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Abstract 

Design Procedures: A computational framework for 
Parametric Design and Complex Shapes in Architecture 

By Carlos Roberto Barrios Hernandez 

Submitted to the Department of Architecture on May 1, 2006, 
in partial fulfillment of the requirements for the Degree of 
Doctor of Philosophy in Architecture: Design and Computation 

Through the use of computational generative procedures in 
the early stages of design, it is common to generate shapes of 
complex nature that could only be produced by the combined 
forces of human imagination and computer power. However 
the more complex the shapes are, the more difficult it 
becomes to establish a discourse that embodies the 
geometrical and spatial properties, as well as the formal 
attributes of a given shape. Furthermore, it has become 
problematic to differentiate between one complex shape and 
another, resulting in some abstract, cumbersome, and 
sometimes obscure explanation about how the shape came 
into being. In some cases, designers recur to complex 
expressions of mathematical nature that, even though they are 
precise descriptions of the form, do not offer any clear way to 
refer to them unless a person is trained in the language of 
mathematics. 

Design Procedures proposes a way of looking at designs as a 
procedural enterprise where complex shapes are the result of 
computational process in a step by step basis. Design 
Procedures in combination with appropriate descriptions of 
spatial attributes, can offer some light in the dialog of irregular 
noneuclidean forms and their properties. This thesis presents 
the application of Design Procedures to three case studies: 1) 
The generation of the columns of the Sagrada Familia; 2) The 
description of non regular shapes in the rod symmetry groups, 
in particular of double twisted geometries; and 3) The 
application to a computer program for the generation of non- 
Euclidean complex shapes for high-rise buildings. 

Thesis Supervisor: William J. Mitchell, Professor of 
Architecture and Media Arts and Sciences. 
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Introduction 





Introduction 

With the increasing demand of flexible tools for Computer Aided 

Design (CAD), Parametric Modeling is becoming a mainstream of 

Computer Aided Architectural Design (CAAD) software, in order to 

make variations in the design process less difficult. This is 

traditionally called Parametric Design. Until recently, parametric 

design was understood as highly sophisticated and expensive 

software made exclusively for manufacturing in aerospace, shipping 

and automobile industries. However, designer's demands for 

flexibility to make changes without deleting or redrawing in a 

computer has pushed the incorporation of parametric modeling as 

standard tools in traditional CAD programs. 

Variations in design are a fundamental part of the design process in 

the search for solutions to design problems. Design variations 

support improvement of design which in turn improves the quality of 

designed artifacts. Designers constantly go back and forth between 

different alternatives in the universe of possible solutions, working in 

a particular part at a given time, or looking back at the whole from a 

broader perspective. This is a continuous and iterative search 

process of variations of a design idea, and it is very likely to revisit a 

previously abandoned solution to rework it. As a result, designers 

demand flexible tools that allow variations in the design process until 

a solution is established for further development. 

In this context Design Procedures (DP) is presented as a 

methodology that enhances the design capability of a parametric 

model to perform design variations. By using shapes as parameters 

and thinking of parametric design as a general procedure. 



Consequently, a parametric model becomes a flexible tool allowing 

changes at the topological and geometrical levels. 

The thesis starts by presenting axiomatic definitions of Design 

Procedures and parametric design. Chapter 1 introduces the idea of 

Design Procedures which is followed by a brief overview of 

traditional parametric models accompanied by examples presented 

on chapter 2. Chapters 3 presents important definitions of symmetry 

and elaborates on the description of rod symmetry groups. Chapters 

4, 5 and 6 present three case studies on the application of Design 

Procedures. The first case is on the use of Design Procedures as an 

analytical tool and a computational design generative system. The 

second case discusses how Design Procedures are used to make 

descriptions of complex shapes. The third case study is on the 

generation of non-Euclidean geometrical forms for twisted high-rise 

buildings. Design Procedures (DP) are defined as a systematic 

methodology to overcome the limitations of traditional parametric 

models. 



Chapter 1 

Design 
Procedures 





Chapter summary 

This chapter introduces idea of looking at design from a computational 

perspective as a procedural enterprise. In computation are like recipes that 

contain a set of instructions that describe the steps necessary to complete a 

task. Analogously a Design procedure is a set of axioms or instructions that 

are carried in a systematic way to generate a design. This chapter describes 

the important aspects of design procedures and provides brief axioms that 

define design as a procedural pursuit. 



A procedure is a description of the steps necessary to accomplish a task. In 

computation, procedures are used to perform specific functions. 

Procedures allow abstraction and encapsulation of complexity and 

reusability 

In abstraction procedures usually have three parts: The name of the 

procedure, the arguments of the procedure, and the description 1 steps of 

the procedure. 

The name is a handler that is used to call the procedure 

The arguments are used to contain the parameters that will be used to 

perform the procedure. It is like the ingredients in a recipe 

The description of the procedure is the set of instructions that are performed 

to make the procedure. It is the recipe itself. The user has access to the 

name and knows what it does through a description. When a procedure is 

called, the user hands over the values of the parameters which replace the 

arguments on the procedure. The procedure makes the necessary 

calculations and returns the answer to the user. In most cases this portion of 

the procedure is hidden from the user which is called encapsulation. 



Parameters 

Parameter is a term that has many definitions depending on the use. The 

term parameter comes from mathematics and it refers to a factor that 

controls the values of other factors with respect to a linear relation. 

In computation, a parameter is the argument or series of arguments of a 

function with takes values as inputs. A parameter is also the placeholder for 

the value of a variable. They are used in the arguments of the procedure 

In design a parameter is a non geometrical entity that can hold a value to 

control geometrical components or relations between geometrical 

components. 

Parameters are used to substitute specificity for generality. 



Geometrical Modeling as Procedures 

In computational geometry, geometrical models are constructed in very 

specific ways. Since they are attached to specific data structures that will 

holdlcontain the information, they must be constructed in specific ways 

which can be encapsulated as procedures. 

There are procedures to construct primitive objects like points, lines, 

polygons and solids, and there are also procedures to construct more 

complex objects: Boolean operations. 

Procedures to make geometry can have parameters that are use as inputs, 

therefore making the procedure a parametric procedure. 



Design as Procedure 

In some cases, design can be described as a step by step process, where 

some things can occur over and over again. This can be interpreted as a 

procedural way of making design 

In computational, the geometry that describes a design can be also 

generated as the result of a script (procedure) or recipe that when followed 

step by step yields the same results. 

Procedures to make designs can have parameters that will take different 



Shapes as Parameters 

In a procedure a parameter takes the form of a variable whose value can be 

altered to obtain different results. In a design procedure, numbers, relations, 

shapes and operations are treated as parameters. 

If a shape is seen not as an explicit representation, but as the result of a 

procedure, any geometrical component used to generate it is an input of the 

procedure. A cube can be modeled as the result of the following procedure: 

A square shape that is extruded along an axis. The square as the initial 

shape is a parameter of the extrusion procedure. If the initial shape is 

substituted for another shape, like a circle, then the extrusion procedure 

generates a cylinder. 



Operations as Parameters 

In addition to having numerical values as parameters, there can also be 

operations as parameters. Operations will take the form of Boolean that will 

apply or not depending on the local conditions found. The operations can 

also take the form of a rule where they are the result of IF-THEN statements. 

If a particular condition is found and a rule is triggered, the result is a 

Boolean of the form YESINO that will either activate or inactivate a 

particular. 



Design Procedures 

A design procedure is a set of instructions that performs actions to create a 

design. The design procedure carries instructions in a systematic order 

where all geometrical components that represent a design are 

parameterized. 

In a design procedure, shapes, numbers, variables and operations are 

parameters. 







Chapter 2 

Parametric 
Design 





Chapter summary 

This chapter introduces the fundamental concepts of parametric design, 

starting on the premise that design is variation. Presents examples of 

classes of parametric models accompanied by illustrations of parametric 

models and discusses advantages of parametric design. 



Variations in Design 

Design as a process contemplates the search for solutions where there is no 

predetermined set of alternatives to choose from. As fundamental part of the 

design process, design variations allow for the search of better solutions to 

design problems. Designers constantly go back and forth between different 

alternatives in the universe of possible results, working in particular solutions 

at a given time, or looking at the whole design for synthesis. 

In this iterative and continuous process it is not only possible, but very likely 

to revisit a previously abandoned solution to be reworked under a different 

set of criteria or tested under a different set of constraints. As a result a new 

design solution can emerge. Variations in design offer framework for 

improvement of current design solutions, through optimization and change, 

which in turn improves the quality of design artifacts. In this context, the 

elaboration of computer models that offer flexibility to allow variations of a 

design idea, and to be adapted to changing conditions during the design 

process, has become a field of its own domain, which is known as 

Parametric Design. 



2.1 DESIGN VARIATIONS 

Here shown 3 design variations from the design 



Geometric models can have two kinds of representations: Explicit and 

Parametric. An explicit model is a type of geometric model that has fixed 

attributes, therefore in order to perform any kinds of transformations of the 

model, it is necessary to erase and redraw the geometrical components. 

Variations can only be performed if a particular shape is literally substituted 

for a new shape. 

On the other hand, a parametric model is characterized by having attributes 

that allow variations without erasing and redrawing any of its geometrical 

components. In this case, variations are carried out by changing the values 

of the parameters, allowing these variations to be propagated through the 

dependent attributes. Therefore, to carry out changes it is not necessary to 

erase and redraw. 

A Parametric Model (PM) is a geometrical representation of a design that 

has some attributes or properties that can vary (parameters) and other 

attributes that are fixed. The attributes are controlled by a non-geometrical 

component that is called a parameter. The attribute will be dependent of the 

value of the parameter. 



2.2 Explicit model of a rectangular shape. To perform variations it is 

necessary to erase and redraw a new rectangle. 

2.3 Parametric model of a rectangular shape. Note how the length and 

height attributes are parameterized by the X and Y parameters. The size of 

the rectangular shape can be altered by changing the values of the X and Y 

parameters, therefore to perform variations we use the parameters. 



Parametric Design 

Parametric Design (PD) is the process of designing with Parametric Models 

in a setting andlor environment where variations are effortless, thus 

replacing singularity with multiplicity in the design process. A Parametric 

Model (PM) is a three-dimensional computer representation of a design, 

constructed with geometrical sets of shapes that have some attributes 

(properties) that are fixed and others that can vary. The variable attributes 

are also called parameters and the fixed attributes are said to be 

constrained. The designer changes the parameters in the PM to search for 

different alternative solutions to the problem at hand, and the PM responds 

to the changes by adapting or reconfiguring to the new values of the 

parameters. 

Each of the design variations obtained is called a design instance since it 

represents a definite value or sets of values of the parameters at a specific 

point in the design. Figure 1.4 shows different instances of design based on 

variations of the parameters of the original parametric model. The instances 

can be organized in a matrix format that shows how design variations occur. 

Parametric Design implies the use of declared parameters to define a form. 

This requires rigorous thought in order to build a geometrical model 

embedded in a very sophisticated structure appropriate for the needs of the 

designer. Therefore the designer must anticipate which kinds of variations 

he might want to explore in order to determine the kinds of transformations 

the PM must allow. This is a very difficult task because of the unpredictability 

nature of the design process. 



2.4 Parametric model showing variations. Each of the variations is called an 

instance of the parametric model. 



