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Abstract

Design Procedures: A computational framework for
Parametric Design and Complex Shapes in Architecture

By Carlos Roberto Barrios Hernandez

Submitted to the Department of Architecture on May 1, 2006,
in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy in Architecture: Design and Computation

Through the use of computational generative procedures in
the early stages of design, it is common to generate shapes of
complex nature that could only be produced by the combined
forces of human imagination and computer power. However
the more complex the shapes are, the more difficult it
becomes to establish a discourse that embodies the
geometrical and spatial properties, as well as the formal
attributes of a given shape. Furthermore, it has become
problematic to differentiate between one complex shape and
another, resulting in some abstract, cumbersome, and
sometimes obscure explanation about how the shape came
into being. In some cases, designers recur to complex
expressions of mathematical nature that, even though they are
precise descriptions of the form, do not offer any clear way to
refer to them unless a person is trained in the language of
mathematics.

Design Procedures proposes a way of looking at designs as a
procedural enterprise where complex shapes are the result of
computational process in a step by step basis. Design
Procedures in combination with appropriate descriptions of
spatial attributes, can offer some light in the dialog of irregular
non-Euclidean forms and their properties. This thesis presents
the application of Design Procedures to three case studies: 1)
The generation of the columns of the Sagrada Familia; 2) The
description of non regular shapes in the rod symmetry groups,
in particular of double twisted geometries; and 3) The
application to a computer program for the generation of non-
Euclidean complex shapes for high-rise buildings.

Thesis Supervisor: William J. Mitchell, Professor of
Architecture and Media Arts and Sciences.
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introduction

With the increasing demand of flexible tools for Computer Aided
Design (CAD), Parametric Modeling is becoming a mainstream of
Computer Aided Architectural Design (CAAD) software, in order to
make variations in the design process less difficult. This is
traditionally called Parametric Design. Until recently, parametric
design was understood as highly sophisticated and expensive
software made exclusively for manufacturing in aerospace, shipping
and automobile industries. However, designer's demands for
flexibility to make changes without deleting or redrawing in a
computer has pushed the incorporation of parametric modeling as
standard tools in traditional CAD programs.

Variations in design are a fundamental part of the design process in
the search for solutions to design problems. Design variations
support improvement of design which in turn improves the quality of
designed artifacts. Designers constantly go back and forth between
different alternatives in the universe of possible solutions, working in
a particular part at a given time, or looking back at the whole from a
broader perspective. This is a continuous and iterative search
process of variations of a design idea, and it is very likely to revisit a
previously abandoned solution to rework it. As a result, designers
demand flexible tools that allow variations in the design process until
a solution is established for further development.

In this context Design Procedures (DP) is presented as a
methodology that enhances the design capability of a parametric
model to perform design variations. By using shapes as parameters
and thinking of parametric design as a general procedure.
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Consequently, a parametric model becomes a flexible tool allowing
changes at the topological and geometrical levels.

The thesis starts by presenting axiomatic definitions of Design
Procedures and parametric design. Chapter 1 introduces the idea of
Design Procedures which is followed by a brief overview of
traditional parametric models accompanied by examples presented
on chapter 2. Chapters 3 presents important definitions of symmetry
and elaborates on the description of rod symmetry groups. Chapters
4, 5 and 6 present three case studies on the application of Design
Procedures. The first case is on the use of Design Procedures as an
analytical tool and a computational design generative system. The
second case discusses how Design Procedures are used to make
descriptions of complex shapes. The third case study is on the
generation of non-Euclidean geometrical forms for twisted high-rise
buildings. Design Procedures (DP) are defined as a systematic
methodology to overcome the limitations of traditional parametric
models.

18



Chapter 1

Design
Procedures
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Chapter summary

This chapter introduces idea of looking at design from a computational
perspective as a procedural enterprise. In computation are like recipes that
contain a set of instructions that describe the steps necessary to complete a
task. Analogously a Design procedure is a set of axioms or instructions that
are carried in a systematic way to generate a design. This chapter describes
the important aspects of design procedures and provides brief axioms that
define design as a procedural pursuit.

21



Procedure

A procedure is a description of the steps necessary to accomplish a task. In
computation, procedures are used to perform specific functions.

Procedures allow abstraction and encapsulation of complexity and
reusability

In abstraction procedures usually have three parts: The name of the
procedure, the arguments of the procedure, and the description / steps of
the procedure.

The name is a handler that is used to call the procedure

The arguments are used to contain the parameters that will be used to
perform the procedure. lt is like the ingredients in a recipe

The description of the procedure is the set of instructions that are performed
to make the procedure. It is the recipe itself. The user has access to the
name and knows what it does through a description. When a procedure is
called, the user hands over the values of the parameters which replace the
arguments on the procedure. The procedure makes the necessary
calculations and returns the answer to the user. In most cases this portion of
the procedure is hidden from the user which is called encapsulation.

22



Parameters

Parameter is a term that has many definitions depending on the use. The
term parameter comes from mathematics and it refers to a factor that
controls the values of other factors with respect to a linear relation.

In computation, a parameter is the argument or series of arguments of a
function with takes values as inputs. A parameter is also the placeholder for
the value of a variable. They are used in the arguments of the procedure

In design a parameter is a non geometrical entity that can hold a value to
control geometrical components or relations between geometrical
components.

Parameters are used to substitute specificity for generality.

23



Geometrical Modeling as Procedures

In computational geometry, geometrical models are constructed in very
specific ways. Since they are attached to specific data structures that will
hold/contain the information, they must be constructed in specific ways
which can be encapsulated as procedures.

There are procedures to construct primitive objects like points, lines,
polygons and solids, and there are also procedures to construct more
complex objects: Boolean operations.

Procedures to make geometry can have parameters that are use as inputs,
therefore making the procedure a parametric procedure.

24



Design as Procedure

In some cases, design can be described as a step by step process, where
some things can occur over and over again. This can be interpreted as a
procedural way of making design

In computational, the geometry that describes a design can be also
generated as the result of a script (procedure) or recipe that when followed
step by step yields the same results.

