. The author feels DMD can greatly

improve its requirements specification process by putting a process in place that supports

organizational learning.

In this chapter, we also saw the importance of procuring a production tool that meets the

needs of the manufacturing process (Section 3.4.1.1). The needs of the manufacturing

process are unarguably the most important requirements that will be imposed upon a tool

since these needs define a tool's highest level requirements. With no process for

allocating the needs of a manufacturing process among its subsystems, DMD has run into

problems in the past where production tools appear to function properly outside the

67

constraints of the production system but fail to work within the system. The author feels

DMD can greatly improve its requirements specification process by putting a process in

place that supports the allocation of system requirements to production tooling.

Finally, we saw how DMD limits the verification activities of its production tooling to

the test activities following the build process. There are two problems with this

approach. First, it is reactive. By waiting until the tool is already built to start verifying

that it meets its requirements, DMD loses the opportunity to catch errors early in the

development cycle when errors are relatively inexpensive and easy to repair. The second

problem with DMD's approach are is that it obscures reality. It is easy for DMD's

management to say "we will not allow a production tool on the manufacturing floor until

all of its requirements have been met." However, when reality creeps into the equation

and DMD must decide whether to use a production tool that works, but does not meet all

of it requirements, or whether to postpone production until the tool meets its

requirements, the latter decision inevitably is made. With product market lives lasting

only a little over a year, DMD cannot afford to spend time fixing all the errors in a

production tool. Therefore, the author feels DMD can greatly benefit from adopting a

more proactive approach to requirements specification that is consistent with the methods

of the requirements engineering profession. In this way, DMD will not have to wait until

the final hour to discover all of the errors a production tool contains.

3.8 Summary

In this chapter, we described a process used by Hewlett-Packard's DMD to specify and

verify the requirements of its production tooling. Inadequacies in this process often lead

to problematic production tools can have a negative effect on the manufacturing process.

In the case of the head-merge workcell, tooling errors accounted for over two weeks of

delay before it could be made operational. The head-merge case helps to confirm the

belief held by DMD's management that problematic production tools are causing

production ramp delays for new product lines. It was concluded the opportunities for

improvement in DMD's process are greatest if the following steps are taken: (1) use

68

organizational learning to improve the quality of requirements specifications, (2)

understand the needs of the manufacturing process prior to specifying the requirements of

the production tool, and (3) make requirements verification an integral part of the tooling

development cycle as opposed to something that happens only at the end. In the chapters

that follow, we will develop requirements specification and verification process that

addresses these issues.

69

70

71

4

Framework and Tools for a Learning Organization

This chapter develops a set of tools and methods that will be used in the requirements

specification and verification process proposed in Chapter 5.

4.1 Introduction

In Chapter 5, a new process for specifying and verifying production tooling will be

described. Before this description is possible, however, the set of tools and methods

used by this new process must be developed. They are aimed at creating a framework for

the requirements specification process, and at creating a knowledge base that will provide

the procurement engineer with the knowledge required to specify verifiable requirements.

A branch of classification theory called object-oriented analysis (OOA) will create the

framework, and a tool called the Quality Factors Matrix (QFM) will be one of two indices

accessing knowledge base. Both OOA and the QFM support organizational learning.

We begin our discussion with the OOA method.

4.2 An Object-Oriented Approach to Requirements Specification

In our analysis of DMD's requirements specification process we saw the need for

organizational learning. The new requirements specification process, therefore, will

72

emphasize organizational learning as a means to developing good requirements

specifications. Hammond (1993) gives eight principles for effective learning. One of

these principles has to do with the effects of prior knowledge.

"An expert seems to be able to pick up new knowledge quite effortlessly.

Superior remembering by experts is attributed to the fact that they develop highly

sophisticated frameworks or schemas which enable new facts to be slotted into the

existing structure and immediately elaborated and enriched; the framework and

the elaborations of the newly acquired knowledge together constitute a highly

effective means for retrieving information at a latter date (Hammond, 1993)."

Developing a good requirements specification requires knowledge of the system being

specified. This knowledge enables the procurement engineer to describe precisely the

attributes a system must possess. We want to create an organization that, through

learning, has expert knowledge. Hammond states, that to do this, there must exist a

framework that supports learning. Object orientation is a branch of classification theory

that we will use to develop this framework.

4.2.1 Object Orientation

Object orientation (OO) is a term often associated with software development. The

Simula programming language made object-oriented programming (OOP) practical in

1967 and today's popularity of C++ has helped make object-oriented the IT buzz-word of

the 1990's. OO, however, is not the exclusive domain of the IT world. OO is a

philosophy used for system development that attempts to model the way humans think.

In fact, James Martin and James Odell (1995) call object orientation "an index for

knowledge." In fact, it will be the OO framework that develops in this chapter that serves

as the second index to the requirements knowledge base (the QFM is the other index).

Jacobson et al (1994) define OO as follows:

"Object orientation is a special approach to the construction of models of complex

systems, in which a complex system, consisting of a large number of occurrences,

73

is regarded as a set of objects. The relations between these objects are seen as

associations between objects; their properties are attributes of these objects. In

addition the occurrences can have static as well as dynamic characteristics

(Jacobson et al, 1995, p. 45)."

4.2.2 Object-Oriented Analysis (OOA)

This section describes the principles of OOA in the context of production tooling

requirements. The advantages of using this approach will become clear as we proceed.

The overriding advantage of using OOA is the framework for building the knowledge

base that we propose installing to support organizational learning. OOA will allow us to

define and communicate the requirements of a production tool within the three basic

elements of human organization: object and attributes, classification structure, and

assembly structure (Coad and Yourdon, 1989). The notation and methods used in OOA

are built upon these three basic elements.

4.2.2.1 Object and Attributes

One mechanism humans use to collect and store information is classification. OOA uses

the class to mimic this human process. On the production floor, for example, we might

classify all of the objects around us into one of three class structures: person, part, and

tool. Loy (1990) defines object:

"An object is an entity defined by a set of common attributes, and the services or

operations associated with it. Whatever form of system requirements that is

provided by the user or client can be used as a starting point for this task. Objects

can be found among devices that the system interacts with (e.g., sensors), other

systems that interface with the system under study, organizational units

(departments, divisions, etc.), and things that must be remembered over time (e.g.,

details about events occurring in the system's environment) (Loy, 1990, p. 295)."

An easy way to think of the class-object relationship is to define a class called person.

The definition used here calls for two attributes to be defined for each instance of the

74

class: species and sex. The first attribute, species, we always know: homo sapien (i.e., it

is a static attribute for person). The second attribute sex, must be determined for each

instance of the class person. An instance of a class is called an object and it always has its

own unique identifier (e.g., Peter, Paul, and Mary). Having sufficiently defined class and

object, we continue by casting these concepts into the context of a specifying production

tooling requirements.

In the manufacturing environment, there will exist different classifications of production

tooling (e.g., workcell, grinding machine). For each class of tool, there will exist a set of

requirements that are common to all the tools in that class (e.g., safety, uptime). Within a

class, the tools are distinguished through their differences. The manufacturer who must

specify production tooling requirements can use this class concept to its advantage. The

advantages are shown in the following example:

Example: Creating A Production Tool Class

A manufacturer has learned that all of its production tools have three requirements

in common with each other: they are all required to conform to the company's

standards for (1) safety and (2) ergonomic design, and (3) a maximum weight

must be specified. These requirements apply to all of the manufacturer's

production tools regardless of whether a tool is a torque driver, workcell, or an

assembly fixture. Rather than draft an entirely new requirements specification

document for tool that is procured, the manufacturer decides to create a

requirements specification class called production_tool; 3 2 The class definition for

production_tool given by Figure 4.1.

32 This definition uses the keyword constructor to tag requirements which are used to initialize the class.

75

Figure 4.1 - Definition of the specification class production_tool.

In the preceding example, all of the attributes of the class production_tool are tooling

requirements. 3 3 Two of these attributes, safety and ergonomics, are the same for all

instances of production_tool. For these requirements, a manager would be correct in

stating "All of our production tools are required to conform to our company standards for

safety and ergonomics." The last attribute, weight, is the only same for all production

tools in terms of the requirement type. The weight requirement differs from the first two

requirements in that it must be assigned a value for each instance of the class. In this

case, a manager would be correct in stating "We require that a maximum weight be

specified for all of our production tools." In this example, the weight of a production tool

is specified for all instances of productiontool. Figure 4.2 shows the production_tool class

and three instances of it: tool "a", tool "b", and tool "c."

class object object object

Figure 4.2 - The production_tool class and three instances of it (a, b, and c).

4.2.2.2 Classification Structure

We have just shown how a class can be created to categorize production tools of a similar

type. In our last example we created a class whose members included all production tools

33 Since the subject of this thesis is requirements specification, this also holds true for all of the
classification structures developed hereinafter.

class production_tool:

corporate safety specification
corporate ergonomic specification

constructor:

weight pounds

76

and whose attributes were requirements. This classification, however, is too general to be

of any value by itself. This time we will be more specific and define a class named fixture

instead-all tools which can be classified as a fixture are members of it. We also define

the classifications hand_tool, press, and workcell (see Figure 4.3). There are now four

specialized production tooling classifications instead of a single, generic classification.

This is exactly what Hewlett-Packard's DMD has done with their boilerplate workcell

specification (Section 3.2).

press l workcell

attributes attributes

class class class class

Figure 4.3 - Specification classes created for four different types of a production tool.

There are two advantages to developing specialized requirements specifications for the

various classifications of production tools an organization regularly procures; they are:

1. Savings in time for the requirements specification process. Once a

specification for a particular type of tool has been created, it can be reused the

next time a tool of a similar type is having its requirements specified.

