
Design Procedures: A Computational Framework for
Parametric Design and Complex Shapes in Architecture

Carlos Roberto Barrios Hernandez

Master of Architecture
School of Architecture
Pratt Institute, 1997

Bachelor of Architecture
Facultad de Arquitectura y Arte

Universidad de Los Andes
Merida,Venezueia, I 993 I LIBRARIES

J

Submitted to the Department of Architecture in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy in Architecture: Design and Computation at the ARCHIVES

Massachusetts l nstitute of Technology

June 2006

Q 2006 Carlos Roberto Barrios Hernandez. All rights reserved

The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic
copies of this thesis document in whole or in part, in any medium now known or hereafter created.

Signature of the Author I i I I I
Departfient of Architecture

May 1,2006
1

Certified by: f l - - - -L
. William J. Mitchell

Professor of Architecture and Media Arts and Sciences
Thesis Supe~isor

.-

Accepted by: 1

Yung Ho Chang
Professor of Architecture

Chair, Committee on Graduate Students
Department of Architecture

Dissertation Committee

William J. Mitchell, Chair
Professor of Architecture and Media Arts and Sciences
Department of Architecture
Massachusetts lnstitute of Technology

Terry W. Knight, PhD
Professor of Design and Computation
Department of Architecture
Massachusetts lnstitute of Technology

Larry Sass, PhD
Cecil and Ida Green Career Development Professor
Department of Architecture
Massachusetts lnstitute of Technology

James Gips, PhD
Professor of Computer Science
Department of Computer Science
Boston College

Abstract

Design Procedures: A computational framework for
Parametric Design and Complex Shapes in Architecture

By Carlos Roberto Barrios Hernandez

Submitted to the Department of Architecture on May 1, 2006,
in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy in Architecture: Design and Computation

Through the use of computational generative procedures in
the early stages of design, it is common to generate shapes of
complex nature that could only be produced by the combined
forces of human imagination and computer power. However
the more complex the shapes are, the more difficult it
becomes to establish a discourse that embodies the
geometrical and spatial properties, as well as the formal
attributes of a given shape. Furthermore, it has become
problematic to differentiate between one complex shape and
another, resulting in some abstract, cumbersome, and
sometimes obscure explanation about how the shape came
into being. In some cases, designers recur to complex
expressions of mathematical nature that, even though they are
precise descriptions of the form, do not offer any clear way to
refer to them unless a person is trained in the language of
mathematics.

Design Procedures proposes a way of looking at designs as a
procedural enterprise where complex shapes are the result of
computational process in a step by step basis. Design
Procedures in combination with appropriate descriptions of
spatial attributes, can offer some light in the dialog of irregular
noneuclidean forms and their properties. This thesis presents
the application of Design Procedures to three case studies: 1)
The generation of the columns of the Sagrada Familia; 2) The
description of non regular shapes in the rod symmetry groups,
in particular of double twisted geometries; and 3) The
application to a computer program for the generation of non-
Euclidean complex shapes for high-rise buildings.

Thesis Supervisor: William J. Mitchell, Professor of
Architecture and Media Arts and Sciences.

Biography

Carlos Roberto was born in Caracas and educated as an Architect
and Engineer in Universidad de 10s Andes in Merida, and received
his Master of Architecture from Pratt Institute in New York. Before
coming to MIT he practiced architecture in Caracas and New York
City and taught Design in the School of Architecture of Universidad
de 10s Andes where he held a position as Associate Professor.

Carlos is an outdoor sports enthusiast and a flight fanatic. He is a
hang-glider pilot and paraglider instructor. Occasionally he also
practices mountain climbing, scuba diving, and flights sailplanes.

Dedication

To my dear wife Rosita who believed in me

To my sons David and little Ricardo, for giving me more joy, delight,
happiness, and pleasure, than free time to complete this work.

To my mother Carmen.

To my friends.

To all who thought that I was wasting my time here at MIT.

Acknowledgements

Bill Mitchell, who gave me enough freedom to find my own path

Larry Sass, friend and mentor who showed me to strive for
excellence and serve others beyond the call of duty

Terry Knight, for teaching me the joy of learning

Cynthia Wilkes, for your diligence and patience

George Stiny for showing me that computation can be as serious as
fun

Jim Gips for helping me clarify my ideas

Patrick Winston, for his lifelong lessons

Ike Colbert and Blanche Staton for their unconditional support

Mark Burry, Jordi Fauli and Jordi Cuso who allowed me access to
the work of Antonio Gaudi

Kenfield Griffith, who help me with writing code

The students in the PhD forum, for challenging my ideas

The students in the Digital Mockups class for their belief and hard
work.

Contents

Introduction

Chapter 1: Design Procedures

Chapter 2: Parametric Design

Chapter 3: Symmetry

Chapter 4: Gaudi Columns

Chapter 5: Generative Symmetry

Chapter 6: Twisted Towers

Conclusions

References

Appendix

Introduction

Introduction

With the increasing demand of flexible tools for Computer Aided

Design (CAD), Parametric Modeling is becoming a mainstream of

Computer Aided Architectural Design (CAAD) software, in order to

make variations in the design process less difficult. This is

traditionally called Parametric Design. Until recently, parametric

design was understood as highly sophisticated and expensive

software made exclusively for manufacturing in aerospace, shipping

and automobile industries. However, designer's demands for

flexibility to make changes without deleting or redrawing in a

computer has pushed the incorporation of parametric modeling as

standard tools in traditional CAD programs.

Variations in design are a fundamental part of the design process in

the search for solutions to design problems. Design variations

support improvement of design which in turn improves the quality of

designed artifacts. Designers constantly go back and forth between

different alternatives in the universe of possible solutions, working in

a particular part at a given time, or looking back at the whole from a

broader perspective. This is a continuous and iterative search

process of variations of a design idea, and it is very likely to revisit a

previously abandoned solution to rework it. As a result, designers

demand flexible tools that allow variations in the design process until

a solution is established for further development.

In this context Design Procedures (DP) is presented as a

methodology that enhances the design capability of a parametric

model to perform design variations. By using shapes as parameters

and thinking of parametric design as a general procedure.

Consequently, a parametric model becomes a flexible tool allowing

changes at the topological and geometrical levels.

The thesis starts by presenting axiomatic definitions of Design

Procedures and parametric design. Chapter 1 introduces the idea of

Design Procedures which is followed by a brief overview of

traditional parametric models accompanied by examples presented

on chapter 2. Chapters 3 presents important definitions of symmetry

and elaborates on the description of rod symmetry groups. Chapters

4, 5 and 6 present three case studies on the application of Design

Procedures. The first case is on the use of Design Procedures as an

analytical tool and a computational design generative system. The

second case discusses how Design Procedures are used to make

descriptions of complex shapes. The third case study is on the

generation of non-Euclidean geometrical forms for twisted high-rise

buildings. Design Procedures (DP) are defined as a systematic

methodology to overcome the limitations of traditional parametric

models.

Chapter 1

Design
Procedures

Chapter summary

This chapter introduces idea of looking at design from a computational

perspective as a procedural enterprise. In computation are like recipes that

contain a set of instructions that describe the steps necessary to complete a

task. Analogously a Design procedure is a set of axioms or instructions that

are carried in a systematic way to generate a design. This chapter describes

the important aspects of design procedures and provides brief axioms that

define design as a procedural pursuit.

A procedure is a description of the steps necessary to accomplish a task. In

computation, procedures are used to perform specific functions.

Procedures allow abstraction and encapsulation of complexity and

reusability

In abstraction procedures usually have three parts: The name of the

procedure, the arguments of the procedure, and the description 1 steps of

the procedure.

The name is a handler that is used to call the procedure

The arguments are used to contain the parameters that will be used to

perform the procedure. It is like the ingredients in a recipe

The description of the procedure is the set of instructions that are performed

to make the procedure. It is the recipe itself. The user has access to the

name and knows what it does through a description. When a procedure is

called, the user hands over the values of the parameters which replace the

arguments on the procedure. The procedure makes the necessary

calculations and returns the answer to the user. In most cases this portion of

the procedure is hidden from the user which is called encapsulation.

Parameters

Parameter is a term that has many definitions depending on the use. The

term parameter comes from mathematics and it refers to a factor that

controls the values of other factors with respect to a linear relation.

In computation, a parameter is the argument or series of arguments of a

function with takes values as inputs. A parameter is also the placeholder for

the value of a variable. They are used in the arguments of the procedure

In design a parameter is a non geometrical entity that can hold a value to

control geometrical components or relations between geometrical

components.

Parameters are used to substitute specificity for generality.

Geometrical Modeling as Procedures

In computational geometry, geometrical models are constructed in very

specific ways. Since they are attached to specific data structures that will

holdlcontain the information, they must be constructed in specific ways

which can be encapsulated as procedures.

There are procedures to construct primitive objects like points, lines,

polygons and solids, and there are also procedures to construct more

complex objects: Boolean operations.

Procedures to make geometry can have parameters that are use as inputs,

therefore making the procedure a parametric procedure.

Design as Procedure

In some cases, design can be described as a step by step process, where

some things can occur over and over again. This can be interpreted as a

procedural way of making design

In computational, the geometry that describes a design can be also

generated as the result of a script (procedure) or recipe that when followed

step by step yields the same results.

Procedures to make designs can have parameters that will take different

Shapes as Parameters

In a procedure a parameter takes the form of a variable whose value can be

altered to obtain different results. In a design procedure, numbers, relations,

shapes and operations are treated as parameters.

If a shape is seen not as an explicit representation, but as the result of a

procedure, any geometrical component used to generate it is an input of the

procedure. A cube can be modeled as the result of the following procedure:

A square shape that is extruded along an axis. The square as the initial

shape is a parameter of the extrusion procedure. If the initial shape is

substituted for another shape, like a circle, then the extrusion procedure

generates a cylinder.

Operations as Parameters

In addition to having numerical values as parameters, there can also be

operations as parameters. Operations will take the form of Boolean that will

apply or not depending on the local conditions found. The operations can

also take the form of a rule where they are the result of IF-THEN statements.

If a particular condition is found and a rule is triggered, the result is a

Boolean of the form YESINO that will either activate or inactivate a

particular.

Design Procedures

A design procedure is a set of instructions that performs actions to create a

design. The design procedure carries instructions in a systematic order

where all geometrical components that represent a design are

parameterized.

In a design procedure, shapes, numbers, variables and operations are

parameters.

Chapter 2

Parametric
Design

Chapter summary

This chapter introduces the fundamental concepts of parametric design,

starting on the premise that design is variation. Presents examples of

classes of parametric models accompanied by illustrations of parametric

models and discusses advantages of parametric design.

Variations in Design

Design as a process contemplates the search for solutions where there is no

predetermined set of alternatives to choose from. As fundamental part of the

design process, design variations allow for the search of better solutions to

design problems. Designers constantly go back and forth between different

alternatives in the universe of possible results, working in particular solutions

at a given time, or looking at the whole design for synthesis.

In this iterative and continuous process it is not only possible, but very likely

to revisit a previously abandoned solution to be reworked under a different

set of criteria or tested under a different set of constraints. As a result a new

design solution can emerge. Variations in design offer framework for

improvement of current design solutions, through optimization and change,

which in turn improves the quality of design artifacts. In this context, the

elaboration of computer models that offer flexibility to allow variations of a

design idea, and to be adapted to changing conditions during the design

process, has become a field of its own domain, which is known as

Parametric Design.

2.1 DESIGN VARIATIONS

Here shown 3 design variations from the design

Geometric models can have two kinds of representations: Explicit and

Parametric. An explicit model is a type of geometric model that has fixed

attributes, therefore in order to perform any kinds of transformations of the

model, it is necessary to erase and redraw the geometrical components.

Variations can only be performed if a particular shape is literally substituted

for a new shape.

On the other hand, a parametric model is characterized by having attributes

that allow variations without erasing and redrawing any of its geometrical

components. In this case, variations are carried out by changing the values

of the parameters, allowing these variations to be propagated through the

dependent attributes. Therefore, to carry out changes it is not necessary to

erase and redraw.