Procedures to make designs can have parameters that will take different

25



Shapes as Parameters

In a procedure a parameter takes the form of a variable whose value can be
altered to obtain different results. In a design procedure, numbers, relations,
shapes and operations are treated as parameters.

If a shape is seen not as an explicit representation, but as the result of a
procedure, any geometrical component used to generate it is an input of the
procedure. A cube can be modeled as the result of the following procedure:
A square shape that is extruded along an axis. The square as the initial
shape is a parameter of the extrusion procedure. If the initial shape is
substituted for another shape, like a circle, then the extrusion procedure
generates a cylinder.

26



Operations as Parameters

In addition to having numerical values as parameters, there can also be
operations as parameters. Operations will take the form of Boolean that will
apply or not depending on the local conditions found. The operations can
also take the form of a rule where they are the result of IF-THEN statements.
If a particular condition is found and a rule is triggered, the resultis a
Boolean of the form YES/NO that will either activate or inactivate a
particular.

27



Design Procedures

A design procedure is a set of instructions that performs actions to create a
design. The design procedure carries instructions in a systematic order
where all geometrical components that represent a design are
parameterized.

In a design procedure, shapes, numbers, variables and operations are
parameters.
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Chapter 2

Parametric
Design
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Chapter summary

This chapter introduces the fundamental concepts of parametric design,
starting on the premise that design is variation. Presents examples of
classes of parametric models accompanied by illustrations of parametric
models and discusses advantages of parametric désign.
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Variations in Design

Design as a process contemplates the search for solutions where there is no
predetermined set of alternatives to choose from. As fundamental part of the
design process, design variations allow for the search of better solutions to
design problems. Designers constantly go back and forth between different
alternatives in the universe of possible results, working in particular solutions
at a given time, or looking at the whole design for synthesis.

In this iterative and continuous process it is not only possible, but very likely
to revisit a previously abandoned solution to be reworked under a different
set of criteria or tested under a different set of constraints. As a resuit a new
design solution can emerge. Variations in design offer framework for
improvement of current design solutions, through optimization and change,
which in turn improves the quality of design artifacts. In this context, the
elaboration of computer models that offer flexibility to allow variations of a
design idea, and to be adapted to changing conditions during the design
process, has become a field of its own domain, which is known as
Parametric Design.
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2.1 DESIGN VARIATIONS

Here shown 3 design variations from the design
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Parametric Models

Geometric models can have two kinds of representations: Explicit and
Parametric. An explicit model is a type of geometric model that has fixed
attributes, therefore in order to perform any kinds of transformations of the
model, it is necessary to erase and redraw the geometrical components.
Variations can only be performed if a particular shape is literally substituted
for a new shape.

On the other hand, a parametric model is characterized by having attributes
that allow variations without erasing and redrawing any of its geometrical
components. In this case, variations are carried out by changing the values
of the parameters, allowing these variations to be propagated through the
dependent attributes. Therefore, to carry out changes it is not necessary to
erase and redraw.

A Parametric Model (PM) is a geometrical representation of a design that
has some attributes or properties that can vary (parameters) and other
attributes that are fixed. The attributes are controlled by a non-geometrical
component that is called a parameter. The attribute will be dependent of the
value of the parameter.
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2.2 Explicit model of a rectangular shape. To perform variations it is
necessary to erase and redraw a new rectangle.

2.3 Parametric model of a rectangular shape. Note how the length and
height attributes are parameterized by the X and Y parameters. The size of
the rectangular shape can be altered by changing the values of the X and Y
parameters, therefore to perform variations we use the parameters.
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Parametric Design

Parametric Design (PD) is the process of designing with Parametric Models
in a setting and/or environment where variations are effortless, thus
replacing singularity with multiplicity in the design process. A Parametric
Model (PM) is a three-dimensional computer representation of a design,
constructed with geometrical sets of shapes that have some attributes
(properties) that are fixed and others that can vary. The variable attributes
are also called parameters and the fixed attributes are said to be
constrained. The designer changes the parameters in the PM to search for
different alternative solutions to the problem at hand, and the PM responds
to the changes by adapting or reconfiguring to the new values of the
parameters.

Each of the design variations obtained is called a design instance since it
represents a definite value or sets of values of the parameters at a specific
point in the design. Figure 1.4 shows different instances of design based on
variations of the parameters of the original parametric model. The instances
can be organized in a matrix format that shows how design variations occur.

Parametric Design implies the use of declared parameters to define a form.
This requires rigorous thought in order to build a geometrical model
embedded in a very sophisticated structure appropriate for the needs of the
designer. Therefore the designer must anticipate which kinds of variations
he might want to explore in order to determine the kinds of transformations
the PM must allow. This is a very difficult task because of the unpredictability
nature of the design process.
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2.4 Parametric model showing variations. Each of the variations is called an

instance of the parametric model.
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Parameterization of Geometrical Models

Parametenization is the process of assigning parametric attributes to a
geometrical model which will determine how the geometrical components
will vary. In other words is the process by which an explicit model is
transformed into a parametric model.

Depending on the behavior desired by the designer any geometrical shape
can be parameterized in different ways, therefore, a geometrical model can
be subject to more than one parameterization schemas creating different
ways to perform design transformations. Figure 2.5 shows two
parameterization schemata for a rectangular shape. The two parametric
schemas will let the designer create different instances based on the
transformations that the parametric model allows. Figure 2.6 shows how the
two parametric model schemas generate different design instances based
on the kinds of transformations that the parametric model allows.

All instances created by one parametric model form a family of designs,
despite the fact that one particular instance from a parametric model can be
exactly the same as another instance from another parametric mode.
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2.5 Parameterization Schemata of two rectangular shapes. The

b3

first schema shows a rectangular shape with length and width
as parameterized attributes. The second schema shows the
same rectangular shape with the position of the enc points as
parameterized attributes.
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2.6 Families of designs created by each of the parametric

schemas.
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Constraints

A constraint is a non-geometrical entity that limits the behavior of an
attribute. Like the parameter, a constraint will control the behavior of an
attribute or group of attributes. However the constraint will limit the scope of
action of a parameter or group of parameters putting restrictions on the
possible parametric variations.

