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Abstract

The formalization of interaction in a complexity-theoretic setting in 1985 began a new and wildly success-
ful era in computational complexity theory. This study has culminated in the development of the theory of
holographic or probabilistically checkable proofs. These are proofs so robust that they may be verified (with
high probability) by consideration of a randomly selected fragment of the proof text. Such machinery has
profoundly recharacterized many of the classical complexity classes. Although these recharacterizations have
offered new structural insight into the classes involved, the great triumph of the theory has been an unexpected
connection with approximation algorithms. It provides the first general scheme for concluding that even ap-
proximating certain problems is difficult.

This thesis constructs probabilistically checkable proof systems for NP more efficient than any previ-
ously known and discusses the ramifications of these new systems in the realm of approximation algorithms.
Perhaps the most significant advance is the construction of the first O(log n)-communication probabilistic-
ally checkable proof system for NP which achieves any constant error with afixed number (4) of questions.
These advances are applied to improve results on the hardness of approximating SET COVER, MAX CLIQUE,

CHROMATIC NUMBER, MAX 3SAT, and QUARTIC PROGRAMMING.
Finally, we explore the relativized behavior of this new machinery. We show that the recharacterizations

of PSPACE in this framework are lamentably unstable. These results reinforce the belief that the framework
of relativization is incompatible with these new techniques. They can also be seen as a further assault of the
(already battered) random oracle hypothesis.

Thesis Supervisor: Michael Sipser
Title: Professor, Department of Mathematics
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Chapter 1

Introduction

The field of complexity theory is that of the classification of computational problems according to various

resource bounds. It has matured during the last two decades to the point where there is general agreement about

both the basic definitions and the selection of central open problems. It is a field that can pride itself at having

evolved, rather quickly, from an ad-hoc collection of facts to a well-structured mathematical discipline with

life independent of its engineering origins. Indeed, the theory has given rise to widely applicable classification

machinery that has driven much research in computer science. The celebrated theory of NP-completeness is

perhaps the most compelling example of this phenomenon. It shows an enormous collection of well-studied

decision problems to be "equally difficult," and offers convenient machinery for concluding that new problems

fall into this class (see [49], for example). These problems are the NP-complete problems. The existence of

efficient algorithms for this class of problems is the most significant open question of the field (see [84] for a

graceful discussion of the current status of this problem).

The recent development of probabilistically checkable (or holographic) proofs provides the first general

framework for concluding that even approximating the solution to natural decision problems is difficult. For

example, applying these tools one can show that approximating the size of the largest clique in a graph to within

n - is NP-hard (for all e > 0). The strength of these "hardness of approximation" results is intimately related

to certain qualities of the probabilistically checkable proofs invoked to reach the conclusions. The primary

topic oi this thesis is the fabrication of an holographic proof system more favorable than previously known

systems in terms of the qualities related to such lower bounds. The resulting lower bounds are then catalogued

and, in the case of SET COVER, explored in some detail.

In a general sense, the theory of probabilistically checkable proofs offers an alternative method for ex-

pressing mathematical proofs. Traditionally, proofs have been written as a sequence of propositions, each

following from its predecessor(s) by some logical rule. In order to check the validity of such a proof, one

must (of course) read through the entire sequence of propositions- a single faulty step invalidates the proof.

It may seem silly to complain about this state of affairs since it is a priori unclear what more we can ask for.
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Indeed, if one wants to be absolutely certain of the truth of a proposition, there is no substitute for the above

process. Suppose, however, that we are in the business of verifying proofs and don't mind making a mistake

with some small probability. As we shall see, this added flexibility will allow us to check proofs with astound-

ing alacrity. It is in fact possible to "check" a proof by examining an asymptotically vanishing fraction of the

proof text.

To realize this goal, one has to abandon the traditional method for writing down proofs and adopt some far

more robust dialect for proof expression. Imagine a "proof checker" who, upon receipt of a voluminous proof,

decides to base his decision (about the correctness of the text) on, say, 30 randomly selected pages of the proof.

If he discovers some blatant error on one of these pages, of course he knows that the proof is incorrect. In the

case that he uncovers no errors, he assumes that the proof is correct. If the proof is written in the traditional

manner described above, such a proof checker is (very) likely to accept as correct a proof having a single error

buried in the text. We shall see that there is a language for expressing proofs so that errors, if they occur at all,

occur almost everywhere. This will allow the proof checker above to confidently determine the validity of a

proof based on a small, randomly chosen collection of fragments. In fact, one application of the machinery

we shall build in Chapter 3 shows that there is a language for expressing proofs so that consideration of 29

randomly chosen symbols of the proof is enough to expose any error with probability .

In addition to such structural revelations, the theory offers the first general scheme for concluding that even

approximating the solution to many NP-complete problems is difficult [38]. Consider, as an example, the fol-

lowing problem: given a universe S and n subsets S1,..., Sn C S, compute the cardinality of the smallest

cover of S by these sets Si. This is called the SET COVER problem and was one of the first problems shown to

be NP-complete. It is suspected that there is no exact polynomial time algorithm for any NP-complete prob-

lem. One is naturally led to ask if there is a polynomial time algorithm that offers good approxinmate solutions

to the SET COVER problem. This was resolved (positively) in [65] by the construction of a polynomial time

algorithm which, for any set system, produces a cover with at most 1 + In ni times the number of sets used by

the optimal cover (where n = SI). It was unclear if this factor could be improved or if there was a boundary

here. In §4.1 we shall argue that there is indeed a O(log n) boundary- we show that if one could approxi-

mate SET COVER to within 8 !.n n then the problems in NP could actually be solved deterministically in time

nO(log log n)

This holographic proof framework has been applied to several complexity classes other than NP including

PSPACE [31, 33], NEXP [9, 7, ... ], and the classes in the polynomial hierarchy [68]. In each of these

cases it has offered a new definition for the given complexity class. In the last section of this thesis we shall

argue that some of the these new characterizations differ in a very essential way from the existing definitions.

Specifically, we show that in most relativized worlds, these new characterizations diverge wildly from their

traditional counterparts.

The technique of relativization is a method for exaggerating differences between various computational

models. It has been used in the past to argue that proving various complexity-theoretic conjectures, like P 
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NP, was likely to be hard. The technique consists of a general method for providing "extra information" to a

family of Turing machines, say, in order that their computing capacity become easier to understand. In Chap-

ter 5 we show that some of the new characterizations discussed above are very unstable with respect to rela-

tivization. This can be seen both as an attack of the technique of relativization and some indication that these

new models of computation are unlike any ever before studied.

Although the theory of holographic proofs has marvelous structure and application, it is young and is only

beginning to acquire a standard terminology. It will be necessary for some generous agent to produce a survey

of the area which recasts in some uniform and compelling language all of the ultimately relevant machinery.

At the time of this writing, the field is still evolving so quickly that such a synthesis is unlikely to be durable.

In any case, I do not take up this task- foundational material which can be conveniently encapsulated shall be

cited without proof or guilty feelings. Having allowed myself this freedom, I promise the reader as much unity

as I can muster. My intention is that the manuscript make no demands on the reader other than ownership of

some mathematical sophistication and familiarity with the rudiments of discrete mathematics and theoretical

computer science.

This thesis is an expansion of two published articles: "Efficient Probabilistically Checkable Proofs and

Applications to Approximation" [18], which is joint work with Mihir Bellare, Shafi Goldwasser, and Carsten

Lund, and "The Relativized Relationship between Probabilistically Checkable Debate Systems, IP, and

PSPACE" [81], which is joint work with Ravi Sundaram. In Chapter 2, we give a brief history of the de-

velopment of holographic proof systems and define the basic concepts involved. Chapter 3 develops our im-

proved holographic machinery which is applied, in Chapter 4, to offer improved lower bounds for several ap-

proximation algorithms. Chapter 5 is a discussion of the relativized behavior of holographic proof theoretic

characterizations of known complexity classes.

11
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Chapter 2

Notations, Definitions and History

5 shall always denote a finite set (often {O, 1}) which we shall call an alphabet. E k shall denote the normal

cross product set and members of this set we shall write as strings w1 W2 ... WUk rather than ordered tuples. We

reserve the symbol A to denote the "empty string" and define EO = {A}. A language over E is any subset

L of * d__f Uk>OEk. When E is understood we shall omit "over E" from the previous definition. k denotes

the concatenation of k s.

We shall adopt the standard notation and foundational material of [63] when Turing machines enter our

discussion. The language accepted by a Turing machine M is denoted L(M). An oracle Turing machine

M operating with oracles 01,... , Ok is denoted M °0'1 . ,& and the language so accepted L(M ° . ok ).

When a Turing machine Ml computes a function, the result of M running on x is written M[x]. The result of

a probabilistic Turing machine with coin tosses R on input x shall be written M[x; R].

2.1 History

The independent formalization of "interaction" in a complexity-theoretic setting by Babai [6] and Goldwasser,

Micali, and Rackoff [52] in 1985 began a new and wildly successful era in theoretical computer science. Al-

though this machinery attracts attention for its intrinsic elegance and expressive power in the realm of cryptog-

raphy, the great triumph of the theory is an unexpected connection with approximation algorithms discovered

by Feige, Goldwasser, Lovdsz, Safra, and Szegedy [38].

Goldwasser, Micali and Rackoff [52] defined interactive Turing machines and the class IP, as follows:

Definition 2.1 An interactive Turing machine V is a Turing machine with a read-only input tape, a work tape,

a random tape, a read-only communication tape, called the response tape, and a write-only communication

tape, called the query tape.

Appropriately coupling interactive Turing machines with functions P: * E* defines a language class in

the following way:
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Definition 2.2 Let V be an interactive Turing machine, and P : E* -+ E* a function. Supplying V with

an input x, a random string r and the function F naturally gives rise to a computation path by following the

usual rules for Turing machine transition except in the case where V writes some special symbol "? " on it's

query tape. The contents of the response tape are then replaced with P(Q) where Q is the entire contents

of the query tape, and computation proceeds as usual. Notice that the function P is supplied with the entire

history of "queries " by V when it "responds. " We shall restrict our attention to computation of this sort that

is polynomially bounded in Ixl (over all possible runs of V). If V accepts with input x, random string r, and

P, we write (V -+ F)[x; r] = accept. Define the class IP to consist of those languages L for which there

exists a polynomial time interactive Turing machine V, called a "verifier, " so that

* (Completeness1) x E L =~ 3P, PrR[(V + P)[x; R] = accept] = 1, and

* (Soundness)zx j L =: VP, PrR[(V *-+ P)[x; R] = accept] < '

Clearly, NP C IP. It was immediately shown that IP is (probably) more expressive than NP: Babai and

Szemer6di [11] placed some matrix group problems into IP and, more significantly2 , Goldreich, Micali, and

Wigderson [50] demonstrated that

GRAPH ISOMORPHISM = {(G 1, G 2) I G 1 is not isomorphic to G 2 } E IP.

It was known that IP C PSPACE [77], and community sentiment was that IP was "just above" NP. This

was reinforced when Fortnow and Sipser [47] gave an oracle for which CoNP ° ¢ IP ° (see Chapter 5 for a

discussion of this topic).

Then, in a breakthrough which pioneered the algebraic methods now dominating the field, Lund, Fort-

now, Karloff, and Nisan [73] demonstrated that IP contains the entire polynomial hierarchy. Shamir [82] then

completely characterized IP, showing the following:

Theorem 2.1 IP = PSPACE.

It is interesting to note that if one restricts the verifier to a constant number of rounds, the resulting class,

called AM (see [10, 53]), actually lies inside EP and so is (probably) much weaker.