2. Reduction in the amount of error and inconsistency in a specification over

time. As a specification is used time and time again, errors and

inconsistencies will be detected and corrected.

DMD has developed some very specific requirements for the workcells they procure in its

boilerplate specification. Many of the requirements contained in the workcell boilerplate,

however, are very different and inappropriate for the requirements of a hand tool (e.g., the

requirements pertaining to controller, electrical system, and user interface). Using this

approach, DMD must develop a complete, yet generic requirements specification for each

specialized class of production tool it plans to use. This is not practical. The time and

effort required to develop and maintain a requirements specification for every type of tool

DMD procures could easily consume the time of its entire procurement staff. We are in

77

caught in a dilemma, then, between the benefits and costs of creating specialized

requirements specifications. We will now continue with our discussion of OOA and

show how it can resolve this dilemma.

The classifications fixture, hand_tool, press, and workcell all have something in common:

they are all production tools. OOA takes advantage of this commonality through a

principle called inheritance. Using the child-parent relationship, we can say that fixture,

handtool, press, and workcell are all children of production_tool (the parent). These

children inherit the attributes of their parent and also have their own unique set of

requirements that distinguishes them from each other. Using inheritance we can create

very specialized classes that are built upon more generic classes. Figure 4.4 shows an

example class hierarchy based on production_tool.

Appendix A shows some illustrative examples of the complete hierarchies that a hard

disk drive manufacturer (Figure A. 1) and an aircraft engine manufacturer (Figure A.2)

might use.

production tool Base Class

fixture Child of productiontool; Parent of assembly, grind

assemblyj Child of fixture

grind Child of fixture; Parent of conventional, creepfeed

conventional I .

1 creepfeed _ etc.

Figure 4.4 - Class hierarchy developed from the base class, production_tool.

Inheritance allows us to retain the advantages of having specialized requirements

specifications while at the same time it overcomes its drawbacks in terms of the time

and effort required to develop and maintain a requirements specification for every

type of production tool that a manufacturer uses. To see why we turn our attention

back to Figure 4.4. We want to create requirements specifications for a jig grinding

::::D
:::DSu ce

78

fixture and one for a surface grinding fixture. There are two courses of action

available to us: (1) we can create two complete requirements specifications for each

fixture type that contain all of the respective requirements or (2) we can inherit the

requirements specification of a conventional grinding fixture. By inheriting the

conventional grinding fixture specification we greatly reduce the amount of effort

necessary to create a new specification. We need only specify those requirements that

are specific to the differences between a conventional grinding fixture and a jig grind

fixture or a conventional grinding fixture and a surface grinding fixture. This

principle extends all the way back to the base class of a classification hierarchy (e.g.,

jig inherits from conventional, conventional inherits from grind, grind inherits from fixture,

and fixture inherits from production_tool). In addition to the benefits we have just

mentioned, there are two other benefits of inheritance-one of which prompted the use

of OOA in the first place.

1. It creates the framework Hammond referred to at the beginning of this chapter.

This framework will enable new facts (requirements) to be slotted into an

existing structure as well as a highly effective means for retrieving this

information at a latter date. We will use this framework in Chapter 5 to help

create a learning organization. This is possible because the structure of this

framework maps the way people think about tools, making it a convenient

index for storing and retrieving information.

2. It eases the maintenance of specifications. If a requirement is added to,

changed, or removed from the class production_tool, it propagates through all

the tool classifications. Using a non-object based approach would require

updating all of the specialized specifications individually (assuming they

existed which is unlikely because of the amount of effort required to create

them).

79

4.2.2.3 Assembling a New Specification Class Using Multiple Inheritance

By itself, inheritance can be quite restrictive. To truly benefit from inheritance, there

must exist a parent class that provides us with the majority of the specification for the

new specification we are trying to create. We can get around this restriction with an 00

feature known as multiple inheritance. In OOA, a class can inherit requirements from

more than just its parent. It can inherit requirements from any class. Figure 4.5 shows

the requirements specification for a head-merge workcell which has inherited its

requirements from six different requirements specification classes. Four of these

(userinterface, electricalsystem, pneumaticsystem, and vision_system) have no lineage

back to production_tool whatsoever (see Appendix A).34 Using multiple inheritance, we

are able to construct a new specification by simply "plugging" in the specification

components that we need. As a result, multiple inheritance gives us a great deal of

flexibility in the type of tool for which a requirements specification must be created.

Even if a particular type of tool has never been procured before (i.e., it is a radically new

design), multiple inheritance makes it possible to piece together a good part of its

requirements specification.

I head_merge workcell
workcell

user_interface

software
electricalsystem
pneumaticsystem

vision_system

fixture

Figure 4.5 - New class definition developed using multiple inheritance.

34 Since an electrical system, pneumatic system, fixturing, and user interface are common to all workcells,
these class definitions would have normally been hidden in the workcell class definition; they were
shown here just for illustrative purposes.

80

4.2.2.4 Summary of OOA

To enter into a discussion about all of the methodologies and benefits of OOA is beyond

the scope of this thesis.3 5 We have only scratched the surface of OOA by presenting only

those concepts that will enable us to show how OOA can be used to specify production

tooling requirements. We will show how to apply these concepts in Chapter 5 where we

create a new requirements specification and verification process. This will include

additional discussions on the benefits of OOA when we present the examples that make

them most apparent.

4.3 Creating a Knowledge Base Using Quality Factors

In the last section we showed how an 00 requirements specification hierarchy can be

used to speed the development of a production tool's requirements specification. Another

benefit of this specification hierarchy is that it creates a framework for the storage and

retrieval of knowledge. We will use this framework in conjunction with the Quality

Factors Matrix (QFM) that is developed in this chapter to create an efficient requirements

specification knowledge base that can be used for production tooling.

4.3.1 The Quality Factors Matrix (QFM)

In their paper Specifying Software Quality Requirements with Metrics, Steven Keller and

Laurence Kahn (1990) introduce the concept of a Quality Factors Matrix (QFM) to

specify requirements. Their QFM shows the relationship between consumer needs and

technical attributes of a software product. Consumer needs are called "quality factors"

and the technical attributes are called criteria or quality sub-factors. We shall use the

term quality sub-factors. A QFM can be used to specify tooling requirements if we think

of a tool's quality factors as the needs of the manufacturing organization and the quality

35 To learn more about object-oriented methods and their benefits, the author highly recommends Martin
and Odell (1995).

81

sub-factors as the technical attributes of the tool. Keller and Kahn motivate our use of the

QFM as a requirements specification tool:

". . . customers often express their needs in general, qualitative terms, such as

reliability, maintainability, portability, efficiency, etc. To affect the outcome of a

development effort or to determine objectively whether a given product is

satisfactory, they need to define precisely the specific attributes they want the

[system] to possess (Keller and Kahn, 1990, p. 145)."

This is precisely the situation DMD finds itself with respect to verifying the requirements

of its production tooling. Requirements specifications can be so general or qualitative, it

becomes difficult or impossible to determine objectively whether a tool satisfactorily

meets the needs of a manufacturing process.

Keller and Kahn's QFM shows the relationship between customer needs and a software's

technical attributes. Similarly, we create a QFM that shows the relationship between a

manufacturer's tooling needs and a tool's technical attributes. Figure 4.6 shows a QFM

created by the author for production tooling. It is a two-dimensional matrix with quality

factors in the columns and quality sub-factors in the rows. In the case of DMD, using a

QFM will enable the tooling procurement engineer to take the high-level requirements of

the manufacturing process and break them down into elements that can be more easily

quantified. To see how a QFM works, we turn our attention to maintainability. DMD's

managers and engineers have a difficult time quantifying it. A QFM can help. Again,

turning our attention to Figure 4.6, the author has identified five quality sub-factors of

maintainability: consistency, modularity, self-descriptiveness, simplicity, and visibility

(see Figure 4.7). These quality sub-factors of maintainability are more quantifiable than

the quality factor, maintainability. A QFM is an excellent vehicle for capturing

knowledge because it breaks needs down into not too specific terms. Ask an organization

to state specifically what makes a tool maintainable and they have a difficult time

answering.3 6 Ask the same organization, instead, what the elements of maintainability

36
36 This excludes maintenance; they have answers but they are loosely organized. The QFM helps organize
this information which will be used in the quality factor recipes discussed in the next section.

82

are, and they can answer this question.3 7 A QFM also increases the visibility of quality

sub-factors that might otherwise be overlooked. A good example is simplicity of design.

Some of the managers, engineers, and maintenance personnel the author interviewed

identified "simplicity" of design as an important element in delivering a production tool
38that is reliable, usable, and maintainable 8 . Simplicity of design, however, is not

addressed in any of the requirements specification documents reviewed by the author. If

DMD had a QFM similar to the one shown in Figure 4.6, it would be evident that

simplicity of design is a tooling attribute that needs to be addressed in the requirements

specifications it develops for its production tools.

Figure 4.6 - Quality Factors Matrix (QFM) for production tooling showing the needs of the manufacturing
process (Qualify Factors) versus a tool's technical attributes (Quality Sub-Factors).

37 This statement is based on the author's interviews with engineers and managers at DMD. It is also

supported by the findings of Keller and Kahn (1990).

38 The author also feels simplicity of design is an important attribute leading to the acquisition concerns:

verifiability, expandability, and flexibility.

