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ABSTRACT

The unsteady three-dimensional flow field for two centrifugal compressors of nearly

identical design (one with a marginally smaller impeller-diffuser gap) is interrogated to assess

the difference in the time averaged performance and unsteady loading characteristics of the

impeller blades. Computational calculations are conducted for three different operating

points. Results show that the difference in the time-average performance of the two

compressors is due to the change in the level of loss and blockage generated from a

difference in the strength of the impeller-diffuser interaction between the two compressors.

The unsteady component of loading on the impeller blade originates from pressure waves

propagating with a phase difference on the suction and pressure surfaces of the blades. The

frequency of the waves is set by the diffuser vanes passing frequency and the wavelength by

the product of the diffuser vane passing period and the speed of the wave. It is

demonstrated that the difference in static pressure from the pressure surface to the suction

surface at the leading edge of the diffuser vanes sets the amplitude of unsteady loading on

the blades of the impeller. The level of pressure on both surfaces of the diffuser vane at the

leading edge is determined by the value of the local angle of incidence. It is concluded that

for a given diffuser design, changes in the impeller configuration or impeller-diffuser gap

that result in a variation of the diffuser incidence will lead to a different unsteady loading

distribution on the blades of the impeller.

Thesis Supervisor Choon S. Tan

Title: Senior Research Engineer, Gas Turbine Laboratory
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Nomenclature

Abbreviations

a Speed of sound
Asf Effective area of a uniform flow representation of a non-uniform flow.
et Specific stagnation energy
ETE Euler Turbine Equation
HCF High cycle fatigue
IDI Impeller-Diffuser Interaction
LE Leading edge
PS Pressure surface

P, Rotor pitch: 2n / number of blades in rotor

P, Rotor pitch: 2n / number of blades in stator
R Gas constant
RPM Revolutions per minute
SS Suction surface
Taf Period of time it takes one diffuser vane to occupy the same position of the

previous vane as seen from the impeller.

Tim, Period of time it takes one impeller blade to occupy the same position of the
previous blade as seen from the rotor.

TE Trailing edge

Uti, Tangential velocity of the impeller measured at its outer radius
V Absolute velocity
W Relative velocity

Symbols
a Incidence angle

x Backsweeping angle
6* Displacement thickness

71 Adiabatic Efficiency
x Wavelength
H Static pressure ratio

I-i Stagnation pressure ratio
Ta Actual stagnation temperature ratio
Q Angular velocity
0 Flow or vane angle (see subscript)

Subscripts

1 Impeller inlet
2 Impeller outlet
r Radial direction
t,0 Tangential direction
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CHAPTER 1

Introduction
1.1 BACKGROUND AND MOTIVATION

1.1.1 The Centrifugal Compressor

The centrifugal compressor has a fairly broad range of applications due to its efficient

operation and capability in achieving large stage pressure ratios (-4 to 8).

A typical centrifugal compressor (Figure 1.1) consists of two major components: a rotating

impeller and a stationary diffuser. Most of the pressure rise is obtained by a change on the

fluid potential energy due to a centrifugal force field. Relatively less pressure rise is produced

by the deceleration or diffusion of the flow [3].

The main function of the impeller is to impart angular momentum to the flow while

changing its motion from axial to radial. The flow leaving the impeller is at a higher pressure

and has a swirl compared to the flow at the inlet. The role of the diffuser is then to

decelerate the flow and provide a further pressure increase by removing the swirling

component of velocity and reducing the radial velocity component. A pressure rise from a

diffusing effect is usually harder to attain due to blockage generation (effective flow area

reduction) and likelihood of flow separation.

14



FIED SHROUD

Figure 1.1: Centrifugal Compressor

The flow through the impeller (Figure 1.1) is required to turn from axial to radial as it goes

from the inlet to the exit of the impeller. In order to negotiate the turn, the flow is subject to

a radial pressure gradient that sets the pressure of the streamlines moving close to the tip of

the blades to be low compared to the streamlines moving at the hub (see Figure 1.1). As the

streamlines on the tip approach the exit of the impeller they thus encounter an adverse

pressure gradient that inevitably results in separation, making the flow to leave the impeller

in the form of a jet and a wake [5]. In the inducer region, the blades are shaped in the same

manner as those of an axial compressor and provide the flow with a pressure increase. Also,

and as shown by Figure 1.1, the blades of the impeller are curved in the radial plane. This

feature known as backsweeping, has the purpose of decreasing the effective outflow area and

reducing the absolute tangential velocity of the flow. For the same amount of work to be

done over the fluid, an impeller with backsweeping would need to rotate faster than an

impeller without.
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The blades of the impeller may be bound at the tip by a shroud or run close to a fixed casing

with a small gap clearance, in which case the impeller is said to be unshrouded. Unshrouded

impellers are lighter and introduce less mechanical stresses over the blades. For this reason

unshrouded impellers are used for aeronautical applications. Also, shorter blades or splitters

are included at the outer portion of the impeller to reduce blade loading. The splitter blades

extend from half the meridional distance to the exit of the impeller in order to avoid area

obstruction at the inlet, where choking is a possibility.

The diffuser of a centrifugal compressor is usually of the vaned type. This removes some of

the friction loss when compared to vaneless diffusers because the flow is decelerated

through a shorter path. The optimal operation of a vaned diffuser relies on the correct

alignment of the flow with its vanes (incidence angle). The most severe cause of poor

performance is probably a result of flow mismatch between impeller and diffuser

operation[1]. Vaned diffusers impose unsteady loading on the blades of the impeller due to

the unsteady impeller-diffuser interaction effects. As a consequence of the interaction, flows

leaking from one impeller passage to the adjacent passage through the clearance at the tip

become more pronounced with additional losses due to mixing.

The vaneless space plays a major role. It is known that a reduction in the impeller-diffuser

gap results in performance enhancement; however this can lead to severe vibration in

impeller blades.

Centrifugal compressors may attain pressure ratios as high as 8:1 in a single stage. Their

operation is efficient and stable because they rely on the centrifugal effect for pressurization.

It is their rather large frontal area that makes them unattractive when compared to axial

compressors where the same pressure ratio is reached through many stages but at a reduced

frontal area.

1.1.2 High Cycle Fatigue

Blade vibration is a concern in modem compressor design. It leads to the formation of

mechanical cracks and the eventual failure of the blades. This phenomenon is a potential
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source of High Cycle Fatigue (HCF) and its effects are of importance for the blades of the

rotor.

The known sources of vibration are of two kinds: forced vibration and flutter. Forced

vibration exists as the blades of the rotor are subjected to non-uniform flow. These non-

uniform regions are in the form of wakes or stationary pressure fields usually imposed by the

adjacent blade rows. The frequency at which these vibrations occur is a multiple of the rotor

passing frequency and it may lead to situations of resonant response when the value is close

to the natural frequency of the blades. When stall cells are present, forced vibration may also

take place but at a different frequency from that of the passing vane. Flutter is a self induced

aeromechanical instability. The presence of flutter in axial compressors is common but less

so in the situation of centrifugal compressors.

If no damping exists, the blades of a rotor oscillate at their natural frequency or harmonics.

The specific displacement pattern associated to each of these frequencies is known as the

"mode". Since a blade can oscillate in a flexural (F), rotational (R) or Edgewise (E) fashion,

there are three main types of modes. When motion is of a mixed type, the resulting mode is

however of a more complex structure. This is the case for the blades in a centrifugal

compressor, where the definition of flexural or rotational displacements is not appropriate.

Forced vibration on the blades of a centrifugal impeller may come from different sources.

The most significant is that imposed by the upstream pressure field of the vanes of the

diffuser. The rapid deceleration of flow from the impeller exit to the diffuser inlet results in

a region of high pressure gradient at the diffuser inlet as indicated by the contours shown in

Figure 1.2. If the absolute velocity of the flow exiting the impeller is supersonic, the abrupt

deceleration takes the form of a shock An impinging shock produces a higher blade loading

while introducing a content in harmonics[1].

Since the effects of forced vibration are not easy to predict, the use of a simple Campbell

Diagram becomes useful at the design stage. A Campbell Diagram plots lines of the

excitation frequency derived from the rotor speed and compares them to the different

frequencies of the blade modes to check for crossings (see figure 2.1). While a Campbell
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Diagram may be useful in predicting operational points to avoid, it does not include

information about the actual levels of vibration. To complete this task, new methodologies

are currently under study and make use of a combination of Computational Fluid Dynamics

(CFD) with Finite Element analysis (FEA).

Figure 1.2: Static Pressure contours on the vicinity of Impeller and Diffuser Vanes

1.1.3 CFD-FE A models

Unsteady CFD simulations are employed to obtain the value of static pressure acting on the

surfaces of a blade at a particular time. From FEA, the mode shapes and natural frequencies

of the blades are computed. It is required to know which components of the static pressure

act on the direction of the vibrating motion of the blade. Pressure values from CFD are

therefore projected onto the mode shapes obtained with FEA. The result is a Generalized

Forcing Function (GFF) indicating the net contribution of pressure load to mode vibration

[19]. A Fourier analysis is performed over the GFF to spot the different forcing frequencies

and their amplitudes. These amplitudes, known as modal forces, are incorporated into the

FEA model to determine the actual strains or stresses associated with a specific mode.

18



1.2 PREVIOUS WORK

Despite the recent focus on centrifugal compressors, increasing progress in their

study has been made through a combination of experimental and computational studies.