Study of the above equipment was strongly motivated by the alluring discovery of zero-knowledge proofs

[52, 50]. (Roughly, a zero-knowledge proof of a proposition is a protocol carried out by a "verifier" with a

"prover" (as above) which provides overwhelming evidence for the truth of the proposition without revealing

any other information.) Such a protocol, for example, was discovered for GRAPH ISOMORPHISM. It was

natural to ask if such protocols could be given for the languages of NP. When it was found by Fortnow that

this was unlikely [43, 25], various relaxations of this goal were studied. Goldreich, Micali, and Wigderson

1 The completeness condition here is not the one found in [521. They just ask that Pr[accept] > . That this stronger condition yields

the same class is shown in [21]
2 This result, coupled with [53] and [25], shows that GRAPH ISOMORPHISM is not NP-complete unless the polynomial hierarchy

collapses to E2P.
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[51] showed that by assuming the existence of secure encryption functions, such proofs can be constructed

for all of NP. In 1988, Ben-Or, Goldwasser, Kilian, and Wigderson [21] demonstrated that strengthening the

machinery by adding a "second prover" resulted in a framework where zero-knowledge proofs existed for NP

without unproven assumptions. They defined the following language class:

Definition 2.3 A k-interactive Turing machine V is a Turing machine with a read-only input tape, a work tape,

a random tape, k read-only communication tapes, called the response tapes, and k write-only communication

tapes, called the query tapes.

Definition 2.4 Define computation by V, a k-interactive Turing machine, with functions P1 , .. ., Pk : * E*

E* following definition 2.2. Then define MIPk to consist of those languages L for which there exists a kc-

interactive Turing machine V so that

* (Completeness)x E L = 3P1 ,... ,Pk,PrR[(V P1,.. ,Pk)[x;R] = accept] = 1,

* (Soundness) x L = VP1,... ,Pk PrR[(V -+ P 1 ... , Pk)[x; R] = accept] < 

The upper bound on the accept probability in case x 1 L is called the error of the system.

It is worth noting that the same class is defined if the provers are allowed to be probabilistic. That is, for a

verifier V admitting error at most e (on some x L) and any distribution on tuples of functions (Ps ,..., P),k 

over a probability space Q, we have that

Pr [(V P ,... Pk)[x; R] = accept] =
R,w

Exp[Pr[(V - Ps,..., Pk)[x; R] = accept]] < e.
W R

As in the case of IP, MIPk was found to be remarkably expressive. Babai, Fortnow, and Lund [8] com-

pletely classified MIPk as non-deterministic exponential time:

Theorem 2.2 For k > 2, MIPk = MIP 2 = NEXP.

Notice that by increasing the number of rounds, sequential repetition (that is, independently repeating the

protocol many times with the same provers) naturally reduces the error exponentially, so that NEXP can be

recognized by two-prover systems with 2- poly(n) error. Extrapolating from IP, one might expect that restrict-

ing these multi-prover systems to a single round would be crippling. On the contrary, NEXP can be realized

in the single round case. There is, in fact, a two-prover single round proof system for NEXP which attains

exponentially small error [71, 42]. Since much of the remainder of this thesis shall concern itself with such

systems, we define them in some detail:

Definition 2.5 A 1-round verifier V is a pair of (randomized) polynomial time Turing machines V = (Q, C).

Intuitively, Q shall be responsible for generating the queries to the functions involved and shall be called the

15



"querier " C is responsible for evaluating the answers received and shall be called the "checker. " Formally,

Q computes afunction Q: E* x {0,1}* __ (E*)k and C computes afunction C : * x {0, 1}* x (*)k 

{accept, reject}. Both Q and C must run in time polynomial in theirfirst input. Given a collection offunctions

fl,. ., fk. : * -- * and a random string R, V is said to accept x on R if C(x, R, fi (ql )...., fk(qk )) =

accept where (ql, . . ., qk) = Q(x, R). If (q, .. ., qk) is not compatible with the signatures of the functions,

C is defined to reject. This value C(x, R, fl (al),... ., fk(ak)) is also written (V ,- fi,.. , fk)[x; R].

We then define a parameterized multi-prover interactive proof ciass.

Definition 2.6 For functions p, r, q, a : N -- N and e : N -* [0, 1], define the complexity class

MIP[p, r, q, a, e] to consist of those languages L for which there exists a -round verifier V = (Q, C) so

that, on input x with IxI = n,

* V is provided r(n) random bits,

* (Completeness) ifx E L then 301,... , OpE q - a,

Pr[[V - 01,..., Op][x; R] = accepts] = 1,

* (Soundness) if x L then V01,..., Op q a,

Pr[[V -+ 01,..., Op][x; R] = accept] < e.

Lapidot and Shamir [71], focusing on this one-round scenario, showed that with four provers, one can

attain exponentially small error in only one round. Their "parallelization" machinery became a central tool in

the theory (see §3.2) and was immediately applied by Feige and LovAsz [42] to show that two provers suffice:

Theorem 2.3 NEXP C MIP[2, poly(n), poly(n), poly(n), 2-n].

Fortnow, Rompel, and Sipser [46] found that the study of these proof systems is often simplified by the

consideration of verifiers allowed to interact with oracles rather than provers- that is, were allowed multiple

access to a non-adaptive partner. They provided transformations which convert between the two models. This

framework is expressed in the following definition.

Definition 2.7 For functions p, r, q, a : N -- N and : N -- [0,1], define the complexity class

PCP[p, r, q, a, e] to consist of those languages L for which there exists a -round verifier V = (Q, C) so

that, on input x with Ixl = n,

* V is provided r(n) random bits,

p

· (Completeness) ifx E L then 30: 5q -a, PrR[[V 0 ,.. , O5(x; R) = accept] = 1,

16
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* (Soundness) if x 0 L then VO : Eq "a, PrR[[V - 0,..., (x; R) = accept] < e.

These two frameworks are closely related and we shall allow the phrase "holographic proof system" to

refer to either of them. In both cases, consideration of a small fraction of a fixed "holographic" proof is enough

to establish the truth or falsity of a given proposition with high probability.

Notice that attaching to each question the name of the prover to which it is intended, one can give a nearly

complexity-preserving simulation of a MIP system by a PCP system:

Lemma 2.1 MIP[p, r, q, a, e] C PCP[p, r, q + logp, a, e]

Fortnow, Rompel, and Sipser [46] gave a natural simulation of PCP systems by MIP systems:

Lemma 2.2 PCP[p, q, r, a, e] C MIP[2, r + log p, q, pa, 1- !- ].

Once it had been discovered (cf. theorem 2.3) that an exponential-time computation could be (probabilis-

tically) verified with only polynomial communication (and computation), the community immediately set to

adapting these techniques to NP. Following [7], [38], and [4], Arora, Lund, Motwani, Sudan, and Szegedy

[3] showed the following:

Theorem 2.4 NP C PCP[O(1), O(logn), Of (logn), 1, ½].

Notice that independent repetition the above protocol k(n) times yields a low-error characterization for

NP with the following complexity.

Theorem 2.5 For k(n) reasonable3, NP C PCP[O(k),O(k log n), O(log n), 1, 2-k].

Motivated both by applications to approximation algorithms (see §2. 1.1 below) and aesthetic interest, these

low-error characterizations became a central topic. Applying the deterministic amplification machinery of

[ 1, 30, 64], one can easily obtain a low-error characterization of NP without undue cost in randomness:

Theorem 2.6 NP C PCP[O(log n), O(log n), O(log n), 1, ].

Both this system and that of theorem 2.5 above suffer from their utilization of O(log n) questions. The best

known result attaining low error with only a constant number of provers was the following theorem obtained

by combining [71, 42] and theorem 2.4.

Theorem 2.7 NP C MIP[2, O(log 3 n), O(log 3 n), O(log 3 n), -].

The primary contribution of this thesis is the construction of a low-error proof system for NP attaining the

following complexity.

3 We use the word reasonable to describe polynomial-time computable functions into N or Q the behavior of which may be naturally
determined from the context of their use.
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Theorem 2.8 Let k(n) = O(log n) be reasonable, and let k(n) = max(k(n), log log n). Then

NP C MIP[4, r, q, a, 2-k(n)],

where r = O(k(n) logn + k(n)2k(n)), q = O(r), and a = O(k(n)2 k(n)).

Notice that for any constant e > 0, there is a choice of k = 0(1) so that this yields

NP C MIP[4, O(log n), O(log n), O(log log n), e] C PCP[4, O(log n), O(log n), O(log n), e],

the first known proof systems for NP simultaneously attaining any constant error and O(log n) communication

complexity with a (fixed) constant number of provers. The effects of such a system can be seen both in the

realm of lower bounds for approximation algorithms (cf. theorem 4.3) and in other efficient proof systems (cf.

theorem 3.2).

For k = O(log n) this system duplicates the complexity obtained by theorem 2.7. For smaller values of

k, however, it provides an asymptotically superior system. Selection of k = O(log log n), for example, shall

be used to provide the improved results for the hardness of approximating SET COVER in §4.1.

2.1.1 Lower Bounds for Approximation

As mentioned before, the study of efficient holographic proof systems has been strongly motivated by a

flourishing connection with approximation algorithms discovered by Feige, Goldwasser, Lovasz, Safra, and

Szegedy [38]. A detailed dicussion of this connection in the case of the SET COVER problem appears in §4.1.

What follows is a primitive, but illustrative, example of this phenomenon in the case of MAX CLIQUE.

Let us first define what we mean by an approximation algorithm. Formally, an a-approximation algorithm

for a maximization problem is a polynomial time algorithm which produces, for any instance 7r, a value A, so

that a opt, < A,~ < opt,. An a-approximation algorithm for a minimization problem is defined analogously.

The factor a is often written as a function of the input size.

Let us concentrate on the MAX CLIQUE problem. From theorem 2.5 above, for any constant e > 0 we

have that SAT E NP C PCP[p = 0(1), O(log n), O(log n), 1, e]. Let VsAT = (Q, C) be a verifier for SAT

with these parameters and 0 a formula. One way to determine if 40 E SAT, then, is to apply VSAT to q and

compute the maximum probability that VSAT [P] accepts (over all polynomial size oracles O). Of course, since

there is a gap between the maximum acceptance probability of VSAT[q(] depending on whether p E SAT, it is

actually enough to approximate this value. Now, given VSAT[¢], construct the graph G, = (V, E) where

V = {(R, a) IR E {O,1}r, a E {O, 1}P,C(, R, al,...,. ,p) accepts} and

E = {((R, a), (R', a)) I (Q(q, R), = Q(q, R')) =} ad = d}
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so that an edge is placed between two vertices (R, a-) and (R', d) when these two answers a and a' are con-

sistent (don't provide different answers to the same question). A clique in this graph, then, corresponds to a

consistent selection of answers for a set of random strings of VSAT (and hence a partial determination of an ora-

cle 0). In this case we have that the clique number of G, w(G), is directly related to the maximum acceptance

probability of VSAT. Indeed, we have that

maxPr[(V - O)[0; R] accepts] = (G)
o R 2'

so that approximating MAX CLIQUE to within e is enough to determine if E SAT.

See §§4.2.2 and 4.3 for more discussion of lower bounds on approximating w(G).

Results of this form have been developed for many of the well-studied NP optimization problems4 includ-

ing MAX 3SAT, MAX 2SAT, CHROMATIC NUMBER, MAX CUT, MIN VERTEX COVER, and those problems

in MAX-SNP. Crescenzi and Kann [34] have compiled an comprehensive list of lower (and upper) bounds

for approximation problems.

4 The NP optimization problems are those optimization problems the decision versions of which are in NP.
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Chapter 3

Efficient Multi-Prover Proof Systems

3.1 Algebraic Preliminaries

3.1.1 Computation in Finite Fields

We shall frequently work in GF(2t), the finite field with 2
t elements. It is often convenient to render this field

as a quotient of the polynomial ring GF(2)[x]: fixing an irreducible polynomial p E GF(2)[x] of degree t,

one has that GF(2t) - GF(2) [x]/(p). Such polynomials always exists (see [72], for example). Elements of

GF(2t) are then in bijective correspondence with polynomials of degree t - 1 and both addition and mul-

tiplication may be carried out efficiently. Production of an irreducible polynomial of appropriate degree is

then sufficient for computing inside GF(2t). Shoup [83] has shown that this can be done deterministically in

time polynomial in t. (Of course, when t = O(log n) as it shall be for us, such polynomials can be found by

exhaustive search in polynomial time.) See [72] for other background on finite fields.