Quality Factors

--

~~ 0) 2 - L -
Quality Sub-Factors X a)

Accuracy * .
Consistent Design * *
Cycle Time
Ergonomic Design
Exception Handling * *
Generality
Labor Content
Modularity * 0 0 0

Precision * * _
Process Capability __

Quality Comrnponents
Self-Descriptiveness * * * *
Setup Time
Simplicity * * * *
Iraining

Visibility _

83

A QFM should be designed to reflect each organization's needs. It must not, however, be

cast in stone once it has been created. Figure 4.6 is an example of a QFM the author

developed. Upon further consideration, it is clear that another quality factor should be

present: safety. At DMD, there is a new interest in creating flexible production lines

capable of manufacturing multiple generations of a given product line. This is a change

in strategy for DMD. In the past, DMD has created dedicated production lines for each

new product line (i.e., DMD coupled product and process development). This change in

strategy creates a new set of quality factors for DMD's production tools (e.g., flexibility,

expandability) that were not present only a couple of years ago.

Figure 4.7 - The quality factor 'maintainability' broken down into its five sub-factors.

Quality Factor Recipe

Quality Factor: Maintainability
Sub-Factor: Consistency
Target: Software

(1) All variable names, functions, and constants follow Hungarian naming
convention.

(2) Where possible, all code should be written using C++. Must conform t
ANSI standards.

0 0 0 0 * 0 0 0 0 0 0 0

Figure 4.8 - Example QFR for software maintainability.

4.3.2 The Quality Factor Recipe (QFR)

This section introduces the concept of a Quality Factor Recipe (QFR). It picks up where

the QFM left off in terms of creating a set of verifiable requirements that support a high-

level quality factor. As an engineer gains experience specifying tooling requirements, the

I

84

elements of knowledge that have been learned through this experience can be funneled

into an appropriate QFR. Figure 4.8 shows an example of an QFR that specifies

requirements targeting software maintainability through consistency of code.

In the case of the QFR shown in Figure 4.8, maintainability is the quality factor, and

consistency is the quality sub-factor. These two factors cross-reference the element of an

QFM that points to the QFR shown in Figure 4.8. The requirements specified by this

QFR are verifiable.

The QFR in Figure 4.8 has two ingredients in it. It did not start out this way and there is

no reason it should continue to stay this way. It should continue to grow and change as

the engineer continues to gain experience and the organization develops standards39 . If

the engineer maintains a file of these recipe cards, he or she will have effectively created

his or her own personal knowledge base. This process can be taken one step further. If

the QFRs are developed and maintained at an organizational level instead of a personal

level, the organization will have effectively created its own organizational knowledge

base. The following are three benefits the manufacturing organization will realize from

this organizational learning4 0:

1. It overcomes the effects of organizational change. Instead of engineers taking

their knowledge away with them when they leave the organization, they leave

a "copy" of it behind in the knowledge base.

2. It creates shared vision. Because the entire organization is working from the

same knowledge base, it is much easier to create a shared vision about what

the organization's tooling needs are and how to acquire them.

39 The first ingredient is the result of experience gained from the frustration of trying to maintain a system
that did not impose naming conventions whereas the second ingredient is an internal standard of the
manufacturing organization.

40 We will see some additional benefits in Chapter 5 when we show how to use SGML as a requirements

specification tool.

85

3. It eases the process of developing a verifiable requirements specification

document. Because the procurement engineer has access to a wealth of

verifiable requirements, he or she does not have to rely only on his or her own

personal knowledge to create a verifiable requirements specification

document.

For this QFM and QFR concept to work, there must be a requirements specification and

verification process in place that supports its use. It is straightforward to see that if the

QFRs are not updated and maintained, they are of no value. One of the process steps in

the requirements specification and verification process that develops in the next chapter

will be to add information to the QFRs based on lessons learned.

4.4 Using the 00 Framework as a Knowledge Index

If we dismiss all of the benefits of using OOA to specify requirements that we have

discussed so far, we can still motivate its use because of the framework it creates for

indexing knowledge. In the last section, we showed how a QFM can be used to cross-

reference and point to the knowledge of the organization that is contained in a QFR. The

QFR shown in Figure 4.8, however, is of no value to an engineer who wants to know

about the elements of maintainability for an electrical system. One solution to this

problem is to have one, all encompassing, QFR that specifies the elements of

maintainability for every type of system imaginable. This solution is unmanageable and

equally unusable. Users of the system would simply get lost in the plethora of

requirements specifications. The other solution is the use an OO specification hierarchy

as an index for retrieving knowledge. We will choose this solution. Using the

classification hierarchy, QFMs and QFRs can be created for each of the class definitions

in the hierarchy. Once this is done, an engineer can very quickly focus on his or her area

of interest. Figure 4.9 shows how each of the class specifications inherited by a head-

merge workcell has its own QFM. If the procurements engineer wants to specify a set of

requirements that are specific to the workcell, he or she has access to a knowledge base

86

that maps itself to the workcell. The result is a very efficient information retrieval

system.

Figure 4.9 - Using the specification classes as an index to the knowledge of the organization.

4.5 Summary

This chapter developed the set of tools and methods that are used by the requirements

specification and verification process in the next chapter. These tools and methods

included OOA, the QFM, and the QFR, and they all work together to create a highly

87

effective means of storing and retrieving information pertinent to specifying verifiable

requirements based on the learning of the organization. The actual information is

contained in the QFR and is indexed by the QFM and the OO specification framework.

Organizational learning, however, was only one of the benefits of OOA. By creating a

requirements classification hierarchy, we also create a method by which a tooling

procurement engineer can quickly assemble a requirements specification for a production

tool.

88

89

5

Specifying and Verifying Production Tooling Requirements:

A New Process

This chapter proposes a new process for specifying and verifying production tooling

requirements.

5.1 Introduction

This chapter describes a new process for specifying and verifying production tooling

requirements. We have only one goal for this new process: deliver to the manufacturing

floor, production tools that meet the needs of the manufacturing process. In Chapters 2

through 4, we laid the groundwork for this new process. Before getting started, however,

a brief recap of the discussions up until this point is in order.

In Chapter 2, we drew attention to the methodologies used by the requirements

engineering profession that are also used by the new process. Specifically, requirements

allocation and requirements flowdown are used to help ensure that a production tool

works with its owning manufacturing process. We also discussed the purpose of a

requirements specification document and the attributes that it must possess. Finally,

requirements engineers use a Verification and Validation (V&V) cycle that helps to

ensure the correctness of the system as it advances through its lifecycle.

92

In Chapter 3, we described a process used by Hewlett-Packard's Disk Memory Division

(DMD) to specify and verify the requirements of its production tooling. Based on this

discussion, we want a requirements specification and verification process that (1)

supports organizational learning, (2) ensures the needs of the manufacturing process are

present in the production tool, and (3) is proactive in its approach to requirements

verification.

Finally, Chapter 4 developed a set of tools and methodologies that will support the new

process. These tools and methodologies include the Quality Factors Matrix (QFM) and

Object-Oriented Analysis (OOA).

5.2 Process Overview

The process flow for the requirements specification and verification process described by

this chapter is shown in Figure 5.1; it is based on the process flow DMD currently uses

for its requirements specification and verification process which is shown in Figure 5.2.

By using DMD's process as a basis for the design of the new process, we are leveraging a

process that is already known to work41. There are, however, some noteworthy

differences between these two processes. The new process places increased emphasis on

organizational learning (knowledge building), verification and validation, and systems

analysis. These are the areas where the author feels DMD's process is weakest (Section

3.7). The emphasis on organizational learning has its effect on the development lifecycle

models used to describe each process. Recall that DMD's process is best modeled using

the Standard Waterfall model which is show in the context of a production tool in Figure

5.3. The new process, however, is best described using the Incremental Development

model (Figure 5.4) which uses feedback from the users of operational tooling to affect the

outcome of a tooling development effort. This feedback is communicated by the QFRs.

41 DMD does, after all, procure production tools for a production system that allows it to be a successful
manufacturer of hard disk drives.

93

Requirements
Activities

Design &
Build

Verification
Activities

Knowledge
Building

Figure 5.1 - The process flow for a new requirements specification and verification process.

94

Requirements
Activities

Design &
Build

Verification
Activities

Lessons
Learned '

J

Figure 5.2 - The process flow for DMD's current requirements specification and verification process.

Process Team Tool Designer T

Requiremen Design

'ool Vendc Procurement Process Team

,I Engineer

Verify InstallBuild

Figure 5.3 - The five phases of DMD's tooling development cycle.

95

Figure 5.4 - The five phase Incremental Development model for production tooling.

5.3 The New Process: Step by Step.

This section describes a process for specifying and verifying production tooling

requirements. During the description of this process, we will use the same functional

organizations and job titles as were used in the description of DMD's process in Chapter

3. This is for the purpose of consistency only. Also, we will use examples where

appropriate to clarify each step of the process. These examples lead us through the

development of a requirements specification for a head-merge workcell similar to the one

in the case study42 (Section 3.2). The author encourages the reader to use Figure 5.1 as a

roadmap during the description of the new process. From this roadmap, we see that

"Allocate Requirements" is the first step in the new process. This is where we shall start.

5.3.1 Allocate Requirements

The requirements allocation process was described in Section 2.3.1. The first step in the

requirements specification process involves allocating the requirements of a

manufacturing process among each of its subsystems.4 3 For each of the production tools

42 These examples do not accurately reflect any of the requirements specifications for DMD's head-merge
workcells.

43 The specification process assumes that the requirements of the manufacturing process are complete and
correct.

96

required by the manufacturing process,44 the requirements allocation process defines the

highest level requirements. The Process Lab performs the requirements allocation

process, and the output is a tooling request form for each tool that is procured.

Example: Allocating the requirements of the head-merge process down to a
head-merge tool.

A manufacturing process is required to perform an assembly operation on a hard disk

drive. This process is called head-merge and it is similar to the one described in the

head-merge case (Section 3.2). The requirements of the head-merge process are

shown by Figure 5.5.