Parameterization of Geometrical Models 

Parameterization is the process of assigning parametric attributes to a 

geometrical model which will determine how the geometrical components 

will vary. In other words is the process by which an explicit model is 

transformed into a parametric model. 

Depending on the behavior desired by the designer any geometrical shape 

can be parameterized in different ways, therefore, a geometrical model can 

be subject to more than one parameterization schemas creating different 

ways to perform design transformations. Figure 2.5 shows two 

parameterization schemata for a rectangular shape. The two parametric 

schemas will let the designer create different instances based on the 

transformations that the parametric model allows. Figure 2.6 shows how the 

two parametric model schemas generate different design instances based 

on the kinds of transformations that the parametric model allows. 

All instances created by one parametric model form a family of designs, 

despite the fact that one particular instance from a parametric model can be 

exactly the same as another instance from another parametric mode. 



2.5 Parameterization Schemata of two rectangular shapes. The 

first schema shows a rectangular shape with length and width 

as parameterized attributes. The second schema shows the 

same rectangular shape with the position of the enc points as 

parameterized attributes. 

2.6 Families of designs created by each of the parametric 

schemas. 



Constraints 

A constraint is a non-geometrical entity that limits the behavior of an 

attribute. Like the parameter, a constraint will control the behavior of an 

attribute or group of attributes. However the constraint will limit the scope of 

action of a parameter or group of parameters putting restrictions on the 

possible parametric variations. 

Constraints can be of two types: geometrical and dimensional. Geometrical 

constraints will build relations between two geometrical entities. A 

geometrical constraint will limit the scope of action of one geometrical entity 

with respect to another geometrical entity. Some geometrical constraints 

include relations such as parallelism and perpendicularity, while others might 

have specific localized conditions such as the midpoint of a line'. 

Dimensional constraints are defined as parameterized attributes with a fixed 

value. They are analogous to static variables, which can only take one value. 

Dimensional constraints form relations built between one geometrical 

component and another non-geometrical entity. The constraint will set the 

attribute to a fixed value, which can only change if the constraint is changed 

or removed. 

A constraint model will only allow variations based on the scope of actions 

allowed by the constraints. In case of conflicting values between parameters 

and constraints, the constraints supersede any parameters that the model 

has. Constraints are also unidirectional, which means that constraints control 

the values of the parameters and not vice versa. A constraint is the parent- 

object (controlling entity) and the constrained attribute is the child (controlled 

entity). 

The midpoint of a line will always remain at the same relative distance of the two extremes regardless of 
the length of the line. 



2.7 Two rectangular shapes showing a parameterization 

schema by endpoints. The figure on the left is unconstrained, 

while the figure on the right has a perpendicular constrained in 

one corner. This constraint will force the two edges meeting at 

that point to be perpendicular to each other. 

2.8. Family of designs produced by the parametric models. 

Note how in the second case the constraint acts to keep both 

edges perpendicular to each other, while the unconstrained 

model has the freedom to take on any variation, including all 

kinds of angles. 



Degrees of freedom of a Parametric Model 

Degree of freedom refers to a specific combination of the parameterized 

components, the existing constraints, and the kinds of transformations that 

they both allow. A parametric model with more parameterized attributes is 

said to have more degrees of freedom. As a consequence it will allow a 

larger family of designs. A parametric model with a high number of 

constraints will have less degrees of freedom limiting the instances that can 

be produced. In simple terms, adding parameters increases the degrees of 

freedom, while adding constraints reduces them. 

A parametric model with a large number of parameterized attributes needs a 

higher and more complex structure to control the number of parameterized 

components. Therefore a specific transformation will require a large number 

of operations to be carried at a specific instance. 



2.9 A parameterization of a rectangular shape by length and 

height attributes. This parametric model has two (2) degrees of 

freedom, allowing rapid regeneration of different design 

instances. The tradeoff is that all the instances are rectangular 

shapes. 

2.10 A parameterized rectangular shape by the coordinate 

endpoints has eight (8) degrees of freedom, allowing more 

variations on the designs. However this model requires a larger 

data structure to store and manipulate the eight variables 

controlling the coordinates of the endpoints. 



Parametric Variations (PV), also known as variational geometry, or 

constrained-based models, is a kind of PM based on the declarative nature 

of the parameters to construct shapes. The designer creates a geometrical 

model, which attributes are then parameterized and constrained, based on 

the desired behavior, thus creating a parameterized modeling schema. A 

parametric modeling schema shows which attributes of a geometrical model 

are parameterized and how the designer can change the values of the 

parameters. 

The idea behind a PV model is that the geometrical components are 

controlled by means of changing the values of the parameters or constraints 

without changing the topology (number of components and their relations). 

The parametric modeling schema creates the master model, which is the 

starting point for parametric variations of the designs. Every time that the 

designer changes a parameter in the master model, a design instance is 

created. The collection of design instances generates a family of design 

solutions based on changes done to the parameterized components. The 

main characteristic of a PV is that the model allows transformations of the 

geometry without erasing and redrawing, in a closed contained system. 



2.1 2 Family of design instances based on parametric variations. 

Here showing six (6) instances of design based on parametric 

variations. 

CARTKUAMEIW 
\ CARTALWDBM 

mnI=rHEmlr 

I M=m 
W m A M E T E U  

2.1 1 A parametric model of a column with a description of the 

parametric attributes. This kind of mode is called a parametric 

variation or variational geometry. 



Parametric Combinations (PC) are composed by a series of parameterized 

geometrical shapes that are put together to create more complex structures 

for design exploration. Also known as associative geometry models, or 

relational models, PC offers another degree of complexity beyond the 

parameterization of the geometrical components, which is done by 

constructing sets of relations between the parameters and the shapes. 

By combining components in different ways, a variety of designs solutions 

are achieved from the initial vocabulary and the rules of combination. The 

strategy is to sub-divide a design into several components and derive 

specific ways in which the components will be combined. For example, a 

column can be divided into three components: base, shaft and capital; where 

each of the components has different possibilities of instantiation. A column 

design is the addition of the three components in an orderly way, first the 

base, then the shaft and finally the capital. A family of designs is obtained by 

combining the different components according to the rules of combination. If 

the number of components is fixed, the family of designs is limited to the 

number of possible valid combinations. 



a. m a  
CONICAL SlEP CONVEX CONCAVE 

STRAIGHT CONVERGING DIVERGING 

STRAIGHT STEP CURVED 

2.1 3 A parametric combination model of a column showing 

components for the base, shaft and capital. 

2.1 4 Family of designs of the column based on the parametric 

combination of the components. 



Parametric Hybrids 

Parametric Hybrid Models are formed from a combination of both parametric 

variations and parametric combinations. Hybrid models take the benefits of 

both types of parametric models and can be very robust for design 

exploration. However, in the real world they require a very solid data 

structure and demand a lot of computational power. 

They are very difficult to construct and the chances of producing a collapse 

of the model increases proportionally to the complexity of the model. In 

some occasions is better to construct and design in two models in parallel, 

one for variations and another for combinations, instead of a hybrid model. 

Nevertheless, a hybrid model can proved usefulness in cases where simple 

parametric models are sufficient for design exploration. 



2.1 5 Family of designs of the column based on the parametric 

hybrid model. The number of possible instances increases in 

proportion to the number of combinations and the 

parameterization of the components. This produces some 

unexpected and interesting results. 



Variants Programming 

The very first approach to parametric design was through automation of 

repetitive tasks and the inclusion of variables to make different designs: a 

script. This piece of computer code, also know as programmed construct, 

contains parameters that are edited to obtain a family of variants of the same 

shape. With the use of simple programming modules, the designer can 

create routines containing repetitive tasks or simple procedures that can be 

used to build large model in small steps. 

Scripting also allows incorporating interaction with the user, in most cases by 

asking the user to input the values of the parameters once the program is 

called, but before is executed. With a little knowledge of programming, the 

user can create its own small routines and use the procedures built in the 

program to generate the geometrical model by encoding a simple set of 

instructions that will be carried in orderly manner. The main limitation is that 

there is no interactive editing on the model once the routine is called and the 

procedure has started. It will not allow editing once the model is created. The 

only way to change the model is to delete the model and rerun the program 

to create a new model with different parameters. Its advantage is that allows 

the creation of a vocabulary of models that can be reused in design. 

Although variants programming is well established as a computational 

procedure and most current software applications have the computer power 

to handle the scripts, architectural offices are still relying on the modeling 

skills of the CAD operators, therefore the models are literally made by hand 

using a mouse and the palette offered by the CAD program. This attitude is 

considered by some people as a waste of computing power, like getting a 

Ferrari and attaching it to a mule to ride in it. Nevertheless, some architects 

are recognizing the benefits of variants programming to be incorporated in 

the design process. For it to be successful it requires two important changes 

of paradigm: 1) Architects and designers must engage in the knowledge of 

computer programming, until new more user friendly programming interfaces 

and languages are develop, which means architects must study and learn 

how to program a machine; and 2) Architects and designers must define 

very well the problem they want to solve before it can be implemented in 

some form of computational format. For the computing point of view, a 

problem well stated is a problem half-coded. 



2.1 6 Design instances from a variants programming model. The 

model in written in a script format that takes inputs from the 

designer and generates an instance of the model based on 

the input values. 



Darcy Thompson and the comparison of 
related forms 

According to Darcy ~ h o m ~ s o n ~ ,  the study of form can be done in two ways: 

descriptively, using verbal language; and analytically, using mathematics. 

For instance, an apple, an orange and a ball, are verbal descriptions of a 

spherical shape. However, such descriptions are limited and ambiguous. 

Thompson argues that analytical descriptions, founded in mathematical 

language, can provide precise definitions of form. For example, the formula 

x2+y2+z2=? is the mathematical description of a sphere, were the sum of 

the squares of three variables equals the square of the radius, and the 

variables indicate the location of the center of the sphere in the Cartesian 

space. 

The method of Cartesian transformations is rooted in analytical descriptions 

of form. Its predecessor is the method of coordinates, which was used to 

translate curves into numbers and then into written data. The data could be 

used to recreate the curves by reversing the process, from data into 

numbers and then into curves (Thompson, 1917). This was mostly used by 

cartographers when making maps at different scales. 

Instead of using one mathematical description of a particular form, 

Thompson's method of Cartesian transformations is concerned with the 

study of form by comparison. Darcy Thompson believed that one form can 

be easily understood by recognizing it as a permutation or deformation of 

another form3. These kinds of deformations are carried out systematically 

and recorded in a step-by-step mode. Thus two or more forms can be 

compared by means of the set of grids. For the morphologist who studies the 

form and structure of organisms, Cartesian transformations provide a visual 

framework to understand how forms are related and what kinds of 

transformations occur in between. 

- - -- -- 

Darcy Thompson, On growth and form. 
This method is founded in the mathematical Theory of Transformations, where two groups are clearly 

distinguished: substitution groups and transformation groups, where former one is discontinuous and the 
latter is continuous. It is the latter group that the theory of comparison of related forms presented by 
Darcy Thompson is founded on. 