3.1.2 Polynomials and Codes

A principal component of existing constructions of non-trivial holographic proof systems is computationally

manageable large-distance codes. The basic tools for constructing such codes are developed below.

Definitio 3.1 We may naturally associate with an element p of F[xl , ... , x] a function fp : IF - .IF.

Such functions comprise the class q3(P , P ) of polynomial functions. For a polynomial p E F[l,.. , xm],

we define the degree of the polynomial deg p to be the maximum sum of the exponents in any monomial of p.

We define the variable degree, vardeg p to be the maximum exponent on any variable of p. These are likewise

definedfor elements of [x , , as the maximum of the appropriate quantity over all components. We

define these quantities for elements f E 3(F, lF ) as the minimum over all polynomial representatives for

f, i.e. degf = min{degp I f = f}. Definegd(Fn, F) = {f E (Fm,lF) I degf < d}.
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Since we shall primarily be dealing with these objects in a computational setting, the distinction between

q3(iF, ) and F[xl,... , x,m]' shall be frequently blurred.

Definition 3.2 Let E C F be (coherent)fields and f E E[xi,... ,Xk]. The F-variety off is VF(f) =

{ E I f(x) = 0 . When E = F, VF(f) shall be written V(f).

Lemma 3.1 Let F be a finite field and f E xiz, ... , k] a non-zero polynomial with vardeg f < d. Then

IV(f)l < kd ll k- .

Proof: The proof proceeds by induction on k. The base case is elementary. Assume the statement for

polynomials in F[x,... ,xk-1], and let f E F[xil,... ,Xk] be non-zero. Then there exists polynomials

fd,... ,fo E F[xl,... ,Xk-1] so that f = xdfd + + xfo. Let

Zh = n (fi)= {ZE F - I Vi, f(z-) = 0}

and Zd = Zh. Then IZh < (k - 1)d [I k-2 by induction and each point in Zh induces IF zeros. We also

have that IZdl < IIElk-i and each point in Zd can induce at most d zeros. Hence IV(f)l < d lFijk - 1 + (k -

1)d lFI k-1 = kd IFIk-l, as desired. O

Corollary 3.1 Let F be afinitefield and f, g E F[x1,..., xk] distinct polynomials with vardeg f - g < d.

Then

IV(f - g) < kd 1Mk1.

Corollary 3.2 Let F be afinitefield and f, g I - distinct polynomialfunctions with vardeg f - g < d.

Then

l{Z E Ei I f() = y(}1 < kdl qlk-1

The following notion of a polynomial extension shall be central to our study.

Definition 3.3 Let E C F be finite fields and f : E - {0, 1}. A polynomial p E F[x1,... ,Xn] is an

extension of f when Ve E En, p(e) = f () and vardeg p < El. When F is understood, we shall let f denote

a canonical extension of f.

The primary application for the above definition shall be the creation of certain "codes". For two functions

f, g : X -+ Y on a finite set X define

A(f g) = I{x E X I f(x) # g(x)}l
IXl

A subset C of EF is a code with distance 6 if for c, c' E C, c c' : A (c, c') > 6 where c and c' are considered

functions from {1, .. , n} -- F. A particularly convenient manner for describing a code C is to realize it as
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the image of a injective encoding function E: En - Fm. This provides a natural correspondence between

objects in En and their "codewords." Often E = F = {0, 1 } and this is an error-correcting code in the natural

sense.

For a field F, the space of functions m,n = {f Fm -+ PF } is a metric space under the metric d(f, g) =

A(f, g). Then corollary 3.2 shows that with respect to A the subspace of polynomial functions /3(F m , IF ) C

[,n form a large-distance code. Combining such polynomial codes with the simple robust code defined be-

low, one can give an effective construction of a codes E : {0 , 1}n t 0, 1 with constant distance and only

polynomial expansion (that is m < poly n).

Definition 3.4 Let W = {O, 1 }n and let l: {0, 1} {0, 1}2" be an isomorphism. Let P : W - {O, 1} W

be the function given by P(w),, = 7 jT w mod 2. Then define ER : {O, 1}n {0, 1 }2 to be the function

given by ER = t o P(w). ER(W), then, is a list tf the parities of each substring of w. Notice that wl # w2 

A(ER(W1),ER(W2)) > -

The robust code produces codewords of exponential size. As promised, we combine the above notions

to build a code with constant distance and polynomial size. Codes such as these are used to construct the

holographic proof system of theorem 2.4 (see §3.3.1).

Example 3.1 Fix n and let B C F be finitefields with IjIB = logn and I F = log2 n. Let c be a constant
Iog ,, def logn We may then fixa (structureless) injection a

large enough that (log n) log log > n and define m-f We may henfix a (structureless) injection a

(0,... , n} '- B". For w E O, In, we may naturally define wE: i m -t {0, 1} so that wB(a(i)) = wi. As

defined above, we may form the polynomial extension of this function wF : Fm -+ F which has vardeg w F <

IBI. From lemma 3.2, for v 5$ w E {O,1 }n,

A(wF,vF)>l - 1.
log log n

Then, define the code

E: W (ER (WF()))EF"'

where wF(x) is written as an element of {O, 1 2 log log n. Notice that E has distance approaching - as n -oo

and IE(x) < poly(Ixl).

3.2 Reducing Randomness

The goal of this Chapter is to produce efficient MIP systems for NP. (Specifically, we shall build the proof

system of theorem 3.1.) We begin by producing a low-error system which is desirably efficient in terms of

prover multiplicity, randomness, and question length, but requires extravagant answer length. In §3.3 we pro-

vide a transformation which rectifies this.
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Lemma 3.2 Let k = k(n) = O(log n) be reasonable and b(n) = max(k(n), lologog n). Then

NP C MIP[2, O(k log n), O(k log n), 0(k log r .b(n)), 2 -k]

Proof: This proof is an adaptation of the the algebraic parallelization machinery of [71] in order that it

may be combined with the extended base field technique of [7]. Let L E NP. Applying theoren 2.5, we may

place L E MIP1[p, r, q, a, e], with p = O(k), r = O(klogn), q = O(logn), a = 0(1), and e = 2 - 1 .

Let V = (Q, C) be the 1-round verifier for L with these parameters. We construct a new 1-round verifier

P(V) = (Q', C') which possesses the desired parameters. Define I def [l and let B C F be a finite fields

with B1!i = 2 b and lli = 2 4b+3 log p+log +9

Q' begins by generating a random string R of length r and simulating Q to derive Q(x, R) = (ql, , qp),

the vector of questions that V would ask on this random string. We may consider each qi as an element of B' C

F1 (the inclusion {O, 1 }q -- 1 is structureless). Q' now chooses z 1 ,.. , zp independently and uniformly in

IF. For two points x, y E IF, let e[x, y] : F - I be a (canonical) parameterization of the line through x and

y. Then define £i f e£[qi, zi]. The (2-question) result of Q' is ((e1, . , £p), (z, · , zp)).

C' expects to receive two replies, the first a vector (A 1,.. ., Ap) of polynomials, Ai : IF --+ F,

with deg Ai < I l B and the second a vector (, ... , p) of elements of IF'. (If the results fail to have

this form, C' rejects.) Define si df e 1-l(qi) and ti def e l(z,). C' accepts if Vi,Ai(ti) = (i and

C(x, r, A (s1), .. ., Ap(sp)) accepts. (Again, if Ai(si) {O, 1}", C' rejects.)

V' is easily seen to satisfy all of the required parameters excluding, perhaps, the error e:

* V' requires r + pl(4b + log i + 3 logp + 9) = O(k log n) + O(k)O(log n)(1 + (log +3logP+9))=

O(k log n) because b = Q(log log n),

* the queries produced by Q' are bounded in size by a constant function of the randomness used by Q',

and so are O(k log n),

* the replies expected by C' have size p(l I BI )(4b + log b + 3 logp + 9)a = (k log n)2b.

To check completeness, suppose that x E L so that there exist Pi : {0, 1}q - {O, 1}a for i E {1,... , k}

which satisfy V with probability 1. Considering Pi as a function from BI - {0, 1 }a, define P to be an

extension of Pi to IF so that Pi : - and vardeg Pi < 11 - 1. Then the two functions F1 : £1,... . , p 

P o £1,.. ., Pp o ep and F2 : zl,. . ., zp P1 (zl),..., Pp(zp) can be seen to satisfy P(V) with probability

1, as desired.

To prove soundness, we adapt [71]. Suppose x 5 L and fix two functions

F1 : 1 (F, F ')P - g11B (F Fa )P, and
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One would like, at this point, to demonstrate that frequent acceptance by V induces "near-functionality" on

the part of F1- that is, p functions fl,... , fp : 1( (F, F) -+ IJBIl(F, Fa ) so that F1 is closely approxi-

mated by fl x ... x fp. This would allow us to conclude a (natural) upper bound on the error probability.

Unfortunately, it is unclear that maximal strategies have this form and we shall have to settle for something

less. We demonstrate that over the possible values of (z1,. . , zp), F1 is closely approximated by a convex

combination such function tuples. That is, we shall demonstrate the existence of a collection of functions

{(F-,... ,FP) I E ()P} so that

Pr [F1 (f[ql, zl],. . ,e[qp, zp]) FZ x ... x FzP(e[ql,], . . . , [qp, Zp]) but C' accepts] < 6
q,z

for some (small) 6. The remarks after definition 2.4 concerning convex combinations of "prover strategies"

applies here and the result will follow.

Our goal, then, is to show that for most z = (zl,... , z,), F1 is roughly "functional" in each coordinate

on the family of lines {(tl,... ,fp) I zi E i} associated with z. For each z E (: )P and El E 3 1 (F, F) let

(el; z) {A I 3q2, ,qp, F(el,e[q 2, z 2],... , e[qk, zk])l = A}

denote the set of possible answers (offered by F1 ) to £1 for this z. For given l and z, associate with each

element A E (etl; z) the probability

p?'(A) = Pr [F (el,e[q2,z 2],... t[qp, zp])l = A and C accepts].
q2, ,qr

Then, define Fzl e '-4 A, where Aa E Q(, z) is a canonical element maximizing pe(Amax) for t. These

"majority" functions will be shown to closely approximate F1 . Finally, define the deformity at z to be the

function

Dz(e)= E pt,(A).
A$F(e)

We would like to show that Dz (41), the probability that an answer other than Fzl (El) is given, is likely to be

small. Expressing this as a Ky Fan distance (see [35] for example), we show the following:

Lemma 3.3 For 1 E T (F, F'), Prz[D () > ] < bforall 6 > 3 

Proof' Fix f l_ T1 (F, F t) and suppose that

Pr[Dz(El) > 6] > 6

for some 6 E [0, 1]. We show that 6 < 3 ' which proves the lemma. We should like to focus on an event

which naturally permits application of corollary 3.2, which expresses the relevant coding nature of polynomi-

als. Since Pr,[Dz(tl) > 6] > 6, we may fix a tuple (z2,... ,zp) for which Pr, [Dz(El) > 6] > 6. Now
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consider the probability space induced by independent selection of q2,. .. qp, q, ... , qp' and z E 1. Over

this space, we consider the event E consisting of those triples for which

F1 (el, .[q2, z2] · · · [qp, p])l F (el, e[q , Z2] *, *[, Zp])l

and V accepts both answers. Then

Pr[E] < Pr[V accepts both I F1 (el, e[q2 , 2],. · · , e[qp, zp])l F1 (e1, e[q, z2 ], , e[q, zep])]

< z-

from corollary 3.2. We shall compute a lower bound for Pr[E] in terms of 6 which will yield the statement of

the lemma. Let /3 < (we shall fix this quantity later). We consider the following two cases depending on

the density of the most likely convincing answer, Fzl (E1):

1. Suppose that Prz [pe (Fzl (el)) > d Dz(el) > 6] > . Then Pr[E] > -.

2. Otherwise Prz, [pz1 (Fzl (el)) < /3 I Dz (el ) > 6] . In this case where the probability of the most

convincing answer is small, we may partition Q(t1, z) into two disjoint sets T1 U T2 = (t1, z) so that

for each i E {1, 2}, EtET, pl (t) > 2 - . Then

Pr[E] > (

Selecting /3 = ( - 2)6 equates these two bounds and gives

v45- 23 < llBI
2 -1F

so that 6 < 3 o-VF '

This yields the functionality we sought: fixing tl we have that

Pr [FI(ef1 ) F1 (el,e[z 2 ,q2],... ,e[zp, qp])l and C' accepts] < 26 < 6 (3.1)
z,q2,... ,qp

where 6 is the minimum value rending true the statement of lemma 3.3. There is, of course, nothing special

about the first coordinate, and one may define functions Fz for each i E {2,... , p} as we have defined F 1.

