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ABSTRACT

This thesis proposes, develops and validates a methodology to quantify the
complexity of air traffic control (ATC) human-machine interaction (HMI). Within this
context, complexity is defined as the minimum amount of information required to
describe the human machine interaction process in some fixed description language and
chosen level of detail. The methodology elicits human information processing via
cognitive task analysis (CTA) and expresses the HMI process algorithmically as a
cognitive interaction algorithm (CIA). The CIA is comprised of multiple functions which
formally describe each of the interaction processes required to complete a nominal set of
tasks using a certain machine interface. Complexities of competing interface and task
configurations are estimated by weighted summations of the compressed information
content of the associated CIA functions. This information compression removes
descriptive redundancy and approximates the minimum description length (MDL) of the
CIA. The methodology is applied to a representative en-route ATC task and interface,
and the complexity measures are compared to performance results obtained
experimentally by human-in-the-loop simulations. It is found that the proposed
complexity analysis methodology and resulting complexity metrics are able to predict
trends in operator performance and workload. This methodology would allow designers
and evaluators of human supervisory control (HSC) interfaces the ability to conduct
complexity analyses and use complexity measures to more objectively select between
competing interface and task configurations. Such a method could complement subjective
interface evaluations, and reduce the amount of costly experimental testing.
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1. Introduction

Computer and display technologies have matured to a stage where the
presentation of information is no longer primarily limited by the technology’s ability to
process information, but by the human’s. More simply put, today’s technology allows for
a practically unbounded number of configurations for presenting information on a
computer display to a human. It is known however that humans have inherent
neurophysiologic information processing limits (Cowan, 2001; Kandel, Schwartz, &
Jessel, 2000; Miller, 1956; Norman & Bobrow, 1975; Rasmussen, 1986; Wickens &
Hollands, 2000) which must be accounted for in the technological design. These
essentially correspond to complexity limits at various stages of information processing
that physically occur within the central nervous system (CNS).

In many areas of complex interface development, such as air traffic control
(ATC), designers could benefit greatly from a structured and practical analytical method
for quantifying complexity in order to select between competing interface and task
options. A typical ATC interface is shown in Figure 1-1. While there are many factors
exogenous to the interface that ultimately contribute to the complexity of human
information processing, including environmental and organizational factors, the interface
itself can add to the complexity if not carefully designed (Cummings & Tsonis, 2005). In
the ATC domain, the complexity imposed on the individual controllers ultimately limits
the air traffic capacity and can increase the economic cost of operation of the ATC
system. While a successful method for quantifying the complexity of an interface could
be applied in a number of domains, in ATC it could lead to the implementation of
improved interfaces which could result in a combination of improved safety, increased
controller productivity and airspace capacity, reduced system costs, and reduction in

training time
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Figure 1-1. Air traffic control human-machine interface. The station shown is the Display System
Replacement (DSR) used for en-route traffic operations in the USA. Photo courtesy of Federal
Aviation Administration (FAA).

In order for a technological interface to achieve its full system performance
potential, be operated safely, and at the same time require the least amount of operator
training and cost, complexity of the human-machine interaction process must be
minimized subject to certain constraints. The engineer designing the human-machine
interface is confronted with the challenge of deciding how to most effectively present the
information and design the task in a way such that the human can accomplish the
required goals accurately and efficiently. An engineer faced with competing design
options should be able to ensure that the information complexity relative to the human is
low enough to allow for the goals to be accomplished efficiently.

While increased interface complexity due to a poor design can be addressed to
some degree with additional training, this is oftentimes counterproductive and costly. A
preferable solution would be to provide the engineer with a tool for quantifying the
complexity of competing interface and task configurations prior to delivering the
technology to operators. This measure can then form the basis of more objective design
choices. Such a tool would also be of value when deciding upon the acquisition of
competing technological interfaces, such as ATC or unmanned aerial vehicle (UAV)

workstations.
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This thesis therefore proposes a practical, theoretically based methodology for
quantifying information complexity in human-machine interaction. The chosen definition
of complexity stems from information theory. Although the definition is elaborated upon
in Chapter 2, complexity is defined as the (minimum) amount of information required to
describe an object’ in some fixed description language (Gell-Mann & Lloyd, 1996;
Shannon, 1948). This complexity analysis methodology expresses the interaction process
between the human and the machine as an algorithm based upon results of a cognitive
task analysis (CTA). This algorithmic scripting of information between the human and
interface is named the cognitive interaction algorithm (CIA). Complexity can then be
estimated by algorithmic information content (Cover & Thomas, 1991) or by some
minimum information content such as Kolmogorov Complexity (Li & Vitanyi, 1997).

The complexity analysis methodology is summarized in Figure 1-2. It first
proposes the application of a CTA for breaking down the task and eliciting cognitive
processes for a given interface configuration. Based on the knowledge acquired from the
CTA, the CIA is written. In this thesis the estimates of complexity are provided by the
algorithmic information content (AIC), and the compressed algorithmic length
(representative of minimum description length) of the CIA. This yields a numeric value
for a specific task and interface configuration. In order to evaluate the validity of the
methodology, the resulting complexity measures generated for each task and interface
configuration are compared to the performance results obtained from an experiment
conducted with United States Navy ATC trainees engaged in a basic en-route ATC
vectoring task. Based on this comparison it is determined whether the complexity
analysis performed to examine the effect of different display configurations is a

successful predictor of operator performance.

" In this thesis the relevant object is the human-machine interaction process.
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Complexity Analysis Procedure Outline
| | Analyze and break down the task for a given interface configuration
2 Express interaction as the Cognitive Interaction Algorithm (CIA)
3 Estimate the complexity of the algorithm
4 Repeat | through 3 for other configurations
a Compare the complexities of competing configurations

Figure 1-2. Complexity analysis procedure outline

This thesis is organized into five chapters following this introduction. In Chapter
2 the literature in the complexity field is reviewed with a particular emphasis on
complexity in information processing and ATC. Chapter 3 describes the methodology in
detail. It begins with a discussion of typical ATC tasks and interfaces and then the ATC
task which forms the basis of the validation of this methodology is analyzed by a CTA.
The CIA functions are devised and presented in Chapter 3, and the method for estimating
complexity is illustrated.

The experimental methods used to measure performance on the ATC task are
described in Chapter 4 along with the associated experimental results. Chapter 5
compares the performance measures to the complexity estimates obtained from the
methods described in Chapter 3. Finally the results are summarized and final conclusions
are drawn in Chapter 6. This chapter also includes a discussion on potential limitations

and shortcomings, as well as recommendations for future work.
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2. Complexity

Complexity is cited extensively throughout the literature in a variety of fields and
disciplines and affects many aspects of science, engineering and technology integration
(Bar-Yam, 1999). Merriam-Webster dictionary defines complexity as “composed of
many interconnected parts; compound; composite: a complex system” (2001). In this
chapter relevant complexity literature is reviewed. The review is structured to go from a
broad to more specific focus and is sectioned into the following components:

¢ Philosophical discourses on complexity

o Information theory and algorithmic complexity

e Complexity in cognition and human factors

e Complexity in air traffic control
The chapter discusses methods proposed to measure complexity, with a particular
emphasis on previous work regarding measures of complexity in ATC and human-
machine interaction. This chapter concludes by providing the rationale for the chosen

complexity definition.

2.1. Philosophical Discourses on Complexity

The complexity review begins at the epistemologically broadest level with the
discussion of complexity from a philosophical perspective. Many efforts have been made
to provide comprehensive definitions of complexity. A noteworthy example is the work
of Edmonds (1999a; 1999b) who conducted a detailed study on the syntactic origins of
complexity. In this work he defines complexity as “that property of a language
expression which makes it difficult to formulate its overall behaviour even when given
almost complete information about its atomic components and their inter-relations.” An
important consequence of this definition is that it relays the difficulty in formalizing

something complex based solely on the understanding of its fundamental parts.
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Grassberger (1989) positions complexity somewhere between order and disorder.
He considers three diagrams similar to those in Figure 2-1. The human generally judges
the middle as the most complex. The given reason is that humans interpret the image on
the right as an object with no rules. If describing the images at the level of each pixel
however, the amount of information required to objectively and fully describe the
rightmost figure is greater. Therefore rather than highlighting that complexity lies
somewhere between order and disorder, this example emphasizes that complexity is
relative to the language of the observer. More specifically complexity is relative to the
language of description used by the observer to decode the object. The language of
description is the set of characters, conventions and rules used to decode and convey
information. By the language of description used by the human to perceive the figures,
the description of the middle figure requires the most information. The human
representation of the middle figure has the least pattern redundancy and has a larger

description length than the other two.

e
1y

7

5

Figure 2-1. Left figure displays an ordered pattern. Middle figure displays chaotic pattern. Right
figure displays a disordered pattern (white noise). Grassberger (1989).

In the extensive complexity review conducted by Xing & Manning (2005), they
conclude that the concept of complexity is ultimately multi-dimensional and cannot be
sufficiently described with a single measure. They identify three dimensions of
complexity: number, variety and rules. Number refers to the numeric size of the elements
in a system and variety refers to the diversity of elements within the system. Rules govern
relationships between system elements. Their work was conducted for the purpose of
reviewing techniques which could be applied to the complexity analysis of ATC displays.

Further discussion is thus reserved for subsequent sections.
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While philosophical discourses of complexity are of interest for conceptual
understanding, they are inherently subject to linguistic ambiguity. This limits their direct
applicability as a basis for a quantitative metric in engineering. This is less of a problem
with the more mathematical based methods reviewed in the following section. However a
most important point drawn from the philosophical discourse is that complexity
necessarily depends on the language that is used to model the system (Edmonds, 1996).
Therefore any measure of the complexity of human-machine interaction is dependant
upon the language chosen to describe the interaction process. In the proposed

methodology the description language is the cognitive interaction algorithm.

2.2. Information Theory and Algorithmic Complexity

Information theory originated in the late 19™ Century when mathematical
formulae were developed to measure entropy in thermodynamic processes (Gell-Mann &
Lloyd, 1996). Thermodynamic entropy effectively measures uncertainty about the
microscopic state of matter. Because information serves to reduce uncertainty, the
mathematical formula proposed by Claude Shannon (1948) to define information was
essentially the same as that which measured entropy”. Shannon’s formula for the entropy

of a discrete message space is shown below.

I(M)=="" p(m)log(p(m)) (E.2-1)

meM
Equation 2-1 computes the information (/) contained in a set of messages (M), as a
function of the probability (p) with which each message (m) in set M is communicated.
The term log(p(m)) is the self-information of message m. Prior to Shannon’s contribution,
information content of a message was oftentimes measured by the number of letters or
other symbols needed to convey it.

Stemming from the seminal work of Shannon (1948), information theorists have
provided measures of complexity, as they relate to communication and algorithms.
Perhaps the most notable of such measures is that developed by Russian mathematician
Andrei Kolmogorov and known as Kolmogorov Complexity. One definition defines

Kolmogorov Complexity as “the minimum number of bits into which a string can be

? Shannon’s equation differs by a multiplicative constant
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compressed without losing information” (Black, 1999). In other words the complexity of
a string is the length of the string's shortest description in some fixed description
language. For a rigorous mathematical definition, and comprehensive resource on
Kolmogorov Complexity, the reader is referred to the work by Li & Vitanyi (1997).

The principle of minimum description length (MDL) is related to Kolmogorov
Complexity. MDL has its origins in the work of Shannon (1948; 1964) however Rissanen
(1978) was the first to formally formulate the idea. The general idea behind MDL is that
any regularity in a given set of data can be used to compress the data. The MDL principle
is a formalization of Occam's Razor (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987;
Kaye & Martin, 2001) in which the best hypothesis for a given set of data is the one that
leads to the largest compression of the data (i.e. the description with the lowest
complexity). The vast majority of applications of MDL are for model reduction and
statistical inference, and used within the computer science field. As MDL captures the
minimum amount information required to describe a system it inherently measures
information complexity. A larger MDL corresponds to a larger complexity. For a detailed
review of the theory and current applications of MDL, the reader is referred to the recent
work compiled by Griinwald, Myung & Pitt (2005). For simplicity in this thesis MDL
(and thus complexity) is approximated by the compressed information content of an
algorithm (the CIA).

The application of information theoretic formalisms to problems of human
machine interaction has thus far had limited success. A notable exception includes Fitt’s
Law (Fitts, 1954), which applies information theory to provide a quantitative model for
analyzing the trade-off between the accuracy and speed of human motor movements as a
function of end point target size. The general failure to connect information theoretic
formalisms to human-machine interaction is of course partly due to the sheer complexity
of human information processing. In addition human information processing is generally
not expressed in a formal language by human factors researchers, something which limits
the applicability of more systematic and quantitative predictive methods. The application
of information and algorithmic theoretic analysis techniques to human-machine
interaction could be simplified if human information processing and machine interaction

is expressed more formally as an algorithm. The CIA attempts to provide greater
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formalism to the description of the human information processing involved during

human-machine interaction, such that quantitative analysis techniques can be applied.

2.3. Complexity in Cognition and Human Factors

The section begins with the general discussion of complexity in cognition and
then continues with a discussion of complexity in human factors. The definition which
best connects cognition and complexity is that by Godfrey-Smith (1996). He states that
“the function of cognition is to enable the agent to deal with environmental complexity”
(Godfrey-Smith, 1996). In this thesis the relevant agent is the human. The environment is
formed by the machine interface and the information arriving through the interface.

Cognition is performed within the central nervous system (CNS) which has the
brain at its core. On the cellular level the brain is composed of approximately 10"
neurons and an even greater number of glial cells. These cells form the basis of the neural
circuitry of the central nervous system (CNS). The CNS is described by Pinker as a
complex computational device that transforms information in rule-governed, algorithmic
ways (Pinker, 1997). The specialized neural circuits contained within the CNS make up
systems which are the basis of perception, action, and higher cognitive functions,
including consciousness (Kandel, Schwartz, & Jessel, 2000; Pinker, 1997).

Xing (2004) relates neural science to complexity and provides examples of certain
areas of the brain and their functions as they relate to a human interacting with an ATC
interface. She outlines the functions of areas of the brain involved with information
processing stages of perception, cognition and action. The visual cortex performs
perceptual tasks that include target searching, text reading, color detection, motion
discrimination and many others. Typically part of this information is then transmitted to
the associational cortex and combined with elements of long term memory. Among
others, the cognitive functions of working memory, text comprehension and planning
occur in the associational cortex. According to Xing (2004) the bandwidth of the
cognitive stage is much less than that of the perceptual stage. The pre-motor and motor
cortical areas encode voluntary body movements, such as those of the eye or hands. The

motor cortex, which enables the action phase of the information processing loop, is
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believed to process information in a serial manner, and consequently has a narrower
bandwidth than both the perceptual and cognitive stages (Xing, 2004).

As alluded to in the previous paragraph, the neural networks in the human brain
have limited bandwidths, as is the case with any communication medium. In other words,
there are limits to how much information can pass through these neural circuits in a given
amount of time. If these information limits are exceeded, information is lost and
performance on a task likely drops. These limits in information throughput are equivalent
to complexity limits. In order to process any incoming information signals, the human
CNS must perform neural computations to reduce information complexity. Incoming
information to the human, such as that from a display, which has a certain absolute
complexity, acts in conjunction with a large number of neural schemas’. These neural
schemas are essentially adaptive complexity transformers that serve to transform and
reduce the incoming absolute state of information complexity to levels which the human
is able to process effectively.

The simplified relationship between absolute complexity and complexity relative
to the human is shown graphically in Figure 2-2. The equation describing this

transformation is shown below.
Khuman =Mk, absolute (2'1)
In Equation 2-1 «,,.. is the complexity relative to the human, M is the transformation

and x is the absolute complexity. The matrix M is purely a property of the CNS and

absolute

is constructed through learning and genetic preprogramming. The term «,,,, is the

complexity of the computations that occur in the CNS and is that component of

complexity which this proposed methodology attempts to capture. The quantity «,,, ..

must not be confused with perceived complexity. Perceived complexity is the conscious

(subjective) component of «,, ... The term « contains all the information required

absolute

to fully describe the environmental input signal. Equation 2-1 is shown mostly for

* It is important to note that the term newral schema is chosen because it is physically more accurate than
the similarly used definition of mental model, originated by Craik (1943). For more information on neural
schemas refer to Arbib (1992; 2003).
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conceptual reasons, and it is not intended at this stage for the mathematical properties of

the transformation to be defined.

Infarmation Complexity
Relative to Human

Absolute Infarmation
Complexity

Reductive
Transformation ()
of Information
Complexity

K absolute : Khuman

A/ -~

Figure 2-2. Graphical representation of the transformation between absolute complexity and
complexity relative to the human. The reduction is the result of a large number of neural schemas
that have been programmed in the human central nervous system and correspond to a
transformation represented by M.

e ———————————————— - -]

In terms of complexity in human factors, Miller (2000) makes a distinction
between perceived and actual complexity. He defines perceived complexity as the
“phenomenon of being difficult to understand or deal with.” He further decomposes
perceived complexity into three dimensions: component complexity, relational
complexity and behavioral complexity. Component complexity is the number and
diversity of components that the human perceives a system to have. Relational
complexity refers to the number and variety of the links between components. Finally
behavioral complexity refers to the number and variety of perceived states or behaviors
that the system can exhibit. An increase along any of the dimensions results in an
increase in complexity. According to Miller, increased complexity results in an increase
in workload and/or unpredictability of the system. This motivates the need to quantify it
in order to be able to compare the complexity of competing human-machine interfaces.

Miller’s complexity breakdown is similar to the categorical breakdown of
complexity developed by Xing & Manning (2005). As already mentioned they arrive at
the conclusion that the key elements of complexity are number, variety and rules (Xing,
2004; Xing & Manning, 2005). The added point relevant to this subsection is that

complexity is the result of crossing the elements of complexity with the three stages of
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human information processing identified by Xing (2004). These stages consist of
perception, cognition and action.

Another reference that relates to this discussion is the review of visual complexity
by Donderi (2006). As part of this extensive review Donderi first covers structuralism
and Gestalt psychology and continues by reviewing the topics of visual complexity
theory, perceptual learning theory and neural circuit theory. A goal of his review is to
help establish the theoretical basis for measures of complexity in human factors. In his
earlier work Donderi (2003) uses compressed computer image sizes for measuring the
visual complexity of a display. While he does not directly propose a general measure of
complexity in HMI, he concludes his review by stating that “minimizing visual
complexity, while respecting the requirements for the task, should maximize task
performance.”

In summary, the human brain is conceptually a computational device which
employs neural schemas to reduce complexity of the incoming information. This
reduction of complexity is required so that the human can successfully interact with the
surrounding environment. Minimizing complexity should maximize human performance

on a task. In this thesis, all stages of CNS information processing will be categorized as

cognition.

2.4. Complexity in Air Traffic Control

Air traffic control complexity is a critical issue, particularly in light of expected
forecasts of increased air traffic volume. Complexity has been attributed as the primary
cause for the deployment failure of the FAA’s Advanced Automation System after an
expenditure of $US 3-6 billion over a period of twelve years (Bar-Yam, 1999). This
complexity can arise from a variety of sources, categorized by Cummings & Tsonis
(2005) as environmental, organizational and display (or interface). Figure 2-3 shows the
cascading complexity chain illustrating the decomposition of complexity as it applies to
complex systems such as ATC.

In ATC, capacity is in great part limited by the cognitive complexity imposed on
the individual controller. Extensive work has been conducted to quantify complexity in

ATC. For example Mogford et al. (1995) present a review of air traffic control
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complexity where they identify methods for extracting complexity factors from
controllers. In general the majority of ATC complexity has focused on quantifying the
complexity imposed on the controller by the air traffic itself, and not the complexity

associated with the interface or the entire interaction process.

B Complexity
Mitigation

Figure 2-3. Air traffic control complexity chain (Cummings & Tsonis, 2005).

A significant portion of ATC complexity work has been the set of ATC
complexity metrics known as dynamic density (Kopardekar, 2003; Laudeman, Shelden,
Branstrom, & Brasil, 1998; Masalonis, Callaham, & Wanke, 2003; Sirdhar, Seth, &
Grabbe, 1998). These measures attempt to capture, weigh and sum numerous driving
variables of air traffic complexity to arrive at a numeric real-time metric of ATC
complexity. These variables include such entities as number of aircraft, spacing distances,
number of speed changes (Majumdar & Ochieng, 2002), and were selected because they
were statistically deemed predictive of controller workload.

A smaller amount of work has focused on estimating the complexity imposed on
the human controller due to the decision support interfaces intended to aid with the
control and supervision of air traffic. As introduced previously, Xing & Manning (2005)
cross the components of complexity (number, variety, and relation) with the three stages
of human information processing (perception, cognition, and action). This generates a
3x3 matrix which forms the basic framework of their proposed ATC display complexity

metric. The idea is that if general human limitations for each cell in the matrix could be
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established then these results could be used as a point of reference for evaluating the
complexity of ATC interfaces. To date the question of how to establish the general limits
and how to fill the cells of this matrix has not been addressed in the literature.

While decomposing complexity of an ATC interface into number, variety and
relation is reasonable, there are more concise and precise ways to define and capture
complexity. For example MDL? is able to precisely capture the consequences of all of
the above three elements with greater parsimony. For example given two system
descriptions with equal number, the system description with large variety is inherently
less compressible than the element with less variety, and hence has a larger MDL. This is
due to the smaller amount of repetitious and redundant information that is present. This is

shown with the simple example of the two binary strings in Figure 2-4.

String (A)  101010101010101010101010
String (B)  110100011010011101010010

Figure 2-4. Two binary strings.

The top string A has a minimum description length in the English language of “twelve
repetitions of 10”. String B cannot be compressed to that degree, and would required one
to express each digit. Hence by the MDL definition of complexity, String A is less
complex than string B even though they have the same length. If strings A and B were
abstract representations of controller, interface and traffic situations A and B respectively,
it would be concluded that situation A is less complex than B. Any relations between
elements would also necessitate additional descriptive information but could serve to
either reduce or increase the MDL. Given two measures which capture complexity
equally, the simplest is the most preferable.

The ability to capture complexity is important in ATC because ATC
administrators require objective and quantitative methods to predict and assess human
limitations and performance on new technology. A complexity metric would provide a
more objective aid for deciding between options in the acquisition of new technology.

Furthermore it would provide an objective “check” to subjective ratings that controllers

* Or information compression in general, which is an empirical surrogate
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use to rate technological configurations. Objective complexity metrics would allow
designers of technology to predict how competing interface configurations could affect

the end user, while reducing the amount of more costly usability and evaluation trials.