A Parametric Model (PM) is a geometrical representation of a design that

has some attributes or properties that can vary (parameters) and other

attributes that are fixed. The attributes are controlled by a non-geometrical

component that is called a parameter. The attribute will be dependent of the

value of the parameter.

2.2 Explicit model of a rectangular shape. To perform variations it is

necessary to erase and redraw a new rectangle.

2.3 Parametric model of a rectangular shape. Note how the length and

height attributes are parameterized by the X and Y parameters. The size of

the rectangular shape can be altered by changing the values of the X and Y

parameters, therefore to perform variations we use the parameters.

Parametric Design

Parametric Design (PD) is the process of designing with Parametric Models

in a setting andlor environment where variations are effortless, thus

replacing singularity with multiplicity in the design process. A Parametric

Model (PM) is a three-dimensional computer representation of a design,

constructed with geometrical sets of shapes that have some attributes

(properties) that are fixed and others that can vary. The variable attributes

are also called parameters and the fixed attributes are said to be

constrained. The designer changes the parameters in the PM to search for

different alternative solutions to the problem at hand, and the PM responds

to the changes by adapting or reconfiguring to the new values of the

parameters.

Each of the design variations obtained is called a design instance since it

represents a definite value or sets of values of the parameters at a specific

point in the design. Figure 1.4 shows different instances of design based on

variations of the parameters of the original parametric model. The instances

can be organized in a matrix format that shows how design variations occur.

Parametric Design implies the use of declared parameters to define a form.

This requires rigorous thought in order to build a geometrical model

embedded in a very sophisticated structure appropriate for the needs of the

designer. Therefore the designer must anticipate which kinds of variations

he might want to explore in order to determine the kinds of transformations

the PM must allow. This is a very difficult task because of the unpredictability

nature of the design process.

2.4 Parametric model showing variations. Each of the variations is called an

instance of the parametric model.

Parameterization of Geometrical Models

Parameterization is the process of assigning parametric attributes to a

geometrical model which will determine how the geometrical components

will vary. In other words is the process by which an explicit model is

transformed into a parametric model.

Depending on the behavior desired by the designer any geometrical shape

can be parameterized in different ways, therefore, a geometrical model can

be subject to more than one parameterization schemas creating different

ways to perform design transformations. Figure 2.5 shows two

parameterization schemata for a rectangular shape. The two parametric

schemas will let the designer create different instances based on the

transformations that the parametric model allows. Figure 2.6 shows how the

two parametric model schemas generate different design instances based

on the kinds of transformations that the parametric model allows.

All instances created by one parametric model form a family of designs,

despite the fact that one particular instance from a parametric model can be

exactly the same as another instance from another parametric mode.

2.5 Parameterization Schemata of two rectangular shapes. The

first schema shows a rectangular shape with length and width

as parameterized attributes. The second schema shows the

same rectangular shape with the position of the enc points as

parameterized attributes.

2.6 Families of designs created by each of the parametric

schemas.

Constraints

A constraint is a non-geometrical entity that limits the behavior of an

attribute. Like the parameter, a constraint will control the behavior of an

attribute or group of attributes. However the constraint will limit the scope of

action of a parameter or group of parameters putting restrictions on the

possible parametric variations.

Constraints can be of two types: geometrical and dimensional. Geometrical

constraints will build relations between two geometrical entities. A

geometrical constraint will limit the scope of action of one geometrical entity

with respect to another geometrical entity. Some geometrical constraints

include relations such as parallelism and perpendicularity, while others might

have specific localized conditions such as the midpoint of a line'.

Dimensional constraints are defined as parameterized attributes with a fixed

value. They are analogous to static variables, which can only take one value.

Dimensional constraints form relations built between one geometrical

component and another non-geometrical entity. The constraint will set the

attribute to a fixed value, which can only change if the constraint is changed

or removed.

A constraint model will only allow variations based on the scope of actions

allowed by the constraints. In case of conflicting values between parameters

and constraints, the constraints supersede any parameters that the model

has. Constraints are also unidirectional, which means that constraints control

the values of the parameters and not vice versa. A constraint is the parent-

object (controlling entity) and the constrained attribute is the child (controlled

entity).

The midpoint of a line will always remain at the same relative distance of the two extremes regardless of
the length of the line.

2.7 Two rectangular shapes showing a parameterization

schema by endpoints. The figure on the left is unconstrained,

while the figure on the right has a perpendicular constrained in

one corner. This constraint will force the two edges meeting at

that point to be perpendicular to each other.

2.8. Family of designs produced by the parametric models.

Note how in the second case the constraint acts to keep both

edges perpendicular to each other, while the unconstrained

model has the freedom to take on any variation, including all

kinds of angles.

Degrees of freedom of a Parametric Model

Degree of freedom refers to a specific combination of the parameterized

components, the existing constraints, and the kinds of transformations that

they both allow. A parametric model with more parameterized attributes is

said to have more degrees of freedom. As a consequence it will allow a

larger family of designs. A parametric model with a high number of

constraints will have less degrees of freedom limiting the instances that can

be produced. In simple terms, adding parameters increases the degrees of

freedom, while adding constraints reduces them.

A parametric model with a large number of parameterized attributes needs a

higher and more complex structure to control the number of parameterized

components. Therefore a specific transformation will require a large number

of operations to be carried at a specific instance.

2.9 A parameterization of a rectangular shape by length and

height attributes. This parametric model has two (2) degrees of

freedom, allowing rapid regeneration of different design

instances. The tradeoff is that all the instances are rectangular

shapes.

2.10 A parameterized rectangular shape by the coordinate

endpoints has eight (8) degrees of freedom, allowing more

variations on the designs. However this model requires a larger

data structure to store and manipulate the eight variables

controlling the coordinates of the endpoints.

Parametric Variations (PV), also known as variational geometry, or

constrained-based models, is a kind of PM based on the declarative nature

of the parameters to construct shapes. The designer creates a geometrical

model, which attributes are then parameterized and constrained, based on

the desired behavior, thus creating a parameterized modeling schema. A

parametric modeling schema shows which attributes of a geometrical model

are parameterized and how the designer can change the values of the

parameters.

The idea behind a PV model is that the geometrical components are

controlled by means of changing the values of the parameters or constraints

without changing the topology (number of components and their relations).

The parametric modeling schema creates the master model, which is the

starting point for parametric variations of the designs. Every time that the

designer changes a parameter in the master model, a design instance is

created. The collection of design instances generates a family of design

solutions based on changes done to the parameterized components. The

main characteristic of a PV is that the model allows transformations of the

geometry without erasing and redrawing, in a closed contained system.

2.1 2 Family of design instances based on parametric variations.

Here showing six (6) instances of design based on parametric

variations.

CARTKUAMEIW
\ CARTALWDBM

mnI=rHEmlr

I M=m
W m A M E T E U

2.1 1 A parametric model of a column with a description of the

parametric attributes. This kind of mode is called a parametric

variation or variational geometry.

Parametric Combinations (PC) are composed by a series of parameterized

geometrical shapes that are put together to create more complex structures

for design exploration. Also known as associative geometry models, or

relational models, PC offers another degree of complexity beyond the

parameterization of the geometrical components, which is done by

constructing sets of relations between the parameters and the shapes.

By combining components in different ways, a variety of designs solutions

are achieved from the initial vocabulary and the rules of combination. The

strategy is to sub-divide a design into several components and derive

specific ways in which the components will be combined. For example, a

column can be divided into three components: base, shaft and capital; where

each of the components has different possibilities of instantiation. A column

design is the addition of the three components in an orderly way, first the

base, then the shaft and finally the capital. A family of designs is obtained by

combining the different components according to the rules of combination. If

the number of components is fixed, the family of designs is limited to the

number of possible valid combinations.

a. m a
CONICAL SlEP CONVEX CONCAVE

STRAIGHT CONVERGING DIVERGING

STRAIGHT STEP CURVED

2.1 3 A parametric combination model of a column showing

components for the base, shaft and capital.

2.1 4 Family of designs of the column based on the parametric

combination of the components.

Parametric Hybrids

Parametric Hybrid Models are formed from a combination of both parametric

variations and parametric combinations. Hybrid models take the benefits of

both types of parametric models and can be very robust for design

exploration. However, in the real world they require a very solid data

structure and demand a lot of computational power.

They are very difficult to construct and the chances of producing a collapse

of the model increases proportionally to the complexity of the model. In

some occasions is better to construct and design in two models in parallel,

one for variations and another for combinations, instead of a hybrid model.

Nevertheless, a hybrid model can proved usefulness in cases where simple

parametric models are sufficient for design exploration.

2.1 5 Family of designs of the column based on the parametric

hybrid model. The number of possible instances increases in

proportion to the number of combinations and the

parameterization of the components. This produces some

unexpected and interesting results.

Variants Programming

The very first approach to parametric design was through automation of

repetitive tasks and the inclusion of variables to make different designs: a

script. This piece of computer code, also know as programmed construct,

contains parameters that are edited to obtain a family of variants of the same

shape. With the use of simple programming modules, the designer can

create routines containing repetitive tasks or simple procedures that can be

used to build large model in small steps.

Scripting also allows incorporating interaction with the user, in most cases by

asking the user to input the values of the parameters once the program is

called, but before is executed. With a little knowledge of programming, the

user can create its own small routines and use the procedures built in the

program to generate the geometrical model by encoding a simple set of

instructions that will be carried in orderly manner. The main limitation is that

there is no interactive editing on the model once the routine is called and the

procedure has started. It will not allow editing once the model is created. The

only way to change the model is to delete the model and rerun the program

to create a new model with different parameters. Its advantage is that allows

the creation of a vocabulary of models that can be reused in design.

Although variants programming is well established as a computational

procedure and most current software applications have the computer power

to handle the scripts, architectural offices are still relying on the modeling

skills of the CAD operators, therefore the models are literally made by hand

using a mouse and the palette offered by the CAD program. This attitude is

considered by some people as a waste of computing power, like getting a

Ferrari and attaching it to a mule to ride in it. Nevertheless, some architects

are recognizing the benefits of variants programming to be incorporated in

the design process. For it to be successful it requires two important changes

of paradigm: 1) Architects and designers must engage in the knowledge of

computer programming, until new more user friendly programming interfaces

and languages are develop, which means architects must study and learn

how to program a machine; and 2) Architects and designers must define

very well the problem they want to solve before it can be implemented in

some form of computational format. For the computing point of view, a

problem well stated is a problem half-coded.

2.1 6 Design instances from a variants programming model. The

model in written in a script format that takes inputs from the

designer and generates an instance of the model based on

the input values.

Darcy Thompson and the comparison of
related forms

According to Darcy ~ h o m ~ s o n ~ , the study of form can be done in two ways:

descriptively, using verbal language; and analytically, using mathematics.

For instance, an apple, an orange and a ball, are verbal descriptions of a

spherical shape. However, such descriptions are limited and ambiguous.

Thompson argues that analytical descriptions, founded in mathematical

language, can provide precise definitions of form. For example, the formula

x2+y2+z2=? is the mathematical description of a sphere, were the sum of

the squares of three variables equals the square of the radius, and the

variables indicate the location of the center of the sphere in the Cartesian

space.

The method of Cartesian transformations is rooted in analytical descriptions

of form. Its predecessor is the method of coordinates, which was used to

translate curves into numbers and then into written data. The data could be

used to recreate the curves by reversing the process, from data into

numbers and then into curves (Thompson, 1917). This was mostly used by

cartographers when making maps at different scales.

Instead of using one mathematical description of a particular form,

Thompson's method of Cartesian transformations is concerned with the

study of form by comparison. Darcy Thompson believed that one form can

be easily understood by recognizing it as a permutation or deformation of

another form3. These kinds of deformations are carried out systematically

and recorded in a step-by-step mode. Thus two or more forms can be

compared by means of the set of grids. For the morphologist who studies the

form and structure of organisms, Cartesian transformations provide a visual

framework to understand how forms are related and what kinds of

transformations occur in between.