Constraints can be of two types: geometrical and dimensional. Geometrical
constraints will build relations between two geometrical entities. A
geometrical constraint will limit the scope of action of one geometrical entity
with respect to another geometrical entity. Some geometrical constraints
include relations such as parallelism and perpendicularity, while others might
have specific localized conditions such as the midpoint of a line'.

Dimensional constraints are defined as parameterized attributes with a fixed
value. They are analogous to static variables, which can only take one value.
Dimensional constraints form relations built between one geometrical
component and another non-geometrical entity. The constraint will set the
attribute to a fixed value, which can only change if the constraint is changed
or removed.

A constraint model will only allow variations based on the scope of actions
allowed by the constraints. In case of conflicting values between parameters
and constraints, the constraints supersede any parameters that the model
has. Constraints are also unidirectional, which means that constraints control
the values of the parameters and not vice versa. A constraint is the parent-
object (controlling entity) and the constrained attribute is the child (controlled
entity).

1 The midpoint of a line will always remain at the same relative distance of the two extremes regardless of
the length of the line.
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2.7 Two rectangular shapes showing a parameterization
schema by endpoints. The figure on the left is unconstrained,
while the figure on the right has a perpendicular constrained in
one corner. This constraint will force the two edges meeting at

that point to be perpendicular to each other.

2.8. Family of designs produced by the parametric models.
Note how in the second case the constraint acts to keep both
edges perpendicular to each other, while the unconstrained
model has the freedom to take on any variation, including all

kinds of angles.
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Degrees of freedom of a Parametric Model

Degree of freedom refers to a specific combination of the parameterized
components, the existing constraints, and the kinds of transformations that
they both allow. A parametric model with more parameterized attributes is
said to have more degrees of freedom. As a consequence it will allow a
larger family of designs. A parametric model with a high number of
constraints will have less degrees of freedom limiting the instances that can
be produced. In simple terms, adding parameters increases the degrees of
freedom, while adding constraints reduces them.

A parametric model with a large number of parameterized attributes needs a
higher and more complex structure to control the number of parameterized
components. Therefore a specific transformation will require a large number
of operations to be carried at a specific instance.
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2.9 A parameterization of a rectangular shape by length and
height attributes. This parametric model has two (2) degrees of
freedom, allowing rapid regeneration of different design
instances. The tradeoff is that all the instances are rectangular
shapes.

T Y

2.10 A parameterized rectangular shape by the coordinate
endpoints has eight (8) degrees of freedom, allowing more
variations on the designs. However this model requires a larger
data structure to store and manipulate the eight variables
controlling the coordinates of the endpoints.
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Parametric Variations

Parametric Varniations (PV), also known as variational geometry, or
constrained—based models, is a kind of PM based on the declarative nature
of the parameters to construct shapes. The designer creates a geometrical
model, which attributes are then parameterized and constrained, based on
the desired behavior, thus creating a parameterized modeling schema. A
parametric modeling schema shows which attributes of a geometrical model
are parameterized and how the designer can change the values of the
parameters.

The idea behind a PV model is that the geometrical components are
controlled by means of changing the values of the parameters or constraints
without changing the topology (number of components and their relations).
The parametric modeling schema creates the master model, which is the
starting point for parametric variations of the designs. Every time that the
designer changes a parameter in the master model, a design instance is
created. The collection of design instances generates a family of design
solutions based on changes done to the parameterized components. The
main characteristic of a PV is that the model allows transformations of the
geometry without erasing and redrawing, in a closed contained system.
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2.11 A parametric model of a column with a description of the
parametric attributes. This kind of mode is called a parametric

variation or variational geometry.

A1

2.12 Family of design instances based on parametric variations.

Here showing six (6) instances of design based on parametric

variations.
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Parametric Combinations

Parametric Combinations (PC) are composed by a series of parameterized
geometrical shapes that are put together to create more complex structures
for design exploration. Also known as associative geometry models, or
relational models, PC offers another degree of complexity beyond the
parameterization of the geometrical components, which is done by
constructing sets of relations between the parameters and the shapes.

By combining components in different ways, a variety of designs solutions
are achieved from the initial vocabulary and the rules of combination. The
strategy is to sub-divide a design into several components and derive
specific ways in which the components will be combined. For example, a
column can be divided into three components: base, shaft and capital; where
each of the components has different possibilities of instantiation. A column
design is the addition of the three components in an orderly way, first the
base, then the shaft and finally the capital. A family of designs is obtained by
combining the different components according to the rules of combination. If
the number of components is fixed, the family of designs is limited to the
number of possible valid combinations.
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2.13 A parametric combination model of a column showing

components for the base, shaft and capital.
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2.14 Family of designs of the column based on the parametric
combination of the components.
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Parametric Hybrids

Parametric Hybrid Models are formed from a combination of both parametric
variations and parametric combinations. Hybrid models take the benefits of
both types of parametric models and can be very robust for design
exploration. However, in the real world they require a very solid data
structure and demand a lot of computational power.

They are very difficult to construct and the chances of producing a collapse
of the model increases proportionally to the complexity of the model. In
some occasions is better to construct and design in two models in parallel,
one for variations and another for combinations, instead of a hybrid model.
Nevertheless, a hybrid model can proved usefulness in cases where simple
parametric models are sufficient for design exploration.

50



—

I
ity

2.15 Family of designs of the column based on the parametric

hybrid model. The number of possible instances increases in
proportion to the number of combinations and the
parameterization of the components. This produces some

unexpected and interesting results.
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Variants Programming

The very first approach to parametric design was through automation of
repetitive tasks and the inclusion of variables to make different designs: a
script. This piece of computer code, also know as programmed construct,
contains parameters that are edited to obtain a family of variants of the same
shape. With the use of simple programming modules, the designer can
create routines containing repetitive tasks or simple procedures that can be
used to build large model in small steps.