2.5. Conclusions

After reviewing numerous definitions of complexity, the revised definition
developed for the context of measuring complexity in human machine interaction is:
Complexity is defined as the (minimum) amount of information required to
describe the human-machine interaction process in some fixed description
language and chosen level of detail.
In this work the proposed description language is the CIA. The CIA represents human
information processing and includes the actions involved in the execution of a task using
a given machine interface. The above definition is consistent with complexity in
information theory and similar to effective complexity defined by Gell-Mann & Lloyd
(1996). The chosen definition also parallels the general definition of Bar-Yam who
defines complexity as the amount of information necessary to describe a system® (Bar-
Yam, 1997). The selected definition also parsimoniously captures the consequences of
each of the complexity elements of number, variety and rules, or any similar such
categorical breakdown®. A final advantage of the selected definition of complexity is its
simplicity, which makes it easier for it to form the basis of a quantitative metric.
Complexity (as defined here), is estimated by the information content of an algorithm
(CIA) for different task and interface variants. As is discussed in greater detail in the
subsequent sections, in this thesis information is quantified by two measures: the
algorithmic information content (AIC) and the compressed algorithm size which is

representative of MDL.

* He also notes that this is dependent upon the level of detail of the system description
® The premise is that the variety and rules require information to be described.
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3. Methodology

The purpose of this chapter is the presentation and detailed discussion of the
complexity analysis methodology first outlined in Chapter 1 (Figure 3-1). The analysis is
applied to an experimental ATC interface and task that was developed for the purposes of
examining performance consequences of different interface variants.

The methodological steps in the proposed complexity estimation method are
shown in Figure 3-1. Once competing interface configurations have been identified, the
first step in the procedure consists of a CTA of the representative ATC task. The
motivation for conducting the CTA is that it provides knowledge regarding operator
information processing. This knowledge forms the basis for the CIA functions which are

formulated relative to an assumed representative operator.

Complexity Analysis Procedure Outline

{ | Analyze and break down the task for a given interface configuration

2 | Express this interaction as the Cognitive Interaction Algorithm (CIA)

{

3 Estimate the complexity of the algorithm
4 Repeat ! through 3 for other configurations
a Compare the complexities of competing configurations

Figure 3-1. Qutline of complexity analysis procedure

The second step consists of writing the CIA functions for the various interaction
processes. The ultimate purpose for expressing the interaction process as an algorithm
(the CIA) is such that the information complexity can be quantified. In order to fulfill this

process, a core CIA is created for each interface configuration and the nominal user
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interaction. The core CIA is the highest level script of what typical occurs in each
assumed scenario and are the algorithms from which all CIA functions are called. The
CIA functions represent cognitive and task subprocesses that the operator performs (eg:
moving the cursor). In Step 3, the method and equation for estimating overall complexity
from the algorithms, is applied to example interface variants for an assumed nominal
task. While the purpose of this chapter is to outline the methodology, Chapters 4 and 5
present additional task factors and validate the predictive capacity of the complexity

measures (for the given interfaces and tasks).

3.1. Interface Configurations

This complexity estimation methodology is applied in order to quantify and
compare complexity between different interface configurations. It is important to
emphasize that interface configurations depend upon the context under which they are
used and thus cannot be compared independent of a task. For example the complexity of
a computer keyboard depends upon the message being typed and not only on the
keyboard itself. It is therefore necessary to establish a nominal scenario which describes
how the human interacts with the interface. Only within the context of an assumed
scenario can the complexity of the different interface configurations be correctly
assessed.

As an example illustration of the complexity estimation methodology, four
variants of en-route ATC aircraft data-blocks are compared. Data-blocks are interface
elements on the display which contain alphanumeric and graphical information pertinent
to each target aircraft. They are located beside the actual aircraft position on the display,
and controllers extract information from these in order to perform their tasks. This
information typically includes such information as altitude, speed, heading, and flight and
identification numbers. A screenshot of a typical data-block from an actual en-route ATC

display is shown in Figure 3-2.
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Figure 3-2. Typical en-route ATC display data-blocks showing two aircraft. Data-blocks have three
lines of information. The first line of text represents the flight number, the second is the altitude and
the third is the computer identification number. Image courtesy of the FAA.

The four example data-block variants, to which the complexity estimation
methodology is applied, are shown in Figure 3-3 and vary by the amount of information
that each has on the base layer. The data-blocks with fewer than five lines on the base
layer are expandable to display all five lines. In the cases with fewer than five lines
visible, the rest are made visible by clicking on a double arrowhead. Each click displays
one extra line.

From an application perspective, an ATC organization such as the FAA would
want to identify any potential consequences of changing the number of lines on the
performance of controllers. This is especially relevant as more information becomes
available with an increased number of sensors and higher communication bandwidths and

decisions must be made on how and where to present that additional information.
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2 Line Data-Block

3 Line Data-Block

4 Line Data-Block

5 Line Data-Block

Figure 3-3. Four competing interface variants. These consist of four aircraft data-block types with
varying number of lines on the base layer. The first three data-blocks can be expanded to include all
five lines of information. The bottommost data-block always displays five lines.

The simulated interface and associated representative tasks are discussed in depth

within the following section as part of the CTA.

3.2. Step One: Cognitive Task Analysis

The purpose of the CTA in this complexity estimation methodology is to elicit
and present a high level approximation of the information processing that occurs within
the human CNS as an ATC task is carried out using a given interface. Since this
methodology is intended for applications to problems of human-machine interaction in
ATC, a task-analytic overview of actual ATC operations is provided and framed within a
historical context. Existing CTA techniques are then briefly reviewed in order to
establish an understanding of available methods and the techniques applied. Following
this, a representative experimental ATC task and interface is described. The final CTA
step is the presentation of the resulting cognitive process charts and a description of the

steps and procedures involved in carrying out the ATC task.
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3.2.1. Auir traffic control background, tasks and interfaces

The safe and expeditious movement of air traffic requires the coordination of an
enormous number of human, technological and economic resources. The infrastructure
and capability to efficiently and safely move people and goods by air is one most
valuable economic assets of a nation. The Air Traffic Action Group reported in 2005 that
the air transportation industry contributes 880 billion U.S. dollars annually to the
cumulative global gross domestic product (The economic and social benefits of air
transport, 2005). Central to ATC operations are air traffic controllers who are responsible
for separating and directing aircraft to their destinations. The tasks that controllers
perform have changed over the past eighty years, driven by several technopolitical’
milestones and a steady surge in commercial air traffic (Burkhardt, 1967; Heppenheimer,
1995).

In the early years of ATC, controllers manually tracked aircraft on maps using
small paperweights (called “shrimp boats™), as shown in Figure 3-4. These tools provided
one of the first ATC interfaces, and subsequent technological evolution and
implementation was aimed at eliminating the limitations imposed by these tools.
Although at that time controllers had no direct radio link with aircraft, they used
telephones to stay in touch with airline dispatchers, airway radio operators, and airport
traffic controllers. These individuals fed information to the en-route controllers and also

relayed their instructions to pilots.

7 Technopolitical milestones include such things as key congressional acts (e.g.: Air Commerce Act) and
enabling technologies (e.g.: radar), which drove the establishment of the current ATC system
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Figure 3-4.Air traffic controllers circa 1935 tracking aircraft using small paperweights on a table top
aviation chart. Image courtesy of the FAA.

The radar® which was first introduced in 1952 in the United States was the
technology that enabled significant increases in controlled traffic capacity (Nolan, 2004;
Skolnik, 2001), but also added a new layer of complexity. It was the first technology that
presented controllers with a relatively accurate approximation of the aircraft’s position at
a given time. Although greatly improved over the past 50 years, this technology still
forms the foundation of today’s air traffic management systems. Information from the
radar is presented to the human via the scope, which is the primary tool used by
controllers to support their tasks. Radar scopes have evolved from their early days
(Figure 3-5), and now include automation aids and tools which the controller can
leverage. Current ATC interfaces in the United States resemble that shown in the
introduction (Figure 1-1). Many relics of previous systems are carried over to new
systems however. One such example is the display of radar sweeps on screen, something
not necessary with modern displays. Resistance to change is partly because of the
potentially high risk of radical changes in such a safety critical domain. It is also due in
part to controller resistance to technological implementations which could replace their

own skills.

¥ The word radar originated as an acronym (RADAR) which stands for Radio Detection and Ranging
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Figure 3-5. Air traffic controller interacting with a radar scope circa 1960. Image courtesy of the
FAA.

Current ATC operations are typically broken down into several phases. The first
phase begins with the aircraft on a taxiway. A subset of controllers, typically located in a
control tower, are responsible for surface traffic, ensure that aircraft taxi to their runways
in an orderly fashion and do not progress onto runways unless provided with a clearance.
These controllers issue clearances for take-off. Once the aircraft is airborne, a terminal
control center soon assumes responsibility for that flight, vectoring the aircraft away from
the airport safely. Once the aircraft has climbed and is at some distance from the terminal
area, responsibility for the flight is handed off to en-route controllers who monitor the
high altitude traffic flows and issue commands to pilots as required. As a flight nears its
destination airport and descends, responsibility is handed back to the terminal controllers
who ensure a clear approach. Finally control is yielded back to the tower who clears the

runway and return taxi. A profile of the flight phases is shown in Figure 3-6.
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Figure 3-6. Air traffic control flight phases.

The representative task and interface to which this complexity analysis
methodology is applied replicates en-route ATC characteristics. Typical en-route ATC
operations consist of directing and ensuring separation of aircraft flying at high altitudes.
In the USA, the national airspace is sectioned into twenty-two air route traffic control
centers (ARTCC), each broken down into several dozen sectors. One controller is
generally responsible for a single sector, although in many cases is assisted by an
additional person. Controllers accept aircraft from neighboring en-route sectors and then
must hand them off once they have traversed their sector. As aircraft fly through the
sector, controllers must ensure adherence to a set of separation standards that define the
minimum distance allowed between aircraft. Furthermore controllers attempt to expedite
the flow of traffic such that airlines can minimize flight time and fuel consumption.

In the USA the most recent en-route control interface implemented is the Display
System Replacement (DSR), manufactured by Lockheed Martin. The DSR station is
shown in Chapter 1 (Figure 1-1) and includes

e A primary 20”x 20” color display (radar) with trackball and keyboard
e A 157 secondary color display (data) with flight strip bays and keyboard input
e An auxiliary 15” display with flight strip bays, printer and keyboard input
A screenshot of the primary display is shown in Figure 3-7. The experimental interface

developed for this research was modeled on this system.
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Figure 3-7. En-route DSR primary display interface screenshot. Image courtesy of the FAA.

Air traffic controllers have skills and knowledge that are the result of extensive
training and practice. Their preparation includes a four year FAA approved education
program, twelve weeks of operational training, followed by two to four years of practical
training within an ATC facility (Bureau of Labor Statistics, 2006). Reducing the
complexity of ATC interfaces and tasks has the added benefit of reducing this long
preparation time.

For ATC tasks controllers generally command inputs via a trackball and
keyboard, observe visual information from the primary (radar scope) and secondary
displays and communicate with aircraft via a headset which they must key in order for
their communication to be aired. Controllers must make both spatial and temporal mental
projections based on multiple aircraft and follow numerous standardized procedures and
regulations. They track targets and comprehend and project the location and behavior of
aircraft in the three spatial dimensions in addition to the dimension of time. In most

circumstances they also communicate with controllers who support them, as well as
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supervisors and controllers of other sectors. In performing these tasks and interacting
with these technologies and other humans, controllers process information using neural
schemas and mental computations that result from years of training. The information
processing of controllers has been the subject of a large body of research (e.g., Majumdar
& Ochieng, 2002; Mogford, 1997; Seamster, Redding, Cannon, Ryder, & Purcell, 1993).
The following section discusses the CTA methods which were applied to the

representative ATC task.

3.2.2. Cognitive task analysis methods

Cognitive task analysis (CTA) is an umbrella term encompassing a variety of
methods and techniques that serve to break down and extract the cognitive processes and
physical actions which a human performs in the accomplishment of a set of goals and
tasks. Cognitive task analyses are practical tools that have the general purpose of
methodically breaking down a human-machine interaction process into numerous
interconnected subtasks.

A variety of CTA techniques have been developed, applied and reported in the
human factors research and development community (Annett & Stanton, 2000; Diaper &
Stanton, 2004; Hackos, 1998; Schraagen, Chipman, & Shalin, 2000). CTA techniques
include numerous methods for extracting information, including observation, interviews
and surveys as well as examination of verbal communications between team members,
think aloud methods, diagramming methods and psychological scaling methods
(Seamster, Redding, & Kaempf, 1997).

Several methods have been applied to problems of human machine interaction in
the aviation community, including ATC (Seamster et al., 1997). For example Seamster et
al. (1993) conducted an extensive CTA study to specify the instructional content and
sequencing for the FAA’s en-route ATC curriculum redesign. This analysis attempted to
capture knowledge structures, mental models, skills and strategies of en-route controllers
in order to provide an understanding of the key components of the controller’s job. As a
result, Seamster and his colleagues identified thirteen primary tasks, presented a mental
model of the controllers’ knowledge organization, categorized controller strategies, and

expressed controller goals hierarchically.
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In this research the ultimate purpose of the CTA is to extract information
regarding the cognitive processes of controllers in order to develop a more accurate CIA.
The CTA portion conducted for this complexity analysis consisted of the following
components:

e observation of operators

e recording of operators verbalizing their thought process

¢ informal interviews with selected operators

e detailed description of the task, interface and interaction processes

e hierarchical task decomposition and listing of information requirements
e generation of cognitive process flow charts

e description of cognitive process flow charts

The following subsections discuss the methods applied.

3.2.2.1. Observation

Observation is a fundamental component of a CTA, although it is perhaps the
most difficult to formally express. In the CTA applied in this research, observations
consisted of two main components. The first portion consisted of observations and
discussions during scenario validation, carried out with pre-trial participants. This
included a presentation of the proposed interface to a group of research colleagues, who
provided feedback on the interface. The next portion was the observation of two French
ATC trainees who were used to primarily elicit the high level cognitive processes
involved with the direction of aircraft, avoidance of conflicts, and the prioritization of
tasks. The two participant controllers were males in their mid-twenties, had completed
most of their ATC training, and were gaining operational experience. They first followed
a tutorial which explained the representative task and interface usage. This lasted
approximately fifteen minutes and was followed by a six minute practice scenario that
familiarized the controllers with the interface and task. The controllers alternated in
carrying out this practice scenario as well as the subsequent two scenarios each. This was
done in order to have the added benefit of having one controller observe the other and

provide the additional perspective, thus maximizing the session’s output. This also
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stimulated greater post-scenario discussion between the two participants and the

experimenter, regarding the task and interface used to accomplish the task.

3.2.2.2. Think aloud method

A think aloud method was used with the French ATC trainees in order to gather
information on which subtasks were being attended to, the approximate duration of the
attention, and the prioritization of tasks. As a core component of the CTA, the French
ATC trainees were asked to verbalize their thought and action processes as they
interacted with test bed scenarios. These participants were instructed to speak out loud
while executing their tasks and then to comment both freely and in response to specific
questions after each scenario. Each controller’s computer display was fed to a secondary
flat panel display which was recorded using a Sony Hi-8 VHS camcorder, which also
captured the audio discussions during and after each of the scenarios. After each scenario
these participants discussed their usage of the interface, the task, and their cognitive
processes. Post-trial unstructured interviews also took place in order to elaborate on
certain elements of their information processing, interface use and task performance. For
example, the controllers were asked to elaborate on what determined which aircraft they

decided to command.

3.2.2.3. Task decomposition and information requirements

The task breakdown decomposes tasks in a hierarchical fashion and identifies
information requirements. One of the most well established CTA approaches is the
hierarchical task analysis (HTA) which has its origins in the 1960’s (Annett, 2004). HTA
defines complex tasks as a hierarchy of goals and sub-goals. The breakdown of the tasks
conducted for this research and presented in tabular format is analogous to an HTA. This
is important for the eventual development of the CIA as it provides a basis for the
variables used within the various CIA functions (e.g.: cursor position, target flight

number, etc.).
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3.2.2.4. Cognitive process charting

Cognitive process charting has the purpose of expressing the various subtasks and
the connections between subtasks graphically in addition to capturing operator decisions.
This step in the CTA procedure is a simplified parallel to Goals, Operators, Methods,
Selection Rules (GOMS), which is among the most complete CTA tools in the Human
Factors field. From its origin (Card, Moran, & Newell, 1983), different variants of
GOMS have been developed over the years, with varying degrees of complexity (John &
Kieras, 1996a; 1996b). GOMS consists of descriptions of the methods needed to
accomplish specified goals (Kieras, 2004). Goals represent a hierarchy of what a user is
trying to achieve. This is analogous to the task breakdown conducted in this research.
Operators are the set of operations which a user composes in order to achieve a given
solution. Methods represent sequences of Operators. The Methods are grouped together
in order to accomplish a single Goal. Finally Selection Rules are used to select a solution
method amongst several possibilities. In this research the simple analog to Operators,
Methods and Selection Rules are the cognitive process charts which are developed. These
charts capture the steps, decisions and processes which an operator typically carries out

when performing tasks using the given interface.

3.2.2.5. Subtask timing

As a final part of the CTA, approximations of the time spent on several of the
different subtasks identified by the task breakdown were recorded. The desire was that
each of the resulting CIA functions had an associated estimated (human) execution time.
For example, the algorithm of the function describing a human finding a specific aircraft
on screen would have the associated time approximation for performing that subtask.
This was initially motivated in order to form a basis for calculating total CIA execution
time for each task and interface configuration’. This essentially corresponds to the time
required for a CIA to execute when “run” on a typical human controller.

In order to capture subtask times, a simple stop watch graphical user interface was

programmed in Matlab® and run alongside the ATC simulation. The estimations were

® This information could have been used to generate an additional metric of algorithmic execution time in
addition to one consisting of CIA complexity divided by CIA execution time. The validity of these
additional two measures could have then also been determined.
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carried out with a single participant over multiple trials. The participant started the timer,
carried out specific sections of the tasks as instructed, and then stopped the timer. This
allowed several important subtasks and mental sub-processes to have an associated time
dimension. Table 3-1 summarizes the timed subtasks. The first measure is the time
required to access a piece of information within the data-block. This was measured for
each data-block and each data-block line. The time captured the span from when the
participant fixated upon the given data-block, until the time when the information was
read and the timer stopped. The second metric captures the time taken to locate a given
flight on screen. The timer was started at the time of the request and halted when the
aircraft was fixated upon. These measurements are categorized based on data-block type
and the number of aircraft on-screen (one of the experimental variables discussed in
Chapter 4). The time to issue an aircraft command type was also timed for each command
type. This interval captured the time from which the aircraft was clicked until the time the
command was issued. Finally the average time to type and submit a response to a

question was also timed. The results obtained are included in Section 3.2.3.

Table 3-1. Subtask time measurements and categories

Measurement Categories
Time to extract information from data-block Data-block type Data-block line
Time to locate a flight number on screen Data-block type Number of a/c
Time to issue a specific command type Altitude Speed | Heading
Time to type and submit question response N/A

3.2.3. Cognitive task analysis results

This section presents the results from the CTA methods applied. The results of the
CTA form a resource from which to draw information to construct the CIA. The first part
of the CTA results is a detailed description of the experimental task and interface. This is
followed by the table summarizing the subtasks and mental sub-processes involved with
the pursuit of this task, including information requirements. Flow charts of the subtasks
and sub-processes are then presented. These allow the reader to visualize the

hypothesized information processing involved in the interaction.
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3.2.3.1. Description of task and interface

The representative task developed, which includes the interface configurations
shown in Figure 3-3 replicated a typical en-route ATC task and interface similar to that
described earlier in the chapter. The software was programmed in Matlab®. The interface
layout is shown and labeled in Figure 3-8. On the bottom left hand side of the display
shown in Figure 3-8 is the data-link interface where secondary task questions (from a
hypothetical traffic supervisor) appear. Operators submit their answers by typing them in
the associated edit box and then clicking the submit button using the mouse. The alert
confirmation button, located on the bottom center, should be clicked when the operators
first notice an alert appear besides an aircraft data-block. The aircraft command panel, in
the lower right portion of the screen, appears when an aircraft is selected and is used to
issue altitude, speed or heading commands. It is important to note that each of these three
command types has to be issued independently, requiring the controller to reselect an
aircraft each time. Selected aircraft are displayed as green on the display (RGB' vector
of [0.5 0.7 0.4]) and the unselected aircraft are yellow (RGB vector of [0.8 0.8 0.2]).

The interface and task are simplified so participants who were not expert
controllers could be trained to use the experimental interface in a matter of minutes.
Among several important differences is that communication between aircraft and
controllers is via data-link and not radio (voice). Controllers click on an aircraft and then
issue commands using the mouse and keyboard through a displayed panel. Procedures,
rules and regulations are simplified and there are no secondary automation aids, such as

planning or conflict alerting systems. Furthermore there is no use of flight strips.

'® RGB stands for red green blue. The components of each RGB vector are the fractions of each color.
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Figure 3-8. The Reprogrammable Air Traffic Experimental Testbed (RATE) interface.

Throughout each scenario there is a steady flow of aircraft into and out of the
airspace. Participant controllers are tasked with vectoring aircraft, and have to do so at a
specific egress altitudes and velocities. Operators are provided with a chart containing a
map of the sector with the exit specifications. Each entering aircraft has four possible
departure locations from which to egress. Furthermore participants are tasked with
maintaining aircraft separation of 1,000 feet vertically and three nautical miles laterally.
This is not a severe challenge as crossing aircraft are generally staggered. A secondary
task consists of responding to numerous requests for flight information through the data-
link. These requests are prompted by an aural alert and a green text message. The
information required to answer these requests is available within the aircraft data-blocks.
Another secondary task consists of detecting and confirming visual alerts that

periodically appear beside an aircraft data-block.
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The four aircraft data-block variants, shown previously in Figure 3-3, include a
total of five lines of information pertinent to each flight, as labeled in Figure 3-9. While
the data-block on the right displays only two lines, it too is expandable to display all five.
It is from these five lines that participants perceive and extract the information required to
perform their tasks. Within these lines, eleven individual pieces of information are
contained. The top line of the data-block contains the flight number and the exit assigned
to each aircraft (Z1 through Z4). The second line contains the flight level, a climb
indicator arrow, and the aircraft speed. The third line contains the aircraft’s final
destination and the aircraft type. The fourth line contains the computer identification
(CID) number and the flight’s origin. Finally, the last line contains counts of the

passengers and baggage aboard.

Exit location
Flight number
Altitude Speed

Destination
Computer ID
Number of
passengers

Numberof Origin Aircraft type
baggage

Expansion arrows

. Climb indicator

Figure 3-9. Five line (top) and two line (bottom) aircraft data-blocks. The double arrowhead used to
expand the data-block is shown on the right. The information included in each data-block is labeled.