- - -- --

Darcy Thompson, On growth and form.
This method is founded in the mathematical Theory of Transformations, where two groups are clearly

distinguished: substitution groups and transformation groups, where former one is discontinuous and the
latter is continuous. It is the latter group that the theory of comparison of related forms presented by
Darcy Thompson is founded on.

2.1 7 Transformations of a circle based on the deformation of

the underlying Cartesian grid. The grid provides a framework to

perform transformations while it serves as an analytical

description of the current instance. (Image reproduced from

On Growth and Form)

2.1 8 Examples of the application of the Cartesian

transformations applied to show how living organisms can be

compared. (Images reproduced from On Growth and Form)

Transformations of Shape Grammars

Shape grammars are algorithmic systems for analyzing and creating designs

directly through computations with shapes. Shape grammars are powerful to

the study of form from the strict visual point of view. A very interesting aspect

of shape grammars, which concerns stylistic change and transformations in

design, deserves special attention. Any design generated by the grammar is

considered to be in the language of the grammar; likewise any design that is

not generated by the shape grammar is not considered in the language of

the grammar. Each shape grammar generates designs in a language and

provides different understanding of the theory of languages of designs

(Knight, 1994).

Terry Knight's model is based on the premise that a shape grammar will

generate a unique language of designs; therefore, in order to determine

whether two designs are from different languages, it is necessary to

compare the shape grammar of each design. Comparing the shape

grammars can be used to analyze how languages of designs have evolved

through history and to study the transformations of a particular design

language. According to Knight, the design language can be transformed by

transforming the shape grammar, instead of transforming the designs. This

is accomplished by three operations performed on the shape grammar: rule

deletion, rule addition and rule change. A shape grammar will generate a

body of designs in a language. If a rule is deleted from the shape grammar,

then the body of designs will be reduced. Likewise, when a rule is added to

the shape grammar, the body of designs will be expanded based on the new

added rule4. If a rule is changed, then the transformed shape grammar will

generate different designs than the original shape grammar. In any of the

three cases, the corpus of design will change whereas the new shape g

grammar will generate more, fewer or different designs than the original

shape grammar5.

- - - --

It is important to clarify that rule addition does not necessarily mean that the design will expand, or that
a rule deletion will decrease the corpus of designs. A rule added to the shape grammar might limit or
expand the corpus (body?) of design. A rule that is deleted from the grammar can also expand or limit the
corpus (body') of design. The main argument is that designs will be transformed as a result of
transformations in the shape grammar.

It is important to note that the rule change can be considered as be performing a rule deletion and rule
addition at the same time.

2.1 9 A shape grammar and d derivation.

2.20 Transformation of the rule and the corresponding derivation resulting in a

new design language.

2.21 Another transformation of the rule and the corresponding derivation

which creates new design language

2.22 A derivation of the alternative application of the rules of the first two

shape grammars. Note how the final design corresponds to the third step on

the previous derivation. Although both designs are identical, they are of

different languages since they were generated from two different shape

grammars.

Chapter 3

Symmetry

Chapter summary

This chapter introduces the concepts of symmetry shows how it is applied to

the single rod groups. Starts by presenting the fundamental concepts of the

basic symmetry groups and shows how they can be used to build

descriptions for complex shapes with high levels of symmetry.

Symmetry

Symmetry as a concept is understood in more than one way. Symmetry is

recognized as a property of an object being well proportioned and balanced

where its parts are somewhat corresponding in shape and size. It is also

understood as a feature of living organisms where there is evident

correspondence of constituents arranged in two opposite sides of an

imaginary line6. Yet there is a third way in which symmetry is defined is the

result of an arrangement in which regular patterns seem to emerge7. All of

the former general notions of understanding symmetry are right in their own

views, but having more than one definition for something only leads to

confusion and ambiguity. Two fundamental concepts emerge from the

former definitions of symmetry: the idea of relative equality and the idea of

regularity. We will come back to these two concepts later.

In mathematics symmetry is defined as a characteristic of geometrical

shapes such that when a transformation8 is performed on the shape it does

not appear to change. If a square is rotated 90 degrees with respect to its

center, it will appear that no rotation took place. As a result, when a regular

shape is subject of a Euclidean transformation, it looks the same visually,

apparently it did not change. Therefore symmetry is associated with some

notion of regularity where change is not evident.

6 This is known as bilateral symmetry, where similar parts are arranged in two sides of a median axis or
median plane. This is more evident in biological specimens and living organisms
7 The idea of harmony and symmetry is best described in music, where rhythm creates patterns
8 By transformations we mean Euclidean transformations

3.1 An object with no symmetry shown with a bilateral

symmetry composition. Bilateral symmetry is the most basic

class of symmetry.

Relative Equality and Regularity as the basis
of symmetry

According to Shubnikov and Koptsikg, relative equality is the first notion

necessary to better understand symmetry. For example, the right hand is

relatively equal to the left hand. They are equal in the sense of their

constituents, since both have 5 fingers. However a right hand and a left hand

can not be superimposed to make a perfect match without a reflection over a

mirror plane. The hands are relative to each other with respect to the mirror

plane, thus the equality of both hands dependent on the mirror plane. Both

hands are equally related through its constituents, the five fingers, and their

relative position with respect to an imaginary mirror plane.

Regularity is the second fundamental concept of symmetry. By having the

same number of constituents both left and right hands are considered

regular, at least at the topological level. Other way of interpreting regularity is

to divide a shape into equal parts without any remainders. A square that is

divided into four smaller squares shows that the smaller squares are as

regular as the larger square. .Furthermore, the idea of regularity is enhanced

if the little squares are recursively subdivided into smaller squares. The

predictable nature of the created pattern is the most important notion of

regularity, which is fundamental to the understanding of symmetry.

Equality and regularity can be found in different ways. A regular shape that

can be subdivided into parts shows evidence of emergent patterns that are

either regular and or relatively equal. If a square is subdivided into smaller

squares regular patterns emerge. If the square is subdivided into triangles,

then the triangles are relatively equal to each other with respect to Euclidean

transformations. This essential idea of relative equality and regularity is the

basis for symmetry or a theory of symmetry.

9 'Symmetry in Science and Art"

64

3.2 A non-symmetrical object used to generate two kinds of

symmetrical compositions. Symmetrical compositions are

generated by translation and rotation. All objects in the

composition share the two main characteristics of symmetry:

relative equality and regularity.

Finite Symmetry

The previous chapter introduced the idea of relative equality and regularity

as the basis of symmetry. Relative equality is the man characteristic of

shapes that belong to the finite symmetry group. Finite symmetry is based

on rotation and reflection transformations and is characterized for having a

central point or central axis from which the transformations occur.

The most basic case of finite symmetry is found on the bilateral symmetry

where two shapes are relatively equal to each other by means of the mirror

plane. Mirror symmetry is denoted with the letter M, therefore any

composition which has one mirror plane is denotes as having symmetry M.

A classical example of bilateral symmetry is found on the figures of the

Rorschach Inkblot Test1O. Another common example is a painting game

where figures are created by randomly pouring ink on paper and folding it in

half. When the paper is unfolded a figure with a perfect symmetry axis

appears.

Bilateral symmetry is also present in most living organisms, in particular

those capable of motion. The limbs are present in equal numbers and sizes

to both sides of an imaginary central axis. Crabs, insects, mammals, etc,

have all bilateral symmetry.

Some cases might include more than one mirror. Kaleidoscopes are perfect

examples of this kind of symmetries, where a figure is created with multiple

mirrors. In this case, the particular object is said to have more than a single

mirror

10 Named after Swiss psychiatrist Norman Rorschach, the Rorschach inkblot test is a projective test
practiced to measure emotional and intellectual functioning of an individual. Beyond the controversy of
the validity of the test or its results, what is important to the scope of our work is that the inkblots are
perfect examples that illustrates bilateral symmetry.

3.3 Composition s with a finite symmetry. In this case the

composition has two planes of symmetry, one vertical and one

horizontal.

Point Symmetry

Point symmetry is the second class of the finite symmetry group. In point

symmetry the relative equality occurs by means of rotations, reflections or

both. Objects rotate with respect to a fixed point andlor are reflected from

mirror lines that go through the same point. Therefore point symmetry's main

characteristic is the presence of an identifiable central point.

Let us take a closer look at figures with rotations only. Rotations can occur at

any interval between 0 and 360 degrees. The number of rotations is multiple

of 360 denoted by the letter N, and indicates how many rotations occur

before the figure can be aligned with itself. A design with point symmetry is a

design that can be rotated 360lN degrees in order to be aligned with itself.

Each rotation of 360lN degrees makes the figure identical to the original

design. Since this can be done N times before the figure completes a full

rotation, the symmetry of the figure is N. The number corresponding to N is

calculated by dividing 360 by the number of degrees that will have to be

rotated to obtain the same figure. For example, design that has symmetry

N=3 will have 3 rotations of 120 degrees corresponding to 36013. A design

that has symmetry N=5 will have 5 rotations of 72 degrees. Likewise a

design with a symmetry of N=4 will have four rotations of 90 degrees to align

the shape with itself. This kind of symmetry is known as cyclic symmetry and

it can also be denoted as "CN" where the subscript N indicates again the

number of rotations. Cyclic symmetry has a sense of direction; therefore

rotations can occur either clockwise or counterclockwise.

When rotations are combined with reflections, another class of symmetry

emerges, which unlike the cyclic symmetry, it has no sense of direction.

Again, the presence of a mirror plane is denoted with the letter M. A square

for example, has four rotations, but at the same time it has four reflections,

one vertical and one horizontal, and two along its diagonals. This particular

example has a symmetry which is denoted by the formula NxM or 4M, where

N indicates the number of rotations and M indicates the presence of mirror

planes. Other notations call this symmetry group dihedral or DN, therefore an

object with 4M symmetry is exactly the same as a D4.

3.4 Composition with cyclic point symmetry. Note the rotation

effect produced by the form and relative position of the three

triangles.

3.5 Composition with dihedral point symmetry. Mirror planes

eliminate the rotational effect.

Axial Symmetry

Axial symmetry is a class of symmetry that groups objects in 3D space. It is

also known as 30 Symmetry or 30 Point Symmetry, since this class includes

all 3D objects that have a singular point or singular axis. It is the three

dimensional analogous to the 2D point symmetry, therefore the only

transformations possible are rotations and reflections.

In most three dimensional shapes, rotations occur with respect to an axis,

denoted as A. Analogous to the 2D point symmetry, in three dimensions N

indicates the number of rotations that occur before the shape is aligned with

its original position.

While rotations take place with respect to an axis, reflections in 3D will occur

with respect to a plane. Mirror planes are of two types:

1) Mirror planes that contain the axis A, denoted with M; and

2) Mirror planes perpendicular to the axis A, denoted with lowercase

m. This mirror plane is also called transverse mirror plane.

While there are some kinds of shapes that have more than one axis, like

regular polyhedrons and some kinds of crystals, they will not be included in

the following discussions.

3.6 Three dimensional object showing axes. In 3D, rotations

occur with respect to these axes, while reflections are

performed through the mirror planes that contain them. The

cube has 3 axes and twelve mirror planes. This gives the cube

symmetry of 48, which means that 48 transformations will align

the cube with itself.

Shapes with axial cyclic symmetry: A*N

Shapes with axial rotational symmetry that will only remain the same under

rotational transformations along the rod axis belong to this first class. Any

other kind of transformation will change the visual appearance of the shape.

In this category we find regular pyramids which base is a closed polygon

with cyclic symmetry on the plane.

The notation A*N indicates that the shape has a single main axis from which

rotations occur and the number of rotations. It is assumed that no reflections

exist. Other kinds of shapes that belong to this category are regular

pyramids with alternating open faces.

A characteristic of axial cyclic shapes is that they have a direction of rotation

with respect to the main axis; therefore the rotation can be clockwise or

counterclockwise.

3.7 Shape with symmetry A*2

3.8 Shape with symmetry A*4

Shapes with axial dihedral symmetry: A*N*M

In this second group we find shapes that have axial rotation as well as a

mirror symmetry plane that contains the axis. Regular pyramids made from

dihedral 2D shapes and the like belong to this class. The symmetry planes

pass through the central axis, making both sides relatively equal with respect

to the mirror plane.