The inequality 3.1 above shall hold analogously for each of these coordinates, and we have that

Pr[3i, Fz(e[q,, i]) # F,(e[zl, q],... , e[zp,q]) but C' accepts] _ 6p j~ . (3.2)
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Notice that

6p3 6p 6p 1_ <
I -= 24b+31ogp+logl+9 2 3b+31ogp+9 = 2b+logp+3

Finally, since x ¢ L, for any (F,.. , Fp), PrR[(V , F{, ... , Fp)[x; R] accepts] < E so that

Pr[(V' + F1,F 2)[x;R] accepts] < 2e < 2 -k .

Since we shall need this parallelization machinery again in the next section, we isolate it in the following

lemma.

Lemma 3.4 Let L C MIP[p, r, q, a, e] for reasonable functions p, r, q, a and e. Let V be a verifier accepting

L with these parameters. Let Pf(V) denote the verifier resulting from the above parallelization process with

a primaryfield (F) of size 2f and a basefield (I) of size 2. Then Pf (V) is a

MIP[2, r + pqf, 2pqf, 2pqaf, e + 6p ]

verifier.

3.3 Reducing Answer Sizes

Lemma 3.2 gives a MIP system for any L E NP all the parameters of which are desirable save the large answer

sizes. In light of this, we w.ould like to reduce the answer size of a given MIP system with minimal cost in

terms of the other parameters. We achieve this in two stages. First, we give a recursive simulation of the MIP

system and repeat this simulation enough times in parallel to maintain low error. This recursive simulation

results in a MIP system which has desirable complexity in terms of randomness, communication, and error, but

uses too many provers. We then demonstrate that this resulting system can be parallelized without significant

cost to produce a system with appropriate complexity and a constant number of extra provers. Application

of this entire transformation to the system of lemma 3.2 yields a system with similar complexity in terms of

prover multiplicity, randomness, query size, and error, but with appropriately short answers.

For the recursive simulation mentioned above we shall use the framework of probabilistically checkable

proofs, outlined next.

3.3.1 Probabilistically Checkable Proofs

We shall consider a variant of the PCP proof systems discussed in definition 2.7 and theorem 2.4. A verifier

of this new sort shall differ in the two ways described below and shall be called a proof checker.
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1. We consider the input to be comprised of a constant number of strings xz,..., xk, each of which is

offered to the verifier separately. For this reason, we shall consider proof checkers for sets S C ( *)k

rather than languages.

2. The proof checker may expect its k inputs to be provided by oracles according to an appropriate error-

correcting code E. During the course of the proof checker's computation, it may elect only to examine

some (perhaps small) portion of these encoded inputs.

These two alterations can be found in [7, 4, 3].

Naturally, we shall be interested in sets S C (*)k corresponding to easily computable languages. Those

corresponding to languages in P and NP are defined below.

Definition 3.5 A set S C (*)k is an P-relation if {(s ,..., Sk) I 'E S} E P.

Definition 3.6 A set S C (*)k is an NP-relation if {(si,.. . ,s') I s'E S} E NP.

As before, we shall treat oracles as functions. In particular, if O is an oracle and x E {O, 1}* a word, the

notation O = x shall mean that 0: {O, 1 } r[og - {0, 1 } is the function 0 : i - xi. We shall again use the

notation (V 1 01 ... Ok)[l1 ; R] to denote the behavior of V with oracles 01,... 0, k on random string R

and input 1n . (In these cases where we are interpreting oracles as purveyors of "input," the 1i appearing in

this expression is just a convenient tool for expressing the running time of the machine.) When no confusion

can arise concerning oracle identity, we shall also use the notation (V .- {Oi I i E I})[ln; R].

We formalize the framework described above:

Definition 3.7 Let S C (*)k. A (t : N --- N, e)-proof checkerfor S is a tuple (V, E) satisfying the following

criteria.

* V is a t(n)-time bounded, probabilistic k + 1-oracle Turing machine. The first k oracles we shall call

the input oracles and the last the proof oracle.

· V queries each of its oracles 0(1) times, receiveing a single bit in response for each query.

* E is a polynomial-time computable encodingfunction with constant distance: 36 > 0, Vx, y, x # y =>

A(E(x),E(y)) > 6.

· For 'E S, 3 I, PrR [(V a o 'l,... ,k,II)[ll;RI accepts] = 1 where ai =E(si).

· ViwE (*)k, if 1. it S or

2. 'I:m? exists i such that min. A(Oi, E(z)) >

then VI, PrR [(V 01,... ,Ok, II)[1Il; RI = accept] < E.

From [7, 4, 3] we have the following two lemmas.

28



Lemma 3.5 Let S C (*)k be a NP-relation. Thenfor all e > 0, there is a (poly log n, E)-proof checkerfor

S.

Lemma 3.6 Let R x S C ('*) x (*)k be a P-relation. Then Jfr all e > 0. there is a polynomial time

computable function 5: r - V, defined on R so that r is a (poly log n, e)-proof checkerfor

Sr {s E S I r x s E R x S).

3.3.2 Recursive Answer Size Reduction

Lemma 3.7 Let p be constant. For appropriate 2f = Q(log(a + r) 2 3k) we have

MIP[p, r, q, a, 2 -k] C MIP[p + 2, r',q', a', 3 2-(k+l)],

where r' = O(r + kf log(pa + r)), q' = O(q + r + kf log(pa + r)), and a' = O(kf log(pa + r)).

Proof' The proof will be presented in two steps:

1. (Recursive Simulation) A recursive simulation of any constant-prover MIP system is given:

Let p be a constant and r, q, a, m: N -. N and e: N -- (0, 1) reasonable functions. Then there exists

a constant c E (0, 1) so that

MIP(p, r, q, a, e) C MIP(m(2p + 2), r + O(m log(pa + r)), q + r + O(log(pa + r)), 0(1), e + cm)

Notice that the size of the answers in this system is a constant and that the error can be reduced with a

commensurate increase in prover multiplicity, communication complexity, and randomness.

2. (Parallelization) We show how to efficiently parallelize a certain class of MIP proof systems. In par-

ticular, the system generated in step 1 is efficiently parallelized:

Let L E MIP(p = Pcomon + Prest, r, q, a, e) and let V be a verifier accepting L with these parameters.

Assume further that there is some subcollection of Pcommon provers {P,, lc E IIcom,,n} to which the

questions sent by V are (always) of form Qcomon, o Qi, where Qcommon is the same across these Pcommon

provers. Let IQcommonl = qcommon and IQi = qvary. Then for appropriate f with 2f = ( ) we have

that

L E MIP[prest + 2, r + Pcommonvaryf q + Pcommonvaryf, a + aPcommonqvaryf, 3e/2].

Appropriate coupling of step 2 and step 1 yields the statement of the lemma.

29



Proof of step 1: We begin by showing that for constant p, there exists c E (0, 1) so that

MIP(p, r, q, a, e) C MIP(2p + 2, r + O(log(pa + r)), q + r + O(log(pa + r)), 0(1), E + c).

(3.3)

Let L E MIP(p, r, q, a, e), and V = (Q, C) be a verifier which accepts L with this complexity. The

relation

{(x,R , .. , ap) I C(x, R, .. ., ap)}

is a P-relation. For a fixed x and R lemma 3.6 above yields (in polynomial time) a proof checker V, k for

{(al,... ,ap) I C(x,R,al,... ,ap)} using O(log(a + r)) random bits to select I = 0(1) bits from each

of its p input oracles and its proof oracle. We may assume that this machine admits error Ec with ec << .

(One may just use sequential repetition, as in theorem 2.5, to drive the error down exponentially suffering but

a linear increase in the number of questions.)

We are now ready to construct a 2(p + 1) prover system for L with verifier V' = (Q', C'). V' generates

/R as V would have and constructs V , a proof checker requiring p + 1 oracles. V' will then use its 2 (p + 1)

provers to simulate the p+ 1 oracles with which VK' wishes to interact. Set E {1,... ., p, II}. The 2 (p+ 1)

provers with which V' interacts are denoted (P )E- and (Pheck)fE , two for each oracle Oi of the proof

checker Vt R.

V' is defined the following way.

1. V' generates R at random such that = r and constructs the proof checker Vrk. Let i = Q(x, R)i

for each i E { 1,... , p}. For convenience, let Qrn = R.

2. V' generates R1 at random with which it simulates Vx,, so that IR1 j = O(log(a + r)). This simulation

results in the (constant number) of queries of V,A to its oracles: let q, denote the jth query of V to

oracle Of. (For concreteness assume that V, r requires exactly I bits in response from each oracle.)

3. V' generates a random string R2 (of constant length) which it uses to uniformly select t E {1, ... , I)}.

V' then sends

· R and (qj)jE{l ,.., 1) to P, and

* QC and q to pcheck

so that

Q'(x, R oR1 o R2) = (Roq o.. oq, Q1 oq,. . . ,oq o.. oq Qp oqp lRoq o. o qo q')

where the provers are ordered P1 , pheck . ,Pp, pheck Pn, pfheck
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4. V' expects provers Pt for E to respond with a vector of answers (al,.. ., a ), one for each question

they were asked. The provers pcheck are naturally expected to answer with a single bit we denote &i. If

for any E E, a, - asd, V' rejects, displeased that PE disagreed with the function pEchck. Otherwise,

V' simulates V, ,I with answers a and accepts when V k accepts. (This defines C'.)

For a specified 1?, R 1, we say that prover PCheck induces Pt if they are consistent in the sense that for any

R 2 , the answer received from pcheck is identical to the interpreted answer to ql according to the response of PE.

Notice that if pcheck does not induce Pe then V' discovers this fact with probability at least - so that VR, Rl,

Pr[(V' {p, pCheck I ( E })[x; o R 1 o R2] = accept 3 E pchck does not induce P 
R2 '-1

Clearly, if x E L, for any R there are oracles that convince V, R with probability I and hence provcrs that

convince V' with probability 1.

Suppose x L, then we show that V' accepts with probability bounded above by a constant t + c. To

begin with,

VPi PrA[(V - P,...,Pp)[x;R] = accept] < c

VO ( E ) PrRf,R [(V,s - {O I E E})[1lPa; R1] = accept] < e + c

where is the constant error probability of the proof checker (see definition 3.7). In this case, VP~, pCheck,

Pr [(V' {pI, pcheck I ( E E})[x; R] = accept] <
R=RoR1 oR2

Pr [(V' {p, p Echeck E E})[x; R] = accept I V. E , pcheck induces PC] +
R=RoRl oR2

Pr [(V' E{P, p}heck j I E })[x; R] = accept I 3 E E, pEcheck does not induce PJ] <
R=ioR oR2

1-1
Pr [(V' {p, pacheck | I E - })[x; R] = accept I tV E E, pcheck induces Pi] + --

R=ioRi oR2

Pr [(V, A {pheck I E E})[lPa;RI] = accept] + 1<1

E l-1

The randomness and communication required are r + O(log(a + r)). Only 0(1) answer bits are required.

Although the total error e + ec + _ may be larger than one, the error introduced by this simulation is at most

ec + t-1, and so is less than one by our assumption that ec is small. This proves the containment (3.3) above.