2.1 7 Transformations of a circle based on the deformation of 

the underlying Cartesian grid. The grid provides a framework to 

perform transformations while it serves as an analytical 

description of the current instance. (Image reproduced from 

On Growth and Form) 

2.1 8 Examples of the application of the Cartesian 

transformations applied to show how living organisms can be 

compared. (Images reproduced from On Growth and Form) 



Transformations of Shape Grammars 

Shape grammars are algorithmic systems for analyzing and creating designs 

directly through computations with shapes. Shape grammars are powerful to 

the study of form from the strict visual point of view. A very interesting aspect 

of shape grammars, which concerns stylistic change and transformations in 

design, deserves special attention. Any design generated by the grammar is 

considered to be in the language of the grammar; likewise any design that is 

not generated by the shape grammar is not considered in the language of 

the grammar. Each shape grammar generates designs in a language and 

provides different understanding of the theory of languages of designs 

(Knight, 1994). 

Terry Knight's model is based on the premise that a shape grammar will 

generate a unique language of designs; therefore, in order to determine 

whether two designs are from different languages, it is necessary to 

compare the shape grammar of each design. Comparing the shape 

grammars can be used to analyze how languages of designs have evolved 

through history and to study the transformations of a particular design 

language. According to Knight, the design language can be transformed by 

transforming the shape grammar, instead of transforming the designs. This 

is accomplished by three operations performed on the shape grammar: rule 

deletion, rule addition and rule change. A shape grammar will generate a 

body of designs in a language. If a rule is deleted from the shape grammar, 

then the body of designs will be reduced. Likewise, when a rule is added to 

the shape grammar, the body of designs will be expanded based on the new 

added rule4. If a rule is changed, then the transformed shape grammar will 

generate different designs than the original shape grammar. In any of the 

three cases, the corpus of design will change whereas the new shape g 

grammar will generate more, fewer or different designs than the original 

shape grammar5. 

- - - -- 

It is important to clarify that rule addition does not necessarily mean that the design will expand, or that 
a rule deletion will decrease the corpus of designs. A rule added to the shape grammar might limit or 
expand the corpus (body?) of design. A rule that is deleted from the grammar can also expand or limit the 
corpus (body') of design. The main argument is that designs will be transformed as a result of 
transformations in the shape grammar. 

It is important to note that the rule change can be considered as be performing a rule deletion and rule 
addition at the same time. 



2.1 9 A shape grammar and d derivation. 

2.20 Transformation of the rule and the corresponding derivation resulting in a 

new design language. 

2.21 Another transformation of the rule and the corresponding derivation 

which creates new design language 

2.22 A derivation of the alternative application of the rules of the first two 

shape grammars. Note how the final design corresponds to the third step on 

the previous derivation. Although both designs are identical, they are of 

different languages since they were generated from two different shape 

grammars. 





Chapter 3 

Symmetry 





Chapter summary 

This chapter introduces the concepts of symmetry shows how it is applied to 

the single rod groups. Starts by presenting the fundamental concepts of the 

basic symmetry groups and shows how they can be used to build 

descriptions for complex shapes with high levels of symmetry. 



Symmetry 

Symmetry as a concept is understood in more than one way. Symmetry is 

recognized as a property of an object being well proportioned and balanced 

where its parts are somewhat corresponding in shape and size. It is also 

understood as a feature of living organisms where there is evident 

correspondence of constituents arranged in two opposite sides of an 

imaginary line6. Yet there is a third way in which symmetry is defined is the 

result of an arrangement in which regular patterns seem to emerge7. All of 

the former general notions of understanding symmetry are right in their own 

views, but having more than one definition for something only leads to 

confusion and ambiguity. Two fundamental concepts emerge from the 

former definitions of symmetry: the idea of relative equality and the idea of 

regularity. We will come back to these two concepts later. 

In mathematics symmetry is defined as a characteristic of geometrical 

shapes such that when a transformation8 is performed on the shape it does 

not appear to change. If a square is rotated 90 degrees with respect to its 

center, it will appear that no rotation took place. As a result, when a regular 

shape is subject of a Euclidean transformation, it looks the same visually, 

apparently it did not change. Therefore symmetry is associated with some 

notion of regularity where change is not evident. 

6 This is known as bilateral symmetry, where similar parts are arranged in two sides of a median axis or 
median plane. This is more evident in biological specimens and living organisms 
7 The idea of harmony and symmetry is best described in music, where rhythm creates patterns 
8 By transformations we mean Euclidean transformations 



3.1 An object with no symmetry shown with a bilateral 

symmetry composition. Bilateral symmetry is the most basic 

class of symmetry. 



Relative Equality and Regularity as the basis 
of symmetry 

According to Shubnikov and Koptsikg, relative equality is the first notion 

necessary to better understand symmetry. For example, the right hand is 

relatively equal to the left hand. They are equal in the sense of their 

constituents, since both have 5 fingers. However a right hand and a left hand 

can not be superimposed to make a perfect match without a reflection over a 

mirror plane. The hands are relative to each other with respect to the mirror 

plane, thus the equality of both hands dependent on the mirror plane. Both 

hands are equally related through its constituents, the five fingers, and their 

relative position with respect to an imaginary mirror plane. 

Regularity is the second fundamental concept of symmetry. By having the 

same number of constituents both left and right hands are considered 

regular, at least at the topological level. Other way of interpreting regularity is 

to divide a shape into equal parts without any remainders. A square that is 

divided into four smaller squares shows that the smaller squares are as 

regular as the larger square. .Furthermore, the idea of regularity is enhanced 

if the little squares are recursively subdivided into smaller squares. The 

predictable nature of the created pattern is the most important notion of 

regularity, which is fundamental to the understanding of symmetry. 

Equality and regularity can be found in different ways. A regular shape that 

can be subdivided into parts shows evidence of emergent patterns that are 

either regular and or relatively equal. If a square is subdivided into smaller 

squares regular patterns emerge. If the square is subdivided into triangles, 

then the triangles are relatively equal to each other with respect to Euclidean 

transformations. This essential idea of relative equality and regularity is the 

basis for symmetry or a theory of symmetry. 

9 'Symmetry in Science and Art" 
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3.2 A non-symmetrical object used to generate two kinds of 

symmetrical compositions. Symmetrical compositions are 

generated by translation and rotation. All objects in the 

composition share the two main characteristics of symmetry: 

relative equality and regularity. 



Finite Symmetry 

The previous chapter introduced the idea of relative equality and regularity 

as the basis of symmetry. Relative equality is the man characteristic of 

shapes that belong to the finite symmetry group. Finite symmetry is based 

on rotation and reflection transformations and is characterized for having a 

central point or central axis from which the transformations occur. 

The most basic case of finite symmetry is found on the bilateral symmetry 

where two shapes are relatively equal to each other by means of the mirror 

plane. Mirror symmetry is denoted with the letter M, therefore any 

composition which has one mirror plane is denotes as having symmetry M. 

A classical example of bilateral symmetry is found on the figures of the 

Rorschach Inkblot Test1O. Another common example is a painting game 

where figures are created by randomly pouring ink on paper and folding it in 

half. When the paper is unfolded a figure with a perfect symmetry axis 

appears. 

Bilateral symmetry is also present in most living organisms, in particular 

those capable of motion. The limbs are present in equal numbers and sizes 

to both sides of an imaginary central axis. Crabs, insects, mammals, etc, 

have all bilateral symmetry. 

Some cases might include more than one mirror. Kaleidoscopes are perfect 

examples of this kind of symmetries, where a figure is created with multiple 

mirrors. In this case, the particular object is said to have more than a single 

mirror 

10 Named after Swiss psychiatrist Norman Rorschach, the Rorschach inkblot test is a projective test 
practiced to measure emotional and intellectual functioning of an individual. Beyond the controversy of 
the validity of the test or its results, what is important to the scope of our work is that the inkblots are 
perfect examples that illustrates bilateral symmetry. 



3.3 Composition s with a finite symmetry. In this case the 

composition has two planes of symmetry, one vertical and one 

horizontal. 



Point Symmetry 

Point symmetry is the second class of the finite symmetry group. In point 

symmetry the relative equality occurs by means of rotations, reflections or 

both. Objects rotate with respect to a fixed point andlor are reflected from 

mirror lines that go through the same point. Therefore point symmetry's main 

characteristic is the presence of an identifiable central point. 

Let us take a closer look at figures with rotations only. Rotations can occur at 

any interval between 0 and 360 degrees. The number of rotations is multiple 

of 360 denoted by the letter N, and indicates how many rotations occur 

before the figure can be aligned with itself. A design with point symmetry is a 

design that can be rotated 360lN degrees in order to be aligned with itself. 

Each rotation of 360lN degrees makes the figure identical to the original 

design. Since this can be done N times before the figure completes a full 

rotation, the symmetry of the figure is N. The number corresponding to N is 

calculated by dividing 360 by the number of degrees that will have to be 

rotated to obtain the same figure. For example, design that has symmetry 

N=3 will have 3 rotations of 120 degrees corresponding to 36013. A design 

that has symmetry N=5 will have 5 rotations of 72 degrees. Likewise a 

design with a symmetry of N=4 will have four rotations of 90 degrees to align 

the shape with itself. This kind of symmetry is known as cyclic symmetry and 

it can also be denoted as "CN" where the subscript N indicates again the 

number of rotations. Cyclic symmetry has a sense of direction; therefore 

rotations can occur either clockwise or counterclockwise. 

When rotations are combined with reflections, another class of symmetry 

emerges, which unlike the cyclic symmetry, it has no sense of direction. 

Again, the presence of a mirror plane is denoted with the letter M. A square 

for example, has four rotations, but at the same time it has four reflections, 

one vertical and one horizontal, and two along its diagonals. This particular 

example has a symmetry which is denoted by the formula NxM or 4M, where 

N indicates the number of rotations and M indicates the presence of mirror 

planes. Other notations call this symmetry group dihedral or DN, therefore an 

object with 4M symmetry is exactly the same as a D4. 



3.4 Composition with cyclic point symmetry. Note the rotation 

effect produced by the form and relative position of the three 

triangles. 

3.5 Composition with dihedral point symmetry. Mirror planes 

eliminate the rotational effect. 



Axial Symmetry 

Axial symmetry is a class of symmetry that groups objects in 3D space. It is 

also known as 30 Symmetry or 30 Point Symmetry, since this class includes 

all 3D objects that have a singular point or singular axis. It is the three 

dimensional analogous to the 2D point symmetry, therefore the only 

transformations possible are rotations and reflections. 

In most three dimensional shapes, rotations occur with respect to an axis, 

denoted as A. Analogous to the 2D point symmetry, in three dimensions N 

indicates the number of rotations that occur before the shape is aligned with 

its original position. 

While rotations take place with respect to an axis, reflections in 3D will occur 

with respect to a plane. Mirror planes are of two types: 

1) Mirror planes that contain the axis A, denoted with M; and 

2) Mirror planes perpendicular to the axis A, denoted with lowercase 

m. This mirror plane is also called transverse mirror plane. 

While there are some kinds of shapes that have more than one axis, like 

regular polyhedrons and some kinds of crystals, they will not be included in 

the following discussions. 



3.6 Three dimensional object showing axes. In 3D, rotations 

occur with respect to these axes, while reflections are 

performed through the mirror planes that contain them. The 

cube has 3 axes and twelve mirror planes. This gives the cube 

symmetry of 48, which means that 48 transformations will align 

the cube with itself. 