The notation A*N*M indicates that the shape has a single main axis from

which rotations occur. N indicates the number of rotations before the shape

completes a full 360 degree rotation and M denotes that there are mirror

planes that pass through the main axis in number equal to N.

In this case the shape will remain unchanged under axial rotations, as well

as reflections through any of the mirror planes.

3.9 Shape with symmetry A*3*M

3.1 0 Shape with symmetry A*4*M

3.1 1 Shape with symmetry A*5*M

Shapes with top-down symmetry: A*Nfm

This third class denotes shapes with axial cyclic symmetry that have no

distinction on both ends of the main axis. In this case there are two kinds of

transformations that will result in similar shapes: rotations with respect to the

main axis, and reflections on a mirror plane that is normal to the main axis.

This plane is also known as a transverse plane.

The notation A*N*m indicates that the shape has a single main axis from

which rotations occur. N indicates the number of rotations that occur before

the shape becomes aligned with itself, and m denotes the presence of a

mirror plane normal to the main axis, which makes the top and bottom of the

shape relatively equal. These kinds of shapes are said to have a cyclic and

top-down symmetry, and they have a rotational direction.

These kinds of shapes are commonly found in special machinery. As well as

some kinds of turbines and the like, which all belong to this class of

symmetry. Any shape that has cyclic axial symmetry which is mirrored on a

transverse plane will result in a shape with top-down symmetry.

Other options are cyclic 2D shapes that are extruded along the main axis. In

this case the transverse plane is more implicit and less evident to see.

3.1 2 Shape with symmetry A*2*m

3.1 3 Shape with symmetry A*4*m

3.1 4 Shape with symmetry A*4*m

Shapes with top-down finite dihedral
symmetry: A*N*M*mf

This class denotes shapes with axial dihedral symmetry with a transverse

mirror plane. Three kinds of transformations will result in similar shapes:

rotations with respect to the main axis, reflections on axial mirror planes, and

reflection with respect to the transverse plane.

The notation A*N**M*~' indicates that the shape has a single main axis

from which rotations occur. N indicates the number of rotations that will

make the shape aligned with itself, as well as the number of axial reflections.

M indicates the presence of axial mirror planes which will make the shape

with dihedral symmetry. m denotes the presence of a mirror plane normal to

the main axis, which makes the top and bottom of the shape relatively equal.

The superscript f indicates that the shape has a finite top down symmetry,

which is distinct from the kinds of shapes that will go endlessly along the

main axis.

By-pyramids and by-cones are shapes that belong to this class, however

there is no distinction if the shapes a joined by their base or their top vertex.

3.1 5 Shape with symmetry A*3*M*m

3.1 6 Shape with symmetry A*4*M*m

3.1 7 Shape with symmetry A*5*M*m

Shapes with top-down infinite dihedral
symmetry: A*N*M*mi

This class denotes shapes with axial dihedral symmetry with a transverse

mirror plane; however they have a different flavor to them. Similar to the

previous class, there are three kinds of transformations will result in similar

shapes: rotations with respect to the main axis, reflections on axial mirror

planes, and reflection with respect to the transverse plane.

The notation A*N**M*~' indicates that the shape has a single main axis from

which rotations occur. N indicates the number of rotations that will make the

shape aligned with itself, as well as the number of axial reflections. M

indicates the presence of axial mirror planes which will make the shape with

dihedral symmetry. m denotes the presence of a mirror plane normal to the

main axis, which makes the top and bottom of the shape relatively equal.

The superscript i indicates that the shape has an infinite top down symmetry,

which means that the shape could be extended infinitely along the main axis

without changing its symmetry.

Regular prisms and 2D dihedral extrusions are shapes that belong to this

class.

3.18 Shape with symmetry A*3*M*m

3.1 9 Shape with symmetry A*4*M*m

3.20 Shape with symmetry A*5*M*m

Shapes with continuous single rotation along
the rod axis (twist): A*N*M*R

These shapes are generated by the continuous translation and rotation

along the main axis. Twisted shapes belong to this class and two kinds of

transformations will result in the same shape: rotations with respect to the

main axis and a 180 degree rotation of the main axis.

The notation A*N*M*R indicates that the shape has a single main axis A

from which rotations occur. N indicates the number of rotations that will

make the shape will be self aligned. M indicates the presence of axial mirror

planes which will only apply to the initial shape, since any displacements

along the axis A will result in a rotation. R indicates the total rotation, which

can be expressed as a parameter or a fixed number. There is no top-down

symmetry trough a transversal mirror plane, but a rotation of 180 degrees of

the shape and the axis will align the shape with itself.

Twisted shapes belong to this class, which makes them have a direction with

respect to the main axis. They can twist in two directions: clockwise or

counterclockwise.

3.21 Shape with symmetry A*4*M*R(90) here shown two directions of

rotation: clockwise and counterclockwise

3.22 Shapes with symmetry A*4*M*R

Shapes with continuous single rotation along
the rod axis (twist): A*N*M*m*R

Theses shapes are generated by the continuous translation and rotation

along the main axis, with an additional transverse mirror plane.

The notation A*N*M*m*R indicates that the shape has a single main axis A

from which rotations occur. N indicates the number of rotations that will

make the shape will be self aligned. M indicates the presence of axial mirror

planes which will only apply to the initial shape, since any displacements

along the axis A will result in a rotation. An m indicates that there is a top-

down symmetry along a transverse mirror plane located at the middle point

of the main axis. R indicates the total rotation, which can be expressed as a

parameter or a fixed number.

Twisted shapes belong to this class, which makes them have a direction with

respect to the main axis. They can twist in two directions: clockwise or

counterclockwise.

3.23 Shape with symmetry A*4*M*m*R(90) here shown in

3.24 Shapes with symmetry A*4*M*m*R

Shapes with continuous double rotation along
the rod axis (double twist): A*N*M*RR

This is an interesting class of shapes since they can have more than one

description. The symmetry description of the resulting shape can be different

from the description of how the shape is generated. In this case I am inclined

to give preference to the way the shape is generated over the description of

the resulting shape.

Just like the generation process of the single rotation shapes, double rotated

shapes are the result of a shape that is translated along the main axis and at

the same time is rotated with respect to the main axis. However one of the

shapes is rotated in a positive direction and the other shape is rotated in the

negative direction; creating a clockwise shape and a counterclockwise

shape.

The notation A*N*M*RR indicates that the shape has a single main axis A

from which rotations occur. N indicates the number of rotations that will

make the shape will be self aligned. M indicates the presence of axial mirror

planes if the initial shape has dihedral symmetry. RR indicates that there are

two rotations one positive and one negative. One important distinction that

will be presented later is that two shapes can involve Boolean operations.

There is no top-down symmetry trough a transversal mirror plane. However,

if the rotation and counter-rotation go through more than one cycle where

the two shapes are aligned, the resulting shape will have emergent top-down

symmetry. This will make a distinction on the description of the shape, which

never had a transverse mirror plane m to begin with.

Another interesting feature of these kinds of shapes is that a left-right

symmetry will emerge as a result of the equal values of the two opposite

rotations, just as if M planes existed before.

3.25 Shapes with symmetry A*4*M*RR

Shapes with continuous double rotation and
Boolean addition: A*N* M*R\,,

In computational geometry, when two shapes that overlap are involved,

there are three Boolean operations that can be performed. A Boolean

addition is the first of these three operations. In this particular sub-class, two

shapes with opposing rotations will be added to form a final shape.

The notation A*N*M*RR indicates that the shape has a single main axis A

from which rotations occur. N indicates the number of rotations that will

make the shape will be self aligned. M indicates the presence of axial mirror

planes if the initial shape has dihedral symmetry. RR indicates that there are

two rotations one positive and one negative, both of equal magnitude. The

(ba) subscript will indicate that a Boolean addition will complete the

operation.

Some emerging properties could include dihedral symmetry planes M, and

transverse planes m if rotations align more than once.

3.26 Shapes with symmetry A*4*M*RR

3.27 Shapes with symmetry A*4*M*RR and Boolean addition.

Note the emergent to-down symmetry.

Shapes with continuous double rotation and
Boolean intersection: A*N*M*RR(,,,

This particular subclass is similar to the previous but instead of a Boolean

addition, it involves a Boolean intersection. A Boolean intersection is the

resulting shape that contains only the common area of the two opposite

rotating shapes.

The notation A*N*M*RR indicates that the shape has a single main axis A

from which rotations occur. N indicates the number of rotations that will

make the shape will be self aligned. M indicates the presence of axial mirror

planes if the initial shape has dihedral symmetry. RR indicates that there are

two rotations one positive and one negative, both of equal magnitude. The

(bi) subscript indicates a Boolean intersection that completes the operation.

Just like the shapes with Boolean additions, emerging properties could

include dihedral symmetry planes M, and transverse planes m if rotations

align more than once.

3.28 Shapes with symmetry A*4*M*RR and Boolean intersection.

3.29 Shapes with symmetry A*4*M*RR and Boolean intersection.

Note the emergent top-down symmetry

Chapter 4

Gaudi Columns

Chapter summary

This chapter presents a case study on the columns of the Sagrada Familia

and shows how Design Procedures are applied to the generation of the

family of columns of the Sagrada Familia plus an infinite number of new

designs.

The Sagrada Familia

Located in Barcelona, Spain, The Expiatory Temple of the Sagrada Familia

was designed by the Catalonian Architect Antonio Gaudi between 1883 and

1926. Gaudi worked for 43 years in the temple and transformed what was to

be a neo-gothic church into a masterpiece of architecture with no

precedents.

During this period, Gaudi developed a unique language based on the

application of simple rules to form complex geometry, and the use of three

ruled surfaces: The helicoids, the hyperboloid and the hyperbolic paraboloid.

The singular character of Gaudi's architecture in the Sagrada Familia

represents the synthesis of his observations of nature translated into

geometrical abstractions

The columns of the Sagrada Familia

Gaudi initially proposed a helicoidally shape for the columns, like the

salomonic columns from the renaissance. However, he considered that the

single twist was visually inappropriate, since it produced the perception of a

weak column that could be squashed or deformed. The visual imperfection

of the single twist column bothered Gaudi for a number of years, until he

resolved to use a double rotated technique where two opposite twisting

columns will cancel each other. This allowed the visual asymmetries of the

single twisting column to disappear.

Gaudi's novel solution consisted in the use of two opposite rotations of the

same shape, once clockwise and another counter-clockwise, and keeping

the common parts of the two volumes, like in a Boolean intersection. This

novel solution, which has no precedents in architecture, was used to

generate the shapes of all the columns in the interior of the Temple. It, is the

result of two continuous years of work and experiments of Gaudi's

interpretation of the helicoidally growth present in trees and plants.

4.2 Generation method of the Sagrada Familia columns. Here

shown the generation of the column of 4. A square shape is

rotated in two opposite directions by 22.5 degrees. The

Boolean intersection of the superimposed shapes produces the

column of four

Design Procedure

The work started by the reconstruction of the columns knots of the lateral

nave of the Sagrada Familia. The rectangular knot was selected as the main

model for the parametric exploration. The first challenge was to find a

suitable modelling procedure that will yield an accurate representation of the

knot. After a series of experiments, I found that using a bottom (initial) and

top (final) shapes of the knot, and filling the space in-between with a surface

fitting function, the resulting form will generate a shape that was visually

equivalent to the original plaster model by Gaudi.

The first stage was to create the top and bottom figures in a wireframe

model, which is called the parametric skeleton. A surface fitting function was

applied to each pair of top-bottom shapes producing both the rotation and

counter-rotation shapes. The two generated shapes were superimposed and

used to perform the Boolean intersection that generates the original shape.

Although this procedure of blending between two pairs of shapes'was not

described by Gaudi, nor any other researchers and scholars, the resulting

columns were not only geometrically accurate, but also visually correct when

compared to the original Gaudi models.