1. The process shall not occupy more than 60 ft2 of floor space.

2. The process cycle time shall not exceed 60 seconds.

3. The process shall be capable of merging 400 assemblies every 8 hours.

4. The process shall be available 98.0 percent of the time.

5. The process yield shall exceed 99.0 percent.

6. The process shall not require more than one operator.

Figure 5.5 - Requirements of the head-merge process.

The Process Lab designs a process consisting of two parts: (1) load HSA into base-

plate assembly, and (2) merge heads. The first part of the process, load HSA, will be

performed by a process operator and requires no tooling. The second part of the

process, merge heads, is more complex process and will require a sophisticated

production tool.

The Process Lab allocates the requirements of the head-merge process between the

two sub-processes (Load HSA and Merge Heads). Figure 5.6 shows the allocated

requirements. Following the allocation process, a tool request form is issued to

Factory Engineering stating the requirements of the head-merge tool (Figure 5.7).

The tool request form is then assigned to a tooling procurement engineer who is

responsible for understanding the needs the head-merge tool must fulfill and

44
We are assuming the manufacturing process will use a production tool although this is not a necessary
condition.

97

transforming these needs into a set of verifiable requirements. The next step in the

development cycle of the head-merge tool is the Preliminary Concept Review

meeting. It is during this meeting that the tooling procurement engineer will learn

about the needs that the head-merge tool must fulfill.

V 1~~~~~~~2

Floor Space (sq-ft) 20 40 160
Cycle Time (sec)a) 0 40 60
Availability (percent) 100 98 98
Yield (percent) 99.5 99.5 99.0
Labor Content (sec) 20 40 60

Figure 5.6 - Allocating the requirements of head-merge process among its sub-processes.

Figure 5.7 - Example tooling request form following the allocation of requirements from process to tool.

5.3.2 Preliminary Concept Review

The purpose of the Preliminary Concept Review meeting is to (1) decide upon the tooling

class from the classification hierarchy and (2) agree upon the needs the tool must fulfill.

This agreement must come from the process team that is present during the meeting. The

Tool Request Form

Tool Name: Head-Merge Tool

Tool Classification: Assembly Tool

Requirements:

1. The assembly tool shall occupy no more than 40 ft2 of floor space.

2. The assembly tool's cycle time shall not exceed 40 seconds.

3. The assembly tool shall be available 98 percent of the time.

4. The assembly tool's yield shall exceed 99.5 percent.

5. The assembly tool shall require no more that 40 seconds of labor content.

98

process team is similar to DMD's process team with the exception that it includes a

representative from product engineering. 45

Process Needs

Figure 5.8 - Inputs and outputs to the Preliminary Concept Review.

The first order of business in the Preliminary Concept Review meeting involves deciding

upon a classification for the tool. In doing so, each member of the process team draws

from his or her own personal experience about what has and has not worked well in the

past. While at DMD, the author met with a group of process operators and production

engineers who were opposed a tooling concept that would result in a manual process.

They cited reasons, based on their experience, why this tool would not meet DMD's

needs and therefore needed to be automated. This is the value of having a Preliminary

Concept Review meeting-it brings important issues to the table early in a tool's

development cycle when the cost of making changes is relatively small. The experiences

communicated by the process team are a knowledge input to the Preliminary Concept

Review process (Figure 5.8). Rather than rely only on the internal knowledge of each of

45 The purpose of having a product engineer on the team is to make known all those features of the product

design that will be or could be affected by the tool. This includes identification of all critical dimensions
that the tool is responsible for holding. The product engineer brings to the team an inherent
understanding of what is important to the performance and quality of the product. This goes beyond
what engineering drawings can tell.

99

the process team members, the team should also identify the tools that have fulfilled a

similar need in the past and strongly consider those concepts which have proven

themselves successful-DMD calls this leveraging. Also during the Preliminary Concept

Review, time should be spent identifying which elements of the product's design will or

might be affected by the production tool. At a minimum, all of a product's critical

dimensions that the tool is responsible for holding must be identified.

The output of the Preliminary Concept Review is a requirements specification for the

tool. During this review, the process team should focus on specifying only those

requirements that are unique to the tool (i.e., those requirements that are not already

specified by the specification classes). In this way, the process team is focusing its

thoughts and energies on what is unknown. For example, spending time specifying

requirements like "all oil reservoirs on the tool shall have fill lines" is not as value added

as trying to make some fundamental decisions regarding the tool's design. The lower

level requirements just described should be hidden away in the specification classes.

Prior to exiting the Preliminary Concept Review, there should be a complete description

of the process using the tool, and a complete set of engineering drawings for all of the

relevant components of the product being manufactured. These will be part of the

requirements specification package sent to the tooling vendor (Figure 5.9). The next step

in the requirements specification process involves the tooling procurement engineer's

transformation of the current requirements specification into the complete set of

requirements specified by the requirements specification document.

Process Engineering Requirements
D...... RequirementsDraw-- equremt eini P ae -ficat io I

- -- - Requirements Specification Package--- --
Figure 5.9 - The requirements specification package for a production tool.

'O

I o
0 C

Floor Space (sq-ft) 0 40 0 40
Cycle Time (sec) 7 28 5 40
Availability (percent) 100 98 100 98

Yield (percent) 100 99.5 100 99.5

Labor Content (sec) 7 0 5 12

Figure 5.10 - Requirements allocation among automated (workcell) and non-automated tasks.

Figure 5.11 -Tooling requirements specification based on the second round of requirements allocation.

100

Tooling Requirements Specification

Tool Name: Head-Merge Workcell
Tool Classification: Semi-Automated Assembly Workcell

Requirements:

1. Shall occupy no more than 40 ft2 of floor space.

2. Cycle time shall not exceed 33 seconds.

3. Shall be available 98 percent of the time.

4. Yield shall exceed 99.5 percent.

4.1 Process Capability Index for Dimension "A" shall exceed 1.33.

4.2 Process Capability Index for Dimension "B" shall exceed 1.00.

4.3 Read/Write heads shall never come in contact with the disks
except for the landing zone.

5. Shall require no operator interaction while processing.

6. Shall have separate maintenance and operator graphical user

Interfaces (GUI).

7. The Workcell shall conform to standards for class 100 clean room.

8. The Workcell shall conform to standards for ESD control.

Notes:

1. The operator will load the drive assembly into the workcell and initiate the
start sequence. This shall take no more than 7 seconds.

2. The operator will unload workcell. This shall take no more than 5 seconds.

101

Example: Preliminary Concept Review

A process team has convened to discuss the preliminary concept for the head-merge

tool. They have decided to use a semi-automated workcell (this is the specification

class). Following this decision, the team focuses on what the needs are of each of

the groups represented. Also, since this a semi-automated workcell, the team

allocates the requirements of the tool among its automated (workcell) and non-

automated tasks (load and unload workcell). The results of the allocation process are

shown in Figure 5.10. Based on this most recent allocation of requirements and the

original tool request, the requirements specification for the tool has been created and

is shown by Figure 5.11.46

5.3.3 Transformation and Documentation of Requirements

This section describes the actual process the tooling procurement engineer will use in

specifying the requirements of a production tool. This is the main thrust of this thesis so

it will be the most detailed subsection in Section 5.3. We start with an overview of the

requirements specification process.

5.3.3.1 Overview

The purpose of expanding the specification developed in the preliminary concept review

is to create a set requirements that will help the verification team satisfactorily determine

whether the tool meets its real requirements. The tooling procurement engineer plays the

primary role in this part of the requirement specification process and must have, in hand,

the agreed upon set of requirements determined by the process team prior to proceeding.

Figure 5.12 shows the process flow for the requirements specification process. The input

to the process is the set of requirements established by the process team (this is shown by

the "Tool Requirements" document in Figure 5.12. The output of this process is the

tool's requirements specification document. The requirements specified in this document

must be verifiable (Section 2.4.2).

46 This requirements specification is not intended to be complete; it is merely intended to illustrate a point.

102

Figure 5.12 - The process flow for "Specify Requirements."

The transformation of an operational need for a production tool into a set of verifiable

requirements requires knowledge of every aspect of production tooling. The operational

needs of a production tool are often specified in terms of general, qualitative terms (e.g.,

"we want a tool that is reliable," "it should be easily maintained," and "it has to be

usable"). These requirements are not verifiable even if the process team attempts to

quantify them by assigning values to them (e.g., MTBF shall exceed 200 hours, MTTR

shall not exceed 10 minutes). It is the tooling procurement engineer's job, as the

requirements analyst, to transform these requirements into a requirements specification

that will ensure their presence in the tool procured. In the transformation of a

requirements specification, DMD's procurement engineers draw from their own internal

knowledge of production tooling-we saw an example of this in the head-merge case

study (Section 3.2). We can improve upon DMD's process if we create a process that

draws from organizational learning instead of individual learning. This is the motivation

for using the Quality Factors Matrix (QFM) developed in Section 4.3.1. By using the

QFM, a procurement engineer can access the knowledge of the organization to create a

verifiable set of requirements (e.g., "all locating points shall use carbide inserts"

(reliability), "all wires shall be marked with a unique identification number"

(maintainability), "the operator shall not have to apply more than two pounds of force to

any component of the tool in order to operate it" (usability)). Moreover, because of the

103

object-oriented specification framework we have developed, the procurement engineer

can focus his or her efforts on what is different about the tool being procured. Finally,

before the requirements specification document can be considered complete, it must be

validated by the same process team that participated in the preliminary concept review.

This is an essential part of the verification activities that take place during the tooling

development process. Errors found here are significantly less expensive to correct than

they are downstream.

5.3.3.2 Create New Class

The first step in "specify requirements" is to create a new class based on existing

classification hierarchy. This is done using inheritance.

