
Embedding Methods for Massing and Detail Design 
in Computer Generated Design of Skyscrapers 

Shouheng Chen 

Master of Architecture (200 1) 
University of Toronto 

Bachelor of Architecture (1 997) 
Shenzhen University 

Submitted to the Department of Architecture 
in Partial Fulfillment of the Requirements for the Degree of 

OF TECHNOLOGY 
Master of Science in Architecture Studies 

at the 
Massachusetts Institute of Technology 

JUN 1 5 2006 

June 2006 I LIBRARIES I 
O 2006 Shouheng Chen. All rights reserved 

The author hereby grants to MIT permission to reproduce 
And to distribute publicly paper and electronic copies of this 

Thesis document in whole or in part. 

Signature of Author: * ' - r v .  w 

Shouheng Chen 
Department of Architecture -- June 2006 

/ 
Certified by: 

L - - .- 

Takehiko Nagakura 
Academic Head, Design and Computation 

Associate Professor of Design and Computation 

Accepted by: 

Chairman, Department Committee on Graduate Students 





Thesis Readers: 

Axel Kilian 
Postdoctoral Associate 

Department of Architecture 
Massachusetts Institute of Techonolgy 

Martin Bechthold 
Associate Professor of Architecture 
Harvard Graduate School of Design 

Edward Dionne 
Senior Associate, Pelli Clarke Pelli Architects 

(Formerly Cesar Pelli and Associates) 





Embedding Methods for Massing and Detail Design 
in Computer Generated Design of Skyscrapers 

Shouheng Chen 

Submitted to the Department of Architecture 
on May 25,2006 in Partial Fulfillment of 

the Requirements for the Degree of 
Master of Science in Architecture Studies 

Abstract: 

This thesis proposes a new digital system to construct the massing and details of sky- 

scrapers. It extracts underlying rules and design conventions from significant projects in 

contemporary skyscraper design practice. These rules and conventions are translated into 

digital data and embedded in a system. The thesis demonstrates how to use this system to re- 

construct original designs as well as to generate new ones by means of transformation rules. 

It takes examples from the built skyscraper projects of Cesar Pelli and Associates as well as 

Norman Foster and Partners, and embeds their conventions and components to illustrate an 

implementation of such a system. 

In contemporary skyscraper design, sophisticated computer models are constructed in 

advanced engineering systems for the use of engineering analysis, but they contribute very 

little to the conceptual design of skyscrapers. The goal of this thesis is to propose embed- 

ded methods as an alternative approach and to develop a digital system that can both handle 

complex forms and enable architects to work more efficiently in the early stages of the de- 

sign process. The intention behind building such a system is to relieve architects from the 

repetitive work that is required by conventional CAD systems as well as to allow them to 

carry their previous expertise--well-established stylistic conventions and approved compo- 

nents--into the design of new skyscrapers. 

Thesis Advisor: Takehiko Nagakura 
Title: Associate Professor of Design and Computation 





Acknowledgements: 

I want to thank the following people for making my expe- 

rience at MIT significant: 

Takehiko Nagakura -- for providing excellent guidance 
throughout my thesis and for the productive collaboration 

in the Gyeonggi-do Jeongok Prehistory Museum compe- 
tition. I thank hiin for awarding me teaching assistant- 
ships and for giving me the opportunities to participate in 

his incredible research projects. 

Axel Kilian -- for his great support and inspiration and for 
his help on developing my thesis. I thank him for always 
being around to help. 

Martin Bechthold -- for his insight and enthusiasm in my 
thesis topic and for his participations in numerous thesis 

discussions. 

Edward Dionne -- for his extremely valuable practical in- 
put into my thesis and for sharing with me his knowledge 

of skyscraper design and construction. 

and my colleagues at MIT, for their willingness to discuss 
each other's work. I have truly learned a lot from these 

extremely valuable discussions. 





"Code is character. Code is the law." 

-- William J. Mitchell 





Table of Contents: 

Abstract 

Acknowledgements 

Chapter 1: Introduction 

1.1 Overview 

1.2 Problem Statement 

1.3 Purpose 

1.4 Scope 

Chapter 2: Background 

2.1 Historical Shortcomings of CAD Systems 

2.2 Complexity in Current Designs of Skyscrapers 

2.3 Knowledge-Based Systems in Architecture 

2.4 Related Work: Tkvisted Skyscraper 

Chapter 3: Case Studies 

3.1 Non-Structural Skin Projects 

3.1.1 Impact of Cesar Pelli in Curtain Wall Design 

3.1.2 Project One: Hong Kong International Finance Center 

3.1.3 Project Two: Petronas Tower 

3.1.4 Project Three: Cira Tower 

3.2 Structural Skin Project 

3.2.1 Norman Foster and Structural Diagrids 

3.2.2 Project Four: Hearst Corporation 

Chapter 4: Computational Approaches 

4.1 Structure of the Program 

4.2 Algorithmic Methods for Constructing Massing 

4.2.1 Profile Finding Method 

Typical Plan Profile Construction 

Level Finding 

Transformation Rules 

4.2.2 Point Finding Method 





4.3 Algortithmic Methods for Constructing Detail 

4.3.1 Associative Relationships between Position Points 

and Adjacent Points 

4.3.2 Component Construction 

4.4 User lnterface 

Chapter 5: Experiments 

5.1 Massing 

5.1.1 Types of Massing 

5.1.2 Constructing Massing in a Site Context 

5.2 Detail 

5.2.1 Types of Details 

5.2.2 Constructing Details on a Selected Surface 

5.2.3 Constructing Details on Selected Levels 

5.2.4 Construct Details in Different Resolution Settings 

5.3 Incorporation of Massing and Detail 

New Design One: Drum-Shaped Tower 

New Design Two: New Twisted Tower 

Chapter 6: Conclusion and Future Work 

6.1 Conclusion--Towards a New Digital System 

for Skyscraper Design 

6.2 Future Work--To Expand the Capacity of the System 

Appendices 

Appendix A: VB.Net 

Appendix B: Rhinoscript 

Appendix C: Table of Figures 

Bibliography 





Chapter 1: Introduction 

1.1 Overview 

My passion in using computer programs to gener- 

ate three dimensional models and to find design solutions 

for particular design problems convinced me to write this 

thesis. 

The increasingly formal, technical, and ecological 

complexities in skyscraper design and construction is 

the catalyst for the development of new digital systems. 

These new systems have great impact on today's engi- 

neering advancement, typically that of structural systems 

of skyscrapers. Sophisticated computer models, gener- 

ated by these systems, are efficient and effective ways to 

analyze and evaluate complex design situations. 

Because these systems are primarily developed by en- 

gineers and mainly used in engineering applications, they 

contribute very little to the early stages of the conceptual 

design of skyscrapers. Architects are still using conven- 

tional CAD systems that are far less powerful than those 

of engineers. These conventional systems are very inef- 

fective in handling repetitive and non-standard compo- 

nents, which are the major features of current skyscraper 

design and construction. 

The goal of this thesis is to propose embedded meth- 

ods as an alternative approach to construct sophisticated 



computer models for architectural design purposes. The 

core idea is to provide architects with a digital system that 

can both handle complex forms (the massing) and achieve 

efficiency in the early stage of the design process. The 

intention behind building such a system is to relieve ar- 

chitects from the repetitive work that is required by con- 

ventional CAD systems as well as to allow them to carry 

previous expertise--well-established stylistic conventions 

and approved components (the detail) --into the new de- 

sign of skyscrapers. 

The development of such a new system demands an 

in-depth understanding both of what the well-established 

conventions and the approved components are and of how 

they can be embedded into the system. In order to do so, 

the thesis uses Cesar Pelli and Norman Foster's projects 

as a point of departure and investigates techniques that 

these two leading designers have developed through de- 

cades of practice. Then, these techniques are translated 

into digital data and embedded into the proposed system. 

In the process of developing such a system to re-construct 

the original design, the thesis identifies the underlying 

rules for the re-construction and demonstrates a way to 

expand the capacities of the system to construct new sky- 

scrapers. 



1.2 Problem Statement 

My previous academic and practical work has varied 

in program and complexity, but all of my design share 

one common notion: architectural surfaces function as a 

device to blur the boundaries between exterior and inte- 

rior and promote visual interaction between users and the 

building. In the Dundas Entertainment Center (Figurel, 
Figure 1: Dundas Entertainment Center 
shows the construction of highly 1999), I interpret this idea by constructing highly tecton- 
tectonic, de-constructive architectural 
surfaces. ic, de-constructive skins that are either structural or non- 

structural skins. The level of interaction is controlled by 

the degree of transparency and translucency of the skins. 

The sense of arrival at the main lobby on the third floor 

is defined by a pathway wrapped by double layered skins 

with signs and projections. In my second project, Infor- 

mational and Mediatized Architectural Surfaces (IMAS) 

(Figure 2, 2001), I demonstrate the idea very differently. 
Figure 2: Informational & Mediatized 
Architectural Surfaces shows the con- The skins are folded to reflect the internal and external 
struction of folded and mediatized 
architectural surfaces forces. These forces respond to different sources, such 

as gravity, programs, and a sense of approaching. React- 

Figure 3: The Canadian Opera House 

ing to gravity, a certain area of the surface is folded down 

to allow the surface to attain strength until it reaches the 

capacity to hold the objects sitting on top of it. The fold- 

ing of the surface in the entry area makes up a welcom- 

ing gesture for people approaching the building. An even 

more important feature of the surfaces is the projected im- 
shows the construction of transparent 
structural dass ages that cover the entire building. These images, on the 
(with ~ iamond  and Schmitt Architects Inc.) 

one hand, merge the building into its vibrant urban setting 

in downtown shopping area in Toronto; on the other hand, 

they reveal the contents of the building to the outside. 



The Canadian Opera House (Figure 3, 2004), my cur- 

rently completed project in the financial and theatre dis- 

trict of downtown Toronto, shows the idea through the 

highly transparent structural glass in the fagade at Uni- 

versity Avenue. This structural glass fagade links the city 

and the opera and highlights the project as a lit-lantern 

in the center of the city. In my most recent projects, the 

Tulsa Regional Events and Conventions Center (Figure 

4, 2005), surfaces are treated in a different way. These 

surfaces are composed by layers of zinc-clad curvilinear 

surfaces. They are intended to identify the building as 

an architecturally significant icon in the City of Tulsa as 

well as to inform people about the path of approach to the 

building. These surfaces are laid out and scaled in such a 

way that people will find intimacy in this gigantic build- 

ing upon entry. 

In parallel to the interest in surfaces, my interest in ar- 

chitecture is also about tools that construct these surfaces. 

I used physical modeling as a means of exploration in the 

Dundas Entertainment Center (Figure 5). In 1999, at the 

time Rhino was first introduced to me by Professor Shane 

Williamson at the Faculty of Architecture, Landscape and 

Design, University of Toronto. I decided to proceed dif- 

ferently in the M A S  project and use Rhino in the design 

exploration (Figure 6). I was stunned by the power and 

ease of Rhino in constructing complicated forms. When 

I was developing the Canadian Opera House at Diamond 

and Schmitt Architects Inc. (DSAI) in Toronto, I was very 

pleased by my ability in handling both physical and digi- 

Figure 4: The Tulsa Arena 
shows the constructs of overlapping 
curvilinear zinc-clad surfaces 
(with Cesar Pelli and Associates) 

Figure 5: Dundas Entertainment Center 
shows the use of physical modeling in 
design exploration. 

Figure 6: Reflected Panels in the Audi- 
torium of the Canadian Opera House 
Study models were constructed in 
Rhino. This image shows the actual 
built reflected panels. 



Figure 7: Balcony Front in the Audito- 
rium of the Canadian Opera House 
Study models were constructed in 
Rhino. The balcony front is covered by 
metal panels and these panels differ in 
angles and curvatures. 

Figure 8: The Tulsa Arena 
shows 3D model was constructed in 
Rhino to understand the spatial relation- 
ship of overlapping curvilinear walls. 

Figure 9: The Tulsa Arena 
shows a large-scaled physical model 
was constructed, showing the assem- 
bly of overlapping zinc-clad waHs and 
curtain wall. 

tal modeling for such a complex practical project. Both 

physical and digital modeling were extensively tested in 

the design process and made significant contribution to 

the flow of the project. However, the Opera project also 

revealed the limitations of both tools. In a relatively com- 

plex project like the Opera (Figure 6 & 7), both physical 

and current digital tools were not efficient under many 

circumstances. For example, the tilted and curvilinear 

balcony front in the auditorium required intensive and re- 

petitive work. In fact, most of the balcony components 

were similar but only varied in tilted angles and positions. 

Neither physical nor present digital tools were able to re- 

lease me from the "meaningless" manual operations of 

constructing uncountable similar components. Similar 

situation occurred in the back walls of the auditorium and 

in some other areas on the building. The mission was ac- 

complished, but I was in doubt about the tools we were us- 

ing. If the Opera was the wake-up call for new tools, the 

Tulsa Regional Events and Conventions Center (Figure 8 

& 9) was the proof of this emergent need. Besides all the 

problems I have encountered in the Opera, intensive and 

repetitive work on uncountable similar components, I was 

also highly stressed by being afraid of losing accuracy 

on constructing those tilted and curvilinear walls in the 

process of manual operation. It was not until 1 realized 

that our associate architects and engineers were taking 

the responsibility for actually assembly these walls. At 

the very least, I knew that there was someone who would 

check the models a few more times to make sure that no 

mistakes were made. 



1.3 Purpose 

Having a retrospective review of my previous ex- 

periences on using different tools in design, I realize the 

increasing complexity from one project to the other and I 

also understand the advantages and disadvantages of tools 

that I have been using. By using physical models, design- 

ers are limited in reaching a certain level of complexity. 

Conventional CAD systems have been proven to be effec- 
Figure 10: DG Bank by Frank Gehry 

tive in handling relatively complex forms, but their limi- shows triangulated complex surfaces 
- image taken from Branko Kolarevic's 

tations are also apparent: they require intensive manual Digita1 Production 

operation and repetitive work. Designers become the sole 

operator of these systems. In fact, taking the Tulsa Arena 

for example, overlapping metal clad curvilinear surfaces 

were constructed very similarly. With the available tools 

in the office, we had to build every individual surface. 

Any adjustment or change to the design required a lot of 

efforts to rebuild these surfaces. Conventional CAD sys- 

tems are very cumbersome in this case. Complexity in 

design is one of the major issues in current design trend. 

Figure 10, 11 & 12 show some built or conceptual proj- 

ects of complex forms and tremendous numbers of non- 

standard components. Without using advanced systems, 

it will not be possible to build these projects. 

Complexity in design is a concern, but it is not the 

only issue that matters in design. Typically for skyscraper 

design, there are design conventions and techniques hav- 

ing been developed over many decades. These conven- 

tions and techniques are extremely valuable, setting up 

Figure 11: British Museum Great Court 
b y ~ o r m a n  Foster 
shows triangulated toroidal surfaces 
- image taken from Branko Kolarevic's 
Digital Production 

Figure 12: Triangulation of a doubly- 
curved surface 
- image taken from Branko Kolarevic's 
Digital Production 



practical guidelines for designers. Taking Cesar Pelli for 

example, he has developed very profound systems for 

curtain wall design and construction. This system leads 

to the building of many significant skyscraper projects. 

The purpose of this thesis is to target both issues of 

complexity and design conventions and techniques. The 

proposed system is attempting to provide a mechanism 

to handle complex forms and at the same time provides 

opportunities to embed well-established stylistic conven- 

tions and techniques into the system. 

1.4 Scope 

Skyscraper design is a very large topic and the design 

of a tower requires intensive cross-discipline cooperation 

between architects, structural engineer, mechanical engi- 

neer and many others. Also, many programs have been 

developed by engineer to analyze structural integrity and 

other performances of a tower. These programs have very 

powerful analytical functions and are able to provide ana- 

lytical data to help architect understand design problems. 

The scope of this thesis is not to compete with these sys- 

tems, but to propose a system that works in parallel with 

these engineering systems. It intends to provide a digital 

system to help architects construct sophisticated comput- 

er models in the earlier stage of conceptual design. These 

models could then be tested by engineering systems. 





Figure 13: The Sketchpad Svstem by 
lvan Sutherland 
- image taken from Yehuda E. Kalay's 
Architecture's New Media 

Figure 14: URBAN5 
an early computer-aided urban plan- 
ning system - images taken from 
Yehuda E. Kalay's Architecture's New 
Media 

Chapter 2: Background 

2.1 Historical Shortcoming of CAD Systems 

The advent of computers in the 1950s provided hope for 

many who looked for efficient and effective ways to pro- 

duce variations of design intentions and to fabricate these 

variations for reviews and presentation purposes (Figure 

13). Yet, the application of computer in architectural prac- 

tices did not begin until the invention of early drafting and 

modeling systems in the 1970s (Figure 14).' With limited 

capacity and low efficiency, these earlier systems did not 

achieve the initial goals to draft in an intelligent way nor 

could they replace traditional drafting methods. The inven- 

tion of "intelligent" systems in the 1980s kindled the hope 

again, but these "intelligent" -- knowledge-based - systems 

did not make a significant impact on architecture due to the 

difficulty of constructing comprehensive building-specific 

data and the reluctance of architects to share their practical 

knowledge with  other^.^ 

A breakthrough in CAD systems occurred in the 1990s. 

Two major factors accounted for this breakthrough: the glo- 

balization of the building industry and the advancement in 

computer software and hardware development. Economic 

growth and the use of personal computers also contributed 

to the rapid development of CAD systems. These were 

point-and-click systems (conventional CAD systems) (Fig- 

Figure 15: AutoCAD by AutoDesk 
- image taken from Yehuda E. Kalav's I . Yehuda E Kalay, "Computing in Architectural Design" in Architecture's New 

~rchiiecture's New Media Media. The MIT Press, Cambridge, Massachusetts. 2005. pp 64. 

2. Ibid., 71 



ure 1 9 ,  capable of supporting professional drafting, mod- 

eling and renderings and greatly increasing efficiency and 

productivity in design. However, because point-and-click 

systems are designed to be used by wide range of users, they 

have limited capacity for architectural application. They 

required intensive manual operations and repetitive work 

from architects. Architects were the sole operators of these 

systems, but they could not work creatively by using these 

systems. As a result, many architects are still very resistant 

in using these conventional CAD systems in design today. 

Conventional CAD systems were undeniably use- 

ful, and they have made design work more efficient, but 

they have not opened up new domains to the architectural 

imagination. In recent years, some cutting-edge projects, 

such as Frank 0 Gehry's Guggenheim Museum in Bilbao 

(Figure 16) and Norman Foster's Swiss Re in London, have 

been reinventing the use of CAD systems and providing 

new direction to the future. Many avant-garde researchers 

and designers are working towards establishing new sys- 

Figure 16: Guggenheim Museum by 
Frank Gehry 
The image shows a curvaceous, 
free-form sculptural style - Gehry's 
signature style. - image taken from 
www.greatbuildings.com/buildings/Gug- 
genheim-Bilbao.htm1 

Figure 17: Digital Project by The Gehry 
Technology 
A new digital system shows the use 
of building information modeling for 
design and construction 
- image taken from www.gehrytechnolo- 
gies.com 

tems (Figure 17) to handle the increasingly complex design 

problems. 



2.2 Complexity in Current Designs of Skyscrapers 

Because of the advancement in structural engineer- 

ing and developments in curtain wall construction, archi- 

tects today can essentially build as high as they like. The 

desire to build taller and taller skyscrapers is no longer a 

major concern for many skyscraper designers. Instead, 

it is the formal, technical, and ecological complexities of 

today's skyscrapers that challenge architects and lead in- 

novation in the design of skvscra~ers. 
Figure 18: Swiss Re by Norman Foster 

" d I 

(an aerodynamic and glazed shape 
tower in London - image taken from 
Guy Nordenson's Tall Buildings) Many new skyscrapers such as the Swiss Re in 

London by Norman Foster (Figure 18) and the New York 

Times Headquarters by Frank GehryISOM (Figure 19) 

present an intention to construct complex exterior enve- 

lopes that are either curvilinear or multi-faceted skins. 

Unlike the facades of conventional skyscrapers that are 

the same, the facades of these new built skyscrapers pro- 

vide dynamic views from the outside, giving a multi-di- 

mensional reading of the building. These multifaceted 

skins reveal the complex functional programs inside the 

buildings. In this sense, the concept of creating complex 

forms reflects the practical requirements of skyscrapers in 

satisfving multi-functional programs. However, it is also - - - 
Figure 19: New York Times Headquar- 
ters by Fank GehryISOM valid to say that some architects see achieving complexity 
(show double-curved and overlap- 
ping surfaces - image taken from Guy as a stylistic pursuit or as a deconstructive action against Nordenson's Tall Buildings) 

conventional design methodologies, and their design proj- 

ects show these intentions. A good example of this is the 

Max Reinhardt Haus in Atlanta by Peter Eisenman. 



From the technological point of view, the complexi- 

ties of current forms provide both construction challenges 

and opportunities to open up new domains in skyscraper 

design. When the skins are faceted and twisted, compo- 

nents that compose the facades can no longer be standard- 

ized under current technologies. In order to deal with a lot 

of irregular and non-standard components, new standards 

and techniques are being developed. Also, new design 

systems are being constructed to help architects under- 

stand and evaluate complexities. An excellent outcome 

of this drive in technology is the Digital Project System, 

developed by Gehry Technology, a system that is intended 

to handle extremely complex design situations. It was ini- 

tially used only by Frank Gehry, but now has been distrib- 

uted for hundreds of users. To summarize, the pursuit of 

complexity has led to the establishment of new industrial 

standards as well as the development of new design sys- 

tems. This is where the thesis is grounded. 



2.3 Knowledge-Based Systems in Architecture 

Figure 20: KAAD by G.Crrara et at. 

The objective of knowledge-based CAD systems is to 

change the focus from automating drafting to automating 

broad decision making and repetitive engineering task in 

the actual design p ro~ess .~  

Recently, knowledge-based systems have been widely 

used by electrical, mechanical, and acoustical engineer- 

ing as well as in the aerospace and building construction 

industries. By using knowledge-based engineering sys- 

tems, engineers are able to create, sustain and share design 

knowledge. With less effort in managing increasingly 

complex designs, engineers can better utilize knowledge 

for the design, the design process, manufacturing, and 

operating requirements. As a result, engineers can c a w  

out new design projects more rapidly. Today, knowledge- 

based CAD systems provide opportunities for leading 

construction and manufacturing companies to dramati- 

cally increase productivity, improve quality, and at the 

same time dramatically reduce costs in their engineering 

services. 

In architecture, knowledge-based systems refer to 

graphics-oriented or object-oriented systems that handle 
a framed-based knowledge representa- 
tion system for the design of hospital not only shapes but also objects. In contrast to their coun- 
- image taken from Yehuda E. Kalay's 
Architecture's New Media terparts in engineering, knowledge-based architectural 

systems have gone through a very slow development. 

However, we do see some progress. The very first knowl- 

3. CI Dym and RE Levitt. Knowledge-based systems in engineering. McCraw- 
Hill, New York. 199 1 .  



edge-based computer-aided architecture system, World- 

View, was developed by a research group led by Yehuda 

Kalay at the University of Buffa10.~ Worldview addressed 

architectural objects such as walls, doors, and windows. 