Scripting also allows incorporating interaction with the user, in most cases by
asking the user to input the values of the parameters once the program is
called, but before is executed. With a little knowledge of programming, the
user can create its own small routines and use the procedures built in the
program to generate the geometrical model by encoding a simple set of
instructions that will be carried in orderly manner. The main limitation is that
there is no interactive editing on the model once the routine is called and the
procedure has started. It will not allow editing once the model is created. The
only way to change the model is to delete the model and rerun the program
to create a new model with different parameters. Its advantage is that allows
the creation of a vocabulary of models that can be reused in design.

Although variants programming is well established as a computational
procedure and most current software applications have the computer power
to handle the scripts, architectural offices are still relying on the modeling
skills of the CAD operators, therefore the models are literally made by hand
using a mouse and the palette offered by the CAD program. This attitude is
considered by some people as a waste of computing power, like getting a
Ferrari and attaching it to a mule to ride in it. Nevertheless, some architects
are recognizing the benefits of variants programming to be incorporated in
the design process. For it to be successful it requires two important changes
of paradigm: 1) Architects and designers must engage in the knowledge of
computer programming, until new more user friendly programming interfaces
and languages are develop, which means architects must study and learn
how to program a machine; and 2) Architects and designers must define
very well the problem they want to solve before it can be implemented in
some form of computational format. For the computing point of view, a
problem well stated is a problem half-coded.
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2.16 Design instances from a variants programming model. The
model in written in a script format that takes inputs from the
designer and generates an instance of the model based on

the input values.
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Darcy Thompson and the comparison of
related forms

According to Darcy Thompson®, the study of form can be done in two ways:
descriptively, using verbal language; and analytically, using mathematics.
For instance, an apple, an orange and a ball, are verbal descriptions of a
spherical shape. However, such descriptions are limited and ambiguous.
Thompson argues that analytical descriptions, founded in mathematical
language, can provide precise definitions of form. For example, the formula
X2+Y?+Z%=” is the mathematical description of a sphere, were the sum of
the squares of three variables equals the square of the radius, and the
variables indicate the location of the center of the sphere in the Cartesian
space.

The method of Cartesian transformations is rooted in analytical descriptions
of form. Its predecessor is the method of coordinates, which was used to
translate curves into numbers and then into written data. The data could be
used to recreate the curves by reversing the process, from data into
numbers and then into curves (Thompson, 1917). This was mostly used by
cartographers when making maps at different scales.

Instead of using one mathematical description of a particular form,
Thompson's method of Cartesian transformations is concerned with the
study of form by comparison. Darcy Thompson believed that one form can
be easily understood by recognizing it as a permutation or deformation of
another form®. These kinds of deformations are carried out systematically
and recorded in a step-by-step mode. Thus two or more forms can be
compared by means of the set of grids. For the morphologist who studies the
form and structure of organisms, Cartesian transformations provide a visual
framework to understand how forms are related and what kinds of
transformations occur in between.

2 Darcy Thompson, On growth and form.

3 This method is founded in the mathematical Theory of Transformations, where two groups are clearly
distinguished: substitution groups and transformation groups, where former one is discontinuous and the
latter is continuous. It is the latter group that the theory of comparison of related forms presented by
Darcy Thompson is founded on.
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2.17 Transformations of a circle based on the deformation of
the underlying Cartesian grid. The grid provides a framework to
perform fransformations while it serves as an analytical
description of the current instance. (Image reproduced from

On Growth and Form)
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(b)

2.18 Examples of the application of the Cartesian
transformations applied to show how living organisms can be

compared. (Images reproduced from On Growth and Form)
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Transformations of Shape Grammars

Shape grammars are algorithmic systems for analyzing and creating designs
directly through computations with shapes. Shape grammars are powerful to
the study of form from the strict visual point of view. A very interesting aspect
of shape grammars, which concerns stylistic change and transformations in
design, deserves special attention. Any design generated by the grammar is
considered to be in the language of the grammar; likewise any design that is
not generated by the shape grammar is not considered in the language of
the grammar. Each shape grammar generates designs in a language and
provides different understanding of the theory of languages of designs
(Knight, 1994).

Terry Knight's model is based on the premise that a shape grammar will
generate a unique language of designs; therefore, in order to determine
whether two designs are from different languages, it is necessary to
compare the shape grammar of each design. Comparing the shape
grammars can be used to analyze how languages of designs have evolved
through history and to study the transformations of a particular design
language. According to Knight, the design language can be transformed by
transforming the shape grammar, instead of transforming the designs. This
is accomplished by three operations performed on the shape grammar: rule
deletion, rule addition and rule change. A shape grammar will generate a
body of designs in a language. If a rule is deleted from the shape grammar,
then the body of designs will be reduced. Likewise, when a rule is added to
the shape grammar, the body of designs will be expanded based on the new
added rule®. If a rule is changed, then the transformed shape grammar will
generate different designs than the original shape grammar. In any of the
three cases, the corpus of design will change whereas the new shape g
grammar will generate more, fewer or different designs than the original
shape grammars.

4 It is important to clarify that rule addition does not necessarily mean that the design will expand, or that
a rule deletion will decrease the corpus of designs. A rule added to the shape grammar might limit or
expand the compus (body?) of design. A rule that is deleted from the grammar can also expand or limit the
corpus (body?) of design. The main argument is that designs will be transformed as a result of
transformations in the shape grammar.