Shapes with axial cyclic symmetry: A*N 

Shapes with axial rotational symmetry that will only remain the same under 

rotational transformations along the rod axis belong to this first class. Any 

other kind of transformation will change the visual appearance of the shape. 

In this category we find regular pyramids which base is a closed polygon 

with cyclic symmetry on the plane. 

The notation A*N indicates that the shape has a single main axis from which 

rotations occur and the number of rotations. It is assumed that no reflections 

exist. Other kinds of shapes that belong to this category are regular 

pyramids with alternating open faces. 

A characteristic of axial cyclic shapes is that they have a direction of rotation 

with respect to the main axis; therefore the rotation can be clockwise or 

counterclockwise. 



3.7 Shape with symmetry A*2 

3.8 Shape with symmetry A*4 



Shapes with axial dihedral symmetry: A*N*M 

In this second group we find shapes that have axial rotation as well as a 

mirror symmetry plane that contains the axis. Regular pyramids made from 

dihedral 2D shapes and the like belong to this class. The symmetry planes 

pass through the central axis, making both sides relatively equal with respect 

to the mirror plane. 

The notation A*N*M indicates that the shape has a single main axis from 

which rotations occur. N indicates the number of rotations before the shape 

completes a full 360 degree rotation and M denotes that there are mirror 

planes that pass through the main axis in number equal to N. 

In this case the shape will remain unchanged under axial rotations, as well 

as reflections through any of the mirror planes. 



3.9 Shape with symmetry A*3*M 

3.1 0 Shape with symmetry A*4*M 

3.1 1 Shape with symmetry A*5*M 



Shapes with top-down symmetry: A*Nfm 

This third class denotes shapes with axial cyclic symmetry that have no 

distinction on both ends of the main axis. In this case there are two kinds of 

transformations that will result in similar shapes: rotations with respect to the 

main axis, and reflections on a mirror plane that is normal to the main axis. 

This plane is also known as a transverse plane. 

The notation A*N*m indicates that the shape has a single main axis from 

which rotations occur. N indicates the number of rotations that occur before 

the shape becomes aligned with itself, and m denotes the presence of a 

mirror plane normal to the main axis, which makes the top and bottom of the 

shape relatively equal. These kinds of shapes are said to have a cyclic and 

top-down symmetry, and they have a rotational direction. 

These kinds of shapes are commonly found in special machinery. As well as 

some kinds of turbines and the like, which all belong to this class of 

symmetry. Any shape that has cyclic axial symmetry which is mirrored on a 

transverse plane will result in a shape with top-down symmetry. 

Other options are cyclic 2D shapes that are extruded along the main axis. In 

this case the transverse plane is more implicit and less evident to see. 



3.1 2 Shape with symmetry A*2*m 

3.1 3 Shape with symmetry A*4*m 

3.1 4 Shape with symmetry A*4*m 



Shapes with top-down finite dihedral 
symmetry: A*N*M*mf 

This class denotes shapes with axial dihedral symmetry with a transverse 

mirror plane. Three kinds of transformations will result in similar shapes: 

rotations with respect to the main axis, reflections on axial mirror planes, and 

reflection with respect to the transverse plane. 

The notation A*N**M*~' indicates that the shape has a single main axis 

from which rotations occur. N indicates the number of rotations that will 

make the shape aligned with itself, as well as the number of axial reflections. 

M indicates the presence of axial mirror planes which will make the shape 

with dihedral symmetry. m denotes the presence of a mirror plane normal to 

the main axis, which makes the top and bottom of the shape relatively equal. 

The superscript f indicates that the shape has a finite top down symmetry, 

which is distinct from the kinds of shapes that will go endlessly along the 

main axis. 

By-pyramids and by-cones are shapes that belong to this class, however 

there is no distinction if the shapes a joined by their base or their top vertex. 



3.1 5 Shape with symmetry A*3*M*m 

3.1 6 Shape with symmetry A*4*M*m 

3.1 7 Shape with symmetry A*5*M*m 



Shapes with top-down infinite dihedral 
symmetry: A*N*M*mi 

This class denotes shapes with axial dihedral symmetry with a transverse 

mirror plane; however they have a different flavor to them. Similar to the 

previous class, there are three kinds of transformations will result in similar 

shapes: rotations with respect to the main axis, reflections on axial mirror 

planes, and reflection with respect to the transverse plane. 

The notation A*N**M*~' indicates that the shape has a single main axis from 

which rotations occur. N indicates the number of rotations that will make the 

shape aligned with itself, as well as the number of axial reflections. M 

indicates the presence of axial mirror planes which will make the shape with 

dihedral symmetry. m denotes the presence of a mirror plane normal to the 

main axis, which makes the top and bottom of the shape relatively equal. 

The superscript i indicates that the shape has an infinite top down symmetry, 

which means that the shape could be extended infinitely along the main axis 

without changing its symmetry. 

Regular prisms and 2D dihedral extrusions are shapes that belong to this 

class. 



3.18 Shape with symmetry A*3*M*m 

3.1 9 Shape with symmetry A*4*M*m 

3.20 Shape with symmetry A*5*M*m 



Shapes with continuous single rotation along 
the rod axis (twist): A*N*M*R 

These shapes are generated by the continuous translation and rotation 

along the main axis. Twisted shapes belong to this class and two kinds of 

transformations will result in the same shape: rotations with respect to the 

main axis and a 180 degree rotation of the main axis. 

The notation A*N*M*R indicates that the shape has a single main axis A 

from which rotations occur. N indicates the number of rotations that will 

make the shape will be self aligned. M indicates the presence of axial mirror 

planes which will only apply to the initial shape, since any displacements 

along the axis A will result in a rotation. R indicates the total rotation, which 

can be expressed as a parameter or a fixed number. There is no top-down 

symmetry trough a transversal mirror plane, but a rotation of 180 degrees of 

the shape and the axis will align the shape with itself. 

Twisted shapes belong to this class, which makes them have a direction with 

respect to the main axis. They can twist in two directions: clockwise or 

counterclockwise. 



3.21 Shape with symmetry A*4*M*R(90) here shown two directions of 

rotation: clockwise and counterclockwise 

3.22 Shapes with symmetry A*4*M*R 



Shapes with continuous single rotation along 
the rod axis (twist): A*N*M*m*R 

Theses shapes are generated by the continuous translation and rotation 

along the main axis, with an additional transverse mirror plane. 

The notation A*N*M*m*R indicates that the shape has a single main axis A 

from which rotations occur. N indicates the number of rotations that will 

make the shape will be self aligned. M indicates the presence of axial mirror 

planes which will only apply to the initial shape, since any displacements 

along the axis A will result in a rotation. An m indicates that there is a top- 

down symmetry along a transverse mirror plane located at the middle point 

of the main axis. R indicates the total rotation, which can be expressed as a 

parameter or a fixed number. 

Twisted shapes belong to this class, which makes them have a direction with 

respect to the main axis. They can twist in two directions: clockwise or 

counterclockwise. 



3.23 Shape with symmetry A*4*M*m*R(90) here shown in 

3.24 Shapes with symmetry A*4*M*m*R 



Shapes with continuous double rotation along 
the rod axis (double twist): A*N*M*RR 

This is an interesting class of shapes since they can have more than one 

description. The symmetry description of the resulting shape can be different 

from the description of how the shape is generated. In this case I am inclined 

to give preference to the way the shape is generated over the description of 

the resulting shape. 

Just like the generation process of the single rotation shapes, double rotated 

shapes are the result of a shape that is translated along the main axis and at 

the same time is rotated with respect to the main axis. However one of the 

shapes is rotated in a positive direction and the other shape is rotated in the 

negative direction; creating a clockwise shape and a counterclockwise 

shape. 

The notation A*N*M*RR indicates that the shape has a single main axis A 

from which rotations occur. N indicates the number of rotations that will 

make the shape will be self aligned. M indicates the presence of axial mirror 

planes if the initial shape has dihedral symmetry. RR indicates that there are 

two rotations one positive and one negative. One important distinction that 

will be presented later is that two shapes can involve Boolean operations. 

There is no top-down symmetry trough a transversal mirror plane. However, 

if the rotation and counter-rotation go through more than one cycle where 

the two shapes are aligned, the resulting shape will have emergent top-down 

symmetry. This will make a distinction on the description of the shape, which 

never had a transverse mirror plane m to begin with. 

Another interesting feature of these kinds of shapes is that a left-right 

symmetry will emerge as a result of the equal values of the two opposite 

rotations, just as if M planes existed before. 



3.25 Shapes with symmetry A*4*M*RR 



Shapes with continuous double rotation and 
Boolean addition: A*N* M*R\,, 

In computational geometry, when two shapes that overlap are involved, 

there are three Boolean operations that can be performed. A Boolean 

addition is the first of these three operations. In this particular sub-class, two 

shapes with opposing rotations will be added to form a final shape. 

The notation A*N*M*RR indicates that the shape has a single main axis A 

from which rotations occur. N indicates the number of rotations that will 

make the shape will be self aligned. M indicates the presence of axial mirror 

planes if the initial shape has dihedral symmetry. RR indicates that there are 

two rotations one positive and one negative, both of equal magnitude. The 

(ba) subscript will indicate that a Boolean addition will complete the 

operation. 

Some emerging properties could include dihedral symmetry planes M, and 

transverse planes m if rotations align more than once. 



3.26 Shapes with symmetry A*4*M*RR 

3.27 Shapes with symmetry A*4*M*RR and Boolean addition. 

Note the emergent to-down symmetry. 



Shapes with continuous double rotation and 
Boolean intersection: A*N*M*RR(,,, 

This particular subclass is similar to the previous but instead of a Boolean 

addition, it involves a Boolean intersection. A Boolean intersection is the 

resulting shape that contains only the common area of the two opposite 

rotating shapes. 

The notation A*N*M*RR indicates that the shape has a single main axis A 

from which rotations occur. N indicates the number of rotations that will 

make the shape will be self aligned. M indicates the presence of axial mirror 

planes if the initial shape has dihedral symmetry. RR indicates that there are 

two rotations one positive and one negative, both of equal magnitude. The 

(bi) subscript indicates a Boolean intersection that completes the operation. 

Just like the shapes with Boolean additions, emerging properties could 

include dihedral symmetry planes M, and transverse planes m if rotations 

align more than once. 



3.28 Shapes with symmetry A*4*M*RR and Boolean intersection. 

3.29 Shapes with symmetry A*4*M*RR and Boolean intersection. 

Note the emergent top-down symmetry 





Chapter 4 

Gaudi Columns 





Chapter summary 

This chapter presents a case study on the columns of the Sagrada Familia 

and shows how Design Procedures are applied to the generation of the 

family of columns of the Sagrada Familia plus an infinite number of new 

designs. 



The Sagrada Familia 

Located in Barcelona, Spain, The Expiatory Temple of the Sagrada Familia 

was designed by the Catalonian Architect Antonio Gaudi between 1883 and 

1926. Gaudi worked for 43 years in the temple and transformed what was to 

be a neo-gothic church into a masterpiece of architecture with no 

precedents. 

During this period, Gaudi developed a unique language based on the 

application of simple rules to form complex geometry, and the use of three 

ruled surfaces: The helicoids, the hyperboloid and the hyperbolic paraboloid. 