It had the ability to control their geometric and non-geo- 

metric properties. Another system, KAAD (Figure 20), 

was developed in Italy by a group of researchers led by 

Gianfranco Carrara at the University of Rome.Vt was 

intended to be used in hospital design and was able to 

create architectural building and space components such 

as walls, doors, and rooms. It was also used to detect 

violations of rules that concerned the separation of clean 

and unclean areas, fire egress, and the placement of furni- 

ture. In the late 1990s, Building Design Advisor (BDA) 

was developed at the Lawrence Berkeley National Labo- 

ratory."his system was intended to support analysis of 

various energy-related building performance measures. 

There are still other systems that have been developed 

since the late 1980s; however, none of these systems are 

popularly used in architectural practice. As I have men- 

tioned in Chapter 1, the reason for this phenomenon is 

three-fold. First, most architectural offices lack powerful 

hardware and software supplies and are often unwilling 

to invest in them. Second, most offices lack a sufficient 

number of skilled architects, who can handle both design 

and computer programming at the same time. Third, most 

offices are reluctant to convert their design knowledge 

4. Yehuda E Kalay, "Computing in Architectural Design" in Architecture's 
New Media. The MIT Press. Cambridge, Massachusetts. 2005. pp73. 

5. Ibid.. 73 
6. Ibid., 73 



into digital data for sharing with others. Architects are 

greatly concerned about losing their competitiveness by 

doing so. 

The difficulty of development of knowledge-based 

systems in architectural application should not undermine 

their potential in architectural design. Understanding their 

success in engineering, I believe that these systems can 

make faster and faster progress following advancements 

in hardware and software development and the increas- 

ing open-mindedness of architects about the significance 

of these systems in opening up new domains in architec- 

tural design. By writing a knowledge-based system to 

construct some complex design of skyscrapers digitally, I 

intend to catalyze this process. 

2.4 Related Work: The Twisted Skyscraper 

The Twisted Skyscraper (Figure 21) is my first proj- 

ect using computer a program for design. The program 

was written in AutoLISP and built through a progressive 

development. At first, the program was able to gener- 

ate two-dimensional patterns and then three-dimensional 

shapes. Computational methods were developed to gen- 

erate the diagrid structure of the tower. At last, its capac- 

ity had been expanded to construct three different types of 

details on the facades: vision panels, horizontal louvers, 

and perforated metal panels. 
Figure 21 : The Twisted Skyscraper 
shows the potential of computer pro- 
gramming in constructing facade details 
in skyscraper design. The program runs sequentially. It picks up plan out- 



1. Debmnirn levels of dhgridg (8 floor5 in height rubdivided by number of fkorsh 
2. Octetmine numbers of diagrids cn each facade (6 to 8 meters in width); 
3. Lhaw outlines of befs; 
4. Run command "iowrr": 
5. Select fim column of outtines for'90uv~" g o d ~ n .  fnwn bottom up; 
6. S e l a  second column of outlines for *frame" pencnatim, from Mom up: 
7. Slelect third column of outlints f a  "mesh" -penerstion, from botWin up, 
8. Select fowth column of outlines for "frame" generation, from bottom up. 

Figure 22: The Twisted Skyscraper 
Images shows the shape generation 
procedures. The program was written 
in AutoLlSP and runs in AutoCAD. 



lines on every eight floors (a practical standard for high- 

rise building with structural skins) and subdivides these 

outlines into a number of diagrids that are predefined in 

the program. Then, it generates solid diagrid tubes, on 

top of which secondary structural mullions are located. 

The program is responsive to the twisting nature of the 

tower: the orientations of the tower change as the tower 

rises. It produces horizontal louvers form the lower po- 

tions of its south elevation and gradually wraps around 

the west faqade on top floors. A similar approach is taken 

on the north and east faqades. Instead of louvers, either 

perforated metal panels or horizontal translucent panels 

are constructed to provide sun shading for the building 

(Figure 22). 

This twisted and tapered tower has a lot of repetitive 

and non-standard components. It is this nature of com- 

plexity that presents the significant advantages of comput- 

er programming. The success of this exploration proves 

that using computer programming in design is an effec- 

tive and efficient way to generate complex forms and yet 

maintains creativity and intuitive in the design process. I 

was greatly inspired by this project and it led to my the- 

sis topic: to develop a fully functional and parameterized 

program to generate skyscrapers. 





Chapter 3: Case Studies 

Case studies of selected built skyscrapers were conduct- 

ed to understand conventions and techniques that are needed 

for the development of a new knowledge-based system for 

the design of skyscrapers. I chose projects from two leading 

skyscraper designers, Cesar Pelli and Norman Foster. Cesar 

Pelli's name has long been associated with the innovative 

use of curtain wall systems. Norman Foster is renowned in 

his innovation in design technology and many of his projects 

show the intensive use of structural skin systems. To pres- 

ent a more comprehensive view of skyscraper design and 

construction, this section of case studies examines the non- 

structural systems by Cesar Pelli and the structural systems 

by Norman Foster. 

3.1 Non-Structural Skin Projects 

3.1.1 Impact of Cesar Pelli in Skyscraper Design 

Since his first tower-the Museum of Modem Art 

Gallery Expansion in New York-- was erected in 1977, 

Cesar Pelli has continued to set his pace in designing high 

quality skyscrapers. In the past 29 years, he and his part- 

ners and associates have designed and built more than 40 

skyscrapers. These skyscrapers occupy more than 75 mil- 

lion square feet of total floor areas. Among these built 

skyscrapers, Petronas Towers in Kuala Lumpur and Hong 

Kong International Finance Center in Hong Kong were 

ranked the tallest towers in the world respectively at the 

time they were constructed. According to Joseph Glovan- 



nini, a journalist and critic in architecture, "Cesar Pelli 

builds the new equivalent of one-and-a-half Empire State 

Buildings every 12 months." ' 

In addition to the extraordinary number of built 

skyscrapers, Cesar Pelli is also well-known for his "con- 

ceptual innovations" in building envelopes. For Pelli, the 

most important element that influences his design of a cur- 

tain wall is the "contex~al response" to the surrounding 

environment. The skyscrapers that he has designed merge 

into their contexts and generate a harmony between the 

skyscraper and the city. The forms, materials, and details 

of skyscrapers are very carefully designed and crafted to 

reinforce the connection between the building and its lo- 

cal context and to strengthen the local c ~ l t u r e . ~  

In short, the impact of Cesar Pelli in skyscraper de- 

sign is two-fold. The first is in his innovative approaches 

on curtain wall systems that re-enforced local culture. 

The second lies in his emphasis on contextual response of 

skyscrapers to their surrounding environment. These two 

major contributions have been the trade-mark of Cesar 

Pelli in skyscraper design and construction. 

7. Joseph Giovannini, Fast Forward for Section Through A Practice: Cesar Pelli 
& Associates (Editor: Raul A. Barreneche), 2005. pp56-57 

8. Ibid., 57 



Figure 23: HKlFC by Cesar Pelli 
lmage shows a strong vertical impres- 
sion from the carefully crafted vertical 
mullions. - image taken from Michael J. 
Crosbie's Curtain Walls 

Figure 24: HKlFC by Cesar Pelli 
lmage shows curtain wall assemblies 
with mechanical louver and corner 
conditions - image taken from Michael 
J. Crosbie's Curtain Walls 

Figure 25: HKlFC by Cesar Pelli 
lmage shows sections on mechanical 
level and transitional level - image taken 
from Michael J. Crosbie's Curtain Walls 

3.1.2 Project One: 

Hong Kong International Finance Center 

The Hong Kong International Finance Center (Figure 

23) represents the third generation of Cesar Pelli's sky- 

scraper design, which is simple in form but rich in details. 

(The first generation projects are read as glass boxes and 

the second generation projects, contrastingly, reveals the 

constructs of sophisticated details on facades.) The mass- 

ing of the tower reflects a typical modernistic approach, 

yet the richness of its details detaches the tower from the 

typical modem style. The profile of the vertical mullions 

is dedicatedly crafted and sized to reinforce the verticality 

of the building. Transparent and translucent glass pan- 

els are carehlly combined to allow better reading of the 

colors of the building facades for views from inside the 

tower. The roof is formed by four sleeves of curved walls, 

shaping the tower's crown when it reaches the sky. 

Characterized by verticality formed by vertical mul- 

lions, the Hong Kong International Finance Center re- 

flects the idea of reading the tower as a single entity: the 

designer emphasizes its vertical height over its horizontal 

span. Vertical mullions are made of painted aluminum 

with an outwards projection of 300mm. From a frontal 

view, these vertical mullions give us a "knife-edge" im- 

pression and describe the tower as a "glassy pylon." See- 

ing it from an oblique angle, the depth of the mullions 

is read, reducing the massiveness of this "glassy wall." 

(Figure 24) At the tower's indented comers, the mullions 



are slender, displacing the indented comer a "glassier" 

appearance. Rising up to the top, these vertical mullions 

catch light as they go. They become smaller and smaller 

and eventually penetrate through the roof to form the ex- 

posed tilted wall.9 

3.1.3 Project Two: Petronas Tower 

The Petronas Tower in Kuala Lumpur, Malaysia 

(Figure 26) was the tallest tower in the world; its facades, 

on the other hand, emphasize their horizontal composi- 

tion. The horizontality is achieved by re-enforcing hori- 

zontal mullions, made of either metal or stone, and by the 

intensive use of horizontal louvers. Also, stainless steel 

spandrel panels are laid out horizontally in order to main- 

tain their consistent appearance around the entire build- 

ing. The core reason behind the horizontal re-enforce- 
Figure 26: The Petronas Tower by 

ment is to emphasize the identity of each individual unit Cesar Pelli 
lmage shows the emphasis on the 

that spans one column to the other. According to Edward horizontfality of the tower. - image taken 
from Michael J. Crosbie's Curtain Walls 

Donnie, a project architect of Petronas Tower: 

We choose to and we have to give individual attentions to 

each unit because all individuals, occupying any unit in the 

building, for this particular project, are equally important. 

There is no hierarchy in terms of spatial organization like 

that of Hong Kong International Finance Center. Each in- 

dividual occupant is just too important to be ignored." 

Figure 27: The Petronas Tower by 
Cesar Pelli 
lmage shows the emphasis on the 
horizontality of the tower. - image taken 

9. Michael J., Crosbie, "International Finance Center" in Curtain Walls. Michael J. Crosbie's Curtain Walls 
Birkhauser-Publishers for Architecture. Basel. Switzerland. 2006. pp49 

10. From a personal interview with Edward Dionie at Cesar Pelli's office. 



Figure 28: The Petronas Tower by 
Cesar Pelli 
Image shows typical section detail of 
the curtain wall. - image taken from 
Michael J. Crosbie's Curtain Walls 

Another reason for the re-enforcement of horizontality is 

that it helps to reduce the massive impression of the tower 

to the viewers, especially for passers by on the ground 

level. It also changes how people read the tower. The 

viewers' attention is first directed to the interior units be- 

tween horizontal mullions or louvers, not to the entire 

building (Figure 27). 

A hint of a post-modernistic approach can be found 

in the Petronas. The details of its windows, mullions, and 

sun-shadings are very rich (Figure 28). However, unlike 

typical post-modem buildings, for which details are con- 

structed for purely conceptual meanings, the details on 

the facades of the Petronas Towers are grounded under 

modernistic reasoning. In his new published book Cur- 

tain Walls, Michael J. Crosbie says that 

windows are composed of continuous horizontal ribbons 

of modest height and protected from the sun by project- 

ing shades. The sunshades make a three-dimensional wall, 

which together with the facets of the plan, create buildings 

with much needed shade, shadow, and dappled light; they 

are tropical walls. Malaysian colors, patterns, traditions, and 

crafts have been incorporated throughout the buildings." 

11. Michael J., Crosbie, "International Finance Center" in Ci~rtain Walls. 
Birkhauser-Publishers for Architecture. Basel, Switzerland. 2006. pp147 



3.1.4 Project Three: Cira Tower 

\ d "A..̂ 1 ^.^ L _  ..A^.^.. .̂. . . . . * 

The Cira Tower in Philadelphia (Figure 29), a 4.Lm-&--&-',----.---- --.- 
" l l r r r r i , .  r ' r ' l ~ ' , . r . i . i i . - r . r l '  - 1  -.-I.-, 

^ "  - 0  , a*.,s. ,.**."- ..-, b --*--- - ,  i * . . r  + ,  " ,)L 
fl ^ 4 . 1 "  * 1. ( . 1 

4 -----̂ I- --C--C--C--C"""- 
-.+ L --.+.-.,- +-*.--+ - - 2 

- 
* 1 l&-,~*.l.I_&-"*lll~-~.* ,- I.."-"'.,.- project that has recently been built, presents a new style ~ ~ ~ - ~ ~ - ~ ~ ~ ~ ; - : L I _ ; ~ ~ ~ I ; ; ~ ; ~  

for Cesar Pelli. Unlike his earlier projects that shows a 

surfaces in its facades. These faceted surfaces offer hll 

. ' .  . 
. . =i- 

building as a sculptural monolith on the skyline."" In Figure 29: The  Cira Tower bv Cesar Pelli 
image shows multi-faceted giass box. 

a sense, the Cira Tower retrieves the modernistic idea of - image taken from Michael J. Crosbie's 
Curtain Walls 

simplicity, but interprets it in a different way. 

The focus of the curtain wall design supports this 

formal design intention (Figure 30). The mullions are 

presence in the tower. The glass that is used provides a 

clear reading of multifaceted surfaces of the tower. Semi- 

reflective glass is used on both the vision and spandrel 

panels. The cover of the same materials throughout entire ~ ~ ~ , " R ~ ~ ~ ~ ~ $ l ~ , " , " ~ , " l ' , f ~ ~ ~ ~ , " l i i  
building's surfaces effectively reduces the distinction ~ u $ ~ ~ ~ ! ~  from Michae l  

between vision and spandrel panels. 

12. Michael .I.. Crosbie, "International Finance Center" in Curtain Walls. 
Birkhauser-Publishers for Architecture. Basel, Switzerland. 2006. pp79. 



3.2 Structural Skin Project 

3.2.1 Norman Foster and Structural Diagrids 

Figure 31 : The Hearst Corporation 
lmage shows structural diagrids on 
the facades. - image taken from www. 
fosterandpartners.com 

Figure 32: The Hearst Corporation 
lmage shows the transition from 
structural diagrids to conventional 
column grids. - image taken from www. 
fosterandpartners.com 

Figure 33: The Hearst Corporation 
lmage shows a close-up look at the 

Structural diagrids, a structural system applied on the 

facades of towers, was not invented by Norman Foster; its 

use can be dated back to the 1950s and seen in some built 

and un-built design projects by Fazlur Khan, Louis Khan 

and many others. However, it is the name of Norman Fos- 

ter that is strongly associated with the use of structural di- 

agrids in the design of skyscrapers today. Many currently 

built skyscrapers by Norman Forster reveal his intelligent 

use of this structural system on the facades of skyscrap- 

ers. Among these projects, the Swiss Re and the Hearst 

Corporation are the most compelling. 

3.2.2 Project Four: Hearst Corporation 

The Hearst Corporation tower (Figure 31) is a forty- 

six-story tower above the preserved fagade of the old six- 

story Hearst Headquarter building at 959 Eighth Avenue 

in New York. According to Norman Foster: 

The Hearst Tower expresses its own time with distinction, 

yet respects and strengthens the existing historical structure. 

The tower is lifted clear of its historic base, linked on the 

outside only by columns and glazing, which are set back 

from the edges of the site. The transparent connection floods 

corner of the tower. - image taken from 
www.fosterandpartners.com 13. Gordon Wright: "Building on Tradition" in Building Desi-gn and Constn~c- 

tion. 2005. URL: http:ll~i~vw.bdcnetwork.com/articlelCA6 161 495.html. 



the spaces below with natural light and encourages the im- 

pression of the new floating above the old.I3 (Figure 32) 

The main features of the tower are the structural di- 

agrids on its facades (Figure 33). Each of these diagrids 

spans twelve meters horizontally and eight-floors verti- 

cally. They not only hold the curtain walls, but also struc- 

turally support the floor slabs behind. In a sense, these 

triangle-shaped diagrids function both as columns and 

beams on the periphery of the tower. From the structural 

point of view, these diagrids not only satisfy structural 

and architectural requirements, but also allow the tower to 

achieve higher structural efficiency with a triangle com- 

position. Having a long span, these diagrids eliminate the 

normal grids of columns in the interior of the tower and 

make the interior spaces much flexible for multipurpose 

use. These long span diagrids also allow unobstructed 

view from the inside of the tower to the vibrant urban set- 

ting in New York. 



Chapter 4: Computational Approaches 

User Interface 

I 
Main Function 

Massing Deta~l 
Construction Construction 
Function Function 

Original Derivative Type 1: Type 2: 
Tower Tower Ver-Reg Hor-Reg 

After figuring out the geometrical rules that were 

extracted from the analysis of the selected projects, I de- 

velop computational methods to convert these rules into 

digital data, which I then embed in the system. This digi- 

tal data is re-usable and modifiable to allow new design. 

This chapter provides detailed information about how to 

convert these geometrical rules into digital data and dem- 

onstrates the techniques of using these rules to construct 

the massing and detail of selected skyscrapers and their 

derivative types. Also included in this chapter is the tech- 

nique of making an interface for user interaction with the 

program. 

4.1 Structure of the Program 

The runtime program is written in the Rhinoscript 

environment. Its functions are organized in a hierarchical 

tree order (Figure 34), with the highest level of function 

is the Main Function that asks for user selection of four 

points. The Main Function is also the mechanism link- 

ing the rest of the program with the user input from the 

interface. At the second level of this hierarchical tree is 

the Massing Construction Function (a function to gener- 

ate the overall massing of the selected type) and the Detail 

Construction Function (a function to generate selected de- 

tail component). 

Figure 34: Tree Structure of the Program 
The diagram shows the hierarchical tree The Massing Construction Function is diverted into 
structure of the program. 

two sub functions, the Original Tower Function (a func- 

tion to construct the selected original project and its pro- 



portional variations) and the Derivative Tower Function (a 

function to construct derivative types or new types of sky- 

scrapers from the selected original projects). Under the 

Original Tower 
Massing 

HKIFC Petronas dira ... 
Original Tower Function are lists of sub-functions that ac- 

tually construct each selected projects (Figure 35). These 

sub-functions include HKIFC Massing Function, Petro- - 
I II Ill I II Ill I II Ill 

nas Massing Function, Cira Massing Function, and Hearst 
I = Plan Profile Construct 

Headquarter Massing Function. Under each sub-function 
II = Level Finding 

is a group of functions that construct plan profiles, such as III = Convert to Solid 

HKIFC - Plan-Profile-1 for constructing a plan profile of Figure 35: sub-~ree Structure of the 
Proposed Program 

the Hong Kong International Finance Center. They are in The diagram shows the hierarchical 
sub-tree structure of the program on 

the lowest level of the hierarchical tree structure. Similar constructing original tower massing. 

tree structure composes the sub-functions of Derivative 

Tower Function. 

The sub-tree structure of the Detail Construction Func- 

tion is very similar to the Massing Construction Function. 

Refer to Figure 35 for details. 

One advantage of having a hierarchical tree structure 

is that the overall frame work of the program can be set up 

before actual functions are written. Also, functions can be 

continuously sub-divided into sub-functions so that both 

the function and its sub-function can be reusable by all 

other functions at all hierarchical levels. As a result, the 

subdivision of functions reduces the redundancy of the 

coding that can be used more than once. 



4.2 Algorithmic Methods for Constructing Massing 

Two computational methods are developed to con- 

struct the massing of selected projects: the Profiles Find- 

ing Method (a method that finds all profiles on all transi- 

tional levels) and the Points Finding Method (a method 

that finds points in space). The Profiles Finding Method 

uses solid modeling technique and intends for projects 

that have distinguished transition levels. Such projects 

include the Hong Kong International Finance Center and 

the Petronas Tower. The Points Finding Method employs 

surface modeling techniques and is proposed for projects 

that have no distinguished transition levels. The Cira 

Tower, a tower that is viewed as a faceted solid glass box, 

is constructed by using the points finding method. 

!!!!!!iq 4.2.1 Profile Finding Method 

Plan Profiles at 
Transition Levels 

The Petronas Tower is used as an example for the 
-- 

I 2 - 5  : I  demonstration of this technique. As the name of the meth- 

od implies, the Profile Finding Method (Figure 36) con- 
I I 

I I 
I I 

I I structs the plan profiles at all transitional levels; however, 
I I 

I I 

I I 

I I 

I I because these profiles are similar, 24-sided shapes, only 
I I 

I I 

I t 

I I 

I I one parametric shape needs to be defined in the system. 
I # I 

I l 

a I 

Users Select Four 
Then, by giving the level of each profile and transforma- 

Corner Po~nts 
tion rules, the program will construct the right profile on 

the assigned level. After the construction of all these pro- 
'+k$' 

files, the program will then loft them together to make a 

Figure 36: Profiles Finding Method ''lid 
The diagram shows the construction of 
plan profiles on transitional levels. 



The fundamental issues for the Profile Finding Method 

are three-fold. The first issue is to construct one typical 

two dimensional plan profile. The second issue is to find 

the level of transitions on which these profiles are located. 

The last issue is to find the transformation rules (scaling 

and rotating rules) for transforming a typical profile into 

the right profile on the level they are constructed. 

Typical Plan Profile Construction: 

The technique that I have developed for construct- 

ing a typical plan profile requires the finding of all corner 

points as well as all middle points on all curves (Figure 

37). This technique sounds cumbersome, yet, it turns out 

to be the most efficient and effective method compared to 

many other techniques, like that of drawing lines in the 

first place. 

Recalling the way that users interact with the program 

mentioned in the previous section, users only picks four 

corner points that define the boundary of the tower. All 

other points have to be set up by building the associated 
Figure 37: Typical Plan Profile 

relationship to the chosen four comer points. Different 
~ ~ ~ r ? ~ ~ ~ ~ ~ ~ , " : , " . " ,  @ ? " , ~ r , " ~ ~ ~ h ~  

levels of associations have been developed in order to find  the were 

all the points. In the first level of association, ptl, pt2, 

pt3, and pt4 can be defined by their proportional relation 

to pointl, point2, point3, and point4. (Figure 37) It is the 

same for pt5, pt6, pt7, and pt8. The second level of as- 

sociation is that I associate corner points on tranistional 

levels to those on the first level, on which the users pick 



four comer points As a result, we can find all the corner 

points. Lastly, I use the second level associated points to 

define the middle points on the curves. (Figure 37) After 

getting all these points, I use the AddLine and AddArc3Pt 

methods to construct the enclosed plan profile in a clock- 

wise sequence, starting from ptl . (refer to Appendix B for 

a reference of the actual coding) 

Level Finding 

For skyscrapers in particular, there are very restricted 

requirements on the number of egress or refugee floors. 

Also, to supply the entire tower, mechanical rooms are re- 

quired on multiple levels. Very typically, mechanical and 

refugee floors are placed together, one on top of the other. 

For the Petronas Tower, we can find 5 coupled levels con- 

tributing to mechanical rooms and emergency egress. It 

is also true that because the tower has multi-functional 

programs, such as retails, offices, and entertaining cen- 

ters, floor heights of each level, into which functional pro- 

grams are fit, differ significantly. How to reflect all these 

constrains in the coding present a challenge. 