Early experimentations concentrated on the characterization of the jet-wake model originally

proposed by Dean and Senoo [5]. In this model the flow leaving the impeller consists of a jet

with high stagnation pressure and a wake with lower stagnation pressure and lower velocity.

Laser measurements performed by Eckardt [6] and Krain [7] gave physical evidence for the

support of this model. More recent measurements by Ziegler etal [8] centered on the

description of the influence of impeller-diffuser interaction (IDI). Ziegler discovered that a

reduction in the vaneless space presented two major consequences: a reduction of the

separated region exiting the impeller and a higher incidence into the diffuser vanes, this last

effect being of primary concern in loading and enhancement of the efficiency.

Significant progress in numerical algorithms and availability of computational resources have

enabled applications of CFD to analyze turbomachinery flow. Initial computations were

confined to computing steady flow in single passages of isolated blade row or the use of a

mixing plane approximation for multi-blade rows. Chen, Adamczyk and Celestina [9]

developed a new procedure for the simulation of unsteady flows employing a single blade

channel. Their model relies on the assumption that the flow at the bounding limits of a blade

passage is periodic in time. The employment of boundary conditions lagging in time or in

"phase" makes the simulation of a single passage suffice for the construction of a full wheel

representation. Subsequent experiments by Chen [10] proved that this phase-lag procedure

renders almost identical results to those of conventional time-accurate techniques but at a

much lower computational effort.

Several works have exploited the application of CFD to the study of different aspects of the

flow. Dawes [13] and Shum [18] employed CFD to describe impeller-diffuser interaction.

Dawes found that the zones of unsteadiness due to IDI are confined to the impeller trailing

edge and the diffuser entry zone. He also noticed that spanwise variations of the flow

properties have a higher impact on diffuser operation than unsteady effects. Shum made use
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of the same code as Dawes to describe the mechanisms through which IDI influences stage

performance. His findings pointed to viscous losses from tip leakage flow as well as blockage

and slip to be the responsible mechanisms. A reduction of these quantities was found to

have a positive influence on the stage performance. Higher IDI (reduced vaneless space)

would decrease blockage and slip but would increase the losses. He concluded that the

prediction of an optimal vaneless space could be reached by the proper assessment of these

factors at the design stage.

Other papers outline the use of CFD in combination with FEA (Finite Element Analysis) to

the study of mechanical vibrations on rotor blades. Rabe and Kenyon [15] modeled the

loading response of fan blades to distortions in total temperature in the inlet flow finding

that a difference in the incidence angle produced a different shock structure that resulted in

higher unsteady loading. Mansour and Kruse [14] actually developed a full CFD-FEA model

to predict the vibrational strains of a centrifugal compressor. Their model relied on a

periodic simplification of the actual geometry and did not quite reproduce test-rig data.

Smythe [17] employed phase-lag boundary conditions to study the unsteadiness of loading

over the blades of the same compressor. Her findings led to the hypothesis that the

difference in the incidence angle of the flow at the inlet of the diffuser affected the pressure

pattern of the vaneless space and hence the loading of the impeller blades.

20



1.3 TECHNICAL OBJECTIVES

The goal of this research is to explain the mechanism in the flow field that can potentially

lead to an aeromechanic difficulty on the blades of the impeller of a centrifugal compressor.

The specific technical objectives are:

(i) Determine the contribution of unsteady impeller-diffuser interaction to time-averaged

performance and identify the causes responsible for this observed time-averaged effect.

(ii) Establish a causal link between the unsteady flow processes due to impeller-diffuser

interaction and the unsteady loading characteristics of loading on the impeller blades.

21



1.4 CONTRIBUTIONS

The contributions of this thesis are two:

1. The characterization of the changes in the flow field of two centrifugal compressors of

nearly identical design: one being the production design and the other the enhanced version

in which the vaneless space has been reduced by growing the impeller tip radius. The

characterization can be described in terms of the two aspects delineated below:

" The difference in the time-average performance (pressure ratio and efficiency)

between the two compressors and the quantification of the flow effects responsible

for the observed difference, namely the difference in the level of loss and blockage

generated from a difference in the strength of the impeller-diffuser interaction

between the two designs.

. The unsteady component of loading on the impeller blade originates from pressure

waves propagating with a phase difference on the suction and pressure surfaces of

the blades. The frequency of the waves is set by the diffuser vanes passing frequency

and the wavelength by the product of the diffuser vane passing period and the speed

of the wave. It is demonstrated that the difference in static pressure from the

pressure surface to the suction surface at the leading edge of the diffuser vanes sets

the amplitude of unsteady loading on the blades of the impeller.

2. The level of pressure on both surfaces of the vane is set by the value of the local angle of

incidence. The angle of incidence was shown to vary with the point of operation and with

compressor design. The difference of incidence angle from the enhanced version to the

production version is the result of the changes in the effective impeller channel flow area

produced by a different level of impeller-diffuser interaction.

The findings stated above prove the hypothesis originally put forward by Smythe [17].
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1.5 THESIS OUTLINE

This thesis is organized as follows:

Qupter 2:

The basic methodology employed to characterize the flow field response to a reduction in

the vaneless space is defined in this chapter. First the two compressors that feature as the

articles for this research are presented. Then the general features of the CFD code employed

in the computation of the flowfield are listed. A brief explanation of the phase lag boundary

condition technique and its use in the production of post-processing results is offered.

Finally the different methods employed for the averaging of the flow quantities are

presented.

Chapter 3:

This chapter describes the analysis followed in the assessment of the time-averaged

performance of the two compressors. The actual pressure ratios of the two compressors

obtained from CFD calculations are compared to those predicted by ideal approximations.

The difference in pressure ratios is explained by the assessment of non-ideal flow

mechanisms such as losses and blockage. The stage efficiency of the two compressors is

computed and the main differences delineated.

Yqupter 4:

The unsteady loading of the impeller blades is characterized in this chapter. Time averaged

and unsteady loading distributions are computed for both compressors. Differences in the

spatial distribution and loading magnitude are quantified. A detailed investigation on the

formation of unsteady loading is performed and the source of unsteadiness is linked to the

behavior of the flow field in the diffuser.

Cpter 5:

Summary and conclusions from this research work are presented.
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CHAPTER 2

Technical Approach
2.1 ARTICLES OF RESEARCH

The subjects of study for this research are two centrifugal compressors designed and built by

Honeywell Engines, Systems and Services. The first compressor forms part of a current

production line. The second compressor is an enhanced version which attempted to have a

2% increase in flow capacity and in pressure ratio. Both compressors are referred hereafter

as the Production and Enhanced. The Enhanced compressor is not under production. These

are the same articles of research that Smythe [17] employed in her study.

The impeller in both compressors consists of 17 main blades and 17 splitter blades. Both

compressors are matched to the same diffuser, which is composed of 25 vanes. The impeller

tip radius of the Enhanced is 0.5% larger than that of the Production, so that the Enhanced

design has a reduced impeller-diffuser gap. This modification results in high stress/strain

observed levels in the blades of the impeller of the Enhanced design causing HCF concerns.

On the test rig, the Enhanced compressor showed large vibrational strains when crossing

with the 5* splitter blade mode at 96% speed (see Figure 2.1)[21]. The Production

compressor also presents crossings, with the 4' splitter mode at 95% speed. The strains at

the crossing for the Enhanced compressor were twice as high as that for the Production

compressor when measured in the splitter blade (at a location near the hub, see strain

seeding in Figure 2.2) . Crossings at lower modes of the Enhanced compressor resulted

however in less strain when compared to the Production. This evidence shows a potential

difference in the Structural Dynamics of the blades from one compressor to another [14].

25



IU.

Percent Physical Speed Percent Physical Speed

a) b)

Figure 2.1: Campbell Diagrams for a) Production and b) Enhanced Compressors [21]

Measurements were done by embedding the strain gauges on the surfaces of the blades.

Figure 2.2 shows the location of the gauges. Unfortunately, the information on the

Enhanced compressor is somewhat inaccurate since the data points are available for only

one blade and fail to take into consideration blade to blade variations.

Figure 2.2: Strain gages location for the Production and Enhanced impeller
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2.2 NUMERICAL APPROACH

MSU TURBO is the CFD code employed for the computational investigation of the flow

field. This multiblock solver was developed at the Mississippi State University by J.P. Chen.

It uses a time-accurate implicit method with Jacobi and Gauss-Siedel relaxation to solve

three dimensional unsteady Reynolds-Averaged Navier- Stokes Equations (RANS).
Discretization is made under a characteristics-based finite-volume scheme. Turbulence

model is based on NASA/CMOTT K-s model [12].

The governing equations are formulated in the rotating frame of motion. The vectorized

equation is:

qn -qk-1 k-
(L+D+U)Aqk-- = q +Rk-

At

(2.1)

where q is the vector containing the state variables [p, pu, pv, pw, ej. Two levels of Newton

iterations at each instant in time are employed, the inner level is used to solve for the change

Aq between iterations and the outer level to solve the linear system expressed by the above

Equation. LD and U are the lower, upper and diagonal matrices derived from the

discretization scheme and R is the term grouping body forces and balance of fluxes.

For the present articles of study, MSU TURBO offers two advantages: its parallel processing

allows for the possibility of modeling complex centrifugal passages by simple blocks. It also

minimizes the computational domain to a single blade passage since it makes use of phase-

lag boundary conditions.