4.3 Parametric Skeleton. Here showing two pairs of initial

shapes, one for the rotation and the other for the counter-

rota tion.

4.4 Surface fitting functions create the rotation and counter-

rotation shapes.

4.5 Boolean intersection of the two superimposed shapes

generates the rectangular knot.

Parameterization of the column

In the parametric skeleton there are three types of geometrical components:

the axis of the column represented by a line, two parallel planes where the

top and bottom shapes will be located, and the top and bottom shapes. Each

surface procedure is composed of two initial shapes one on the top and one

for the bottom, for a total of 4 initial shapes. The parameterization schema

only constrains the location of the initial shapes to the top and bottom

planes. The planes must be normal to the axis line. The shapes are not

constraint and are free to take any kind of geometrical and topological

transformations.

The parametric model allows for variations on the values of the main axis as

well as the dimensions of the initial shapes, and the rotation and counter-

rotation angles corresponding to the opposite rotated shapes.

If the two shapes are squares and the angles are 22.5 degrees, the result

will be a square column. If the two shapes are changed into rectangles, and

the values of rotation and counter-rotation is 45 degrees, then the

rectangular knot is generated.

4.6 Transformation of the rectangular knot into the square

column done by changing the initial shapes from rectangles to

squares, and the angle of rotation, from 45 degrees to 22.5.

Transformations on the columns

The first set of transformations was done to the top and bottom shapes,

starting with variations of the proportions of the lower rectangles, to

variations on the angles and finally with variations on the four initial shapes.

The height of the column, as well as the rest of the parameters remained

unchanged through these set of operations. An important discovery was that

the topology of the final column would be altered as a result of changing the

parameters of the initial shapes, even though the topology of the all the

geometrical components of the model remained unchanged.

Different variations of the design obtained from the same parametric model.

Other set of transformations included changes in the topology of the

primitive shapes. The parametric model allowed topological changes and still

maintained the integrity of the surface fitting procedures without breaking the

model, or causing geometric problems.

4.7 Parametric variations of the lower shapes

4.8 Parametric variations of lower and upper shapes

4.9 Topological transformations of shapes

4.1 0 Topological transformations and displacement of the

initial shapes

Comparison with original designs

A natural question for a generative procedure of any kind is to somehow

evaluate the produced results. Performance driven processes is one of the

most widely accepted methods of evaluations for designs when a specific

set of criteria is to be met. Therefore the procedure might iterate between

different solutions to find an optimal result. On the other hand, qualitative

evaluation of designs is more complex.

Based on this premise, I propose two systems for evaluation of the designs

generated by the parametric model. Each evaluation system is based on a

general proviso for aesthetic evaluation. The first proviso determines if a

design is in the language of the original designs, and the second proviso

distinguishes which designs where made by Gaudi and which are new. Each

new design is to be evaluated intrinsically with respect of the two evaluation

provisos. This kind of evaluation tends to be objective in the sense that the

criteria are determined before the instances of the model are generated,

therefore there is no discrimination.

The first step was to determine if the procedure was accurate. For this a

visual comparison between the original designs and the design procedure

was done. Then measurements taken from both models were compared. As

a result no visual discrepancies and no measurement differences were

found when both models were compared.

4.1 1 Visual comparison between the design procedure, the

rapid prototype from the computer model and the original

design by Gaudi. No visual or measured discrepancies were

found between the compared models. This proved that the

design procedure is accurate and valid.

Evaluation of the new designs

The evaluation consists in determining if a new design generated from the

parametric model is in the language of Gaudi. We define that a shape is in

the language of Gaudi if: 1) The shape is generated by the same procedures

used by Gaudi; and 2) The generated shapes and the original from Gaudi

produce similar results when analyzed. The parametric model is based on

the same procedure that Gaudi used to generate the original columns

therefore it can be assumed that all shapes generated by the parametric

model are in the language.

The second test is to determine the nature of the resulting shapes and

compare them with the original columns. The original columns made by

Gaudi consisted in rotating shapes that produced ruled surfaces. It is widely

know that Gaudi made extensive use of ruled surfaces in different designs. A

ruled surface is defined by a curved shape formed with straight lines (ruling

lines) and that has a non-positive Gaussian curvature when is analyzed. A

sample of the generated shapes were tested to determine if they where

made with ruled surfaces. All the generated shapes that where tested

showed that they had surface continuity in each face of the shape , all the

surfaces had ruling lines making them ruled surfaces such as the original

Gaudinian designs, and finally the analysis of Gaussian curvature was either

negative value or zero.

4.1 2 Evaluation of the rectangular knot showing the three steps

for evaluation: 1) Surface continuity; 2) presence of ruling lines;

and 3) Gaussian curvature analysis.

An infinite catalog of columns

The design procedure allowed the generation of all the original design by

Gaudi plus an infinite number of new designs. All design instances were

directly generated by the design procedure with little effort. While the

parametric variations produced interesting results, some of them very similar

to the original design, the most unexpected yet stunning where produced

when the initial shapes where changed.

The initial shapes included closed regular and irregular polygons, polylines,

splines, and any combination of them. Two important restrictions on the

initial shapes must be considered: I) the initial shapes must be closed

shapes; and 2) the initial shapes must not be self intersecting shapes. Any

contravention of the aforementioned descriptions will result in a non-

compliance of the procedure, since the Boolean intersection requires two

closed and well formed shapes. Since any closed shape can be used as one

of the initial shapes, the possible number of designs that can be generated

goes to infinity.

Chapter 5

Generative
Symmetry

Chapter summary

This chapter expands on the knowledge of 3D symmetry group's

descriptions and presents a design procedure to generate complex shapes

based on single rod symmetry. The design procedure also generates a

description of the symmetry group.

Ambiguity of 3D shapes with non regular symmetry

Current classifications of symmetry for 30 shapes have two major setbacks

that make them ambiguous. Two or more different shapes can be classified

under the same symmetry group, and consequently one shape can be

classified in more than one symmetry group depending on how we look at it.

This creates ambiguity. The basic problem is that current symmetry

knowledge does not distinguish between shapes of single symmetry. It only

says that all the shapes have symmetry of 1, therefore no kind of

transformations will generate the same shape. However there are distinct

features that are visually evident in two different shapes that according to the

current conventions of symmetry are from the same symmetry group. This

creates a particular problem when we are trying to differentiate between two

non-symmetrical shapes.

I propose a model that expands on the knowledge of symmetry groups and

provides a classification that distinguishes the most discrete features. When

you have regular shapes it is easy to classify in a finite group of symmetry

types and leave the ones that don't have any symmetrical features or that

don't have any regularity, or that don't have any recognizable features that

can be categorized as identical, to put them in a category simply called that

they don't have symmetry or that their symmetry is just 1 (identity)

However if we look at symmetry not as the property of the resulting shape,

but as the description of the generative process/procedure we should be

able to make clear distinctions of two similar shapes., therefore the

symmetry of a shape is not a property of the shape but a description of the

generative process.

Description of 3D shapes with non regular

symmetry

Here is a list of the descriptions of the symmetry groups in 3D:

A + denotes the presence of a single rod axis

N + denotes the symmetry level of the initial shape

M + denotes the presence or not of a mirror plane along the rod axis

m + denotes the presence of a transverse mirror plane normal to the axis

R' + denotes the presence or continuous axial rotation

R- + Denotes the presence of a counter rotation or opposite rotation.

D 3 Denotes dilation symmetry along the rod axis

B(a) + Denotes Boolean addition

B(i) + Denotes Boolean intersection

S(i) + Denotes that a shape was generated with a special procedure

Symmetry as generative procedure for design

Descriptions can also be used as generative process for design. In the case

of the 30 single rod symmetry groups, a description serves for the purpose

of determining which operations will be used as parameters and will also

indicate the value of the variables. Shapes used as inputs will remain as a

separate procedure, therefore it will only be considered as an input. In case

of discrepancy between two descriptions, the designer may use whichever

he whishes; however I would give preference to the generating symmetry

and not the description.

Catalog

5.26 A3R300r300 (bi)

5.28 A4R23t-23 (bi)

5.34 A4R90t-270 (bi)

5.35 A4R 1 35r 1 35 (ba)

5.36 A4R 1 35r 1 35 (bi)

5.38 A3R300r-60 (bi)

5.39 A (0) 4R 1 5r200 (bi)

5.42 A (0) 4R90r90 (bi)

5.43 A (0) 4R90r 1 80 (bi)

5.45 A (0) 4R 1 20r300 (bi)

5.49 A (s 1) R 1 5r200 (bi)

5.50 A (s2) R 1 51-200 (bi)

5.58 A (s7) R45r300 (bi)

Chapter 6

Twisted
Towers

Chapter summary

This chapter presents a case study on the generation of twisted shapes for

high-rise buildings.

Twisted Towers

Twisted towers present a series of examples of the use of Design

Procedures for the generation of twisted high-rise buildings.

Here are

mT,; --yyy ,* . ? C r j r - L , ~ ; ~ * i ~ - -*r- ' (I-

d 4

Conclusions

Conclusions

From a computation point of view, Design Procedures can be

understood as a search-problem in a very large space of possible

solutions. This task can be very expensive even with the most

advanced search algorithms. On the other hand, a design procedure

offers designers a powerful way to quickly generate parametric

models that they can use for design exploration. Search for solutions

in a large space of possibilities can be very provocative for a

designer; another approach is to implement intermediate solutions

where design procedures are constrained to produce certain designs

only. These kinds are defined as deterministic design procedures.

Parametric models have the general purpose of providing a

framework for high-level manipulation of geometrical components

that perform transformations during the design process. Among the

advantages of using those in design are:

1. The facility to perform changes in geometrical components
without erasing a redrawing, allowing flexibility for design
exploration and refinement.

2. Increased reusability of design solutions by encapsulation.
Complex geometrical models can be placed into basic units
that are treated as primitive entities.

3. Added rigor to design development, since a properly
constrained parametric model allows some types of
transformations, while restricting others.

4. Real time feedback when changes in the parametric model
affect geometrical components or other parts of the design.

Design Procedures brings to the surface an important question

concerning the validity of designs with respect to the design

language. As previously mentioned, variations of a parametric model

create instances which are grouped in a category named a family of

designs. By simple analogy, a design procedure creates families of

parametric models, in other words, families of families with a greater

number of design instances. This matter calls for the evaluation of

the parametric models as well as the instances.

Another important aspect to consider is the evaluation of the design

instances. Evaluations can be one of three types: 1) Performance

based; 2) Aesthetic; and 3) Compliance. In performance based, a

design instance is evaluated with respect an ideal result, and the

model is modified to optimize a solution with respect from the ideal

one. Aesthetic evaluation will determine if an instance satisfies a set

of values determined by the designer. Compliance asserts if a design

instance fulfills a predetermined set of requirements. Any of the

aforementioned criteria can be implemented in a design procedure

for evaluation of the design instances. The evaluation can be

interactive in real time or afterwards.

Design Procedures are inherently non-deterministic and boundless;

therefore it is impossible to foresee all the potential results. This is

the major assets that a generative system can offer a designer, in

particular during the initial stages of design where multiple solutions

are explored almost simultaneously. The most difficult task that

remains to be solved is how to overcome the initial setup, which can

a time consuming but worthwhile enterprise. Perhaps a careful and

accurate analysis of the pre-conditions of setup would provide some

solutions in this regard.

Design Procedures offers a novel solution to expand the universe for

exploration of design instances, in particular as a model for

generating parametric designs. Design procedures, which are based

on a general course of action followed by a designer, is independent

of the geometrical shapes and their representation. As a parametric

models generation system, the possibilities for application of the

design procedures are absolutely boundless.

References

References

1. Achten, H. H., Generic representations : an approach for
modeling procedural and declarative knowledge of building
types in architectural design in Eindhoven University of
Technology. 1997.