Example:

The tooling procurement engineer knows from the preliminary concept review that the

new head-merge workcell must comply with both ESD and clean room specifications;

it must have a graphical user interface with separate maintenance and operator

sessions; it must include all assembly fixturing. The procurement engineer creates a

new class of tool called headmerge_workcell which inherits the following

specification classes:

1. workcell_assemblyfixture

2. esd_specification

3. clean_room_specification

4. operatorinterface

5. maintenance_interface

6. gui_interface

In the above example, the new specification class is called head_merge_workcell. In a

sense, the procurement engineer is "plugging" existing specification modules together to

create a new one (Figure 5.13). This process will not create the entire specification

needed for the head-merge workcell, but it will create a significant portion of it.47 Figure

47 This of course depends on how well the classifications it is inheriting have been defined.

104

485.14 shows the headmerge_workcell class and its full inheritance.4 8 There are several

49benefits in this approach to requirement specification. They are:49

1. Rapid specification development. This is the most obvious benefit. By reusing
existing specifications, the tooling procurement engineer does not have to reinvent a
specification each time a tool is procured.

2. "Goodness" of specification. The specification classes become more rigorous as they
mature; therefore, the requirements specifications that inherit from them are more
verifiable.

3. Correctness of specification. A well defined class structure maintained by the
organization has high visibility. Anyone in the organization can quickly locate and
verify the correctness of a specification class.

4. Organizational change. There is less of a dependency on experience to develop a
good requirements specification; this will enable the procurement organization to
adapt to organizational change better.

5. Consistency. Instead of procurement engineers creating their own specifications, they
create their specifications from a common set of"plug-ins."

Workcell
Spec.

ea-'eg/

J

Head-Merge
Workcell

Spec.L Assembly

Assembly
FixtureI j~ Spec.

1dP t*

Maintenance
Interface

Spec.

Interface

Figure 5.13 - Plugging existing specifications into the new head-merge specification.

48 Full inheritance means it shows the classifications complete lineage. For example, it is only necessary to
show "workcell" and not its inheritance. By inheriting the workcell class we inherit its children also.

49 These benefits assume that the specification class definitions are maintained at an organizational level.

ESD
Spec.

Clean Room
Spec.

J

GUI

`I

I !

-AW
'""E WP

- _*fawspl

'**"=moF,

105

5.3.3.3 Create Instances

Some of the specification classes have requirements specification types that must be

assigned values or specifics in each instance of their use.

Example: Creating Specification Instances

The procurement engineer expands the head_mergeworkcell class to show its full

inheritance (Figure 5.14). To inherit the class workcell, the procurement engineer

must assign values to the following construction requirements from Specification

Class 4 in Appendix A: cycle time, length, width, and height 50 . To inherit the class

automated_assembly_tool the procurement engineer need not specify any instance

requirements. And to inherit the class assemblytool the procurement engineer

must assign values to the constructors availability, footprint, setuptime, and

scheduled_downtime.

head merge workcell _

workcell esd.specification

electrical-system clean-room specification

pneumaticsystem operator-interface

controller re

Hsoftware user interface

automatedassemblyjool maintenance-interface

ssfixt mbur ly software
L production_tool userinterface

assemblyfixture gui interface

L production tool iuse nterface

Figure 5.14 - Head-merge workcell class (fully expanded).

To understand how the requirements specification process benefits from using

constructors, we turn our attention back to DMD's requirements specification process. In

the author's investigation of DMD's requirements specification process, there were

instances of requirements specifications where some of the most basic requirements of a

tool were left unspecified (e.g., cycle time, Cpk's for critical dimensions, reliability, etc.).

50 Inherits from workcell:automated:assembly:production_tool.

106

In talking with managers and engineers, one immediate solution was to create a "hot-

sheet" of requirements that would be applied to all production tools. Of course this is not

possible because what is a requirement for one tool might not make sense for another tool

(e.g., cycle time of a torque driver, uptime of a fixture). By creating tool classifications

that have constructors requiring the specification of certain requirements types we are in

effect creating a "hot-sheet" that can adapt itself to the type of tool being specified.

5.3.3.4 Specify Unique Requirements

Up to this point we have developed a hierarchy for the tool and performed all of the

necessary construction within the hierarchy. We now turn our attention to those

requirements that are unique to the tool being procured. These requirements must also

transformed into a verifiable set of requirements. This is the purpose of having the

Quality Factors Matrix (QFM) and Quality Factor Recipes (QFRs) described in Sections

4.3.1 and 4.3.2, respectively. The procurement engineer has direct access to an

organizational knowledge base that has been developed from all of the lessons learned by

the organization. Not every learning had been placed into the classification structures

because they must be kept generic enough to be reused. The QFRs contain all of the

organization's learnings, making it a valuable tool for the procurement engineer who

must add rigor to a unique set of requirements.

5.3.3.5 Create Requirements Specification Document

Once the requirements specification for the tool is complete, the requirements must be

documented. The attributes of the document should be consistent with those listed in

Section 2.4. As long as these attributes are present in the requirements specification

document, it is safe to say that the document will serve its purpose which is to

communicate requirements, support verification and validation activities, and control the

evolution of the system. Various methods can be employed to create requirements

specification documents with the desired attributes. In Chapter 6 we are going to show

how the Standard Generalized Markup Language (SGML) can be used to support the

107

requirements documentation process. For now, we will assume that a requirements

specification document has been developed using a process that results in the document

meeting its required attributes.

5.3.3.6 Verification

The output of the requirements specification process is the tool's requirements

specification document. Rather than deliver it to the tool designer in its current form, it is

important that this document be verified by the same process team that was present at the

preliminary concept review. This is the first of the verification steps that will take place

in the tool's development lifecycle. We now recall three of the points made by Davis

(1990) in Section 1.4 (p. 17):

1. The later in the development lifecycle that a [system] error is detected, the
more expensive it will be to repair.

2. There are requirements errors being made.

3. Requirements errors can be detected.

From Table 1.1, the relative cost of repairing errors at this stage of the development

process is much less than they will be when the tool is delivered to the manufacturing

floor. In Section 3.5.1.1, we described an incident where a requirements specification

document containing multiple errors was about to be sent to a tool vendor. This type of

incident motivates the need for an early requirements verification step.

All that is required for this verification process to take place is that the requirements

document be distributed or made available to the members of the process team. Recall

that one of the purposes of the requirements specification document is to support

verification activities. This is one of those activities.

5.3.4 Develop Concept

The design process starts when the a tool's designer receives the requirements

specification document from the purchaser. The first step is to develop the tool's concept

108

which was started back in the preliminary concept review. The process is identical to the

one discussed in Section 3.3.2 and will not be restated. The tool's concept is not

complete until it has been approved by the members of the process team.

5.3.5 Specify Requirements (Final)

Once a tool's concept is finalized, there may be instances where an additional set of

requirements are required. This is because the tool's designer may make choices about

the design that cannot be foreseen by the process team. As is the case with verifying the

preliminary requirements specification document, the process team must approve the

final version of the requirements specification document before the design of the tool can

commence.

Example: Specify Requirements Following Concept Review

In developing the concept for the head-merge workcell, the tool designer has decided

to use a vision system to measure dimensions G1 and G2. The process team has

approved the use of this vision system and the tooling procurement engineer applies

a set of requirements to it. In this case there exists a specification class for vision

systems and the procurement engineer is able to "plug" this specification right into the

existing one

(Figure 5.15).

head_merge_workcell

workcell

assembly_fixture
esd_specification
cleanroom_specification
operator_interface
maintenanceinterface
gui_interface

L vision_system

Figure 5.15 - Head-merge workcell class showing the vision system class "plugged in."

5.3.6 Design Tool and Verify

Once the tool's design is complete, the design of the tool is verified against the tool's

requirements specification document. The design process is identical to the one

I

109

discussed in Section 3.3.2. The difference lies in the verification step. DMD uses a

design review whereas this process is advocating a verification process. The design

features of the tool should be checked against the requirements specification document.

This increases the probability that errors will be detected before the build process actually

begins. It will also help ensure the design of the tool is complete (a requirement for the

tool development process to advance to the Build Phase).

5.3.7 Build Tool and Verify

Once the tool is built it is ready for final verification. If all of the requirements stated in

the tool requirements specification are verifiable, then the verification process should be

relatively straightforward.51 A discussion on the techniques of verification is beyond the

scope of this thesis.

5.3.8 Install Tool and Validate

Once a tool has been integrated into the manufacturing process for which it was designed,

the validation cycle starts. Unlike the verification process whose purpose was to verify

the requirements of the tool as stated in the requirements specification document, the

purpose of validation is to understand how well the tool meets the needs of the

manufacturing organization. It is very probable that not all of the tool's needs will have

been satisfied, even if the tool had no problems meeting all of its requirements. How

many of these needs are left unsatisfied will depend on three factors: (1) how well the

process team communicated their needs, (2) how well the procurement engineer

transformed these needs into a set of requirements, and (3) how thoroughly the process

team verified the requirements in the requirements specification document (preliminary

draft and final version). It is with the installation and validation of a production tool that

51 Relative to trying to verify unverifiable requirements (e.g., MTTR shall not exceed 10 minutes, the tool
shall be usable).

110

the greatest opportunities for learning are present. If the tool fails to meet a need, the

question "why?" should be asked. It should be determined if it was (1) in the Preliminary

Concept Review when the requirements were being specified, (2) in the transformation of

requirements into a verifiable set of requirements, or (3) in the verification of the tool. If

it is in the requirements transformation, the lessons learned from this experience should

be entered on the appropriate QFR. The next section expands upon the importance of

organizational learning and the use of the QFM.

5.4 The Value of Organizational Learning

In the description of the requirements specification process we talked about the benefits

of using a QFM. The power of the QFM comes from its ability to convert unusable,

loosely organized knowledge into a knowledge base rich with information that the

procurement engineer can use to help transform tooling needs into a set of tooling

requirements that will help ensure these needs are met. The QFRs that are referenced by

the QFM contain the actual knowledge that will be used in the specification process.