Output from TURBO is presented in two standard types: PLOT3D and APNASA. For the

current analysis the former is utilized. PLOT3D is a standard adopted after the development

of PLOT3D visualization package by NASA (early 90's). The output quantities are the five
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state variables normalized by conveniently chosen free-stream values (Table 2.1) . In

PLOT3D free stream values are taken as a. = 1, and p. = 1 and the gas constant R=1.

Table 2.1: PLOT3D standard normalization scheme

Unsteady calculations are performed by partitioning time in finite instants called time steps.

The accuracy of the calculation is set by specifying the number of time steps per impeller

blade passing period (time taken for a blade to complete one impeller pitch). A binary file

representing the solution of a particular instant is printed for every block at each time step.

The computational grid employed for both compressors; Production and Enhanced, is

composed of four blocks modeling a single impeller passage and a fifth block modeling the

diffuser. The vaneless space region is represented by block 4 and the first portion of block 5.

Figure 2.3 displays a surface within the grid corresponding to mid-span location. Any node

within the grid is identified by its coordinates on a streamline-based system; i.e. streamwise

(i), spanwise (j) and pitchwise direction (k). Table 2.2 indicates the total amount of nodes by

block

PRODUCTION
k

ENHANCED
- U - U - I - U - F -

kj j
Block 1 35 51 53 37 51 53
Block 2 134 51 27 134 51 27
Block 3 134 51 27 134 51 27
Block 4 20 51 53 20 51 53
Block 5 103 51 41 97 51 41

Table 2.2: Computational grid dimensions

28
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Q1 p/pW
Q2 (pu)/(p.a,,)

Q3 (pv)/(poa.0)

Q4 (pw)/(poao)

Q5 (pe)/(poa2 o)

i i



/

Figure 2.3 Computational grid: surface taken at 50% span-wise. Note that grid consists of only one
impeller passage and one diffuser passage, but 3 diffuser channels are shown for graphical purposes.
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2.3 PHASE LAG BOUNDARY CONDITIONS AND POST-PROCESSING

In order to make CFD a useful resource, computing times need to be minimized. A classic

approach focuses on the simplification of the computational domain (the grid). Spatial

periodicity in the solution is frequently used to reduce large domains into simpler ones. If a

variable is periodic in space, only the portion in which the variable is periodic is modeled. A

full solution can then be constructed for the entire space by repeating the spatially periodic

solution. When modeling turbomachinery passages of interacting blade rows, full cascade

domains can be reduced to a few blade passages under the assumption that any variable

within the flow field will repeat if periodicity in space is present. In such a way a compressor

stage of 24 stator blades and 36 rotor blades is modeled by a domain consisting of 2 stator

blades and 3 rotor blades (flow field solution repeats 12 times along the full wheel, see

Figure 2.4). A fully constrained problem is then defined because the condition in one of the

tangential boundaries of the passage is the same as that at the other boundary for all times.

COMPUTATIONAL
DOMAIN

TANGDENTIAL
BOUNDARIES

Xq

BOUNDARY

Figure 2.4: Spatially Periodic Flow Field in the modeling of an axial compressor passage. Note:
blades do not represent actual orientation.
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The Phase lag boundary condition technique relies on a stronger assumption about

periodicity: the flow field is also periodic in time. The flow configuration within a

turbomachinery passage is only dependent on the relative position of the interacting blade

row and it will be the same every time the relative position of the adjacent blade row is

repeated (passing period). Although the assumption is not completely accurate, Erdos et al

[23] and Chen [10] proved that the unsteady flow field of a passage responds mostly to

perturbations caused by the wakes of the interacting blade row. This supposition permits the

reduction of the computational domain to a single passage thus saving a large amount of

computer memory. There are two beneficial implications of the method:

a) The conditions at the boundaries of the computational domain are known if the flow

field evolution within the passage is stored over a time period associated with the

adjacent blade row.

b) A full wheel solution can be constructed from the recorded history of the flow

within a single passage.

Figure 2.5 illustrates the situation at the boundaries of a stator single passage with an

interacting blade row. The condition on boundary 1 at time ti is that of 2 at a previous time

tO. Also the boundary condition on 2 at time t2 is the condition at 1 at time tO. In time t3,

when the rotor has rotated one complete passing period, both conditions for 1 and 2 are the

same as those at time tO. It is concluded that if the conditions at both boundaries 1 and 2

are known for a complete time period of the adjacent blade row, they will be known at any

other instants in time.
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Figure 2.5: Phase lag boundary conditions

In order to know the boundary conditions for the initial period, the flow field is initialized by

an average passage approach [24]. The general passage approach states that flow field

response to the unsteady interaction of the adjacent row can be decomposed into a sum of a

time averaged solution and a term containing the unsteady nature of the response.

q(r,0,z,t) = q.ae(r,0,z) + 4 ,,r(r, 0,z,t)

(2.2)

The time-averaged solution can be directly found by solving an average-passage system of

equations without involving a time-marching scheme [9]. The perturbations are constructed

by taking the adjacent blade row solution and subtracting their axisymmetric averages, then

added to the average-passage solution [10]. As a result, the initial condition of the flow field

from which subsequent time integration will build up is set. Under the same principle the

condition at the axial and tangential boundaries can be computed for every position of the

adjacent blade row for a complete time period and then be stored along this interval.
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For the current research a post-processor to display full wheel solutions from the results of

TURBO was developed using FORTRAN and MATLAB. At a specific instant in time, a full

wheel representation is constructed by assigning neighboring passages a solution at other

times. The selection of the correct time file to allocate to each passage is better described by

Figure 2.6. For a full wheel representation at time t' the actual position of the original

passage (m=O) is localized. Neighboring passages are then numbered in the direction of

rotation m=1,2,3...N (for both rotor and stator). As stated by the Phase lag boundary

conditions technique, the value of any flow variable as seen by the rotor original passage

(m=0) at time t=t' is the same at a later instant in time when the rotor has rotated one full

stator passage (=Ps/K where Ps is the stator pitch 2n/Nstatorbades, and 0 is the angular

velocity of the rotor)

qr-,m=(t') = qrm 0(t'+ N)

(2.3)

Where N represents any integer number (N can also be negative meaning a previous instant

in time).

The value of a flow variable at an adjacent rotor passage m is the value of a flow variable for

the original passage m=O at a posterior time when the flow passage has moved m rotor

pitches.

Pr Ps Pr
q,,,(t') = q,=o(t'+ m) = q,, 0(t'+ - N+-M)

(2.4)

The time at which a solution for the m passage is referred from the original passage is the

target time [11] and is simply computed as:

. Ps Pr

(2.5)
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For the stator, the same principle of repeatability applies but in an opposite direction when

transmitting the results of passage m=O to any other m passage (variations at m=O happen

first in time than for other m's)

* Pr Pr

(2.6)

The post-processor developed for this investigation finds the target time for each one of the

passages in the rotor and stator and allocates the corresponding time solution from the

original passage.

Additionally to the full-wheel post-processor, many FORTRAN and MATLAB routines

were created for the computation of other quantities of interest.

Time

Figure 2.6 : Target Time allocation for full-wheel display
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2.4 AVERAGING OF FLOW VARIABLES

In the analysis of the following chapters, averaged flow quantities are employed. The

selection of the appropriate averaging technique for the representation of a given flow

quantity is presented below:

_. fBpudA
a) Mass averaging: BM

fpudA

All the velocities in the flow field (u, v, w, vr, vo, W) have been mass averaged throughout

the analysis. Mass averaged is employed with the intention of preserving the same amount of

mass from the actual flow field to the hypothetical uniform flow. Total Pressure P, and total

Temperature Tt are also mass averaged. The computation of other average quantities such

as rj, S, or Ot is also based on mass averaged values.

_ f BdA
b) Area averaging: BA = f d

fdA

Static pressure is the only quantity that is area averaged since the representation of an

equivalent flow acting on surfaces of the blades must exert the same force as the actual flow.

N

E B
c) Time Averaging: K = i=1

N

Any measured quantity at a specific location in space is averaged over time by the formula

given above, where N is the total number of time instants over which the quantity is

averaged. If the quantity of interest is derived from variables that are time and spatial

varying, the mass or area average technique is first applied and then the time-average

technique.
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2.4 SUMMARY

The current research focuses on the study of two compressors from Honeywell Engines

Systems and Services. One of the compressors (the Enhanced) is the redesigned version of

the other (the Production). When tested on a rig, the Enhanced compressor presented an

unsatisfactory aeromechanic response with large vibrational strains registered at the splitter

blade and close to the hub. The analysis here presented is based on the computational

simulation of the unsteady flow field of these compressors. The purpose of the analysis is to

reveal the nature of the mechanisms produced by impeller-diffuser interaction that set the

difference in loading between the two articles of research.

The employed tool is MSU TURBO, a CFD code based on the implementation of phase-lag

boundary conditions. A post-processing program in FORTRAN has been developed with

the purpose of visualizing full-wheel results.
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CHAPTER 3

Time-average Results

3.1 INTRODUCION

This chapter focuses on comparing the time-average performance of both the Production

and the Enhanced compressor. An issue is the impact on the performance change

associated with a 0.5% increase in the impeller radius of the Enhanced compressor to that of

the Production design. There could be two sources for the observed change: one is

associated with the additional work that could be done on the flow due to the increase in the

impeller radius and the other is the change in impeller-diffuser interaction due to a reduced

impeller-diffuser gap.