5ltis important to note that the rule change can be considered as be performing a rule deletion and rule
addition at the same time.
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2.19 A shape grammar and d derivation.
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2.20 Transformation of the rule and the corresponding derivation resulting in a

new design language.
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2.21 Another transformation of the rule and the coresponding derivation

which creates new design language
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2.22 A derivation of the alternative application of the rules of the first two
shape grammars. Note how the final design corresponds to the third step on

the previous derivation. Although both designs are identical, they are of
different languages since they were generated from two different shape
grammars.
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Chapter 3

Symmetry
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Chapter summary

This chapter introduces the concepts of symmetry shows how it is applied to
the single rod groups. Starts by presenting the fundamental concepts of the
basic symmetry groups and shows how they can be used to build
descriptions for complex shapes with high levels of symmetry.
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Symmetry

Symmetry as a concept is understood in more than one way. Symmetry is
recognized as a property of an object being well proportioned and balanced
where its parts are somewhat corresponding in shape and size. It is also
understood as a feature of living organisms where there is evident
correspondence of constituents arranged in two opposite sides of an
imaginary line®. Yet there is a third way in which symmetry is defined is the
result of an arrangement in which regular patterns seem to emerge7. All of
the former general notions of understanding symmetry are right in their own
views, but having more than one definition for something only leads to
confusion and ambiguity. Two fundamental concepts emerge from the
former definitions of symmetry: the idea of relative equality and the idea of
regularity. We will come back to these two concepts later.

In mathematics symmetry is defined as a characteristic of geometrical
shapes such that when a transformation® is performed on the shape it does
not appear to change. If a square is rotated 90 degrees with respect to its
center, it will appear that no rotation took place. As a result, when a regular
shape is subject of a Euclidean transformation, it looks the same visually,
apparently it did not change. Therefore symmetry is associated with some
notion of regularity where change is not evident.

6 This is known as bilateral symmetry, where similar parts are arranged in two sides of a median axis or
median plane. This is more evident in biological specimens and living organisms

7 The idea of harmony and symmetry is best described in music, where rhythm creates pattems

8 By transformations we mean Euclidean transformations
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3.1 An object with no symmetry shown with a bilateral
symmetry composition. Bilateral symmetry is the most basic
class of symmetry.
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Relative Equality and Regularity as the basis
of symmetry

According to Shubnikov and Koptsik®, relative equality is the first notion
necessary to better understand symmetry. For example, the right hand is
relatively equal to the left hand. They are equal in the sense of their
constituents, since both have 5 fingers. However a right hand and a left hand
can not be superimposed to make a perfect match without a reflection over a
mirror plane. The hands are relative to each other with respect to the mirror
plane, thus the equality of both hands dependent on the mirror plane. Both
hands are equally related through its constituents, the five fingers, and their
relative position with respect to an imaginary mirror plane.

Regularity is the second fundamental concept of symmetry. By having the
same number of constituents both left and right hands are considered
regular, at least at the topological level. Other way of interpreting regularity is
to divide a shape into equal parts without any remainders. A square that is
divided into four smaller squares shows that the smaller squares are as
regular as the larger square. .Furthermore, the idea of regularity is enhanced
if the little squares are recursively subdivided into smaller squares. The
predictable nature of the created pattern is the most important notion of
regularity, which is fundamental to the understanding of symmetry.

Equality and regularity can be found in different ways. A regular shape that
can be subdivided into parts shows evidence of emergent patterns that are
either regular and or relatively equal. If a square is subdivided into smaller
squares regular patterns emerge. If the square is subdivided into triangles,
then the triangles are relatively equal to each other with respect to Euclidean
transformations. This essential idea of relative equality and regularity is the
basis for symmetry or a theory of symmetry.

9 “Symmetry in Science and Art’
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3.2 A non-symmetrical object used to generate two kinds of
symmetrical composifions. Symmetrical compositions are

generated by translation and rotation. All objects in the

composition share the two main characteristics of symmetry:

relative equality and regularity.

65



Finite Symmetry

The previous chapter introduced the idea of relative equality and regularity
as the basis of symmetry. Relative equality is the man characteristic of
shapes that belong to the finite symmetry group. Finite symmetry is based
on rotation and reflection transformations and is characterized for having a
central point or central axis from which the transformations occur.

The most basic case of finite symmetry is found on the bilateral symmetry
where two shapes are relatively equal to each other by means of the mirror
plane. Mirror symmetry is denoted with the letter M, therefore any
composition which has one mirror plane is denotes as having symmetry M.

A classical example of bilateral symmetry is found on the figures of the
Rorschach Inkblot Test'%. Another common example is a painting game
where figures are created by randomly pouring ink on paper and folding it in
half. When the paper is unfolded a figure with a perfect symmetry axis
appears.

Bilateral symmetry is also present in most living organisms, in particular
those capable of motion. The limbs are present in equal numbers and sizes
to both sides of an imaginary central axis. Crabs, insects, mammals, etc,
have all bilateral symmetry.

Some cases might include more than one mirror. Kaleidoscopes are perfect
examples of this kind of symmetries, where a figure is created with multiple
mirrors. In this case, the particular object is said to have more than a single

mirror

10 Named after Swiss psychiatrist Norman Rorschach, the Rorschach inkblot test is a projective test
practiced to measure emotional and intellectual functioning of an individual. Beyond the controversy of
the validity of the test or its results, what is important to the scope of our work is that the inkblots are
perfect examples that illustrates bilateral symmetry.
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3.3 Composition s with a finite symmetry. In this case the
composition has two planes of symmetry, one vertical and one

horizontal.
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Point Symmetry

Point symmetry is the second class of the finite symmetry group. in point
symmetry the relative equality occurs by means of rotations, reflections or
both. Objects rotate with respect to a fixed point and/or are reflected from
mirror lines that go through the same point. Therefore point symmetry’s main
characteristic is the presence of an identifiable central point.