My solution for this challenge is to store every single 

required floor height into a two-dimensional Array. The 

sample of the code is presented here: 



Different numbers in the list above represent differ- 

ent functional requirements. For instance, the office is 

facilitated with a floor height of 41 00mm and retail has a 

5500mm floor to floor high space. In such a way, the code 

can retain the actual functional requirements and embeds 

these requirements in the system so that the construction 

of the massing of the tower and its derivative or new types 

reflects the functional requirements. (see Appendix B for 

the LevelFinder function for detail) 

Transformation Rules 

The construction of the original towers does not re- 

quire transformation rules. Functions in this section are 

only applied for the construction of the derivative types 

of skyscrapers. The core idea of using these transforma- 

tion rules (scale and rotation) is that, by applied new rules 

together with the inherited features from the selected proj- 

ects, new design can be discovered. The intention behind 

this exploration is to test how rule-based methods can 

transform previous design ideas into new design. 

The way derivative types of skyscrapers are con- 

structed is by using these transformation rules on the con- 

struction of the top profile and the middle profile. The 

bottom profile is set by the four corner points that users 

choose in the beginning. 

In terms of scaling functions, users can control two 

things: the scale on the X axis and that on the Y axis. (Fig- 



ure 38) The range of scaling is set from 0.1 to 2 and only 

Rotation 
Angle 

0.1 increments are allowed. Over this range, towers gen- 

erated through the scaling features seem unrealistic for 
1 

,, * /-"YScale practical reasons, as I have discovered. 

Egfi le 

'q XScale The rotation features allow the rotation of the middle 
I 

1 
1 and top profiles to be rotated along the Z axis in a range 

I-YScale 
? 5 
$ 6  from 0 to 180 degree in an increment of 10. (Figure 38) 
P ? 
a - 

profile Once again, this setting aims to prevent some unrealistic 

and unpractical options to be generated. 
c 
0 m 
Z -1 

Q g 
I 
1 

t e 1 

4.2.2 Point Finding Method 

pic, Four As the name implies, the Point Finding Method at- 
Points 

Figure 38: Transformational Rules tempts to find all points in space to construct the tower. 
The diagram identifies the transforma- 
tion rules used by the program. This technique is only applied to projects that contain 

multi-faceted surfaces and that contain a reasonable num- 

ber of points. As a demonstration of this technique, 1 use 

the Cira Tower as an example. 

As I have previously described in Chapter 3, there 

is logical reasoning behind the construction of all these 

multi-faceted surfaces in the Cira Tower project. A graph- 

ical representation of the relationship among these points 

in space is shown on Figure 39. The method of locating 

these points in space is to find the associated relationship 

between these points and the four corner points that users 

select. Then, sets of lines are drawn from the connections 

of these points in space to define the edges of each faceted 

surface. This is done by using the AddLine method in 



Rhino. As previously mentioned, the Point Finding Meth- 

od uses the surface modeling technique. The last step is to 

convert sets of lines into surfaces by using the AddLoftSrf 

function. Then, all surfaces are joined to become a single 

solid entity. (Figure 39) 

Find Points in Space Construct Edges Loft Lines into a Surface Model 

Figure 39: Massing Construction Procedure 
The diagram three steps of constructing 
massing by using Points Finding Method: 
I .  find points in space; 2. connect points to 
find the edges of the building; 3. construct a 
surface model by lofting lines. 



4.3 Algortithmic Methods for Constructing Detail 

Three issues are considered for the construction of 

detailed components. The first is the positioning of the 

components. The second is the construction of plan and 

section profiles. The last one is the methods to convert 

two-dimensional profiles into three-dimensional solid 

models. In order to locate a component in a preferred 

position, I develop an algorithm to find the associative re- 

lationship between positioning points and their adjacent 

points, in which the next components are generated. In 

such a way, the relationship between a component and its 

adjacent components is set. Responding to two different 

types of components, structural and non-structural, two 

methods are developed. They are the Dividing Points 

Finding Method and the Diagnd Points Finding Meth- 

ods. 

Techniques are also developed to construct three-di- 

mensional models. These techniques include methods to 

generate plan and section profiles as well as that to con- 

vert profiles into three-dimensional solid models. The 

following section provides practical information about 

these algorithmic methods. 

4.3.1 Associative Relationship between 

Positioning Points and Adjacent Points 

Why do we need to figure out the associative rela- 

tionship between position points and adjacent points? Let 



us take the installation of a window as an example to ex- 

plain. To install a window, we first find the area, in which 

the window is going to be installed. Usually, this area is 

defined by four comer points. Then, we need to decide 

the orientation of the window. Installing a window physi- 

cally, we can find the orientation by inspecting the actual 

site conditions-the outside face of the window faces the 

outside and the window is aligned with the edge of the 

wall. However, in order to do the same thing in computer, 

we need to do it in a different way because the computer 

does not recognize the inside, outside, and the edge condi- 

tions. This bias between what we see and what computer 

sees requires an extra mechanism to help the computer 

identifying the actual physical conditions. By finding the 

associative relationship between position points and ad- 

jacent points, we can inform the computer about both the 

orientation and the edge condition. 

Figure 40 demonstrates how this associative rela- 

tionship works. Position points (Point 1 ,  Point2, Point3, 

and Point4) indicate the area of the component to be con- 

structed. Adjacent points (Point5, Point6, Point7, and 

Point8) show the edges of adjacent components on the 

left and right hand sides. In such a way, a relationship 

between a component and its adjacent components are 

set. So, how can we find the orientation in this associa- 

tive relationship? It can be done by finding the positions 

of reference points (Ptl, Pt2, Pt3, and Pt4). These refer- 

ence points identify the inner area. When we construct 

a component, we encounter three different kinds of geo- 

Position Points: Pointl. Point2. Point3, Point4 
Adjacent Points: Point5. Point6, Point7, Point8 
Reference Points: Pt l .  Pt2, Pt3, Pt4 

Figure 40: Associative Relationships 
between Position Points and Adjacent 
Points. The diagram shows the way to 
construct a component on selected po- 
sition points by setting up the relation- 
ships among position points, adjacent 
points, and reference points. 



metrical conditions: concave, convex, and aligned condi- 

tions. Methods for finding these reference points can be 

found in Appendix B. 

In order to construct components recursively on a se- 

lected surface, two methods are developed to handle two 

different kinds of components: the Dividing Points Find- 

ing Method for non-structural components and the Di- 

agrid Points Finding Method for structural components. 

The Dividing Points Finding Method (see Appendix B for 

actual codes) takes a surface, finding the level line on it; 

then it divides the level line into a number of divisions 

that have been inputted by the user. On both sides of 

the edges of the surface, the ExtraPointFinding Method 

is used to find additional reference points. In a different 

way, the Diagrid Points Finding Method not only finds di- 

vision points on the level line, but also finds two reference 

points on both sides of a generated division point. These 

reference points are taken as position points for generat- 

ing components. 



Settings for Massing: 

1. Veritcal Propotion: for construct original towers and its varia- 
tions that have extra same composition with the original towers. 
2. Massing Description: provide detail information of the type of 
massing user selected. 
3. Floor Height: floor to floor height by user input 
4. Floor Number: number of floors by user input 
5. Middle Profile Level: the location of the middle profile 
6. Middle Profile XScale: the scale factor on X axis of the 

middel profile 
7. Middle Profile YScale: the scale factor on Y axis of the 

middel profile 
8. Top Profile XScale: the scale factor on X axis of the 

Top profile 
9. Top Profile YScale: the scale factor on Y axis of the 

Top profile 
10. Rotation Angle: the angle of rotation of the top profile 

Settings for Detail: 

1. Detail Description: provide detail information of the type of detail 
2. Vertical Arrangement: the veritical position of horizontal mullions 

and louvers 
3. Horizontal Mullion Width: the width of mullion by user input 
4. Horizontal Mullion Height: the height of mullion by user input 
5. Middle Profile Level: the location of the middle profile 
6. Vertical Mullion Width: the width of mullion by user input 
7. Vertical Mullion Height: the height of mullion by user input 
8. Vertical Mullion Tapper Ratio: the ratio of tappering. Actual 

dimension equals to number of user input ' 5mm 
9. Horizontal Louver: the size of the horizontal louver 
10. Horizontal Span: the horizontal span of each componment 
11. Selected Levels: the level on which components to 

be constructed 
12. Resolution: low. medium or high resolution for different 

applications 

Figure 40: User Interface for User 
interaction with the program 



4.4 User Interface 

Figure 40 shows the user interface. It was written in 

VB.Net environment and contains two sets of parameters. 

The first set in the Massing Control Panel is of controlling 

the massing generation process. The second set in the De- 

tail Generation Panel contributes to the detail generation. 

In the Massing Control Panel, two major components 

are laid out side by side. On the left is the descriptive 

component, providing the types of massing and the de- 

tailed descriptions of each type. On the right is the pa- 

rameter input component, a mechanism for user inputs of 

parameters by ways of TextBox, TrackBar, or CheckBox. 

User has controls on the vertical proportion, floor height, 

floor number, middle and top profiles scales, and rotation 

angle. A Derivative Option CheckBox offers an option to 

either construct the original tower or its derivative types. 

Similar to the layout of the Massing Control Panel, 

the Detail Generation Panel offers the selections and de- 

scriptions of detail types as well as parameters for con- 

trolling detail generation process. These parameters al- 

low user's control on the height, width and number of 

horizontal and vertical mullions, the tapering ratio of the 

vertical mullions, and louver sizes. The Selected Levels 

and the Resolution Selection parameters provide options 

to construct details at the selected levels in a chosen reso- 

lution setting. 





Chapter 5: Experiments 

In previous chapters, in-depth case studies of se- 

lected projects were conducted and computational meth- 

ods were developed to capture rules and design intentions 

of these projects. In this chapter, by doing experiments 

on reconstructing the facades of original design and their 

variations, I investigate the validity and the range of ap- 

plication of the proposed system. The first part of this 

experiment shows the result of constructing the massing 

of four original types of towers, namely 16-Branch Form, 

Set-back Corner Type, Multi-Faceted Glass Box, and 

Structural Skin Mass (Figure 41). The second part of the 

experiments shows the result of constructing three types 

of details on a surface or at selected levels of a building. 

Types of details are the Reinforced Verticality, the Rein- 

forced Horizontality, and the Structural Diagrid. By in- 

corporating the massing and details, the last part of this 

experiment presents two new towers: the Drum-Shaped 

Figure 41: 3D Printed Models Tower and the New Twisted Tower. 
The photo shows variations gener- 
ated by the program. 



16-Branch Form Set-back Corner Type Multi-Faceted Glass Box Structural Skin Mass 
(Original Design by (Original Design by (Original Design by (Original Design by 
Cesar Pelli) Cesar Pelli) Cesar Pelli) Norman Foster) 

Figure 42: 3D Models of Original Design 
constructed by the proposed system 

Petronas Tower 
(by Cesar Pelli) 

HKIFC 
(by Cesar Pelli) 

Cira Tower 
(by Cesar Pelli) 

Hearst Cooporation 
(by Norman Foster) 

Figure 43: Original Design Projects 



5.1 Massing 

5.1.1 Types of Massing 

Figure 42 presents four original massing types be- 

ing generated by the system: the Set-back Corner Type, 

the 16-Branch Form, the Multi-Faceted Glass Box, and 

the Structural Skin Mass. Variations are shown on sub- 

sequent pages. Also included in the subsequent pages are 

settings that were used to generate these towers. Three- 

dimensional Z-Corp models were made to review the 

physical outcomes of the system and demonstrate one of 

its potential applications: to generate digital models that 

are compactable to current three-dimensional printers. 

16-Branch Form: is generated by using the Profiles 

Finding Methods. It tapers when it rises to the sky. 

Set-back Corner Type: is generated by using the Profiles 

Finding Methods. It has indented comers and sets back at 

transitional floors. 

Multi-Faceted Glass Box: is generated by the Points 

Finding Methods. It is multi-faceted and provides dy- 

namic view to the tower. 

Structural Skin Mass: is generated by the Points Finding 

Methods. It presents structural diagrids on its facades. 



Settings: 

Vertical Proportion: 0.6 

Settings: 

Vertical Proportion: 0.45 

Figure 44: Design Variations of the Petronas Tower 
Generated by the Proposed System 
These images show models generated by the 
proposed system. Settings used in the generation 
process are identified in each image. Explanations 
about these settings can be found in Transforma- 
tion Rules Diagram on the following page. Detail 
explanations of these rules can also be found in 
Chapter 4. 

Settings: 

Vertical Proportion: 0.75 



Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: 0.5 
Middle Profile XScale: 1.05 
Middel Profile YScale: 1.05 
Top Profile XScale: 0.3 
Top Profile YScale: 0.45 
Rotation Angle: 0 

Settings: Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: 0.5 
Middle Profile XScale: 1.05 
Middel Profile YScale: 1.25 
Top Profile XScale: 0.75 
Top Profile YScale: 0.35 
Rotation Angle: 0 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: 0.5 
Middle Profile XScale: 1.35 
Middel Profile YScale: 1.35 
Top Profile XScale: 0.25 
Top Profile YScale: 0.25 
Rotation Angle: 0 

iddle Profile 
~ X S c a l e  

1 L x  

Transformation Rules Original Type: 
Diagram , , ,  16-Branch Form 
(see Chapter 4 for detail) Points 



Settings: 

Floor Height: 4200 
Floor Number: 85 
Middle Profile Level: 0.5 
Middle Profile XScale: 1.05 
Middel Profile YScale: 1.05 
Top Profile XScale: 0.35 
Top Profile YScale: 0.45 
Rotation Angle: 180 

Settings: 

Floor Height: 4200 
Floor Number: 70 
Middle Profile Level: 0.5 
Middle Profile XScale: 1 
Middel Profile YScale: 1 
Top Profile XScale: 1.25 
Top Profile YScale: 1.25 
Rotation Angle: 180 

Figure 46: Design Variations of the Petronas Tower 
Generated by the Proposed System 
These images show models generated by the 
proposed system. Settings used in the generation 
process are identified in each image. Explanations 
about these settings can be found in Transforma- 
tion Rules Diagram on the following page. Detail 
explanations of these rules can also be found in 
Chapter 4. 



Settings: 

Floor Height: 4200 
Floor Number: 70 
Middle Profile Level: 0.5 
Middle Profile XScale: 1 
Middel Profile YScale: 1 
Top Profile XScale: 1 
Top Profile YScale: 1 
Rotation Angle: 90 

Settings: Settings: 

Floor Height: 4200 
Floor Number: 55 
Middle Profile Level: 0.5 
Middle Profile XScale: 0.35 
Middel Profile YScale: 0.35 
Top Profile XScale: 0.75 
Top Profile YScale: 0.75 
Rotation Angle: 45 

Floor Height: 4200 
Floor Number: 85 
Middle Profile Level: 0.5 
Middle Profile XScale: 0.85 
Middel Profile YScale: 0.85 
Top Profile XScale: 0.65 
Top Profile YScale: 0.65 
Rotation Angle: 90 

gXScale 

Top Profile 
XScale 

g a o iddle Profile 
2 2 XScale 

Transformation Rules Original Type: 
Diagram 16-Branch Form 
(see Chapter 4 for detail) Pick Four 

Points 



Figure 48: 3D Printed Models Showing Design 
Variations of the Petronas Tower 



Figure 49: 3D Printed Models Showing Design 
Variations of the Petronas Tower 



Settings: 

Vertical Proportion: 0.6 

Settings: 

Vertical Proportion: 0.45 

Figure 50: Design Variations of HKIFC 
Generated by the Proposed System 
These images show models generated by the 
proposed system. Settings used in the generation 
process are identified in each image. Explanations 
about these settings can be found in Transforma- 
tion Rules Diagram on the following page. Detail 
explanations of these rules can also be found in 
Chapter 4. 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: 0.5 
Middle Profile XScale: 0.85 
Middel Profile YScale: 0.85 
Top Profile XScale: 1 
Top Profile YScale: 1 
Rotation Angle: 0 



Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: 0.5 
Middle Profile XScale: 1 .I 5 
Middel Profile YScale: 1.15 
Top Profile XScale: 1 
Top Profile YScale: 0.35 
Rotation Angle: 0 

Settings: Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: 0.5 
Middle Profile XScale: 1.25 
Middel Profile YScale: 1.25 
Top Profile XScale: 0.25 
Top Profile YScale: 0.25 
Rotation Angle: 0 

Floor Height: 4200 
Floor Number: 50 
Middle Profile Level: 0.5 
Middle Profile XScale: 1.45 
Middel Profile YScale: 1.45 
Top Profile XScale: 0.25 
Top Profile YScale: 0.25 
Rotation Angle: 0 

Original Type: 
Diagram Pick Four Set-back Corner Type 
(see Chapter 4 for detail) Points 



Settings: Settings: 

Floor Height: 4200 
Floor Number: 55 
Middle Profile Level: 0.5 
Middle Profile XScale: 1.15 
Middel Profile YScale: 1 . I 5  
Top Profile XScale: 1 
Top Profile YScale: 1 
Rotation Angle: 0 

Floor Height: 4200 
Floor Number: 70 
Middle Profile Level: 0.5 
Middle Profile XScale: 1.05 
Middel Profile YScale: 1.05 
Top Profile XScale: 1.25 
Top Profile YScale: 1.25 
Rotation Angle: 180 

Figure 52: Design Variations of HKlFC 
Generated by the Proposed System 
These images show models generated by the 
proposed system. Settings used in the generation 
process are identified in each image. Explanations 
about these settings can be found in Transforma- 
tion Rules Diagram on the following page. Detail 
explanation of these rules can also be found in 
Chapter 4. 



Settings: 

Floor Height: 4200 
Floor Number: 45 
Middle Profile Level: 0.5 
Middle Profile XScale: 0.55 
Middel Profile YScale: 0.85 
Top Profile XScale: 0.85 
Top Profile YScale: 0.85 
Rotation Angle: 45 

Settings: Settings: 

Floor Height: 4200 
Floor Number: 85 
Middle Profile Level: 0.5 
Middle Profile XScale: 0.9 
Middel Profile YScale: 0.9 
Top Profile XScale: 0.85 
Top Profile YScale: 0.85 
Rotation Angle: 45 

Floor Height: 4200 
Floor Number: 70 
Middle Profile Level: 0.5 
Middle Profile XScale: 1 
Middel Profile YScale: 1 
Top Profile XScale: 1 
Top Profile YScale: 1 
Rotation Angle: 45 

sxScale 

Top Profile 
XScale 

iddle Profile 
XScale 

Transformation Rules Or~g~nal Type. 
D~agram Set-back Corner Type 
(see Chapter 4 for detail) 

Ptck Four 
Potnts 



Figure 54: 3D Printed Models Showing Design 
Variations of HKlFC 



Figure 55: 3D Printed Models Showing Design 
Variations of HKlFC 



Settings: 

Vertical Proportion: 2 

Settings: 

Floor Height: 4200 
Floor Number: 35 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 1.25 
Top Profile YScale: 1.25 
Rotation Angle: 0 

Figure 56: Design Variations of the Cira Tower 
Generated by the Proposed System 
These images show models generated by the 
proposed system. Settings used in the generation 
process are identified in each image. Explanations 
about these settings can be found in Transforma- 
tion Rules Diagram on the following page. Detail 
explanations of these rules can also be found in 
Chapter 4.  

Settings: 

Floor Height: 4200 
Floor Number: 70 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 1 .I 5 
Top Profile YScale: 1.15 
Rotation Angle: 0 



Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.9 
Top Profile YScale: 0.9 
Rotation Angle: 0 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 1 
Top Profile YScale: 1 
Rotation Angle: 90 

Transformation 
Diaoram 

Rules 

(see Chapter 4 for detail) 

Y S c a l e  

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 1 
Top Profile YScale: 1 
Rotation Angle: 135 

L P i c k  Four 
Potnts 

Original Type: 
Multi-Faceted Glass 



Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 1 
Top Profile YScale: 1 
Rotation Angle: 90 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.85 
Top Profile YScale: 1 
Rotation Angle: 270 

Figure 58: Design Variations of the Cira Tower 
Generated by the Proposed System 
These images show models generated by the 
proposed system. Settings used in the generation 
process are identified in each image. Explanations 
about these settings can be found in Transforma- 
tion Rules Diagram on the following page. Detail 
explanation of these rules can also be found in 
Chapter 4. 



Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.6 
Top Profile YScale: 0.6 
Rotation Angle: 1.35 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.5 
Top Profile YScale: 0.5 
Rotation Angle: 180 

Transformation 
Diagram 
(see Chapter 4 for 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.25 
Top Profile YScale: 0.25 
Rotation Angle: 21 5 

Rotation ~ Y s c a t e  - 
r XScale 

Rules 

detail) - Pick Four 
Po~nts 

Original Type: 
Multi-Faceted Glass 



Figure 60: 3D Printed Models Showing Design 
Variations of the Cira Tower 



Figure 61: 3D Printed Models Showing Design 
Variations of the Cira Tower 



Settings: 

Floor Height: 4200 
Floor Number: 45 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 1.45 
Top Profile YScale: 1.45 
Rotation Angle: 0 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.5 
Top Profile YScale: 0.5 
Rotation Angle: 0 

Figure 62: Design Variations of the Hearst 
Corporation Generated by the Proposed System 
These images show models generated by the 
proposed system. Settings used in the generation 
process are identified in each image. Explanations 
about these settings can be found in Transformation 
Rules Diagram on the following page. Detail expla- 
nation of these rules can also be found in Chapter 4. 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.25 
Top Profile YScale: 1.25 
Rotation Angle: 0 



Settings: 

Floor Height: 4200 
Floor Number: 60 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 1 
Top Profile YScale: 1 
Rotation Angle: 135 

Settings: Settings: 

Floor Height: 4200 
Floor Number: 60 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 1.25 
Top Profile YScale: 1.25 
Rotation Angle: 135 

Transformation 
Diagram 
(see Chapter 4 for 

Rules 

detail) 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.5 
Top Profile YScale: 0.5 
Rotation Angle: 90 

Rotattop YScale .% XScale op profile 

Scale 

Middle Profile 

Pick Four 
Po~nts 

Original Type: 
Structural Diar 



Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.9 
Top Profile YScale: 0.9 
Rotation Angle: 180 

Settings: 

Floor Height: 4200 
Floor Number: 80 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.5 
Top Profile YScale: 0.5 
Rotation Angle: 270 

Figure 64: Design Variations of the Hearst 
Corporation Generated by the Proposed System 
These images show models generated by the 
proposed system. Settings used in the generation 
process are identified in each image. Explanations 
about these settings can be found in Transformation 
Rules Diagram on the following page. Detail expla- 
nation of these rules can also be found in Chapter 4. 



Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.45 
Top Profile YScale: 0.45 
Rotation Angle: 360 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.85 
Top Profile YScale: 0.85 
Rotation Angle: 540 

Transformation Rules 
Diagram 
(see Chapter 4 for detail) 

Settings: 

Floor Height: 4200 
Floor Number: 75 
Middle Profile Level: NA 
Middle Profile XScale: NA 
Middel Profile YScale: NA 
Top Profile XScale: 0.85 
Top Profile YScale: 0.85 
Rotation Angle: 720 

Profile 
ale 

Pick Four 
Points 



Figure 66: 3D Printed Models Showing Design 
Variations of the Hearst Corporation 



Figure 67: 3D Printed Models Showing Design 
Variations of the Hearst Corporation 





Figure 68: Constructing Massing in a 
Site Context 
The diagram shows the way to con- 5.1.2 Constructing Massing in a Site Context 
struct massing in a selected site. Users 
can interactively view the construction 
progress in different angles. 