These tools, however, are only valuable if they are "filled with knowledge." The learning

process that fills these tools with knowledge takes place during a tool's validation cycle.

To show how the learning process works in the context of validating requirements we

will use an example many people can relate to.

Example: Maintainability of an Automobile

Chris is purchasing an automobile for the first time in her life. She wants it to

be maintainable because she plans on doing as much of the scheduled

preventative maintenance herself. Prior to purchasing the vehicle she "checks

under the hood" to verify that the engine meets her maintainability

requirement. With no real indication of what to look for she is impressed with

the overall appearance of the engine and it passes her maintainability test. The

vehicle is purchased.

III

One year later, Chris decides to change the spark plugs on her new vehicle

only to find out that they are hidden away under the exhaust manifold. They

are so inaccessible, it takes her 4 hours to change all six spark plugs. Chris

vows that the next time she purchases a vehicle she will make sure all of the

spark plugs are easily accessible.

There are three messages we want to pull out of this example. The first and most

important message is that Chris has gone through a learning process that will enable her

to do a better job of verifying that an automobile meets her maintainability requirement

the next time she purchases one. The second message is that there is a significant

difference between verification and validation. Chris verified the vehicle to meet her

maintainability requirements and accepted delivery of the vehicle by purchasing it. She

did this even though it did not truly meet her needs. And finally, the third message is that

the validation process is not something that happens over night. It took Chris a year to

realize that the vehicle did not meet her standards for maintainability.

During the author's interviews with the maintenance organization at DMD, it was clear

that many of its personnel where frustrated with the maintainability of its production

tooling. All of its personnel had very specific requirements they would like to see in the

production tooling that DMD purchases. This is a case where each of the organization's

members had some knowledge of what it takes for a tool to be maintainable.

Unfortunately this knowledge was too fragmented and loosely organized to be of any

value to the procurement engineer who needed to specify a set of requirements that would

help the verification team determine objectively whether the tool met DMD's true

standards for maintainability or not. The purpose of the QFM is to help build and

organize this knowledge.

5.5 Summary

In this chapter we developed a new process for specifying and verifying production

tooling requirements. The process is based largely on the process DMD uses, but we

112

have added strength to it in three separate areas: (1) it supports organizational learning,

(2) it supports systems thinking, and (3) it takes a more proactive approach to

requirements verification. These are the areas the author feels DMD's requirements

specification and verification process can best be enhanced.

113

114

6

Using SGML to Specify Production Tooling Requirements

This chapter shows how the Standard Generalized Markup Language (SGML) can be

used to create a system that supports the requirements specification and verification

process developed in Chapter 5.

6.1 Introduction

The goal of this chapter is to develop a system that supports the requirements

specification and verification process described in Chapter 5. There are numerous

possibilities for the implementation of such a system, but the author believes a system

that incorporates the Standard Generalized Markup Language (SGML) will have several

unique advantages over a system that does not. These advantages stem from the SGML's

ability to seamlessly link documents together, and to rigorously define a documentation

structure that supports the nine attributes a requirements specification document must

possess to be effective (Section 2.4). Before getting started, a brief introduction to the

SGML is in order. This introduction is very brief since there are books available that

describe the SGML in detail. The author recommends that the reader interested in

learning more about SGML obtain one of these books52learning more about SGML obtain one of these books

52 The author recommends Practical SGML, Van Herwijnen, 1994.

116

6.2 SGML Basics

The Standard Generalized Markup Language (SGML) is an agreed upon set of rules for

marking up character based text files (text files)53 . These rules were established by the

International Organization for Standardization (ISO) standard for document description in

1986 (ISO 8879). An SGML document is a text file that contains markup, where markup

is nothing more than a set of predefined text symbols that are inserted into a text file. A

document can be defined to have more than one type of symbol, and each type of symbol

is called a tag. Tags are defined by the Document Type Definition (DTD) for a particular

type of document and they can be used to format text or associate a command with

selected text. If one examines an SGML document, there are two things that immediately

standout: the markup, and the actual data. A tag is delimited using the start-tag open

delimiter, "<", and the tag-close delimiter, ">". The name of the tag is contained between

the two delimiters. Figure 6.1 show how tags can be used to format text. The tags used

in this example are defined by the document type definition contained in the file named

"html.dtd.54" Rather than explain what each of these formatting tags does, we will direct

our attention to Figure 6.2 which is the way this particular SGML document is viewed

from an application that interprets and displays SGML documents.

Tags can also be used to attach commands to selected text. These commands are limited

only by the creativity of the person creating the document type definition (DTD) and by

the application that supports it. A good example is the DTD for the HyperText Markup

Language (HTML) and the popularity of the browsers that support HTML. HTML

assigns network links to selected hypertext, thereby enabling users to navigate the

world's largest network, the Internet, with an efficiency that allows users to find

information on a plethora of subjects in minutes.

53 By character based, we mean not binary. The most commonly used character set today is ASCII. Other
character sets include EBCDIC which is the character set for IBM mainframes, and UNICODE, which is
beginning to replace ASCII.

54 Note the reference to the DTD in the header of the SGML document shown in Figure 6.1.

117

Figure 6.1 - An SGML document showing how tags can be used to format text.

Figure 6.2 - An SGML document as viewed from an application that interprets and displays SGML
documents.

6.3 Using HyperText to Support Organizational Learning

One advantage of hypertext is that it allows users to navigate through large volumes of

information that have been linked together. Chapter 4 described an object-oriented

framework that can be used to create requirements specifications. One of the reasons for

having this framework is to create an intuitive index for the information regarding the

requirements specification of production tooling. Figures G. 1 through G.4 in Appendix

<?DOCTYPE HTML SYSTEM "html.dtd">
(HTML>
<HEAD><TITLE>Demo Document</TITLE>(/HEAD>
<BODY>
<H1>This is a level 1 heading.(/H1>
(H2>This is a level 2 heading.</H2>
<H3>This is a leuel 3 heading.</H3>
<P>This is a paragraph containing text. It demonstrates how a
tag can be used to apply formatting to text such as
bold face and <I> italic</I>.</P>
C/BODY>
</HTML>

This is a level 1 heading.

This is a level 2 heading.

This is a level 3 heading.
This is a paragraph containing text. It demonstrates how a tag can be used to
apply formatting to text such as bold face and italic.

118

G show four SGML documents as they would be viewed by the user of an SGML system.

Some of the data in these documents have been tagged as links to other documents. The

hypertext (shown by that text which is underlined) is associated with the links contained

in each document so that the user can process a command to move to another document

by clicking on the hypertext using a mouse pointer (or equivalent device). This creates an

interactive experience for the persons retrieving the information by allowing them to

move seamlessly among all of the documents that have been linked together. Figures G. 1

through G.4 show how a user can follow a set of linked documents and review the set of

requirements that have been created for each of the specification classes in the

requirements classification hierarchy. The figures that are shown map the classification

hierarchy shown in Figure A. 1 of Appendix A and in Appendix B. The navigational

ability of such a system prompts its use; as the classification hierarchies are expanded

upon and improved, the information contained within them will bring added value by

reflecting the organization's increased knowledge.

We have just seen how hypertext can make the navigation of a linked set of documents

simple. The advantages of hypertext, however, go beyond this ease of document

navigation. One advantage of object-orientation is its support of information abstraction.

This feature allows the person analyzing the construction of a system to ignore any

aspects of the system which are not relevant to the current subject of concern so that he or

she may concentrate more fully on what is important. We can use hypertext to take full

advantage of this abstraction. We turn our attention to Figure G.4. A hypertext link has

been created to a document containing information on emergency stop buttons. Rather

than display this information on the screen, it is simple to create a hypertext link to a

common document containing the requirements of the emergency buttons the

organization uses on its equipment. If this information is of value to the person retrieving

the information, it is a simple matter to select the hypertext in order to view it. Using

hypertext, we have hidden, through abstraction, much the information regarding the

requirements of automated_assembly_tool while at the same time making access to it

quick and easy. The other advantage of this system is that a common document has been

119

created to contain all of the requirements for emergency stop buttons. A change to the

requirement of an emergency button specification will be implemented immediately in all

of the specifications referencing it.

6.4 Using SGML to Support the Requirements Specification Process

SGML documents are rigorously structured by a set of rules defined by the Document

Type Definition (DTD). These rules define the legal set of tags that are allowed in a

document as well as the order in which they are required to appear. The result is that the

DTD sets forth the rules for constructing a specialized markup language (Van Herwijnen,

1994). We will use the DTD to design our own markup language called the

Requirements Markup Language (RML). Just as the HyperText Markup Language

(HTML) was uniquely designed to support Internet navigation, RML is uniquely

designed to support requirements specification. The design of the RML was created with

the following goals in mind:

1. Support the traceability of requirements.

2. Support the object oriented framework created in Chapter 4.

3. Support the requirements documentation process.

6.4.1 RML Document Type Definition (DTD)

The DTD defining the RML is shown by Appendices C and D. The tags defined are:

inherits, cname, parent, bname, children, child, requrmnts, construe, req, qf, qsf,

and how. Appendix C shows the tree and structure diagrams for the RML. An

explanation stating the purpose and rule for each tag is provided in Appendix E. The rule

set for the RML shows the degree of rigor with which we can create a document structure

that supports the requirements specification process. Appendix F shows an RML

document for the specification class productiontool (Specification Class 1 in

Appendix B).

The RML supports the requirements specification process in a number of unique ways

120

which will be described briefly. First, by embedding the document's inheritance, we can

automatically support the creation of links. In Figures G. 1 through G.4, we saw how a

user could follow the path of the classification hierarchy shown in Appendix A. To do

this, the author had to manually create a link for each of the elements in the document.