Let us take a closer look at figures with rotations only. Rotations can occur at
any interval between 0 and 360 degrees. The number of rotations is multiple
of 360 denoted by the letter N, and indicates how many rotations occur
before the figure can be aligned with itself. A design with point symmetry is a
design that can be rotated 360/N degrees in order to be aligned with itself.
Each rotation of 360/N degrees makes the figure identical to the original
design. Since this can be done N times before the figure completes a full
rotation, the symmetry of the figure is N. The number corresponding to N is
calculated by dividing 360 by the number of degrees that will have to be
rotated to obtain the same figure. For example, design that has symmetry
N=3 will have 3 rotations of 120 degrees corresponding to 360/3. A design
that has symmetry N=5 will have 5 rotations of 72 degrees. Likewise a
design with a symmetry of N=4 will have four rotations of 90 degrees to align
the shape with itself. This kind of symmetry is known as cyclic symmetry and
it can also be denoted as “Cn” where the subscript N indicates again the
number of rotations. Cyclic symmetry has a sense of direction; therefore
rotations can occur either clockwise or counterclockwise.

When rotations are combined with reflections, another class of symmetry
emerges, which unlike the cyclic symmetry, it has no sense of direction.
Again, the presence of a mirror plane is denoted with the letter M. A square
for example, has four rotations, but at the same time it has four reflections,
one vertical and one horizontal, and two along its diagonals. This particular
example has a symmetry which is denoted by the formula NxM or 4M, where
N indicates the number of rotations and M indicates the presence of mirror
planes. Other notations call this symmetry group dihedral or Dy, therefore an
object with 4M symmetry is exactly the same as a Da.
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3.4 Composition with cyclic point symmetry. Note the rotation

effect produced by the form and relative position of the three
friangles.

3.5 Composition with dihedral point symmetry. Mirror planes
eliminate the rotational effect.
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Axial Symmetry

Axial symmetry is a class of symmetry that groups objects in 3D space. ltis
also known as 3D Symmetry or 3D Point Symmetry, since this class includes
all 3D objects that have a singular point or singular axis. It is the three
dimensional analogous to the 2D point symmetry, therefore the only
transformations possible are rotations and reflections.

In most three dimensional shapes, rotations occur with respect to an axis,
denoted as A. Analogous to the 2D point symmetry, in three dimensions N
indicates the number of rotations that occur before the shape is aligned with
its original position.

While rotations take place with respect to an axis, reflections in 3D will occur
with respect to a plane. Mirror planes are of two types:

1) Mirror planes that contain the axis A, denoted with M; and

2) Mirror planes perpendicular to the axis A, denoted with lowercase
m. This mirror plane is also called transverse mirror plane.

While there are some kinds of shapes that have more than one axis, like
regular polyhedrons and some kinds of crystals, they will not be included in
the following discussions.
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3.6 Three dimensional object showing axes. In 3D, rotations
occur with respect to these axes, while reflections are
performed through the mirror planes that contain them. The
cube has 3 axes and twelve mirror planes. This gives the cube
symmetry of 48, which means that 48 transformations will align

the cube with itself.
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Shapes with axial cyclic symmetry: AN

Shapes with axial rotational symmetry that will only remain the same under
rotational transformations along the rod axis belong to this first class. Any
other kind of transformation will change the visual appearance of the shape.
In this category we find regular pyramids which base is a closed polygon
with cyclic symmetry on the plane.

The notation A*N indicates that the shape has a single main axis from which
rotations occur and the number of rotations. It is assumed that no reflections
exist. Other kinds of shapes that belong to this category are regular
pyramids with alternating open faces.

A characteristic of axial cyclic shapes is that they have a direction of rotation
with respect to the main axis; therefore the rotation can be clockwise or
counterclockwise.
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3.7 Shape with symmetry A*2

3.8 Shape with symmetry A*4
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Shapes with axial dihedral symmetry: A*N*M

In this second group we find shapes that have axial rotation as well as a
mirror symmetry plane that contains the axis. Regular pyramids made from
dihedral 2D shapes and the like belong to this class. The symmetry planes
pass through the central axis, making both sides relatively equal with respect
to the mirror plane.

The notation A*N*M indicates that the shape has a single main axis from
which rotations occur. N indicates the number of rotations before the shape
completes a full 360 degree rotation and M denotes that there are mirror
planes that pass through the main axis in number equal to N.

In this case the shape will remain unchanged under axial rotations, as well
as reflections through any of the mirror planes.
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3.9 Shape with symmetry A*3*M

3.10 Shape with symmetry A*4*M

\

3.11 Shape with symmetry A*5*M
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Shapes with top-down symmetry: A*N*m

This third class denotes shapes with axial cyclic symmetry that have no
distinction on both ends of the main axis. In this case there are two kinds of
transformations that will result in similar shapes: rotations with respect to the
main axis, and reflections on a mirror plane that is normal to the main axis.
This plane is also known as a transverse plane.

The notation A*N*m indicates that the shape has a single main axis from
which rotations occur. N indicates the number of rotations that occur before
the shape becomes aligned with itself, and m denotes the presence of a
mirror plane normal to the main axis, which makes the top and bottom of the
shape relatively equal. These kinds of shapes are said to have a cyclic and
top-down symmetry, and they have a rotational direction.

These kinds of shapes are commonly found in special machinery. As well as
some kinds of turbines and the like, which all belong to this class of
symmetry. Any shape that has cyclic axial symmetry which is mirrored on a
transverse plane will result in a shape with top-down symmetry.

Other options are cyclic 2D shapes that are extruded along the main axis. In
this case the transverse plane is more implicit and less evident to see.
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3.13 Shape with symmetry A*4*m

|
|

3.14 Shape with symmetry A*4*m

77



Shapes with top-down finite dihedral
symmetry: A*N*M*m’

This class denotes shapes with axial dihedral symmetry with a transverse
mirror plane. Three kinds of transformations will result in similar shapes:
rotations with respect to the main axis, reflections on axial mirror planes, and
reflection with respect to the transverse plane.

The notation A*N**M*m’ indicates that the shape has a single main axis
from which rotations occur. N indicates the number of rotations that will
make the shape aligned with itself, as well as the number of axial reflections.
M indicates the presence of axial mirror planes which will make the shape
with dihedral symmetry. m denotes the presence of a mirror plane normal to
the main axis, which makes the top and bottom of the shape relatively equal.
The superscript f indicates that the shape has a finite top down symmetry,
which is distinct from the kinds of shapes that will go endlessly along the
main axis.