By repeating steps (2) and (3) of the above protocol in parallel m times (with new provers and new R1 , R2

for every repetition) we obtain the statement of step 1. This parallelization results in m provers for each prover

P of the original protocol. In the sequel, these provers shall be called the provers associated with P. 0
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Proof of step 2.

If we apply the [71, 42] construction (cf. lemma 3.4) in order to reduce the number of provers of the

system constructed in step 1, the resulting complexity is too high. Fortunately, the protocol used in step 1 has

a nice property: except for O(log(a + r)) bits, the questions to associated provers across the m repetitions

are identical. (In the language of step 1, R, and so Qt, remains fixed across the repetitions while R 1 and R 2

vary.) We exploit this property by applying the transformation of lemma 3.4 to the associated collections of

provers and noting that the transformation machinery need only apply to the O(log(pa + r)) varying bits.

Let V be a MIP[p = Pcomon + p,,t, r, q = qcommon + qy, a,e] verifier for L C {0, 1}* which in-

teracts with provers {PJ7r E I} (Inl = p) in such a way that V asks some subcollection of provers

{Pa I a E Ilcommon C II} (we have Icommonl = Pcommon) questions with a common prefix of length qcommon.

Let II,t = - 1 common. For the purpose of analysis, we consider two tertiary machines Vst and Vcomon

which execute certain portions of the interaction process of V:

* V,,, expects as input (x, R) and demands connection to p,,,t provers (which should be thought of as

{P I/ E rIst }). It computes Q(x, R), for/3 E I,,s, sends one to each f its Pr,,st provers, and returns

their answers as a result.

* Vcommon expects as input (x, R) and demands connection to Pcommon provers (which should be thought

of as {P, ja E Icommon }). It computes the varying portion of the questions Q(x, R)a for a E IIcommon,

sends one to each of its Pcommon provers, and returns their answers as a result.

We create a new MIP[p, r, q, a, e] verifier called V[Vomon, Vrest] which interacts with provers {P, 7r E II =

Ilcommon U Irest } and accepts the same language as V (but has different conceptual structure). The procedure

for V[Vcommon, Vst], on input x, is as follows:

1. generate R at random so that RI = r.

2. generate the fixed (common) portion Qcommon of the questions Q(x, R)o (for a E IIcommon) and sends

Qcommon to each Pa for a E IIcounon.

3. run Vrest(R, x) (with provers {Pp I P E Irest}) and collect the returned prover responses.

4. run Vcommon (R, x) (with provers {Pa la E IIcommon }) and collect the returned prover responses.

5. accept if V would have accepted with input x, random string R, and these returned answers.

It is clear that the external behavior of V[Vommon, Vrest] is identical to that of V.

We now substitute for Vconmon (inside the machine V [Vcomon, Vrest]) the machine Pf (Vcommon) to produce

a new verifier which we call V[Pf(Vc,,on), Vrest]. (We shall select f presently.' The machine Pf (Vcomon)

interacts with two provers, Purves and Ppoints rather than the Pcornrnmmon provers {P,lIa E Icommon}, but still
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(naturally) returns Pcomnon answers.' That the application of the parallelization transformation V -4 Pf(V)

in this situation is valid depends on the fact that if the provers (P,) responses to VCommon are functional with

respect to the the O(log(a+r)) varying bits of the questions, then they are function with respect to the entirety

of the questions. With appropriate choice of f, the parallelization protocol of [421, recorded in lemma 3.4

provides answers to these questions which are non-functional with probability at most 2. The questions of

Vcommon are of size q,,ay so that V[P 1 (Vcommon), Wrest] is a

MIP[pr,, + 2, r + 'ommonqvaryf, q + Pcommonqvaryf, a + apcommonQvaryf, 3/2]

verifier for the language accepted by V, as desired.

0

We now apply the result of step 2 to the system produced by step I:

i. For each E _ - {II}, the m provers associated with pCheck ( E ) are parallelized, resulting in 2

provers. (Recall that the questions to these provers have the common prefix Qi.)

2. The provers associated with pnheck and PC, for g E E, are parallelized together. (Their questions have

the common prefix R.)

In this case, where we are applying step 2 many times to the same system, the provers Ppoints for each of these

parallelization steps may be combined into one prover. 0

Finally, applying the result of lemma 3.7 to the containment of lemma 3.2 yields our main theorem:

Theorem 3.1 Let k(n) = O(logn) be reasonable, and let k(n) = max(k(n),loglogn). Then NP C

MIP[4, r, q, a, 2 - k(n)], where r = O(k(n) log n + k(n) 2k(n)), q = O(r), and a = O(k(n) 2k(n)).

3.4 Improved Efficiency Probabilistically Checkable Proofs

An important tool in the proof of theorem 2.4 is the recursive application of proof machinery adapted from

[42]. Carsten Lund shows that by using the more efficient machinery of theorem 3.1 along with some im-

proved analysis of the combinatorial core of [3], one can dramatically improve the constants in the statement

of theorem 2.4. It is shown in [3] that NP C PCP[t, O(log n), O(log n), 1, ] for some t on the order of 104 .

Phillips and Safra [78] brought about some improvement in this value of t. To express the advance described

above, we define the following "amortized" PCP class.

Definition 3.8 PCPaV[p, r, q, a, e] denotes those languages with probabilistically checkable proof systems (as

in definition 2.7) using r randomness, asking queries of size q, demanding answers of size a, and achieving

error at most e so that the average number of queries (over the random strings) is p.

This change in the number of provers also changes the number of provers to which V [Pf (Vcommon), Vrst] must send the common
portion of the queries in step 2 (now Qcommon is sent to only two provers).
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Lund [ 1 8], using [3], the material of the previous sections, and improved "testing" equipment (cf. [24]), shows

the following theorem:

Theorem 3.2 NP C PCPaV[29, O(log n), O(log n), 1, ½].

This shall have ramifications for approximation algorithms (see §4.3).

3.5 Recent Improvements

Perhaps the most striking advance since the above developments is the (positive) resolution by Raz [80] of

the PARALLEL REPETITION CONJECTURE. We have above discussed sequential repetition of a MIP system.

This is essentially the containment

MIP[p, r, q, a, e] C MIP[kp, kr, q, a, Ek]

obtained by repeating a given MIP system k times with both independent provers and random strings (cf.

theorem 2.5). The PARALLEL REPETITION CONJECTURE is that similar exponential error decay can be ef-

fected by repeating an MIP system k times (with independent randomness for each repetition) but using only

p provers: the k questions to prover i generated across the k repetitions of the MIP system are asked, as a vec-

tor, to a single prover which is responsible for answering them all. Following [86, 89, 36, 39], Raz elegantly

closed the subject, demonstrating that

MIP[2, r, q, a, e] C MIP[2, kr, kq, ka, e]

where s = log Al1 I IA21 and ER is some constant in (0, 1). This is a potent and widely applicable tool. It

shows, for example, that

NP C MIP[2, 0(k log n), O(k log n), O(k), 2 -k],

subsuming theorem 3.1 above. Specifically, with k = O(log n), this yields

1
NP C MIP[2, O0(log2 n), O(log 2 n), O(log n),-]. (3.4)n

It is natural to ask if pseudo-random techniques, like those used to improve theorem 2.5 to theorem 2.6, can

be applied here to prove the following conjecture.

Conjecture 3.1 NP C MIP[2, 0(log n), O(log n), O(log n), 1].

Feige and Kilian [40], however, offer evidence that such attempts are unlikely to be fruitful. Notice that

realization of error is incompatible with randomness or answers of size o(log n). Furthermore, if the ques-n
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tion length is o(log n) an easy recursive argument2 shows that NP C P. Hence such a proof system (if it

exists) is optimal.

2 Such an argument requires that the other parameters are not allowed to escape from the O(log n) envelope.
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Chapter 4

Lower Bounds for Approximation

Algorithms

4.1 Set Cover is Hard to Approximate

As an example of the application of this holographic proof machinery to approximation algorithms, we study

the SET COVER problem. A set system S is a tuple (S; {S1,... , Sk}) where each Si C S. The SET COVER

problem is that of determining, given a set system S and a natural c if there is a cover of S using c sets from

{S, }. Formally,

SETCOvER de-f (S, {S, i E I},l) I (S; {S i E I}) is a set system and 3J C I, lJl < 1, U Sj = S.

SET COVER was among the first problems shown NP-complete [66]. For a set system S = (S, {S1, ... , k } ),

let opt s denote the smallest cardinal number for which there exists a cover C of size opt s . In 1974, Johnson

[65] gave a In n + 1-approximation algorithm for SET COVER, that is, a polynomial time algorithm which,

given a set system S, produces a cover (Sj)jeJ where IJI is at most opts(lnn + 1). Lund and Yannakakis

[74], using [71, 42], demonstrate the following hardness results for SET COVER:

Theorem 4.1 ([74]) There exists c > 0 so that SET COVER cannot be approximated to within c unless

P = NP.

Theorem 4.2 ([74]) For c < , SET COVER cannot be approximated to within c log 2 N unless

NP C DTIME[nP° 'Y'ogn].
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We shall adapt the proof of 1741 in order that we may apply it to our (more efficient)four prover framework

(they work with two provers). We shall also investigate the combinatorial core of their argument and (as they

suggest) offer a tighter (but probabilistic) construction of their key element. This study will yield strengthened

versions of theorems 4.1 and 4.2. Specifically we shall prove the four theorems below. Theorem 4.3 improves

theorem 4.1 above. Theorems 4.4 through 4.6 are a sequence of hardness results demonstrating increasingly

strong containments (for NP) based on increasingly stringent antecedents. None of these are directly compa-

rable to theorem 4.2 (except for 4.6 in the range c E (0, )). Of course, if one is convinced that NP requires

exponential time even when randomness is available, there is no distinction between these (equally false) con-

sequents and one concludes that SET COVER cannot be approximated to within log 2 n. It is worth noting

that this is remarkably close to the (In n + 1) .7 log2 n upper bound cited earlier.

Theorem 4.3 For all c > 0, SET COVER cannot be approximated to within c unless

P = NP.

Theorem 4.4 For all c < , SET COVER cannot be approximated to within c log2 n unless

NP C RTIME[n P " 'Y log n].

Theorem 4.5 For all c < , SET COVER cannot be approximated to within c log2 n unless

NP C RTIME[n(' ° g log n)].

Theorem 4.6 For all c < , SET COVER cannot be approximated to within c log2 n unless

NP C DTIME[n ° ( l° gIogn)].

The proofs are reductions from "computing the acceptance probability of a MIP system" to "comput-

ing an optimal set cover." That is, given an appropriate MIP system, we show how fo build a set system

so that the size of the minimum cover reflects the acceptance probability of the MIP system. Of course, since

NP C MIP[., -, , , .] (for appropriate parameters), closely approximating the acceptance probability of an

MIP system is NP-hard. This will allow us to conclude that closely approximating the size of the minimum

set cover is hard.

4.1.1 (m, 1) Set Systems

The reduction we use shall require some combinatorial machinery, which we choose to develop first. The

basic object is the following:

See §4.3 for recent work in this area.
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Definition 4.1 A setsystem B = (B, {B 1,..., Bm }) is said to bea (m, l) set system ifforany cover(Aj)jE J,

.I C I and Aj E {Bj, j} we have that IJI > 1.

Lund and Yannakakis [74] give a deterministic construction of (m, 1) set systems with universes of size

0(2 2 1m2 ).

Theorem 4.7 ([74]) For all m, I E there exists an (m, ) set system with universe of size 0(2 21 m2 ) com-

putable in time O(poly(2 2 1 m 2 )).

Applying the probabilistic method (see [2] for a beautiful exposition on this subject), we demonstrate the

existence of (m, 1) set systems with universes of size at most 2' + (ln m + 0(1)).

Theorem 4.8 For all m, , there exists a (m, 1) set system with universe of size at most 21 + 1(0(1) + In m).