The analysis is performed by employing the Euler Turbine Equation (ETE) and the one-

dimensional model developed by Shum[18] to account for the change in blockage and loss

associated with the time-averaged effect of unsteady impeller-diffuser interaction. Two

operation points are chosen to make a comparison between the compressors: MASS1 and

MASS2 (see Figure 3.1). Operation at MASS1 corresponds to the operation at the same

corrected flow at which the test rig data was collected during the vibration measurements

(operation near design). Operation at MASS2 has been strategically chosen near the stall

point with the purpose of maximizing the intensity of the unsteady effects [17].

The chapter is organized into four sections. In the first section, the pressure ratios are

quantified and Shum's [18] model is introduced. The second and the third section evaluate

losses and blockage using Shum's model to determine their effect on pressure change.

Finally, stage and impeller efficiency are computed for the two compressors at the two

points of operation.
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fluid to the work done on it by a torque on a compressor. It is derived from the combination

of an energy balance and the conservation of angular momentum applied to the compressor.

In an adiabatic situation with no losses, the operation of the compressor is assumed to be

isentropic and stagnation pressure changes can be related to stagnation temperature changes

through an isentropic relation. A derived expression from ETE to compute stagnation

pressure changes is then obtained. For a centrifugal compressor with non-swirling flow at
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the inlet of the impeller, this relation takes the form of eq. 3.1:

P 2 ___

(3.1)

From TURBO, total and static properties are averaged (section 2.4) to obtain ratios of total

and static pressure. A comparison between the application of ETE and the values obtained

from the numerical simulation is presented. All ratios are normalized by the corresponding

reference value (total or static) of the Production case at MASS 1 obtained by TURBO:

Mass 1 Mass2
Production Enhanced A % Production Enhanced A %

ETE 1.11 1.14 2.8 1.21 1.21 0.03
Ht derived

CFD 1.00 1.02 2.2 1.02 1.03 1.8

ETE 0.98 0.99 1.9 0.98 0.99 1.3
derived

CFD 1.00 1.03 2.7 1.00 1.02 2.0

Table 3.1: Comparison of total and static pressure ratios obtained from (ETE) and TURBO for both

compressors.

The results for both calculations (ETE and TURBO) show higher pressure ratios for the

Enhanced compressor. The increment in stagnation pressure ratio at each point of operation

predicted by the derived expression from ETE is higher than the actual CFD values from

one compressor to another. (This is to be expected as we have assumed ideal adiabatic flow

in using ETE to compute total pressure ratio) The trend is the opposite for the values of

static pressure which are higher in the CFD calculations. These observations suggest that

the change in the level of unsteady interaction between Enhanced and Production may be

responsible for the observed change in the time-average performance.
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3.2.2 Shum's Model

In his Thesis [18] Shum develops a model to account for changes in pressure ratio (total and

static) for centrifugal impellers interacting with upstream vaned diffusers. The starting point

is a modified Euler Turbine Equation that accounts for the effect of losses during the

compression process:

7

_ t2 2 R e
Pt, CpTI

(3.2)

The losses are expressed in terms of entropy changes (see section 3.3 for connecting AS to

losses). Eq. 3.2 shows only two variables that can be affected by the interaction of an

impeller with a vaned diffuser: tangential velocity Vt and AS. A linearizing procedure is then

applied to the equation so as to isolate the impact of the changes in these variables to the

change in It. The tangential exit velocity Vt, does not feature as a fully independent variable

since it depends on the relative velocity W and the angle of slip [18] (see Fig. 1.1).

Furthermore, changes in W are caused by local quantities that by means of a one-

dimensional analysis are shown to be the effective flow area Af and the entropy change AS.

As an overall result, changes in stagnation pressure ratio between compressors without

(vaneless diffusers) and those with interaction (vaned) can be explained by the changes of

three quantities: Effective area at the exit of the impeller (A), Losses (AS) and Slip (-AO).

Shum's model is expressed in the following equation:

At AA (AS2
Pt2 eff CPO

(3.3)

Where C, q and C are the coefficients computed from the following formula:
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Ca U2- Vt 2=()17 JU2
2 ) M, C -1) Cp +Vt2U2

C, =-(1+Ca

C ( = 1 ) Vt2U2

tan a) y-1) CpT +Vt 2U 2

Shum showed that since C, >0, q <0 and C0 >0 a higher total to total pressure ratio may

be attained if there exists : more effective Area (AT), reduced loss (AS4 )and reduced slip

(AO 4) [18].

In a similar manner, a one dimensional model for the static pressure incremental change is

developed. Since static pressure is not a frame-dependant quantity, Shum develops this

model directly using influence coefficients (Shapiro [27]):

A2 C eff +C AS2
P2 Aeff CP0 )

(3.4)

With C,Q:

C~A ='1 2 >0

C9=-(1A+C) Yj<0
(7-1)

It is concluded that a higher static pressure ratio will also be attained if there is more

effective area and lower losses from one compressor to another. The assessment of these

quantities will provide further evidence of the Enhanced compressor having pressure ratios

larger than that of the Production compressor.
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3.3 LOSSES

Losses are associated with entropy production in Turbomachinery passages. For a perfect

gas, the change in entropy of a particle going from one state to another may be directly

obtained from the combination of Gibbs and the equation of State. The resulting equation

is:

s2 -SI= Cpln ( Rl2 n -Rnf2

(3.5)
If no heat or work is added to the fluid (constant stagnation temperature), a decrease in

stagnation pressure is accompanied by an increase in entropy.

p As
12= e R

P1

(3.6)

Mixing of flows with different characteristics (i.e. velocity, temperature) are examples of

situations in a compressor where the action of viscous forces and thermal conduction

produce irreversible changes in the flow. Irreversibilities result in entropy production

(entropy increase). According to Fig. 3.2 the changes occurring in a compressor can be

modeled as the added effect of changes produced reversibly and changes produced

irreversibly.

Tt Irreversible

~Ptx

Pt2

AS S

Figure 3.2: Diagram showing the relation of losses to entropy changes
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The relation derived from ETE for total-pressure ratio can be modified to account for non-

ideal effects:

= P P 1 + V U 2 . (s 2-s 1
t2 = t t2 +=11±V e j2 R S

1t 1 PtI CpT,

(3.7)

Equation (3.7) constitutes the starting point of Shum's model. As stated by Eq. 3.3 the

change of entropy is an important metric in defining the change in pressure ratio of a

compressor having stronger impeller-diffuser interaction.

In CFD analysis, it is preferred to compute the rate of change of entropy of a fluid particle

along its trajectory. This permits the identification of regions of entropy generation by

tracking how the entropy of a fluid particle changes at the different positions along its path.

The computation of Ds/Dt for a flow with no heat sources or heat exchange with the

surroundings is [2]:

Ds 1 au. K aTi aTi

Dt T a x. T 2 &j ~

(3.8)

The results in Table 3.4 make use of eq. 3.5 whereas the plotted contours of Figure 3.3b are

based on eq. 3.8.

Boundary layers or regions of high mixing constitute regions of entropy generation. Shum

[18] found dense contours of pDs/Dt in planes close to the trailing edge of the impeller

between the tip of the blade and the fixed shroud. To illustrate these contours and their

evolution along the impeller channel, successive crossing planes for the Production

compressor are displayed in Figure 3.3a at a particular instant in time. The Enhanced

compressor shows a similar pattern and for illustration purposes the Production compressor

is only displayed. It can be noticed that as the flow approaches the exit, these contours are

concentrated in the tip region. In Figure 3.3b, the same contours are displayed for the exit

plane of the impeller for the Production and the Enhanced compressor. The results are

similar to those found by Shum[18].
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Figure 3.3a Evolution of Entropy contours along impeller passage: Production (values normalized)
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Production

SSI

Enhanced

Figure 3.3b: Contours of time-averaged entropy generation pDs/Dt at the exit plane of the

Production and the Enhanced compressor.
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The entropy contours were interpreted by Shum as the result of flow leaking from the

pressure surface to the suction surface through the clearance at the tip. To prove the

existence of tip leakage in the Production and Enhanced compressor, particle paths were

traced in regions close to the tip. The trajectories revealed flow migration from the pressure

surface to the suction surface (note a line is drawn connecting path vectors):

.. - PS

PS

SS

Figure 3.4: Tip leakage flow represented by particle pathlines

By moving onto regions of lower static pressure, the flow coming from the pressure surface

will increase its speed with respect to the flow on the suction surface. The entropy

production due to tip leakage is explained by the large viscous stresses generated in the shear

layer existing between the incoming flow of the pressure surface and the flow at the suction

surface (see dissipation term tdu/dx in eq. 3.8).
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The computation of losses obtained for the impeller of both compressors is expressed by

entropy changes in Table 3.2:

Production

(S2-SI)
Cp

Enhanced
U I p

T2(S2 - Si)
O.5Vt2Utip

(S2-SI)

Cp
T2(S2 - Si)
0.5Vt2Utip

( Senha-Sprod / Cp)=( AS / Cp)

MASS1 0.0205 0.0884 0.0246 0.1060 0.00408

MASS2 0.0213 0.0921 0.0257 0.1110 0.00439

Table 3.2: Change of entropy for each compressor at each operation point and evaluation of the
change from one compressor to another.