By-pyramids and by-cones are shapes that belong to this class, however
there is no distinction if the shapes a joined by their base or their top vertex.
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.15 Shape with symmetry A*3*M*m
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Shapes with top-down infinite dihedral
symmetry: A*N*M*m'

This class denotes shapes with axial dihedral symmetry with a transverse
mirror plane; however they have a different flavor to them. Similar to the
previous class, there are three kinds of transformations will result in similar
shapes: rotations with respect to the main axis, reflections on axial mirror
planes, and reflection with respect to the transverse plane.

The notation A*N**M*m’ indicates that the shape has a single main axis from
which rotations occur. N indicates the number of rotations that will make the
shape aligned with itself, as well as the number of axial reflections. M
indicates the presence of axial mirror planes which will make the shape with
dihedral symmetry. m denotes the presence of a mirror plane normal to the
main axis, which makes the top and bottom of the shape relatively equal.
The superscript i indicates that the shape has an infinite top down symmetry,
which means that the shape could be extended infinitely along the main axis
without changing its symmetry.

Regular prisms and 2D dihedral extrusions are shapes that belong to this
class.
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3.18 Shape with symmetry A*3*M*m

3.19 Shape with symmetry A*4*M*m
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3.20 Shape with symmetry A*5*M*m
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Shapes with continuous single rotation along
the rod axis (twist): A*N*M*R

These shapes are generated by the continuous translation and rotation
along the main axis. Twisted shapes belong to this class and two kinds of
transformations will result in the same shape: rotations with respect to the
main axis and a 180 degree rotation of the main axis.

The notation A*N*M*R indicates that the shape has a single main axis A
from which rotations occur. N indicates the number of rotations that will
make the shape will be self aligned. M indicates the presence of axial mirror
planes which will only apply to the initial shape, since any displacements
along the axis A will result in a rotation. R indicates the total rotation, which
can be expressed as a parameter or a fixed number. There is no top-down
symmetry trough a transversal mirror plane, but a rotation of 180 degrees of
the shape and the axis will align the shape with itself.

Twisted shapes belong to this class, which makes them have a direction with
respect to the main axis. They can twist in two directions: clockwise or
counterclockwise.
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3.21 Shape with symmetry A*4*M*R(90) here shown two directions of
rotation: clockwise and counterclockwise

3.22 Shapes with symmetry A*4*M*R
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Shapes with continuous single rotation along
the rod axis (twist): A*"N*M*m*R

Theses shapes are generated by the continuous translation and rotation
along the main axis, with an additional transverse mirror plane.

The notation A*N*M*m*R indicates that the shape has a single main axis A
from which rotations occur. N indicates the number of rotations that will
make the shape will be self aligned. M indicates the presence of axial mirror
planes which will only apply to the initial shape, since any displacements
along the axis A will result in a rotation. An m indicates that there is a top-
down symmetry along a transverse mirror plane located at the middle point
of the main axis. R indicates the total rotation, which can be expressed as a
parameter or a fixed number.

Twisted shapes belong to this class, which makes them have a direction with
respect to the main axis. They can twist in two directions: clockwise or
counterclockwise.
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3.23 Shape with symmetry A*4*M*m*R(90) here shown in

3.24 Shapes with symmetry A*4*M*m*R
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Shapes with continuous double rotation along
the rod axis (double twist): A*N*M*RR

This is an interesting class of shapes since they can have more than one
description. The symmetry description of the resulting shape can be different
from the description of how the shape is generated. (n this case | am inclined
to give preference to the way the shape is generated over the description of
the resulting shape.

Just like the generation process of the single rotation shapes, double rotated
shapes are the result of a shape that is translated along the main axis and at
the same time is rotated with respect to the main axis. However one of the
shapes is rotated in a positive direction and the other shape is rotated in the
negative direction; creating a clockwise shape and a counterclockwise
shape.

The notation A*N*M*RR indicates that the shape has a single main axis A
from which rotations occur. N indicates the number of rotations that will
make the shape will be self aligned. M indicates the presence of axial mirror
planes if the initial shape has dihedral symmetry. RR indicates that there are
two rotations one positive and one negative. One important distinction that
will be presented later is that two shapes can involve Boolean operations.

There is no top-down symmetry trough a transversal mirror plane. However,
if the rotation and counter-rotation go through more than one cycle where
the two shapes are aligned, the resulting shape will have emergent top-down
symmetry. This will make a distinction on the description of the shape, which
never had a transverse mirror plane m to begin with.

Another interesting feature of these kinds of shapes is that a left-right
symmetry will emerge as a result of the equal values of the two opposite
rotations, just as if M planes existed before.
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3.25 Shapes with symmetry A*4*M*RR
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Shapes with continuous double rotation and
Boolean addition: A*"N*M*RR,,,

In computational geometry, when two shapes that overlap are involved,
there are three Boolean operations that can be performed. A Boolean
addition is the first of these three operations. In this particular sub-class, two
shapes with opposing rotations will be added to form a final shape.

The notation A*N*M*RR indicates that the shape has a single main axis A
from which rotations occur. N indicates the number of rotations that will
make the shape will be self aligned. M indicates the presence of axial mirror
planes if the initial shape has dihedral symmetry. RR indicates that there are
two rotations one positive and one negative, both of equal magnitude. The
(ba) subscript will indicate that a Boolean addition will complete the
operation.

Some emerging properties could include dihedral symmetry planes M, and
transverse planes m if rotations align more than once.
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3.27 Shapes with symmetry A*4*M*RR and Boolean addition.

Note the emergent to-down symmetry.
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Shapes with continuous double rotation and
Boolean intersection: A*N*M*RR,,

This particular subclass is similar to the previous but instead of a Boolean
addition, it involves a Boolean intersection. A Boolean intersection is the
resulting shape that contains only the common area of the two opposite
rotating shapes.