Furthermore, there is a constant c so that for IBI > 2' + l(ln m + c), selecting each B, independently and

uniformly at random among the sets in 2 B,

3
Pr [(B;B1,... ,Bm) isa (m,l) set system] > 3.

{B,IEI}4

Proof: Notice that independently placing each b E B inside Bi with probability 2 induces the uniform

distribution on 2 B
. For a subset A C B and s E {0, 1}, define

Asdef A ifs=O

A if s=1

For each J C I df {1, . ,m} of size I and s: J - {0, 1}, let E(J, s) be the event that UjEJB ij) = B.

Then, for any J and s,

Pr [E(J; s)] < (1 - 2-1)IBI
{B, iEI}

There are 21 ( 7) such events, so

Pr [(B, {B, I i E I}) is a (m, I) set system] > 1 - Pr [V E(J, s)]
{B, JiEI} {B.iEII} J,

> 1- 2(1- 2-1)IB > 3

when IBI > 2 + l(Q(1) + n m). (Coarsely approximate ( ) by m'.) O

We shall use the following technical lemma about (m, 1) set systems.

Lemma 4.1 Let B = (B, {Bii E I}) be a (m., 1) system (so that I = m). Fix s E N and define J =

{J I J c {1,..., m} , IJI < s}. Let (Ck)kEK be a cover of B so thatfor each set Ck we have either Ck E

{B, i E I} or Ck = UjeJBj for some J E J. Suppose that in addition, the cover {Ck } is non-trivial in
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the sense that if UjBj appears in {Ck } then at least one of these Bj is absent. (That is, {Ck } does not cover

by simply containing Bi, ... , Bi., and U=x Bi,.) Then IKI > 1.

Proof: Notice that the case when s = 1 is just a restatement of definition of a (m, ) set system. The

case s = 0 is immediate. Consider s > 2, and let (Ck)kEK be a cover as in the statement of the lemma.

We shall make a new cover, (C)kkEK , so that each C E {B' I i E I, s E {0, 1}} and for all i, {B2 , Bi} ¢

{Ck I k E K}. Then we shall have that IKI > 1, as desired. Since (Ck)kEK is non-trivial, with every element

Ck of form Ck = U3EJBJ, there is an "excluded" element ek E J so that Be,, {Ck I k E K}. Define

Bek if Ck = UjEJB

Notice that (Ck)kEK is a non-trivial cover with elements drawn from {B' } and hence has size at least I so

that IKI > 1, as desired. 0

4.1.2 Canonical Proof Systems

As a second technical preliminary step, we shall massage the proof system of theorem 3.1 into a particularly

convenient form.

Definition 4.2 (Canonical Form) For a MIP[p, r, q, a, e] verifier V = (Q, C), define, for each i E

{ 1,..., p}, Q, to be the space of possible questions to the ith prover and Ai to be the space of possible an-

swers from the ith prover. V is said to be canonical if

* (Functionality)for each random string r and answer al, there is a unique vector (a2 , . , ap) so that

C(x, r, al,..., a) accepts,

* (Uniformity)for all i E { 1,... , p}, the distribution induced by Q on Qi is uniform,

* (Question space equality) for i E {1,... , p}, the sets Qi of possible questions to the ith prover are

identical, and

· (Answer space disjointness)for i,j E {1,... , p} and i j, A, n Aj = 0.

Theorem 4.9 Let L E NP and k(n) reasonable. Let h(n) = max(k(n),loglogn). Then L has a

MIP[4, r, q, a, 2- k] canonical verifier where r = O(k(log n) + poly(h))), q = O(r), and a = poly(h).

Proof: We work with the system of theorem 3.1, which already satisfies conditions (Functionality) and

(Uniformity). To achieve (Question Space Equality) we simply inflate each question space to Q1 x .. x Qp.

Formally , define V' = (Q', C') to be a verifier which generates R 1, R2 , R3 and R4 , independent random
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strings of length r, so that

C' =C

Q'(x, R1R 2R3 R4)i = (Q(x, R,.(l) ), Q(x, R,.( 2))2, Q(x, Rn.(3))3, Q(x, Rr.( 4))4)

where r = (1234) E S4 . To achieve (Answer Space Disjointness), simply require that each prover appends

its name to its answer. 0

4.1.3 The Set Cover Reduction

What follows is an adaptation of the reduction in [74] to our four prover framework.

Lemma 4.2 Let SAT E MIP[p, r, q, a, E]. Define m(n) = Hi AI and let 1: N -, N be reasonable. For

each m and 1, let 3m,1 = (B, {B i I i E I}) be a specific (m, 1) set system. Then we may associate with each

instance of SAT an instance S of SET COVER so that

I. if E SAT, then opts, < i Qil, and

2. if q q SAT, then opts,, > (1 - elP)L Z i IQi

where the number of sets in S is p2O(r+a+I). This transformation, modulo the construction of B3m,1, is com-

putable in time poly(n, p20(r+a+l)). Notice that the definition of S depends both on I and {t3m,1 }, the set

system family selected for the mapping.

Proof: Let VSAT be the canonical MIP[p, r, q, a, e] verifier for SAT. Fix a formula 0 of size n. Let Ai C

{0, 1}'a denote the set of possible answers from prover i. These are the disjoint sets promised by the (Answer

space disjointness) condition in definition 4.2. Let R def {O, 1} r be the space of random strings for VSAT.

For each (random string) p E R and each al E A1 we let UA(p, Al) denote the unique vector of answers

(A 2 , · ·. , Ap) so that C(0, r, Al, .. , Ap) = accepts, if this vector exists (otherwise UA(r, Al ) is undefined).
def 2 _ pDefine m = 2a > Eip

S, the SET COVER instance associated with 0 is defined as follows. The base set S of the instance is

S = (S, S) associated to 0 is defined by S de R x B. Recalling the notation introduced in lemma 4.1,

define J = {J I J C {1,... ., m} , I JI < p - 1}. The sets of the system shall be the following. First, for

each q1 E Q1 and each al E Al we have the set

S(1, q1,al) =f {(R, b) E S I q = QSAT(0, P)i, UA(p, al) = (a2,... ,ap) is defined, and b E UP=2 Ba,}.

Second, for i E {2,... , p} and qi E Q,, ai E A, we have the set

S(i, qi, ai) - {(R, b) E S qi = QSAT(qb, r)i and b E Ba, }.
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Proof of 4.2(1). Suppose E SAT. Let (F1 ,..., Fp) be prover strategies with which V accepts with

probability 1. Consider the collection of sets

C = S(i, qi,Fi(qi)) I i E 1,... p} ,qi E Qi}.

Then C covers and ICI = EP=1 I IQil, as desired.

Proof of 4.2(2). Suppose b ¢ SAT, and let C = {Ck I k E K} be a cover of S. We begin by summarizing

some notation and definitions that will be used in the proof.

A(i,qi) = {ai E Ai I S(i,qi,ai) E C} fori E {1,... ,p},qi E Qi

weight(i,qi) = IA(i,qi)I fori E {1,... ,p},q, E Qi

weight(p) = -=1 weight(i, QsAT(O, p)i) forp E R

G = {peR weight(p)< l}

IRI
Those random strings p E R appearing in G are called good.

Intuitively, A(i, qi) is the set of answers to question qi which are indicated by the cover C. Then weight(i, qi )

is the number of different answers specified by C to qi, and weight(p) is the number of strings which are an-

swers to some question specified by R. It is important to note that weight(i, qi) could be more than 1, so that

C does not specify a unique answer to each question, and thus does not directly define "strategies" for the

provers. A random string p is good if the number of answers to the questions it specifies is at most 1.

Lemma 4.3 Fix a good random string p E G. Let qi = QsT(o, P)i for i E {1,..., p}. Then there exist

al E A(1, q1 ),... , ap E A(p, qp) such that CsAT(b, p, al, . · , ap) = accept.

Proof:

Let A(1) = a E A(1, q1) UA(p, a) is defined}. For i E {2,... ,p} let A(i) = A(i, qi). C is a cover

of S, so the sets S(i, a,, a), for i E {1,... , p} and a E A(i), must cover {(R, b) E S I b E B}. We now

"project" this cover onto the second coordinate. That is, let ) consist of the sets {b E B} (p, b) E S(i, qi, a),

for i E {1,... ,p} and a E A(i). D is a cover of B all the sets of which are drawn from

{Bi i E I} U{UjejBj I IJI =p- 1, J C I}

so that we may apply lemma 4.1. Since 1D) < 1, there is a sequence (a2 ,... ,ap) so that

UjP2 Ba, Ba2 , ... , Bap E . The (Answer space disjointness) condition implies that

a2 E A(2),. ,ap E A(p).

Moreover, there must be an a E A(1) such that UA(p, al) = (a2 ,..., ap).

a
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Claim 4.1 There exist provers F1 ,... ., Fp which make V accept 0 with probability > 6 - I-P

Proof. For i E {1, ... .,p} and qi E Qi order the elements of A(i, qi) in some canonical fashion. For

each i E {1,... ,p} and j E {1,... , l} we then define a prover strategy Fi,j: Qi - {0, 1}" as follows:

Fi, (Q) is the j-th element of A(i, qi) if this set has size at least j, and undefined otherwise.

If p E G then weight(i, QSAT(k, P)i) = IA(i, QSAT(O, p)i)l < I for each i E {1,... , p}. By lemma 4.3 it

follows that for each p E G, there exist jl, .. ., jp E {1,..., l} so that

CSAT (, p, F1,jl (QSAT (, P) 1) )... Fp,jp (QSAT((, P) )) = accept.

Thus there exist jl,... , jp E {1,..., l} so that

I {R E G I CSAT(, p, F,jl (QSAT(q, p, 1)) ... FF.J,, (QSAT( (, p)p)) = accept} I> l - p IGI,

and thus F1 ,3,., , FP,jp are yield the desired acceptance probability. O

Lemma 4.4 ICI > (1 - 6) *- -. i=l IQil.

Proof. We know that the sets Q1,... , Qp are all of the same size. Let a be this common size. Making

use of the (Uniformity) condition (cf. definition 4.2) we have

E weight(p)
pER

p

= E E weight(i, QsAT(, P)i)
pER i=1

a RI E E weight(i,qi)
i=1 q,EQi

= IR IC.O:l 

On the other hand, EPER weight(p) > pEG weight(p) = (1 - 6) IRI 1.

a = E =1 IQI , which proves the claim. 

Thus CI > [1 - 6]cl. But

The bound opts, > (1 - elP) ·
. EP' 1 I Q il now follows because (S') l - p is at most the error probability

e. 

Application of lemma 4.2 to the (m, 1) set systems of §4. 1.1 yields theorems 4.3 through 4.6:

Proofof Theorem 4.3: Fix c > 0 and set = 10c. Then select k so that 2 -k4 < 1. Invoking theorem 4.9,*n2horm49

SAT E NP C MIP[4, O(log n), q, O(log n), 2- k]
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where the verifier VSAT may be assumed to be canonical. Now, consider a formula . Using the (m, 1) set

system construction given in [74] (cf. theorem 4.7), the set system Sg may be constructed in time polynomial

in 11. We have that c < (1 - el) so that approximation of SET COVER to within c is enough to determine

if 0 E SAT, as desired. 0

Proof of Theorem 4.4: (Lund and Yannakakis [74] suggest this randomized construction.) Apply the proof

of [74] using the randomized (m, 1) set system construction of theorem 4.8. Since one cannot be certain that

the set system so constructed is indeed an (m, 1) system, this plan yields a probabilistic algorithm for SAT

with two-sided error (BP C type error). Since SAT is self reducible (see [13, 14], for example), this may be

(naturally) altered to yield a one-sided probabilistic algorithm by incrementally instantiating the variables of

0 and checking each new instantiation with the two-sided randomized algorithm. Specifically, the two-sided

algorithm may be "pumped-up" to yield error at most 2 - n . Given 0(x 1 ,... , x,), one may apply this new,

robust algorithm to both (0O, x2 ,... , xn) and p(1, x2 ,..., , ). If q E SAT, at least one of these is likely

to be accepted and the the process can be repeated with the next variable. When 0 E SAT, this instantiation

process provides a witness with high probability. Clearly, when 0b ' SAT, the process does not provide a

witness. This gives a one-sided probabilistic algorithm for SAT. 0

Proof of Theorem 4.5: Fix c E (0, -). From theorem 4.9,

SAT E MIP[4, O(log n log log n), q, O(log n log log n), log - 7 n]

where the verifier may be assumed to be canonical. Let p (0, - c) and set I = c(r + 2a),/. Using the

probabilistic (m, 1) set system construction given in theorem 4.8), the set system So may be constructed (with

high probability) in time nO( l°
g log n). Recall that the size of the set system involved is N = 0(2l+2a+r).