During each scenario, when aircraft become visible on screen, operators begin
comprehending the situation in order to formulate a set of priorities and a given course of

initial action. Information processing resources required at this step include the visual
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perceptual processing of the displayed information and the associated eye movements
and fixations required to scan the display. Furthermore this portion of the task requires
parallel access to long-term memory in order to use information to decode the meaning of
the perceived elements. Information regarding the purpose of the overarching goals and
tasks is also extracted from long term memory. Relevant information is processed in
short-term memory, and from it a certain level of comprehension arises, along with a plan
of initial action. This initial process is a function of the number of aircraft and
information processing will take longer with more aircraft on the screen. Once operators
identify an aircraft in need of vectoring, they click on it. The control panel appears and
they move their cursor towards it and select one of the three radio buttons (for altitude,
speed or heading). When this is clicked, the current value of the property for that
particular flight appears within the text box. They then have to click within the text box,
erase all or part of the original text and type the value to be commanded. If operators do
not know the exit specifications they check the exit chart. They then have to use the
mouse to submit the command, at which point the panel disappears and the aircraft
begins its maneuver. If the aircraft needs to change altitude or speed, operators have to
click on the aircraft and repeat the process. Operators then generally scan the display and
switch focus to another aircraft and issue the necessary commands.

At some point they are interrupted by an aural alert signaling that a new
information request has appeared. At this point they either switch focus almost
immediately (dropping other tasks) in order to read the question or they finish whatever
vectoring subtask they were attending before proceeding to respond. They then read the
question, search for the aircraft for which the information is requested, and once found,
search within the data-block of that aircraft for the specific piece of information.
Operators would generally notice and report the appearance of an alert beside a data-
block while scanning the display and not actively engaged in a specific ATC subtask.
Figure 3-10 shows a high level flow chart of the basic ATC tasks discussed in this
section. The following section provides a tabulated hierarchical breakdown of the tasks

and the associated information requirements.
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3.2.3.2. Decomposition of task and information requirements

The second result of the CTA is a tabulation of subtasks including information
requirements. Decomposing the tasks helps understand important processes that should
be expressed as CIA functions. Knowledge of the information requirements provides
information regarding what variables the CIA functions need and call upon. Appendix A
includes the entire tabulated breakdown of all tasks. A small portion of the table is shown
in Table 3-2. The portion shown includes part of the breakdown of aircraft direction task.
Each subtask is described and the information requirements for the given subtask are
listed. The tasks in the table are each numbered. The representative task can essentially
be broken down into four components. Tasks beginning with the digit 1 are tasks
concerned with the direction of aircraft. Tasks beginning with the digit 2 are concerned
with the separation of aircraft. Tasks beginning with the digit 3 are concerned with the
response to questions. Finally tasks beginning with the digit 4 are concemed with the
alert responses. Sub-tasks are broken down with additional digits into more specific parts.

Apart from forming a basis for CIA functions and variables, the decomposition of
the task provides useful preliminary information for producing the cognitive process
charts presented in the next section. The cognitive process charts add value to the tabular
decomposition by showing how the subtasks are connected, and what decisions are made

throughout the HMI process.
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Table 3-2. Portion of table containing a hierarchical task breakdown and information requirements.

Entire six page table is included in Appendix A.

No. | Subtask Description Information requirements

1 Direct aircraft |Direct aircraft that Flight number, actual altitude, actual
appear on screen to the jvelocity, actual heading, desired
required egress and altitude, desired velocity, desired
ensure exits at the heading, selected aircraft, egress
correct velocity and specifications, control panel state,
altitude for the given  |cursor position, aircraft/subtask
egress. priority, overall objectives.

1.1* Scan display |Scan eyes about the Positions of aircraft, status of
display in order to aircraft, flight numbers, egress
perceive information  |locations and information
required for
comprehension of the
situation. Isolate an
aircraft that must be
directed.

1.1.1 Choose Mentally isolate an Position of selected aircraft, flight

aircraft aircraft to direct based |number of selected aircraft
on a certain priority (eg:
which is closest to the
egress)
1.1.1.1 |Compute Capture the distance of [Position of selected aircraft, position
distance to the aircraft to exit and jof nearest exit line
exit line hold for comparison
1.1.2 Perceive Perceive the egress Egress information (Z1 - Z4),
destination  |destination of a certain |aircraft position
aircraft
1.1.2.1 |Check specificfCheck the exit
exit requirements for a given|
requirements |exit from the chart
1.2 Issue Issue a command toa  |Aircraft, desired aircraft state,
Command given aircraft current aircraft state
1.2.1 Heading Change the heading of ajAircraft position, desired aircraft
command given aircraft direction, actual aircraft direction
1.2.1.1 |Click on Select aircraft to which |Aircraft, cursor position,
aircraft to command will be click/selection feedback
issued by clicking on
the graphical symbol

3.2.3.3. Cognitive process flow charts

The cognitive process charts capture the interaction process between the human
and machine interface, show how tasks are connected, and what decisions are made. The

execution of the task is broken down into a number of smaller charts (or modules). The
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overall and highest level module for the interaction process is shown in Figure 3-10. A

description of this follows.

: A
Scan display and build situation

Begin scenario — - T
g awareness

4

Determine course of action
based on priority and add action

items to mental task buffer

A 4

- )

§ { Direct aircraft J ,,,,,
{ Scan and check for conflicts ]4

Respond to question ]

Alert confirmation ]

L End of scenario
"
\ J

Figure 3-10. Highest level overall cognitive process flow chart for representative ATC task scenario

Once a scenario begins, the controllers scan the display and build an awareness of
the situation and formulate a course of action. Potential action items are prioritized and
placed into a working memory store (called fask buffer in the figure). For example the
task buffer may include a planned sequence of actions such as the following:

e Change altitude of DAL341 to FL300 (30,000 feet)

e Change speed of DAL341 to 35 (350 knots)

e Change heading of A4L021 to the northeast quadrant
The limit of how many information items can be stored in such a buffer sequence is
dependent upon the complexity of the information and the storage duration. Much work

has been devoted to capturing these limits in short term memory, in addition to
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understanding the memory mechanisms themselves (Baddeley, 1986; Braver et al., 1997,
Cowan, 2001; Just & Carpenter, 1992; Miller, 1956; Squire, 1992). It 1s important to note
that in this research the ultimate complexity metric is not absolute (i.c. measured with
respect to some absolute human memory limit) but relative (i.e. measured between
different task and interface variants).

In Figure 3-10 the shaded region contains the four basic tasks which operators had
to carry out. These include the direction of aircraft (primary task #1), conflict detection
(primary task #2), responding to questions and confirming alerts (secondary tasks).
Following the start of a scenario, there are no questions or alerts to attend to for fifteen
seconds so an operator generally begins by directing aircraft. Once the operator decides
upon the aircraft of greatest priority and determines the desired command, the potential
for a resulting conflict is checked before finally issuing the command. The operator then
follows the next item in the task buffer, or reassesses the situation. At some point the
requirement to respond to a question arises. This is added to the task buffer, and once its
position in the queue is reached, the operator will search for the information and answer
the question. At some point an alert will appear and when it is detected by the operator,
the requirement to confirm the alert is added to the buffer. Since this is such a rapid task
it is usually carried out almost immediately after an alert is detected. These activities
continue throughout, with a total of sixteen questions appearing and four alerts. The
duration of a single scenario is 540 seconds. In Figure 3-10 the leftmost box (green
outline) indicates the start of the process and the rightmost box (red outline) indicates the
end. The following subsections break down and discuss interaction process components

in greater detail.

3.2.3.3.1 Primary task #1: Aircraft selection and direction

Directing aircraft to the sector exits while avoiding conflicts is the priority of the
operators. The first step in this process is developing an understanding of the situation.
This consists of capturing the aircraft positions and states with respect to the exit
requirements. As a result of this, a certain aircraft is selected which has the highest
priority. As noted in the CTA observations, the aircraft that was nearest to the sector exit

line was generally selected first. This simple strategy for aircraft prioritization only
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imposes a perceptual load, and requires no higher level cognitive processes such as the
comparison of two or more numbers. The process flow chart is shown in Figure 3-11.
Once an aircraft is selected, it is determined whether a new aircraft state needs to be
commanded (illustrated by the Change required? box). The process of determining

whether a change is required is broken down further as shown in Figure 3-12.

Select aircraft
based on

Change required?
(decomposed in |-

proximity to exit Figure 3-12)

line

Does desired
SEIEC:OIL?:aTOSt - command cause a
P potential conflict?

Has the potential

Proceed with full for conflict
command cleared?
(decomposed in
Figure 3-13)

~ |Issue intermediate

command
Wait for N
seconds

Mo /

Figure 3-11. Aircraft selection and direction portion of the cognitive process

If no change is required, the next most proximal aircraft is selected. If a change is
required, the operators check whether that required command has the potential of causing
a conflict with other aircraft. If it does not, the full change of state can be commanded. If
there is a potential for conflict an intermediate command is issued, which is followed up
with the complete command after the potential for conflict has cleared. It is important to
note that even though in Figure 3-11, the response to whether there is the potential for
conflict is yes or no, in actuality the operator generates a response with an associated

probability.
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Determining whether a change to an aircraft state is required is a sub-process in
itself and is shown in Figure 3-12. At first once an aircraft has been chosen based on
priority, the exit gate is read from the top line of the data-block (Z1 through Z4). This
information must be held in short term memory. Each of these four egresses has an
associated set of exit requirements. If these are memorized by the operator, the
commands can be issued immediately. If any one of these requirements is not known
however, the operator must shift attention to the chart with the exit specifications and
extract the requirements from there. Once the information is available, the desired value
is compared to the current value. The current value for the heading is perceived from the
graphical orientation of the aircraft symbol. The current altitude and speed are captured
from the second line of the data-block. If the aircraft has already been selected, the
current value can be also seen from the edit box within the command panel. This also
requires that a radio button has been selected (see Figure 3-8) for heading, altitude or
speed.

[t is important to note that while determining if a commanded change is required,
the mental decision process may or may not be coupled with the physical action of
clicking on the aircraft and issuing a command through the panel. For example, the
selection of the aircraft included in Figure 3-12 may not necessarily occur in the

sequential position shown.
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Figure 3-12. Cognitive process flow chart for determining whether a change is needed to the current
aircraft heading, altitude or speed to meet exit objectives.

Click on one of the three Is current value

radio buttons in the
aircraft command panel

The next portion of the chart in Figure 3-11 which is decomposed is the execution
of the chosen aircraft command using the interface. The resulting cognitive process is
shown in Figure 3-13. Once the desired command value has been determined, the aircraft
must be clicked upon if this has not happened already. Once the panel appears, the
controller moves the cursor towards it, and clicks one of the three radio buttons. The
current value then appears in the edit box. The controller clicks in the edit box and
switches between input devices (mouse to keyboard). The text is erased, and the new
value is typed. The controller then switches back to the mouse and moves the cursor to

the Command button, which is clicked.
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Figure 3-13. Cognitive process flow chart of issuing a known command to an aircraft.

The time to complete each command type was measured and tabulated in Table
3-3. This average time spans from the time the aircraft is selected by clicking on the
symbol, and includes the time to move the cursor to the radio button and click, clicking in
the text box, switching to the keyboard, erasing the current text, checking the chart for the
exit specification, deciding upon the desired command, typing the desired command, and
finally transitioning back to the mouse and clicking the Command button. This time does
not vary substantially between command types, although participants not comfortable

with compass headings may have a more difficult time determining a desired heading
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angle command. In that case the command time would likely be greater for heading

commands.

Table 3-3. Command execution time by command type
Command Time (s)
Heading |Altitude |Speed
Average 7.1 6.7 6.5
St. Deviation 1.0 1.0 0.9

3.2.3.3.2 Primary task #2: Conflict detection and avoidance

Conflict detection and avoidance is intertwined with the direction of aircraft
cognitive processes described in the previous section (in fact, if primary task #1 is
conducted correctly no conflict avoidance is required). This subsection attempts to
capture cognitive processes involved with the detection of potential conflicts. The flow
chart is shown in Figure 3-14. Controllers basically scan the aircraft in the vicinity of a
certain aircraft and check for intersecting trajectories. Flight levels are also checked to
determine the potential for these to intersect. If a conflict is detected, a command is

issued to avert it.
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Figure 3-14. Cognitive process of conflict detection for a given aircraft relative to nearby aircraft

3.2.3.3.3 Secondary tasks: Question responses and alert
confirmations

The first step in the cognitive process of responding to a question is the detection

of the appearance of a new question. The operator is usually alerted to the new question

62



by the aural alert, but can also notice this by the visually perceived change in the
displayed question text. The cognitive process chart is shown in Figure 3-15. During the
CTA procedure it was observed on a number of occasions that when under very high
workload, operators would fail to consciously perceive the aural alert and know that a
new question had been asked. This is similar to the phenomenon of inattentional
blindness that happens within the visual system (Mack & Rock, 1998). Once the
operators finally sense the alert consciously and decode its meaning, they recognize the
need to carry out the question response task. This is given a priority and added to the task
buffer. Once other higher priority subtasks have been fulfilled (such as completing an
aircraft command), the operator shifts attention to the data-link interface, and reads the
question. From this, the operator knows the aircraft flight number to search for, as well as

the piece of information being requested.
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Figure 3-15. Cognitive process spanning from the hearing of a new question alert to the
commencement of scanning for a given aircraft.

Once these two pieces of information are known, the operators begin scanning the
radar display for the given flight number temporarily held in short term memory. The
cognitive process chart of this is shown in Figure 3-16. This process consists of eye
movements to the various targets followed by a comparison of the fixated data-block
flight number with the desired flight number. This scan sequence was interrupted when
the operator believed that these two flight numbers matched. It was noted that operators
sometimes performed a commission error by choosing the incorrect flight when it was of
the same airline as the correct target. At that point the process of extraction of

information from the data-block begins.
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Figure 3-16. Cognitive process flow chart of scanning display in search of a particular aircraft flight
number.

The structure of the cognitive process of extracting information from the data-
block depends upon the data-block type. Therefore two process charts follow: one for
data-blocks with embedded information' and another for the data-block with all the
information on the surface'”.

The cognitive process chart for the data-blocks which have embedded information
is shown in Figure 3-17. The structure of this process is the same for the two, three and
four line data-blocks. However the execution of the various loops changes between these
three data-block types with embedded information. From the knowledge of the desired
type of information, the controller determines whether that information is embedded or
already visible. If the information is embedded the controller moves the cursor and clicks
on the double arrowhead which opens the next line. If the information is still embedded,
the controller must repeat the above process to open yet another line. Once the line with
the desired information has been opened the operator can fixate directly on the location of
the required information if its position is known. The other strategy would be to identify

the piece of information by its format and scan multiple items in the data-block. It was

! These are the 2 line, 3 line and 4 line data-blocks
'2 This is the 5 line data-block
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observed however that controllers memorized the position of the information items

within the data-block relatively quickly.
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Figure 3-17. Cognitive process chart for extraction of information from data-block with embedded
information.

The cognitive process chart for the full data-block that always displayed five lines
is shown in Figure 3-18. From the knowledge of the desired type of information, the

controller can either identify the information by known position in the data-block, or by
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differences in the coding format of the information within the data-block. In other words
one strategy would be to extract the information by knowing the spatial position of that
information within the data-block. The other would be to identify the piece of
information by its format (e.g., know R128 is a computer identification number'® because
it begins with a single letter and is followed by three digits). The second strategy would
require a human to scan through the various elements of a data-block, checking at each
step for a match. It is evident that this second strategy can result in increased errors if the
format of two items is similar. These commission errors were noticed multiple times
while observing novice participants, as they oftentimes would incorrectly type the

destination instead of the origin and vice-versa.

13 Abbreviated CID in ATC
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Figure 3-18. Cognitive process chart for extraction of information from five line data-block.

Finally once the information is found and held in short-term memory, the
controller submits it by using the data-link interface. The cognitive process of the
submission of responses is shown in Figure 3-19. This simple process requires the
operator to click in the edit box, type the response, and then press the Report button to

submit.
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Once this is complete, the question response subtask is concluded. At that point
the operator takes on the next task held in the task buffer, or scans the display in order to
develop new task objectives. At some future time this whole process is repeated when a

new question appears.

Information

e N
e Move cursor to data-
extracted link interface edit box Click in edit box |- Switch to keyboard
from data-
block
Move cursor to Click mouse
Type response M Repo bR —
_/

Figure 3-19. Cognitive process chart for submitting an answer using the data-link interface.

The data-block type has the primary effect of changing the extraction process of
information from the data-block. The efficiency of this task affects the performance of
other tasks. The time penalty for extracting information from the data-block reduces the
time available for conducting other tasks, such as directing aircraft and avoiding
conflicts. Estimates of these extraction times are shown in Table 3-4. These values are the
averages of only three measurements, so no statistical analysis is conducted. The shaded
cells in the table represent access times of embedded information. It is important to note
that increasing the base layer lines in the data-block does not increase the time to access
the second line which contains the altitude and velocity. Subjective observations indicate
that participants perceive the entire data-block as a single entity in the periphery and then
begin their within data-block scan from the top left corner of the data-block text if they
are conducting a search for a piece of information. This may explain the result shown in
Table 3-4 showing that the number of base layer lines in the data-block does not affect

the time required to access information from second line.
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Table 3-4. Average extraction time for information on each line for each data-block type. Shaded
cells represent embedded extraction times for embedded information.
Data-Block Type

2 Line 3 Line 4 Line 5 Line

2nd 08s 08s 08s 09s

@ 3rd 22s 11s 1.0s 12s
I 4th 31s 27s 15s 14s
5th 471s 31s 23s 1.1s

The data-block types could have additional cognitive information processing
consequences due to the different levels of display clutter which they each impose. These
may have to be considered in the CIA functions for scanning the display for an aircraft.
The results show however that the subtask times for searching for a specific flight
number on the radar scope do not increase with the number of data-block base layer lines.
The implication of this with respect to the resulting CIA is the assumption that the
functions for scanning the display need not account for the increased number of data-
block lines, but only for the number of aircraft. These time estimates are summarized in

Table 3-5 and are from measurements taken from a single participant over multiple trials.

Table 3-5. Average time to locate aircraft flight on radar display for two levels of aircraft

Data-Block Type Time to locate flight number (s)
Low Aircraf_t Count High Aircraft Count
2 Line 2.7 3.2
3 Line 2.5 3.4
4 Line 2.3 3.7
5 Line 1.9 3.5

The purpose for extracting the subtask times is not a requirement for the
methodology but the times are examined for two secondary purposes. First it helps
determine in Chapter 5 whether algorithmic execution time (of the human) is correlated
to the algorithmic complexity (information content). If the correlation between
algorithmic complexity and execution time is high, this indicates that the additional effort
of collecting CIA execution time is likely not warranted in future work. A high
correlation would suggest that the CIA complexity and execution time measure the same
construct. If the correlations are different, the question of whether cumulative CIA

execution time is a better predictor of performance remains open. The second purpose is
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that subtask times can potentially help with the CIA function composition. For example,
if the extraction time of information from the second line of a data-block is the same
regardless of the data-block’s size, this suggests that the cognitive search algorithm does

not scan through each element in the data-block independently.

3.2.4. Cognitive task analysis conclusions

The CTA is the first step of the complexity analysis methodology and Section 3.2
illustrated a CTA for a representative ATC interface and en-route control task. The
techniques used in this CTA included observations, interviews, task breakdown, and the
construction of cognitive process charts. There exist a number of CTA methods in the
literature which can form the basis of this step of the complexity analysis methodology.
The scope of the CTA is to ultimately capture knowledge regarding the cognitive
processes of operators which form the basis for the CIA. The accuracy and level of detail
of the CTA plays an important part in determining the precision of the CIA, since it

describes the processes that must be captured in an algorithm.

3.3. Step Two: Cognitive Interaction Algorithm

The purpose of this section is to express the interaction processes described by the
CTA as an algorithm. This cognitive interaction algorithm (CIA) is intended to be a high
level approximation of whatever neural algorithms are being executed within the human
central nervous system (CNS), during the execution of some task, using a given interface.
At the highest level, each configuration analyzed has a core CIA from which the required
CIA functions are called. CIA functions are written for each of the subtasks and cognitive

processes.

3.3.1. Developing the cognitive interaction algorithm

The CIA can be written in any formal computational language, as long there is
consistency in each of the configurations or scenarios being compared. For example
when wishing to compare display configuration 4 with B, one must apply the same

language and the same level of detail to the algorithms representing each of the two.
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Furthermore the display can never be considered independently of the task. The
complexity of an interface only makes sense when considered relative to both the human
and the task.

For the example case, since the air traffic control simulation itself was
programmed in Matlab®, for consistency the syntax and language used for the expression
of the CIA is pseudocode based on the Matlab® M language. The algorithm is based on
the knowledge gained from the CTA performed in Section 3.2. The level of detail of the
algorithmic expression used in this example primarily focuses on capturing the actions
that occur in a nominal scenario. For example, the algorithms constructed from the CTA
presented previously do not describe how the human brain recognizes an object but do
capture mouse clicks, key strokes, eye movements and other such higher level processes.
If the object of analysis dictated that further detail was needed, the researcher could draw
relevant algorithms developed in the field of computational cognitive science or artificial
intelligence (or attempt to develop new ones based on available cognitive science and

neuroscience literature).

3.3.1.1. Algorithm syntax

The language used to express the cognitive interaction algorithm is briefly
described in this section. Symbols used in the expression of the CIA are summarized in
Table 3-6. In this language function calls begin by stating the variable that the function
returns (if any), followed by an equals sign and then the actual function name and the
input variables (e.g.: function output = input(x,y)). The code is generally intuitive,
however for more information about the language one can refer to Magrab (2000) or any

other similar text on M language programming.

Table 3-6. Description of symbols used in CIA
Logic Operators

& and

== equal to
~= not equal to

or
Other symbols
= assigns a value
subclass of a mental variable
(e.g. aircraft.position)
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The advantage of expressing a cognitive process as an algorithm as opposed to a
flow chart is important. A programming language offers a more formal and concise way
of describing a complex process and can capture processes that cannot be expressed
graphically with a flow chart. The cognitive flow charts presented in 3.2.3.3 offer the
advantage of yielding a more rapid and clear understanding of the cognitive processes,
but do not lay the foundations or provide the means for a more rigorous and accurate
expression of human information processing suitable for quantitative analysis. This is one
of the propositions emphasized in this work: in order to analyze human machine
interaction more rigorously, the cognitive interaction process should be expressed as an
algorithm. The complexity of the algorithm then yields an approximation of the
information complexity of the human machine interaction process associated with a given

interface and task configuration.