Figure 68 demonstrates one of the applications of 

the proposed system: to interactively build the massing 

of towers in a site context. Users have opportunities to 

view the progressive construction of the tower in a three- 

dimensional environment. On the following pages, some 

variations on a same site are presented (Figure 69). 



Figure 69: Constructing Variations on a Same Site 
One of the advantages of the program is to allow 
users to construct many variations on the same site 
and they can compare these variations while having 
these variations at hand. 







Figure 71: 3D Printed Models Showing the 
Forrest of Towers of the Variations Shown at 
Previous pages 



Types of Details: 

1. Reinforced Horizontality 
2. Reinforced Verticality-Regular 
3. Reinforced Verticality-Corner 
4. Reinforced Verticality- 

Mechanical 
5. Structural Diagrid 

Figure 72: Types of Details 
These images show five types of 
details that were embedded into the 
proposed system. These details can 
be used independently or combined 
together for a design project. See fol- 
lowing section for the examples of their 
applications. 



5.2 Detail 

5.2.1 Types of Details 

Figure 72 shows five types of details that were em- 

bedded in the systems. They are: the Reinforced Horizon- 

tality, the Reinforced Verticality-Regular, the Reinforced 

Verticality-Corner, the Reinforced Verticality-Mechani- 

cal, and the Structural Diagrid. The Reinforced Hori- 

zontality detail features expressive horizontal mechanical 

louvers and seamless glass panels on vertical positions. 

The Reinforced Verticality-Regular detail is characterized 

by reinforced vertical mullions. The Reinforced Vertical- 

ity-Comer detail has a reinforced vertical mullion on one 

side and a seamless connection on the other. The Rein- 

forced Vertical-Mechanical provides mechanical louvers 

and is used in a location behind which mechanical rooms 

are located. The Structural Diagrid detail is a triangulated 

structural component that is used on structural skins. All 

types of details are constructed by using the Associative 

Relationship between Position Points and Adjacent Points 

method that was explained in Chapter 4. 

5.2.2 Constructing Details on a Selected Surface 

Figure 73 on the following page shows one important 

application of the system: constructing details in a selected 

surface. It allows user to pick one single surface and then 

identify the lowest and highest points; then the program 

will find level lines and references points on these lines to 

construct details components. The main idea behind this 



Figure 73: Diagrid Constructed on a Surface 
The program allows users construct the whole 
surface of a faqade to evaluate design intention 
within a reasonable time frame. Settings used 
are shown on each image. 



application is to allow user construct the whole surface of 

a fagade to evaluate design intention within a reasonable 

time frame. 

5.2.3 Constructing Details on Selected Levels 

Efficiency is one of the major concerns for writing a 

program. It is important that the program can accomplish 

tasks within a reasonable time fi-ame; otherwise, it will 

lose its practical values. In order to efficiently construct 

a highly detailed tower, the proposed system provides an - - - - 

option for users to construct details on selected levels. By 

doing so, users can construct the whole tower (construct 

one level after the other) within two hours comparing 

to ten without using this option. Another benefit of this 

option is to allow users to construct different details on 

different levels so that they can visually compare differ- 

ent types of details on the same towers. Figure 74 shows 

three examples of constructing three different types of de- 

tails by using this option. 

Types of Details: 
(images of detail types can be seen on Chapter 5.2.1) 

1. Reinforced Horizontality 
2. Reinforced Verticality-Regular 
3. Reinforced Verticality-Corner 
4. Reinforced Verticality-Mechanical 
5. Structural Diagrid 

I. Example One: Horizontality 

II. Example Two: Verticality 

Ill. Example Three: Diagrid 

Figure 74: Constructing Details on Selected Levels 
For the efficiency is concerned, the program provides 
an option for users to construct details on selected lev- 
els. They can also construct different details on differ- 
ent levels to compare these details on the same tower. 
Types of details used are indicated on each image. 



Low Resolution Setting 

Figure 75: Construct Detail in Different 
Resolution Settings 
These images show the examples of a tower gener- 
ated by using three different resolution settings. 



Medium Resolution Setting High Resolution Setting 

5.2.4 Construct Details in 

Different Resolution Settings 

Figure 75 shows three different resolution settings 

in the system. The low resolution setting only constructs 

glass and spandrel panels. The medium resolution of- 

fers more articulated details of the tower and its elevation 

composition starts to be read. The high resolution setting 

constructs all details that reflect the actuaI conditions. 



No-Name Tower 

Figure 76: Incorporation of Massing and Details 
These images show three new designs of skyscrap- 
ers that were generated by the proposed system. 
All details are constructed. 



)rum-Shaped Tower New Twisted Tower 

5.3 Incorporation of Massing and Detail 

Figure 76 shows three different resolution settings 

in the system. The low resolution setting only constructs 

glass and spandrel panels. The medium resolution of- 

fers more articulated details of the tower and its elevation 

composition starts to be read. The high resolution setting 

constructs all details that reflect the actual conditions. 



Figure 77: 3D Printed Models Showing a New 
Design: the Drum-Shaped Tower 



Figure 78: 3D Printed Models Showing a New 
Design: the Drum-Shaped Tower 



Figure 79: 3D Printed Models Showing the Details 
on the Top Levels of the Drum-Shaped Tower 



Figure 80: 3 0  Printed Models Showing the Details 
on the lower Levels of the Drum-Shaped Tower 



Figure 81: 3D Printed Models Showing a New 
Design: the New Twisted Skyscraper 



Figure 82: 3D Printed Models Showing a New 
Design: the New Twisted Skyscraper 



Figure 83: 3D Printed Models Showing the Details 
on the Top Levels of the New Twisted Skyscraper 



Figure 84: 3D Printed Models Showing the Details 
on the Lower Levels of the New Twisted Skyscraper 





Chapter 6: Conclusion and Future Work 

6.1 Conclusion--Towards a New Digital System 
for Skyscraper Design 

The objective of this work has been to develop a 

digital system to help architects design skyscrapers in the 

early stage of the design process. This system implements 

embedding methods and is capable of handling both the 

massing and details in the computer generated design of 

skyscrapers. Computational methods were developed and 

became the mechanism to ensure that the computer could 

capture design intentions as well as physical conditions 

that designers usually encounter in the design process. 

Experiments were taken to test the validity and the range 

of application of the system in re-constructing the original 

design as well as in generating variations. The result of 

these experiments reflects that, by automating the form 

finding and component generating processes, architects 

can work more efficiently and effectively. The result also 

demonstrates that embedding methods are appropriate for 

carrying previous experiences and expertise into the new 

design of skyscrapers. 

On a larger scale, the thesis shows the importance of 

automating certain portions of the design process and the 

benefits of doing so: architects can avoid repetitive work 

and concentrate on more creative issues. Also, the thesis 

demonstrates that architects can construct better digital 

systems to handle their particular design tasks instead of 

reIying on most of the systems that were developed by 

engineer and computer scientists. 





6.2 Future Work - To Expand the Capacity of 
the System 

The proposed system was developed through in-depth 

studies of some selected projects and by doing experi- 

ments to re-construct these projects and their variations. 

To some extent, the developed methods can be general- 

ized to handle many different design conditions that were 

not identified in the thesis. This system can be tested by 

implementing it in practical projects. In such a way, the 

potentials of this system can be explored and its limita- 

tions can be recognized so that adjustments can be made 

accordingly. 

The initial scope of the system focused on the exterior 

skins of skyscrapers. It did not take into consideration the 

conditions behind these exterior skins, such as connec- 

tions between the skins and the structure or the functional 

programs in the interior. Also, this system does not pro- 

vide a mechanism to test the structural and ecological per- 

formances of the digital models it generates. These new 

features would be very useful; I hope that new versions of 

the system will be developed to include these analytical 

hnctions. 





Appendixes: 

Appendix A: VB.Net 

This appendix contains codes in VB.Net program that was used to construct the user 

interface of the program. (Only the fundamental parts of the codes are shown.) 

Imports RMA-Rhino 
Imports RMA.OpenNURBS 

Public Class VB-UseRhinoScriptCownand 
Inherits RM?i.Rhino.MRhinoScriptCommand 

Public Overrides ReadOnly Property EnglishCommandNameO As String 

Get 
Return "DigitalSkyscraper" 

End Get 
End Property 
'Runcommand is called when the user enters the "DigitalSkyscraper" command 

in Rhino 
Public Overrides Function RunCommand(ByVa1 context As IRhinoCommandContext) 

- 
As 1RhinoCommand.result 

Dim command-result As 1RhinoCommand.result 
command-result = IRhinoCommand.result.nothing 
Dim myForm As New Digital-Skyscraper 
myForm. Show ( ) 
Return command-result 

End Function 
End Class 

Private Sub BottonGenerate-Tower-Click(ByVa1 sender As System-Object, ByVal 
e As System.EventArgs) Handles BottonGenerate.Click 

Dim strComponentSyle As String 
Dim strNumberOfHorizontalMullions As String 
Dim strHorizontalMullionsStyle As String 
Dim strVerticalMullionWidth As String 
Dim strVerticalMullionLength As String 
Dim strHorizontalMullionWidth As String 
Dim strHorizontalMullionHeight As String 
Dim strHorizontalLouvreSize-Width As String 
Dim strVerticalMullionWidthTapperRatio As String 



Dim strArchitectureStyleForcombination As String 
Dim strStartLeve1 As String 
Dim strEndLeve1 As String 
If CheckBox~Component~HKIFC~1.Checked Then 

strComponentSyle = "Cesar-HKIFC" 
End If 
If CheckBox~Component~Structure~Setting.Checked And CheckBox-Compo- 

nent-HKIFC-1.Checked Then 
strComponentSyle = 'Cesar-HKIFC" 
strArchitectureStyleForcombination = "Mini-Skyscraper" 

End If 
If CheckBox~Component~Diagrid~1.Checked Then 

strComponentSyle = "Mini-Skyscraper" 
End If 
If CheckBox~Component~Structure~Setting.Checked And CheckBox-Compo- 

nent-Petronas-1.Checked Then 
strComponentSyle = "Cesar-Petronas" 
strArchitectureStyleForcombination = "Mini-Skyscraper" 

End If 
If CheckBox~Component~Structure_Setting.Checked = False Then 

strArchitectureStyleForcombination = "Null" 
End If 
If CheckBox~Component~Petronas~1.Checked Then 

strComponentSyle = "Cesar-Petronasl' 
End If 
strNumberOfHorizontalMullions = TextBoxNumberOfMullions.Text 
strHorizontalMullionsStyle = ComboBoxMullionArrangement.SelectedItem 
strVerticalMullionWidth = TextBoxVerticalMullionWidth.Text 
strVerticalMullionLength = TextBoxVerticalMullionLength.Text 
strHorizontalMullionWidth = TextBoxHorizontalMullionWidth.Text 
strHorizontalMullionHeight = TextBoxHorizontalMullionHeight.Text 
strHorizontalLouvreSize-Width = TextBoxHorizonta1LouvreSize.Text 

strVerticalMullionWidthTapperRatio = TextBox~VerticalMullionTapperRa- 
tio. Text 

strStartLeve1 = TextBoxSelectedLevelFrom.Text 
strEndLeve1 = TextBoxSelectedLevelTo.Text 
Dim strComponentHorizontalSpan 
strComponentHorizontalSpan = TextBoxComponentHorizontalSpan.Text 

RhUtil.RhinoApp.RunMenuScript("-LoadScript C:\thesis\Run\DigitalSky- 
scraper~Component~MiniSkyscraper.rvb ' + strComponentSyle + ' ' + strNumberOf- 
HorizontalMullions + ' ' + strHorizontalMullionsStyle + ' ' + strVerticalMu1- 
lionwidth + ' ' + strVerticalMullionLength + ' ' + strHorizontalMullionWidth + 
I\ \\ + strHorizontalMullionHeight + ' ' + strHorizontalLouvreSize_Width + ' ' + 
strComponentHorizontalSpan + ' ' + strVerticalMullionWidthTapperRatio + ' ' + 
strArchitectureStyleForcombination + ' " + strStartLeve1 + ' ' + strEndLeve1 + 
\8 I\ ) 

End Sub 

Private Sub ButtonGenerateMassing-Click(ByVa1 sender As System-Object, 
ByVal e As System-EventArgs) Handles ButtonGenerateMassing.Click 



Dim strArchitecturalSyle As String 
Dim strMiddleProfileLeve1 As String 
Dim strMiddleProfileXScale As String 
Dim strMiddleProfileYScale As String 
Dim strTopProfileXScale As String 
Dim strTopProfileYScale As String 
Dim strRotationAngle As String 
Dim strFloorToflootHeight As String 
Dim strNumberOfLevel As String 
If CheckBox-Massing-HKIFC.Checked Then 

strArchitecturalSyle = "Cesar-HKIFC" 
End If 
If CheckBox~Massing~Petronas.Checked Then 

strArchitecturalSyle = "Cesar-Petronas" 
End If 
If CheckBox-Cira.Checked Then 

strArchitecturalSyle = 'Cesar-Cira" 
End If 
If CheckBox-HearstHeadquarter-Checked Then 

strArchitecturalSyle = "Massing-4" 
End If 
If CheckBox-Massing-Mini.Checked Then 

strArchitecturalSyle = "Mini-Skyscraper" 
End If 
If CheckBox-HearstHeadquarter.Checked Then 

strArchitecturalSyle = "Hearst-Headquarter" 
End If 
strMiddleProfileLeve1 = TrackBarMiddleProfileLevel.Value 
strMiddleProfileXScale = TrackBarMiddleProfileXScale.Va1ue 
strMiddleProfileYScale = TrackBarMiddleProfileYScale.Value 
strTopProfileXScale = TrackBarTopProfileXScale.Value 
strTopProfileYScale = TrackBarTopProfileYScale.Value 
strRotationAngle = TrackBarRotationAngle.Va1ue 
strFloorToflootHeight = TextBoxF1oorHeight.Text 
strNumberOfLevel = TextBoxFloorNumbers.Text 
Dim strVerticalProportion As String 
strVerticalProportion = TrackBarVerticalProportion.Va1ue 
If CheckBox~Massing~Derivative~Option.Checked = False Then 

RhUtil.RhinoApp.RunMenuScript('-LoadScript C:\thesis\Run\Digital- 
Skyscraper~Massing~OriginalTowers.rvb " + strArchitecturalSyle + " " + strVer- 
ticalproportion + " " )  

End If 
If CheckBox~Massing~Derivative~Option.Checked Then 

RhUtil.RhinoApp.RunMenuScript('-LoadScript C:\thesis\Run\Digital- 
Skyscraper~Massing~DeviativeTowers.rvb " + strArchitecturalSyle + " " + strMid- 
dleProfileLeve1 + ' ' + strMiddleProfileXScale + " " + strMiddleProfileYScale + ' 
" + strTopProfileXScale + " ' + strTopProfileYScale + " " + strRotationAngle + " 

" + strFloorToflootHeight + " " + strNumberOfLevel + ' ') 

End If 
End Sub 





Appendix B: Rhinoscript 

This appendix contains the runtime program that was written in Rhinoscript. This 
program was tested fully functional by experiments. Please refer to Chapter xxx for the 
actual experiments that were conducted. (Only a small portion of the codes is shown. It is 
used to demonstrate the key ideas of the program.) 

Function Construct~HKIFC~Massing(architecturalSty1e~ pointAl, pointA2, poin- 
tA3, pointA4, tappered, verticalController) 

Dim pointl, point2, point3, point4 
ReDim arrConstructPlanProfi1es ( I0 , 1) 
ReDim arrMassing (10) 
pointl = pointAl 
point2 = pointA2 
point3 = pointA3 
point4 = pointA4 
Dim linell, line22, line33, line44 
Dim outLinel(l8) 
plan 
ReDim lineA11New (3 ) 
lines 
Dim intll, int22, int33, zLevel 
Dim intlll, int222, int333 
Dim i, j 
Dim veritcalLevel(l0) 
veritcalLevel(0) = 52*verticalController 
veritcalLevel(1) = 65*verticalController 
veritcalLevel(2) = 68*verticalController 
veritcalLevel(3) = 77*verticalController 
veritcalLevel(4) = 79*verticalController 
veritcalLevel(5) = 84*verticalController 
veritcalLevel(6) = 86*verticalController 
veritcalLevel(7) = 88*verticalController 
veritcalLevel(8) = 89*verticalController 
veritcalLevel(9) = 90*verticalController 

'the final outline of the 

'array that contains four 

For i = 0 To 9 
ReDim zLevel(1) 
Select Case i 
Case 0 
intll = 0 
int22 = 0 
int33 = 0 
zLevel(0) = 0 

zLevel(1) = LevelFinder(architecturalStyle, veritcalLevel(O), 89) 
Case 1 
intll = 1 
int22 = 1 
int33 = 0 
zLevel(0) = LevelFinder (architecturalstyle, veritcalLevel(0) , 89) 



zLevel(1) = LevelFinder(architecturalStyle, 
Case 2 
intll = 2 
int22 = 2 
int33 = 0 
zLevel(0) = LevelFinder(architecturalStyle, 
zLevel(1) = LevelFinder(architecturalStyle, 
Case 3 
intll = 2 
int22 = 2 
int33 = 1 
zLevel(0) = LevelFinder(architecturalStyle, 
zLevel(1) = LevelFinder(architecturalStyle, 
Case 4 
intll = 3 
int22 = 3 
int33 = 1 
zLevel(0) = LevelFinder(architecturalStyle, 
zLevel(1) = LevelFinder(architecturalStyle, 
Case 5 
intll = 3 
int22 = 3 
int33 = 2 
zLevel(0) = LevelFinder(architecturalStyle, 
zLevel(1) = LevelFinder(architecturalStyle, 
Case 6 
intll = 4 
int22 = 4 
int33 = 2 
zLevel(0) = LevelFinder(architecturalStyle, 
zLevel(1) = LevelFinder(architecturalStyle, 
Case 7 
intll = 4.8 
int22 = 4.8 
int33 = 3 
zLevel(0) = LevelFinder (architecturalstyle, 
zLevel(1) = LevelFinder(architecturalStyle, 
Case 8 
intll = 5 
int22 = 5 
int33 = 3 
zLevel(0) = LevelFinder(architecturalStyle, 
zLevel(1) = LevelFinder(architecturalStyle, 
Case 9 
intll = 0 
int22 = 0 
int33 = 4 
intlll = 0 
int222 = 0 
int333 = 6 
zLevel(0) = LevelFinder(architecturalStyle, 
zLevel(1) = LevelFinder(architecturalStyle, 

End Select 

If tappered = False Then 
If ic8 Then 



For j=O To 1 Step 1 
HKIFC-planProfile-3 pointl, point2, point3, point4, intll, int22, int33, 
zLevel (j ) 
linell = Rhino.LastObject 

HKIFC-planProfile-3 point2, point3, point4, pointl, intll, int22, int33, 
zlevel (j ) 
line22 = Rhino.LastObject 

HKIFC-planprofile-3 point3, point4, pointl, point2, intll, int22, int33, 
zLevel (j ) 
line33 = Rhino.LastObject 

HKIFC-planprofile-3 point4, pointl, point2, point3, intll, int22, int33, 
zLevel (j) 
line44 = Rhino.LastObject 

lineA11New (0) = linell 
lineA11New (1) = line22 
lineA11New (2) = line33 
lineAllNew(3) = line44 

Rhino.JoinCurves 1ineAllNew 
arrConstructPlanProfiles(i,j) = Rhino-Lastobject 
Rhino-Deleteobject linell 
Rhino-Deleteobject line22 
Rhino-Deleteobject line33 
Rhino-Deleteobject line44 
Next 

ReDim aaa (1) 
Dim bbb, ccc 

aaa (0) = arrConstructPlanProfiles (i, 0 )  
aaa (1) = arrConstructPlanProfiles (i, 1) 

If I sArray (aaa) And UBound ( aaa ) > 0 Then 
Rhino.AddLof tSrf (aaa) 
bbb = Rhino.LastObject 
ccc = Rhino.SelectObject(bbb) 
Rhino. Command ( "-cap " & ccc & " '$1 
Rhino.UnselectAll0bjects 
End If 
ElseIf i=9 Then 

HKIFC-planProfile-2 pointl, point2, point3, point4, intll, int22, int33, zLev- 
el (0) 
linell = Rhino.LastObject 

HKIFC-planProfile-2 point2, point3, point4, pointl, intll, int22, int33, zLev- 
el (0) 
line22 = Rhino.LastObject 

HKIFCplanProfile-2 point3, point4, pointl, point2, intll, int22, int33, zLev- 
el (0) 
line33 = Rhino.LastObject 



HKIFC-planprofile-2 point4, pointl, point2, point3, intll, int22, int33, zLev- 
el (0) 
line44 = Rhino.LastObject 

Rhino.JoinCurves 1ineAllNew 
arrConstructPlanProfiles (i, 0) = Rhino .Lastobject 
Rhino.Delete0bject linell 
Rhino-Deleteobject line22 
Rhino.Delete0bject line33 
Rhino-Deleteobject line44 

ReDim aaa (1) 
Dim ddd, eee 

aaa (0) = arrConstructPlanProfiles (i ,0) 

Dim linelll, line222, line333, line444 
Dim 1 ineA11New-2 ( 3 ) 
HKIFC-planprofile-2 pointl, point2, point3, point4, intlll, int222, int333, 
zLevel(1) 
linelll = Rhino-Lastobject 

HKIFC~lanProfile-2 point2, point3, point4, pointl, intlll, int222, int333, 
zLevel(1) 
line222 = Rhino.LastObject 