For the Enhanced compressor, losses in the impeller are higher when compared to the

Production. This effect was originally observed by Shum, and can be explained from the

fact that a reduced vaneless gap will lead to a higher impeller-diffuser interaction producing

higher tip leakage flow. The viscous dissipation derived from mixing of the tip flow will

hence be higher and higher losses will be observed.
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3.4 EFFECIVE AREA AND BLOCKAGE

Flows within turbomachinery passages are subject to the effects of boundary layers and

other regions of non-uniform velocity. A typical velocity profile of a viscous flow shows

regions of boundary layers close to the walls where velocity is non-uniform and of reduced

value compared to the main stream. This type of flow can be modeled as an equivalent non-

viscous stream of uniform core velocity passing the same amount of mass through a smaller

area (see Figure 3.5). The area of the equivalent stream is thought of as an effective area

(Aff) and its difference with the actual area (A) is considered to be a blocked area. The

presence of boundary layers and other regions of velocity retardation then constitute regions

of flow blockage.

Figure 3.5: non-uniform flow represented by an equivalent stream at a reduced area.

Blockage is defined as the ratio of the blocked area (A-Aff) to the total area and is computed

as: B =1- Aaff/At 1. In this section it is however preferred to treat effective area as the metric

for assessing the effect of flows with regions of non-uniform velocity.
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In figure 3.5, the reduction in area per unit width from the actual flow to the equivalent

uniform stream is known as the displacement thickness and it represents the amount of

blocked area due to velocity retardation. Thus the displacement thickness is given as:

(5* = 1-( y0s*I PeV>

(3.9)
In a three dimensional flow, the summation over the entire width of the displacement

thickness of a stream in a plane constitutes the total blocked area at that plane (see Fig 3.6):

Ablocked = *AW

Figure 3.6 Representation of blocked area in a cross sectional plane.
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For a centrifugal compressor, regions of non-uniform velocity are not only confined to the

effects of boundary layers. Mixing due to the presence of wakes or secondary flows can also

result into an effective flow area reduction.

Khalid [22] developed a methodology to compute the reduction in effective area due to the

presence of endwall /tip clearance flows in an axial compressor. Shum [18] modified

Khalid's model for its use in centrifugal compressors. For many flow situations in centrifugal

compressors, Khalid/Shum method are not quite appropriate in quantifying the reduction of

effective area of the flow in a centrifugal compressor. Murray [25] developed an alternative

method for the estimation of the changes in the effective area between two centrifugal

compressors. In the following, both methodologies are compared. The most suitable

method in the evaluation of the reduced area for the current articles of research is

determined. A brief explanation of the blockage effect is offered along with the description

of the application of the two methods. Finally the obtained results are presented.

Khalid departs from a simple one dimensional velocity profile in an axial channel having a

core region with high speed and two boundary layers, one at the hub and one at the casing.

If the edges marking the division of the core from the boundary layers are known, then the

limits of integration of e.q. 3.9 can be taken and 6* can be computed for that particular

profile. Depending upon the type of design , the magnitude of velocity on an axial

compressor is usually non-uniform even within the core region. Since it is the velocity

within the channel that is the quantity of interest, relative velocities W in a centrifugal

compressor must be employed. The following figure (Fig. 3.7) shows the relative velocity

profile at a location close to the pressure surface and at the exit of an impeller channel of the

Production compressor.
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Figure 3.7: Relative velocit profile (magnitude and angle) of a region close to the pressure surface

of an impelier blade. Solid line represents the actual profile and dashed line represents polynomial

fitting.

The portions where speed is significantly lower constitute a distortion from the velocity of

the mainstream and are designated as defect regions. Khalid [22] quantifies the level of

distortion by computing the angle of deviation from the main flow direction (a) (i.e. radial

direction for the exit of a centrifugal impeller). Angle distribution is also shown at Figure 3.7.

The presence of a wake in the suction portion of the channel (et-wake model) introduces

cross flow that leads to additional distortion. The identification of a core region with a

defined direction must thus be done in zones free from wakes. The following figure shows

velocity and angle distributions at a location close to the suction surface where the effects of

the wake are clearly seen:
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Figure 3.8 Relative velocity profile (magnitude and angle) of a region close to the suction surface of

an impeller blade. Solid line represents the actual profile and dashed line represents polynomial

fitting.

The next step is the definition of the edges of the distortion. If a core region is recognized,

the values of the flow angle and speed can be extrapolated to those portions where the

distortion is located. Then the velocity at the defect region is projected over the main flow

direction (Vm) to assess the level of distortion. A dashed line in Figure 3.7 shows the

extrapolation obtained by third order polynomial fitting of velocity magnitude and angle.

Despite the fact that core velocity is not uniform within the core, its variation is not as

pronounced as in the defect regions. Khalid thus proposes the computation of the gradient

in velocity magnitude Vr I Vm I for the identification of the edges of the defect regions.

Shum's[18] adaptation of Khalid's method, defines the edges of the distortion as those

points where the gradient of the velocity normalized by the net momentum over the impeller

diameter is above 2.5 (cutoff value):

I ,VrWm >2.5
(pW ) ID
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When isolated regions of low velocity gradients are visualized within what has been

recognized as distorted regions, Khalid's procedure contemplates the alteration of the value

of velocity in such locations so as to make them part of the distortion. Figure 3.9a shows

cutoff contours of Khalid's axial passage clearly indicating that the regions contributing to

flow blockage are confined to the endwalls of the passage. Murray [25] found that due to the

complex jet and wake flow at the exit of the impeller, the application of Khalid's method

was somewhat not practical for his compressors and developed an alternative method.

Figure 3.9b and 3.9c show cutoff value contours at the exit of the Production and Enhanced

impeller at a similar instant in time for MASS 1. The regions enclosed by the contours are

regions of "unblocked area" where cutoff values are less than 2.5. It is clear from the figure

that areas of velocity retardation are not only confined to regions close to the walls of the

passage and the use of Murray's method over Khalid/Shum is thus adopted.

The method developed by Murray is not an accurate computation of the effective area but is

a good approach in quantifying the changes in the flow blockage from one compressor to

another. It relies on the assumption that the mass flow that is aligned with the mean velocity

direction is the only mass that flows through an area that is unblocked. It does not make use

of any modifications to the velocity profile at any location. The change in effective area may

be computed as:

A~ef = A thfdth
fpWTFdm

(3.10)
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Figure 3.9: Contours of relative velocity gradients in the nonnal and bi-nomal direction of the flow

showing distortion regions: a) Khalid [22], b) Production and c) Enhanced
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The obtained results from Murray's method are shown in the table below. Values of area a

normalized by a reference value.

Aeff / Aref AAeff (%)AAeff

Production Enhanced Aeffprod Aeffprod

re

MASS1 1.00 1.03 0.0314 3.14

MASS2 0.97 1.02 0.0436 4.36

Table 3.3: Change in effective area between compressors computed by Murray's method [23]

It is inferred from these results that the Enhanced compressor has higher effective flow

area. In Shum's model, higher effective area will produce higher values of pressure and so

this is the trend shown for the Enhanced compressor.

Although losses are higher for the Enhanced compressor, their detrimental effect on the

pressure ratio is surpassed by the favorable effect of the increase in the effective flow area

(changes in effective area are one order of magnitude higher than the losses, see table 3.2

and 3.3). One possible reason behind these observations is the connection between the

sources of loss, i.e. tip leakage flow, and the improved effective area, details on this can be

found in Shum [18].
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3.5 STAGE EFFICIENCY.

A closing step in the analysis of the time-average performance of the compressors, is the

evaluation of the impeller and the stage efficiency. Efficiency is computed from the

appropriately averaged stagnation quantities (section 2.4) and the expression for efficiency:

7

Wdeal -

W,,,, r' -1

(3.11)

Normalized results are shown in the table below:

Production

Adiabatic Efficiency: Tj / ilp.s1

Enhanced

* MASS1 100.0 100.52 0.52

* MASS2 102.4 100.99 -1.41

CI MASS1 100.0 99.00 -1.00
.M

.9 MASS2 99.8 99.47 -0.35

Table 3.4: Time averaged stage and impeller adiabatic efficiency of Production and Enhanced
compressor.
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The Enhanced compressor shows a lower efficiency for the impeller than the Production

compressor at both points of operation. The entropy generation due to tip leakage is

stronger in the Enhanced compressor because of stronger Impeller-Diffuser interaction and

stronger leakage flow. Overall stage efficiency is higher in the Enhanced compressor

operating at MASS1 but lower at MASS2 (see Figure 3.10) This shows that the flow in the

diffuser features as an additional source of loss that is dependent upon the point of

operation. It is suggested that the change in the flow matching between the modified

impeller of the Enhanced design and the diffuser at that specific point of operation could

possibly be the source of the observed difference in performance from the production

design.

-4-PRODUCTION
-U-ENHANCED

MASS3 --
MASS2

__ ____ __ MASSI

0.96 0.98 1.02 1.04 1.06

CMF (normalized)

Figure 3.10: Efficiency curves. Note values are normalized by reference quantities no necessarily in
coincidence with those in Figue 3.1
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3.6 SUMMARY

From the results obtained by TURBO, the Enhanced compressor presents an overall

increase in time-averaged pressure ratio (total and static) of nearly 3%.

The data in this chapter also demonstrates that the increase in static pressure ratio from the

impeller of one compressor to another involves rather more complicated flow mechanisms

than a simple increase in impeller radius. The losses resulting from the stronger impeller-

diffuser interaction of the Enhanced compressor have an adverse impact on pressure ratio.

However tip leakage flow, which is the mechanism through which most of the losses are

generated, has a positive influence in the blockage of the flow at the impeller. This last effect

has proven to be the dominant cause in the increase of static pressure ratio between the two

compressors.