3.3.1.2. Cognitive interaction algorithm functions

In this section the CIA functions are presented and described. These are the
components that eventually compose the CIA for each interface and task configuration.
Each of these functions contains algorithms which describe processes conducted by
operators. For example, the function new_gquestion_info contains the algorithmic
representation of the process of detecting the appearance of a new question and gathering
the required information from the question. Table 3-7 includes a list of the CIA functions
for the example case along with a brief description of each. A CIA function may call
other functions just as in a conventional computer program. For clarity, the structure of
each of the CIA functions is also presented in flow charts indicating the number of calls
to other CIA functions. A single CIA is ultimately written for each configuration being
compared. This is referred to as the base (or core) CIA and it is from here where all CIA

functions are called.
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Table 3-7. List and description of CIA functions

CIA Function

Brief Description

command_hdg

operator commands a new aircraft heading

command_alt

operator commands a new aircraft altitude

command_spd

operator commands a new aircraft speed

selectAC

operator selects a new aircraft to direct

new_question_info

detects new guestion and gathers objective information

find_flight_low

find a given flight on the radar display with a low aircraft count

find_flight_high

find a given flight on the radar display with a high aircraft count

scanpath_low

scan between aircraft data-blocks on a radar with a low aircraft count

scanpath_high

scan between aircraft data-blocks on a radar with a high aircraft count

submit submit a question response via data-link

seedot detect the appearance of an alert besides a data-block
read read a portion of text

report report alert confirmation

move_eyes_to

move eyes to a target onscreen

move_hand _to

move hand to a different position

move_cursor_to

move cursor to a target onscreen

clickbutton

click the mouse button

findinDB2 2

find information from 2nd line of 2 Line data-block

findinDB2_3

find information from 3rd line of 2 Line data-block

findinDB2_4

find information from 4th line of 2 Line data-block

findinDB2_5

find information from 5th line of 5 Line data-block

findinDB3_2

find information from 2nd line of 3 Line data-block

findinDB3_3

find information from 3rd line of 3 Line data-block

findinDB3_4

find information from 4th line of 3 Line data-block

findinDB3_5

find information from 5th line of 3 Line data-block

findinDB4 2

find information from 2nd line of 4 Line data-block

findinDB4 3

find information from 3rd line of 4 Line data-block

findinDB4_4

find information from 4th line of 4 Line data-block

findinDB4_5

find information from 5th line of 4 Line data-block

findinDB5_2

find information from 2nd line of 5 Line data-block

findinDB5_3

find information from 3rd line of 5 Line data-block

findinDB5 4

find information from 4th line of 5 Line data-block

findinDB5_5

find information from 5th line of 5 Line data-block

type type a string of characters into an edit box

press press a specific button on the keyboard with a finger
motor neural motor command

angle mental geographic angle computation between 2 points

Only a subset of the CIA functions are presented and described below. These
serve to illustrate how the interaction process can be expressed algorithmically by

combining a certain set of CIA functions. All CIA functions are written in a standard
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form without any spaces'. This is required in order to maintain the consistency required
for the complexity estimation. The remainder of the CIA functions are placed in
Appendix B.

Of the functions presented in the main body of this thesis, command functions are
first discussed. There are three types of command functions: command alt,
command_hdg and command spd, for commanding the altitude, heading and speed,
respectively. These functions are similar so only the heading CIA function is presented
here. The other two are included in Appendix B. The chart showing the functions called
by the heading command CIA function is shown in Figure 3-20. The algorithm follows
the chart below, and captures the interaction process of clicking an aircraft, deciding

upon the desired command value, and issuing that command using the panel in the

display.
1x command_hdg 4x
er 4!1
type move_eyes o move_cursor_to
+ 1x 1x
read
Figure 3-20. CIA functions called by heading command
1. function command_hdg(p)
2. move_eyes to(cursor.xy)
3. move_cursor_to(ac(p).symbol.xy)
4. clickbutton
5. ac(p).exit = read(ac(p).exit)
6. move_eyes_to(chart.xy)
7. if ac(p).exit == Z1
8. hdgrequired = "NW'
9. elseif ac(p).exit == Z2
10. hdgrequired = 'NE'
11. elseif ac(p).exit == Z3
12. hdgrequired = 'SE'
13. elseif ac(p).exit == Z4
14. hdgrequired = '"SW'
15. end

16. move_cursor_to(ctrpanel.radiol.xy)
17. clickbutton

'* By the method by which CIA function information content is quantified, spaces require information to be
described.
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18. command = angle (hdgrequired, ac (p) .xy)
19. move cursor to(ctreditbox.xy)

20. clickbutton

21. type (command)

22. move_cursor_to(cmndbutton.xy)

23. clickbutton

The above CIA function calls other functions. These are move eyes to,
move_cursor_to, clickbutton, read, angle and type. The charts for these are all shown in

Figure 3-21. The algorithms for each are included in Appendix B.

_ "ﬁ?e_cursor_ro type
F~H1X4—l—1x‘l !ﬁZx 4x
x |
move_hand__t&”. move_eyes_to v i

move_hand_to

clickbutton move_eyes_to
1x 1x
motor motor

Figure 3-21. CIA functions called by moving cursor, moving hand, moving eyes, typing and reading

The function describing the cursor movements calls the hand movement function,
as this is required to move the mouse by some amount proportional to the desired on
screen cursor displacement. The eye movement function is also called, as the assumption
is made that participants track intentional cursor movements with their eyes. The hand
movement function moves the hand to a new position by issuing a motor command of a
magnitude consisting of the difference between the current hand position and desired
hand position. The eye movement function has the same form as the hand movement
function. The clickbutton CIA function simply executes the motor command of moving
the index finger down to press the left mouse button. The motor command function called

is where the level of detail in the CIA ceases. The motor function is a neural command
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from the brain to whatever muscles are being moved. If this were critical to the
configurations being compared by the complexity analysis procedure, one could write a
detailed algorithm out for motor. The type function describes the process of typing a
desired command in the edit box, including the hand transitions to and from the
keyboard. The #ype function calls the press function which describes the actual key
pressing.

The following set of CIA functions are those required to respond to a question
which has been prompted through data-link. The description of several of these functions
follows. The first step in responding to the question is to detect the appearance of a new
question. It is assumed that participants always detect the appearance of a new question
aurally or visually. Following this the participants must determine what is being asked.
Specifically two critical pieces of information are needed: the flight for which the
question is being asked and the type of information requested (e.g. DAL341 +
destination). The CIA function describing this process is called new_question_info. A
chart showing the functions called by new_guestion_info is shown in Figure 3-22. The

actual CIA function follows the chart.

new_question_info

—x
]
v _

 move_eyes_to  read

Figure 3-22. Functions called by the CIA function describing the process of gathering new question
information.

1. function [target info] = new_question_info
2. move_eyes to(datalink.xy)
3. [target info] = read(newquestion)

In the above function it is assumed that participants already have internalized a
spatial map of the layout of the display and hence know exactly where to target their eye
fixation in the data-link to read the new question. The assumption that humans have
internally stored spatial maps is consistent with general animal and human spatial

representation research (Wang & Spelke, 2002). The two output variables of this function

77



are stored in short term memory until the information is retrieved from the aircraft data-
block.

Once operators know what aircraft to search for, the following step is to locate
and fixate upon the target aircraft on the display. This function is called by
find_flight_high or find flight low (depending on the number of aircraft). The charts of
these two CIA functions are shown in Figure 3-23. The number of calls from each
function is based on the assumption that the human searches through approximately 50%
of the aircraft on screen prior to locating the desired target. The algorithm for

find flight low follows the chart and the other is included in Appendix B.

find_flight_high find_flight_low

i
move_eyes_to read

Figure 3-23. CIA functions called by the two find flight functions

function targetpos = find flight low(fl_no)
temp = 0

while temp ~=target

j=1

move eyes tof{ac(j).xy)
temp = read(ac(j).flno)
j=2

move eyes_to(ac(j).xy)
temp = read(ac(j).flno)
10. j3=3

11. move_eyes_to(ac(j) .xy)
12. temp = read(ac(j).flno)
13. j=4

14. move_eyes_to(ac(j) .xy)
15. temp = read(ac(j).flno)
16. j=5

17. move_eyes tof{ac(j) .xy)
18. temp = read(ac(j).flno)
19. end

20. targetpos = ac(j).xy

WL U s WwN e

In the above function, eye movements shift the fixation to the next aircraft in the
scan sequence, and the flight number is read. The human brain then performs the simple
comparison to see whether this matches with the desired flight number (denoted by the
variable zemp in the above algorithm). Once the target aircraft has been located, the

location is output from the CIA function.
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Once the aircraft has been located, the process of extracting information from
within the data-block commences (i.e. the operator knows that information must be
extracted from the data-block in a certain position on screen). It is assumed that the
operator knows where the position of the information is, based on the information type.

The extraction process depends on the data-block type and on the line in which
the information is contained. There are four CIA functions for extracting information
from each data-block type. The chart of the functions called by the two line data-block is
shown in Figure 3-24. The CIA functions for extracting information from the data-block
follow the chart. The last digit in the function name corresponds to the line from which

the information is extracted.

findinDB2_3
findinDB2_2
l *
. ! ] L~
| ! | 1x
1x i 1x
5 v 1 v
v !
move_eyes_lo i read
read i
v
move_cursor_to clickbutton
findinDB2_4 - findinDB2_5
1x - T 1%
— 3x
2x
A
mad
mmwkﬁﬂutJQi duQ@ﬁn_

Figure 3-24. CIA functions called by the data-block information extraction functions. The above
figure is for the two line data-block.

1. function item = findinDB2 2(j,info)
2. 1if info == alt

3. item = read(ac(j).alt)

4. else

5. item = read(ac(j) .spd)

6. end

1. function item = findinDB2_3(j, info)
2. move_eyes_to(Cursoer.xy)

3. move_cursor_to({ac(j).downarrows.xy
4. clickbutton

5. 1if info == dest
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6. item = read(ac(j).dest)

7. else

8. item = read(ac(j).type)

9. end

1. function item = findinDB2 4(j,info)
2. move_eyes_to(cursor.xy) -

3. move_cursor to(ac(j).downarrows.xy)
4. «clickbutton

5. move_cursor_to(ac(j) .downarrows.xy)
6. clickbutton

7. if info == CID

8. item = read(ac(j).CID)

9. else

10. item = read(ac(j).origin)

11. end

1. function item = findinDB2 5(j,info)
2. move eyes to(cursor.xy)

3. move cursor to(ac(j).downarrows.xy)
4. clickbutton

5. move_cursor_to(ac(j).downarrows.xy)
6. clickbutton

7. move_cursor_to(ac(j).downarrows.xy)
8. «clickbutton

9. 1if info == pax

10. item = read(ac(j) .pax)

11. else

12. item = read(ac(j) .bag)

13. end

If the information is on the second line of the data-block of the j* aircraft, the
human must simply decide whether to read the altitude or speed. If the information is in
the second line, the human must move the fixation to the cursor and then move to cursor
towards the arrows which expand the data-block, and execute the simple clickbutton CIA
function explained earlier (see Figure 3-21). If the information is in the fourth or fifth
lines of the data-blocks, this process of moving the cursor and clicking the expansion
arrows is repeated. These extra steps are seen in the CIA functions findinDB2 4 and
findinDB2 5. The CIA functions called by for the other data-block types are shown in the
following Figures (Figure 3-25, Figure 3-26 & Figure 3-27). The algorithms

corresponding to these are presented in Appendix B.
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findinDB3_2 findinDB3_3
1x 1x
‘ }
read read
findinDB3_4 findinDB3_5
1x m——T ——1x - " ~1x )-—-‘ -1x -
l ‘ x l 2x l
1x | 2x
_ v
move_eyes_to ad move._syes_to read

move_cursor_to clickbutton move_cursor_to - clickbutton

Figure 3-25. CIA functions called by the data-block information extraction functions. The above
figure is for the three line data-block.

findinDB4_2 findinDB4_4
1 ‘x 1x
v !
read read
1% ‘ 1x
P 1x
1x
move_eyes_to :

Figure 3-26. CIA functions called by the data-block information extraction functions. The above
figure is for the four line data-block.
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findinDB4_2 findinDB4. 3 | | findinDB4_4 findinDB4_5

1‘x 1% 1x 1x

. : ' ;
read © read read read

Figure 3-27. CIA functions called by the data-block information extraction functions. The above
figure is for the five line data-block.

The final set of CIAs capture general scanning of the display and the detection
and reporting of alerts (detecting the yellow dot). These include the functions
scanpath_high, scanpath_low, seedot, and report. The charts and algorithms for these
CIA functions are included in Appendix B.

This section has presented and explained representative CIA functions that were
written to reflect the tasks outlined in the CTA. These algorithms describe the interaction
processes which the human carries out when interacting with an interface and carrying
out a certain set of tasks. It is from these that the complexity of each of the data-block
configurations can be estimated within the context of the overall human machine

interaction complexity.

3.3.1.3 Cognitive interaction algorithm assumptions

This section outlines several assumptions which were made in the expression of
the CIA. The first assumption is that of a nominal scenario. In each scenario a given set
of events take place, each with a given frequency. These events are nominal in that they
occur when the task is carried out correctly, without any need for additional aircraft
vectoring commands, or unnecessary clicks within data-blocks. Thus stable conditions
are assumed for this complexity analysis.

The second assumption is that the resulting algorithms that approximate the
human cognitive interaction are purely deterministic. In reality, a human executing a task
has stochastic elements. This deterministic assumption however does not eliminate the
value of the complexity analysis as it applies across the conditions being compared, and

therefore relative complexity estimates are not significantly affected.
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There are numerous other assumptions concerning the way the humans perform
the task and perceive information. One assumption is that the operator knows where a
specific type of information is located within a data-block. This assumption is valid as
operators were trained and tested to ensure they memorized the data-block elements. A
further assumption is that the eye fixation always tracks every purposeful cursor
movement. In addition it is assumed the commands are issued appropriately, thus conflict
avoidance vectoring is not needed. When scanning for a specific flight number, it is
assumed that the operator usually checks around 50% of the aircraft on screen, before
finding the desired target.

When typing a response or a command, it is assumed that operators can touch
type (i.e., no additional eye movements are needed away from the screen). The length of
these responses is assumed to be four keystrokes, which accounts for one to clear the edit
box, and three to type the actual response. Finally the ordering of the contents (i.e.
various function calls) within the algorithm is not important, and it is assumed that there
is no interaction between the sub-tasks. What is important is the number of function calls
within each scenario.

In conclusion, the validity of these assumptions can only truly be assessed by the
adequacy of the resulting complexity measure, and replication of this methodology on a
different task and interface. The assumptions keep the algorithms reasonably simple, and
allow greater focus to outlining the general methodology rather than the details of each
CIA. These assumptions are not expected to significantly affect the results, as all

assumptions hold across all conditions.

3.4. Step Three: Estimation of complexity

As presented in Chapter 2 the complexity of human machine interaction is defined
as the minimum amount of information required to describe the human-machine
interaction process in some fixed description language and chosen level of detail. The
language of the CIA has now been presented and the selected level of detail of the
description of the interaction process is established for an example case. As discussed
previously, human machine interaction process X is more complex than human machine

interaction process 7Y, if it requires more information to fully describe X than Y (in some
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fixed description language and level of detail). Between competing interfaces, the least
complex configuration (relative to a nominal task) is that which results in the interaction
process described in the least amount of information.

Based on the definition, complexity is therefore estimated from 1) the algorithmic
information content (AIC) and also 2) the compressed information content of the
algorithms. The AIC is computed from the size of the file containing the CIA function.
The compressed information content approximates the MDL of the interaction. MDL is
hypothetically the better complexity estimate because it is most compatible with the
definition of complexity, as the compression removes redundancy from a CIA
description. The compression algorithm used is that of the standard Windows®
compression software. The units of complexity are bytes.

This paragraph describes the general method by which complexity is estimated
for a certain configuration. The complexity estimate of each CIA function is multiplied
by the number of times that the function is called during whatever nominal task forms the
context in which the interface is used. The complexity estimate is computed from

Equation 3-1.
Khumanj =aj +§nilci (E3-1)
In Equation 3-1 «,,, is the complexity estimate of the ;” interface and task
1

configuration. The term g; is the complexity of the base CIA which scripts the nominal
task, and which calls a number of other CIA functions. This term can be neglected in
practice, as in most cases it should be substantially smaller than the summation. The term
n; corresponds to the total number of times which the i CIA function is called. The term

k, is the complexity of the i" CIA function and finally m is the total number of CIA

functions called. It is of interest to note the similarity of the above formula with
Shannon’s equation for the entropy of a discrete message space presented in Chapter 2
(Equation 2-1). Instead of probabilities the complexity formula developed in this thesis
uses counts (n;) and the complexity term (x;) replaces the term representing the self-
information of a message.

The complexity and algorithmic execution times for the CIA functions of the

representative ATC task and interface are shown in Table 3-8. The tabulated AIC and
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MDL values enter Equation 3-1 through the complexity term (k;). The algorithmic
execution times correspond to rough approximations subtask duration, or in other words
how long it takes a typical human operator to execute the CIA function. The execution

times are estimated from averaging measurements taken from only single participant.

Table 3-8. Summary of CIA functions with complexity estimates for each function and algorithmic

execution times.

K
. Algorithmic MDL of Algorithmic Algorithmic Execution

CIA Function (i) Brief Description Information Content information content Time Estimate (seconds)

(bytes) (bytes) _
command_hdg  |operator commands a new aircraft heading /22 331 7
command_alt operator commands a new aircraft altitude 487 314 T
command_spd  |operator commands a new aircraft speed 483 312 7
selectAC operator selects a new aircraft to direct 158 158 3
new_question_infddetects new question and gathers objective information 108 108 N/A
find_fight_Jow 2:3; given flight on the radar display with a low aircraft 372 263 3
find._flight_high Igzznal given flight on the radar display with a high aircraft 699 282 4
scanpath_low :(I:ra;a:a;\:::: aircraft data-blocks on a radar with a low 151 151 4
scanpath_high .::a :ax:(n aircraft data-blocks on a radar with a high 292 211 6
submit submit a question response via data-link 173 173 4
seedot detect the appearance of an alert besides a data-block 53 53 N/A
read read a portion of text 77 77 N/A
report report alert confirmation 55 55 0.8
imove_eyes_to move eyes lo a target onscreen 61 61 N/A
imove_hand to  |move hand to a different position 64 64 N/A
imove_cursor_to |move cursor to a target onscreen 67 67 N/A
clickbutton click the mouse button 40 40 0.2
findinDB2_2 find information from 2nd line of 2 Line data-block 111 111 0.8
findinDB2_3 Iﬁnd information from 3rd line of 2 Line data-block 192 192 22
findinDB2_4 lﬁnd information from 4th line of 2 Line dala-block 239 239 3.1
findinDB2_5 Iﬁnd information from 5th line of 5 Line data-block 286 259 47
findinDB3_2 |find information from 2nd line of 3 Line data-block 203 203 0.8
findinDB3_3 |find information from 3rd line of 3 Line data-block 202 202 1.4
findinDB3_4 Iﬁnd information from 4th line of 3 Line data-block 192 192 27
findinDB3_5 Iﬁnd information from 5th line of 3 Line data-block 239 239 31
findinDB4_2 |find information from 2nd line of 4 Line date-block 204 245 0.8
findinDB4_3 |find information from 3rd line of 4 Line data-block 204 245 1
findinDB4_4 |find information from4th line of 4 Line data-block 294 245 15
findinDB4_5 |find information from Sth line of 4 Line data-black 185 185 2.3
findinDB5_2 |find information from 2nd line of 5 Line data-block 388 258 0.9
findinDB5_3 Inna information from 3rd line of § Line data-block 388 258 1.2
findinDB5_4 find information from 4th line of 5 Line data-block 388 258 13
findinDB5_5 find information from 5th line of 5 Line data-block 388 258 1.1
type type a string of characters into an edit box 146 146 2.5
press press a specific button on the keyboard with a finger 35 35 0.3
mofor neural motor command 17 17 0.3
angle mental geographic angle computation between 2 points 25 25 1

The complexity estimation is applied to the competing data-block configurations
using the data from Table 3-8. It is assumed that the nominal task consists of directing ten
aircraft, responding to sixteen questions and confirming four alerts. These sixteen

questions request information contained in the data-blocks. The information required
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from the questions is evenly distributed between the bottom four lines. This means that
four questions request information contained in the second line, four questions request
information contained in the third line, and so forth. A base CIA is written for each of the
four configurations. The base CIA contains the highest level description of the interaction
process. The chart of the base CIA for the two-line data-block is shown in Figure 3-28.
The charts for the other three configurations and all base algorithms are included in
Appendix B. The complexity is computed by Equation 3-1. The resulting complexity

estimates for the four data-block variants are presented in Table 3-10.

> submit

scanpath_high |4 4x
16x

————»{ find_flight_high

| 1 5
seedot  l¢———ax—— o

Base Cognitive Interaction Algorithm

| (2 Line Data-Block Configuration) T
report <« — g ..
io4x
0 16 i
10x- X- P
v "
10x 4;" |
selectAC P
10x—| o St
i E—b findinDB2_2
command._hdg o s T -
: L new_question_info | :
nmand_alt R ; | » findinDB2.3
 command_spd | L »f findinDB2_4

» findinDB2_5

Figure 3-28. Structure of base CIA for the two-line data-block configuration. The numbers on the
lines indicate the number of times each CIA function is called from the base algorithm.

Based on the assumed nominal task and sequence of events the cumulative
number of executions of each CIA function (n;) can be computed for each interface
configuration j. For this example the number of calls, » of each i™ CIA function are
shown in Table 3-9. This is the final piece required for the complexity to be computed by
Equation 3-1. The resulting complexity estimates for the four data-block variants are

presented in Table 3-10.
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Table 3-9. Number of calls of each CIA function for example configurations. These cells include the
n;values that enter the complexity equation (Equation 3-1).

. . Data-Block Type (j configurations)
CIA function (i)|—72 3 Line 4 Line 5 Line
command _hdg 10 10 10 10
command _alt 10 10 10 10
command spd 10 10 10 10
selectAC 10 10 10 10
new_question info 16 16 16 16
find flight high 16 16 16 16
scanpath_high 4 4 4 4
submit 16 16 16 16
seedot 4 4 4 4
read 158 158 158 158
report 4 4 4 4
move eyes o 1006 990 978 970
move hand to 272 260 252 160
move cursor_to 180 168 160 156
clickbutton 180 168 160 156
findinDB2 2 4 0 0 0
findinDB2 3 4 0 0 0
findinDB2 4 4 0 0 0
findinDB2 5 4 0 0 0
findinDB3 2 0 4 0 0
findinDB3 3 0 4 0 0
findinDB3 4 0 4 0 0
findinDB3 5 0 4 0 0
findinDB4 2 0 0 4 0
findinDB4 3 0 0 4 0
findinDB4 4 0 0 4 0
findinDB4 5 0 0 4 0
findinDB5 2 0 0 0 4
findinDB5 3 0 0 0 4
findinDB5 4 0 0 0 4
findinDB5 5 0 0 0 4
type 46 46 46 46
press 184 184 184 184
motor 1642 1602 1574 1558
langle 10 10 10 10

Table 3-10. Data-block complexity estimates computed by Equation 3-1.