Notice that when c log 2 N < (1 - elp) -, we may use the hypothesized c log n-approximation algorithm to

solve SAT in randomized time n° (lo g log n). It remains to check that c log 2 N < (1 - el5 ) . We have that

clog2 N = cl + c(2a + r) + 0(1) = cl +p +O(1) = + (1).
4

But el4 = o(1) so that (1 - E14 ) = (1 - o(1)) > clog 2 N, as desired. As above, this may be altered to

provide one-sided error and we conclude that NP C RTIME[nO(l° g l° g
n)], as desired. o

Proof of Theorem 4.6: Fix c E (0, 8). From lemma 4.9,

SAT E MIP[4, O(log n log log n), q, O(log n log log n), log - 7 n]

where the verifier may be assumed to be canonical. Let / E (0, - 2c) and set I = c(r + 2a)/3. Using

the deterministic (m, 1) set system construction given in [74] (cf. theorem 4.7), the set system S4 may be

constructed in time nO(og log n). Recall that the size of the set systems involved is N = 0( 2 2L+2a+r). Notice
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that when clog2 N < (1 - P ) , we may use the hypothesized clog n-approximation algorithms to solve

SAT in time n0( ° g ° g n). It remains to check that clog 2 N < (1 - l)-. We have that

clog2 N = 2cl +c(2a +r) +0(1) = P1 + 2cl +0(1)= +0(1).

But el4 = o(1) so that (1 - el4 ) = (1 - o(1)) > c log 2 N, as desired.

4.2 Other Lower Bounds

The holographic proof machinery of Chapter 3 may be applied to improve a number of other lower bounds for

approximation algorithms. To begin with, there are a number of problems directly related to SET COVER (see

[74, 69]): HITTING SET, HYPERGRAPH TRANSVERSAL, DOMINATING SET, MINIMUM EXACT COVER.

We shall also apply the MIP machinery of theorem 3.1 to the QUARTIC PROGRAMMING problem. We also

work with problems the reductions for which naturally operate on PCP system related to the containment

NP C PCP[p, O(log n), O(log n), 1, 2] for a specific constant p. Theorem 3.2 shall apply in these cases.

Problem of this sort are CLIQUE, CHROMATIC NUMBER, and MAX 3SAT (and those problems in MAx-SNP

[76]).

4.2.1 Quartic Programming

Quartic programming is the problem of maximizing an element f E Q[zx ,.. , z,] over a convex body e de-

fined by linear constraints AY = b. For "continuous" optimization problems, we follow [5, 88, 87] and aban-

don the normal notion of approximating within afactorof maxe f and adopt the following notion. A 6 E [0, 1]

approximation algorithm for a continuous approximation problem (specifically quartic and quadratic program-

ming in this thesis) is a polynomial time algorithm which produces a number a so that Ilmaxe f - all <

6 Ilmaxe f - mine f 1. Notice that in this framework, an exact algorithm is a 0-approximation algorithm and

any algorithm which always outputs an element of e achieves factor 1. Since quadratic programming is a

special case of quartic programming, we have the following results from [19, 42]:

Theorem 4.10 There exists c > 0 so that no c-approximation algorithms for quartic programming exists

unless P = NP.

Theorem 4.11 There exists a constant c so that no (1 - 2
° g o ')-approximation algorithm for quartic pro-

gramming exists unless NP C DTIME[nPO° Y log n].

Using the machinery of Chapter 3 and reworking the proofs in [ 19] one can improve the first of these results

to the following.
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Theorem 4.12 Let c E (0, 1) be constant. Then there is no c-approximation algorithms for quartic program-

ming unless P = NP.

4.2.2 MAX CLIQUE

Zuckerman [90] shows that NP C PCPaV[t, O(log n), O(log n), 1, ] implies that MAX CLIQUE cannot be

approximated to within n ,+ unless NP C BPP. Coupling this with theorem 3.2 above yields the following.

Theorem 4.13 There is no n i -approximation algorithm for MAX CLIQUE unless NP C BPP.

This improves previous results (obtained by applying the reduction of [38] to the proof systems of [3] with

pseudo-random error-reduction machinery like that described in [30, 64, 16]) which concluded that approxi-

mating MAX CLIQUE to within n' was NP-complete for some (small) e.

4.2.3 CHROMATIC NUMBER

Lund and Yannakakis, in [74], give lower bounds for approximating CHROMATIC NUMBER: the show that for

some constant e close to zero, approximating CHROMATIC NUMBER to within n is NP-complete. Applying

their proofs and machinery from [90] to the proof system of theorem 3.2 yields the following results.

Theorem 4.14 There is no n 146 -approximation algorithmfor CHROMATIC NUMBER unless NP C BPP.

Theorem 4.15 There is no n 114 -approximation algorithm for CHROMATIC NUMBER unless

NEXP C BPEXP.

4.2.4 MAX 3SAT and MAx-SNP

Again relying on theorem 3.2, we give improved hardness results for approximating MAX 3SAT. Tracing

through the construction of [3, 18], we have the following.

Theorem 4.16 There is no -- approximation algorithmfor MAX 3SAT unless P = NP.

Theorem 4.17 There is no -approximation algorithm for MAX 3SAT unless EXP = NEXP.

4.3 Recent Improvements

Many of the lower bounds discussed in this Chapter have undergone spectacular improvement since the de-

velopment of the machinery we have described. As described in §3.5, the basic proof system machinery has

been tightened, effecting an improvement in the associated lower bounds. In some cases, new reductions have

been discovered which prove stronger conclusions.
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Since the SET COVER problem has played a central role in this exposition, let us start there. Uriel Feige,

in [37], has actually shown a In n threshold for approximability of SET COVER: he proves that there is no

(1 - e) In n-approximation algorithm for SET COVER unless NP C DTIME[nO( ° g los n)]. Also, new deter-

ministic constructions of (m, 1) set systems have been given by Naor, Schulman, and Srinivasan [75].

The observation on the part of Feige that reductions like the one described at the end of §2. 1.1 should be

moulded around a new parameter,free bits, insitgated a second wave of results. In some cases, focus shifted

away from the reduction machinery and back to the proof system architecture. Substantial improvements were

gleaned by mutating the available PCP and MIP proof systems on a case-by-case basis in order they might

engage most favorably with specific reductions. Bellare has written a survey article discussing these advances

[15].

Following much work [23, 90, 39, 20, 17, 61] Hastad [60] demonstrated the following.

Theorem 4.18 For all > O, there is no nl--approximation algorithm for MAX CLIQUE unless NP =

coRP.

Notice that this is impressively close to the io - approximation algorithm of Boppana and Halld6rsson [26].

CHROMATIC NUMBER has also gathered much attention [39, 48, 67, 17], culminating in [41] where Feige

and Kilian show the following.

Theorem 4.19 For all e > O, there is no n 3 -E-approximation algorithms for CHROMATIC NUMBER unless

NP = CORP.

The best known approximation algorithm for CHROMATIC NUMBER is due Halld6rsson [54] and achieves

factor log3 n

MAX 3SAT has also seen improvement. Following [39, 20], Bellare, Goldreich, and Sudan [17] have

shown the following.

Theorem 4.20 There is no 1.038-approximation algorithm for MAX 3SAT unless P = NP.

Sorkin, Sudan, Trevisan and Williamson [85] have given a 1.258-approximation algorithms for MAX 3SAT.
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Chapter 5

Relativization and the Random Oracle

Hypothesis

The notion of relativization was introduced by Baker, Gill, and Solovay [ 12] in an attempt to explain the dif-

ficulty of the famous P - NP question. The attaching of oracles to different classes of machines, in general,

is a method for exaggerating (perhaps small) differences in the computational capacity of these classes. One

way to lend credence to a conjectured relationship between two complexity classes is to exhibit an oracle rel-

ative to which the conjecture holds. Thus, the presentation of contradictory relativizations of a relationship

between two complexity classes has been a standard tool for arguing the difficulty of precisely determining

that relationship. The notion of relativization was strengthened by the consideration of random oracles [22].

In the words of Bennett and Gill:

... random oracles, by their very structurelessness, appear more benign and less likely to distort

the relations among complexity classes than the other oracles used in complexity theory and re-

cursive function theory, which are usually designed expressly to help or frustrate some class of

computations.

This led them to formulate the RANDOM ORACLE HYPOTHESIS [22]: the relationship between two natural

complexity classes is preserved with probability I under relativization by a random oracle. In this new frame-

work, a conjectured relationship may be supported by showing that it holds with probability 1 relative to a

random oracle. Obviously, this framework precludes the existence of contradictory (probability 1) relativiza-

tions.

Counter-examples to the random oracle hypothesis have been demonstrated and discussed in [55, 56, 28,

57, 70, 79]. Recently, the random oracle hypothesis suffered a particularly crippling blow: the classes IP

and PSPACE were shown to be equal [73, 82] despite separation with probability 1 [47, 28]. This proof that

IP = PSPACE relies heavily on algebraic techniques, the cause of this nonrelativizing behavior. The class
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PSPACE has recently been given a new characterization in terms of Probabilistically Checkable Debate Sys-

tems [31, 33] also using such algebraic techniques. We examine the relativized behavior of IP and PSPACE

in comparison with the classes defined by these debate systems. We determine a natural boundary (in terms

of certain parameters of the debate systems) separating direct-simulability and inequality (with probability 1).

In addition to offering more evidence that these algebraic techniques do not relativize, these boundaries indi-

cate that this new characterization of PSPACE is essentially stronger than the characterization of PSPACE

by interactive proof systems-i.e., under relativization by a random oracle, the class of languages recognized

by these debate systems is strictly smaller than that recognized by interactive proof systems. We also study

these relationships at the EXP level.

Oracles are attached to given enumerations of machines. When we speak of C ° where C is a complex-

ity (language) class and O an oracle, we shall mean {L I C = L(M ° ) } where {Mi} is an enumeration of

machines such that {L(M,)} = C.

Recently, using the machinery of [3], Condon et. al. gave a new characterization of PSPACE in terms of

Probabilistically Checkable Debate Systems, defined below.

Definition 5.1 For a function f: * - E*, let f(x) _- f(x) x. A k-player is a function P * -, k.

Two k-players, P1 and P2, define an -debate D1(P1 , P2 ) - f P (P2 (P1 ... ( A)... )).

Definition 5.2 ([32, 33]) Define PCDS[r(n), a(n)] to be the class of languages L for which there exists a

probabilistic polynomial time Turing machine V and polynomials q and I so that

* x EL 3P 1,VP2 , Pr [VD(P1P2)[x;R] accepts] = 1

x L VP1, 3P2, Pr [VD(PP2)x; [;R] accepts] < §

where P1 and P2 are q(n)-players, D(P 1, P2 ) = Di(n)(P 1, P2 ) and, in either case, the verifier V uses at

most O(r(n)) random bits and examines at most O(a(n)) bits of D(P1, P2), the debate generated by the two

players P1 and P2. If we change the reject criteria so that the second player acts randomly, that is

x L VP1 , Prc P [D(PP2)[x; R] accepts] < _
REcoins, P2

then we obtain the class of languages with Random Probabilistically Checkable Debate Systems [33] which

we denote RPCDS[r(n), a(n)].

As mentioned above, we have the following two theorems relating these debate systems and PSPACE.

Theorem 5.1 ([32]) PSPACE = PCDS [poly n, poly n] = PCDS [log n, 1].