2. Barrios, Carlos, Parametric Gaudi. in SIGraDi. 2004. Sao
Leopoldo, Brazil.

3. Barrios, Carlos, Thinking Parametric Design: Introducing
Parametric Gaudi, Design Studies, Vol27 No 3, May 2006.

4. Burry , M., Expiatory Church of the Sagrada Familia. 1 993,
London: Phaidon Press Limited. 98.

5. Burry, M., Rapid prototyping, CAD/CAM and human factors.
Automation in Construction, 2002. 11 (3): p. 31 3-333.

6. Duarte, J . P., Customizing mass housing : a discursive
grammar for Siza's Malagueira houses, in Department of
Architecture. 2001, Massachusetts lnstitute of Technology:
Cambridge, MA. p. 536.

7. Gi ps, J . a. S., George, Algorithmic aesthetics : computer
models for criticism and design in the arts. 1978. 220 p.

8. Gomez, J.e.a., La Sagrada Familia : de Gaudi a1 CAD. 1996,
Barcelona: Edicions U PC, Universitat Politecnica de
Catalunya. 166.

9. Gross, M. D., Design as exploring constraints, in
Massachusetts Institute of Technology, Dept. of Architecture.
1986.

1 0. Knight, T. W., Transformations of Languages of Designs.
Environment and Planning B: Planning and Design, 1983.
10: p. (part 1) 125-128; (part 2) 129-1 54; (part 3) 155-1 77.

1 1. Lockwood, E. H. and Macmillan R. H . , Geometric Symmetry.
Cambridge University Press. 1978

1 2. Mitchell, W. J., Computer-aided architectural design. 1 977,
New York: PetrocelliICharter. 573 p.

1 3. Mitchell, W. J., Kvan, Thomas, The art of computer graphics
programming : a structured introduction for architects and
designers. 1987: New York : Van Nostrand Reinhold. 572 p.

14. Mitchell, W. J., The logic of architecture : design,
computation, and cognition. 1990, Cambridge, Mass.: MIT
Press. 292 p.

15. Mitchell, W.J., Roll Over Euclid: How Frank Gehry Designs
and Builds, in Frank Gehry. 2002.

16. Monedero, J., Parametric design: a review and some
experiences. Automation in Construction, 2000. 9(4): p. 369-
377.

1 7. Oxman, R. E., Expert System for Generation and Evaluation
in Architectural Design, in Technion, Faculty of Architecture
and Town Planning, Haifa. 1988.

18. Sacks, R., C.M. Eastman, and G. Lee, Parametric 30
modeling in building construction with examples from precast
concrete. Automation in Construction, 2004. 13(3): p. 291-
312.

19. Sass, L., Reconstructing Palladio's villas : an analysis of
Palladio's villa design and construction process., in
Department of Architecture. 2000., Massachusetts Institute
of Technology: Cambridge. p. 385.

20. Shu bnikov A.V. & Koptsik V.A. Symmetry in science and art.
Plenum Press, New York 1974.

2 1 . Tang, T.-H., Exploring the Roles of Exploring the roles of
Sketches and Knowledge in the Design Process, in The
University of Sydney, Faculty of Architecture. 2001.

22. Thompson, D.A.W., On growth and form. An abridged ed. 1
edited by John Tyler Bonner. ed. 1992.: Cambridge
Cambridge University Press. 345 p.

23. Wells, Mathew, Skyscrapers: structure and design.
Lawrence King Publishing, London U.K., 2005

24. Whitehead, H., Laws of Form, in Architecture in the Digital
Age, B. Kolarevic, Editor. 2004, Spoon Press: New York. p.
81 -1 00.

Appendix

Source Code

'-------------------- PARAMETERIZED BUILDINGS=====================
'Draw the Initialshape of the building profile
'The initial shape is in 2D closed profile
'Run the script after your profile is drawn
'Script will prompt you to select your profile
'The script will prompt the user to input VALUES for the PARAMETERS
'The script will prompt the user to select the OPERATIONS to be used
'The script will prompt the user if HlGH ORDER OPERATIONS will be used and if

they are required, the script will ask the user to select which ones
'The script will run and generate the SOLUTIONS and the required OUTPUTS
'-- ..

'-- ..
--------- ---------
'PARAMETERS:

- -- --- ----- -------- -----------

--------- ---------
'There are four(4) types of PARAMETERS used:

VARIABLES = that contain numerical VALUES for the PARAMETERS
' SHAPES = are used as input PARAMETERS for CONSTRUCTION PROCEDURES

OPERATIONS = transformations on the SHAPES both geometrical and euclidean
' HlGH ORDER OPERATIONS = complex OPERATIONS based on multiple applications of ' different simultaneous OPERATIONS, RANDOMNESS and NON-LIENARITY
'-- ..

--------- ---------
'Detailed description of the PARAMETERS
'PARAMETER TYPE is between brackets
'--------,,-- ..
--------- ---------
'VARIABLES:
'BuildingBuildingHeight = [distance] total BuildingHeight of the building obtained by
multiplying
' the FloorOffset by FlwrNumber(measured in feet and inches)
'FlwrOffset = [distance] flwr to floor BuildingHeight (measured in feet and inches)
' this is and input PARAMETER **INPUT"
'FloorNumber = [integer] total number of floors
' this is an input PARAMETER **INPUTw
'RotationAngle = [angle] positive rotation of the flwr plates (measured in degrees) ' If TWIST==YES rotate SHAPE with RotationAngle
'CounterRotationAngle = [angle] negative rotation of the floor plates
' (measured in degrees) apply only if boolean BoubleTwist PARAMETER==YES
' !!If DoubleTwist==YES rotate SHAPE with CounterRotationAngle * -1 !!
'VerticalScale = [factor] scale factor used for tapering
' (number between 0 and 100)
' this is an input PARAMETER "INPUT"
' 100 means the scale is the same at the top (no taper); ' 0 means full tapering until reach a point (pyramid) ' 50 means the to shape is half scale
'Rotationoffset = [distance] distance between the center of the building and the ' center of rotation; default value is ZERO 0

If the value is 0 then they are aligned
this PARAMETER requires two parts: 1) a boolean to check if the offset

' exist; 2) the value of the offset by X and Y coordinates
' this is an input PARAMETER "INPUT"

'CounterRotationOffset = [distance] distance between the center of the building
' and the center of counter-rotation
' just like the previous PARAMETER
' (if the value is 0 then they are aligned)
' This PARAMETER exists only if DoubleTwist==YES
'ScaleX = [factor] scale factor used for the 'x' axis only
'ScaleY = [factor] scale factor used for the 'y' axis only
'ScaleZ = [factor] scale factor used for the 'z' axis only
'Quadrant = [integer] vaule of 1 through 4 used to select the portion of the
' Initialshape in case there is a LEFT-RIGHT or FRONT-BACK TopDownSymmetry
'CoreArea = [number] total area of the core
'FloorCoreArea(i) = [number] area of the core in each floor (i) indicates each
' floor

'SHAPES:
'MainAxis = vertical line normal to the plane of the INITIAL SHAPE The length
' of the line is the same as the BuildingBuildingHeight
'RotationAxis = {dependency PARAMETER) axis of the rotation operation
' It is located at the RotationOffset distance from the MainAxis
' If Helix==YES; then
' ask for RotationOffset and assign to RotationAxis
'CounterRotationAxis = {dependency PARAMETER)
' axis of counter-rotation. It is located and the CounterRotationOffset
' distance from the MainAxis
' IfHelix==YES;then

ask for CounterRotationOffset and assign to CounterRotationAxis
'Initialshape = shape the user draws to be used as input for the generation of
' the building designs, User draws a shape and the script assigns it to
' the Initialshape variable
'Doubleshape = [boolean YESINO] if DoubleShape==YES then select a second shape
' and assign the shape to the ShapeOl variable
' prompt the user to select ShapeOl and Shape02
' Initialshape variable is not used
' ShapeOl and Shape02 can share variables like: building BuildingHeight, etc.
' both shapes will have the same values for the PARAMETERS
'ShapeOl = [shape] if DoubleShape==YES, select a shape as ShapeOl
' ShapeOl will use Translation, Rotation and VerticalScale as PARAMETERS
'Shape02 = [shape] if DoubleShape==YES, select a shape as Shape02
' Shape02 will use Translation, CounterRotation and VerticalScale as its
' PARAMETERS
'Differentialshape: [boolean YESINO] If DifferentialShape==YES, then each shape
' of ShapeOl and Shape02 will have theirs own internal PARAMETERS for their
' own OPERATIONS;
'SPECIAL NOTE: If DoubleShape==YES, then each shape will have it's own set of
' PARAMETERS. If DoubleShape==YES and DifferentialShape==YES, then each

ShapeOl and Shape02 will have it's own values for it's own PARAMETERS
'LeftTopDownSymmetryShape = {dependency PARAMETER} left portion of the Shape used
in
' case LeftRightTopDownSymmetry==YES, prompt user to select Left or Right portion
'RightTopDownSymmetryShape = {dependency PARAMETER} right portion of the Shape
used in
' case LeftRightTopDownSymmetry==YES, prompt user to select Left or Right portion
'FrontTopDownSymmetryShape = {dependency PARAMETER) front portion of the Shape
used in
' case FrontBackTopDownSymmetry==YES, prompt user to select Front or Back portion
'BackTopDownSymmetryShape = {dependency PARAMETER) front portion of the Shape
used in

' case FrontBackTopDownSymmetry==YES, prompt user to select Front or Back portion
'Quadrant(L,R,F,B) = [string] to label which Quadrant is used in case that

LeftRightTopDownSymmetry==YES and FrontBackTopDownSymmetry==YES

'OPERATIONS:
'Translation: [distance] translation of the Initialshape along the Mainhis

this operation is applied recursively. The distance of translation is
' determined by the FloorOffset and the number of translations is
' determined by the FloorNumber
'Rotation: [Boolean YESINO + RotationAngle] positive rotation of the Initialshape
' with respect to the RotationAxis. If Rotation==YES The value of rotation

is determined by the RotationAngle.
'CounterRotation: [Boolean YESINO + CounterRotationAngle] negative rotation of

the Initialshape with respect to the Rotationhis. If CounterRotation==YES
' The value of the angle is determined by the CounterRotationAngle

If DoubleShape==NO use the same values of Rotation; else
If DoubleShap==YES, promtp the user for values;
If DifferentialShape==YES, prompt the user for values;

'Taper: [Boolean YESINO + VerticalScale] if Taper==YES, apply Verticalscale
factor with respect to the MainAxis

'TopDownTopDownSymmetry : [Boolean Y ESINO] If TopDownTopDownSymmetry==Y ES
then apply a top down
' TopDownSymmetry
'LeftRightTopDownSymmetry: [Boolean YESINO + Quadrant] If
LeftRightTopDownSymmetry==YES then
' apply a left-right TopDownSymmetry
'FrontBackTopDownSymmetry: [Boolean YESINO + Quadrant] If
FrontBackTopDownSymmetry==YES then
' apply a front-back TopDownSymmetry
'QuadTopDownSymmetry = [Boolean YESINO] if LeftRighTopDownSymmetry==YES and
FrontBackTopDownSymmetry==Y ES
' then QuadTopDownSymmetry exists; prompt user to select which Quadrant to use
' L=Left; R=Right; F=Front; B=Back; or if any combinations are needed to
' generate the solutions(for example left and front, or all of them)
'Twist: [boolean YESINO + RotationAngle] if Twist==YES, then apply Rotation
' OPERATION with RotationAngle
'DoubleTwist: [Boolean YESINO + RotationAngle and CounterRotationAngle] if
' DoubleTwist==YES then apply CounterRotation; else apply Rotaion only
'Intersect: [Boolean YESINO] apply only if DoubleTwist==YES. If intersect==YES,
' then apply a boolean intersection between the Rotationshape and the
' CounterRotationShape; else apply a boolean addition and the two shapes
' will be superimposed
'TransformX = [ScaleX] non-uniform scale only on the X axis
'TransformY = [ScaleY] non-uniform scale only on the Y axis
'TransformZ = [ScaleZ] non-uniform scale only on the Z axis (this will necessary
' alter the number of floors and the total BuildingHeight of the building
'Helix = [Boolean YESINO] if Helix==YES, use the Rotationoffset; else