Algorithmic Minimum
Data-block . .
Confiquration Information Content | Description Length

g (bytes) (bytes)
2 Line 191140 176638
3 Line 187464 172590
4 Line 185812 170350
5 Line 186308 169354
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Figure 3-29 plots the complexity estimates for each data-block type. Both AIC
and MDL are shown. Based on the MDL, the results show that the complexity of the 5-
line data-block is the lowest. The AIC shows that the complexity of the 4-line data-block
is the lowest. In reality however, the maximum complexity differential between data-
blocks is only 0.04%. This suggests that the data-block configurations do not differ in

complexity within the context of the nominal task.

Complexity estimates for each data-block type
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Figure 3-29. Complexity estimates for each interface configuration.

Between AIC and MDL, the more appropriate complexity estimate is MDL. This
is because the compression removes redundancy and approaches a minimum amount of
information. This is compatible with the chosen definition of complexity in human
machine interaction. However in this case the Pearson correlation between MDL and AIC
is 0.97 (p = .031). Therefore these two metrics are essentially measuring the same
construct, and while in this case either can be used, the remaining discussions of

complexity will focus on MDL, since it captures minimum information more closely.
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Based on the ATC task context presented in this section it is found that the five
line data-block is the least complex, however it differs in complexity by only 0.04% from
the most complex data-block. In the following two chapters additional task factor levels
are introduced and the complexity results are validated against human performance

results obtained in experimental trials.

3.5. Conclusions

In this chapter, the methodology for computing complexity of human machine
interaction is established. The methodology is intended for designers and evaluators who
need to sclect between completing interface and/or task variants based on minimum
complexity. This includes the first step of conducting a CTA to elicit the mechanisms
with which operators interact with a display and process information as they execute
specific tasks. CIA functions are then written based on the processes identified. Each CIA
function has an associated AIC and MDL. A base CIA is written for each configuration
being compared. The base CIA is the highest level program from which other CIA
functions that represent subprocesses are called. The total complexity of a given
configuration is computed relative to a nominal task, by multiplying the cumulative
number of CIA function calls by the complexity of each function (using Equation 3-1).

ATC data-block configurations are used as an illustrative example, and the
method indicates that these four sample configurations differ in complexity by only
0.04%, with the five-line data-block being the least complex. The complexity of the
interface variants is estimated within the context of an ATC task of directing ten aircraft,
responding to sixteen questions and confirming four alerts. In Chapter 5 the CIA
complexity estimation methodology is applied within the context of two additional task
factors, and the complexity estimates are validated against human performance results

obtained in experimental trials and presented in Chapter 4.
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4. Human Performance Results

The validity of the resulting complexity measure cannot be accurately assessed
without comparing complexity to performance results. More complex human-machine
interaction, which may be the result of more complex displays, should result in degraded
human performance. Therefore this chapter discusses the experiment conducted to
investigate the performance consequences of different interface (data-block) and task
configurations. Chapter 5 compares the complexity estimation results to the experimental
performance results in order to determine whether the complexity metric methodology is

an adequate predictor of operator performance and workload.

4.1. Experiment Motivation

As mentioned previously in Chapter 3, the aircraft data-block is a key display
element in which information is presented to the operator, yet which has not been
researched extensively. This experiment was conducted to investigate the performance
consequences of four different data-block types; specifically the configurations shown in
Figure 3-2. It was of interest to investigate how the number of lines on the base layer of
the data-block affected performance on the ATC task. The hypothesized drivers of
performance were the clutter imposed by the different data-blocks and the action
requirements to extract information from the different data-blocks.

In order for the complexity analysis methodology to be successful, experimental
conditions with low performance measures should consistently have higher complexity
than experimental conditions with higher performance measures. In other words the
relationship between complexity and performance scores should be inverse, while the
relationship between complexity and secondary task response times should be direct.
Within the context of this thesis, the experimental results reported are used to determine

if the relationship between the complexity estimates and performance is correct.
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4.2. Method

4.2.1. Apparatus

A human-in-the-loop simulation ATC interface was programmed in Matlab® and
intended to emulate a Display System Replacement (DSR) type interface used in en-route
ATC operations and shown in Chapter 3. The simulation interface is called the
Reprogrammable Air Traffic Experimental Testbed (RATE). A screenshot of RATE is
shown in Figure 4-1. The functionality of the interface is discussed in depth in Chapter 3

and therefore is not repeated here.

Flight Numiper @& Altuds I—_
NWA485  Speed | 270 COMMAND
€ Heading

Figure 4-1. The RATE interface displaying a screenshot from a scenario with high aircraft count and
three line data-block. Flight NWA485 is selected.

Training and testing were conducted on three identical Fujitsu tablet PC
computers connected to external Dell® 19 inch monitors, external keyboards and mice.
The resolution was set at 1024x768 pixels with 16 bit color. The laptops ran on a Pentium

1.73 gigahertz processor with 1GB of random access memory (RAM). Matlab”® version
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7.0.1 was used to run the simulation. During testing, user responses were recorded in a
single file for each scenario. After signing required consent forms, subjects completed a
detailed tutorial presentation that discussed the nature of the experiment, and explained
the task and the software usage. Subjects were then quizzed to ensure that they had
memorized the meaning of each data-block information entry'’. If they made errors, they
were corrected prior to continuing with the experiment. Subjects then completed a single
five minute practice scenario before beginning the four test sessions, which lasted nine

minutes each. After completing all sessions, they completed a brief demographic survey.

4.2.2. Participants and procedure

The subjects consisted of 23 Navy ATC trainees. For the base en-route ATC task
controllers had to observe the incoming traffic, determine from which of the four possible
egress directions each flight had to exit from, and command the altitude and velocity
required for that particular egress. The egress label for a particular flight was displayed
on the first line of the data-block, adjacent to the flight number. Subjects also had to
avoid conflicts, and had the option of bringing up three nautical mile diameter circles
around each aircraft. Although controllers were formally in charge of the central diamond
sector (shown in Figure 4-2), as soon as an aircraft appeared anywhere on screen,
controllers could begin to issue commands immediately. In other words, every aircraft
appearing on screen had been automatically handed off to them. To command the
aircraft, controllers had to first click on the aircraft symbol (diamond or heading vector)
and then use the control panel that appeared on the bottom right hand side of the screen.
As the commands were issued by data-link, aircraft began maneuvering almost
immediately at rates consistent with current commercial aircraft climb, acceleration and
turn rates. These were derived from typical g-forces that passengers experience in flight
and adjusted based on available turn rate data. Furthermore all aircraft were fully
compliant with commands, although maneuver rates included small random variations.

The names, locations and exit requirements of the four egresses are shown in Figure 4-2.

'* The data-block entries were discussed and labeled in Chapter 3, Figure 3-9.
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Figure 4-2. Sector exits and rules. An aircraft entering through one of the four quadrants was
required to exit through one of the other three, at the altitudes and velocities shown above.

The secondary task consisted of answering a series of sixteen questions per
scenario. These questions were equally spaced in time (31 seconds apart) and concerned
with information about a specific flight. The question type was randomly preset within
the sequences prior to the experiment and did not change between subjects. However the
specific aircraft, with which the question was concerned with, was selected randomly

during the scenario.

4.2.3. Experimental design

There were three independent variables in this experiment. The first was the type
of data-block, the second was the frequency of information access, otherwise known as
question distribution, and the third was the aircraft count. The combinations of these
three variables formed sixteen experimental scenarios. Each scenario consisted of a

specific interface and task configuration.
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The independent variables are explained and discussed in greater detail in the
following paragraphs and are summarized in Table 4-1. As introduced in the previous
chapter, the independent variable of data-block type had four levels (Figure 3-1, Chapter
3). Every data-block level contained identical information, however the four factor levels
varied by how much information was presented in the single base layer. The purpose of
this factor was to determine whether any particular data-block resulted in the best

performance and if so under which task conditions.

Table 4-1. Independent variables and factor levels
Data-block Type

Two line data-block

Three line data-block

Four line data-block

Five line data-block

Question Distribution

Equal number of questions per line
Spread number of questions per line
Number of aircraft

Low count (~5-6 aircraft)
High count (~11-12 aircraft)

L jw b [ el L

The second independent variable concerned the question distribution of the
secondary task. There were two factor levels, equal and spread. For the first level,
subjects were asked an equal number of questions (four) about each of lines two through
five in the data-block. The second level asked a far greater number of questions about the
second line (ten) and far fewer for the other three data-block lines (six in total), thus this
is termed the spread factor. Table 4-2 summarizes the consequences of the question
distribution variable for each data-block. The distribution changed the level of interaction
required, by increasing the number of mouse clicks required to access information.

The final independent variable was the number of aircraft and under low aircraft
counts approximately 5-6 aircraft were on the display at a given time as opposed to 11-12

at high counts.
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Table 4-2. Percentage of time that operators have to click in the data-blocks in order access a piece of
information and number of questions per data-block line under each question distribution level,
Two Line Data-block

Number of questions per data-block line

Question Distribution Level Interaction required 41 42 43 44
Equal 75% of the time (25%-1 click, 25%-2 clicks, 25%-3 clicks) 4 4 4 4
Spread 38% of the time (19%-1 click, 13%-2 clicks, 6%-3 clicks) 10 3 2 1

Three Line Data-block
Number of questions per data-block line

Question Distribution Level Interaction required 41 42 43 44
Equal 50% of the time (25%-1 click, 25%-2 clicks) 4 4 4 4
Spread 19% of the time (13%-1 click, 6%-2 clicks) 10 3 2 1

Four Line Data-block
Number of questions per data-block line

Question Distribution Level Interaction required #1 42 43 44
Equal 25% of the time (25%-1 click) 4 4 4 4
Spread 6% of the time (6%-1 click) 10 3 2 1

Five Line Data-block

Question Distribution Level Interaction required Number of questions per data-block line

#1 #2 #3 #4
Equal 0% of the time No clicks ever required 4 4 4 4
Spread 0% of the time No clicks ever required 10 3 2 1

The experiment therefore consisted of a 4x2x2 mixed factorial design. The first
independent variable was administered between subjects and the other two independent
variables were administered within subjects. Scenarios were counterbalanced to control
for practice effects. Multiple dependent variables were captured to determine the
performance of subjects due to the influence of the independent variables on the various
tasks. The dependent measures gathered and used in this thesis are summarized in
Table 4-3 and discussed in the subsequent paragraph. The complexity estimates

computed for each scenario are compared with respect to the dependent variables.

Table 4-3. Summary of dependent variables
Dependent Measures

1|Egress Fraction Percentage of correct egresses from
sector. This fraction is given by
Equation 4-1.

2|Question Response [Percentage of correct answers to

Accuracy questions of secondary task.
3|{Mean Question Mean response time in seconds to
Response Time correct answers to questions of

secondary task

Note: All measures are per scenario
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In terms of performance on the primary en-route vectoring task, algorithms
detected if an aircraft left the sector at the correct location, altitude and velocity. Post-
experimental analysis determined the actual maximum number of correct egresses. Thus
egress fraction (EF) consists of the sum of the number of correct egress locations (e),
correct egress altitudes (a) and correct egress velocities (v), divided by three times the
maximum number of possible correct egresses (7) within a scenario. This relationship is
shown in Equation 4-1.

_eta+v
T

EF (4-1)

In addition, the correctness of the question responses submitted through the data-link, as

well as the answer times of correct responses, were recorded.

4.3. Results

Statistical analyses were conducted to determine the effect of the independent
variables on each of the dependent variables. The sub-sections that follow include the

analyses and results for each of the dependent variables.

4.3.1. Egress fraction

This dependent measure is an objective assessment of the performance on the
primary en-route air traffic control vectoring task. To analyze the egress fraction variable,
a three factor mixed analysis of variance (ANOVA) test is applied. This analysis
uncovers whether there are significant main effects due to the independent variables as
well as the significant interactions between any combination of the three independent
variables of data-block type (between subjects), question distribution (within subjects)
and aircraft count (within subjects).

Data-block type is found not to be a statistically significant factor (¥(3,19) = 1.91,
p = .16) of egress fraction. The trend however indicates that performance decreases

between the three-line and four-line data-block, as seen in Figure 4-3.
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Figure 4-3. Performance on base ATC task across data-block types. Shown for each aircraft count
(right) and question distribution level (left).

As expected, the number of aircraft is highly significant (F(1,19) = 9.46, p = .006)
in determining performance on the base task. This corroborates previous studies that have
reported aircraft count as the primary source of controller workload and cognitive
complexity (Hilburn, 2004; Kopardekar, 2003; Majumdar & Ochieng, 2002). With the
higher number of aircraft, the vectoring task becomes more difficult and performance
drops significantly. Furthermore, the interaction between question distribution and
number of aircraft is also statistically significant (¥(1,19) = 14.71, p = .001). The equal
question distribution factor level adds to the overall workload driven primarily by aircraft
count, by imposing a greater level of interaction than the spread level. This means that
with high aircraft count and an equal question distribution, there is a significant drop in

primary task performance.

4.3.2. Question responses

In this section two variables are analyzed: question response accuracy and
response time to correct answers. Question response accuracy measures the cumulative
count of correct responses to the questions of the secondary task. Reduced response
accuracy to a secondary task can be an indicator of increased workload (Vidulich, 2003).
Therefore different response accuracies across data-blocks could be interpreted to signify
that the data-block types affect workload. As the question response data is not interval

data, a non-parametric Kruskal-Wallis test is conducted. For the effect of data-block type,
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the chi-square statistic of the ranks is not significant (y’(3, N = 22) = 41, p = .94).
Therefore question response accuracy does not significantly depend upon data-block type
in the representative ATC task. This can be interpreted to signify that data-block type
does not affect operator workload. The mean numbers of correct responses for each data-

block type are plotted in Figure 4-4.
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Figure 4-4. Box plot of mean number of correct responses for each data-block type.

The next independent variable is the question distribution factor. In order to
determine whether question distribution factor affected accuracy, a Wilcoxon Signed
Ranks test is performed. These results show that question distribution is not significant (Z
= -.51, p = .61). Therefore changing the amount of interaction with the data-block does
not affect question response accuracy.

The third factor is the number of aircraft. The significance of the number of
aircraft factor is also examined with a Wilcoxon Signed Ranks test. This shows that as
expected the number of aircraft factor is highly significant (Z = -4.41, p = .000). This
result also is evidence to support that secondary task question response accuracy is a
valid measure of workload in an ATC task (the measure captures the known workload
driver of number of aircraft). A plot of mean correct responses versus number of aircraft

is shown in Figure 4-5.
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Figure 4-5. Box plot of question response accuracy versus number of aircraft

The second dependent measure analyzed in this section is the mean response time
to correct answers. Secondary task reaction times are also an indirect measure of spare
mental capacity and thus give insight to mental workload (Vidulich, 2003). As this
response time data is on an interval scale, a mixed 4x2x2 ANOVA is carried out in order
to elucidate the significant main effects and interactions. It is found that the data-block
factor is not statistically significant in affecting the mean question response times
(F(3,17) = .24, p = .87). The estimated marginal means of question response time are
plotted in Figure 4-6 for each data-block type, at each of the two levels of aircraft count.
For high aircraft counts the trend of data-block type appears flat. For low aircraft counts
there is an apparent decrease in response time with increasing number of data-block base

layer lines.
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Figure 4-6. Estimated question response times for each data-block type at two levels of aircraft count.

The question distribution factor is significant (F(1,17) = 5.17, p = .036). An equal
task distribution results in higher response times. The number of aircraft factor is also
significant in determining question response time (F(1,17) = 17.84, p = .001). Since this
is an expected result, this corroborates the use of secondary task reaction time as a

measure of workload.

4.4, Conclusions

In the experiment, four data-block designs are compared along with two other
factors: question distribution and number of aircraft. The impacts of these factors on
operator performance are quantified and analyzed. The results indicate that the data-block
type does not have a significant effect on any of the dependent measures. For the primary
ATC task performance results (even though the results are not statistically significant), a
pattern of decreased performance is observed with increasing data-block base layer lines.
The question response time shows a decreasing trend with increased data-block base
layer lines. Because the patterns in the performance trends differ, and the absence of
statistical significance, it is concluded that the data-block type has little effect on the
performance and workload of the operator. The question distribution factor is significant
across secondary task response time and as expected the number of aircraft is found to be

significant across all dependent measures.
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5. Complexity Metric Validation

This chapter formulates a complexity metric for each experimental scenario from
Chapter 4 and compares the estimated complexity (computed by the methods introduced
in Chapter 3) to the performance results. The complexity results are normalized and
compared to the normalized experimental results in order to determine whether the
complexity measure can be predictive of operator performance and workload. These
results in part determine the effectiveness of the complexity analysis methodology

proposed in this thesis and help determine the course of future research.

5.1. Experimental Scenario Cognitive Interaction Algorithms

The experimental factors determine the interface configuration, task and nominal
sequence of events that occur in each scenario, and Table 5-1 shows the correspondence
between scenario numbers and experimental factors. This table also shows the nominal
counts of the events that occur within each scenario'®. These are used to determine the
number of CIA function calls for each scenario (the »; values in Equation 3-1). The CIA
functions are first presented and described in Chapter 3. Each experimental scenario
requires the execution of a specific set of CIA functions a nominal number of times from
within the base CIA.

Each scenario has a base CIA from which all the functions are called'’. Rather
than presenting the algorithms for each of the sixteen scenarios, the CIA for scenario 112
is presented and used as a benchmark example. This is the scenario with the two line
data-block, an equal question distribution and high aircraft count. The structure of this
algorithm is shown in Figure 5-1 and includes the number of each of the CIA function
calls. The remaining fifteen scenario CIA codes and flow charts are contained in

Appendix C.

16 The nominal counts of events are obtained by running the scenario with the assumption that all aircraft
that can potentially be directed are in fact directed, and in a manner which avoids all conflicts.
'7 The simple concept of the base (or core) CIA is discussed in Chapter 3.
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Table 5-1. Scenario code legend specification and nominal event decomposition per scenario

SCENARIO SPECIFICATION EVENT DECOMPOSITION
Scenario | Data-Block| Question |Aircraft] Number of clicks to | Altitude Speed Heading | Number of | Number
Code Type Distribution| Count | expand data-block | Commands | Commands | Commands | questions | of alerts
111 2 Line Equal Low 24 7 T 5 16 4
112 2 Line Equal High 24 12 12 7 16 4
121 2 Line Spread Low 10 7 T 4 16 4
122 2 Line Spread High 10 10 12 6 16 4
211 3 Line Equal Low 12 T 7 5 16 4
212 3 Line Equal High 12 12 12 7 16 4
221 3 Line Spread Low 4 7 T 4 16 4
222 3 Line Spread High 4 10 12 6 16 4
311 4 Line Equal Low 4 7 T 5 16 4
312 4 Line Equal High 4 12 12 7 16 4
321 4 Line Spread Low 1 7 7 4 16 4
322 4 Line Spread High 1 10 12 6 16 4
411 5 Line Equal Low 0 7 7 b 16 4
412 5 Line Equal High 0 12 12 7 16 4
421 5 Line Spread Low 0 7 7 4 16 4
422 5 Line Spread High 0 10 12 6 16 4
— submit
scanpath_high 4 ——4x ‘
18wl find.fight_high
!
1i6x
Base Cognitive Interaction Algorithm !
(Scenario 112) !
| 4x
12x 16x: 4x

x

selectAC' 4x |

i [ 12x

BT | ax |

command_hdg | | 1ex

. Y new_question_info y
command._alt = — | findinDB2_3
command_spd

 findinbB2_5

Figure 5-1. CIA functions called by scenario 112. Numbers denote the frequency with which each of
the functions is called.

The functions called by the base CIA for scenario 112 have been presented and

described in Chapter 3. The base CIA for scenario 112 is shown on the following page

and essentially scripts, at a high level, the nominal events that occur in the scenario. For

clarity, annotations are made beside the code. These events are not necessarily described

in sequential order, and do not need to be, as this does not influence the resulting metric.
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acl = selectAC
command_alt (al)
command spd{(al)
ac2 = selectAC
command_hdg (aZ2)
command alt (a2)
command_spd(a2)
ac3 = selectAC
command_alt(a3)
command_spd{a3)
acd = selectAC
command_alt (a4)
command_spd (ad)
ac5 = selectAC
command_hdg (a5)
command_alt(aS)
command_spd{(a5)
ac6 = selectAC
command hdg(a6)
command_alt (a6)
command_spd{(a6)
ac7 = selectAC
command_hdg (a7)
command_alt (a7)
command_spd (a7)
acB8 = selectAC
command_hdg (a8)
command_alt (a8)
command_spd{a8)
ac9 = selectAC
command alt{a9)
command_spd{a9)
acl0 = selectAC
command_hdg(alQ)
command_alt(al0)
command_spd{al0)
acll = selectAC
command_alt(all)
command_spd{(all)
aclz?2 = selectAC
command alt(alZ2)
command hdg (al2)
command_spd{(al2)

gl = new_question_info

The first portion (lines 1-43) consists
of the calls to functions concerned
with the direction of aircraft in either
altitude, speed or heading. The first
line of code calls the select ac
function which selects an aircraft
based on proximity to the exit line,
and also one that has not been selected
previously. This aircraft is assigned a
short term memory variable (called
acl in this algorithm) and then the
required commands are carried out on
that particular aircraft.

targetAC = find flight high(qgl (1)) -\

ans = findinDB2 5(targetAC,ql (2))

submit (ans)

g2 = new_question_info
targetAC = find flight high(g2(1))
ans = findinDB2_3(targetAC,qg2(2))

submit (ans)

g3 = new_question_info
targetAC = find_flight_high(g3(1))

Description for lines 44-
107 is on the following

ans = findinDB2_2(targetAC,gq3(2)) page.

submit (ans)

g4 = new_question_info
targetAC = find flight high(q4 (1))
ans = findinDB2 3 (targetAC,g4d (2))

(1)) /

submit (ans)

g5 = new_question_info
targetAC = find flight_ high(g5
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62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.

ans = findinDB2 2 (targetAC,g5(2))
submit (ans) -

g6 = new_question_info

targetAC = find flight _high(q6 (1))
ans = findinDB2_4 (targetAC,q6(2))
submit (ans)

q7 = new_question_info

targetAC = find_flight high(g7(1))
ans = findinDB2 4 (targetAC,qg7(2))
submit (ans)

g8 = new_question_info

targetAC = find flight high(q8(1))
ans = findinDB2_4 (targetAC,q8(2))
submit (ans)

q9 = new_gquestion info

targetAC = find flight_high{(q9(1))
ans = findinDB2_5(targetAC,q9%(2))
submit (ans)

ql0 = new_question_info

targetAC = find flight high(ql0(1))
ans = findinDB2_5 (targetAC,ql0(2))
submit (ans)

qll = new_question_info

targetAC = find flight _high(gll(1))
ans = findinDB2 2 (targetAC,qll(2))
submit (ans)

ql2 = new_guestion_info

targetAC = find flight high(gl2(1))
ans = findinDB2_2 (targetlAC,ql2(2))
submit (ans)

gl3 = new_question_info

targetAC = find flight high(ql3(1))
ans = findinDB2_ 3 (targetAC,ql3(2))
submit {(ans)

qld4 = new_guestion_info

targetAC = find flight high{ql4 (1))
ans = findinDB2 4 (targetAC,ql4(2))
submit (ans)

gql5 = new_question_info

targetAC = find flight high(gl5(1))
ans = findinDB2 5 (targetAC,ql5(2))
submit (ans)

qlé = new_guestion_info

targetAC = find flight high{gl6(1))
ans = findinDB2_4 (targetaC,ql6(2))
submit {ans)
scanpath_high
dl = seedot
if dl ==
report

The following section of code
(lines 44-107) consists of the
responses to the sixteen questions
that appeared. The first part (e.g.:
line 76) of each question consists
of calling the function
new_question_info. This function
gathers information about the
question being asked from the
data-link and stores this in a
temporary mental variable. The
information stored is a target
aircraft flight number and the type
of information requested about
that flight. The next part (e.g.: line
101) runs a search on the radar
display to locate the particular
flight and stores the position. The
following line (e.g.: 102) runs the
search for the piece of information
from within the data-block. This
depends on the data-block type
and the line in which the
information sought is embedded.
The answer is gathered and
submitted to the data-link
interface as is represented by the
submit function.

end The final section of code (lines 108-127) consists of the alert

scanpath_high
d2 = seedot

report

end
scanpath_high
d3 = seedot
if d3 ==
report

end
scanpath_high
d4 = seedot

detection process and general display scans. It is assumed

if d2 == that in conjunction with such scans each alert is detected.