HKIFC-planprofile-2 point3, point4, pointl, point2, intlll, int222, int333, 
zLevel(1) 
line333 = Rhino.LastObject 

~~~~~jlanprofile-2 point4, pointl, point2, point3, intlll, int222, int333, 
zLevel(1) 
line444 = Rhino.~astObject 

lineA11New-2(0) = linelll 
lineA11New-2 (1) = line222 
lineA11New-2 (2) = line333 
lineA11New-2 (3) = line444 

Rhino.JoinCurves lineA11New-2 
arrConstructPlanProfiles (i , 1) = Rhino. LastObj ect 
Rhino.DeleteObject linelll 
Rhino.Delete0bject line222 
Rhino.DeleteObject line333 
Rhino.DeleteObject line444 

aaa ( 1) = arrConstructPlanProfi1es (i , 1) 

If IsArray (aaa) And UBound (aaa) > 0 Then 
Rhino.AddLoftSrf (aaa) 
ddd = Rhino.LastObject 
eee = Rhino. Selectobject (ddd) 



Rhino. Command ( "-cap " & eee & " " )  

Rhino.UnselectAllObjects 
End If 
End If 'end of if i<8 
Else 
MsgBox("1t is tappered!") 
End If 'end of if tappered 

Next 
Construct-HKIFC-Massing = arrConstructPlanProfiles 
End Function 'end of Construct-HKIFC-Massing 

Function HKIFC-planProfi le-1 (pointl, point2, point3, point4, integerNumber1, 
integerNumber2, integerNumber3,  level) 
Dim intl, int2, int3 
intl = integerNumberl*1338.025 
int2 = integerNumber2*1118.004 
int3 = integerNumber3*1118.004 
Dim z 
2 = zLevel 
Dim pointll, point22, point33, point44 
pointll = pointl 
point22 = point2 
point33 = point3 
point44 = point4 
Dim lineAngle1 
1ineAnglel = Rhino.Angle(pointl1, point33) 
Dim xl, yl, 21 
Dim x2, y2, 22 
Dim x3, y3, 23 
Dim x4, y4, 24 
xl = pointll(0) 
yl = pointll(1) 
zl = pointll (2) 
x2 = point22(0) 
y2 = point22(1) 
22 = pointZZ(2) 
x3 = point33 (0) 
y3 = point33(1) 
23 = point33 ( 2 )  

x4 = point44(0) 
y4 = point44(1) 

'points that forms the outlines 
Dim ptll, pt22, pt33, pt44, pt55, pt66, pt77, pt88, pt99 
'reference points on alternative two sides 
Dim xa, ya, za 
Dim xb, yb, zb 

'point ptll 
xll = (x3 - x1) * (6646.804+intl) /81175.858+~1 
yll = (y3 - yl) * (6646.804+intl) /81175.858+y1 
zll = (23 - zl) * (6646.804+intl) /81175.858+z 
ptll = Array (xll, yll, zll) 



'point pt22 
If lineAnglel(0) >0 And lineAnglel(0) c90 Or lineAnglel(0) C-90 Then 
xa2 = (x4 - x1) * (3591.415+int2) /57400+x1 
ya2 = (y4 - y1) *3591.415/57400+yl 
za2 = (24 - 21) *3591.415/57400+2 
xb2 = (x3 - x2) * (3591.415+int2) /57400+x2 
yb2 = (y3 - y2) *3591.415/57400+y2 
2b2 = (23 - 22) *3591.415/57400+~ 
Else 
xa2 = (x4 - x1)*3591.415/57400+x1 
ya2 = (y4 - yl) * (3591.415+int2) /57400+y1 
za2 = (24 - z1)*3591.415/57400+~ 
xb2 = (x3 - x2)*3591.415/57400+~2 
yb2 = (y3 - y2) * (3591.415+int2) /57400+y2 
zb2 = (23 - ~2)*3591.415/57400+~ 
End If 
x22 = (xb2 - xa2)*9963.189/57400+xa2 
y22 = (yb2 - ya2)*9963.189/57400+ya2 
222 = (zb2 - 2a2) *9963.189/57400+za2 
pt22 = Array(x22, y22, 222) 

'point pt33 
If lineAnglel(0) >0 And lineAnglel(0) c90 Or lineAnglel(0) c-90 Then 
xa3 = (x4 - x1) * (2778+int2) /5740O+xl 
ya3 = (y4 - y1)*2778/5740O+yl 
za3 = (24 - z1)*2778/57400+z 
xb3 = (x3 - x2) * (2778+int2) /57400+x2 
yb3 = (y3 - y2)*2778/57400+~2 
zb3 = (23 - ~2)*2778/57400+2 
Else 
xa3 = (x4 - x1)*2778/5740O+xl 
ya3 = (y4 - yl) * (2778+int2) /5740O+yl 
za3 = (24 - ~1)*2778/57400+~ 
xb3 = (x3 - x2)*2778/57400+x2 
yb3 = (y3 - y2) * (2778+int2) /57400+y2 
zb3 = (23 - ~2)*2778/57400+2 
End If 
x33 = (xb3 - xa3)*15280/57400+xa3 
y33 = (yb3 - ya3)*15280/57400+ya3 
233 = (zb3 - za3)*15280/57400+za3 
pt33 = Array(x33, y33, 233) 

'point pt44 
If lineangle1 (0) >0 And lineAnglel(0) c90 Or lineAnglel(0) c-90 Then 
xa4 = (x4 - x1) * (900+int3) /57400+xl 
ya4 = (y4 - yl)*900/57400+yl 
Za4 = (24 - 21)*900/57400+z 
xb4 = (x3 - x2) * (900+int3) /57400+x2 
yb4 = (y3 - y2)*900/57400+y2 
zb4 = (23 - 22)*900/57400+~ 
Else 
xa4 = (x4 - x1)*900/57400+x1 
ya4 = (y4 - y1) * (900+int3) /57400+yl 
2a4 = (24 - z1)*900/57400+z 
xb4 = (x3 - x2)*900/57400+x2 



yb4 = (y3 - y2) * (900+int3) /57400+y2 
zb4 = (23 - ~2)*900/57400+~ 
End I f  
x44 = (xb4 - xa4)*15280/57400+xa4 
y44 = (yb4 - ya4)*15280/57400+ya4 
244 = (zb4 - za4) *15280/57400+za4 
pt44 = Array(x44, y44, 244) 

'point pt55 
I f  lineAnglel(O)>O And lineAngle1(0)<90 Or lineAnglel(O)<-90 Then 
xa5 = (x4 - xl)*(O+int3)/57400+xl 
ya5 = (y4 - yl)*0/57400+yl 
za5 = (24 - z1)*0/57400+z 
xb5 = (x3 - x2)*(O+int3)/57400+~2 
yb5 = (y3 - y2)*0/5740O+y2 
zb5 = (23 - z2)*0/57400+2 
Else 
xa5 = (x4 - x1)*0/57400+xl 
ya5 = (y4 - yl)*(O+int3)/57400+yl 
za5 = (24 - 21)*0/57400+z 
xb5 = (x3 - x2)*0/57400+~2 
yb5 = (y3 - y2)*(0+int3)/57400+y2 
zb5 = (23 - ~2)*0/57400+2 
End I f  
x55 = (xb5 - xa5)*28700/57400+xa5 
y55 = (yb5 - ya5)*28700/57400+ya5 
255 = (zb5 - za5)*28700/57400+za5 
pt55 = Array(x55, y55, 255) 

'point pt66 
I f  lineAnglel(O)>O And lineAnglel(0)<90 Or lineAnglel(O)<-90 Then 
xa6 = (x4 - x1) * (900+int3) /57400+xl 
ya6 = (y4 - yl)*900/57400+yl 
za6 = (24 - z1)*900/57400+z 
xb6 = (x3 - x2) * (900+int3) /57400+x2 
yb6 = (y3 - y2)*900/57400+y2 
zb6 = (23 - z2)*900/57400+z 
Else 
xa6 = (x4 - x1)*900/57400+x1 
ya6 = (y4 - yl) * (900+int3) /57400+yl 
za6 = (24 - z1)*900/57400+z 
xb6 = (x3 - x2)*900/57400+~2 
yb6 = (y3 - y2) * (900+int3) /57400+y2 
zb6 = (23 - z2)*900/57400+z 
End I f  
x66 = (xb6 - xa6)*42120/57400+xa6 
y66 = (yb6 - ya6)*42120/57400+ya6 
z66 = (zb6 - za6)*42120/57400+za6 
pt66 = Array(x66, y66, 266) 

'point pt77 
I f  lineAnglel(0) >0 And lineAnglel(0) <90 Or lineAnglel(0) <-90 Then 
xa7 = (x4 - x1) * (2778+int2) /5740O+xl 
ya7 = (y4 - y1)*2778/57400+yl 
za7 = (24 - z1)*2778/57400+z 



xb7 = (x3 - x2) * (2778+int2) /57400+x2 
yb7 = (y3 - y2)*2778/574OO+y2 
Zb7 = (23 - 22)*2778/57400+2 
Else 
xa7 = (x4 - x1)*2778/57400+~1 
ya7 = (y4 - yl) * (2778+int2) /5740O+yl 
za7 = (24 - z1)*2778/57400+2 
xb7 = ( ~ 3  - ~2)*2778/57400+~2 
yb7 = (y3 - y2)*(2778+int2)/57400+y2 
2b7 = (23 - 22)*2778/57400+2 
End If 
x77 = (xb7 - xa7)*42120/57400+xa7 
y77 = (yb7 - ya7)*42120/57400+ya7 
277 = (2b7 - za7)*42120/5740o+za7 
pt77 = Array(x77, y77, 277) 

'point pt88 
If lineAnglel(0) >0 And lineAnglel(0) c90 Or lineAnglel(0) e-90 Then 
xa8 = (x4 - x1) * (3739+int2) /5740O+xl 
ya8 = (y4 - yl)*3739/57400+yl 
za8 = (24 - 21)*3739/57400+2 
xb8 = (x3 - x2)* (3739+int2)/57400+~2 
yb8 = (y3 - y2) *3739/57400+y2 
2b8 = (23 - z2)*3739/57400+2 
Else 
xa8 = (x4 - x1) *3739/57400+xl 
ya8 = (y4 - yl) * (3739+int2) /5740O+yl 
2a8 = (24 - 21)*3739/57400+z 
xb8 = (x3 - x2)*3739/57400+~2 
yb8 = (y3 - y2) * (3739+int2) /5740O+y2 
zb8 = (23 - 22)*3739/57400+z 
End If 
x88 = (xb8 - xa8)*47410/57400+xa8 
y88 = (yb8 - ya8)*47410/57400+ya8 
288 = (2b8 - za8)*47410/57400+za8 
pt88 = Array(x88, y88, 288) 

'point pt99 
x99 = (x4 - x2) * (6646.804+intl) /81175.858+~2 
y99 = (y4 - y2) * (6646.804+intl) /81175.858+~2 
299 = (24 - 22) *6646.804/81175.858+2 
pt99 = Array(x99, y99, 299) 

'outlines that compose one size 
Dim linel, line2, line3, line4, line5, line55 

linel = Rhino.AddArc3Pt (ptll, pt33, pt22) 
line2 = Rhino-AddLine (pt33, pt44) 
line3 = Rhino.AddArc3Pt (pt44, pt66, pt55) 
line4 = Rhino.AddLine (pt66, pt77) 
line5 = Rhino.AddArc3Pt (pt77, pt99, pt88) 
Rhino.Select0bject line5 
Rhino.Command("-rebuild \' & "" & "Enter") 
line55 = Rhino.Last0bject 

Dim lineAll(4 ) 



lineAll(0) = linel 
lineAll(1) = line2 
lineAll(2) = line3 
lineAll(3) = line4 
lineAll(4) = line55 
HKIFC-planProfile-1 = Rhino-Joincurves (lineAll) 

Rhino-Deleteobject line5 
Rhino-Deleteobject line55 
Rhino.DeleteObject line4 
Rhino.Delete0bject line3 
Rhino.Delete0bject line2 
Rhino.DeleteObject linel 
End Function 'end of HKIFC-planprofile-1 

Function LevelFinder(architecturalStyle, i, numberOfLevels) 

Select Case architecturalstyle 
Case "Mini-Skyscraper" 
LevelFinder = i * 4200 

Case "Cesar-HKIFC" 
Dim countLeve1 
countLevel=Array(5240I5OOOI5OOOI5410l775Ol7O5Ol7O5O,42OOl485Ol42OOl42OOl48 

50,4200,4200,4850,4200,4200,4850, 4200,4200,4850,4200,4200,4850,42~~,4~~~,~8~ 
O,442O,340O,688O,688Ol42OOI485OI42OOl42OOl42OOl42OOl42OO, 4200,4200,4200,4200 
,42OO,42OO,42OO,42OOl4200,442OO,442Ol34OOl688O,688O,524Ol5l3O,485Ol42OOl485Ol4 
200,4200, 4 8 5 0 , 4 2 0 0 , 4 8 5 0 , 4 2 0 0 , 4 8 5 0 I 4 4 2 0 I 7 0 3 0 1 7 0 3 0 , 3 4 0 0 1 6 8 8 0 1 6 8 8 0 1 4 2 0 0 1 4 8 5 0 1 4 2  

O 0 , 4 2 0 0 , 4 8 5 0 , 4 2 0 0 , 4 2 0 0 1 4 2 0 0 1 4 8 5 0 r 4 2 0 0 1 4 8 5 0 ,  4200,4200,4200,4850,4850,4200,420 
0,4850,4350) 

If i=O Then 
LevelFinder=5240 
Else 
LevelFinder=5240 
For j=i To 1 Step -1 
LevelFinder = LevelFinder + countLevel(j) 
Next 

End If 

If i>5 And i<30 Then 
LevelFinder = LevelFinder-7050 
End If 
If i>29 And i<51 Then 
LevelFinder = LevelFinder-7050-6880 
End If 
If i>50 And i<66 Then 
LevelFinder = LevelFinder-7050-6880-6880 
End If 
If i>65 And i<69 Then 
LevelFinder = LevelFinder-7050-6880-6880-7030 
End If 
If i>68 Then 
LevelFinder = LevelFinder-7050-6880-6880-7030-6880 
End If 



Case "Cesar-Petronas" 
Dim countLevel2 

countLevel2 = Array(5500,5500,5500,5500,5500, 4100,4100,4100,4100, 
4100,4100,4100,4100, 4100,4100,4100,4100, 4100,4100,4100,4100, 
4100,4100,4100,4100, - 
4100,4100,4100,4100, 4100,4100,4100,4100, 4100,4100,4100, 4505,3900,3900,43 
50,4100,4100,4350, 4100, 4100,4100,4100,4100,4100,4100,4100,4100,4100,4100, 
4100,4100,4100,4100) 

If i=O Then 
LevelFinder=5500 
Else 
LevelFinder=5500 
For j=i To 1 Step -1 
LevelFinder = LevelFinder + countLevel2(j) 
Next 
End If 
Case Else 
Rhino.MessageBox ("something else!") 

End Select 
End Function 'end of LevelFinder 

Function MassingController (pointl, point2, point3, point4, architectural- 
Style, middleProfileLeve1, middleProfileXScale, middleProfileYScale, topProfileX- 
Scale, topProfileYScale, rotationAngle, floorToflootHeight, numberOfLeve1) 

Dim linell, line22, line33, line44 
ReDim lineAllNew(3) 
Dim lowerprofile , middleprofile, topprofile 
Dim lowerProfile2, middleProfile2, topProfile2 
Dim lowerProfile3, middleProfile3, topProfile3 
Dim reVerticalLevelSlider 
reVerticalLevelSlider = VerticalLevelSlider (middleProfileLeve1) 
Dim reHorizontalSizeSlider 
reHorizontalSizeSlider = VerticalLevelSlider (2) 
Dim intersectOfPtlPt2Pt3Pt4 
Dim interpoint 
Find~ntersectionPoints pointl, point2, point3, point4 
interpoint = Rhino.LastObject 
intersectOfPtlPt2Pt3Pt4 = Rhino-Pointcoordinates (interpoint) 
ReDim intersectOfMiddelLevel(2) 
ReDim intersectOfTopLevel(2) 
intersectOfMiddelLevel(0) = intersectOfPtlPt2Pt3Pt4(0) 
intersectOfMiddelLevel(1) = intersectOfPtlPt2Pt3Pt4 (1) 
intersectOfMiddelLevel(2) = floorToflootHeight*numberOfLevel*reVerticalLevelSli 
der 



If architecturalstyle = "Cesar-HKIFC" Then 
' lower profile 
HKIFC-planprofile-3 point 1, point2, point3, point4, 0, 0, 0, 0 
linell = Rhino.LastObject 

HKIFC-planProfile-3 point2, point3, point4, pointl, 0, 0, 0, 0 
line22 = Rhino.LastObject 

HKIFC-planprofile-3 point3, point$, pointl, point2, 0, 0, 0, 0 
line33 = Rhino.LastObject 

HKIFC-planprofile-3 point4, pointl, point2, point3, 0, 0, 0, 0 
line44 = Rhino-Lastobject 

lineAllNew(0) = linell 
lineA11New (1) = line22 
lineA11New (2) = line3 3 
1 ineA11New ( 3 ) = 1 ine4 4 
Rhino.JoinCurves lineAllNew 
lowerprofile = Rhino. LastObj ect 
Rhino.Delete0bject linell 
Rhino-Deleteobject line22 
Rhino.DeleteObject line33 
Rhino.DeleteObject line44 

'middel profile 
HKIFC-planprofile-3 pointl, point2, point3, point4, 0, 0, 0, floorToflootHeight* 
numberOfLevel*reVerticalLevelSlider 
linell = Rhino-Lastobject 

HKIFCplanProfile-3 point2, point3, point4, pointl, 0, 0, 0, floorToflootHeight* 
numberOfLevel*reVerticalLevelSlider 
line22 = Rhino.LastObject 

HKIFCplanProfile-3 point3, point$, pointl, point2, 0, 0, 0, floorToflootHeight* 
numberOfLevel*reVerticalLevelSlider 
line33 = Rhino.LastObject 

HKIFC-planProfile-3 point4, pointl, point2, point3, 0, 0, 0, floorToflootHeight* 
numberOfLevel*reVerticalLevelSlider 
line44 = Rhino-Lastobject 

lineA11New (0) = linell 
lineAllNew(1) = line22 
lineAllNew(2) = line33 
lineAllNew(3) = line44 
Rhino-Joincurves lineAllNew 
middleProfile2 = Rhino. LastOb j ect 
Rhino-Deleteobject linell 



Rhino.Delete0bject line22 
Rhino.DeleteObject line33 
Rhino-Deleteobject line44 
Dim numbl, numb2 
numbl = middleProfileXScale 
numb2 = middleProfileYScale 
Dim arrScaleM 
arrScaleM = Array (numbl, numb2, 1) 
Rhino.ScaleObject middleProfile2, intersectOfMiddelLeve1, arrScaleM, True 
middleProfile3 = Rhino-Lastobject 
Rhino.Delete0bject middleprofile2 
Rhino.RotateObject middleProfile3, intersectOfPtlPt2Pt3Pt4, rotationAngle/2, 
, True 
middleprofile = Rhino.LastObject 
Rhino.Delete0bject middleProfile3 

'top profile 
HKIFC~lanProfile-3 pointl, point2, point3, point4, 0, 0, 0, floorToflootHeight* 
numberOfLeve1 
linell = Rhino-Lastobject 

HKIFC~lanProfile-3 point2, point3, point4, pointl, 0, 0, 0, floorToflootHeight* 
numberOfLevel 
line22 = Rhino.LastObject 

HKIFC~lanProfile-3 point3, point4, pointl, point2, 0, 0, 0, floor~oflootHeight* 
numberOfLeve1 
line33 = Rhino-Lastobject 

HKIFC~lanProfile-3 point4, pointl, point2, point3, 0, 0, 0, floorToflootHeight* 
numberOfLeve1 
line44 = Rhino-Lastobject 

lineA11New (0) = linell 
lineA11New (1) = line22 
lineA11New (2) = line33 
lineAllNew(3) = line44 
Rhino.JoinCurves 1ineAllNew 
topProfile2 = Rhino. LastObj ect 
Rhino.DeleteObject linell 
Rhino.DeleteObject line22 
Rhino.DeleteObject line33 
Rhino.Delete0bject line44 
Dim arrScaleT 
numbl = topProfileXScale 
numb2 = topProfileYScale 
arrScaleT = Array(numb1, numb2, 1) 
Rhino.ScaleObject topProfile2, intersectOfTopLeve1, arrScaleT, True 
Rhino. Deleteobject topProfile2 
topProfile3 = Rhino. LastObject 
Rhino-Rotateobject topProfile3, intersectOfPtlPt2Pt3Pt4, rotationAngle, ,True 
topprofile = Rhino. LastObject 
Rhino. DeleteObj ect topProfile3 

ReDim aaa (2) 



Dim bbb, ccc 
aaa ( 0) = lowerprofile 
aaa ( 1) = middleprofile 
aaa ( 2) = topprofile 
If IsArray (aaa) And UBound (aaa) > 0 Then 
Rhino.AddLoftSrf (aaa) 
bbb = Rhino-Lastobject 
ccc = Rhino. Selectobject (bbb) 
Rhino-Command ("-cap " & ccc & " " )  

Rhino.UnselectAllObjects 
End If 'end of If IsArray 
End If 'end of If "Cesar-HKIFC" 
If architecturalstyle = "Mini-Skyscraper" Then 

' lower profile 
MinijlanProfile pointl, point2, point3, point4, 0 
lowerprofile = Rhino-Lastobject 

'middel profile 
Mini-planprofile pointl, point2, point3, point4, floorToflootHeight*numberOfLeve 
l*reVerticalLevelSlider 
middleprofile2 = Rhino-Lastobject 
'Dim numbl, numb2 
numbl = middleProfileXScale 
numb2 = middleProfileYScale 
'Dim arrScaleM 
arrScaleM = Array(numb1, numb2, 1) 
Rhino-Scaleobject middleProfile2, intersectOfMiddelLeve1, arrScaleM, True 
middleprofile3 = Rhino.LastObject 
Rhino. DeleteOb j ect middleprofile2 
Rhino.RotateObject middleProfile3, intersectOfPtlPt2Pt3Pt4, rotationAngle/2, 
, True 
middleprofile = Rhino. Lastobject 
Rhino.DeleteObject middleProfile3 

'top profile 
Mini-planprofile pointl, point2, point3, point4, floorToflootHeight*numberOfLeve 
1 
topProfile2 = Rhino-Lastobject 

numbl = topProfileXScale 
numb2 = topProfileYScale 
arrScaleT = Array(numb1, numb2, 1) 
Rhino.ScaleObject topProfile2, intersectOfTopLeve1, arrScaleT, True 
Rhino. DeleteObj ect topProfile2 
topProfile3 = Rhino.LastObject 
Rhino-Rotateobject topProfile3, intersectOfPtlPt2Pt3Pt4, rotationAngle, ,True 
topprofile = Rhino.LastObject 
Rhino. DeleteObj ect topProfile3 

ReDim aaa ( 2 )  
aaa ( 0) = 1owerProfile 
aaa (1) = middleprofile 
aaa ( 2) = topprofile 
If IsArray (aaa) And UBound (aaa) > 0 Then 



Rhino-AddLoftSrf (aaa) 
bbb = Rhino. LastObj ect 
ccc = Rhino.SelectObject(bbb) 
Rhino. Command ("-cap ' & ccc & " ') 

Rhino.UnselectAll0bjects 
End If 'end of If IsArray 
End If 'end of If "Mini-Skyscraper" 

If architecturalstyle = "Cesar-Petronas" Then 
' lower profile 
Petronas~lanprofile pointl, point2, point3, point4, 0 
lowerprofile =  hin no . LastOb j ect 

'middel profile 
Petronas~lanProfile pointl, point2, point3, point4, floorToflootHeight*numberOfLe 
vel*reVerticalLevelSlider 
middleprofile2 = Rhino.LastObject 
'Dim numbl, numb2 
numbl = middleProfileXScale 
numb2 = middleProfileYScale 
arrScaleM = Array(numb1, numb2, 1) 
Rhino.ScaleObject middleProfile2, intersectOfMiddelLevel, arrScaleM, True 
middleprofile3 = Rhino. LastObject 
Rhino.Delete0bject middleprofile2 
Rhino.RotateObject middleProfile3, intersectOfPtlPt2Pt3Pt4, rotationAngle/2, 
, True 
middleprofile = Rhino. Las tOb j ect 
Rhino-Deleteobject middleprofile3 

'top profile 
Petronas~lanprofile pointl, point2, point3, point4, floor~ofloot~eight*numberOfLe 
vel 
topProfile2 = Rhino. LastObject 

numbl = topProfileXScale 
numb2 = topProfileYScale 
arrScaleT = Array(numb1, numb2, 1) 
Rhino.Scale0bject topProfile2, intersectOfTopLevel, arrScaleT, True 
Rhino. DeleteObj ect topProfile2 
topProfile3 = Rhino. LastOb j ect 
Rhino.RotateObject topProfile3, intersectOfPtlPt2Pt3Pt4, rotationAngle, ,True 
topprofile = Rhino. LastOb j ect 
Rhino. Deleteobject topProfile3 

ReDim aaa (2 ) 
aaa ( 0) = lowerprofile 
aaa ( 1) = middleprofile 
aaa (2) = topprofile 
If IsArray (aaa) And UBound (aaa) > 0 Then 
Rhino-AddLoftSrf (aaa) 
bbb = Rhino-Lastobject 
ccc = Rhino.SelectObject(bbb) 
Rhino-Command ("-cap ' & ccc & ' ') 

Rhino.UnselectAll0bjects 