Rotationhis = MainAxis
'CounterHelix = [Boolean YESINO] if CounterHelix==YES, and DoubleTwist==YES
' use the CounterRotationOffset; else

CounterRotationAxis = MainAxis

'HIGH ORDER OPERATIONS:
'Highorderoperations = [boolean YESINO] promtp the user to ask if HIGH ORDER
' OPERATIONS PARAMETERS will be used. If YES, ask which OPERATIONS, else
' If NO then continue (by default OPERATIONS are linear)
'Linear: [boolean YESINO] default operation where transformations are done using
' simple recursion. If Linear==NO then select one of the non-linear options
'NonLinear: [STRING] several types described below. Select from a pulldown menu
' Incremental: [factor] in each recursion the values of the parameters are

incremented by the incremental factor
' SCurve: [factor] apply an factor to obtain an SCurve function
' Growth: [factor]
' Differential: [factor] growth by varying the factor according to a specific

rule, IE the edges should be bigger than the center
Random: [range] a random function applied where each itteration is assigned

a different value for a factor from a designated range. All the OPERATIONS
can have a random factor as a Y ESINO boolean

'Glide: [boolean Y ESINO] if Glide==Y ES apply a glide transformation. A glide
transformation is when one of the operations occurs alternatively as

' with a positive value and the next with a negative value
'DoubleGlide: [boolean YESINO] simultaneous glide in two opposite directions
'DifferentialGlide: [boolean YESINO] double glide with differential values
' Glide01 will take the RotationAngle value and Glide02 will take the
' CounterRotationValue

'OUTPUTS:
'FloorArea(i) = [number] calculate area of each floor
' output each floor area in a spreadsheet by floor number
'TotalFloorArea = [number] calculate total area of all floors
'CoreArea(i) = [number] area of the core in each floor
'TotalCoreArea = [number] total area of the core
'FloorEfficiency(i) = [percent] percentage of the NetFloorArea on each floor
' (((FloorArea-CoreArea)*l00)IFloorArea)
'TotalEfficiency = [percent] total efficiency of the building
' (((TotalFloorArea-TotalCoreArea)*l00)lTotalFloorArea)
'AverageEfficiency = [percent] calculate the average of the efficiency by adding
' all floors efficiencies and divide by number of floors
'FacadeArea(i) = [number] area of the facade in each floor
'TotalFacadeArea = [number] total area of the building facade
'TopDownSymmetryType = [string] the TopDownSymmetry type of the tower
'Procedure = a description of the procedure (geometry method statement) listing

all the variables, parameters used and their values

'PROTOTYPING OUTPUT
'ZCorp = output of an scaled STL file that will fit in the ZCorp bed
'Lasercutter = output of a cutsheet(s) of the floor plates for the laser cutter

'-- ..
--------- ---------
I, - - - - - - , , --------- FUNCTIONS =========

'Description of required functions
'Function input is in parenthesis (parameters)
'Function output is after keyword returns
'Some functions only apply if the corresponding BOOLEAN PARAMETER is True
I

'TranslateShapeFunction (Shape, Distance)
takes a shape and translates the shape along the Mainhis
the amount of translation is the Distance
RETURNS: translated shape

I

'~otate~ha~e~unct ion (Shape, Angle)
takes a shape and rotates the shape with respect to the Rotationhis
the angle of rotation is the RotationAngle
RETURNS: the rotated shape

I

'CounterRotateShapeFunction (Shape, Angle) boolean restricted
Use only if BOOLEAN PARAMETER DoubleTwist==YES
takes a shape and rotates the shape with respect to the CounterRotationAxis
the angle of rotation is the CounterRotationAngle * -1 (negative rotation)
RETURNS: the rotated shape

I

'ScaleShapeFunction (Shape, ScaleFactor) boolean restricted
Use only if BOOLEAN PARAMETER Taper==YES
takes a shape and scales the shape with respect to the Mainhis
the scale factor is passed in from VerticalScale PARAMETER
RETURNS: the scaled shape

I------------------__,,,,,,,,--- ..
--------- ---------
'GENERATIVE OPERATIONS WITH PARAMETERS==========
I--------------,,,,,,,,,,,,,,,--- ..
--------- ---------
'EXTRUSSION(Shape, Mainhis, FloorNumber, FloorOffset)

TRANSLATE Shape along Mainhis by FloorOffset distance
recursively COPY Shape in a loop by FloorNumber

I

'TWIST(Shape, Rotationhis, RotationAngle)
If Twist==YES

ROTATE Shape with respect to Rotationhis by RotationAngle
else

do not rotate
I

'DOUBLE TWIST(Shape, CounterRotationAxis, CounterRotationAngle)
If DoubleTwist==Y ES

ROTATE shape with respect to CounterRotationAxis by
CounterRotationAngle -1
(CounterRotationAngle is always possitive, but we must multiply by
negative 1 to rotate in the opposite direction)

else
do not apply operation

1

'TAPER(Shape, VerticalScale)
If Taper==YES

SCALE Shape by VerticalScale factor
else

do not apply operation

'TOP DOWN TopDownSymmetry()
a If TopDownTopDownSymmetry==YES
I Apply COPY Shape by 112 of FloorNumber and then
I mirror all Shapes right at the middle
I

.EFT RIGHT TopDownSymmetry(Shape, NorthSouthAxis)
If LeftRightTopDownSymmetry==YES

cut Shape by NorthSouthAxis
promtp user to select which side of the shape to keep

I DELETE other side shape
I MIRROR the selected side of the shape and continue
I return Shapes (cut and mirror)
I else

do not apply operation
I ALTERNATIVE METHOD:
I Once the shape is cut, generate both solutions with both sides

'FRONT BACK TopDownSymmetry(Shape, EastWestAxis)
I If FrontBackTopDownSymmetry==YES
I cut Shape by EastWestAxis
I promtp user to select which side of the shape to keep
I DELETE other side of the shape
I MIRROR the selected side of the shape and continue
I return Shapes (cut and mirror)
I else
I do not apply operation
I ALTERNATIVE METHOD:
I Once the shape is cut, generate both solutions with both sides
I

'ALL SIDES TopDownSymmetry(Shape, NorthSouthAxis, EastWestAxis, Quadrant)
I If AIISidesSimmetry==YES
I Prompt user to select Quadrant
I If Quadrant not zero
I cut shape with both axes to keep selected Quadrant
I else
I Cut shape with both quadrants and generate all four solutions
I

'HELIX(RotationAxis)
I If RotationHelix==Y ES
I Prompt user to input RotationOffset
' Apply ROTATION using the RotationOffset
I else
' do not apply operation
I

'DOUBLE HELIX(ShapeO1, Shape02, RotationAxis, RotationAngleOl, RotationAngle02)
I If DoubleHelix==Y ES
I Prompt user to input RotationOffsetOl
I Prompt user to input Rotationoffset02
I Apply ROTATION to ShapeOl using RotationOffsetOl and RotationAngleOl
I Apply ROTATION to Shape02 using RotationOffset02 and RotationAngle02
' else
' do not apply operation

'COUNTER HELIX(ShapeO1, Shape02, RotationAxis, CounterRotationAxis, RotationAngle
a CounterRotationAngle)

I If CounterHelix==YES
I Prompt user to input RotationOffsetOl
I Prompt user to input RotationOffset02
I Apply ROTATION to ShapeOl using RotationOffsetOl and RotationAngle
I Apply NEGATIVE ROTATION to Shape02 using RotationOffsetO2 and
I CounterRotationAngle

else
do not apply operation

I

'INTERSECTION (Shaw l , Shape02)
CONDITION: both shapes must exist
If ShapeOl==True and Shape02==True;
or If DoubleTwist==YES
and Intersection==YES

apply boolean intersection to both shapes
else

apply boolean addition to both shapes
else

' do not apply operation

'----------------------------- END OF
DEFINTIONS================================
I-- ..
-------- --------

' = user has control of shape in beginning
'FLOOR OFFSET = vertical distance between floor plates
'NUMBER OF FLOORS = number of floor plates
'BUILDING BuildingHeight = (number of offsets "offset)
'ROTATION ANGLE = rotation of floor plates
'COUNTER ROTATION ANGLE = Negative rotation of the floor plates
'TIME STEPS = for every i then rotation (angle of rotationli)
'SCALE FACTOR for every j then (scalelj)
'TOP-DOWN TopDownSymmetry = vertical reflection (number of offetsl2)
'LEFT-RIGHT REFLECTION: Reflection on a vertical plane
'GLIDE = Talk to Terry dude!!
'XSCALE = Scale on the X axis
'YSCALE = Scale on the Y axis
'ZSCALE Scale on the Z axis

I---- ----GLOBAL VARIABLES==========
I------------------------------
Dim Initialshape
Dim FloorOffset

Dim BuildingHeight
Dim RotationAngle
dim CounterRotationAngle
dim DoubleRotation
dim DifferentialRotationAngle
dim CenterRotAngle
dim Taper
dim ScaleFactor
dim ScaleFactorX
dim ScaleFactorY
dim ScaleFactorZ
Dim FloorNumber
dim TopDownSymmetry
dim LeftRightSymmetry
dim FrontBackSymmetry
Dim CapBuilding

I-----,,--------------------------------- ..
I - , - , - , - ------- SET PARAMETER
VALUES== >PARAMETERS
I--,,,,,-,------,-,,,---------------------- ..
Flooroffset = 12
FloorNumber = 72
BuildingHeight = FloorOffset * FloorNumber
RotationAngle = 0
CounterRotationAngle = 0
CenterRotAngle = 2
ScaleFactor = 0 'percentage
CapBuilding = VbTrue
TopDownSymmetry = VbFalse
LeftRightSymmetry = VbFalse
FrontBackSymmetry = VbFalse
DoubleRotation = VbFalse
DifferentialRotationAngle = VbFalse
Taper = VbFalse

'Declare Operation Parameters
'Declare Top Down Symmetry
'Prompt User to get Top-Down Symmetry
dim TopDownSymmetryAnswer
TopDownSymmetryAnswer = Rhino.MessageBox ("TopDownSymmetry", 4 "Top Down
Symmetryn)
if TopDownSymmetryAnswer = 6 then

TopDownSymmetry = VbTrue
'call TopDownSymmetry

end if

'Declere Left Right Symmetry
'Prompt User to get Left-Right Symmetry values
dim Left RightSymmetryAnswer
LeftRightSymmetryAnswer = Rhino.MessageBox ("LeftRightSymmetry", 4 "Left Right
Symmetryn)
if LeftRightSymmetryAnswer = 6 then

LeftRightSymmetry = VbTrue
'call LefRightSymmetry

end if

'Declere Front Back Symmetry
'Prompt User to get Front-Back Symmetry
dim FrontBackSymmetryAnswer
FrontBackSymrnetryAnswer = Rhino.MessageBox ("FrontBackSymmetry", 4 'Front Back
Symmetryn)

if FrontBackSymmetryAnswer = 6 then
FrontBackSymmetry = VbTrue
'call FrontBackSymmetry

end if

'Declare Rotation Angle
dim RotationAnswer
RotationAnswer = Rhino.MessageBox ("Rotation", 4 , "Rotationn)
if RotationAnswer = 6 then

RotationAngle = Rhino.lntegerBox ("Enter Twisting Angle", 0 'Rotation Anglen)
CounterRotationAngle = RotationAngle

end if

'Inquire about double Rotation
dim DoubleRotationAnswer
DoubleRotationAnswer = Rhino.MessageBox ("Double Rotation", 4 , "Double Rotationn)
if DoubleRotationAnswer = 6 then

DoubleRotation = VbTrue
dim DifferentialRotationAnswer
DifferentialRotationAnswer = Rhino.MessageBox ("Differential Rotation" 4 ,"Differential

Rotation")
if DifferentialRotationAnswer = 6 then

CounterRotationAngle = Rhino.lntegerBox ("Enter Counter-Twisting Angle", 0 , 'Counter
Rotation Angle')

end if
end if

'Declere Tapering
'Prompt User to get Taper value
dim TaperAnswer
TaperAnswer = Rhino.MessageBox ("Building Taper", 4 'Building Taper")
if TaperAnswer = 6 then