> This is a valid assumption as subjects generally failed to

detect the alert when fully engaged in a subtask. If the alert

dot is active (checked by the seedor function), the algorithm

calls the report function which describes the simple process
of clicking the report button.
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if d4

=1

report

end

Now that the base CIA has been described in detail for an example scenario, and

the information is available to compute the cumulative number of CIA function calls, the

following section presents the complexity estimates.

5.2. Scenario Complexity Estimates

Table 5-2 shows the total number of calls of each CIA function from within each

of the sixteen scenarios and also includes the complexity estimates of each function.

Table 5-2. CIA functions including complexity estimates, algorithmic execution time estimates and
number of calls for each of the sixteen scenarios.

Kl

ﬁqv:r::::r;: "9':?‘.‘-""',:‘“ Algorithme Total number of calls for sach scenario CIA (1)
CIA Function (i) Brief Description content | "Mformation | Execution Time
content Estimate (s)

(bytes) (bytes) 101 | 112 | 920 | 122 [ 200 | 202 229 222 | 309 | 392 320 | 322 |91 | 402 | 421 | 422
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command_at e e | 487 314 7 7127 107 |2f7]w0] 712710712710
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Table 5-2 provides important insight into the frequency and complexity of various
cognitive sub-processes such as neural motor commands, hand movements, eye
movements, the issuing of aircraft commands, etc. In addition this table demonstrates
how the CIA provides an estimate of complexity for each process. As outlined in Chapter
3 (section 3.4), from the complexity estimates of each individual CIA function and the
number of calls of each function, the total complexity estimates of each scenario are
computed. This is done by multiplying the complexity (x;) of each CIA function by the
number (#;) of times it is evoked in each scenario. The summation of these is then added
to the complexity of the base scenario CIA (a)). This is illustrated by Equation 3-1
(described in Chapter 3).

m

Khumanj =a;+ Zni’(i (E.3-1)

i=1
These results are tabulated in Table 5-3. The total complexity estimates are shown in the

two rightmost columns of the table.

Table 5-3. CIA complexity estimates for each of the sixteen experimental scenarios being compared.

. Complexity of CIA functions Total CIA Complexity
Core CIA complexity (@) evoked (21K ) ¢ puman )
Sc::e:::o AIC (bytes) MDL (bytes) | AIC (bytes) | MDL (bytes) | AIC (bytes) | MDL (bytes)
111 2300 499 125712 120058 128012 120657
112 2620 556 184166 170858 186786 171414
121 2300 498 117758 112465 120058 112963
122 2570 538 171008 158417 173578 158955
211 2300 499 122036 116434 124336 116933
212 2620 556 180490 167234 183110 167790
221 2300 498 116635 111229 118935 111727
222 2570 538 169885 157181 172455 1567719
311 2300 499 119644 114194 121944 114693
312 2620 556 178838 164994 181458 165550
321 2300 498 116966 110825 119266 111323
322 2570 538 170216 156777 172786 1567315
411 2300 499 120880 113198 123180 113697
412 2620 556 179334 163998 181954 164554
421 2300 498 121048 113562 123348 114060
422 2570 538 171638 156854 174208 157392

It also appears from Table 5-3 that there is a very high correlation between AIC
and MDL. The statistical value for this correlation is computed to 0.999 (p = .000).
Therefore across all factors the AIC measure is essentially equivalent to MDL. This very

high correlation is due the fact that most CIA functions are not compressible and are
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called up many times, accounting for most of the measured information. It is also
important to note that the a;term can essentially be neglected in Equation 3-1.

The overall CIA complexity estimates for each scenario are plotted in Figure 5-2.
From this figure it is evident that the number of aircraft is the primary driver of
complexity in the human machine interaction process (all scenarios ending with the digit
2, are scenarios with 11-12 aircraft). The number of aircraft has been shown to be the
dominating complexity driver in air traffic control tasks on numerous occasions (e.g.:
Hilburn, 2004; Kopardekar, 2003; Majumdar & Ochieng, 2002). Therefore the validity of
the proposed complexity analysis methodology is illustrated for this interface, task, and
associated CIA codes.

The second observation is that the scenarios with the equal question distribution
are generally more complex than those with a spread question distribution (e.g.: compare
scenarios 112 and 122). This is an expected result for those data-blocks with embedded
information, as this condition imposed a higher degree of interaction with the data-
blocks. This observation is also consistent with expectations and the complexity analysis

methodology is able to capture it.

Total CIA MDL complexity versus scenario

180,000
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140,000
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100,000 -
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Figure 5-2. Cognitive interaction algorithm MDL complexity estimates for each of the sixteen
experimental scenarios.
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Relative to the strong effect of the number of aircraft, no pattern is apparent in
distinguishing between the relative complexities of the data-block factor levels. The
complexity analysis method predicts that the data-block type does not significantly affect
complexity and hence should not significantly affect performance within the context of
the representative ATC task.

Figure 5-3 breaks down the complexity for the question distribution factor and the
data-block factor more clearly. In these figures the complexity measure has been
normalized with respect to the largest MDL value. Figure 5-3A shows the normalized
complexity due to the experimental factor of question distribution. The result shows that
the equal question distribution results in higher complexity and therefore should result in

lower performance.

Overall normalized MDL complexity Overall normalized MDL comPlexity estimates
for the two question distributions of data-block variants

1.00 T— 1.00 -

0.95 A 0.95

0.90 - 0.90
£ 085 £ 085
) 2
g- 0.80 g- 0.80 ~
o o
o 1 O 075
3 0.75 T

N

2 0.70 -g 0.70
£ 0.65 -
g 0.65 - g

0,60 - 0.60 - O

0.55 0.55 A

0.50 0.50 T T T

' B S 2 Line data- 3 Line data- 4 Line data- 5 Line data-
il prea block block block block
Question Distribution Data-block type
(A) (B)

Figure 5-3. Normalized MDL complexity estimate for (A) each question distribution and (B) each
data-block type.

The complexities of the competing data-block elements are seen more clearly in

Figure 5-3B (i.e.: isolated from Figure 5-2). This plot shows that the two-line data-block
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has the largest MDL, followed by the three-line data-block and then the three and four-
line data-blocks. Note that difference between the most and least complex data-block
type is only about 0.025. This graph therefore suggests that based on this complexity
analysis the difference between the four display design configurations is likely not
significant. If as a formality one had to select a data-block type based only on these
results, the four-line data-block would be chosen, as its MDL complexity is a fraction
(0.002%) lower than the five-line data-block.

5.3.  Comparison of Complexity and Experimental Results

In this section the MDL complexity results are compared to the experimental
performance results. The section is divided into two parts. The first compares the
complexity estimates to the ATC vectoring task performance results for each of the
independent variable categories. The second portion compares the complexity estimates
to the workload measures (question response accuracy and question response time). The
results are normalized with respect to the maximum measured quantity of the set being

compared.

5.3.1. Complexity and performance

The ATC primary task performance measure consisted of the egress fraction. By
comparing the complexity estimates to these performance results, it is determined
whether the MDL complexity of the CIA can predict performance in a representative
ATC task. The relationship between complexity and performance is expected to be
inversely proportional, since increasing complexity should cause decreasing performance.
Figure 5-4 shows the plot of the normalized MDL graphed with the normalized egress
fraction. Although it appears in part A to show that the egress fraction has a large drop
between the three-line and four-line data-block, the data-block factor is not statistically
significant, so essentially all four levels do not differ from one another. Thus, it is argued
that the complexity prediction is satisfactory, as it also shows no significant difference

across the data-block factor.
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Figure 5-4. Normalized complexity and normalized egress fraction versus (A) data-block type, (B)
question distribution and (C) number of aircraft.

The complexity values are also compared for the performance results across the
other two factors of question distribution and number of aircraft. The graph comparing
complexity and performance results for the different question distributions is shown in
Figure 5-4B. The plot demonstrates the inverse relationship between complexity and
performance. When estimated complexity is higher (i.e. in the equal distribution) the
performance is measured to be lower and vice-versa.

The graph comparing complexity and performance results for different number of

aircraft is shown in Figure 5-4C. This plot also clearly shows the inverse relationship
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between complexity and performance. The larger complexity estimate corresponds with
lower experimentally measured performance.

In conclusion the MDL complexity measure generally follows all the statistically
significant trends measured by the experimentally derived overall performance metric.
The relationship between predicted complexity and measured performance is inversely

proportional.

5.3.2. Complexity and workload

This section compares the complexity estimates to the normalized results of the
secondary question response task. Secondary task measurements have been established in
human factors as consistent estimates of cognitive workload (Vidulich, 2003). From
Figure 5-5A it is observed that the performance result has a slight downward trend and
then increases once again. These points are found not to be statistically different from
each other in Chapter 4. This is again consistent with the complexity prediction.

As seen in Figure 5-5B, the complexity predicts a difference across question
distribution, however experimental results show that the two levels do not differ. In this
specific case the complexity prediction does not succeed. This is an example of a case
where the overall complexity of a scenario may not always predict performance on a
specific subtask, as operators can trade-off resources between subtasks to overcome the
higher complexity. In Figure 5-5C the inverse relationship between complexity and
response accuracy for the number of aircraft is also reflected. Therefore in terms of
secondary task question response accuracy, the complexity measure successfully captures

the effect of aircraft count and the non-effect data-block type.
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Figure 5-5. Normalized complexity and normalized correct responses versus (A) data-block type, (B)
question distribution and (C) number of aircraft.

Question response time is an additional workload measure. The higher the
measured secondary task response time is, the higher the level of cognitive workload.
Therefore a direct relationship is expected between complexity and secondary task
response time. Although not statistically significant, the question response times
interestingly exhibit a similar trend to the complexity estimate as seen in Figure 5-6A.
This is evidence suggesting that the complexity measure can be predictive of operator

workload in human-machine interaction.
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Figure 5-6B captures the direct relationship for the question distribution factor.
The higher complexity predicts greater workload in the case of the equal distribution.
Figure 5-6C shows the direct relationship between estimated complexity and performance
for the number of aircraft. Across all the experimental factors, the complexity estimate is

able to predict secondary task response time (i.e. workload).
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Figure 5-6. Normalized complexity and normalized question response time versus (A) data-block
type, (B) question distribution and (C) number of aircraft.
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5.4. Conclusions

In conclusion the complexity estimation from the MDL of the CIA consistently
captures the relative experimental performance and workload differences between
different human machine interaction configurations. The complexity analysis shows that
the data-block type has a minimal contribution to complexity when considered within the
broader context of the task. This is consistent with experimental findings. The
relationship between complexity and question accuracy is also consistent for the number
of aircraft factor. The results highlight that in ATC, the contribution of the complexity
imparted by the number of aircraft dominates over the complexity contribution of other
factors. The relationship between complexity and performance (egress fraction) is shown
to be inversely proportional for all statistically significant trends. This evidence suggests
that the complexity analysis methodology can be used to predict primary task
performance. However for the question distribution factor, complexity predicts a
difference when experimental results show none. The question response time trend is
predicted by the complexity measure across all three experimental factors. The above
evidence suggests that the proposed complexity methodology can predict relative
workloads for different interface and task configurations. The methodology is thus
validated for the representative ATC task, interfaces and CIAs. For a more general and
conclusive validation, future research is suggested. The following chapter reviews the
methodology, discusses its limitations, proposes future work, and includes final

conclusions.
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6. Conclusions

Complexity is an acute problem in air traffic control (ATC) and can ultimately
limit the safety, capacity and efficiency of the system. The majority of research on ATC
complexity has been concerned with examining the complexity imparted by the air traffic
itself, and not on the overall complexity contributed by the human machine interaction
(HMI) process.

In terms of HMI, inadequate interface and task designs may require a greater
amount of operator training, likely have increased life-cycle costs, result in lower
operator efficiencies and could cause a reduction in system safety. All these related issues
are critical in air traffic control (ATC) and must be mitigated in order to be able to
maximize traffic capacity. Methodologies that aid the development of improved
technological interfaces are therefore of vast relevance, especially with the increased
pervasiveness of computers in all facets of human life.

The problem of a human performing a highly procedural task using a set of tools
is conceptually equivalent to the problem of the processing of a program or algorithm by
an artificial computational device. HMI is primarily constrained due to information
processing limits within the central nervous system (CNS) which correspond to
complexity limits. The questions of how to quantify information complexity of HMI and
human cognition in general have been the subject of much research and debate, yet few
substantial breakthroughs have resulted.

In this thesis, the complexity of human machine interaction is defined as the
minimum amount of information required to describe the human machine interaction
process in some fixed description language and chosen level of detail. Quantifying
complexity for competing interface variants and task situations can help the engineer to
more objectively select between these configurations. In this thesis, a theoretically based

method is developed that consists of a cognitive task analysis'®, from which the cognitive

'® Note that the step of conducting the CTA could be bypassed if the practitioner has sufficient knowledge
about the human interaction process. In that case the CIA functions could be written directly.
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interaction algorithm (CIA) is derived. The complexity of the resulting algorithm is then
found by the minimum description length (MDL) of the set of relevant CIA functions.

As shown in Chapter 5, the complexity estimation from the MDL of the CIA is
able to consistently capture the relative performance and workload differences between
different human machine interaction configurations (experimental scenarios). The
relationship between complexity and primary task performance (egress fraction) is shown
to be inversely proportional for all statistically significant trends. The relationship
between complexity and question accuracy is also consistent for the number of aircraft
factor, while the question response time trend is predicted by the complexity measure
across all three experimental factors. The complexity analysis predicted a very small
difference in complexity between data-block types (2.5%), thus matching the
experimental results which show that the data-block type is not significant across any
dependent measure. The above evidence strongly suggests that the proposed complexity
analysis method can be applied to predict relative operator performance and workload for
different interface and task configurations.

This method could apply to the analysis of any HMI process, including aircraft
cockpits, UAV ground control stations, manufacturing, websites and personal electronics
such as mobile telephones. If complexity of human machine interfaces can be effectively
measured, current trends in the field of human factors could be changed by allowing a
greater degree of preliminary quantitative analysis rather than extensive (and more
costly) post-development testing'®. This parallels what has occurred in the aircraft
industry. In the early days of aviation aircraft design was mainly a trial and error process,
requiring extensive testing. Today entire aircraft can be designed computationally and
testing is minimized. The same could become true of human machine interfaces in the
future.

While this complexity estimation methodology seems promising, several issues
and limitations are identified. The first issue concerns the potential ambiguity of
algorithms. One potential problem is that it is possible that the same interaction can be

expressed with dissimilar algorithms of different complexity. Creating accurate

' A simple cost estimation predicts that the cost of running the experiment discussed in this thesis, to
uncover differences between data-block types, was approximately six times as costly as carrying out the
complexity analysis.
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algorithms requires knowledge of how the human brain actually makes decisions and
processes information. If the required level of detail about human information processing
is yet unknown, and this detail is needed in order to ascertain key aspects of the interface
or task configurations being compared, then this method may not be easily applicable.
For example, can the algorithm truly capture the effect of clutter on a display or of
slightly changing the color of an object? A second potential limitation is whether the
information quantified for each CIA function accurately captures the information of the
actual task. A further limitation is that while the results produce a complexity value and
difference between configurations, the magnitude of this difference is difficult to
interpret. To overcome this, it may be possible to scale the complexity based on the effect
of a known complexity factor, or to measure performance for only a single configuration
scenario and then scale that performance by the complexity fractions for every other
scenario.

In future research it may be of interest to investigate whether any methods already
established which capture human information processing and machine interaction, can be
used to essentially formulate the equivalent of the CIA, and hence be used to estimate
complexity. One method meriting further consideration is Natural GOMS Language
(NGOMSL) developed by Kieras (1988; 1997) and described a structured natural
language used to express the user’s methods and selection rules. Complexity could be
estimated by using the compressed information content of NGOMSL descriptions of
HMI for different configurations. Other potential ways to estimate complexity in HMI
could be attained by measuring compressed information content of sets of discrete event
data gathered by screen and input device capture technology.

In subsequent iterations of this research, studies could focus solely on the
expression of these algorithms in a more precise and standard way, or the use of existing
algorithms from either artificial intelligence or computational cognitive science. More
detailed algorithms representing the cognitive processes of controllers could be
developed if this method is to be applied to actual ATC interfaces and experienced
controllers. These algorithms can then be used to analyze current ATC systems, and help
in the development of new ATC systems by allowing the more objective comparison of

competing interface and task configurations.
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Different approaches for estimating complexity could also be applied. For
example one very promising yet simple metric could be attained by measuring the time
required for a typical user to learn to operate a certain system (within some performance
margin). The interface and/or task configuration with the lowest learning time would be
the least complex. It would be of interest to compare the complexity analysis method
proposed in this thesis to a learning time measure of complexity.

In conclusion this thesis attempts to connect cognitive complexity and algorithmic
information theory while providing a practical measure of complexity in HMI. The thesis
contributes to the literature by developing and applying the idea that human information
processing can be expressed in a formal language (CIA) from which complexity
estimates can then be computed by compression methods (MDL). Technological
interfaces can then be optimized by selecting the design and task configurations that yield
minimum complexity by the proposed method. As shown in this thesis, configurations
with lower MDL complexity estimates resulted in higher performance and lower
workload. This work can provide a reference for future research on measuring HMI
complexity, as well as for research that attempts to express and analyze human

information processing in a more formal manner.
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Appendix A. Table of Subtasks and
Information Requirements

This appendix contains information regarding the breakdown of the various

subtasks that were identified as part of the cognitive task analysis (CTA). These helped

with the creation of the cognitive process flow charts that were presented in Chapter 3.

They also include listings of the information requirements for each subtask.