The larger change in stage efficiency of the Production compressor with respect to the

Enhanced when moving from operation point of MASS 1 to MASS2, suggests that the losses

occurring in the diffuser are dependent on the point of operation and could be related to the

flow matching between the impeller and the diffuser.
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CHAPTER 4

The Unsteady Flow Field
4.1 INTRODUCTION

In any vibrational phenomenon, the forced response of the oscillatory system depends to a

large extent on the nature of the forcing function. In chapter 3, differences in the pressure

field between the two compressors were established on a time-averaged basis without any

further insight of time variation and spatial distribution of the pressure field acting on the

blades. Resonant behavior will likely occur when the frequency of the unsteady loading and

its spatial distribution are coincident with the natural mode frequency and mode shape of the

blade structure. Thus the study of the unsteady behavior of the flow field is of importance.

The theme of this chapter is to characterize the unsteady loading of the impeller blades

followed by a delineation of the main differences of this quantity between the Enhanced and

the Production compressor. Unsteady computational results are presented to elucidate how

the pressure distribution in the vicinity of the diffuser vane leading edge and the impeller

diffuser relative motion go toward setting the unsteady and spatial extent of the loading in

the impeller blades.

The results are employed to answer the hypothesis originally formulated by Smythe [17]

which relates the incidence angle to the behavior of the pressure field at the exit of the

impeller. The correlation of the incidence angle to the levels of loading has been previously

examined in similar studies such as that by Rabe and Kenyon [15] who analyzed the shock

structure and the loading on the blades of a transonic fan.
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4.2 CHARACTERIZATION OF BLADE LOADING

Previous work performed by Smythe [17] on both compressors, revealed key features about

the steady and unsteady loading of the impeller blades. Smythe found that the meridional

distribution showed a different pattern from one case to another with the level of loading

being higher for the Enhanced compressor. It was also noted that the peak values of

loading varied with spanwise location on each compressor, with the highest values usually

present in the hub region. This section broadens the analysis performed by Smythe by

focusing on the evolution of loading with time. The attempt is to establish the differences

in peak values of loading from one compressor to another and to characterize the meridional

distribution of this quantity.

4.2.1 Time-averaged loading of Production and Enhanced Compressor.

A first examination is taken into time-averaged loading. Figure 4.1 shows time-averaged

loading as a function of meridional distance at a mid-span location in the impeller main

blade and splitter. Both compressors are represented at different points of operation

(MASS1, MASS3 and MASS2 see Figure 3.1). MASS1 consists of an operating point close to

design, MASS2 to a point close to stall and MASS3 has been chosen to be approximately in

between these two. Differences in the loading pattern for the main blade do not seem to be

significant from one compressor to another. In the splitter blade however, these differences

are finite in a region of 15% chord-wise distance taken from the trailing edge, with higher

values for both compressors at MASS2 operation. The aeromechanic difficulty was

encountered in the splitter blade of the Enhanced compressor. From the plots, the

Production compressor has slightly higher loading distribution than the Enhanced. This is

not necessarily in contradiction with the fact that the Enhanced compressor has higher

pressure ratio than the Production since the distribution is only taken along a meridional

distance at mid-span.
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Figure 4.1: Meridional distribution of time-averaged loading at mid-span. Main blade and Splitter.

(meridional distance normalized by the main blade and splitter chord accordingly). Curves shown for

Production (P) or Enhanced (E) compressors at different operating points (MASS1, MASS2, MASS3)
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4.2.2 Unsteady Loading

As described in section 2.3, the unsteady behavior of the flow field in turbomachinery

passages is primarily defined by the interaction of a blade row with its adjacent row [9,10,23].

Unsteady impeller blade loading is a cyclic quantity that repeats with the frequency of the

passing vanes of the diffuser as seen by the impeller. This is the situation for synchronous

excitation. However for asynchronous excitation, the frequency need not to be that of the

passing vanes. Measurements of loading for both compressors are taken at time instants

spaced by 1/8 of the diffuser vane passing period at identical positions with respect to the

diffuser vanes. Spacing of 1/8 of the diffuser vane passing period is chosen in the analysis

throughout this chapter because the ratio of the vane passing period of the impeller to that

of the diffuser is a multiple of 1/8 and thus permits one to visualize events at same relative

positions when seen either from the impeller or from the diffuser. The obtained results are

shown for three span-wise locations: hub (10%spanwise), mid-span (50%) and tip (90%)

(Figure 4.2). Several features are identified:

. In both compressors the loading patterns are similar from hub to mid-span, but

differ greatly at the tip (see Figure 1.1). The highest amplitudes are present at the

hub.

* The unsteady behavior of loading for the main blade is localized in a region ranging

from 80% to 100% chordwise. The region of unsteadiness extends further into the

blade as the meriodinal location is closer to the tip of the blade. In the splitter blade,

unsteadiness covers a larger portion of the chord because the chord is smaller and

the values range from 60% to 100% of the splitter chord. However the extent of

unsteadiness is the same in spatial units for both blades( or -80% to 100% in terms

of the main blade chord).

" Peak to peak magnitude in loading is higher for the Enhanced compressor than for

the Production. Also, loading values of the splitter are not different than those from

the main blade at hub or mid-span locations but differ at the tip from those of the
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main blade at the same location (tip). The greatest amplitudes are registered for

operation at MASS2.

* The variation of the loading distribution with time attenuates as it propagates

upstream of the impeller trailing edge. For the Production case, the loading

unsteadiness decays faster than for the Enhanced. This can be appreciated by the

extension of the envelopes bounding the loading (see Figure 4.2).

' The maximum amplitude of loading at all mid-span locations occurs at 3/8 of the

diffuser passing period in the main blade, and at 6/8 in the splitter blade.
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PMASS2: Impeller Blade Loading,10%
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Figure 4.2a: Meridional distribution of loading at different time instants at MASS2. 10%

spanwiselocation (hub). Enhanced (EMASS2) and Production (PMASS2) compressor

(main blade: meridional distance normalized by the main blade chord)
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PMASS2: Splitter Blade Loading,10%
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Figure 4.2b: Meridional distribution of loading at different time instants at MASS2. 10%

spanwiselocation (hub). Enhanced (EMASS2) and Production (PMASS2) compressor

(splitter blade: meridional distance normalized by splitter chord)
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Figure 4.2c: Meridional distribution of loading at different time instants at MASS2. 50% spanwise

location (mid-span). Enhanced (EMASS2) and Production (PMASS2) compressor

(main blade: meridional distance normalized by the main blade chord)
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Figure 4.2d: Meridional distribution of loading at different time instants at MASS2. 50% spanwise

location (mid-span). Enhanced (EMASS2) and Production (PMASS2) compressor

(splitter blade: meridional distance nomalized by splitter chord)
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Figure 4.2e: Meridional distribution of loading at different time instants at MASS2. 90% spanwise

location (tip). Enhanced (EMASS2) and Production (PMASS2) compressor

(main blade: meridional distance nomalized by the main blade chord)
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Figure 4.2f:- Meridional distribution of loading at different time instants at MAss2. 90% spanwise

location (tip). Enhanced (EMASS2) and Production (PMASS2) compressor

(splitter blade: meridional distance normalized by splitter chord)
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Tables 4.1a and 4.1b summarize some of the most important features in loading distribution

of the two compressor blades. These features are graphically shown in Figure 4.3:
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SLOfadi
/ \P.S.

LEr///\///////////////////////// / / / / / /
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iin

Attenuation distance

ITEI

de

g

Figure 4.3: Features of interest in loading

From the tables the amplitude of loading in the main blade of the Enhanced compressor is

-1.8 times larger than for the Production. For the splitter blade the Enhanced compressor

is -1.4 times larger. From testing data, the Enhanced compressor presented a strain being

twice as large as the one of the Production as reported in [21].
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MASS1

Production Enhanced
I Y 9 V I

MIN A (amplitud of
loading)

MAX MIN A (amplitud of
loading)

Aenhan

Aprod

HUB 0.517 -0.186 0.703 0.561 -0.568 1.129 1.61

MID 0.347 -0.138 0.484 0.374 -0.563 0.937 1.94

TIP 0.427 0.001 0.426 0.420 -0.374 0.794 1.86

Averag 1.80

MASS3

Production Enhanced Aenhan

MAX MIN A (amplitud of MAX MIN A (amplitud of Aprod
_ in in

HUB 0.526 -0.259 0.784 0.603 -0.587 1.190 1.52

MID 0.374 -0.162 0.535 0.438 -0.479 0.917 1.71

TIP 0.388 0.007 0.381 0.360 -0.376 0.736 1.93

Average 1.72

MASS2

Production Enhanced Aenhan

MAX MIN A (amplitud of MAX MIN A (amplitud of Aprod
loading) loading)

HUB 0.546 -0.310 0.856 0.638 -0.652 1.290 1.51

MID 0.405 -0.183 0.588 0.486 -0.646 1.132 1.92

TIP 0.396 -0.007 0.404 0.437 -0.388 0.825 2.04

Average 1.82

Table 4.la: Summary of important features of loading .(Main blade, normalized Values )
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MASS1

Production

MAX

Enhanced
V 4 V

MIN A (amplitud of
loading)

MAX MIN A (amplitud of
loading)

Aenhan

Aprod

HUB 0.470 -0.289 0.759 0.483 -0.498 0.980 1.29

MID 0.359 -0.098 0.457 0.389 -0.424 0.813 1.78

TIP 0.507 -0.276 0.783 0.618 -0.292 0.909 1.16

Average 1.41

MASS3

Production Enhanced
Aenhan

MAX MIN A (amplitud of MAX MIN A (amplitud of Aprod

loading) loading)

HUB 0.490 -0.339 0.828 0.561 -0.573 1.134 1.37

MID 0.356 -0.121 0.477 0.396 -0.325 0.721 1.51

TIP 0.496 -0.275 0.771 0.571 -0.281 0.852 1.11

Average 1.33

MASS2

Production Enhanced Aenhan

MAX MIN A (amplitud of MAX MIN A (amplitud of Aprod

loading) loading)

HUB 0.5250 -0.3822 0.9071 0.6377 -0.6526 1.2903 1.4224

MID 0.3566 -0.1622 0.5188 0.4039 -0.5076 0.9115 1.7570

TIP 0.4946 -0.2654 0.7600 0.5791 -0.2586 0.8377 1.1022

Average 1 .43

Table 4.1b: Summary of important features of loading. (Splitter blade, normalized values)
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4.2.3 The effect of diffusion on loading structure.