End If 'end of If IsArray 



End If 'end of If 'Cesar-Petronas" 
End If 

End Function 

Sub HKIFC~componentConstruct(architecturalSytle, numberOfHorizontalMullions, 
horizontalMullionsStyle, verticalMullionWidth, verticalMullionLength, hori- 
zontalMullionWidth, horizontalMullionHeight, horizontalLouvreSize-Width, com- 
mponentHorizontalSpan, verticalMullionWidthTapperRadio, startLevel, endLeve1) 

Dim numberOfSurfaces 
Dim innerpoint 
innerpoint = Array(O,O,O) 
Dim curvesAl1 
Dim numOfDivisions 
Dim distance1 
Dim i, j , r, rt, srfCount 
Dim diDiagridPointPositions 
Dim numOfLevels 

Dim selectedsurfaces 
selectedSurfaces = Rhino.GetObjects(\'Pick surface objects") 
numberOfSurfaces = UBound(selectedSurfaces)+l 

Dim lowestPoint, highestpoint 
1owestPoint = Rhino.GetPoint("Pick the lowestpoint on the surfaces:") 
highestpoint = Rhino.GetPoint("Pick the highestpoint on the surfaces:") 
Dim heightOfSelectedSurface 
heightOfSelectedSurface = highestPoint(2) 
Dim 1owestPointZCoordinate 
1owestPointZCoordinate = lowestPoint(2) 
1 

'determines the number of division 
' 

Dim ptptl, ptpt2, ptpt3, ptpt4 
ptpt1=Array(-100000,-100000,1owestPointZCoordinate) 
ptpt2=Array(100000,100000,lowestPointZCoordinate) 
Rhino.Command "-cplane ' & 'w" & I' ' & 't" & " " 

Rhino.Command "-Plane ' & Pt2Str(ptptl) & " " & Pt2Str(ptpt2) 
Dim cutPlaneTest 
cutPlaneTest=Rhino.LastObject 
Rhino.SelectObject(selectedSurfaces(0)) 
Rhino.SelectObject(cutPlaneTest) 
Rhino.Command "-Intersect " 
Dim intersectedLinesTest 
intersectedLinesTest=Rhino.LastObject 
Rhino.DeleteObject cutPlaneTest 
Rhino.UnselectAll0bjects 
Dim interCurveLength 
interCurveLength = Rhino.CurveLength(intersectedLinesTest) 
numOfDivisions = CInt(interCurveLength/commponentHorizontalSpan~ 

numOfLevels = heightOfSelectedSurface/4200 
Dim countStartLeve1, countEndLevel 



If endLevel=100 Then 
countStartLeve1 = 0 
countEndLeve1 = numOfLevels-1 
Else 
countStartLeve1 = startLevel 
countEndLeve1 = endLevel 
End If 
Dim pointcloud11 (1000000) 
Dim pointCloud33 (1000000) 

For i=countStartLevel To countEndLeve1 'for i 
For srfCount=O To numberOfSurfaces-1 'for srfCount 
Dim cutplane, cutPlane2 
r = LevelFinder(architecturalSytle, i, numOfLevels) 

Dim ptl, pt2, pt3, pt4 
ptl=Array(-100000, -100000,r) 
pt2=Array(100000,100000,r) 
Rhino-Command "-cplane ' & "w" & " ' & "t" & ' ' 
Rhino.Command "-Plane ' & Pt2Str(ptl) & " ' & Pt2Str(pt2) 
cutPlane=Rhino.LastObject 
Rhino.SelectObject(selectedSurfaces(srfCount)) 
Rhino.SelectObject(cutPlane) 
Rhino-Command '-Intersect ' 
intersectedLines=Rhino.LastObject 
Rhino.DeleteObject cutplane 
Rhino.UnselectAllObjects 

pointCloudll(srfCount) = FindDivisionPoints (intersectedLines, numOfDivi- 
sions) 
rt = LevelFinder(architecturalSytle, i+l, numOfLevels) 
pt3=Array(-100000,-100000,rt) 
pt4=Array(100000,100000,rt) 
Rhino.Command "-cplane ' & 'w" & ' ' & 't" & ' ' 
Rhino.Command "-Plane ' & Pt2Str(pt3) & " " & PtaStr(pt4) 
cutPlane2=Rhino.LastObject 
Rhino.SelectObject(selectedSurfaces(srfCount)) 
Rhino.SelectObject(cutPlane2) 
Rhino.Command "-Intersect ' 
intersectedLines2=Rhino.LastObject 
Rhino.DeleteObject cutPlane2 
Rhino.UnselectAllObjects 

pointCloud33(srfCount) = FindDivisionPoints (intersected~ines2, numOfDivi- 
sions) 
Next 'of srfCount 

For srfCount=O To numberOfSurfaces-1 'for srfCount 
For j=O To numOfDivisions-1 
If srfCount=O Then 
point1 = pointcloud11 (srf Count) ( j ) 
point2 = pointCloud33 (srf Count) (j ) 
point3 = pointcloud11 (srf Count ( j+l) 
point4 = pointCloud33 (srfcount) (j+l) 

If j = O  Then 



If CLng (pointCloudll(0) (0) (0) /loo) = CLng (pointcloud11 (numberof Surfaces- 
1) (numOfDivisions) (0) /loo) Or - 
CLng (pointcloudll (0) (0) ( 1) /loo) = CLng (pointcloud11 (numberof Surfaces- 1) (nu- 
mOfDivisions) (1) /I001 And - 
CLng (pointcloudll (0) (0) (2) /loo) = CLng (pointcloudll (numberof Surfaces-1) (nu- 
mOfDivisions) (2)/100) Then 
point5 = pointCloudll(numberOfSurfaces-1) (numOfDivisions-1) 
point6 = pointCloud33(numberOfSurfaces-1) (numOfDivisions-1) 
Else 
point5 = Array(2*pointl(O) -point3(0), 2*pointl(l)-point3(1), 2*point1(2)- 
point 3 ( 2 ) ) 
point6 = Array(2*point2(0)-point4(0), 2*point2(1)-point4(1), 2*point2(2)- 
point4 (2 ) ) 
End If 'end of if pointCloudll(srfCount,O) = pointCloudll(srfCountInumOfDivis 
ions-1) 
End If 'end of j=O 

If j=numOfDivisions-1 Then 
If numberOfSurfaces>l Then 
~f CLng(pointCloudll(srfCount+1) (0) (0)/100) = CLng(pointCloudll(0) (numOfDivis 
ions) (0) /loo) Or - 
CLng (pointcloud11 (srfCount+l) (0) (1) /loo) = CLng (pointcloudll (0) (numOf Division 
s) (1) /loo) And - 
CLng (pointcloudll (srfCount+l) (0) (2) /loo) = CLng (pointcloudll (0) (numOfDivision 
S) (2) /loo) Then 
point7 = pointcloudll (srf Count+l) (1) 
point8 = pointCloud33 (srf Count+l) (1) 
Else 
point7 = Array(2*point3(0)-pointl(0) , 2*point3(1)-pointl(l), 2*point3(2)- 
point 1 ( 2 ) ) 
point8 = Array(2*point4(0)-point2(0), 2*point4(1)-point2(1), 2*point4(2)- 
point2 (2) ) 
End If 'end of if pointCloudll(numberOfSurfaces-lInumOfDivisions-l) = point- 
Cloud11 (0,O) 
Else 
point7 = Array(2*point3(0)-pointl(O), 2*point3(1)-pointl(l), 2*point3(2)- 
pointl (2) ) 
point8 = Array (2*point4 (0) -point2 (0) , 2*point4 (1) -point2 (1) , 2*point4 (2) - 
point2 (2) ) 
End If 'numberOfSurfaces>l 
End If 'j=numOfDivisions-1 

If j>O Then 
point5 = pointcloudll (srf Count) ( j -1) 
point6 = pointCloud33 (srf Count) ( j -1) 
End If 

If j~numOfDivisions-1 Then 
point7 = pointcloud11 (srf Count) ( j +2) 
point8 = pointCloud33(srfCount) ( j + 2 )  
End If 

ElseIf srfCount=number0fSurfaces-1 Then 

pointl = pointCloudll(srfCount) (j) 



point2 = pointCloud33 (srfcount) (j) 
point3 = pointcloudll (srfcount) (j+l) 
point4 = pointCloud33 (srfcount) (j+l) 

If j= 0 Then 
If CLng (pointcloudll (numberofsurfaces-1) (0) 0 0 0  = CLng (pointcloud11 (numbe 
rOfSurfaces-2) (numOfDivisions) (0)/100) Or - 
CLng (pointcloudll (numberof Surfaces- 1) (0) (1) /loo) = CLng (pointcloud11 (numberof 
Surfaces-2) (numOf Divisions) (1) / 100) And - 
CLng (pointcloud11 (numberOfSurfaces-1) (0) (2) /I001 = CLng (pointcloud11 (numberof 
Surf aces-2) (numOf Divisions) (2) /loo) Then 
point5 = pointCloudll(numberOfSurfaces-2) (numOfDivisions-1) 
point6 = pointCloud33 (numberOfSurfaces-2) (num0fDivisions-1) 
Else 
point5 = Array(2*pointl(O) -point3(0) , 2*pointl(l)-point3(1), 2*point1(2)- 
point3 (2) ) 
point6 = Array(2*point2(0)-point4(0), 2*point2(1)-point4(1), 2*point2(2)- 
point4 (2) ) 
End If 'end of if pointCloudll(numberOfSurfaces-lInumOfDivisions-l) = point- 
Cloudll (0,O) 
End If 'j=numOfDivisions-1 

If j=numOfDivisions-1 Then 
If CLng (pointcloudll (numberof Surfaces-1) (numOfDivisions) (0) /I001 = CLng (point 
Cloudll (0) (0) (0) /loo) Or - 
CLng (pointcloudll (numberof Surfaces-1) (numOf Divisions) (1) /loo) = CLng (pointclo 
udll(0) (0) (1) /loo) And - 
CLng (pointcloudll (numberof Surfaces- 1) (numOf Divisions) (2) /loo) = CLng (pointclo 
udll(0) (0) (2) /loo) Then 
point7 = pointcloud11 (0) (1) 
point 8 = pointCloud33 ( 0 ) ( 1) 
Else 
point7 = Array(2*point3(0) -pointl(O), 2*point3(1)-pointl(l), 2*point3(2)- 
pointl (2) ) 
point8 = Array (2*point4 (0) -point2 (0) , 2*point4 (1) -point2 (1) , 2*point4 (2) - 
point2 (2) ) 
End If 'end of if pointCloudll(srfCount,O) = pointCloudll(srfCountInumOfDivis 
ions-1) 
End If 'end of j=O 

If j>O Then 
point5 = pointCloudl1 (srfcount) (j -1) 
point6 = pointCloud33 (srfcount) (j -1) 
End If 
If j<numOfDivisions-1 Then 
point7 = pointcloudll (srf Count) (j+2) 
point8 = pointCloud33 (srf Count) (j +2) 
End If 
Else 
pointl = pointcloud11 (srf Count) (j ) 
point2 = pointCloud3 3 (srf Count) ( j 
point3 = pointcloudll (srf Count) (j+l) 
point4 = pointCloud33 t srf Count) (j +l) 

If j=O Then 



If CLng (pointcloudll (srf Count) (0) (0) /loo) = CLng (pointcloudll (srfCount-1) (nu- 
mOfDivisions) (0) /loo) Or - 
CLng(pointCloudll(srfCount) (0) (1)/100) = CLng(pointCloudll(srfCount-1) (nu- 
mOfDivisions) (1) /loo) And - 
CLng (pointcloudll (srfcount) (0) (2) /loo) = CLng (pointcloud11 (srfCount -1) (nu- 
m0fDivisions) (2) /loo) Then 
point5 = pointCloudll(srfCount-1) (numOfDivisions-1) 
point6 = pointCloud33(srfCount-1) (num0fDivisions-1) 
Else 
point5 = Array(2*pointl(O) -point3 (01, 2*pointl(l) -point3(1), 2*point1(2) - 
point3 (2 f ) 

point6 = Array(2*point2(0)-point4(0), 2*point2(1)-point4(1), 2*point2(2)- 
point4 (2) ) 
End If 'end of if pointCloudll(srfCount,O) = pointCloudll(srfCountInumOfDivis 
ions-1) 
End If 'end of j=O 

If j=numOfDivisions-1 Then 
If CLng (pointcloudll (srfCount) (numOfDivisions) 0 0 0  = CLng (pointcloud11 (sr 
fCount+l) (0) (0) /loo) Or - 
CLng (pointcloudll (srfCount) (num0fDivisions) (1) /loo) = CLng (pointcloud11 (srfCo 
unt+l) (0) (1)/100) And - 
CLng (pointcloudll (srfCount) (numOfDivisions) (2) /loo) = CLng (pointcloud11 (srfCo 
unt+l) (0) (2) /loo) Then 
point7 = pointcloudll (srfCount+l) (1) 
point8 = pointCloud33(srfCount+l) (1) 
Else 
point7 = Array(2*point3(0)-p0intl(O)~ 2*point3(1)-pointl(l), 2*point3(2)- 
point1 (2) ) 
point8 = Array(2*point4(0)-point2(0), 2*point4(1) -point2(1), 2*point4(2)- 
point2 (2) ) 
End If 'end of if pointCloudll(numberOfSurfaces-1InumOfDivisions-l) = point- 
Cloud11 (0,O) 
End If 'j=numOfDivisions-1 

If j>O Then 
point5 = pointcloudll (srf Count) (j -1) 
point6 = pointCloud33 (srf Count) (j -1) 
End If 
If jcnum0fDivisions-1 Then 
point7 = pointcloud11 (srf Count) (j+2) 
point8 = pointCloud33 (srf Count) ( j + 2 )  
End If 
End If 'end of if srfCount=O 

Dim var-VerticalMullionWidthChangingValue 
var-VerticalMullionWidthChangingValue = verticalMullionWidth - i*5*vertical~u 
1lionWidthTapperRadio 
Dim var-VerticalMullionLengthChangingValue 
var-VerticalMullionLengthChangingValue = verticalMullionLength - i*6.5*vertic 
alMullionWidthTapperRadio 

'run Making function 
If j=O Then 
HKIFC-component-2 architecturalSytle, numberOfHorizontalMu11ion~~ horizontal- 



MullionsStyle, var~VerticalMullionWidthChangingValue, var-VerticalMullion- 
LengthChangingValue, horizontalMullionWidth, horizontalMullionHeight, hori- 
zontalLouvreSize-Width, innerpoint, pointl, point2, point3, point4, point5, 
point6, point7, point8, verticalMullion~idthTapperRadio, True, False 
ElseIf j=numOfDivisions-1 Then 
HKIFC-component-2 architecturalsytle, numberOfHorizontalMullions, horizontal- 
MullionsStyle, var~VerticalMullionWidthChangingValue, var-VerticalMullion- 
LengthChangingValue, horizontalMullionWidth, horizontalMullionHeight, hori- 
zontal~ouvreSize-Width, innerpoint, pointl, point2, point3, point4, point5, 
point6, point7, point8, verticalMullion~idthTapperRadio, False, True 
ElseIf i=30 Or i=60 Or i=90 Then 
HKIFC-component-3 architecturalSytle, numberOfHorizontalMullions, horizontal- 
MullionsStyle, var~VerticalMullionWidthChangingValue, var-VerticalMullion- 
LengthChangingValue, horizontalMullionWidth, horizontalMullionHeight, hori- 
zontalLouvreSize-Width, innerpoint, pointl, point2, point3, point4, point5, 
point6, point7, point8, verticalMullionWidthTapperRadio 
Else 
HKIFC-component-3 architecturalsytle, numberOfHorizontalMullions, horizon- 
talMullionsStyle, var~VerticalMullionWidthChangingValue, var-VerticalMullion- 
LengthChangingValue, horizontalMullionWidth, horizontalMullionHeight, hori- 
zontalLouvreSize-Width, innerpoint, pointl, point2, point3, point4, point5, 
point6, point7, point8, verticalMullionWidthTapperRadio 
End If 
Next 'of j span 
Next 'for srfCount 
Next 'of i level 
End Sub 'end of sub HKIFC~componentConstruct 

Sub HKIFC~component~l(architecturalStyle, numberOfHorizontalMullions, hori- 
zontalMullionsStyle, verticalMullionWidth, verticalMullionLength, horizon- 
talMullionWidth, horizontalMullionHeight, horizontalLouvreSize_Width, in- 
nerPoint, pointml, pointm2, pointm3, pointm4, pointm5, pointm6, pointm7, 
pointm8, verticalMullionWidthTapperRadio) 

'Vertical parametric 
Dim var-floorHeight 'not the real floor height 
Dim var~numberOfHorizontalMullions 
Dim var~horizontalMullionsStyle 
Dim var-distanceToLowerPoint 
var~numberOfHorizontalMullions = numberOfHorizontalMullions 
var~horizontalMullionsStyle = horizontalMullionsStyle 

'Horizontal parametric 
Dim distanceBetweenTopTwoPoints 
Dim distanceBetweenButtomTwoPoints 
Dim distanceBetweenPointlPoint2 'to measure the floor height 

'variables for horizontal mullions 
Dim var~~orizontal~ullionWidth 
Dim var-HorizontalMullionHeight 
var~HorizontalMullionWidth = horizontalMullionWidth 
var~HorizontalMullionHeight = horizontalMullionHeight 

'variables for vertical mullions 



Dim var-VerticalMullionWidth 
Dim var-VerticalMullionLength 
var-VerticalMullionWidth = verticalMullionWidth 
var-VerticalMullionLength = verticalMullionLength 

'variable for horizontal louvre 
Dim var~HorizontalLouvreSize~Width 
var-HorizontalLouvreSize-Width = horizontalLo~vreSize~Width 
\ I , I I I I I I I I  declare 8 points for construction, from point1 to point4 are 

picked from users input 
, , 1 1 1 1 1 1 1 1 1  point5 to point8 are reference points that positioned by the pro- 

gram itselt. 
Dim pointl, point2, point3, point4, point5, point6, point7(2), point8(2), 
point9(2), pointl0(2), pointll(2), point12(2), point13(2), point14(2) 
\ 1 1 1 1 1 1 1 1 1 1  accociated points 
Dim pointlll, point222, point444, point555, point333, point666 
'reference points 
Dim refPoint5, refPoint6, refPoint7, refPoint8 
pointl = pointml 
point2 = pointm2 
point4 = pointm3 
point5 = pointm4 
pointlll = pointm5 
point222 = pointm6 
point444 = pointm7 
point555 = pointm8 
point3 = FindReferencePoint(pointll1, pointl, point4) 
point6 = FindReferencePoint(point222, point2, point51 
point333 = FindReferencePoint(point1, point4, point444) 
point666 = FindReferencePoint(point2, point5, point555) 
distanceBetweenButtomTwoPoints = Rhino.Distance(point1, point4) 
distanceBetweenTopTwoPoints = Rhino.Distance(point2, point5) 
var-floorHeight = point2 (2) - point 1 (2 ) 
distanceBetweenPointlPoint2 = Rhino.Distance(point1, point2) 
, , I , , , l , I , ,  x, y, z representation of this 8 points 
Dim xl, yl, 21, x2, y2, 22, x3, y3, 23, x4, y4, 24 
Dim x5, y5, 25, x6, y6, 26, x7, y 7 ,  27, x8, y8, z8 
Dim x9, y9, 29, x10, y10, z10 xll, yll, 211 
Dim x12, y12, 212, x13, y13, 213, x14, y14, 214 
xl = pointl(0) 
yl = pointl(1) 
21 = pointl(2) 
x2 = point2 ( 0) 
y2 = point2(1) 
22 = point2(2) 
x3 = point3 ( 0 )  
y3 = point3 (1) 
23 = point3(2) 
x4 = point4 ( 0) 
y4 = point4(1) 
24 = point4 (2) 
x5 = point5 (0) 
y5 = point5(1) 
25 = point5(2) 
x6 = point6 ( 0) 



y6 = point6 (1) 
26 = point6 (2) 
x333 = point333 (0) 
y333 = point333(1) 
2333 = point333 (2) 
x666 = point666(0) 
y666 = point666 (1) 
2666 = point666(2) 
\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l I I I I I I I I I l I l l l I I I I I I l l l l l l l l  

\ I 1 1 1 1 1 1 1  Horizontal Mullions \I""""""""' 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

\ 1 l l l l I I l  first row 
Dim objHorizontalMullion~ll objHorizontalMullion~21 objHorizontalMullion-3 
Dim objHorizontalMullion~41 objHorizontalMullion-5 
ReDim objHorizontalMullions~1(var~numberOfHorizontalMullions-l) 
\ I I I # I I I I  second row 
Dim objHorizontalMullion~211 objHorizontalMullion_22, objHorizontalMullion~23 
Dim objHorizontalMullion~241 obj~orizontalMullion_25 
ReDim objHorizontalMullions~2~var~numberOfHorizontalMullions-l~ 
\ 1 1 1 1 1 1 1 1  third row 
Dim objHorizontalMullion~311 objHorizontalMullion~321 objHorizontalMullion~33 
Dim objHorizontalMullion_34, objHorizontalMullion~35 
ReDim objHorizontalMullions~3 (var~numberOfHorizontalMull~ons-1) 
~ 1 1 1 1 1 1 1 1  fourth row 
Dim objHorizontalMullion~411 objHorizontalMullion_42, obj~orizontalMullion~43 
Dim objHorizontalMullion_44, obj~orizontalMullion-45 
ReDim obj~orizontal~ullions~4(var~number0fHorizontalMullions-l) 
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

8 1 1 1 1 1 1 1 1  Louvres \ 1 1 1 l l l l ~ l f l l f l  U r n  

\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l 1 1 1 1 1 l l I I I I I I I I I I l I I I I  

8 1 1 1 1 1 1 1 1  first row 
Dim objHorizontalLouvre~ll objHorizontalLouvre~21 objHorizontalLouvre-3 
Dim objHorizontalLouvre~41 objHorizontalLouvre-5 
ReDim objHorizontalLouvres~1(var~numberOfHorizontalMul~lions-l) 
s 1 1 1 1 1 1 1 1  second row 
Dim objHorizontalLouvre~211 objHorizontalLouvre_22, objHorizontalLouvre_23 
Dim objHorizontalLouvre~241 obj~orizontalLouvre-25 
ReDim objHorizontalLouvres~2(var~numberOfHorizontalMullions-l) 
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

8 1 1 1 1 1 1 1 1  Vertical Mullions \I"" """ 
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

Dim objVerticalMullion~l, objVerticalMullion~2, objVerticalMullion-3 
Dim objVerticalMullion-4 
\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

8 1 1 1 1 1 1 1 1  Layer Conventions""" "'"" 

\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l l l l l l l l l l l l l l l l l l  

Dim layerHorizontalMullion, 1ayerVerticalMullion 
Dim layerHorizontalLouvre, 1ayerLouvreSupport 
Dim layerTransparentGlass, layerSpandrelPane1, 1ayerFrittedGlass 