Taper = VbTrue
'call Taper

end if

'Prompt User to Enter Taper Value
dim TaperValueAnswer
if Taper = VbTrue then

TaperValueAnswer = Rhino.lntegerBox ("Enter value", 0 nScale FactorH)
ScaleFactor = (TaperValueAnswer 1 10)

end if

I--------------- --------------- BEGIN SUB - MAIN FUNCTION=================
.......................................

sub rodTower()

Dim allshapes
Dim rotAngle
dim scale
dim cRotAngle

'Add one to size array correctly to include starting shape
rotAngle = RotationAngle
CounterRotationAngle = CounterRotationAngle * -1
cRotAngle = CounterRotationAngle
ScaleFactor = (1 00 - ScaleFactor)/I 00

1 - - - - - - - - -------- PROMPT USER TO DRAW SHAPE===========
'Get profile of building from designer

Rhino.MessageBox "Select your profile curve", 64, "TWIST AWAY"
Initialshape = Rhino.GetObject("Select profile")
Rhino. UnSelectAllObjects()
'If curve is not closed then exit program
'need a shape that represents a profile of a
'building
If IsNull(lnitialShape)then exit sub
if not IsCurveClosed(lnitiaIShape) then exit sub
If not IsCurve(lnitialShape) then exit sub

'Check if designer wants vertical TopDownSymmetry
If TopDownSymmetry = VbTrue then

FloorNumber = FloorNumberl2
end if

'call copy function
'make copies of shape and place in array
'scale shapes along with copy
'returns 1 D array of copied shapess
allshapes = copyShape(lnitialShape,FloorNumber,ScaleFactor)

'Build Rotations
'rotate each shape in array by the degree requested
for i = 0 to uBound(allShapes)

call rotateShape(allShapes(i),rotAngle)
rotAngle = rotAngle - RotationAngle

next

CounterAllShapes = copyShape(lnitialShape,FloorNumber,ScaleFactor)
'Build CounterRotations
if DoubleRotation = VbTrue then
for i = 0 to uBound(CounterAIIShapes)

call rotateShape(CounterAIIShapes(i),cRotAngle)
cRotAngle = cRotAngle - CounterRotationAngle

next
end if
'Construct translations of floor plates
allshapes = verticalTranslate(alIShapes,FloorOffset,TopDownSymmetry)
CounterAllShapes = verticalTranslate(CounterAIIShapes,FloorOffset,TopDownSymmetry)

'Construct building skin
call constBuildSkin(allShapes,CapBuilding)
call constBuildSkin(CounterAIIShapes,CapBuilding)

end sub
'------------__ -------------- END SUB

I--_____-------------------------------------- ...
1 - - - - - - - - - - ---------- COPY and SCALE SHAPE FUNCTION================
f--- ...
function copyShape(inputShape, howMany,scale)

ReDim allShapes(howMany)
Dim shapecopy
Dim boundBox
Dim centerPt
Dim diagonal

'Put initial shape into array
allShapes(0) = inputshape

shapecopy = inputshape
for i = 1 to howMany

'Get approx center of shape by bounding box
boundBox = Rhino.BoundingBox(inputShape)
diagonal = Rhino.AddLine(boundBox(O), boundBox(2))
centerPt = Rhino.CurveMidPoint(diagonal)
'Delete construction line
Rhino.DeleteObject(diagonal)
'Rotate actual shape
allShapes(i) = Rhino.ScaleObject(shapeCopy, centerPt,

Array(scale,scale,scale), VbTrue)
shapecopy = allShapes(i)

next

'Return array of new shapes
copyshape = allshapes

end function
1- -- ------- ---------- END COPY

'--- ...
' ------ ---- ---------- ROTATE SHAPE FUNCTION=============
'--- ...
function rotateShape(shape, angle)

Dim boundBox
Dim centerPt
dim diagonal
dim Anglelncrement

Anglelncrernent = (angle I FloorNumber)
'Get approx center of shape by bounding box
boundBox = Rhino.BoundingBox(shape)
diagonal = Rhino.AddLine(boundBox(O), boundBox(2))
centerPt = Rhino.CurveMidPoint(diagonal)
'Delete construction line
Rhino.DeleteObject(diagonal)
'Rotate actual shape
shape = Rhino.RotateObject(shape, centerPt, Anglelncrement)

'return shape to sub function
rotateshape = shape

end function
' -- - - ---- -------- END ROTATE

'--- ...
I- - - - - - , , , , ---------- COUNTER-ROTATE SHAPE FUNCTION=============
'--- ...
function counterRotateShape(shape, angle)

dim boundBox
dim centerPt
dim diagonal

'Get approx center of shape by bounding box
boundBox = Rhino.BoundingBox(shape)
diagonal = Rhino.AddLine(boundBox(O), boundBox(2))
centerPt = Rhino.CurveMidPoint(diagonal)
'Delete construction line
Rhino.DeleteObject(diagonal)
'Rotate actual shape

shape = Rhino.RotateObject(shape, centerPt, angle)

'return shape to sub function
rotateshape = shape

end function
1,- - - - - -- -------- END COUNTER-ROTATE

I-,------,------,----------------------------- ...
I - , -- , - - - - - ---------- SCALE SHAPES FUNCTION==============
I-,-----------,-,----------------------------- ...
function scaleShape(shape, scalefactor)

end function

'-,-------------,------,,,_----------------------- ...
I,, , - - - - - -------- TRANSLATE SHAPES FUNCTION============
I-,,,-------,,,,,,,--------------------------- -------------,-------------------------------

function verticalTranslate(shapes, distance, sym)

Dim ORIGIN
Dim transAmount
Dim numshapes
Dim bBox

transAmount = distance

'Create point of reference for translation
ORIGIN = Array(O,O,O)

'If TopDownSymmetry require copy shapes in descending order
if sym = VbTrue then
'Get true BuildingHeight of building
'2*how many shapes
numshapes = UBound(shapes) * 2
Dim symShape

'translate first set of shapes
for i = 1 to numShapesl2

Rhino.MoveObject shapes(i), ORIGIN, Array(O,O,transAmount)
'add distane to get new Z value for i+l shape translation
transAmount = transAmount +distance

next

'mirror first set of shapes to create TopDownSymmetry
for i = 0 to numshapes - 1

if i = numShapesl2 then
for j = 1 to UBound(shapes) - 2
bBox = Rhino.BoundingBox(shapes(i-j))
symShape = Rhino.CopyObject (shapes(i-j),

bBox(O), Array(bBox(O)(O), bBox(0)(1), bBox(0)(2)+distance*j2))
shapes =

Rhino. JoinArrays(shapes,Array(symShape))
next

end if
next
verticalTranslate = shapes

I-,,,------------ ----------------
'If no TopDownSymmetry required translate shapes normally
I,,,,----------- ---------------
else

numshapes = UBound(shapes)

'iterate and translate each object
for i = 1 to numshapes

Rhino.MoveObject shapes(i), ORIGIN,
Array(O,O,transAmount)

'add distane to get new Z value for i+l shape translation
transAmount = transAmount +distance
next

verticalTranslate = shapes
end if

end function
' ---------- ---------- END TRANSLATE

I-,,,--- ...
1 - - -- - , , , -------- CONSTRUCT ACTUAL TOWER FUNCTION============
1---------,,,--------------------------------- ...
function constBuildSkin(shapes,cap)

Dim Building
'lofting shapes to make building skin
Building Rhino.AddLoftSrf (shapes)

'Dim FloorPlates
'FloorPlates = Rhino.AddPlanarSrf (shapes)

'Cap building is requested
if cap = VbTrue then

Rhino.Command "-SelPolysrf -Capw
Rhino.UnSelectAllObjects()
Building = Rhino.LastObject()

end if
'Hide profile shapes
Rhino.HideObjects(shapes)

end function
1- -- - - - - -- --------- END BUILDING SKINNING

I--- ...
I-, , , , , , , -------- BUILD FLOOR PlATES FUNCTION============

function makeFloorPlates(shapes)
Dim floorsurface
'making surface from each cuwe
'floorsurface = Rhino.AddPlanarSrf (shapes)

'return SURFACE to sub function
'rotateshape = shape

end function

I-, - - - - - -- --------- END BUILDING SKINNING

I--- ...
I - - - - - - - ------- RUN PROGRAM
I--------,-------------------------------------- ...
rodTower

	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif
	00000008.tif
	00000009.tif
	00000010.tif
	00000011.tif
	00000012.tif
	00000013.tif
	00000014.tif
	00000015.tif
	00000016.tif
	00000017.tif
	00000018.tif
	00000019.tif
	00000020.tif
	00000021.tif
	00000022.tif
	00000023.tif
	00000024.tif
	00000025.tif
	00000026.tif
	00000027.tif
	00000028.tif
	00000029.tif
	00000030.tif
	00000031.tif
	00000032.tif
	00000033.tif
	00000034.tif
	00000035.tif
	00000036.tif
	00000037.tif
	00000038.tif
	00000039.tif
	00000040.tif
	00000041.tif
	00000042.tif
	00000043.tif
	00000044.tif
	00000045.tif
	00000046.tif
	00000047.tif
	00000048.tif
	00000049.tif
	00000050.tif
	00000051.tif
	00000052.tif
	00000053.tif
	00000054.tif
	00000055.tif
	00000056.tif
	00000057.tif
	00000058.tif
	00000059.tif
	00000060.tif
	00000061.tif
	00000062.tif
	00000063.tif
	00000064.tif
	00000065.tif
	00000066.tif
	00000067.tif
	00000068.tif
	00000069.tif
	00000070.tif
	00000071.tif
	00000072.tif
	00000073.tif
	00000074.tif
	00000075.tif
	00000076.tif
	00000077.tif
	00000078.tif
	00000079.tif
	00000080.tif
	00000081.tif
	00000082.tif
	00000083.tif
	00000084.tif
	00000085.tif
	00000086.tif
	00000087.tif
	00000088.tif
	00000089.tif
	00000090.tif
	00000091.tif
	00000092.tif
	00000093.tif
	00000094.tif
	00000095.tif
	00000096.tif
	00000097.tif
	00000098.tif
	00000099.tif
	00000100.tif
	00000101.tif
	00000102.tif
	00000103.tif
	00000104.tif
	00000105.tif
	00000106.tif
	00000107.tif
	00000108.tif
	00000109.tif
	00000110.tif
	00000111.tif
	00000112.tif
	00000113.tif
	00000114.tif
	00000115.tif
	00000116.tif
	00000117.tif
	00000118.tif
	00000119.tif
	00000120.tif
	00000121.tif
	00000122.tif
	00000123.tif
	00000124.tif
	00000125.tif
	00000126.tif
	00000127.tif
	00000128.tif
	00000129.tif
	00000130.tif
	00000131.tif
	00000132.tif
	00000133.tif
	00000134.tif
	00000135.tif
	00000136.tif
	00000137.tif
	00000138.tif
	00000139.tif
	00000140.tif
	00000141.tif
	00000142.tif
	00000143.tif
	00000144.tif
	00000145.tif
	00000146.tif
	00000147.tif
	00000148.tif
	00000149.tif
	00000150.tif
	00000151.tif
	00000152.tif
	00000153.tif
	00000154.tif
	00000155.tif
	00000156.tif
	00000157.tif
	00000158.tif
	00000159.tif
	00000160.tif
	00000161.tif
	00000162.tif
	00000163.tif
	00000164.tif
	00000165.tif
	00000166.tif
	00000167.tif
	00000168.tif
	00000169.tif
	00000170.tif
	00000171.tif
	00000172.tif
	00000173.tif
	00000174.tif
	00000175.tif
	00000176.tif
	00000177.tif
	00000178.tif
	00000179.tif
	00000180.tif
	00000181.tif
	00000182.tif
	00000183.tif
	00000184.tif
	00000185.tif
	00000186.tif
	00000187.tif
	00000188.tif
	00000189.tif
	00000190.tif
	00000191.tif
	00000192.tif
	00000193.tif
	00000194.tif
	00000195.tif
	00000196.tif