Theorem 5.2 ([33]) PSPACE = RPCDS [poly n, poly n] = RPCDS [log n, 1].

We concentrate on the behavior of these classes with respect to a random oracle O E Q = 2
. The

probability measure p on SI is defined by independently placing each string in the oracle with probability -.

We begin by considering the relationship between PCDS[r(n), a(n)] and PSPACE.
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5.1 The Relativized Relationship between PCDS [r(n), a(n)] and PSPACE

Since we are comparing PSPACE with smaller classes we consider PSPACE to be provided with the weak

oracle-access mechanism, that is the oracle tape is a work tape.

Theorem 5.3 O C E*, PCDSO[0, poly n] = PSPACE ° .

Proof. By simulation. O

Theorem 5.4 Vk, ProEn [PSPACE ° = PCDSO [poly n, nk]] = 0.

Proof.

We prove in the lemma below that with probability 1, NP ° is not even contained in PCDS ° [poly n, nk].

Since VO, NP ° C PSPACE °, this shows that, with probability 1, PCDS [poly n, nk ] and PSPACE ° are

different.

Lemma 5.1 Vk, ProEn [NPO C PCDSO[poly n, nk]] = 0.

Proof: For an oracle O, define

0 = {x I Vt E {0,... .,xl - 1),x1Ot E O}.

A polynomial-time machine with access to O can efficiently sample from 0. If O is a random oracle, then

Vx, PrOn [x E 0] = 21I so that Vn, ExpOE [ n ,n |] = 1. For an oracle A, define

L3(A) = {1'n I 3y E En n A}

Clearly, VO, L3(0) E NP ° . We show that Proen [L3 (6) E PCDS°[polyn, nk]] = 0. Fix an enumeration

of PCDS ° [poly n, n k ] verifiers {Vi I i E N}. Let V be a verifier of this collection which, for n > no, takes

at most ni time, queries at most cnk debate bits and uses some fixed polynomial, r(n), amount of randomness.

For m, i E N, define

Q(n) = {°~ E Q |1 2.16. n E- = sd.

Then (Q(m) ) = (1 - 1 )2' 1. Let n be large enough so that 2n < -. Let n > n ef max(no nl)
2'

and consider the behavior of V ° on 1n with an oracle 0 selected from (°o) . One of the following three cases

applies:

1. If Pr [3PP R n [ViOD( '*P2)[ln;R] accepts] = 1] > , then

Pr [3Pi,VP2 , Pr V.OD(P 2)[1n; R] accepts] = 1 A ln L() >
OE · REcoins [1 R IL( ]

4 r [O E n2kj 4e (5.1)
40E IoE~ 4e'
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2. If

Pro) [3PiVP 2, Pr [Vi (P1 2)[l1n;RI accepts] E [,1) > - (5.2)
OET(tO) L REcoins 3 5.2

then V, is behaving improperly, and evidently does not accept L3 (0) for this i fraction of oracles.

3. If PrO E:) [VP1,3P2,PrREcoins [v/OD(P"P2)[ln; R] accepts] < >] 1- 2 then we show that

this set of oracles on which V, is successful induces a set of oracles on which Vi errs. To begin with,

we show that for any oracle O, most questions that Vi asks of 0 are asked on very few random strings.

Fix an oracle O. Let us consider the behavior of Vi on a particular random string R. Considering all of

the possible 2cnk responses to Vi's cnk queries1 to D(P 1 , P2 ) and noting that on any one path V, may

only query n ' strings of O, we have that on R there are a total of at most n' · 2 cn k strings of O that V,

might query. We then have that

n . 2cn k
Pr [V°[I';R] queries q] < 2n

Define

Z(Q, O) {R E {O,1 }r(n) 1 3q E Q, 3D C VOl R]) queries q

Then

Exp [R(({q},O)j1] < 22
qE F,.

2k 2n

Invoking Markov's inequality yields

vi', Pr [ilz({ 2. n 2r(n) 2cn ] 1

Define Sq df {ql, q10O, . . ,q1l}. Then, because Vql q2 E 2cnl, Sg n Sq 0 we have that

,o Pr~ Td(Sq, 0) > 2 n 2r(n)2cn k 1
YO, Pr > -

qEE11"2 [JR(Sq'O)l 2n - -2 2'

1 There are at most 2n ' responses to Vi's queries even if Vi is adaptive (so that the i + 1st query may depend on the answer to the
ith query).
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Now, define Q(1) ef {O E n ml = 1}. Then ~((1 )) 1. Let E(O) be the event that

VP1, 3P2, PrREoias [Vi°'D(P'lP2)[in; R] accepts] < . Then we may compute

Pr [E(O) A R(Sq,O)I < 2 2(n)2 ] 
OEO2(O) qEEn~k 2n

Pr
OE(O)

nI2

I Z(q,0)1 2* ' 2 '(n) 2 1n
[E(O)] + OPrz [Z(SqO)1 < 2n2ni k·2") - 1

OEW(O) qEn2,2k

-) (1-(1I 1(-(1- 1 )- 12e 2
1

4

When the two above events occur we can conclude that

VP1,3P 2 , Pr [V.iOuS'D(Px1P2)[1n;R]accepts ] < 
2 ni 2 n

+
2n2 k

Notice that if O and q are chosen uniformly from Qf) and Em , respectively, then O U Sq is uniform on

Q.(). Therefore, for n > ii,

P) VP1 , 3P2 Pr V°uS',D(PP2)[ln; R] accepts < 1 > 4
OESn1) REcoins I Q 4

n21n 

Since 0 E 2) implies ln E L(O),

Pr [ Pr [VOD(P1.P2)[in.R] $cps 1 A a ep
OE [ 2 REcoins ccep 

1 1
-4 e

(5.3)

Let r, be the event that 3P1 ,VP 2, ViO'D(PI'P2)[1an] accepts ;==- In E L3(6). From (5.1), (5.2) and

(5.3) it follows that for n > i,
1

Pr [n] < 1 - -.
OEn 4e

Furthermore, for m > ni, rn and rm are independent (or use Lemma 1 of [22]). Hence, for any Vi,

Pr [L(V) = L3()] <
00

I Pr [F2 ] = O.
j=n

Finally,

Pr [3Vi°,L(Vi ° ) = L3(0)] < PrOEn [. p,~(vO)= La~B~ COEf20~12~~~~~~~~~~~~~~~~~[L(Vio) = L3(O)] = 0
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so that

Pr [NPO C PCDSO [poly n, nk]] = 0.
OEf2

O

Reiterating, from the fact that O, NP ° C PSPACE ° and the above lemma we have the desired theorem.

O

5.2 The Relativized Relationship between PCDS[r(n), a(n)] and IP

Theorem 5.5 Consider the two classes IP and PCDS[poly n, nk]. We have

1. PrOEn [IPO C PCDSO[poly n,nk]] = 0,

2. PrOEn [PCDSO[poly n, nk ] C IPO] = 0.

Proof:

1. Using Lemma 5.1 and the fact that VO E , NP ° C IP ° we have the desired statement.

2. This follows from [29] and the fact that VO, coNTIME°[n] C IP ° #= CONP ° C IP ° .

0

5.3 The Relativized Relationship between RPCDS[r(n), a(n)] and IP,

PCDS[r(n), a(n)]

Theorem 5.6 VO, IP ° = RPCDSO [poly n, poly n] = RPCDS° [0, poly n].

Proof: By simulation. O

Consider the classes RPCDS[poly n, nk] and IP.

Theorem 5.7 Vk, ProEn [RPCDS°[poly n, nk] = IP °] = 0.

Proof: We have that VO, RPCDS°[poly n, nk] C PCDS°[poly, nk ] so that Lemma 5.1 yields the de-

sired result. 0

Theorem 5.8 For a(n) = w(log n),

Pr [PCDSO [r(n), a(n)] C RPCDS°[poly n, poly n]] = 0.
OE-
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Proof. VO, coNTIME°[a(n)] C PCDS [r(n), a(n)] but, by argument similar to that of Lemma 5.1,

one may show that

Pr [3L E coNTIME°[a(n)] - RPCDS°[poly n, poly n]] = 1.
OEf

5.4 The Relativized Relationship between PCDS[r(n), a(n)] and EXP

An oracle equating NP and EXP has been discovered by Heller [62].

Theorem 5.9 ([62]) 30 C E* so that EXP ° = NP ° .

Fortnow [44, 45] has shown the following theorem relating the existence of an oracle equating EXP and

PCP[0(1),log,logn, 1] to the P NP question.

Theorem 5.10 If 30 C E* so that PCP°[O(1), log n, logn, 1] = EXP ° then P $ NP.

We prove a similar result for the class PCDS [log n, log n].

Theorem 5.11 If 30 C S* so that PCDSO[logn, log n] = EXP ° then P PSPACE.

Proof: Let O be an oracle so that PCDS°[log n, logn] = EXP °. Assume, for contradiction that P =

PSPACE. Let L be a <p-complete language for EXP °. We show that L E P and conclude that P =

EXP ° , which contradicts the time hierarchy theorem [59]. Let V be a PCDS ° [log n, log n] verifier for L. We

construct D ° , a deterministic polynomial time machine so that L(D ° ) = L. Do, given input w, writes down

the entire computation tree T of V[w], answering V[w]'s questions to O by actual questions to O and branching

at those nodes where V[w] receives debate tape answers. Notice that choice of a pair (P1 , P2) determines a

path in T. This path is satisfied if V[w] accepts with these responses. Because V[w] uses O(log n) random

bits and receives O(log n) bits back from the debate tape, the total size of T is polynomial in lwl. T contains

no queries to O. D° would now like to determine if 3P1 , VP2, the induced path in T is satisfied. Fortunately,

this is a PSPACE decision problem, which can be solved in polynomial time because P = PSPACE. Hence,

L E PO and EXP ° = PO, contradicting the time hierarchy theorem. 0

5.5 The Relativized Relationship between MIP[.,.,.,., ] and EXP

Considering the relationship between NEXP and MIP[., , , ,,-] with the same lens we have applied to the

relationship between NEXP and PCDS, we obtain the following theorem.
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Theorem 5.12 if there exists an oracle 0 C S* so that

1
MIP°[O(log n), O(log n), O(logn), 0(1), 1 - ] = EXP°

poly n

then P $ NP.

Proof: Let O C E* be so that MIPO [O(log n), O(log n), O(log n), 0(1), 1 - ] = EXP. Assume, for

contradiction, that P = NP. We shall conclude that PO = EXPO, contradicting the time hierarchy theorem.

Let L E EXP °. By hypothesis, L E MIP ° [O(logn), O(logn), O(logn),O(1), 1 - ]. Let VO be

a MIPO [O(logn), 0(logn), O(logn), 0(1), 1 -- ] verifier for L. Then consider the polynomial time

oracle machine D ° which, on input x, computes the set

Q = q 3P1, ... , Pp3r, (V ° -*P1,..., Pp)[x; r] queries O with q}.

(Notice that IQI is polynomial since, depending on P 1 ,..., P,, and R, there are only polynomially many

computation paths of (VO + P1 ,..., Pp)[x; r], each of which may contain some polynomial number of

queries.) D ° then queries O to collect the answers {ai} to these questions Q = {qi} and would like to decide

if 3P1, P2 so that PrR[(V - P1,..., Pp)[x; r] = 1] where qi is answered by ai. Fortunately this is an NP

decision problem, and so is solvable in P. Then PO = EXPO, which contradicts the time hierarchy theorem.

Hence P # NP, as desired. 0

5.6 Direction for Future Research

The discovery of simulation techniqucs which do not relativize (with probability 1) is astonishing. This leads

us to question the meaning of relativization in general. One would like to distill the essential non-relativizing

ingredient of these algebraic techniques. This may be done by presentation of (perhaps contrived) complexity

classes with a somehow simpler (algebraic) proof of equality which exhibit this behavior. Alternatively, this

may be done by presentation of a new framework (perhaps just a new oracle-access mechanism [44, 45]),

analogous to relativization, in which these techniques behave well.
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