Rhino .AddLayer nlayerProfiles", RGB (255, 0, 0) 
Rhino .AddLayer ~\layerHorizontalMullion-HKIFC1' RGB (160, 160, 160) 
Rhino.AddLayer ~\layerVerti~alMullion-HKIFC~~~ RGB(255, 0, 0) 
Rhino.AddLayer ~\layerHorizontalL~uvre-HKIFC~~~ RGB(105, 105, 105) 
Rhino. AddLayer \\layerLouvreSupport-HKI FCI1 RGB ( 190, 190, 190) 
Rhino-AddLayer "1ayerTransparentGlass-HKIFC'II RGB(171, 238, 238) 



Rhino.AddLayer "layerSpandrelPanel-HKIFC1lI RGB(190, 190, 190) 
Rhino.AddLayer "1ayerFrittedGlass-HKIFC", RGB(142, 154, 154) 
  hi no. CurrentLayer ( "layerprofiles" ) 
' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

' 1 1 1 1 1 1 1 1  construction of mullion profiles """""""" """"' 
l 1 1 1 1 1 1 1 1 r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

Dim ptForGlassSrf-l(1000) 'collect points for making the glass surface 
Dim ptForGlassSrf-2 (1000) 
Dim i, j, k, h 
For i = 0 To var~numberOfHorizontalMullions-1 
Rhino.UnselectAllObjects 'make sure no object selected 

Dim all a2 
a1 = var~floorHeight/(var~numberOfHorizontalMullions-l) - 150*(var-numberOfHo- 
rizontalMullions-l)/2 + 150/2 'from the equation below 

Select Case var~horizontalMullionsStyle 
Case "Original-Cesar-Stylet1 
If i = 0 Then var-distanceToLowerPoint = 0 
If i = 1 Then var-distanceToLowerPoint = 565 
If i = 2 Then var-distanceToLowerPoint = 255O*var_floorHeight/4200 
If i = 3 Then var-distanceToLowerPoint = 3150*var-floor~eight/4200 
If i = 4 Then var-distanceToLowerPoint = 4199*var_floorHeight/4200 
If i = 5 Then var-distanceToLowerPoint = (4199-525)*var-floorHeight/4200 
If i = 6 Then var-distanceToLowerPoint = 1165fvar-floorHeight/4200 
If i = 7 Then var-distanceToLowerPoint = (3150-600)*var-floorHeight/4200 
If i > 7 Then Rhino.MessageBox("Not allowed by Cesar-Style!") 
Case "Evenly-Distributed-Style" 
If i<var~numberOfHorizontalMullions-1 Then var-distanceToLowerPoint = 
i*distanceBetweenPointlPoint2/(var~numberOfHorizontalMullions-l) 
If i=var~numberOfHorizontalMullions-1 Then var-distanceToLowerPoint = var- 
floorHeight-1 

'Height = n*al+n(n-1)*100/2 ==> Height = nal + 50n*n - 50n ==> a1 = 
Height/n - 50n + 50 
Case "Gradient-From-Top-Down-Style" 
If i~var~numberOfHorizontalMullions-1 Then var-distanceToLowerPoint = 
i*al+i* (i-1) *150/2 
If i=var~numberOfHorizontalMullions-1 Then var-distanceToLowerPoint = var- 
floorHeight-1 
Case "Gradient-From-Buttom-Up-Style" 
If i>O & i~var~numberOfHorizontalMul1ions-1 Then var-distanceToLowerPoint = 
var-floorHeight - (i*al+i* (i-1) *150/2) 
If i=O Then var-distanceToLowerPoint = 0 
If i=var~number0fHorizontalMullions-1 Then var-distanceToLowerPoint = var- 
floorHeight-1 
Case Else 
Rhino. MessageBox ( "Out of range ! " ) 
End Select 'end of select case var~horizontalMullionsStyle 
' 1 1 1 1 1 1 1 1  first row mullion profile " " I t " " " " " "  I I I I I I I I I  I 1 1 1 1  I l l  I I I I I I  1 1  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

' I I I I I I I I  actual function 
ptForGlassSrf-l(i) = Mini~typicalHorizontalMullion~l (Array( (x2-xl)*var-dis- 
tanceToLowerPoint/var~floorHeight+xl, (y2-yl)*var~distanceToLowerPoint/var~ 
floorHeight+yl, (z2-zl~*var~distanceToLowerPoint/var~floorHeight+~l)~ point2, 
Array( (x6-x3)*var~distance~o~owerPoint/var~floor~eight+x3, (y6-y3)*var_dis- 



tanceToLowerPoint/var~floorHeight+y3, (26-z3)*var~distanceToLowerPoint/var~ 
floorHeight+z3), var~HorizontalMullionWidth, var-HorizontalMullionHeight) 
objHorizontalMullions~1~i~ = Rhino-Lastobject 
\ 1 # 1 1 1 1 1 1  second row mullion profile 
\ ? 1 1 1 # 1 1 1  actual function 
ptForGlassSr£_2(i) = Mini-typicalHorizontalMullion-1 (Array((x5-x4)*var- 
distanceTo~ower~oint/var~floorHeight+x4,(distance~o~ower~oint/ 
var_floorHeight+y4, (z5-z4)*var~distanceToLowerPoint/var~floorHeight+z4), 
point5, Array( (x666-x333)*var~distanceToLowerPoint/var~floorHeight+x333, (y666- 
y333)*var~distance~o~owerPoint/var~floorHeight+y333, (2666-z333)*var_distanc- 
eToLowerPoint/var~floorHeight+z333), var~HorizontalMullionWidth, var-Horizon- 
talMullionHeight) 
objHorizontalMullions~2~i) = Rhino.LastObject 

x7 = (x4 - xl)*var~VerticalMullionWidth/distanceBetweenButtomTwoPoints + xl 
y7 = (y4 - yl)*var~~ertical~ullion~idth/distance~etween~uttom~wo~oints + yl 
27 = (24 - zl)*var~VerticalMullionWidth/distanceBetweenButtom~woPoints + zl 
x8 = (x5 - x2)*var~~erticalMullion~idth/distanceBetweenTop~wo~oints + x2 
y8 = (y5 - y2)*var~VerticalMullionWidth/distanceBetweenTopTwo~oints + y2 
28 = (25 - z2)*var~VerticalMullionWidth/distanceBetweenTopTwoPoints + 22 
x9 = (x4 - xl)*(distanceBetweenButtomTwoPoints-var~VerticalMullionWidth)/dis- 
tanceBetweenButtomTwoPoints + xl 
y9 = (y4 - yl)*(distanceBetweenButt~mTwoPoints-var~VerticalMullionWidth)/dis- 
tanceBetweenButtomTwoPoints + yl 
29 = (24 - zl)*(distanceBetweenButtomTwoPoints-var~VerticalMullionWidth)/dis- 
tanceBetweenButtomTwoPoints + 21 
x10 = (x5 - x2)*(distanceBetweenTopTwoPoints-var~VerticalMullionWidth)/dis- 
tanceBetweenTopTwoPoints + x2 
y10 = (y5 - y2)*(distanceBetweenTopTwoPoints-var~VerticalMullionWidth)/dis- 
tanceBetweenTopTwoPoints + y2 
210 = (25 - z2)*(distanceBetweenTopTwoPoints-var~VerticalMullionWidth)/dis- 
tanceBetweenTopTwoPoints + 22 

xll = (x4 - xl)*(50+5)/distanceBetweenButtomTwoPoints + xl 'var-VerticalMul- 
lionwidth = 50 
yll = (y4 - yl) * (50+5) /distanceBetweenButtomTwoPoints + yl 
zll = (24 - zl)*(50+5)/distanceBetween~uttomTwoPoints + zl 
x12 = (x5 - x2)*(50+5)/distanceBetweenTopTwoPoints + x2 
y12 = (y5 - y2)*(50+5)/distanceBetween~opTwoPoints + y2 
212 = (25 - z2) * (50+5) /distanceBetweenTopTwoPoints + 22 
x13 = (x4 - xl)*(distance~etween~uttom~wo~oints-50-5)/distance~etween~uttom~- 
woPoints + xl 
y13 = (y4 - yl)*(distance~etween~uttom~wo~oints-50-5)/distance~etweenButtom~- 
woPoints + yl 
213 = (24 - zl)*(distance~etween~uttom~woPoints-50-5)/distanceBetweenButtomT- 
woPoints + zl 
x14 = (x5 - x2)*(distance~etween~op~wo~oints-50-5)/distanceBetweenTopT- 
woPoints + x2 
y14 = (y5 - y2)*(distance~etween~op~wo~oints-50-5)/distance~etween~op~- 
woPoints + y2 
214 = (25 - z2)*(distance~etween~op~wo~oints-50-5)/distanceBetweenTopT- 
woPoints + 22 



point7(2) = 27 
point8(0) = x8 
pointB(1) = y8 
point8 (2) = z8 
pointg(0) = x9 
point 9 (1) = y9 
pointg(2) = z9 
point10 (0) =x10 
point10 (1) =y10 
point10 (2) =z10 
pointll (0) =xll 
pointll (1) =yll 
pointll (2) =zll 
point12 (0) =xl2 
point12 (1) =yl2 
point12 (2) =z12 
point13 (0) =xl3 
point13 (1) =yl3 
point13 (2) =z13 
point 14 ( 0) =xl4 
point 14 ( 1) =yl4 
point14 (2) =z14 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

\ / I / / I l f l  construction of louvre profiles """"" """ """"" 
\ / 1 1 r I I / / / / / / / / / 1 / , , , 1 , 1 / 1 1 1 1 / , , / / / / / 1 1 / r , , , , , / / / / / / / / / / / l / , / / / 1 1 , 1  

, I , / / ! / / /  first row louvre profile 
If i = 0 Or i = var~numberOfHorizontalMullions-1 Then HKIFC-typi- 
calHorizontalLouvre~1 Array((x2-xl)*var~distance~oLowerPoint/var~ 
floorHeight+xl, (y2-yl) *var~distanceToLowerPoint/var~floorHeight+yl, 
(z2-zl)*var~distanceToLowerPoint/var~floorHeight+zl)~ point2, Array( (x6- 

Point/var-floorHeight+y3, (~6-~3)*var~distanceToLowerPoint/var~floor~eight+z3)~ 
var-HorizontalLouvreSize-Width 
If i > 0 And i < var~numberOfHorizontalMullions-1 Then HKIFC-typi- 
calHorizontalLouvre~1 Array( (x2-xl)*var~distanceToLowerPoint/var~ 
floorHeight+xl, (y2-yl) *var~distanceToLowerPoint/var~floorHeight+yl, 
(z2-zl)*var~distanceToLowerPoint/var~floor~eight+zl) point2, Array((x6- 
x3)*var~distanceToLowerPoint/var~floorHeight+x3, (y6-y3)*var_distanceToLower- 
Point/var-floorHeight+y3, (z6-z3)*var~distanceToLowerPoint/var~floorHeight+z3) 
var~HorizontalLouvreSize~Width 
objHorizontalLouvres~1(i) = Rhino-Lastobject 
, , , , , / , / ,  second row louvre profile 
If i = 0 Or i = var~number0fHorizontalMullions-1 Then HKIFC-typi- 
calHorizontalLouvre-1 Array( (x5-x4)*var~distanceToLowerPoint/var~ 
floorHeight+x4, (y5-y4)*var~distanceToLowerPoint/var~floorHeight+y4~ 
(z5-z4)*var~distanceToLowerPoint/var~floorHeight+z4), point5, Array((x666- 
x333)*var~distanceToLowerPoint/var~floorHeight+x333, (y666-y333)*var_distanc- 
eToLowerPoint/var-floorHeight+y333, (z666-z333)*var~distanceToLowerPoint/var~ 
floorHeight+z333), var-HorizontalLouvreSize-Width 
If i > 0 And i < var~numberOfHorizontalMu11ions-1 Then HKIFC-typi- 



floorHeight+z333), var-HorizontalLouvreSize-Width 
obj~orizontalLouvres~2(i) = Rhino.LastObject 
Next 'end of for loop 
' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

~ 1 1 1 1 1 1 1 1  Generate vertical mullions profiles"""""111111111 
' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

Dim var~VerticalMullionWidthChangingValueNew 
var~VerticalMullionWidthChangingValueNew = var-VerticalMullionWidth - 5*ver- 
ticalMullionWidthTapperRadio 
Dim var~VerticalMullionLengthChangingValueNew 
var~VerticalMullionLengthChangingValueNew = var-VerticalMullionLength - 
6.5*verticalMullionWidthTapperRadio 
Rhino.UnselectAllObjects 
HKIFC~typicalVertica1Mullion~l pointl, point3, point4, var-VerticalMullion- 
Width, var-VerticalMullionLength 
objVerticalMullion~l = Rhino.LastObject 
Rhino.UnselectAllObjects 
HKIFC~typicalVertica1Mullion~l point2, point6, point5, var-VerticalMullion- 
WidthChangingValueNew, var~VerticalMullionLengthChangingValueNew 
objVerticalMullion-2 = Rhino.LastObject 
Rhino.UnselectAll0bjects 
HKIFC-typicalVertica1Mullion-1 point4, point333, pointl, var-VerticalMullion- 
Width, var-VerticalMullionLength 
obj~ertica~~ullion-3 = Rhino. LastObj ect 
Rhino.UnselectAllObjects 
HKIFC~typicalVertica1Mullion~l point5, point666, point2, var-VerticalMullion- 
WidthChangingValueNew, var~VerticalMullionLengthChangingValueNew 
objVerticalMullion-4 = Rhino.LastObject 
\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

' 1 1 1 1 1 1 1 1  Construct generative component"" " " " 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I l l l l l l l l l l l l l l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

~hino.~urrentLayer('~layerHorizontalMullion~HKIFC'~) 
~ 1 1 1 1 1 1 1 1  Horizontal Mullions 

Rhino.UnselectAll0bjects 
For i = 0 To var~numberOfHorizontalMullions-1 
LoftSurfaceByNumberOfProfile 2, objHorizontalMullions~l(i) , objHorizontalMu1- 
lions_2(i), Null, Null 
Next 'end of for loop 
objHorizontalMullions~4 (i), objHorizontalMullions~2(i) 
Rhino.CurrentLayer("1ayerH0rizontalLouvre~HKIFC~~) 
' 1 1 1 1 1 1 1 1  Horizontal Louvres 
Rhino.UnselectAll0bjects 
For i = 0 To var~numberOfHorizontalMullions-1 
LoftSurfaceByNumberOfProfile 2, objHorizonta1Louvres~1(i), objHorizontalLou- 
vres_2(i), Null, Null 
Next 'end of for loop 

Rhino.CurrentLayer('~1ayerVerti~a1Mu11ion~HKIFC~~~ 
' 1 1 1 1 1 1 1 1  Vertical Mullions 
LoftSurfaceByNumberOfProfile 2, objVerticalMullion-1, objVerticalMullion~2, 
Null, Null 
LoftSurfaceByNumberOfProfile 2, objVerticalMullion~3, objVerticalMullion-4, 
Null, Null 
' 

'make the glass 



Rhino.CurrentLayer("layerSpandrelPane1-HK1FCt1) 
\ 1 1 1 1 1 1 1 1  Spandrel Panel 
Dim arrPtForSrf Pt-l(3) 
arrPtForSrfPt-l(O)= Rhino.PointCoordinates(ptForGlassSrf~l(0)) 
arrPtForSrfPt-l(l)= Rhino.PointCoordinates(ptForG1assSrffl(l)) 
arrPtForSrfPt-l(2)= Rhino.PointCoordinates(ptForGlassSrff2(1)) 
arrPtForSrfPt-l(3)= Rhino.PointCoordinates(ptForGlassSrf~2(0)) 
Rhino-AddSrfPt arrPtForSrfPt-1 
Rhino.C~rrentLayer(~1ayerTransparentGlass-HKIFC~~) 
' 1 1 1 1 1 1 1 1  Transparent Glass 
Dim arrPtForSrfPt-2(3) 
arrPtForSrfPt-2(O)= Rhino.PointCoordinates(ptForGlassSrf~l(l)) 
arrPtForSrfPt-2(l)= Rhino.PointCoordinates(ptForGlassSrf~l(2)) 
arrPtForSrfPt-2(2)= Rhino.PointCoordinates(ptForGlassSrf~2(2)) 
arrPtForSrfPt-2(3)= Rhino.PointCoordinates(ptForGlassSrf~2(1)) 
Rhino.AddSrfPt arrPtForSrfPt-2 
Rhino.CurrentLayer("layerSpandrelPane1-HKIFC") 
' 1 1 1 1 1 1 1 1  Spandrel Panel 
Dim arrPtForSrfPt-3 (3) 
arrPtForSrfPt-3(0)= Rhino.PointCoordinates(ptForGlassSrf~l(2)) 
arrPtForSrfPt-3(1)= Rhino.PointCoordinates(ptForG1assSrffl(3)) 
arrPtForSrfPt-3 (2)= Rhino.PointCoordinates(ptForGlassSrf~2(3)) 
arrPtForSrfPt-3(3)= Rhino.PointCoordinates(ptForGlassSrf_2(2)) 
Rhino.AddSrfPt arrPtForSrfPt-3 
' 1 1 1 1 1 1 1 1  Spandrel Panel 
Dim arrPtForSrfPt-4 (3) 
arrPtForSrfPt-4 (0)= Rhino.PointCoordinates(ptForGlassSrf~l(3)) 
arrPtForSrfPt-4(1)= Rhino.PointCoordinates(ptForGlassSrf~l(4)) 
arrPtForSrfPt-4 (2)= Rhino.PointCoordinates(ptForGlassSrf~2(4)) 
arrPtForSrfPt-4(3)= Rhino.PointCoordinates(ptForGlassSrf~2(3)) 
Rhino.AddSrfPt arrPtForSrfPt-4 
Rhino. CurrentLayer ( "1ayerProfiles" ) 
Rhino.UnselectAll0bjects 
End Sub 'end of HKIFC-component-1 

Function HKIFC~typicalHorizontalMullionnl (pointl, point2, point3, horizontal- 
Mullionwidth, horizontalMullionHeight) 

Dim var-Mullionwidth, var-MullionHeight 
var-Mullionwidth = horizontalMullionWidth - 100 
var-MullionHeight = horizontalMullionHeight - 237 
Dim point, x, y, z 
point = Array ( 0 , 0 , 0 ) 
x = point(0) 
y = point (1) 
z = point(2) 

Dim ptl, pt2, pt3, pt4, pt5, pt6, pt7, pt8, pt9, ptlO, - 
ptll, pt12, pt13, pt14, pt15, pt16, pt17, pt18, pt19, ptForGlass 

ptl = Array(x+15.256,y+35.5522+var~Mu~~~on~eight,z) 
pt2 = Array(x+25,y+35.5522+var_MullionHeight,z) 
pt3 = Array(x+50+var~~ullion~idth/2/2,y+35.5522+var~~u~~~on~e~ght,z) 
pt4 = Array(x+75+var~~ullionWidth/2,y+35.5522+var~MullionHeight~z) 



pt5 = Array(x+84.744+var~MullionWidth/2,y+35.5522+var~MullionHeightlz) 
pt6 = Array(x+96.1748+var~MullionWidth/2,y-34.O334+var~MullionHeightfz) 
pt7 = ~rray(x+100+var~MullionWidth/2~y-1O4.448+var~MullionHeight~z) 
pt8 = ~rray(x+100+var~MullionWidth/2~y-114.448~~) 
pt9 = Array(x+76+var-M~llionWidth/2~y-ll4.448,z) 
ptlO = ~rray(x+76+var-MullionWidth/2~y-151.451,z) 
ptll = ~rray(x+100+var~~ullionWidth/2,y-151.451,~) 
pt12 = ~rray(x+100+var~~ullionWidth/2,y-176.451,~) 
pt13 = Array(x,y-176.451,~) 
pt14 = Array(x,y-151.451, z) 
pt15 = Array(x+24,y-151.451, z) 
pt16 = Array(x+24,y-114.448, z) 
pt17 = Array(x,y-114.448,~) 
pt18 = Array(x,y-104.448+var_MullionHeight,z) 
pt19 = Array(x+3.82525,~-34.0334+var~Mu11ionHeightIz) 

Dim strPtl, strPt2,strPt3,strPt4I~trPt5fstrPt6IstrPt7fstrPt8fstrPt9lstrPtlOf - 
strPtll,strPtl2,strPtl3I~trPtl4I~trPtl5,strPtl6lstrPtl7lstrPtl8lstrPtl9 

strPtl = Rhino.Pt2Str(ptl) 
strPt2 = Rhino. Pt2Str (pt2) 
strPt3 = Rhino. Pt2Str (pt3) 
strPt4 = Rhino. Pt2Str (pt4) 
strPt5 = Rhino. Pt2Str (pt5) 
strPt6 = Rhino.Pt2Str (pt6) 
strPt7 = Rhino.Pt2Str(pt7) 
strPt8 = Rhino.Pt2Str(pt8) 
strPt9 = Rhino.Pt2Str(pt9) 
strPtlO = Rhino.Pt2Str(ptlO) 
strPtll = Rhino.Pt2Str(ptll) 
strPtl2 = Rhino.Pt2Str(ptl2) 
strPtl3 = Rhino.Pt2Str(ptl3) 
strPtl4 = Rhino.Pt2Str(ptl4) 
strPtl5 = Rhino.Pt2Str(ptl5) 
strPtl6 = Rhino.Pt2Str(ptl6) 
strPtl7 = Rhino.Pt2Str(ptl7) 
strPtl8 = Rhino.Pt2Str(ptl8) 
strPtl9 = Rhino.Pt2Str(ptl9) 

Dim strPtForGlass 
strPtForGlass = Rhino.Pt2Str(ptForGlass) 

Dim arrPlaneNew (2) 
arrPlaneNew (0) = Array(pointl(0) ,point1 (1) ,point1 (2) ) 
arrPlaneNew(1) = Array(point2(0) ,point2(1) ,point2(2)) 
arrPlaneNew (2) = Array (point3 (0) ,point3 (1) ,point3 (2) ) 
aaastrview = Rhino-Currentview 
Rhino.ViewCPlane aaastrview, arrPlaneNew 
Rhino. Command ("joint '' & strPtForGlass & " " )  

HKIFC-typicalHorizontalMullion~l = Rhino.LastObject 

Dim linel, line2, line3, line4, line5, line6, line7, line8, line9, line10 
Dim linell, linel2, linel3, linel4, linel5, line16 
Rhino.Command("-line " & strPtl & " " & strPt5 & " 'I) 



line1 = Rhino.LastObject 
Rhino.Command("-InterpCrv " & strPt5 & ' " & strPt6 & ' ' & strPt7 & " " & "En- 
ter " )  

line2 = Rhino-Lastobject 
Rhino.Command("-line " & strPt7 & ' " & strPt8 & " ''1 
line3 = Rhino.LastObject 
Rhino.Command("-line ' & strPt8 & " ' & strPt9 & ' ''1 
line4 = Rhino.LastObject 
Rhino.Command ("-line ' & strPt9 & " ' & strPtlO & ' ")  

line5 = Rhino-Lastobject 
Rhino.Command("-line ' & strPtlO & ' " & strPtll & ' ') 
line6 = Rhino.LastObject 
Rhino.Command("-line ' & strPtll & ' ' & strPtl2 & ' ') 
line7 = Rhino-Lastobject 
Rhino.Command("-line ' & strPtl2 & " ' & strPtl3 & ' ') 
line8 = Rhino-Lastobject 
Rhino-Command ('-line ' & strPtl3 & ' " & strPtl4 & " "1 
line9 = Rhino.LastObject 
Rhino-Command ("-line ' & strPtl4 & ' " & strPtl5 & ' ''1 
line10 = Rhino.LastObject 
Rhino.Command ("-line ' & strPtl5 & " " & strPtl6 & ' " )  

line11 = Rhino-Lastobject 
Rhino.Command("-line ' & strPtl6 & '' " & strPtl7 & ' ') 
line12 = Rhino.LastObject 
Rhino.Command("-line ' & strPtl7 & " '' & strPtl8 & ' 'I) 
line13 = Rhino.LastObject 
Rhino.Command("-InterpCrv " & strPtl8 & ' " & strPtl9 & ' ' & strPtl & " " & 

"Enter ') 
line14 = Rhino.LastObject 

Dim cProfile ( 13 ) 
cProfile (0) =line1 
cProfile (1) =line2 
cProfile (2) =line3 
cProfile (3 ) =line4 
cProfile (4 ) =line5 
cProfile (5) =line6 
cProfile (6) =line7 
cProfile (7) =line8 
cProfile (8) =line9 
cProfile (9) =line10 
cProfile (10) =line11 
cProfile (11) =line12 
cProfile (12) =line13 
cProfile ( 13 ) =line14 
Rhino.SelectObjects cProfile 
Rhino.Command "-Join ' 
Dim jointedVerticalMullion 
End Function 'end of HKIFC-typicalHorizontalMullion-1 