The notation A*N*M*RR indicates that the shape has a single main axis A
from which rotations occur. N indicates the number of rotations that will
make the shape will be self aligned. M indicates the presence of axial mirror
planes if the initial shape has dihedral symmetry. RR indicates that there are
two rotations one positive and one negative, both of equal magnitude. The
(bi) subscript indicates a Boolean intersection that completes the operation.

Just like the shapes with Boolean additions, emerging properties could
include dihedral symmetry planes M, and transverse planes m if rotations
align more than once.
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3.28 Shapes with symmetry A*4*M*RR and Boolean intersection.

3.29 Shapes with symmetry A*4*M*RR and Boolean intersection.

Note the emergent top-down symmetry
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Chapter 4

Gaudi Columns
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Chapter summary

This chapter presents a case study on the columns of the Sagrada Familia
and shows how Design Procedures are applied to the generation of the
family of columns of the Sagrada Familia plus an infinite number of new
designs.
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The Sagrada Familia

Located in Barcelona, Spain, The Expiatory Temple of the Sagrada Familia
was designed by the Catalonian Architect Antonio Gaudi between 1883 and
1926. Gaudi worked for 43 years in the temple and transformed what was to
be a neo-gothic church into a masterpiece of architecture with no
precedents.

During this period, Gaudi developed a unique language based on the
application of simple rules to form complex geometry, and the use of three
ruled surfaces: The helicoids, the hyperboloid and the hyperbolic paraboloid.

The singular character of Gaudi’s architecture in the Sagrada Familia
represents the synthesis of his observations of nature translated into
geometrical abstractions
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4.1 Started in 1883, Gaudi tfransformed the initial neo-gothic
style of the original design into a larger design of complex

nature which remains unfinished 123 years after.
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The columns of the Sagrada Familia

Gaudi initially proposed a helicoidally shape for the columns, like the
salomonic columns from the renaissance. However, he considered that the
single twist was visually inappropriate, since it produced the perception of a
weak column that could be squashed or deformed. The visual imperfection
of the single twist column bothered Gaudi for a number of years, until he
resolved to use a double rotated technique where two opposite twisting
columns will cancel each other. This allowed the visual asymmetries of the
single twisting column to disappear.

Gaudi’s novel solution consisted in the use of two opposite rotations of the
same shape, once clockwise and another counter-clockwise, and keeping
the common parts of the two volumes, like in a Boolean intersection. This
novel solution, which has no precedents in architecture, was used to
generate the shapes of all the columns in the interior of the Temple. It, is the
result of two continuous years of work and experiments of Gaudi's
interpretation of the helicoidally growth present in trees and plants.
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4.2 Generation method of the Sagrada Familia columns. Here
shown the generation of the column of 4. A square shape is
rotated in two opposite directions by 22.5 degrees. The
Boolean intersection of the superimposed shapes produces the

column of four
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Design Procedure

The work started by the reconstruction of the columns knots of the lateral
nave of the Sagrada Familia. The rectangular knot was selected as the main
model for the parametric exploration. The first challenge was to find a
suitable modelling procedure that will yield an accurate representation of the
knot. After a series of experiments, | found that using a bottom (initial) and
top (final) shapes of the knot, and filling the space in-between with a surface
fitting function, the resulting form will generate a shape that was visually
equivalent to the original plaster model by Gaudi.

The first stage was to create the top and bottom figures in a wireframe
model, which is called the parametric skeleton. A surface fitting function was
applied to each pair of top-bottom shapes producing both the rotation and
counter-rotation shapes. The two generated shapes were superimposed and
used to perform the Boolean intersection that generates the original shape.

Although this procedure of blending between two pairs of shapes was not
described by Gaudi, nor any other researchers and scholars, the resulting
columns were not only geometrically accurate, but also visually correct when
compared to the original Gaudi models.
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4.3 Parametric Skeleton. Here showing two pairs of initial
shapes, one for the rotation and the other for the counter-

rotation.

4.4 Surface fitting functions create the rotation and counter-

rotation shapes.

4.5 Boolean intersection of the two superimposed shapes

generates the rectangular knot.
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Parameterization of the column

In the parametric skeleton there are three types of geometrical components:
the axis of the column represented by a line, two parallel planes where the
top and bottom shapes will be located, and the top and bottom shapes. Each
surface procedure is composed of two initial shapes one on the top and one
for the bottom, for a total of 4 initial shapes. The parameterization schema
only constrains the location of the initial shapes to the top and bottom
planes. The planes must be normal to the axis line. The shapes are not
constraint and are free to take any kind of geometrical and topological
transformations.

The parametric model allows for variations on the values of the main axis as
well as the dimensions of the initial shapes, and the rotation and counter-
rotation angles corresponding to the opposite rotated shapes.

If the two shapes are squares and the angles are 22.5 degrees, the result
will be a square column. If the two shapes are changed into rectangles, and
the values of rotation and counter-rotation is 45 degrees, then the
rectangular knot is generated.
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4.6 Transformation of the rectangular knot into the square
column done by changing the initial shapes from rectangles to

squares, and the angle of rotation, from 45 degrees to 22.5.

103



Transformations on the columns

The first set of transformations was done to the top and bottom shapes,
starting with variations of the proportions of the lower rectangles, to
variations on the angles and finally with variations on the four initial shapes.
The height of the column, as well as the rest of the parameters remained
unchanged through these set of operations. An important discovery was that
the topology of the final column would be altered as a result of changing the
parameters of the initial shapes, even though the topology of the all the
geometrical components of the model remained unchanged.

Different variations of the design obtained from the same parametric model.
Other set of transformations included changes in the topology of the
primitive shapes. The parametric model allowed topological changes and stiil
maintained the integrity of the surface fitting procedures without breaking the
model, or causing geometric problems.
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4.7 Parametric variations of the lower shapes

4.8 Parametric variations of lower and upper shapes

4.9 Topological transformations of shapes

4.10 Topological transformations and displacement of the
initial shapes
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Comparison with original designs
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