The overall level of loading on a blade can be expressed in terms of relative velocities

through the de-Haller number. The de-Haller number is defined as the ratio of the exit

relative velocity to the inlet relative velocity. W2/W1 . In his study, Gould [26] showed that

de-Haller number decreases with increasing corrected mass flow and that this results in an

increase in the extent of the region of unsteadiness on the impeller blade. Figure 4.4 plots

the extent of unsteadiness as a function of de-Haller number (low de-Haller represents high

loading). Note that the extent of unsteadiness is measured in terms of a percentage of the

impeller main blade chord from the leading edge of the impeller.

Loading Attenuation with Diffusion

T.E

Extent UNSTEADINESS
of Unsteadiness PMASS1

PMASS2

EMASS3 EMASS1

EMASS2

NO UNSTEADINESS

L.E

0.698 0.716 0.7263

Do Haller Number (W2/W1)

0.7383

Figure 4.4: Extent of unsteady loading vs de-Haller number
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As shown in the figure, the lowest de-Haller numbers are registered for the Enhanced

compressor at the three points of operation. Large diffusion (low de-Haller) will have higher

penetration than lower diffusion (high de-Haller) and thus attenuation will be reduced. These

results are in accord with the observations made by Gould [26].
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4.3 PRESSURE WAVE STRUCTURE

Differences in the loading pattern of the impeller blades have been established between the

two compressors. An understanding of loading and its nature is a necessary requirement in

the assessment of the perceived aeromechanic difficulty. Important features of the flow

field leading to the formation of unsteady loading are described in this section.

As shown by the results in section 4.2, the highest amplitudes of loading are obtained when

operating at reduced mass flow. It is thus of interest to look at the features of the flowfield

at MASS2 in the quantification of loading. The Production compressor is used as the

baseline case for the following discussion. Although the Production and the Enhanced

compressors have quantitatively different flow features, qualitatively they are the same so the

examination of a single compressor suffices for this analysis.

In order to characterize loading, an impeller passage is followed as it completes one vane

passing period of the diffuser. Pressure contours are displayed every 8* of the period for a

mid-span location at the exact time instants and relative positions of section 4.2.2 (Figure

4.5). The evolution of the pressure over the surfaces of the main impeller blade is followed.

At time t=OT, the impeller blade (1) (see figure 4.5) approaches the zone of high pressure

that surrounds the leading edge of the diffuser vane (2). As the blade moves closer, a region

of high pressure (A) builds on the pressure surface of the impeller blade at the trailing edge

(t=1/8T, 2/8T). This region propagates upstream into the impeller channel (t=3/8T,

4/8T) and begins to decay as it reaches distances further upstream (t=5/8T , 6/8T). At

T=7/8 the pressure contours recover nearly the same shape and values as those at t=OT.

The same process occurs at the suction surface of the blade but with a lag in time. The

formation of the high pressure region (B) is not evident until time 4/8T and 5/8T and does

not propagate to the same extent as that on the pressure surface of the impeller blade. By

the time the pressure reaches a maximum on the pressure surface on the impeller blade

trailing edge, it has a low value at the suction surface (3/8T, 4/81), the effect being reversed

for later times in the period (6/8T, 7/8T). During these times, high levels of loading should

be expected. This is the trend shown by the loading distributions of Figure 4.2.
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1 1.5 2 2.5 3

T=0/8T

1 1.5 2 2.5 3

T=1/8T

1 1.5 2 2.5 3

T=2/8T

1 1.5 2 2.5 3

T=3/8T

4
Figure 4.5a: Pressure development over impeller blade as a function of position (nonnalized).
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1 1.5 2 2.5 3

T=4/8T

1 1.5 2 2.5 3

T=5/8T

'4
1 1.5 2 2.5 3

T=6/8T

1 1.5 2 2.5 3

T=7/8T

Figure 4.5b: Pressure development over impeller blade as a function of position (nonnalized).
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From these observations, it is inferred that the level of pressure around the vanes of the

diffuser is directly related to the level of loading acting on the blades of the impeller. Also

the unsteady loading on the impeller blades is set by the vanes of the diffuser.

The regions of pressure acting over the surfaces of the impeller blade (A and B in Fig 4.5)

are disturbances that propagate as pressure waves upstream and into the impeller channel.

To illustrate this, plots of meridional distribution of pressure along the surfaces of the

blades (pressure and suction) at different time instants over a vane passing period are shown

in Figure 4.6 at 10% span-wise location.

The pressure surface exhibits a wave standing close to the trailing edge of the impeller blade

at time 0/8T. At 2/8T, a new wave is formed at the trailing edge and is propagated into the

channel. The peak value of the wave reaches a maximum at t=3/8T and begins to decay as it

propagates further upstream. At time =7/8T, the newly formed wave has almost the shape of

the original wave and the cycle repeats. The wave is completely attenuated at a distance of

80% of the chord, after which the pressure profile shows no variation over time. Wave peaks

are connected by a dashed line showing the upstream propagation of the waves. The suction

surface follows a similar process. A wave is formed and propagated upstream with decaying

values as it moves further upstream into the channel. The instants at which this wave is

formed are however different on the suction surface from those on the pressure surface and

there is a phase lag between the two waves. The peak values of the pressure wave on the

suction surface are lower than those on the pressure surface and the extent of propagation

seems to be limited to a chord-wise distance of 8% from the trailing edge. The slope of the

dashed line on Figures 4.6a and 4.6b gives the propagation speed of the pressure wave on

the pressure surface.
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Figure 4.6a: Evolution of pressure waves acting upon main blade surfaces: Pressure (Ps) and

Suction (Ss)
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Figure 4.6b: Evolution of pressure waves acting upon main blade surfaces: Pressure (Ps) and

Suction (Ss)
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The level of loading on the impeller blades is accentuated because pressure waves are

propagated differently on the pressure surface and the suction surface of the impeller blade.

A remaining issue is the quantification of the speed and wavelength of such waves.

Any disturbance in the pressure field will propagate with the local speed of sound. Since the

disturbance propagates in the moving flow exiting the impeller, the speed of the waves with

respect to the walls of the blade will be that of sound minus the relative velocity of the flow

in the channel. To prove this supposition, the peak of a wave acting on the pressure surface

is followed in time over the full period and the value of its mean velocity is computed. Then
the velocity of the wave is compared to the value of the local speed of sound minus the

relative velocity of the flow (a- W). Both a and Ware computed at the exit of the impeller

yielding a good estimate although their value is different for different locations inside the

channel. The analysis is performed at span locations from hub to mid-span of the blade

since at locations near the shroud the presence of a wave is not so evident (see Fig. 4.2). The
results are shown in Figure 4.7:

Figure 4.7: comparison of measured wave speed to (a- W') at different spanwise positions
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In both compressors, the speed of the wave appears to be very close to a-W. It can be

concluded that the propagation of the pressure waves derived from impeller-diffuser

interaction depends on the local speed of sound and the relative velocity of the flow within

the channel.

An additional metric in the characterization of the pressure wave is the wavelength. (see

figure 4.8 below):

P
-3

Vanes

hn

X / chord
Extension of unsteadiness

impeller
blade
Trailing
Edge

Figure 4.8: Characterization of the pressure waves acting on the surfaces of the impeller blades

A peak in the pressure wave begins when the diffuser vane is aligned with the impeller blade.

The wave then travels with a certain speed into the channel as its magnitude is attenuated.

The length between two successive peaks should thus be given by the time it takes a new

wave to be formed and the speed at which the previous wave has propagated. Thus the

wavelength X is:

(4.1)
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Where Tdiff is the time it takes for a diffuser vane to occupy the position of a previous vane

when seen from the impeller (i.e. the vane passing period), and (a- W) is the speed of the

wave. In order to prove this supposition, wavelengths are computed. For the baseline case of

Production at MASS2, the length between successive peaks was measured and compared to

the value predicted by equation 4.1. The measured values are within 10% from the

computed values.

The observations made so far are summarized as follows:

" Unsteady loading is formed by the action of pressure waves that propagate along

the surfaces of the blades and these originate from the interaction of the impeller

with the vanes of the diffuser.