The singular character of Gaudi's architecture in the Sagrada Familia 

represents the synthesis of his observations of nature translated into 

geometrical abstractions 





The columns of the Sagrada Familia 

Gaudi initially proposed a helicoidally shape for the columns, like the 

salomonic columns from the renaissance. However, he considered that the 

single twist was visually inappropriate, since it produced the perception of a 

weak column that could be squashed or deformed. The visual imperfection 

of the single twist column bothered Gaudi for a number of years, until he 

resolved to use a double rotated technique where two opposite twisting 

columns will cancel each other. This allowed the visual asymmetries of the 

single twisting column to disappear. 

Gaudi's novel solution consisted in the use of two opposite rotations of the 

same shape, once clockwise and another counter-clockwise, and keeping 

the common parts of the two volumes, like in a Boolean intersection. This 

novel solution, which has no precedents in architecture, was used to 

generate the shapes of all the columns in the interior of the Temple. It, is the 

result of two continuous years of work and experiments of Gaudi's 

interpretation of the helicoidally growth present in trees and plants. 



4.2 Generation method of the Sagrada Familia columns. Here 

shown the generation of the column of 4. A square shape is 

rotated in two opposite directions by 22.5 degrees. The 

Boolean intersection of the superimposed shapes produces the 

column of four 



Design Procedure 

The work started by the reconstruction of the columns knots of the lateral 

nave of the Sagrada Familia. The rectangular knot was selected as the main 

model for the parametric exploration. The first challenge was to find a 

suitable modelling procedure that will yield an accurate representation of the 

knot. After a series of experiments, I found that using a bottom (initial) and 

top (final) shapes of the knot, and filling the space in-between with a surface 

fitting function, the resulting form will generate a shape that was visually 

equivalent to the original plaster model by Gaudi. 

The first stage was to create the top and bottom figures in a wireframe 

model, which is called the parametric skeleton. A surface fitting function was 

applied to each pair of top-bottom shapes producing both the rotation and 

counter-rotation shapes. The two generated shapes were superimposed and 

used to perform the Boolean intersection that generates the original shape. 

Although this procedure of blending between two pairs of shapes'was not 

described by Gaudi, nor any other researchers and scholars, the resulting 

columns were not only geometrically accurate, but also visually correct when 

compared to the original Gaudi models. 



4.3 Parametric Skeleton. Here showing two pairs of initial 

shapes, one for the rotation and the other for the counter- 

rota tion. 

4.4 Surface fitting functions create the rotation and counter- 

rotation shapes. 

4.5 Boolean intersection of the two superimposed shapes 

generates the rectangular knot. 



Parameterization of the column 

In the parametric skeleton there are three types of geometrical components: 

the axis of the column represented by a line, two parallel planes where the 

top and bottom shapes will be located, and the top and bottom shapes. Each 

surface procedure is composed of two initial shapes one on the top and one 

for the bottom, for a total of 4 initial shapes. The parameterization schema 

only constrains the location of the initial shapes to the top and bottom 

planes. The planes must be normal to the axis line. The shapes are not 

constraint and are free to take any kind of geometrical and topological 

transformations. 

The parametric model allows for variations on the values of the main axis as 

well as the dimensions of the initial shapes, and the rotation and counter- 

rotation angles corresponding to the opposite rotated shapes. 

If the two shapes are squares and the angles are 22.5 degrees, the result 

will be a square column. If the two shapes are changed into rectangles, and 

the values of rotation and counter-rotation is 45 degrees, then the 

rectangular knot is generated. 



4.6 Transformation of the rectangular knot into the square 

column done by changing the initial shapes from rectangles to 

squares, and the angle of rotation, from 45 degrees to 22.5. 



Transformations on the columns 

The first set of transformations was done to the top and bottom shapes, 

starting with variations of the proportions of the lower rectangles, to 

variations on the angles and finally with variations on the four initial shapes. 

The height of the column, as well as the rest of the parameters remained 

unchanged through these set of operations. An important discovery was that 

the topology of the final column would be altered as a result of changing the 

parameters of the initial shapes, even though the topology of the all the 

geometrical components of the model remained unchanged. 

Different variations of the design obtained from the same parametric model. 

Other set of transformations included changes in the topology of the 

primitive shapes. The parametric model allowed topological changes and still 

maintained the integrity of the surface fitting procedures without breaking the 

model, or causing geometric problems. 



4.7 Parametric variations of the lower shapes 

4.8 Parametric variations of lower and upper shapes 

4.9 Topological transformations of shapes 

4.1 0 Topological transformations and displacement of the 

initial shapes 



Comparison with original designs 

A natural question for a generative procedure of any kind is to somehow 

evaluate the produced results. Performance driven processes is one of the 

most widely accepted methods of evaluations for designs when a specific 

set of criteria is to be met. Therefore the procedure might iterate between 

different solutions to find an optimal result. On the other hand, qualitative 

evaluation of designs is more complex. 

Based on this premise, I propose two systems for evaluation of the designs 

generated by the parametric model. Each evaluation system is based on a 

general proviso for aesthetic evaluation. The first proviso determines if a 

design is in the language of the original designs, and the second proviso 

distinguishes which designs where made by Gaudi and which are new. Each 

new design is to be evaluated intrinsically with respect of the two evaluation 

provisos. This kind of evaluation tends to be objective in the sense that the 

criteria are determined before the instances of the model are generated, 

therefore there is no discrimination. 

The first step was to determine if the procedure was accurate. For this a 

visual comparison between the original designs and the design procedure 

was done. Then measurements taken from both models were compared. As 

a result no visual discrepancies and no measurement differences were 

found when both models were compared. 



4.1 1 Visual comparison between the design procedure, the 

rapid prototype from the computer model and the original 

design by Gaudi. No visual or measured discrepancies were 

found between the compared models. This proved that the 

design procedure is accurate and valid. 



Evaluation of the new designs 

The evaluation consists in determining if a new design generated from the 

parametric model is in the language of Gaudi. We define that a shape is in 

the language of Gaudi if: 1) The shape is generated by the same procedures 

used by Gaudi; and 2) The generated shapes and the original from Gaudi 

produce similar results when analyzed. The parametric model is based on 

the same procedure that Gaudi used to generate the original columns 

therefore it can be assumed that all shapes generated by the parametric 

model are in the language. 

The second test is to determine the nature of the resulting shapes and 

compare them with the original columns. The original columns made by 

Gaudi consisted in rotating shapes that produced ruled surfaces. It is widely 

know that Gaudi made extensive use of ruled surfaces in different designs. A 

ruled surface is defined by a curved shape formed with straight lines (ruling 

lines) and that has a non-positive Gaussian curvature when is analyzed. A 

sample of the generated shapes were tested to determine if they where 

made with ruled surfaces. All the generated shapes that where tested 

showed that they had surface continuity in each face of the shape , all the 

surfaces had ruling lines making them ruled surfaces such as the original 

Gaudinian designs, and finally the analysis of Gaussian curvature was either 

negative value or zero. 



4.1 2 Evaluation of the rectangular knot showing the three steps 

for evaluation: 1 ) Surface continuity; 2) presence of ruling lines; 

and 3) Gaussian curvature analysis. 



An infinite catalog of columns 

The design procedure allowed the generation of all the original design by 

Gaudi plus an infinite number of new designs. All design instances were 

directly generated by the design procedure with little effort. While the 

parametric variations produced interesting results, some of them very similar 

to the original design, the most unexpected yet stunning where produced 

when the initial shapes where changed. 

The initial shapes included closed regular and irregular polygons, polylines, 

splines, and any combination of them. Two important restrictions on the 

initial shapes must be considered: I) the initial shapes must be closed 

shapes; and 2) the initial shapes must not be self intersecting shapes. Any 

contravention of the aforementioned descriptions will result in a non- 

compliance of the procedure, since the Boolean intersection requires two 

closed and well formed shapes. Since any closed shape can be used as one 

of the initial shapes, the possible number of designs that can be generated 

goes to infinity. 



























Chapter 5 

Generative 
Symmetry 



Chapter summary 

This chapter expands on the knowledge of 3D symmetry group's 

descriptions and presents a design procedure to generate complex shapes 

based on single rod symmetry. The design procedure also generates a 

description of the symmetry group. 



Ambiguity of 3D shapes with non regular symmetry 

Current classifications of symmetry for 30  shapes have two major setbacks 

that make them ambiguous. Two or more different shapes can be classified 

under the same symmetry group, and consequently one shape can be 

classified in more than one symmetry group depending on how we look at it. 

This creates ambiguity. The basic problem is that current symmetry 

knowledge does not distinguish between shapes of single symmetry. It only 

says that all the shapes have symmetry of 1, therefore no kind of 

transformations will generate the same shape. However there are distinct 

features that are visually evident in two different shapes that according to the 

current conventions of symmetry are from the same symmetry group. This 

creates a particular problem when we are trying to differentiate between two 

non-symmetrical shapes. 

I propose a model that expands on the knowledge of symmetry groups and 

provides a classification that distinguishes the most discrete features. When 

you have regular shapes it is easy to classify in a finite group of symmetry 

types and leave the ones that don't have any symmetrical features or that 

don't have any regularity, or that don't have any recognizable features that 

can be categorized as identical, to put them in a category simply called that 

they don't have symmetry or that their symmetry is just 1 (identity) 

However if we look at symmetry not as the property of the resulting shape, 

but as the description of the generative process/procedure we should be 

able to make clear distinctions of two similar shapes., therefore the 

symmetry of a shape is not a property of the shape but a description of the 

generative process. 



Description of 3D shapes with non regular 

symmetry 

Here is a list of the descriptions of the symmetry groups in 3D: 

A + denotes the presence of a single rod axis 

N + denotes the symmetry level of the initial shape 

M + denotes the presence or not of a mirror plane along the rod axis 

m + denotes the presence of a transverse mirror plane normal to the axis 

R' + denotes the presence or continuous axial rotation 

R- + Denotes the presence of a counter rotation or opposite rotation. 

D 3 Denotes dilation symmetry along the rod axis 

B(a) + Denotes Boolean addition 

B(i) + Denotes Boolean intersection 

S(i) + Denotes that a shape was generated with a special procedure 



Symmetry as generative procedure for design 

Descriptions can also be used as generative process for design. In the case 

of the 30 single rod symmetry groups, a description serves for the purpose 

of determining which operations will be used as parameters and will also 

indicate the value of the variables. Shapes used as inputs will remain as a 

separate procedure, therefore it will only be considered as an input. In case 

of discrepancy between two descriptions, the designer may use whichever 

he whishes; however I would give preference to the generating symmetry 

and not the description. 
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Chapter 6 

Twisted 
Towers 





Chapter summary 

This chapter presents a case study on the generation of twisted shapes for 

high-rise buildings. 



Twisted Towers 

Twisted towers present a series of examples of the use of Design 

Procedures for the generation of twisted high-rise buildings. 

Here are 
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Conclusions 



Conclusions 

From a computation point of view, Design Procedures can be 

understood as a search-problem in a very large space of possible 

solutions. This task can be very expensive even with the most 

advanced search algorithms. On the other hand, a design procedure 

offers designers a powerful way to quickly generate parametric 

models that they can use for design exploration. Search for solutions 

in a large space of possibilities can be very provocative for a 

designer; another approach is to implement intermediate solutions 

where design procedures are constrained to produce certain designs 

only. These kinds are defined as deterministic design procedures. 