This is because the examples shown in Figures G. 1 through G.4 where created with the

HTML which has not been designed to meet our specific set of needs, although it does a

satisfactory job in many respects. We can use inheritance data in each document to create

the links we need automatically. Aside from automated link creation, the embeds

inheritance in each document serves as a roadmap for the user of the system. Hammond

(1990) points out why this is important:

"It is certainly the case that learners can get lost or disoriented in large hypertext

structures. The information base may be large and its structure unfamiliar, and

the links provided will not be suitable for all individuals and for all tasks. Once in

an unknown or unexpected part of the knowledge base, the user may have

difficulty in reaching familiar territory, although the provision of backtrack

facilities may alleviate this. More critical perhaps is that learners may also have

problems finding specific information they know to be present (Hammond, 1990,

p. 60)."

The RML with its embedded inheritance can be used to provide the user of the system

with the information they need to keep from getting lost.

Secondly, the RML can be used to assign a quality factor and quality sub-factor to each

of the requirements listed in a document. This feature can be used to support the

automatic creation of a requirements specification document. One of the problems of

using a classification hierarchy to create a set of requirements specifications is that there

is not one contiguous document which contains all of the requirements of a given tool. It

would almost certainly be difficult for a tool designer to create a tool design given a set of

class specifications. With some of the elements of maintainability assigned to one class

specification, and another set of elements assigned to another class, the essence of what is

121

required for the tool to be maintainable is lost. In constructing a requirements document,

a parser can be used to scan through all of the requirements in class, including those

requirements it has inherited, and organize them by quality factor and quality sub-factor.

Finally, the RML supports traceability of requirements. By giving the ability to specify

how a requirement ensured, we are creating a system that supports top-down traceability.

The traceability in our system is weak in that it only provides traceability for the

requirements contained within each document. It shows, however, how SGML can be

used to support traceability and the RML could be modified to support a more expansive

traceability mechanism.

The purpose of creating the RML was not to establish the authoritative model for a

markup language that supports requirements specification and verification. The purpose

of creating this implementation was to simply show how the SGML can be used to add

value to the requirements specification process.

6.5 An SGML Based Requirements System

Any SGML system consists of four subsystems: a database containing SGML data, a

database of document type definitions (DTDs), an SGML parser, and an applications

library (Figure 6.3). All of the system's data is stored in an SGML database which is

made up of document instances. A document instance is a file containing the text to be

processed, the SGML markup, and a DTD reference (Van Herwijnen, 1994).

6.5.1 The SGML Database

All of the SGML system's data is stored in a database which is made up of document

instances. A document instance is a file containing the text to be processed, the SGML

markup, and a DTD reference (Van Herwijnen, 1994). Because SGML files are text files,

all that is needed is a file system; it can be any type.

MLtat
Governed by the SGML

Standard

.

SGML
Parser

T e~SGML Processing System

Figure 6.3 - The four basic subsystems of an SGML system.

6.5.2 The SGML Parser

The parser is the rule checking mechanism for SGML documents. It scans the document,

identifies the elements (i.e., tagged text), verifies that no illegal elements are present, and

then verifies that the ordering of the elements is correct. The rules used by the parser to

verify the integrity of a document are defined by the DTD specified in the header of every

SGML document. It is not necessary that a parser be present for an SGML system, but

without it, there will be no rule checking.

With respect to requirements specification, the presence of a parser enforces the structure

and content of a requirements specification document. In the case of an RML document,

the presence of the parser will ensure that all of the requirements specification documents

created by an organization share a common format and structure. More importantly, it

makes it impossible for a person to unintentionally leave out important requirements

specification information such as annotations and traceability linkages. By using a

parser, we create a tool that helps ensure that good requirements specification documents

are created.

6.5.3 Application Library

One of the advantages of SGML is that, through its openness, it is application

independent. This means that the users of an SGML system can choose best in class

122

I I

Application Library
Application Library

123

applications to view their SGML documents. A good example of this is Mosaic and

Netscape, applications designed for viewing HTML documents (an SGML

implementation just as RML is). Persons with information contained in HTML

documents are not limited to a single application to view their data. Mosaic and Netscape

are good examples. They are competitors in the business of creating HTML viewers and

a customer can choose the viewer that best fits his or her needs.

6.6 Conclusion

SGML is well suited to creating a requirements specification and verification system

based on the process developed in Chapter 5. First, we showed how hypertext makes it

possible to seamlessly move along the object-oriented framework we developed for

requirements specification. Finding information is quick and easy. Secondly, from

SGML, we showed that we can define our own markup language that is tailored to the

requirements specification process. Finally, by using SGML, the requirements

specification process came to life by creating an interactive learning experience for the

user while at the same time maintaining strict control over form and content of the

requirements specification documents that are created.

7

Conclusion

In this thesis, we examined the importance of specifying and verifying production tooling

requirements. One of the difficulties in developing a good requirements specification

comes from the knowledge required to transform a set of high level requirements such as

maintainability, reliability, throughput, and safety, into a set of verifiable requirements.

In our case study of DMD's head-merge workcell, we showed how the learning process

helped improved the requirements specification for a second generation workcell. These

leamrning's were funneled into the requirements specification for the second tool and were

responsible for the improvements that took place. We also saw how DMD, as a whole,

failed to learn from the lessons of the individual engineer. As a result, the same problems

occurred on a similar production tool that was procured in another manufacturing group.

The emphasis in this thesis, therefore, has been organizational learning and we developed

a process and a set of tools that supports it. By creating a rigorous requirements

specification up front, the manufacturer can adopt a more proactive approach to ensuring

that the tools it procures meet its needs.

References

1. Coad, Peter, and Edward Yourdon, OOA: Object-Oriented Analysis, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1989.

126

2. Davis, Alan M., Software Requirements: Analysis & Specification, Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1990.

3. Dertouzos, Michael, Richard Lester, and Robert Solow, Made in America: Regaining
the Productive Edge, Cambridge, MA, MIT Press, 1989.

4. Dorfman, Merlin, "System and Software Requirements Engineering", in R.H. Thayer
and M. Dorfman (eds.), Tutorial: System and Software Requirements Engineering,
IEEE Computer Society Press, Washington, DC, 1990.

5. Goodman, John, Hard Disk Secrets, International Data Group (IDG) Books
Worldwide, Inc., Boston, 1993.

6. Hammond, Nick, "Learning with Hypertext: Problems, Principles. and Prospects," in
C. McKnight, A. Dillon and J. Richardson (eds.), HyperText: A Psychological
Perspective, Ellis Horwood, New York, 1993.

7. Institute of Electrical and Electronic Engineers, IEEE Guide to Software
Requirements Specification, ANSI/IEEE Standard 830-1984, New York, 1984.

8. Keller, S.E., L.G. Kahn, and R.B. Panara, "Specifying Software Quality
Requirements With Metrics," in R.H. Thayer and M. Dorfman (eds.), Tutorial:
System and Software Requirements Engineering, IEEE Computer Society Press,
Washington, DC, 1990.

9. Jacobson, Ivar, Maria Ericsson, and Agneta Jacobson, The Object Advantage:
Business Process Reengineering with Object Technology, Addison-Wesley
Publishing Company, Reading, MA, 1994.

10. Loy, Patrick H., "A Comparison of Object-Oriented and Structured Development
Methods," in Thayer, Richard H.., and Merlin Dorfman (eds.), System and Software
Requirements Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1990.

11. Martin, James, and James Odell, Object-Oriented Methods: A Foundation, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1995.

12. Mizuno, Y., "Software Quality Improvement," IEEE Computer, 15, March 1983,
pp. 66-72.

13. Nelson, E. Dale, "System Engineering and Requirement Allocation," in Thayer,
Richard H.., and Merlin Dorfman (eds.), System and Software Requirements
Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1990.

14. Scharer, L., "Pinpointing Requirements," Datamation, April 1981, pp. 139-151.

15. Shapiro, Saul, "Process Transfer in Semiconductor Fabrication: An Evaluation of a
Dry Etch Via Process in GaAs MMICs," MIT S.M. Thesis, Cambridge, MA, 1992.

127

16. Skinner, Wickman, "The Productivity Paradox", Harvard Business Review, Vol. 64,
No.4, July-August 1986.

17. Thayer, Richard H.., and Merlin Dorfman, System and Software Requirements
Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1990.

18. Thayer, Richard H., and Winston W. Royce, "Software Systems Engineering," in
R.H. Thayer and M. Dorfman (eds.), Tutorial: System and Software Requirements
Engineering, IEEE Computer Society Press, Washington, DC, 1990.

19. Thurow, Lester C., "A Weakness in Process Technology," Science, Vol. 238,
December 18 1987, pp. 1659-1663.

20. Van Herwijnen, Erik., Practical SGML, MA, Kluwer Academic Publishers, Norwell,
1994.

129

Appendix A - Example Classification Hierarchies for Two
Different Industries

I production_tool =
lassembly

d automated

workcell

fully_automated

semi automated

_manual

l hand-tool

-powered
torquedriver

unpoweied

_ fixture

u,'sption
...... _ _ _..

-[measurement

mechanical
L optical

IH laser

'1 vision

userinterface
hardwar

~ otare

software

electricalsystem

pneumatic system

Figure A. 1 - An example of a tooling specification class hierarchy for a hard disk drive manufacturer.

I productiontool

machine

grind

u conventional

jig
surface

measurement chemicalineopti al eld

laser

vision

assembly

powered

torque-driver
unpowered

- fixture

assembly
d inspection

4mach ining

gnid
rionetional

surface
unconventional

chemical

creep_feed

Figure A.2 - An example of a tooling specification class hierarchy for a hard disk drive manufacturer.