Function FindDivisionPoints(curve1, numOfDivisions) 
Dim numOfPoint, numOfPoints 
Dim i, convertpoint 
ReDim convertedPoints(100000) 



numOfPoints = Rhino.DivideCurve (curvel, numOfDivisions) 
For Each numOfPoint In numOfPoints 
Rhino-AddPoint numOfPoint 

Next 
For i=O To numOfDivisions 
Rhino-Command ("-cplane ' & "World" & ' \' & "Top" & " ') 

Rhino.Command ("_point '' & Pt2Str (numOfPoints (i) ) & ' ") 

convertedpoint = Rhino.LastObject 
convertedPoints(i)=Rhino.PointCoordinates (convertedpoint) 
Next 
FindDivisionPoints = convertedpoints 
End Function 'end of FindDivisionPoints 

Function FindReferencePoint(point1, point2, point3) 
Dim lineAnglel3, convectOrConcave, checkAligned, distPt2Pt3 
Dim distPtlPt2, midPtlPt3, distPt2MidPtlPt3 
Dim convertpoint, convertedPoints 
distPtlPt2 = Rhino.Distance(point1, point21 
distPt2Pt3 = Rhino.Distance(point2, point3) 
midPtlPt3 = Array( (point3 (0) -point1 (0) ) *distPtlPt2/ 
(dist~tl~t2+distPt2~t3)+pointl(O), (point3(1)-pointl(l))*dist~tlPt2/ 
(distPtlPt2+distPt2Pt3) +point1 (1) , (point3 (2) -point1 (2) ) *distPtlPt2/ 
(distPtlPt2+distPt2Pt3) +point1 (2) ) 'not mid point, but proportial 
distPt2MidPtlPt3 = Rhino.Distance(point2, midPtlPt3) 
checkAligned = CheckPointsAligned (pointl, point2, point3) 
If checkAligned = True Then 'check if aligned 
lineAnglel3 = Rhino.Angle(point1, point3) 
convertpoint = Array ( (point2 (0) - (1000000000+distPt2Pt3) *Sin(lineAnglel3 (0) * 

0.0174532925) ) , (point2 (1) + (1000000000+distPt2Pt3) *Cos (lineAnglel3 (0) *0.01745 
32925) ) , point2 (2) ) 
Else 'if not aligned then do 

something 
convectOrConcave = CheckConcaveOrConvect (pointl, point2, point3) 
If convectOrConcave = True Then ' convect 
convertpoint = Array(((midPtlPt3(0)-point2(0))*(1000000OOO+distPt2MidPtlP 

t3) /distPt2~idPtlPt3+point2 (0) 1 ,  ( (midPtlPt3 (1) -point2 (1) ) * (1000000000+distPt 
2MidPtlPt3)/distPt2MidPtlPt3+point2(1)), ((midPtlPt3(2)-point2(2))*(100000000 
O+distPt2MidPtlPt3)/distPt2MidPtlPt3+point2(2)) 'extention of mid point of 
pointl and point3 

Else convertpoint = Array(2*point2 (0)- (pointl(O)+point3(0) )/2, 
2*point2(1) (pointl(l)+point3(1))/2, 2*point2(2)-(pointl(2)+point3(2))/2) 
'mid point of pointl and point3 
End If 

End If 
Rhino-Command ("-cplane ' & "World" & " " & "Top" & " ') 

Rhino.Command ("joint ' & Pt2Str(convertPoint) & " ') 

convertedpoints = Rhino.LastObject 
FindReferencePoint = Rhino.PointCoordinates(convertedPoints) 
End Function 'end of FindReferencePoint 

Function FindExtraPointFromEdge(point1, point2) 
Dim extraPointFromEdge 
Dim convertpoint 
Dim convertedpoints 



extraPointFromEdge = Array (2*point2 (0) -point1 (0) , 2*point2 (1) -point1 (1) , 
2*point2 (2) -point1 (2) ) 
Rhino-Command ("-cplane ' & "World" & ' " & "Top" & " " )  

Rhino-Command ("_point ' & Pt2Str(extraPointFromEdge) & ' ') 
convertedpoint = Rhino-Lastobject 
convertedPoints=Rhino.PointCoordinates(convertedPoint) 
FindExtraPointFromEdge = convertedpoints 
End Function 'end of FindExtraPointFromEdge 

Function CheckPointsAligned(point1, point2, point3) 
Dim 1ineAnglel 
Dim lineAngle2 
1ineAnglel = Rhino.Angle(point1, point2) 
lineAngle2 = Rhino.Angle(point2, point3) 
If CStr(lineAnglel(0)) = CStr(lineAngleZ(0)) Then 
CheckPointsAligned = True 'aligned 
Else CheckPointsAligned = False 'not aligned 
End If 
End Function 'end of CheckPointsAligned 

~ 1 1 1 1 1 1 1 1  function to check an un-aligned three points """""" 
' 1 1 1 1 1 1 1 1  to see if concave or convect to the pre-set """"""' 
' 1 1 1 1 1 1 1 1  innter point, 0,0,0, if yes, it is convect; """"""' 
' 1 1 1 1 1 1 1 1  if false, it is concave """",I"""" 1 1  I I I I I I I I I I I I I  

Function CheckConcaveOrConvect~pointl, point2, point3) 
Dim innerpoint 
innerpoint = Array ( 0 , 0 , 0) 
Dim distPt2Pt3 
Dim distPtlPt2 
distPtlPt2 = Rhino.Distance(point1, point2) 
distPt2Pt3 = Rhino.Distance(point2, point3) 
Dim distInnerPointToPoint2, distInnerPointToMidPointlPoint3 
distInnerPointToPoint2 = Rhino.Distance(imerPoint, point2) 
Dim midPointlPoint3 
'midPointlPoint3 = Array ( (pointl (0) +point3 (0) ) /2, (pointl (1) +point3 (1) ) /2, 
(pointl (2) +point3 (2) ) /2) 
midPointlPoint3 = Array((point3 (0) -pointl(O) )*distPtlPt2/ 
(distPtlPt2+distPtZPt3) +point1 (0) , (point3 (1) -point1 (1) ) *distPtlPt2/ 
(distPtlPt2+distPt2Pt3) +point1 (1) , (point3 (2) -point1 (2) ) *distPtlPt2/ 
(distPtlPt2+distPt2Pt3) +point1 (2) ) 'not mid point, but proportial 
distInnerPointToMidPointlPoint3 = Rhino.Distance(innerPoint, midPointlPoint3) 
If distInnerPointToMidPointlPoint3 < distInnerPointToPoint2 Then 
CheckConcaveOrConvect = True ' convect 
Else CheckConcaveOrConvect = False ' concave 
End If 
End Function 'end of CheckConcaveOrConvect 

Function FindDiagridPoints(curvel, numOfDivisions, distancel) 
Dim numOfPoints 
Dim ptl, pt2 
Dim divPoint1, divPoint2 
Dim distPtlPt2 





ReDim findDiagridPoints1(2*numOfDivisions+1) 
Dim i 
Dim convertpoint 
ReDim convertedPoints(1000) 
numOfPoints = Rhino.DivideCurve (curvel, num0fDivisions) 
For Each numOfPoint In numOfPoints 
Rhino.AddPoint numOfPoint 

Next 

For i=O To numOfDivisions 
Rhino. Command ('I-cplane " & 'World" & " " & "Top" & " " )  

Rhino. Command ( "-point " & Pt2Str (numOf Points (i) ) & " ') 

convertedpoint = Rhino.LastObject 
convertedPoints(i)=Rhino.PointCoordinates(convertedPoint) 
Next 
findDiagridPointsl(0) = convertedPoints (0) 

For i=O To numOfDivisions-1 
ptl = convertedPoints (i) 
pt2 = convertedPoints (i+l) 
distPtlPt2 = Rhino.Distance (ptl, pt2) 
If i=O Then 
div~ointl = Array ( (pt2 (0) -ptl(O) ) *2*distancel/dist~tl~t2+pt 0 , (pt2 (1) - 
ptl(1) ) *2*distancel/distPtl~t2+ptl(l) , (pt2 (2) -pt1(2) ) *2*distancel/ 
distPtlPt2+ptl(2) ) 
div~oint2 = Array( (pt2 (0) -ptl(O) ) * (distPtlPt2-distancel) /dist~tl~t2+ptl(0) , 
(pt2 (1) -ptl(l) * (distPtlPt2-distance11 / d s t t l ~ t 2 + p t  1 ,  (pt2 (2) - 
ptl(2) ) * (distPtlPt2-distancel) /dist~tl~t2+ptl(2) ) 

End If 
If i>O And i<numOfDivisions-1 Then 
div~ointl = Array( (pt2 (0) -ptl(O) ) *distancel/distPtlPt2+pt 0 (pt2 (1) - 
ptl(1) ) *distancel/distPtlPt2+ptl(l) , (pt2 (2) -pt1(2) ) *distancel/ 
distPtlPt2+ptl(2) ) 
divPoint2 = Array ( (pt2 (0) -ptl(O) * (distPtlPt2-distancel) /dist~tl~t2+ptl 
(01, (pt2 (1) -ptl(l) ) * (distPtl~t2-distance / d i s t ~ t l ~ t 2 + ~ t  1 , (pt2 (2) - 
ptl(2) ) * (distPtlPt2-distancel) /distptlPt2+ptl(2) ) 
End If 
If i=numOfDivisions-1 Then 
divpointl = Array ( (pt2 (0) -ptl(O) *distancel/dist~tl~t2+ptl(0) (pt2 (1) - 
ptl(1) ) *distancel/distPtl~t2+ptl(l) , (pt2 (2) -pt1(2) ) *distancel/ 
distPtlPt2+ptl(2) ) 
divPoint2 = Array ( (pt2 (0) -ptl(O) ) * (distPtlPt2-2*distancel) /dist~tl~t2+~tl(0) , 
(pt2 (1) -ptl(l) * (distPtlPt2-2*distancel) /dist~tl~t2+ptl(l) , (pt2 (2) - 
ptl(2))*(distPtlPt2-2*distancel)/dist~tl~t2+ptl(2)) 
End If 
Rhino-AddPoint divpointl 
Rhino.AddPoint divPoint2 
findDiagridPointsl(2*i+l) = divPoint1 
findDiagridPointsl(2*i+2) = divPoint2 
Next 
findDiagridPointsl(2*num0fDivisions+l) = convertedPoints(numOfDivisions) 'add 
last point 

FindDiagridPoints = findDiagridPoints1 
End Function 'end of FindDiagridPoints 





Appendix C: Table of Figures 

Figure 1 : Dundas Entertainment Center 

Figure 2: Informational & Mediatized Architectural Surfaces 

Figure 3: The Canadian Opera House 

Figure 4: The Tulsa Arena 

Figure 5 : Dundas Entertainment Center 

Figure 6: Reflected Panels in the Auditorium of the Canadian Opera House 

Figure 7: Balcony Front in the Auditorium of the Canadian Opera House 

Figure 8: The Tulsa Arena 

Figure 9: The Tulsa Arena 

Figure 10: DG Bank by Frank Gehry 

- image taken fiom Branko Kolarevic 's Digital Production 

Figure 11 : British Museum Great Court by Norman Foster 

- image taken ti-om Branko Kolarevic 's Digital Production 

Figure 12: Triangulation of a doubly-curved surface 

- image taken fiom Branko Kolarevic 's Digital Production 

Figure 13: The Sketchpad System by Ivan Sutherland 

- image taken ti-om Yehuda E. Kalay 's Architecture 's New Media 

Figure 14: URBAN5 

- image taken from Yehuda E. Kalay 3 Architecture 's New Media 

Figure 1 5 : AutoCAD by AutoDesk 

Figure 16: Guggenheim Museum by Frank Gehry 

- image taken from wwwgreatbuildings. com/buildings/Guggenheim-Bilbao.htm1 

Figure 17: Digital Project by The Gehry Technology 

- image taken from www.gehrytechnologies. com 

Figure 18: Swiss Re by Norman Foster 

- image taken from Guy Nordenson 's Tall Buildings 

Figure 19: New York Times Headquarters by Fank GehryISOM 

- image taken fronl Guy Nordenson 3 Tall Buildings 





Figure 20: KAAD by G-Crrara et al. 

- image taken fiom Yehnda E. Kalay 3 Architecture 's New Media 

Figure 2 1 : The Twisted Skyscraper 

Figure 22: The Twisted Skyscraper 

Figure 23: HKIFC by Cesar Pelli 

Figure 24: HKIFC by Cesar Pelli 

Figure 25: HKIFC by Cesar Pelli 

Figure 26: The Petronas Tower by Cesar Pelli 

Figure 27: The Petronas Tower by Cesar Pelli 

Figure 28: The Petronas Tower by Cesar Pelli 

Figure 29: The Cira Tower by Cesar Pelli 

Figure 30: The Cira Tower by Cesar Pelli 

Figure 3 1 : The Hearst Corporation 

Figure 32: The Hearst Corporation 

Figure 33: The Hearst Corporation 

Figure 34: Tree Structure of the Program 

Figure 35 : Sub-Tree Structure of the Program 

Figure 36: Profiles Finding Method 

Figure 37: Typical Plan Profile 

Figure 38: Transformational Rules 

Figure 39: Massing Construction Procedure 

Figure 40: User Interface for User interaction with the program 

Figure 41 : 3D Printed Models 

Figure 42: 3D Models of Original Design 

Figure 43: Original Design Projects 

Figure 44: Design Variations of the Petronas Generated by the Proposed System 

Figure 46: Design Variations of the Petronas Tower Generated by the Proposed System 

Figure 48: 3D Printed Models Showing Variations of the Petronas Tower 

Figure 49: 3D Printed Models Showing Design Variations of the Petronas Tower 

Figure 50: Design Variations of HKlFC Generated by the Proposed System 

Figure 52: Design Variations of Generated by the Proposed System 





Figure 54: 3D Printed Models Showing Design Variations of HKIFC 

Figure 55: 3D Printed Models Showing Design Variations of HKZFC 

Figure 56: Design Variations of the Cira Tower Generated by the Proposed System 

Figure 58: Design Variations of the Cira Tower Generated by the Proposed System 

Figure 60: 3D Printed Models Showing Design Variations of the Cira Tower 

Figure 61 : 3D Printed Models Showing Design Variations of the Cira Tower 

Figure 62: Design Variations of the Hearst Corporation Generated by the Proposed System 

Figure 64: Design Variations of the Hearst Corporation Generated by the Proposed System 

Figure 66: 3D Printed Models Showing Design Variations of the Hearst Corporation 

Figure 67: 3D Printed Models Showing Design Variations of the Hearst Corporation 

Figure 68: Constructing Massing in a Site Context 

Figure 69: Constructing Variations on a Same Site 

Figure 7 1 : 3D Printed Models Showing Forrest of Towers of the Variations Shown 

at Previous pages 

Figure 72: Types of Details 

Figure 73: Diagrid Constructed on a Surface 

Figure 74: Constructing Details on Selected Levels 

Figure 75: Construct Detail in Different Resolution Settings 

Figure 76: Incorporation of Massing and Details 

Figure 77: 3D Printed Models Showing a New Design: the Drum-Shaped Tower 

Figure 78: 3D Printed Models Showing a New Design: the Drum-Shaped Tower 

Figure 79: 3D Printed Models Showing the Details on the Top Levels of the 

Drum-Shaped Tower 

Figure 80: 3D Printed Models Showing the Details on the lower Levels of the 

Drum-Shaped Tower 

Figure 81 : 3D Printed Models Showing a New Design: the New Twisted Skyscraper 

Figure 82: 3D Printed Models Showing a New Design: the New Twisted Skyscraper 

Figure 83: 3D Printed Models Showing the Details on the Top Levels of the 

New Twisted Skyscraper 

Figure 84: 3D Printed Models Showing the Details on the Lower Levels of the 

New Twisted Skyscraper 





Bibliography: 

Ali, Mir M. Art of the Skyscraper-The Genius of Fazlur Khan. Rizzoli International 
Publications, Inc. New York. 2001 

Alofsin, Anthony. Prairie Skyscraper-Frank Lloyd Wright k Price Tower. Rizzoli 
International Publications, Inc. New York. 2005 

Borg, Jonathan C., Farrugia, Phillip J. and Camilleri, Kenneth P. Knowledge Intensive 
Design Technology. Klumwer Academic Publishers. Norwell, Massachusetts. 2004. 

Conway, Donald J. Human Response to Tall Buildings. Dowden, Hutchingon & Ross, Inc. 
Stroudsburg, Pennsylvania. 1997. 

Crosbie, Michael J. Curtain Walls. Birkhauser-Publishers for Architecture. 
Basel, Switzerland. 2006. 

Eisele, Johann & Kloft, Ellen. High-Rise Manual. Birkhauser-Publishers for Architecture. 
Basel, Switzerland. 2003. 

Jone, Robin & Maynard, Clive & Stewart, Ian. The Art of Lisp Programming. Springer- 
Verlag, London, Britian. 1990. 

Kalay, Yehuda E. Architectures New Media. The MIT Press, Cambridge, Massachusetts. 
2005. 

Leach, Neil. Design for a Digital World. Wiley-Academy. London, UK. 2002. 

Moudry, Roberta. The Amencan Skyscraper-Cultural Histories. Cambridge University 
Press. New York, NY. 2005 

Negroponte, Nicholas. Reflections on ComputerAids to Design andhchitecture. 
Masodcharter Publishers, Inc. London, England. 1975. 

Nordenson, Guy. Tall Buildings. Museum of Modern Art. New York. 2003. 

Ockman, Joan. Tower and Office-From Modernist Theory to Contemporary Practice. The 
MIT Press. Cambridge, Massachusetts. 2003. 

Pena, William M. and Parshall, Steven A. Problem Seeking-An Architectural 
Programming Primer. John Wiley & Sons, Inc. New York, NY. 2001. 

Peng, Chengzhi. Design through Digital Interaction. Intellect Books. Bristol, UK. 200 1. 





Perex-Gomez, Alberto & Pelletier Louise. Architectural Representation and the 
Perspective Hinge. The MIT Press, Cambridge, Massachusetts. 1 997. 

Phiri, Michael. Infomation Technology in Construction Design. Thomas Telford 
Publishing. London, UK. 1999. 

Schmitt, Gerhard. Infomation Architecture. Birkhauser Publishers for Architecture. Basel, 
Switzerland. 1999. 

Serraino, Pierluigi. History ofFom1.2. Birkhauser Publishers for Architecture. Basel, 
Switzerland. 2002. 

S tandiford, Kevin. A utoLisp to VisualLisp Design Solutions for A utoCad. Autodes k Press. 
Albany, NY. 2001. 

Stefanuk, Vadim and Kaijiri, Kenji. Knowledge-Based SoAware Engineering. IOS Press. 
Amsterdam, The Netherlands. 2004. 

Szalapaj, Peter. Contemporary Architecture and the Digital Desip Process. Elsevier 
Architectural Press. Burlington, Masszchusetts. 2005. 

Vries, Bauke de & Leeuwen, Jos Van & Achten, Henri. ComputerAidedArchitectural 
Design Futures 2001. Kluwer Academic Publishers. Dordrecht, The Netherlands. 2001. 

Wright, Gordon. "Building on Tradition" in Building Design and Construction. 2005. 
URL: http://www.bdcnetwork.corn/article/CA616 1495 .html. 


	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif
	00000008.tif
	00000009.tif
	00000010.tif
	00000011.tif
	00000012.tif
	00000013.tif
	00000014.tif
	00000015.tif
	00000016.tif
	00000017.tif
	00000018.tif
	00000019.tif
	00000020.tif
	00000021.tif
	00000022.tif
	00000023.tif
	00000024.tif
	00000025.tif
	00000026.tif
	00000027.tif
	00000028.tif
	00000029.tif
	00000030.tif
	00000031.tif
	00000032.tif
	00000033.tif
	00000034.tif
	00000035.tif
	00000036.tif
	00000037.tif
	00000038.tif
	00000039.tif
	00000040.tif
	00000041.tif
	00000042.tif
	00000043.tif
	00000044.tif
	00000045.tif
	00000046.tif
	00000047.tif
	00000048.tif
	00000049.tif
	00000050.tif
	00000051.tif
	00000052.tif
	00000053.tif
	00000054.tif
	00000055.tif
	00000056.tif
	00000057.tif
	00000058.tif
	00000059.tif
	00000060.tif
	00000061.tif
	00000062.tif
	00000063.tif
	00000064.tif
	00000065.tif
	00000066.tif
	00000067.tif
	00000068.tif
	00000069.tif
	00000070.tif
	00000071.tif
	00000072.tif
	00000073.tif
	00000074.tif
	00000075.tif
	00000076.tif
	00000077.tif
	00000078.tif
	00000079.tif
	00000080.tif
	00000081.tif
	00000082.tif
	00000083.tif
	00000084.tif
	00000085.tif
	00000086.tif
	00000087.tif
	00000088.tif
	00000089.tif
	00000090.tif
	00000091.tif
	00000092.tif
	00000093.tif
	00000094.tif
	00000095.tif
	00000096.tif
	00000097.tif
	00000098.tif
	00000099.tif
	00000100.tif
	00000101.tif
	00000102.tif
	00000103.tif
	00000104.tif
	00000105.tif
	00000106.tif
	00000107.tif
	00000108.tif
	00000109.tif
	00000110.tif
	00000111.tif
	00000112.tif
	00000113.tif
	00000114.tif
	00000115.tif
	00000116.tif
	00000117.tif
	00000118.tif
	00000119.tif
	00000120.tif
	00000121.tif
	00000122.tif
	00000123.tif
	00000124.tif
	00000125.tif
	00000126.tif
	00000127.tif
	00000128.tif
	00000129.tif
	00000130.tif
	00000131.tif
	00000132.tif
	00000133.tif
	00000134.tif
	00000135.tif
	00000136.tif
	00000137.tif
	00000138.tif
	00000139.tif
	00000140.tif
	00000141.tif
	00000142.tif
	00000143.tif
	00000144.tif
	00000145.tif
	00000146.tif
	00000147.tif
	00000148.tif
	00000149.tif
	00000150.tif
	00000151.tif
	00000152.tif
	00000153.tif
	00000154.tif
	00000155.tif