Parametric models have the general purpose of providing a 

framework for high-level manipulation of geometrical components 

that perform transformations during the design process. Among the 

advantages of using those in design are: 

1. The facility to perform changes in geometrical components 
without erasing a redrawing, allowing flexibility for design 
exploration and refinement. 

2. Increased reusability of design solutions by encapsulation. 
Complex geometrical models can be placed into basic units 
that are treated as primitive entities. 

3. Added rigor to design development, since a properly 
constrained parametric model allows some types of 
transformations, while restricting others. 

4. Real time feedback when changes in the parametric model 
affect geometrical components or other parts of the design. 

Design Procedures brings to the surface an important question 

concerning the validity of designs with respect to the design 

language. As previously mentioned, variations of a parametric model 

create instances which are grouped in a category named a family of 

designs. By simple analogy, a design procedure creates families of 

parametric models, in other words, families of families with a greater 



number of design instances. This matter calls for the evaluation of 

the parametric models as well as the instances. 

Another important aspect to consider is the evaluation of the design 

instances. Evaluations can be one of three types: 1) Performance 

based; 2) Aesthetic; and 3) Compliance. In performance based, a 

design instance is evaluated with respect an ideal result, and the 

model is modified to optimize a solution with respect from the ideal 

one. Aesthetic evaluation will determine if an instance satisfies a set 

of values determined by the designer. Compliance asserts if a design 

instance fulfills a predetermined set of requirements. Any of the 

aforementioned criteria can be implemented in a design procedure 

for evaluation of the design instances. The evaluation can be 

interactive in real time or afterwards. 

Design Procedures are inherently non-deterministic and boundless; 

therefore it is impossible to foresee all the potential results. This is 

the major assets that a generative system can offer a designer, in 

particular during the initial stages of design where multiple solutions 

are explored almost simultaneously. The most difficult task that 

remains to be solved is how to overcome the initial setup, which can 

a time consuming but worthwhile enterprise. Perhaps a careful and 

accurate analysis of the pre-conditions of setup would provide some 

solutions in this regard. 

Design Procedures offers a novel solution to expand the universe for 

exploration of design instances, in particular as a model for 

generating parametric designs. Design procedures, which are based 

on a general course of action followed by a designer, is independent 

of the geometrical shapes and their representation. As a parametric 

models generation system, the possibilities for application of the 

design procedures are absolutely boundless. 
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Source Code 



'-------------------- .................... PARAMETERIZED BUILDINGS===================== 
'Draw the Initialshape of the building profile 
'The initial shape is in 2D closed profile 
'Run the script after your profile is drawn 
'Script will prompt you to select your profile 
'The script will prompt the user to input VALUES for the PARAMETERS 
'The script will prompt the user to select the OPERATIONS to be used 
'The script will prompt the user if HlGH ORDER OPERATIONS will be used and if 

they are required, the script will ask the user to select which ones 
'The script will run and generate the SOLUTIONS and the required OUTPUTS 
'---------------------------------------------------------------- ................................................................ 

'---------------------------------------------------------------------- ...................................................................... 
--------- --------- 
'PARAMETERS: 

- -- --- ----- -------- ----------- 

--------- --------- 
'There are four(4) types of PARAMETERS used: 

VARIABLES = that contain numerical VALUES for the PARAMETERS 
' SHAPES = are used as input PARAMETERS for CONSTRUCTION PROCEDURES 

OPERATIONS = transformations on the SHAPES both geometrical and euclidean 
' HlGH ORDER OPERATIONS = complex OPERATIONS based on multiple applications of ' different simultaneous OPERATIONS, RANDOMNESS and NON-LIENARITY 
'---------------------------------------------------------------------- ...................................................................... 

--------- --------- 
'Detailed description of the PARAMETERS 
'PARAMETER TYPE is between brackets 
'--------,,------------------------------------------------------------ ...................................................................... 
--------- --------- 
'VARIABLES: 
'BuildingBuildingHeight = [distance] total BuildingHeight of the building obtained by 
multiplying 
' the FloorOffset by FlwrNumber(measured in feet and inches) 
'FlwrOffset = [distance] flwr to floor BuildingHeight (measured in feet and inches) 
' this is and input PARAMETER **INPUT" 
'FloorNumber = [integer] total number of floors 
' this is an input PARAMETER **INPUTw 
'RotationAngle = [angle] positive rotation of the flwr plates (measured in degrees) ' If TWIST==YES rotate SHAPE with RotationAngle 
'CounterRotationAngle = [angle] negative rotation of the floor plates 
' (measured in degrees) apply only if boolean BoubleTwist PARAMETER==YES 
' !!If DoubleTwist==YES rotate SHAPE with CounterRotationAngle * -1 !! 
'VerticalScale = [factor] scale factor used for tapering 
' (number between 0 and 100) 
' this is an input PARAMETER "INPUT" 
' 100 means the scale is the same at the top (no taper); ' 0 means full tapering until reach a point (pyramid) ' 50 means the to shape is half scale 
'Rotationoffset = [distance] distance between the center of the building and the ' center of rotation; default value is ZERO 0 

If the value is 0 then they are aligned 
this PARAMETER requires two parts: 1) a boolean to check if the offset 

' exist; 2) the value of the offset by X and Y coordinates 
' this is an input PARAMETER "INPUT" 



'CounterRotationOffset = [distance] distance between the center of the building 
' and the center of counter-rotation 
' just like the previous PARAMETER 
' (if the value is 0 then they are aligned) 
' This PARAMETER exists only if DoubleTwist==YES 
'ScaleX = [factor] scale factor used for the 'x' axis only 
'ScaleY = [factor] scale factor used for the 'y' axis only 
'ScaleZ = [factor] scale factor used for the 'z' axis only 
'Quadrant = [integer] vaule of 1 through 4 used to select the portion of the 
' Initialshape in case there is a LEFT-RIGHT or FRONT-BACK TopDownSymmetry 
'CoreArea = [number] total area of the core 
'FloorCoreArea(i) = [number] area of the core in each floor (i) indicates each 
' floor 

'SHAPES: 
'MainAxis = vertical line normal to the plane of the INITIAL SHAPE The length 
' of the line is the same as the BuildingBuildingHeight 
'RotationAxis = {dependency PARAMETER) axis of the rotation operation 
' It is located at the RotationOffset distance from the MainAxis 
' If Helix==YES; then 
' ask for RotationOffset and assign to RotationAxis 
'CounterRotationAxis = {dependency PARAMETER) 
' axis of counter-rotation. It is located and the CounterRotationOffset 
' distance from the MainAxis 
' IfHelix==YES;then 

ask for CounterRotationOffset and assign to CounterRotationAxis 
'Initialshape = shape the user draws to be used as input for the generation of 
' the building designs, User draws a shape and the script assigns it to 
' the Initialshape variable 
'Doubleshape = [boolean YESINO] if DoubleShape==YES then select a second shape 
' and assign the shape to the ShapeOl variable 
' prompt the user to select ShapeOl and Shape02 
' Initialshape variable is not used 
' ShapeOl and Shape02 can share variables like: building BuildingHeight, etc. 
' both shapes will have the same values for the PARAMETERS 
'ShapeOl = [shape] if DoubleShape==YES, select a shape as ShapeOl 
' ShapeOl will use Translation, Rotation and VerticalScale as PARAMETERS 
'Shape02 = [shape] if DoubleShape==YES, select a shape as Shape02 
' Shape02 will use Translation, CounterRotation and VerticalScale as its 
' PARAMETERS 
'Differentialshape: [boolean YESINO] If DifferentialShape==YES, then each shape 
' of ShapeOl and Shape02 will have theirs own internal PARAMETERS for their 
' own OPERATIONS; 
'SPECIAL NOTE: If DoubleShape==YES, then each shape will have it's own set of 
' PARAMETERS. If DoubleShape==YES and DifferentialShape==YES, then each 

ShapeOl and Shape02 will have it's own values for it's own PARAMETERS 
'LeftTopDownSymmetryShape = {dependency PARAMETER} left portion of the Shape used 
in 
' case LeftRightTopDownSymmetry==YES, prompt user to select Left or Right portion 
'RightTopDownSymmetryShape = {dependency PARAMETER} right portion of the Shape 
used in 
' case LeftRightTopDownSymmetry==YES, prompt user to select Left or Right portion 
'FrontTopDownSymmetryShape = {dependency PARAMETER) front portion of the Shape 
used in 
' case FrontBackTopDownSymmetry==YES, prompt user to select Front or Back portion 
'BackTopDownSymmetryShape = {dependency PARAMETER) front portion of the Shape 
used in 



' case FrontBackTopDownSymmetry==YES, prompt user to select Front or Back portion 
'Quadrant(L,R,F,B) = [string] to label which Quadrant is used in case that 

LeftRightTopDownSymmetry==YES and FrontBackTopDownSymmetry==YES 

'OPERATIONS: 
'Translation: [distance] translation of the Initialshape along the Mainhis 

this operation is applied recursively. The distance of translation is 
' determined by the FloorOffset and the number of translations is 
' determined by the FloorNumber 
'Rotation: [Boolean YESINO + RotationAngle] positive rotation of the Initialshape 
' with respect to the RotationAxis. If Rotation==YES The value of rotation 

is determined by the RotationAngle. 
'CounterRotation: [Boolean YESINO + CounterRotationAngle] negative rotation of 

the Initialshape with respect to the Rotationhis. If CounterRotation==YES 
' The value of the angle is determined by the CounterRotationAngle 

If DoubleShape==NO use the same values of Rotation; else 
If DoubleShap==YES, promtp the user for values; 
If DifferentialShape==YES, prompt the user for values; 

'Taper: [Boolean YESINO + VerticalScale] if Taper==YES, apply Verticalscale 
factor with respect to the MainAxis 

'TopDownTopDownSymmetry : [Boolean Y ESINO] If TopDownTopDownSymmetry==Y ES 
then apply a top down 
' TopDownSymmetry 
'LeftRightTopDownSymmetry: [Boolean YESINO + Quadrant] If 
LeftRightTopDownSymmetry==YES then 
' apply a left-right TopDownSymmetry 
'FrontBackTopDownSymmetry: [Boolean YESINO + Quadrant] If 
FrontBackTopDownSymmetry==YES then 
' apply a front-back TopDownSymmetry 
'QuadTopDownSymmetry = [Boolean YESINO] if LeftRighTopDownSymmetry==YES and 
FrontBackTopDownSymmetry==Y ES 
' then QuadTopDownSymmetry exists; prompt user to select which Quadrant to use 
' L=Left; R=Right; F=Front; B=Back; or if any combinations are needed to 
' generate the solutions(for example left and front, or all of them) 
'Twist: [boolean YESINO + RotationAngle] if Twist==YES, then apply Rotation 
' OPERATION with RotationAngle 
'DoubleTwist: [Boolean YESINO + RotationAngle and CounterRotationAngle] if 
' DoubleTwist==YES then apply CounterRotation; else apply Rotaion only 
'Intersect: [Boolean YESINO] apply only if DoubleTwist==YES. If intersect==YES, 
' then apply a boolean intersection between the Rotationshape and the 
' CounterRotationShape; else apply a boolean addition and the two shapes 
' will be superimposed 
'TransformX = [ScaleX] non-uniform scale only on the X axis 
'TransformY = [ScaleY] non-uniform scale only on the Y axis 
'TransformZ = [ScaleZ] non-uniform scale only on the Z axis (this will necessary 
' alter the number of floors and the total BuildingHeight of the building 
'Helix = [Boolean YESINO] if Helix==YES, use the Rotationoffset; else 