.. :.: ::.':'''- :
..... ,. _

lar ----------- ·-------- 1--- ----- -�II -- L- _

I

I

I

·--- 7- ···- ·;··· ···-

L

131

Appendix B - Expanded Classification Hierarchy for a Hard
Disk Drive Manufacturer

Specification Class 1

class assembly_tool:production_tool

construction:

1. availability

2. foot_print
3. setuptime
4. scheduled_downtime
}

percent
square_inches
seconds
hoursper_1000_hours

Specification Class 2

class production_tool

{

1. shall comply with OSHA regulations for health and safety
2. shall comply with corporate safety specification (doc 402)
3. noise levels shall not exceed 79dbA in operator work area or more that

4 feet away from any noise source.
3. shall comply with corporate ergonomic specification (doc 403)
4. upon delivery, workcell shall be accompanied by a list specifying all

spare parts, quantities used, market price, and expected operating life
in hours.

5. spare parts with lead times less than one week shall be accompanied with
the tool in quantities equal to lead time (hrs) divided by expected life of
spare (hrs).

6. tool shall require no more than 4 hours of training to operate at specified
capacity and quality requirements.

7. no sharp or unfinished edges

construction:

}

132

Spe{cification Class 3

Specification Class 4

class automated_assembly tool:assembly_tool:production_tool

{

1. tool shall conform to facility constraints
a. 110 and 208 volts AC, 20 Ampere service
b. 100 PSI, clean air (not dry)
c. 20 hg vacuum source at 10 CFM

2. emergency stop buttons shall be placed in conspicuous and easily accessible
locations.

3. emergency button activation shall immediately shut down all power, air
pressure, and vacuum.

construction:

I

class workcell:automated:assembly:production_tool

{

1. mean time to repair shall not exceed 30 minutes
a. where a choice exists, all workcell sub-components shall conform to

spec 103.
b. maintenance interface shall be used which conforms to spec 104
c. workcell shall include a complete set of reference manuals describing

theory of operation, hydraulic schematics, electrical schematics,
mechanical drawings, trouble shooting tips, and error recover
procedures.

2. workcell shall have light tower.

construction:

1. cycle_time seconds
2. length inches
3. width inches
4. height inches

}

133

Specification Class 5

class pneumatic_system

{

1. All tubing and gauges shall be clearly labeled with max. pressure (psi)

construction:

}Specification Class 6

Specification Class 6

class hydraulicsystem

{

1. All fluid reservoirs shall be clearly labeled indicating fluid type, max. level,
and min. level
construction:

I

Specification Class 7

class electricalsystem

1. all wiring, power connectors, and switches shall be clearly labeled with
amperage, voltage, frequency, and identifier

2. shall comply with NEC regulations
3. all wires shall be routed such that they will not interfere with any moving parts
4. all potentiometers used for calibration purposes shall have a tick mark that

indicates the baseline for adjustment
5. all electrical connections shall use a mechanism that prevents an incorrect

connection
6. all electrical components shall be grounded

construction:

}

135

Appendix C - Document Tree and Structure for the RML

Figure C.1 - Tree diagram for the Requirements Markup Language (RML)

#cdata how #pcdata oreq

- Kqf j qsf req reqrmnts

�2

- constuct

- children

class i f parent ~ bclass inherits

I inherits ~-{ children -{ construct req rmldoc

Figure C.2 - Structure diagram for the Requirements Markup Language (RML)

reqrmnts -

L- child

i
I

137

Appendix D - Document Type Definition

<!--dtd for requirements specification markup language -->

<!entity % doctype "rmldoc" -- document type generic identifier -->

<!-- elements min content (exceptions) -->

<!entity %doctype - ->
<!entity inherits - 1 (class, (parent)*, bclass) -->
<!entity children - 0 (child)* -->
<!entity constuct - 1 (reqrmts)* -->
<!entity reqrmts - 0 ((qf & qsf)?, req) -->
<!entity req - 0 (#pcdata, (how & #pcdata)?) -->
<!entity qf - 0 empty -->
<!attlist qf id id #required -->
<!entity qsf - 0 empty -->
<!attlist qsf id id #required -->
<!entity cname - 1 empty -->
<!attlist cname id id -->
<!entity parent - 1 empty -->
<!attlist parent id id #required -->
<!entity bname - 1 empty -->
<!attlist bname id id #required -->

DTD for the Requirements Markup Language (RML).

139

Appendix E - Explanation of RML Rule Set

1. <inherits>
Specifies the complete inheritance of the document and must appear at least once
inside the document. Legal elements within the tag are class, parent, and bclass.

2. <class>
Specifies the name of the document class and must appear at least once inside the
document and only inside the inherits tag. Must appear prior to parent and bclass.

3. <parent>
Specifies the names of all the specification classes inherited starting with the most
recent. parent must appear at least once inside the document and only inside the
inherits tag. If the class does not inherit from another class, the attribute "this" shall
be assigned to parent. Must appear prior to bclass and after class.

4. <bname>
Specifies the name of the base class that class is inheriting from and must appear at
least once inside the document and only inside the inherits tag. Must appear
following class and parent.

5. <children>
Delimits the names of the classifications that inherit from class. Is not required to
appear but if it does, it must appear following inherits, and prior to construct.

6. <child>
Specifies the name of each child class inheriting from class. Is not required to appear
but if it does, it must appear inside children.

7. <constru>
Delimits those requirements contained in class that are constructors. Even if the
document contains no construction requirements, this tag must appear at least once.

8. <reqrmnts>
Delimits each requirement in the document. This tag can appear an infinite number of
times. It must follow inherits and children.

9. <req>
Specifies a requirement. Must appear at least once inside reqrmnts.

10. <qf>
Specifies the quality factor for the requirement (req) delimited by reqrmtns. Not
required to appear but if it does, it must appear prior to qsf.

11. <qsf>
Specified the quality sub-factor for the requirement (req) delimited by reqrmtns.
Required to appear only if qsf does and it must appear after qsf.

12. <how>
Specifies a requirement indicating how a given requirement (req) will be ensured.
Not required to appear but if it does, it must appear inside req.

141

Appendix F - Example RML Document Showing Markup and
Data

<!doctype rmldoc system>
<inherits>

<class="production_tool ">

<parent="this">
<bclass="this">

</inherits>

<children>
<child="assembly">
<child="fixture">
<child="measurement">

</children>

<reqrmnts>
<req><qf="safety"><qsf="">safety<how>

<req>shall comply with OSHA regulations</req>
<req>shall comply with corporate safety specification (doc 402)</req>
<req>shall comply with corporate ergonomic specification (doc 403) <req>

<req>no sharp or unfinished edges</req>
</how></req>

<req><qf="maintainability"><qsf="">maintainability<how>
<req>upon delivery, workcell shall be accompanied by a list specifying all

spare parts, quantities used, market price, and expected operating
life in hours</req>

<req>spare parts with lead times less than one week shall be accompanied
with the tool in quantities equal to lead time (hrs) divided by expected
life of spare (hrs)</req>

<req><qf="throughput"><qsf="">throughput<how>
<req>tool shall require no more than 4 hours of training to operate at

specified capacity and quality requirements</req>

</reqrmnts>

Figure D. 1 - Example RML document containing Specification Class 1, form

143

Appendix G - HyperText as a Learning Tool

Requirements Specification Demonstration Document

Please select the requirements specification class you are interested in
viewing:

1 electrical system
2 measurement

3 pneumatic system
4 production tool
5 software
6 user interface

Figure G.1 - An opening SGML document presenting the user with six classifications to learn about.

I

Production Tool Specification Class

Class Name: production_tool

Inheritance: none

Children:

1 assembly tool

2 fixture

Requirements Specifications by Quality Factor

Safety. Health, and Ergonomics

1 Shall comply with OSHA regulations for safety and health.
2 Shall comply with corporate safety specification. (doc 402)

1 Noise levels shall not exceed 79dba in operator work area or more than
4ft away from any noise source.

3 Shall comply with corporate ergonomic specification.
4 No sharp or unfinished edges.

Maintainability

1 Tool shall be accompanied by a list specifying all spare parts, quantities
used, market price, and expected operating life in hours.

2 Spare parts with lead times less than one week shall accompany the tool in
quantities equal to lead time (hrs.) divided by the expected life of the spare
(hrs.).

Usability

1 Shall require no more than 4 hours of training to operate at specified
capacity and quality requirements.

Figure G.2 - User has selected Production Tool from the list of options in Figure G.1 to link here.

144

145

Assembly Tool Specification Class

Class Name: assembly_tool

Inheritance: production tool

Children:

1 automated

2 manual

Requirements Specifications by Quality Factor

Throughput

1 Tool's availability shall be not less than [specify] percent.
2 Tool's setup time shall be no greater than [specify] seconds.
3 Tool's scheduled downtime shall be no greater than [specify] hours per

1000 operating hours.

System Integration

1 Tool's footprint shall be no greater than [specify] sq. in.

Figure G.3 - User has selected assembly tool in Figure G.2 and linked here.

Automated Assembly Tool Specification Class

Class Name: automated_assembly_tool

Inheritance: assembly tool: production tool

Children:

1 workcell

Requirements Specifications by Quality Factor

System Integration

1 Tool shall conform to standard factory utility package.
1 100 or 208 volts AC, 20 Ampere service.
2 100 PCI, clean air (not dry).
3 20 hg vacuum source at 10 CFM

Safety, Health, and Ergonomics

1 Emergency stop button(s) shall be placed in conspicuous and easily
accessible locations.

2 Activiation of emergency stop button(s) shall immediately shut down all
power, air pressure, and vacuum.

Figure G.4 - User has selected automated in Figure G.3 and linked here.

146