" The extent of propagation is larger on the pressure surface than on the suction

surface and is usually confined to a 20% impeller chord from the impeller trailing

edge (see section 4.2).

e The waves propagate at a speed approximately given by a- Wand the wavelength is

given by A =(a - w)TDiff .
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4.4 THE DIFFUSER AS THE SOURCE OF UNSTEADINESS

In section 4.3 the unsteady pressure distribution in the pressure surface and the suction

surface of the impeller blades were described and quantified. The spatial pressure

distribution in the vicinity of the diffuser vane leading edge was identified as the source of

the pressure disturbances. It is thus of interest to examine the flowfield at the inlet of the

diffuser for the Production and the Enhanced compressor. This will enable to establish a

link between the perceived differences in the aeromechanic response and the differences in

the unsteady loading between the two compressors.

In her study, Smythe [17] outlined the differences in the time-averaged incidence angle as the

possible causes of the aeromechanic response difference between the two compressors.

Incidence angle is defined as the difference in the flow angle and the vane angle, both taken

with respect to the radial direction. (see Fig 4.9).

Figure 4.9: Definition of incidence angle and nomenclature of diffuser passage regions
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The following figures show velocity triangles for both compressors computed from mass

averaged and time averaged quantities at the different points of operation. At every point of

operation, both compressors rotate at the same amount of RPM's and the tip speed of the

impeller (base of the triangle) is almost identical for the two cases (slightly higher for

Enhanced due 0.5% radius enlargement). The Enhanced compressor presents a higher

tangential angle O6 than the Production. The difference resides in a lower value of relative

velocity (Wz) for the Enhanced case. A higher value of diffusion is present in the Enhanced

compressor (trend given by Figure 4.4 and the de-Haller coefficient. Note de-Haller is always

lower for Enhanced than for Production). For the same compressor, since the angle of

backsweeping is fixed, it can be concluded that low relative (thus radial) velocities will

correspond to higher flow angles. Higher diffusion can be explained by two aspects: higher

effective flow area (see section 3.4) and higher density of the flow at the exit of the

Enhanced case. In this case, higher effective area (less blockage) has proven to be the

dominant effect since the changes in effective area from the Enhanced compressor to the

Production are one order of magnitude higher than the difference in density.
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Utip

Utip,

Utip

Figure 4.10: Velocity triangles computed at the exit of the impeller with time and mass averaged

values of velocity.
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When the incidence angle of the flow is high and almost aligned with the diffuser vanes, a

streamtube leaving the impeller will see an increase in area as it reaches the semi-vaneless

space (see Figure 4.11). The accompanying effect is a rise in static pressure within this

region. If the incidence angle is low (sometimes even negative), the streamtube has a reduced

area in the semi-vaneless space before entering the diffuser throat. The consequence is a

drop in pressure in the semivaneless region.

Figure 4.11: Effect of incidence angle in the entering streamtube and the pressure
distribution along the semivaneless space.
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In figure 4.11 it is demonstrated that less negative incidence at the pressure surface and less

positive incidence at the suction surface will produce higher pressure values (larger area). An

analysis is conducted by measuring and averaging the values of pressure and incidence angle

along the span of the leading edge of the diffuser vane at both pressure and suction surfaces.

Values are obtained every 8' of the diffuser vane passing period for a total of 12 points. The

results are shown in Figure 4.12.

On the pressure surface, a higher incidence angle (less negative) should be followed by a

higher value in pressure from the arguments above. This trend is perceived as the values of

the incidence angle change every instant in time. The incidence angle in the Enhanced case is

always higher than that of the Production and is thus also accompanied by a higher level in

pressure.

At the suction surface the incidence angle is always positive (see Fig 4.12). It can be noticed

than in most of the cases the pressure value is low when the incidence angle is high and vice

versa. From the trends shown, it is concluded that values of static pressure are changed by

the values of the incidence angle.

Table 4.2 is a summary of the observed results for both compressors. The following

inferences can be made: The incidence angle in the suction surface of the diffuser vane is

similar on each point of operation for the Production and Enhanced compressor with

equivalently similar values of static pressure near this zone. On the pressure surface

however, incidence angle is considerably different between the Production case and the

Enhanced; the incidence angle is less negative for the Enhanced compressor and thus higher

values of pressure are registered. This difference is explained from the velocity triangles

which show that the flow angle for the Enhanced compressor is always higher. As the point

of operation is changed to lower mass flow regimes, the radial value of velocity is

increasingly lower. The effect is that the flow angle, hence the incidence angle, is reduced

and the pressure on the leading edge of the diffuser vane is increased. MASS2 is expected to

show the highest values of pressure and this is the trend that table 4.2 is showing.
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Pressure Surface Suction Surface Loading

incidence

(range)

Prmax a incidence

(range)

Pmin
A

(Pmax - Pmin)

Aenha

Aprod

Production -25 to -18 2.72 9 to 7 2.30 0.417
MASS1 I I 1 1.8

Enhanced -18 to -10 3.03 9 to 7 2.27 0.757

Production -24 to -16 2.77 12 to 9 2.20 0.568
MASS3 1.6

Enhanced -16 to -7 3.08 12 to 10 2.20 0.882

Production -23 to -14 2.51 12 to 10 2.15 0.355
MASS2 3.3

Enhanced -18 to -5 3.23 11 to 9 2.08 1.156

Table 4.2: Summary of span-wise averaged incidence angle and static pressure (normalized) for the

three points of operation.

The ratio of pressure difference from pressure surface to suction surface of the two

compressors is similar to the ratio of amplitude of loading in the main impeller blade of the

two compressors (see tables 4.1 and 4.2) at MASS1 and MASS3. Results of pressure ratio at

the diffuser vane leading edge for MASS2 are higher however than those of loading at the

same mass flow. Evidence suggests that the levels of pressure at the leading edge of the

vane of the diffuser set the levels of loading in the impeller blades and these levels of

pressure are highly affected by the value of the incoming flow angle (or incidence angle).

This confirms Smythe's[17] supposition on the influence of the incidence angle in the

pressure field.
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4.5 SUMMARY

The study of the unsteady pressure field of the Production and the Enhanced compressor

has revealed important features in the understanding of the difference between the two

compressors' forcing function. Furthermore, the nature of loading has been characterized.

The hypothesis of the influence of the incidence angle on the pressure distribution on the

blades of the impeller that was originally posed by Smythe, has been substantiated.

The changes of time-averaged values of pressure in chapter 3 proved to be small in

comparison with the unsteady effects. The amplitude of unsteady loading of the Enhanced

compressor reached values twice as high as that of the Production (-1.8). This trend

suggests that the unsteady effects are important as a forcing function and have a major

influence on the difference in aeromechanic response presented by the two compressors.

It was shown that the unsteady loading on the impeller blades originates from pressure

waves propagating with a phase difference on the suction and pressure surfaces of the

blades. The extent of propagation into the impeller channel appears to increase with the

impeller blade loading (Gould [26]). It was also noted that these pressure waves propagate

with a speed that is given by the difference in the local values of the speed of sound and the

relative velocity. The frequency is set by vane passing frequency and spatial distribution is

set by diffuser inlet pressure distribution and vane passing period.

The difference in static pressure existing in the leading edge of the vanes of the diffuser set

the level of unsteady loading on the blades of the impeller. This difference in pressure

correlate with the incidence angle of the flow into the diffuser which changes with the point

of operation and from the Production compressor to the Enhanced compressor. This is in

accord with the hypothesis put forward by Smythe [17].
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CHAPTER 5

Summary and Conclusions
5.1 SUMMARY

The unsteady 3-D computed flow field for two centrifugal compressors of nearly identical

design at three operating points has been post-processed and interrogated to assess: i) the

difference in the time averaged performance, ii) the difference in the characteristics of

unsteady loading on the blades of the impeller and iii) the flow mechanisms and processes

that are responsible for the observations in i) and ii). The three points of operation were

chosen as follows: one operating point near design, one at a low corrected mass flow near

the compressor stall point and one at a corrected mass flow approximately midway between

the first two.

5.2 CONCLUSIONS

The key conclusions of this work are:

* The computed difference in the time-average performance between the Enhanced

and Production compressor is due to the change in the level of loss and blockage

resulting from the difference in the strength of impeller-diffuser interaction.

" It was shown that the unsteady component of loading on the impeller blade

originates from pressure waves propagating with a phase difference on the suction

and pressure surfaces of the blades. These waves propagate with a speed that is given

by the difference in the local values of the speed of sound and the relative velocity of

the flow in the impeller. The frequency of the waves is set by the diffuser vane

passing period and the wavelength by the product of the diffuser vane passing period

and the speed of the wave. The extent of propagation upstream of the impeller blade

trailing edge, appears to increase with impeller blade loading (Gould [26]).
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* It was shown that the difference in static pressure from the pressure surface to the

suction surface at the leading edge of the diffuser vanes sets the amplitude of

unsteady loading on the main blades of the impeller. The level of pressure on both

surfaces of the vane is set by the value of the local angle of incidence. The angle of

incidence was shown to vary with the point of operation and with compressor

design. The difference of incidence angle from the Enhanced compressor to the

Production is the result of the changes in the effective impeller channel area

produced by a different level of impeller-diffuser interaction. These findings prove

the hypothesis originally put forward by Smythe [17].

5.2 RECOMMENDATIONS FOR FUTURE WORK

The following research tasks are recommended for future research efforts:

" Make use of CFD analysis to determine the shape of the unsteady forcing function in

the operation of the Enhanced compressor and combine it with FEA to perform a

modal force analysis in order to asses the resulting levels of strain. This will provide

with a methodology to measure the impact of the changes in design on the

aeromechanic response.

. Interrogate what are the causes that produce a reduction in the attenuation extent of

unsteadiness associated with the level of diffusion.
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