Rotationhis = MainAxis 
'CounterHelix = [Boolean YESINO] if CounterHelix==YES, and DoubleTwist==YES 
' use the CounterRotationOffset; else 

CounterRotationAxis = MainAxis 



'HIGH ORDER OPERATIONS: 
'Highorderoperations = [boolean YESINO] promtp the user to ask if HIGH ORDER 
' OPERATIONS PARAMETERS will be used. If YES, ask which OPERATIONS, else 
' If NO then continue (by default OPERATIONS are linear) 
'Linear: [boolean YESINO] default operation where transformations are done using 
' simple recursion. If Linear==NO then select one of the non-linear options 
'NonLinear: [STRING] several types described below. Select from a pulldown menu 
' Incremental: [factor] in each recursion the values of the parameters are 

incremented by the incremental factor 
' SCurve: [factor] apply an factor to obtain an SCurve function 
' Growth: [factor] 
' Differential: [factor] growth by varying the factor according to a specific 

rule, IE the edges should be bigger than the center 
Random: [range] a random function applied where each itteration is assigned 

a different value for a factor from a designated range. All the OPERATIONS 
can have a random factor as a Y ESINO boolean 

'Glide: [boolean Y ESINO] if Glide==Y ES apply a glide transformation. A glide 
transformation is when one of the operations occurs alternatively as 

' with a positive value and the next with a negative value 
'DoubleGlide: [boolean YESINO] simultaneous glide in two opposite directions 
'DifferentialGlide: [boolean YESINO] double glide with differential values 
' Glide01 will take the RotationAngle value and Glide02 will take the 
' CounterRotationValue 

'OUTPUTS: 
'FloorArea(i) = [number] calculate area of each floor 
' output each floor area in a spreadsheet by floor number 
'TotalFloorArea = [number] calculate total area of all floors 
'CoreArea(i) = [number] area of the core in each floor 
'TotalCoreArea = [number] total area of the core 
'FloorEfficiency(i) = [percent] percentage of the NetFloorArea on each floor 
' (((FloorArea-CoreArea)*l00)IFloorArea) 
'TotalEfficiency = [percent] total efficiency of the building 
' (((TotalFloorArea-TotalCoreArea)*l00)lTotalFloorArea) 
'AverageEfficiency = [percent] calculate the average of the efficiency by adding 
' all floors efficiencies and divide by number of floors 
'FacadeArea(i) = [number] area of the facade in each floor 
'TotalFacadeArea = [number] total area of the building facade 
'TopDownSymmetryType = [string] the TopDownSymmetry type of the tower 
'Procedure = a description of the procedure (geometry method statement) listing 

all the variables, parameters used and their values 

'PROTOTYPING OUTPUT 
'ZCorp = output of an scaled STL file that will fit in the ZCorp bed 
'Lasercutter = output of a cutsheet(s) of the floor plates for the laser cutter 

'---------------------------------------------------------------------- ...................................................................... 
--------- --------- 
I, - - - - - - , , --------- FUNCTIONS ========= 



'Description of required functions 
'Function input is in parenthesis (parameters) 
'Function output is after keyword returns 
'Some functions only apply if the corresponding BOOLEAN PARAMETER is True 
I 

'TranslateShapeFunction (Shape, Distance) 
takes a shape and translates the shape along the Mainhis 
the amount of translation is the Distance 
RETURNS: translated shape 

I 

'~otate~ha~e~unct ion (Shape, Angle) 
takes a shape and rotates the shape with respect to the Rotationhis 
the angle of rotation is the RotationAngle 
RETURNS: the rotated shape 

I 

'CounterRotateShapeFunction (Shape, Angle) boolean restricted 
Use only if BOOLEAN PARAMETER DoubleTwist==YES 
takes a shape and rotates the shape with respect to the CounterRotationAxis 
the angle of rotation is the CounterRotationAngle * -1 (negative rotation) 
RETURNS: the rotated shape 

I 

'ScaleShapeFunction (Shape, ScaleFactor) boolean restricted 
Use only if BOOLEAN PARAMETER Taper==YES 
takes a shape and scales the shape with respect to the Mainhis 
the scale factor is passed in from VerticalScale PARAMETER 
RETURNS: the scaled shape 

I------------------__,,,,,,,,--------------------------------------------------- ...................................................................... 
--------- --------- 
'GENERATIVE OPERATIONS WITH PARAMETERS========== 
I--------------,,,,,,,,,,,,,,,--------------------------------------------------- ...................................................................... 
--------- --------- 
'EXTRUSSION(Shape, Mainhis, FloorNumber, FloorOffset) 

TRANSLATE Shape along Mainhis by FloorOffset distance 
recursively COPY Shape in a loop by FloorNumber 

I 

'TWIST(Shape, Rotationhis, RotationAngle) 
If Twist==YES 

ROTATE Shape with respect to Rotationhis by RotationAngle 
else 

do not rotate 
I 

'DOUBLE TWIST(Shape, CounterRotationAxis, CounterRotationAngle) 
If DoubleTwist==Y ES 

ROTATE shape with respect to CounterRotationAxis by 
CounterRotationAngle -1 
(CounterRotationAngle is always possitive, but we must multiply by 
negative 1 to rotate in the opposite direction) 

else 
do not apply operation 

1 

'TAPER(Shape, VerticalScale) 
If Taper==YES 

SCALE Shape by VerticalScale factor 
else 

do not apply operation 



'TOP DOWN TopDownSymmetry() 
a If TopDownTopDownSymmetry==YES 
I Apply COPY Shape by 112 of FloorNumber and then 
I mirror all Shapes right at the middle 
I 

.EFT RIGHT TopDownSymmetry(Shape, NorthSouthAxis) 
If LeftRightTopDownSymmetry==YES 

cut Shape by NorthSouthAxis 
promtp user to select which side of the shape to keep 

I DELETE other side shape 
I MIRROR the selected side of the shape and continue 
I return Shapes (cut and mirror) 
I else 

do not apply operation 
I ALTERNATIVE METHOD: 
I Once the shape is cut, generate both solutions with both sides 

'FRONT BACK TopDownSymmetry(Shape, EastWestAxis) 
I If FrontBackTopDownSymmetry==YES 
I cut Shape by EastWestAxis 
I promtp user to select which side of the shape to keep 
I DELETE other side of the shape 
I MIRROR the selected side of the shape and continue 
I return Shapes (cut and mirror) 
I else 
I do not apply operation 
I ALTERNATIVE METHOD: 
I Once the shape is cut, generate both solutions with both sides 
I 

'ALL SIDES TopDownSymmetry(Shape, NorthSouthAxis, EastWestAxis, Quadrant) 
I If AIISidesSimmetry==YES 
I Prompt user to select Quadrant 
I If Quadrant not zero 
I cut shape with both axes to keep selected Quadrant 
I else 
I Cut shape with both quadrants and generate all four solutions 
I 

'HELIX(RotationAxis) 
I If RotationHelix==Y ES 
I Prompt user to input RotationOffset 
' Apply ROTATION using the RotationOffset 
I else 
' do not apply operation 
I 

'DOUBLE HELIX(ShapeO1, Shape02, RotationAxis, RotationAngleOl, RotationAngle02) 
I If DoubleHelix==Y ES 
I Prompt user to input RotationOffsetOl 
I Prompt user to input Rotationoffset02 
I Apply ROTATION to ShapeOl using RotationOffsetOl and RotationAngleOl 
I Apply ROTATION to Shape02 using RotationOffset02 and RotationAngle02 
' else 
' do not apply operation 

'COUNTER HELIX(ShapeO1, Shape02, RotationAxis, CounterRotationAxis, RotationAngle 
a CounterRotationAngle) 

I If CounterHelix==YES 
I Prompt user to input RotationOffsetOl 
I Prompt user to input RotationOffset02 
I Apply ROTATION to ShapeOl using RotationOffsetOl and RotationAngle 
I Apply NEGATIVE ROTATION to Shape02 using RotationOffsetO2 and 
I CounterRotationAngle 



else 
do not apply operation 

I 

'INTERSECTION (Shaw l ,  Shape02) 
CONDITION: both shapes must exist 
If ShapeOl==True and Shape02==True; 
or If DoubleTwist==YES 
and Intersection==YES 

apply boolean intersection to both shapes 
else 

apply boolean addition to both shapes 
else 

' do not apply operation 

'----------------------------- ............................. END OF 
DEFINTIONS================================ 
I---------------------------------------------------------------------- ...................................................................... 
-------- -------- 

' = user has control of shape in beginning 
'FLOOR OFFSET = vertical distance between floor plates 
'NUMBER OF FLOORS = number of floor plates 
'BUILDING BuildingHeight = (number of offsets "offset) 
'ROTATION ANGLE = rotation of floor plates 
'COUNTER ROTATION ANGLE = Negative rotation of the floor plates 
'TIME STEPS = for every i then rotation (angle of rotationli) 
'SCALE FACTOR for every j then (scalelj) 
'TOP-DOWN TopDownSymmetry = vertical reflection (number of offetsl2) 
'LEFT-RIGHT REFLECTION: Reflection on a vertical plane 
'GLIDE = Talk to Terry dude!! 
'XSCALE = Scale on the X axis 
'YSCALE = Scale on the Y axis 
'ZSCALE Scale on the Z axis 

I---- ----GLOBAL VARIABLES========== 
I------------------------------ .............................. 
Dim Initialshape 
Dim FloorOffset 



Dim BuildingHeight 
Dim RotationAngle 
dim CounterRotationAngle 
dim DoubleRotation 
dim DifferentialRotationAngle 
dim CenterRotAngle 
dim Taper 
dim ScaleFactor 
dim ScaleFactorX 
dim ScaleFactorY 
dim ScaleFactorZ 
Dim FloorNumber 
dim TopDownSymmetry 
dim LeftRightSymmetry 
dim FrontBackSymmetry 
Dim CapBuilding 

I-----,,--------------------------------- ........................................ 
I - , - , - , - ------- SET PARAMETER 
VALUES======================================== >PARAMETERS 
I--,,,,,-,------,-,,,---------------------- ........................................ 
Flooroffset = 12 
FloorNumber = 72 
BuildingHeight = FloorOffset * FloorNumber 
RotationAngle = 0 
CounterRotationAngle = 0 
CenterRotAngle = 2 
ScaleFactor = 0 'percentage 
CapBuilding = VbTrue 
TopDownSymmetry = VbFalse 
LeftRightSymmetry = VbFalse 
FrontBackSymmetry = VbFalse 
DoubleRotation = VbFalse 
DifferentialRotationAngle = VbFalse 
Taper = VbFalse 

'Declare Operation Parameters 
'Declare Top Down Symmetry 
'Prompt User to get Top-Down Symmetry 
dim TopDownSymmetryAnswer 
TopDownSymmetryAnswer = Rhino.MessageBox ("TopDownSymmetry", 4 "Top Down 
Symmetryn) 
if TopDownSymmetryAnswer = 6 then 