Table Al. Task decomposition and information requirements

No. Subtask Description Information requirements
1 Direct Direct aircraft that Flight number, actual altitude, actual velocity,
aircraft appear on screen to actual heading, desired altitude, desired velocity,
the required egress desired heading, selected aircraft, egress
and ensure exits at specifications, control panel state, cursor position,
the correct velocity aircraft/subtask priority, overall objectives.
and altitude for the
given egress.
IRk Scan display | Scan eyes about the | Positions of aircraft, status of aircraft, flight
(version 1) display in order to numbers, egress locations and information
perceive
information
required for
comprehension of
the situation. Isolate
an aircraft that must
be directed.
1.1.1 Choose Mentally isolate an Position of selected aircraft, flight number of
aircraft aircraft to direct selected aircraft
based on a certain
priority (eg: which
is closest to the
egress)
[.1.1.1 | Compute Capture the distance | Position of selected aircraft, position of nearest
distance to of the aircraft to exit | exit line
exit line and hold for
comparison
1.1.2 Perceive Perceive the egress Egress information (Z1 - Z4), aircraft position
destination destination of a
certain aircraft
1.1.2.1 | Check Check the exit
specific exit | requirements for a
requirements | given exit from the
chart
1.2 Issue Issue a command to | Aircraft, desired aircraft state, current aircraft state
Command a given aircraft
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1.2.1 Heading Change the heading | Aircraft position, desired aircraft direction, actual
command of a given aircraft aircraft direction
1.2.1.1 | Clickon Select aircraft to Aircraft, cursor position, click/selection feedback
aircraft which to command
will be issued by
clicking on the
graphical symbol
1.2.1.2 | Click Select the radio Knowledge of which button is for heading (either
heading button on the by location or by reading label), feedback on click,
radio button | command panel for | cursor position
heading
1.2.1.3 | Directionto | Convert a desired Current direction, current heading, desired
heading heading direction heading, mental conversion/computation
conversion (visual) to a heading
angle from 0-360
degrees (numeric)
1.2.1.4 | Clickintext | Click in text box location of text box, position of cursor, click
box adjacent to radio feedback
buttons
1.2.1.5 | Erase textin | Erase the text by selection of text, keyboard button (eg: backspace)
text box continuously
pressing backspace
or by selecting text
and hitting
backspace or delete
1.2.1.6 | Changeto Move hand from Location of the required keyboard keys
keyboard mouse to keyboard
or use other hand
1.2.1.7 | Type new Type the desired Keyboard numeric keys, desired heading
text in text heading (3 digits) in
box the text box
1.2.1.8 | Change to Move hand from Location of mouse
mouse keyboard to mouse
the same hand was
used to type
1.2.1.9 | Click Click on the cursor position, command button location, click
command command button at feedback
which point the
aircraft begins its
maneuver and the
control panel
disappears
1.2.2 Altitude Change the altitude Aircraft, current altitude, desired altitude
command of a given aircraft
1.2.2.1 | Click on Select aircraft to Aircraft, cursor position, click/selection feedback
ajrcraft which to command
will be issued by
clicking on the
graphical symbol
1.2.2.2 | Click Select the radio Knowledge of which button is for altutude (either
altitude button on the by location or by reading label), feedback on click,

radio button

command panel for
altitude

cursor position




1.2.23

Click in text
box

Click in text box
adjacent to radio
buttons

location of text box, position of cursor, click
feedback

1.2.2.4 | Erasetextin | Erase the text by selection of text, keyboard button (eg: backspace)
text box continuously
pressing backspace
or by selecting text
and hitting
backspace or delete
1.2.2.5 | Check Check the required Location of map, selected aircraft required egress
desired exit altitude from (21-Z4)
altitude sector map (note
position in sequence
may vary)
1.2.2.6 | Change to Move hand from Location of the required keyboard keys
keyboard mouse to keyboard
or use other hand
1.2.2.7 | Type new Type the desired Keyboard numeric keys, desired altitude
text in text altitude (3 digits) in
box the text box
1.2.2.8 | Change to Move hand from Location of mouse
mouse keyboard to mouse
the same hand was
used to type
1.2.2.9 | Click Click on the cursor position, command button location, click
command command button at feedback
which point the
aircraft begins its
maneuver and the
control panel
disappears
123 Speed Change the speed of | Aircraft, desired aircraft speed, current aircraft
command a given aircraft speed
1.2.3.1 | Click on Select aircraft to Aircraft, cursor position, click/selection feedback
aircraft which to command
will be issued by
clicking on the
graphical symbol
1.2.3.2 | Click speed Select the radio Knowledge of which button is for speed (either by
radio button | button on the location or by reading label), feedback on click,
command panel for | cursor position
speed
1.2.3.3 | Clickintext | Click in text box location of text box, position of cursor, click
box adjacent to radio feedback
buttons
1.2.3.4 | Erasetextin | Erase the textby selection of text, keyboard button (eg: backspace)
text box continuously
pressing backspace
or by selecting text
and hitting
backspace or delete
1.23.5 | Check Check the required Location of map, selected aircraft required egress
desired exit altitude from (Z1-Z4)
altitude sector map (note

position in scquence
may vary)
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1.2.3.6 | Change to Move hand from Location of the required keyboard keys
keyboard mouse to keyboard
or use other hand
1.2.3.7 | Type new Type the desired Keyboard numeric keys, desired speed
text in text speed (2 digits) in
box the text box
1.2.2.8 | Changeto Move hand from Location of mouse
mouse keyboard to mouse
the same hand was
used to type
1239 | Click Click on the cursor position, command button location, click
command command button at feedback
which point the
aircraft begins its
maneuver and the
control panel
disappears
2 Conflict Ensure that no Current aircraft positions, future aircraft positions,
detection aircraft are in predicted trajectory courses.
and conflict and prevent
correction future conflicts by
projecting future
aircraft positions
2.1* Scan display | Scan eyes about the | Current aircraft positions, future aircraft positions,
(version 2) display in order to predicted trajectory courses.
perceive
information
required for conflict
detection
2.1.1 Check for Check if aircraft are | Current aircraft positions, current aircraft altitudes,
common at same altitude or rates of climb
flight levels may be in the near
future
2.1.2 Project Mentally estimate Current aircraft positions, current aircraft speeds,
future future trajectories of | future aircraft positions
positions aircraft and whether
they will intersect at
the same point in
time
2,13 Conflict Based on the
uncertainty trajectories
level determine a level of
uncertainty
regarding a potential
conflict
2.2* Identify Identify two or
conflicting more aircraft which
aircraft are predicted to
conflict
221 Display and | Click a button on Location of button, status of circles (on/off)
view screen to view
conflict 3n.m. conflict
circles circles around each
aircraft
23 Modify Modify the
aircraft trajectory of an
trajectory aircraft which may
conflict
231 Speed Change the speed of | Aircraft, desired aircraft speed, current aircraft
command a given aircraft speed




232 Altitude Change the altitude | Aircraft, current altitude, desired altitude
command of a given aircraft
233 Heading Change the heading | Aircraft position, desired aircraft direction, actual
command of a given aircraft aircraft direction
3 Respond to Respond to the
questions questions requested
by searching for the
requested piece of
information, typing
it in, and submitting
it
3.1 Sense aural Hear aural signal knowledge of audio signal meaning
alert denoting a new
request and decode
its meaning
3.2 See new Notice the new knowledge of new request meaning
request request text has
message turned green and
decode its meaning
3.3 Focus eyes Once the alert has Location of data-link interface and question,
and attention | been heard, eyes knowledge that new question has appeared
to data-link and attention are
pointed at the data-
link interface in
order to read the
question
33.1 Read Read the sentence Language knowledge to decode meaning of
question containing the symbols and words
question that has
appeared
3.4* Scan display | Scan eyes about the | aircraft positions, aircraft already scanned, target
(version 3) display in order to flight number, information type required
find a specific flight
number amidst the
aircraft
3.5* Extract Once particular information type required, position of that
information flight is found on information within data-block
from data- screen, one
block
351 Hold Once the piece of Piece of information from within data-block
information information has
been extracted from
the data-block must
hold it in short term
memory until it can
be dumped
3.6 Submit Submit the answer Piece of information from within data-block,
answer location of data-link interface, submission
feedback
3.6.1 Click in text | Click inside the Position of data-link text box, feedback of click
box data-link text box
3.6.2 Change to Move hand from Location of the required keyboard keys
keyboard mouse to keyboard

or use other hand
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3.63 Type Type piece of Piece of information from within data-block
response information about
flight inside data-
link text box
364 Change to Move hand from Location of mouse, location of cursor
mouse and keyboard to mouse
move cursor | the same hand was
used to type
365 Report Once the cursor position, report button location, click
response information has feedback
been typed inside
the text box, it must
be reported by
clicking on the
report button
4 Confirm Confirm that a Knowledge of alert meaning, attentional
alert yellow dot beside (conscious) capture of presence of alert, cursor
each data-block has position, check confirm button location
been seen by
clicking a button
4.1* Scan display | Scan eyes aboutthe | Knowledge of alert meaning, attentional
(version 4) display in order to (conscious) capture of presence of alert
perceive yellow dot
representing alert.
4.1.1 Attentional Conscious capture Alert status (on/off)
capture of
alert
42 Press check | Move cursor Position of check confirm button, position of
confirm towards check cursor
button confirm button
421 Confirm After pressing the Alert status (on/off)
alert button, ensure that
disappears the alert has
disappeared from
the data-block




Appendix B: Cognitive Interaction
Algorithm Functions and Charts

This appendix contains the remaining cognitive interaction algorithm functions
and charts that are not included in Chapter 3. Functions described in Chapter 3 are not

described again and only the algorithms are shown.

selectAC

The first function presented in this appendix is the selectAC function which
chooses and aircraft based on a certain priority. The cognitive task analysis showed that
priority is based simply on the distance to the exit location. The CIA function for
selecting an aircraft is shown below. This function returns the next aircraft that is to be

commanded.

function prox = selectAC
prox = 1
for n = l:nac
if ac(prox).pos >= ac(n).pos
for i = l:length(complete)
if n ~= complete (i)
prox = n
end
end

. end

. end

=0 0~ o s W R

oo

The operator selects an aircraft based on proximity to the exit, but also one that
has not been commanded previously. This algorithm assumes that the operators have
complete recollection of the aircraft which have already been commanded. In reality this
is not the case and is one of the reasons why controllers annotate and update flight strips
as they go about their ATC task. It is also assumed that the scan pattern for this function
begins by fixating upon the exit and then moving the eyes to the nearest aircraft, such that

the effect of the number of aircraft is minimal.

command_alt, command_spd
The functions for commanding altitude and speed are similar to the function for

commanding heading that was presented in Chapter 3. The charts for these two functions
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are shown in Figures Bl and B2 and show what other functions are called and how many

times. The algorithms follow the charts

1% command_alt 4x
' .
type move_eyes_to ! move_cursor_to clickbutton
read

Figure B1. CIA functions called by altitude command

1x command_spd 4%
2xﬁ—m_——4x‘i
: : 1x G R D
type move_eyes fo move_cursor_to clickbutton
read

Figure B2. CIA functions called by speed command

1. function command alt (p)

2. move_eyes_ to(cursor.xy)

3. move_cursor_to(ac(p).symbol.xy)
4. clickbutton

5. ac(p).exit = read(ac(p) .exit)
6. move_eyes to(chart.xy)

7. if ac(p).exit == Z1

8. altrequired = 280;

9. elseif ac(p).exit == 22

10. altrequired = 290;

11. elseif ac(p).exit == Z3

12. altrequired = 350;

13. elseif ac(p).exit == 24

14. altrequired = 260;

15. end

16. move_cursor_ to(ctrpanel.radio2.xy)
17. clickbutton

18. move_cursor_to(ctreditbox.xy)
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19. clickbutton

20. type(altrequired)

21. move_cursor_to(cmndbutton.xy)
22. clickbutton

1 function command_spd(p)

2. move_eyes_to(cursor.xy)

3 move_cursor to(ac(p) .symbol.xy)
4. clickbutton

5. ac(p).exit = read(ac(p).exit)

6. move_eyes_to(chart.xy)

5

8

if ac(p).exit == Z1

. spdrequired = 42;
9. elseif ac(p).exit == 22
10. spdrequired = 49;
11. elseif ac(p).exit == Z3
12. spdrequired = 48;
13. elseif ac(p).exit == 24
14. spdrequired = 41;
15. end

16. move_cursor_to(ctrpanel.radio3.xy)
17. clickbutton

18. move_cursor_to(ctreditbox.xy)

19. clickbutton

20. type (spdrequired)

21. move_cursor_ to(cmndbutton.xy)

22. clickbutton

move_hand_to, move_eyes_to, move_cursor_to

1. function move_hand to(xyz)
delta = hand.xyz - xyz
3. motor (delta)

N

1. function move_eyes_to(xy)
2. delta = fix.xy - xy

3. motor(delta)

1. function move cursor to(xy)

2. move hand to(K*xy)
3. move_eyes_to (xy)

type, clickbutton, press
The chart showing the calls by the fype function is shown in Figure B3 followed
by the simple algorithm.

type

2x 4x

move_hand._to ~ press.

Figure B3. CIA functions called by the type function
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1. function type(txt)

2. move_hand_to (keyboard.xyz)
3. 1f edit ~= []

4. press(bkspace)

5. end

6. for i=length(txt)

7. press(txt(i))

8. end

9. move hand to(mouse.xyz)

1. function clickbutton

2. motor (finger down)

1. function press (key)
2. motor (key.xyz)

find_flight_high

function targetpos = find flight high(fl_no)
temp = 0;

while temp ~=target

j=1

move_eyes_to(ac(j).xy)

temp = read(ac(j).£flno)
j=2

move eyes_to(ac(j).xy)

temp = read(ac(j).£flno)
10. j=3

11. move eyes tof{ac{j).xy)

12. temp = read(ac(j).flno)
13. j=4

14. move_eyes_to(ac(j) .xy)

15. temp = read(ac(j).flno)
16. j=5

17. move_eyes_to(ac(j) -xy)

18. temp = read(ac(j).flno)
19. j=6

20. move_eyes_to(ac(j) .xy)

21. temp = read(ac(j).flno)
22. j=17

23. move_eyes_to(ac(j).xy)

24. temp = read(ac(j).flno)
25. j=8

26. move eyes to(ac(j).xy)

27. temp = read(ac(j).£flno)
28. j=9

29. move_eyes_to(ac(j) .xy)

30. temp = read(ac(j).flno)
31. j=10

32. move_eyes_to(ac(j) .xy)

33. temp = read(ac(j) .£flno)
34. j=11

35. move_eyes tof{ac(j).xy)

36. temp = read(ac(j).flno)
37. end

38. targetpos = ac(j).xy

W doy bWl
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findinDB3 X

The functions below describe the algorithmic representation of the extraction

processes for each line (X) of the three line data-block

WO s W HWoo o Wi H oo U bWl

HEPWOWo-Jaus whe

o

function item = f£indinDB3_2(j,info)
if info == alt

item = read(ac(j).alt)

elseif info == spd

item = read(ac(j).spd)

elseif info == dest

item = read(ac(j) .dest)

else

item = read(ac(j).type)

. end

function item = findinDB3 3(j, info)
if info == alt

item = read(ac(j).alt)

elseif info == spd

item = read(ac(j).spd)

elseif info == dest

item = read(ac(j) .dest)

else

item = read(ac(j).type)

. end

function item = findinDB3_4(j,info)
move eyes_to(cursor.xy)

move cursor_ to(ac(j).downarrows.xy)
clickbutton

if info == CID

item = read(ac(j).CID)
else

item = read{ac(j).origin)
end

function item = findinDB3_5(j, info)
move eyes_to(cursor.xy)
move_cursor_to(ac(j).downarrows.xy)
clickbutton

move cursor_to(ac(j).downarrows.xy)
clickbutton

if info == pax
item = read(ac(j) .pax)
else

. item = read(ac(j) .bag)
. end

findinDB4_X

The functions below describe the algorithmic representation of the extraction

processes for each line (X) of the four line data-block

~ oUW

function item = findinDB4 2 (j, info)
if info == alt
item = read{ac(j).alt)

elseif info == spd
item = read(ac(j) .spd)
elseif info == dest

item = read{ac(j) .dest)

137



8. elseif info == actype
9. item = read(ac(j).type)

10. elseif info == CID

11. item = read(ac(j).CID)
12. else

13. item = read(ac(j) .dest)
14. end

1 function item = findinDB4_3(j, info)
2 if info == alt

3 item = read(ac(j).alt)
4, elseif info == spd

5. item = read(ac(j) .spd)
6 elseif info == dest

7 item = read(ac(j) .dest)
8 elseif info == actype
9. item = read(ac(j).type)
10. elseif info == CID

11. item = read(ac(j).CID)
12. else

13. item = read(ac(j) .dest)
14. end

1 function item = findinDB4_4 (j,info)
2 1f info == alt

3 item = read(ac(j).alt)
4. elseif info == spd

5. item = read(ac(j).spd)
6 elseif info == dest

7 item = read(ac(j) .dest)
8 elseif info == actype
9. item = read(ac(j).type)
10. elseif info == CID

11. item = read(ac(j).CID)
12. else

13. item = read(ac(]j) .dest)
14. end

1. function item = findinDB4_5 (j,info)
2. move_eyes_to(cursor.xy)
3. move_cursor_to(ac(j).downarrows.xy)
4. clickbutton

5. if info == pax

6. item = read(ac(j).pax)
1. else

8. item = read(ac(j) .bag)
9. end

findinDB5_X
The functions below describe the algorithmic representation of the extraction

processes for each line (X) of the five line data-block

function item = findinDB5 2(j,info)
if info == alt
item = read(ac(j).alt)
elseif info == spd
item = read(ac(j) .spd)
elseif info == dest
item = read(ac(j) .dest)
elseif info == actype
item = read(ac(j).type)
. elseif info == CID
. item = read(ac(j).CID)

HH O oo s W=

L = I
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. elseif info == dest

. item = read(ac(j) .dest)
. elseif info == pax

. item = read(ac(j) .pax)
. else

. item = read(ac(j).bag)
. end

. end

function item = findinDBS 3 (j, info)

if info == alt
item = read(ac(j).alt)
elseif info == spd
item = read(ac(j).spd)
elseif info == dest
item = read(ac(j).dest)
elseif info == actype
item = read(ac(j).type)
. elseif info == CID
. item = read(ac(j).CID)
. elseif info == dest
. item = read(ac(j) .dest)
. elseif info == pax
. item = read(ac(j) .pax)
. else
. item = read(ac(j) .bag)
. end
. end

function item = findinDB5_4(j,info)

if info == alt
item = read(ac(j).alt)
elseif info == spd
item = read(ac(j).spd)
elseif info == dest
item = read(ac(j) .dest)
elseif info == actype
item = read(ac(j).type)
. elseif info == CID
. item = read(ac(j).CID)
. elseif info == dest
. item = read(ac(j) .dest)
. elseif info == pax
. item = read(ac(j) .pax)
. else
. item = read(ac(j) .bag)
. end
. end

function item = findinDB5_5(j,info)

if info == alt
item = read(ac(j) -alt)
elseif info == spd
item = read(ac(j).spd)
elseif info == dest
item = read(ac(j).dest)
elseif info == actype
item = read(ac(j).type)
. elseif info == CID
. item = read(ac(j).CID)
. elseif info == dest
. item = read(ac(j) .dest)
. elseif info == pax
. item = read(ac(j) .pax)
. else
. item = read(ac(j) .bag)
. end
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19. end

scanpath_low, scanpath_high

The two “scanpath” functions describe the process of scanning between targets on
the display and their charts are shown in Figure B4. Both algorithms follow after the
chart.

scanpath_low scanpath_high

|

5x 11x

! !

mo\ire_e}ft’e;'o;__ﬁji move_eyes_to

Figure B4. CIA functions called by the scan path functions

function scanpath_low
move_eyes_to(ac(l) .xy)
move _eyes_to(ac(2).xy)
move_eyes_to(ac(3) .xy)
move_eyes_to(ac(4).xy
move_eyes_to(ac(5).xy

oW N

function scanpath_high
move_eyes_to(ac(l) .xy)
move_eyes_to(ac(2) .xy)
move_eyes_to(ac(3) .xy)
move_eyes_to(ac(4) .xy)
move_eyes_to(ac(5).xy)
move_eyes_to(ac(6) .xy)
move_eyes_to(ac(7) .xy)
9. move_ eyes_to(ac(8).xy)
10. move_eyes_to(ac(9) .xy)
11. move_eyes_to(ac(l0).xy)
12. move_eyes_to(ac(ll).xy)

W~ oUWk

The above CIA functions simply consist of a set of eye movements between the various
aircraft. It is assumed that a complete scan of all aircraft in the airspace occurs. This is
usually not the case but balances out as most scans are partial even though they occur

more frequently.

seedot
It is assumed that during each one of the previously described scans is when an
alert is detected beside an aircraft data-block. This is described by the seedot function

whose CIA is shown below.
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1. function d = seedot
2. if dot == 'on'
3. d=1
4. end
report

The report function is the description of clicking the Report button on the display.
The chart showing the functions called by report is shown in Figure B5 and is followed
by the algorithm

1x—————i—————1x—j
r
v

move_cursor._fo clickbutton

Figure B5. CIA functions called by the report function

1. function report

2. move_cursor_to(report.xy)

3. «clickbutton
In the above function the cursor is moved to the known location on the display which is
part of the human’s spatial map of the interface. The mouse button is then clicked

(clickbutton).

Base ClAs for configurations of representative example in Chapter 3

The charts and algorithm below are for the base CIA of each data-block
configuration for the representative task presented as an example in Section 3.4. The
three remaining charts are shown followed by a single generic algorithm. The specific
algorithms for each of the four variants are created by replacing the J in the findinDB

function calls, with the data-block type number (2-5).
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— submit

scanpath_high |«———ax
| 16x

¥ find_flight_low

seadot e ax 1o
Base Cognitive Interaction Algorithm |
(3 Lin a-Block) 1
report 4x: |
4x
10— 16x——
Y
———10% 4x
selectAC
il 10x X ;
7 | ———p findinDB3 2
command_hdg 10x ax 2
..» 5 new_question_info| i
command_alt i\ | ——»{ findinDB3_3
command_spd . findinDB3 4
k4

findinDB3_5

Figure B6. Structure of base CIA for the three-line data-block configuration. The numbers on the
lines indicate the number of times each CIA function is called from the base algorithm.

—» Submit
scanpath_high |€¢——————4x 1
X —»l find_flight low
seedot < 4 1§x
Base Cognitive Interaction Algorithm
(4 Line Data-Block) !
report ———dx 4
X
g 1 16x |
1, 10x | =
selectAC |
L 10x o : .
I—D- findinDB4_2
10x 4x
ne‘#__-quasﬁw_m —
o i L) ,; DB4._4
» findinDB4_5

Figure B7. Structure of base CIA for the four-line data-block configuration. The numbers on the
lines indicate the number of times each CIA function is called from the base algorithm.
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scanpath_high

seedot

- 4x

report

———4x

selectAC

Base Cognitive Interaction Algorithm

find_flight_low

(4 Line Data-Block)

ERESS ) PR

command_hdg

4x

new._question._info

command_alt

command_spd

——» findinDB5_2

L »l findinDB5 3

L »{ findinDB5_4

findinDB5_5

Figure B8. Structure of base CIA for the five-line data-block configuration. The numbers on the lines
indicate the number of times each CIA function is called from the base algorithm.

W oo 0o W

acl = selectAC
command_hdg (al)
command_alt (al)
command_spd (al)
ac2 = selectAC
command_hdg (a2)
command_alt (a2)
command_spd(a2)
ac3 = selectAC
command hdg (a3)
command_alt (a3)
command_spd (a3)
ac4 = selectAC
command_hdg (a4)
command_alt (a4)
command_spd (a4)
acS = selectAC
command_hdg (a5)
command_hdg (a5)
command_alt (a5)
command_ spd(a5)
acé = selectAC
command_hdg (a6é)
command_alt (a6)
command_spd (a6)
ac7 = selectAC
command_hdg(a7)
command alt(a7v)
command spd(a7)
ac8 = selectAC
command_hdg (a8)
command_alt(a8)
command_spd (a8)
ac9 = selectAC
command_hdg(a%)
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command_alt (a9)

command_spd (a9)

acl0 = selectAC

command_hdg (al0)

command_alt (al0)

command_spd (al0)

gl = new_question_info

targetAC = find flight high(gql (1))
ans = findinDBJ_5(targetAC,ql(2))
submit (ans)

q2 = new_question_info

targetAC = find flight high(g2(1))
ans = findinDBJ 3 (targetAC,q2(2))
submit (ans)

g3 = new_question_info

targetAC = find flight high(gq3(1))
ans = findinDBJ_2 (targetAC,q3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight high (g4 (1))
ans = findinDBJ_ 3 (targetAC,qd(2))
submit (ans)

g5 = new_question_info

targetAC = find flight high(g5(1))
ans = findinDBJ_2 (targetAC,g5(2))
submit (ans)

g6 = new_question_info

targetAC = find flight high (g6 (1))
ans = findinDBJ 4 (targetAC,g6(2))
submit (ans)

q7 = new_question_info

targetAC = find flight high(g7(1))
ans = findinDBJ 4 (targetAC,q7(2))
submit (ans)

g8 = new_question_info

targetAC = find flight high(g8(1))
ans = findinDBJ_4 (targetAC,q8(2))
submit (ans)

q9 = new_question_ info

targetAC = find flight high(g9(1))
ans = findinDBJ_5 (targetAC,q9(2))
submit (ans)

ql0 = new question_info

targetAC = find_flight high(qlO (1))
ans = findinDBJ_ 5 (targetAC,ql0(2))
submit (ans)

gll = new_question_info

targetAC = find flight high(gll (1))
ans = findinDBJ_2 (targetAC,qll(2))
submit (ans)

ql2 = new_question_info

targetAC = find flight _high(gl2(1l))
ans = findinDBJ_2 (targetAC,ql2(2))
submit (ans)

gl3 = new_question_info

targetAC = find flight high(ql3(1))
ans = findinDBJ_ 3 (targetAC,ql3(2))
submit (ans)

gql4 = new_question_info

targetAC = find flight_high(ql4 (1))
ans = findinDBJ_4 (targetAC, ql4(2))
submit (ans)

gql5 = new_question_info

targetAC = find flight high(ql5(1))
ans = findinDBJ_S(targetAC,qlS{Z))
submit (ans)

glé = new_question_info

targetAC = find flight high(glé (1))
ans = findinDBJ 4 (targetAC,gqlé(2))
submit (ans)

scanpath_high



107.
108.
109.
110.
3
132,
113,
114.
115
116.
LT 7.
118.
118,
120.
1270
122
123+
124.
125.

dl = seedot
if dl == 1
report

end
scanpath_high
d2 = seedot
if d2 ==
report

end
scanpath_high
d3 = seedot
if d3 ==
report

end
scanpath_high
d4 = seedot
if d4 ==
report

end
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Appendix C: Base Cognitive Interaction
Algorithms for Experimental Scenarios

This appendix contains the fifteen base cognitive interaction algorithms that are
not included in Chapter 5, and which represent the other experimental scenarios. The
remaining charts are also included here. Refer to the legend provided in Table 5-1 for a

description of the scenario numbering scheme.