TopDownSymmetry = VbTrue 
'call TopDownSymmetry 

end if 

'Declere Left Right Symmetry 
'Prompt User to get Left-Right Symmetry values 
dim Left RightSymmetryAnswer 
LeftRightSymmetryAnswer = Rhino.MessageBox ("LeftRightSymmetry", 4 "Left Right 
Symmetryn) 
if LeftRightSymmetryAnswer = 6 then 

LeftRightSymmetry = VbTrue 
'call LefRightSymmetry 

end if 

'Declere Front Back Symmetry 
'Prompt User to get Front-Back Symmetry 
dim FrontBackSymmetryAnswer 
FrontBackSymrnetryAnswer = Rhino.MessageBox ("FrontBackSymmetry", 4 'Front Back 
Symmetryn) 



if FrontBackSymmetryAnswer = 6 then 
FrontBackSymmetry = VbTrue 
'call FrontBackSymmetry 

end if 

'Declare Rotation Angle 
dim RotationAnswer 
RotationAnswer = Rhino.MessageBox ("Rotation", 4 , "Rotationn) 
if RotationAnswer = 6 then 

RotationAngle = Rhino.lntegerBox ("Enter Twisting Angle", 0 'Rotation Anglen) 
CounterRotationAngle = RotationAngle 

end if 

'Inquire about double Rotation 
dim DoubleRotationAnswer 
DoubleRotationAnswer = Rhino.MessageBox ("Double Rotation", 4 , "Double Rotationn) 
if DoubleRotationAnswer = 6 then 

DoubleRotation = VbTrue 
dim DifferentialRotationAnswer 
DifferentialRotationAnswer = Rhino.MessageBox ("Differential Rotation" 4 ,"Differential 

Rotation") 
if DifferentialRotationAnswer = 6 then 

CounterRotationAngle = Rhino.lntegerBox ("Enter Counter-Twisting Angle", 0 , 'Counter 
Rotation Angle') 

end if 
end if 

'Declere Tapering 
'Prompt User to get Taper value 
dim TaperAnswer 
TaperAnswer = Rhino.MessageBox ("Building Taper", 4 'Building Taper") 
if TaperAnswer = 6 then 

Taper = VbTrue 
'call Taper 

end if 

'Prompt User to Enter Taper Value 
dim TaperValueAnswer 
if Taper = VbTrue then 

TaperValueAnswer = Rhino.lntegerBox ("Enter value", 0 nScale FactorH) 
ScaleFactor = (TaperValueAnswer 1 10) 

end if 

I--------------- --------------- BEGIN SUB - MAIN FUNCTION================= 
....................................... 

sub rodTower() 

Dim allshapes 
Dim rotAngle 
dim scale 
dim cRotAngle 

'Add one to size array correctly to include starting shape 
rotAngle = RotationAngle 
CounterRotationAngle = CounterRotationAngle * -1 
cRotAngle = CounterRotationAngle 
ScaleFactor = (1 00 - ScaleFactor)/I 00 

1 - - - - - - - - -------- PROMPT USER TO DRAW SHAPE=========== 
'Get profile of building from designer 



Rhino.MessageBox "Select your profile curve", 64, "TWIST AWAY" 
Initialshape = Rhino.GetObject("Select profile") 
Rhino. UnSelectAllObjects() 
'If curve is not closed then exit program 
'need a shape that represents a profile of a 
'building 
If IsNull(lnitialShape)then exit sub 
if not IsCurveClosed(lnitiaIShape) then exit sub 
If not IsCurve(lnitialShape) then exit sub 

'Check if designer wants vertical TopDownSymmetry 
If TopDownSymmetry = VbTrue then 

FloorNumber = FloorNumberl2 
end if 

'call copy function 
'make copies of shape and place in array 
'scale shapes along with copy 
'returns 1 D array of copied shapess 
allshapes = copyShape(lnitialShape,FloorNumber,ScaleFactor) 

'Build Rotations 
'rotate each shape in array by the degree requested 
for i = 0 to uBound(allShapes) 

call rotateShape(allShapes(i),rotAngle) 
rotAngle = rotAngle - RotationAngle 

next 

CounterAllShapes = copyShape(lnitialShape,FloorNumber,ScaleFactor) 
'Build CounterRotations 
if DoubleRotation = VbTrue then 
for i = 0 to uBound(CounterAIIShapes) 

call rotateShape(CounterAIIShapes(i),cRotAngle) 
cRotAngle = cRotAngle - CounterRotationAngle 

next 
end if 
'Construct translations of floor plates 
allshapes = verticalTranslate(alIShapes,FloorOffset,TopDownSymmetry) 
CounterAllShapes = verticalTranslate(CounterAIIShapes,FloorOffset,TopDownSymmetry) 

'Construct building skin 
call constBuildSkin(allShapes,CapBuilding) 
call constBuildSkin(CounterAIIShapes,CapBuilding) 

end sub 
'------------__ -------------- END SUB 

I--_____-------------------------------------- ............................................. 
1 - - - - - - - - - - ---------- COPY and SCALE SHAPE FUNCTION================ 
f--------------------------------------------- ............................................. 
function copyShape(inputShape, howMany,scale) 

ReDim allShapes(howMany) 
Dim shapecopy 
Dim boundBox 
Dim centerPt 
Dim diagonal 

'Put initial shape into array 
allShapes(0) = inputshape 



shapecopy = inputshape 
for i = 1 to howMany 

'Get approx center of shape by bounding box 
boundBox = Rhino.BoundingBox(inputShape) 
diagonal = Rhino.AddLine(boundBox(O), boundBox(2)) 
centerPt = Rhino.CurveMidPoint(diagonal) 
'Delete construction line 
Rhino.DeleteObject(diagonal) 
'Rotate actual shape 
allShapes(i) = Rhino.ScaleObject(shapeCopy, centerPt, 

Array(scale,scale,scale), VbTrue) 
shapecopy = allShapes(i) 

next 

'Return array of new shapes 
copyshape = allshapes 

end function 
1- -- ------- ---------- END COPY 

'--------------------------------------------- ............................................. 
' ------ ---- ---------- ROTATE SHAPE FUNCTION============= 
'--------------------------------------------- ............................................. 
function rotateShape(shape, angle) 

Dim boundBox 
Dim centerPt 
dim diagonal 
dim Anglelncrement 

Anglelncrernent = (angle I FloorNumber) 
'Get approx center of shape by bounding box 
boundBox = Rhino.BoundingBox(shape) 
diagonal = Rhino.AddLine(boundBox(O), boundBox(2)) 
centerPt = Rhino.CurveMidPoint(diagonal) 
'Delete construction line 
Rhino.DeleteObject(diagonal) 
'Rotate actual shape 
shape = Rhino.RotateObject(shape, centerPt, Anglelncrement) 

'return shape to sub function 
rotateshape = shape 

end function 
' -- - - ---- -------- END ROTATE 

'--------------------------------------------- ............................................. 
I- - - - - - , , , , ---------- COUNTER-ROTATE SHAPE FUNCTION============= 
'--------------------------------------------- ............................................. 
function counterRotateShape(shape, angle) 

dim boundBox 
dim centerPt 
dim diagonal 

'Get approx center of shape by bounding box 
boundBox = Rhino.BoundingBox(shape) 
diagonal = Rhino.AddLine(boundBox(O), boundBox(2)) 
centerPt = Rhino.CurveMidPoint(diagonal) 
'Delete construction line 
Rhino.DeleteObject(diagonal) 
'Rotate actual shape 



shape = Rhino.RotateObject(shape, centerPt, angle) 

'return shape to sub function 
rotateshape = shape 

end function 
1,- - - - - -- -------- END COUNTER-ROTATE 

I-,------,------,----------------------------- ............................................. 
I - , -- , - - - - - ---------- SCALE SHAPES FUNCTION============== 
I-,-----------,-,----------------------------- ............................................. 
function scaleShape(shape, scalefactor) 

end function 

'-,-------------,------,,,_----------------------- ............................................. 
I,, , - - - - - -------- TRANSLATE SHAPES FUNCTION============ 
I-,,,-------,,,,,,,--------------------------- -------------,------------------------------- 

function verticalTranslate(shapes, distance, sym) 

Dim ORIGIN 
Dim transAmount 
Dim numshapes 
Dim bBox 

transAmount = distance 

'Create point of reference for translation 
ORIGIN = Array(O,O,O) 

'If TopDownSymmetry require copy shapes in descending order 
if sym = VbTrue then 
'Get true BuildingHeight of building 
'2*how many shapes 
numshapes = UBound(shapes) * 2 
Dim symShape 

'translate first set of shapes 
for i = 1 to numShapesl2 

Rhino.MoveObject shapes(i), ORIGIN, Array(O,O,transAmount) 
'add distane to get new Z value for i+l shape translation 
transAmount = transAmount +distance 

next 

'mirror first set of shapes to create TopDownSymmetry 
for i = 0 to numshapes - 1 

if i = numShapesl2 then 
for j = 1 to UBound(shapes) - 2 
bBox = Rhino.BoundingBox(shapes(i-j)) 
symShape = Rhino.CopyObject (shapes(i-j), 

bBox(O), Array(bBox(O)(O), bBox(0)(1), bBox(0)(2)+distance*j2)) 
shapes = 

Rhino. JoinArrays(shapes,Array(symShape)) 
next 

end if 
next 
verticalTranslate = shapes 



I-,,,------------ ---------------- 
'If no TopDownSymmetry required translate shapes normally 
I,,,,----------- --------------- 
else 

numshapes = UBound(shapes) 

'iterate and translate each object 
for i = 1 to numshapes 

Rhino.MoveObject shapes(i), ORIGIN, 
Array(O,O,transAmount) 

'add distane to get new Z value for i+l shape translation 
transAmount = transAmount +distance 
next 

verticalTranslate = shapes 
end if 

end function 
' ---------- ---------- END TRANSLATE 

I-,,,----------------------------------------- ............................................. 
1 - - -- - , , , -------- CONSTRUCT ACTUAL TOWER FUNCTION============ 
1---------,,,--------------------------------- ............................................. 
function constBuildSkin(shapes,cap) 

Dim Building 
'lofting shapes to make building skin 
Building Rhino.AddLoftSrf (shapes) 

'Dim FloorPlates 
'FloorPlates = Rhino.AddPlanarSrf (shapes) 

'Cap building is requested 
if cap = VbTrue then 

Rhino.Command "-SelPolysrf -Capw 
Rhino.UnSelectAllObjects() 
Building = Rhino.LastObject() 

end if 
'Hide profile shapes 
Rhino.HideObjects(shapes) 

end function 
1- -- - - - - -- --------- END BUILDING SKINNING 

I--------------------------------------------- ............................................. 
I-, , , , , , , -------- BUILD FLOOR PlATES FUNCTION============ 

function makeFloorPlates(shapes) 
Dim floorsurface 
'making surface from each cuwe 
'floorsurface = Rhino.AddPlanarSrf (shapes) 

'return SURFACE to sub function 
'rotateshape = shape 

end function 



I-, - - - - - -- --------- END BUILDING SKINNING 

I----------------------------------------------- ............................................... 
I - - - - - - - ------- RUN PROGRAM 
I--------,-------------------------------------- ............................................... 
rodTower 
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