C.1 Scenario 111

The chart representing scenario 111 is shown in Figure C1. The algorithm follows

after the chart.

——»  submit
scanpath_low ¢ ix f
: 16x i :
T | find.fight_fow
i . iy
. | I
seedot L (‘;‘x
> | ‘
Cognitive Interaction Algorithm
| (Scenario 111) ]
report e | = % *
7x - ‘
v
o 5x 4}
selectAC %
; v Tx— 4x | e
: findinDB2._2
'\ command_hdg 7x g a| e 2
: Y new,_question_info | -
PO o — > findinDB2.3
ORmand sl L—»| findinDB2_4
»{ findinDB2_5

Figure C1. Scenario 111 algorithm function calls

acl = selectAC
command alt (al)
command_spd(al)
ac2 = selectAC
command_alt (a2)
command_spd (a2)
ac3 = selectAC
command_hdg (a3)
command_alt (a3)
0. command_spd (a3)

H oo JdoWUbs WM
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ac4d = selectAC

command_hdg(ad)

command_alt(ad)

command_spd(ad)

ac5 = selectAC

command_hdg (a5)

command_alt (a5)

command_spd(a5)

ach = selectAC

command_alt (a6)

command_spd (a6)

ac7 = selectAC

command_hdg (a7)

command_alt (a7)

command_spd (a7)

gl = new_question info

targetAC = find flight low(gl (1))

ans = findinDB2_2 (targetAC,ql(2))

submit (ans)

g2 = new_question_info

targetAC = find flight low(g2(1l))

ans = findinDB2_ 5 (targetAC,g2(2))

submit (ans)

g3 = new_question_info

targetAC = find_flight low(g3(1l})

ans = findinDB2_ 3 (targetAC,g3(2))

submit (ans)

g4 = new_question_info

targetAC = find flight low (g4 (1))

ans = findinDB2_ 3 (targetAC,g4(2))

submit (ans)

g5 = new_question_info

targetAC = find flight low(g5(1))

ans = findinDBZ2 4 (targetAC,g5(2))

submit (ans)

g6 = new _question_info

targetAC = find flight low(g6(1l))

ans = findinDB2_4 (targetAC,g6(2))

submit (ans)

q7 = new_question_info

targetAC = find flight low(g7(1l))

ans = findinDB2_ 2 (targetAC,g7(2))

submit (ans)

g8 = new_question_info

targetAC = find_flight low(g8(1))

ans = findinDB2 5 (targetAC,g8(2))

submit (ans)

g9 = new_question_info

targetAC = find flight low(g9(l))

ans = findinDB2_ 3 (targetAC,q9(2))

submit (ans)

ql0 = new_question_info

targetAC = find flight_low(qlO (1))
ans = findinDB2_ 5 (targetAC,ql0(2))
submit (ans)

qll = new_question_info

targetAC = find flight low(gqll (1))
ans = findinDB2_ 2 (targetAC,qll (2))
submit (ans)

ql2 = new_question_info

targetAC = find _flight low(gl2 (1))
ans = findinDB2_4(targetAC,ql2(2))
submit (ans)

gql3 = new_question_info

targetAC = find flight low(gl3 (1))
ans = findinDB2_ 2 (targetAC,ql3(2))
submit (ans)

gl4 = new_question_info

targetAC = find flight low(gl4 (1))
ans = findinDB2 3 (targetAC,ql4(2))
submit (ans)



gl5 = new_question_info

targetAC = find_flight low(ql5(1))
ans = findinDB2_4(targetAC,ql5(2))
submit (ans)

qlé = new question_info

targetAC = find flight low(qlé({l))
ans = findinDB2_S5(targetAC,qlé(2))
submit (ans)

scanpath_low

dl = seedot

if dl ==

report

end

scanpath_low

d2 = seedot

if d2 ==

report

end

scanpath_low

d3 = seedot

if d3 ==

report

end

scanpath_low

d4 = seedot

if ‘'dg ==

report

end

C.2 Scenario 112

The algorithm (annotated) and chart for this scenario are presented in Chapter 5.
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C.3 Scenario 121

The chart representing scenario 121 is shown in Figure C2. The algorithm follows

after the chart.

> submit

scanpath_low |¢——— 16x : ¥
1 ————» find_flight_low
i
16
seedot 4 ‘x
Cognitive Interaction Algorithm
(Scenario 121) 16x
report e 4x
|
|
ks i 3x
selectAC |
2x
; findinDB2._2
command_hdg 7% 1% : —

- new_question_info i

command_alt % findinDB2._3
|

command_spd | findinDB2 4
»{ findinDB2_5

Figure C2. Scenario 121 algorithm function calls

1. acl = selectAC
2 command_alt (al)
3. command_spd(al)
4. ac2 = selectAC
5 command_hdg (a2)
6. command_alt (a2)
T3 command_spd (a2)
8 ac3 = selectAC
9, command_alt (a3)
10. command_ spd (a3)
11. acd4 = selectAC
12. command_hdg (a4)
13. command_alt (a4)
14. command_spd (a4)
15, ac5 = selectAC
16. command_hdg (a$%)
17, command alt (a5)
18. command_spd (a5)
19, acé = selectAC
20. command_alt (a6)
23 command_spd (a6)
22. ac7 = selectAC
23. command_hdg (a7)
24. command_alt (a7)
25. command_spd (a7)
26. gl = new_question_info
27 targetAC = find flight low(gql(1l))
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ans = findinDB2_2 (targetAC,ql(2))

submit (ans)

g2 = new_question_info

targetAC = find flight low(g2(1))

ans = findinDB2_ 3 (targetAC,q2(2))

submit (ans)

g3 = new_question_info

targetAC = find flight_ low(g3(1l))

ans = findinDB2_2(targetAC,g3(2))

submit (ans)

g4 = new_question_info

targetAC = find flight low(g4(1l))

ans = findinDB2 2 (targetAC,q4(2))

submit (ans)

g5 = new_question_info

targetAC = find flight_low(g5(1))

ans = findinDB2_3(targetAC,g5(2))

submit (ans)

g6 = new_question_info

targetAC = find flight low(g6(1))

ans = findinDB2 2 (targetAC,g6(2))

submit (ans)

q7 = new_question_info

targetAC = find flight low(q7(1))

ans = findinDB2 2 (targetAC,qg7(2))

submit (ans)

g8 = new_gquestion_info

targetAC = find flight low(g8 (1))

ans = findinDB2_2 (targetAC,q8(2))

submit (ans)

q9 = new_question_info

targetAC = find flight_low(g9(l))

ans = findinDB2_ 4 (targetAC,g9(2))

submit (ans)

ql0 = new_question_info

targetAC = find flight low(gl0(1))
ans = findinDB2 2 (targetAC,ql0(2))
submit (ans)

qll = new_question_info

targetAC = find flight low(gqll (1))
ans = findinDB2_ 2 (targetAC,qll(2))
submit (ans)

gql2 = new_question_info

targetAC = find flight low(ql2(1))
ans = findinDB2_ 4 (targetAC,ql2(2))
submit (ans)

ql3 = new_question_info

targetAC = find flight low(gl3 (1))
ans = findinDB2_ 5 (targetAC,ql3(2))
submit (ans)

qld = new_question_info

targetAC = find flight low(gl4 (1))
ans = findinDB2_3(targetAC,ql4(2))
submit (ans)

ql5 = new_question_info

targetAC = find flight_ low(ql5(1))
ans = findinDB2_2(targetAC,ql5(2))
submit (ans)

qlé = new_question_info

targetAC = find flight_low(gl6(l))
ans = findinDB2 2 (targetAC,ql6(2))
submit (ans)

scanpath low

dl = seedot

if d1 ==

report

end

scanpath_low

d2 = seedot

if d2 ==

report



after the chart.

99,

100.
101,
102.
103.
104.
105.
106.
107.
108.
109.

end
scanpath_low

d3 =

1f

seedot

d3

report
end
scanpath low

d4

xE

= seedot
d4

report
end

C.4 Scenario 122

The chart representing scenario 122 is shown in Figure C3. The algorithm follows

7 —P submit
amemLh@h 444444441 {
- 4x 16x ot
[*| find_fight_high
seedot ¢ 4x: 16x : il
Cognitive Interaction Algorithm
fs’port l4——— —4x (Scenario 122) ﬂIJx
L 12x 16x 3x
i Bx |
10x X
i ﬂd_ﬂdg 3____12x 1. W
— new. question_info
command_alt Gl
command_spd

Figure C3. Scenario 122 algorithm function calls
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acl = selectAC
command_alt(al)
command_spd(al)
ac2 = selectAC
command_alt(a2)
command_spd(a2)
ac3 = selectAC
command_alt(a3)
command spd(a3)
ac4 = selectAC
command_hdg(a4)
command_alt (a4)
command_spd(a4)
acb = selectAC
command_hdg(a5)




command_alt (a5)

command_spd (a5)

act = selectAC

command_hdg (a6)

command_spd (a6)

ac7 = selectAC

command_hdg (a7)

command_alt (a7)

command_spd(a7)

acB8 = selectAC

command_alt (a8)

command_spd (a8)

ac9 = selectAC

command_alt (a9)

command_spd (a9)

acl0 = selectAC

command_hdg (al0)

command_alt(al0)

command_spd(al0)

acll = selectAC

command_alt(all)

command_spd(all)

acl2 = selectAC

command_hdg (al2)

command_spd(al2)

ql = new_question_info

targetAC = find flight high(gl (1))
ans = findinDB2_ 3 (targetAC,ql(2))
submit (ans)

g2 = new_gquestion_info

targetAC = find_flight high(gq2 (1))
ans = findinDB2_ 2 (targetAC,q2(2))
submit (ans)

g3 = new_question_info

targetAC = find flight high(g3 (1))
ans = findinDB2 2 (targetAC,g3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight high(qg4 (1))
ans = findinDB2_2(targetAC,q4(2))
submit (ans)

g5 = new_question_info

targetAC = find_flight_high(g5(1))
ans = findinDB2_ 2 (targetAC,g5(2))
submit (ans)

g6 = new_question_info

targetAC = find_ flight high(g6 (1))
ans = findinDB2_3(targetAC,g6(2))
submit (ans)

g7 = new_question_info

targetAC = find flight_ high(g7(1))
ans = findinDB2_2(targetAC,q7(2))
submit (ans)

g8 = new_question_info

targetAC = find flight high(g8 (1))
ans = findinDB2 2 (targetAC,qg8(2))
submit (ans)

g9 = new_question_info

targetAC = find flight high(gq9(1))
ans = findinDB2_ 2 (targetAC,q9(2))
submit (ans)

ql0 = new_question_info

targetAC = find flight high(ql0(1))
ans = findinDBZ_4(targetAC,qu(2])
submit (ans)

qll = new_question_info

targetAC = find_flight high(gqll(1l})
ans = findinDB2_ 2 (targetAC,qll(2))
submit (ans)

ql2 = new_question_info

targetAC = find flight high(gl2(1l))
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ans = findinDB2 4 (targetAC,ql2(2))

submit (ans)

ql3 = new_question_info

targetAC = find flight_high(ql3(1))
ans = findinDB2_5 (targetAC,ql3(2))

submit (ans)

ql4 = new_gquestion_info

targetAC = find flight high(ql4(1))
ans = findinDB2 2 (targetAC,ql4(2))

submit (ans)

qlS = new_question info

targetAC = find_flight high(gl5(1))
ans = findinDB2 2 (targetAC,ql5(2))

submit (ans)

qlé = new_question_info

targetAC = find flight high(glé(1))
ans = findinDB2_ 3 (targetAC,ql6(2))

submit (ans)

scanpath_high

dl = seedot

if dl == 1

report

end

scanpath_high

d2 = seedot

if d2 ==

report

end

scanpath_high

d3 = seedot

if d3 == 1

report

end

scanpath_high

d4 = seedot

if d4 ==

report

end



C.5 Scenario 211

The chart representing scenario 211 is shown in Figure C4. The algorithm follows

after the chart.

scanpath_low 4 | -
. 4x * ——»{ find_flight_low
J 1(:5:(
seedot —————4x !
i Cognitive Interaction Algorithm
(Scenario 211) 4‘x
report = 4x !
h 4 4:)(
selectAC -
4x
i findinDB3_2
command_hdg - 4x
. 4 ! mwtmmﬂhn}db {
command_alf | | i “—»{ findinDB3_3
v
command_spd | findinDB3_4
L»| findinDB3_5

Figure C4. Scenario 211 algorithm function calls

1. acl = selectAC

2. command_alt(al)

3. command_spd(al)

4. ac2 = selectAC

5. command_alt(a2)

6. command_spd(a2)

7. ac3 = selectAC

8. command_hdg(a3)

9. command_alt(a3)

10. command_spd(a3)

11, ac4 = selectAC

12 command_hdg(a4)

13, command_alt(a4)

14. command_spd(a4)

15. ac5 = selectAC

l6. command_hdg (a%)

17 command alt (a5)

18. command_spd(a5)

19 ach = selectAC

20. command_alt (a6)

21 command_spd(a6)

22. ac7 = selectAC

23 command_hdg(a7)

24. command_alt(a7)

25:. command_spd(a7)

26. ql = new_question_info
275 targetAC = find flight low(gl(l))
28. ans = findinDB3_2(targetAC, gl (2))
29. submit (ans)
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g2 = new_question_info

targetAC = find flight low(g2 (1))

ans = findinDB3_5(targetAC,q2(2))

submit (ans)

g3 = new_question_info

targetAC = find flight low(g3(1l))

ans = findinDB3_3(targetAC,g3(2))

submit (ans)

g4 = new_question_info

targetAC = find flight low(g4 (1))

ans = findinDB3_ 3 (targetAC,qd(2))

submit (ans)

g5 = new_question_info

targetAC = find flight low(g5(1))

ans = findinDB3_4(targetAC,q5(2))

submit (ans)

g6 = new_question_info

targetAC = find flight low(g6(l))

ans = findinDB3_4(targetAC,g6(2))

submit (ans)

q7 = new_question_info

targetAC = find flight_low(g7(1l))

ans = findinDB3_2(targetAC,q7(2))

submit (ans)

g8 = new_question_info

targetAC = find_flight low(g8(1l))

ans = f£indinDB3_5 (targetAC,q8(2))

submit (ans)

q9 = new_question_info

targetAC = find flight low(g9(1l))

ans = findinDB3 3 (targetAC,g%(2))

submit (ans)

ql0 = new_question_info

targetAC = find flight low(gl0(1))
ans = findinDB3 5(targetAC,ql0(2))
submit (ans)

gqll = new_guestion_info

targetAC = find flight low(qll (1))
ans = findinDB3 2 (targetAC,qll(2))
submit (ans)

gql2 = new_question_info

targetAC = find flight low(gl2(1l))
ans = findinDB3 4 (targetAC,ql2(2))
submit (ans)

gql3 = new_question_info

targetAC = find flight low(gl3(1l))
ans = findinDB3 2 (targetAC,ql3(2))
submit (ans)

ql4 = new question info

targetAC = find flight low(gl4(l))
ans = findinDB3_3(targetAC,ql4(2))
submit (ans)

gl5 = new_question_info

targetAC = find flight low(gl5(1l))
ans = findinDB3 4 (targetAC,ql5(2))
submit (ans)

qlé = new_question_info

targetAC = find flight low(glé6(l))
ans = findinDB3 5(targetAC,qlé(2))
submit (ans)

scanpath_low

dl = seedot

if dl ==

report

end

scanpath_low

d2 = seedot

if d2 ==

report

end

scanpath_low



101.
102.
103.
104.
105.
106.
107.
108.
109

d3 = seedot
if d3 == 1
report

end
scanpath_low
d4 = seedot
1f d4 ==
report

end

C.6 Scenario 212

The chart representing scenario 212 is shown in Figure C5. The algorithm follows

after the chart.

seedot

report

[ 4x;

Cognitive Interaction Algorithm

(Scenario 212)

submit
16x a :
i———————b?ﬁmlﬂ@thmh
16x
!
ax
L — 4x
A 4 4x
new_quesﬁwLﬁ#b

Figure C5. Scenario 212 algorithm function calls
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acl = selectAC
command_alt(al)
command_spd(al)
ac2 = selectAC
command_hdg(a2)
command_alt(a2)
command_spd(a2)
ac3 = selectAC
command alt(a3)
command_spd(a3)
acqd = selectAC
command_alt (ad)
command_spd(a4)
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ach5 = selectAC

command hdg (a5)

command _alt (a5)

command_spd(a5)

acé = selectAC

command_hdg (a6)

command_alt (a6)

command_spd(a6)

ac7 = selectAC

command_hdg(a7)

command_alt (a7)

command spd(a7)

acB = selectAC

command_hdg(a8)

command_alt(a8)

command_spd (a8)

ac9 = selectAC

command_alt (a9)

command spd(a9)

acl0 = selectAC

command_hdg(al0)

command_alt(al0)

command_spd(al0)

acll = selectAC

command_alt (all)

command_spd(all)

acl2 = selectAC

command_alt (al2)

command_hdg(al2)

command spd(al2)

gl = new_question_info

targetAC = find flight high(gql (1))
ans = findinDB3_5(targetAC,ql(2))
submit (ans)

g2 = new_question_info

targetAC = find_flight_high(q2 (1))
ans = findinDB3_3(targetAC,qg2(2))
submit (ans)

g3 = new_question_info

targetAC = find flight_high(gq3(1))
ans = findinDB3 2 (targetAC,q3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight high (g4 (1))
ans = findinDB3_3(targetAC,q4(2))
submit (ans)

g5 = new_question_info

targetAC = find flight _high(g5(1))
ans = findinDB3_2 (targetAC,q5(2))
submit (ans)

g6 = new_question_info

targetAC = find flight_high(q6(1l))
ans = findinDB3_4 (targetAC,q6(2))
submit (ans)

q7 = new question_info

targetAC = find flight high(g7(1))
ans = findinDB3_4(targetAC,q7(2))
submit (ans)

q8 = new_gquestion_info

targetAC = find flight high(qg8(1))
ans = findinDB3_4(targetAC,qg8(2))
submit (ans)

q9 = new question_info

targetAC = find_flight_high(q%(1))
ans = findinDB3_5 (targetAC, q%(2))
submit (ans)

ql0 = new_question_info

targetAC = find flight_high(ql0(1))
ans = findinDB3 5(targetAC,ql0(2))
submit (ans)

gqll = new_question_info



117.
118.
119.
120.
121
122.
123
124.
125
126
127.

targetAC = find_ flight high(gqll (1))
ans = findinDB3_ 2 (targetAC,qll(2))

submit (ans)

ql2 = new_guestion_info

targetAC = find flight_high(gl2(1))
ans = findinDB3_2 (targetAC,ql2(2))

submit (ans)

ql3 = new_question_info

targetAC = find flight high(gql3(1))
ans = findinDB3_3(targetAC,ql3(2))

submit (ans)

ql4 = new_question_info

targetAC = find flight_high(ql4(1))
ans = findinDB3 4 (targetAC,qld(2))

submit (ans)

gql5 = new question_info

targetAC = find flight high(gql5(1))
ans = findinDB3_5 (targetAC,gl5(2))

submit (ans)

qlé = new_question_info

targetAC = find flight_high(qlé6(1))
ans = findinDB3_ 4 (targetAC,qlé6(2))

submit (ans)

scanpath_high

dl = seedot

if dl ==

report

end

scanpath _high

d2 = seedot

if d2 == 1

report

end

scanpath_high

d3 = seedot

if d3 ==

report

end

scanpath_high

d4 = seedot

if d4 ==

report

end
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C.7 Scenario 221

The chart representing scenario 221 is shown in Figure C6. The algorithm follows

after the chart.
[44444, submit
scanpath_low 1 7 16x - .
= "' X St :
_ i find_flight_low
T ] 16x :
seadot - ———dx
: N 0q O A O 1‘
report 4x: | e 10x
vy Tx— 2—16" 3x
4x |
selectAC |
; — T | 2 :
! | Ll findinDB3_2
command_hdg | | A \ 1x e
Y new_question_info (I
command._alt - i findinDB3_3
command_spd L—»{ findinDB3_4
L»| findinDB3_5

Figure C6. Scenario 221 algorithm function calls

1. acl = selectAC
2 command_alt (al)
3 command spd(al)
q. ac2 = selectAC
5. command_hdg(a2)
6. command_alt(a2)
7. command_spd(a2)
8. ac3 = selectAC
9. command_alt(a3)
10. command_spd(a3)
11. ac4d = selectAC
12. command_hdg (a4)
13. command_alt (a4)
14. command_spd(ad)
15. ach = selectAC
16. command_hdg (a5)
17, command alt (a5)
18. command_spd(a5)
19 ach = selectAC
20. command_alt(a6)
21. command_spd(a6)
22 ac7 = selectAC
23. command_hdg (a7)
24, command_alt (a7)
25. command_spd(a7)
26. ql = new_question_info
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targetAC = find flight low(gl(1l))

ans = findinDB3_2 (targetAC,ql (2))

submit (ans)

g2 = new_question_info

targetAC = find flight low(g2(1l))

ans = findinDB3_3(targetAC,q2(2))

submit (ans)

g3 = new_question_info

targetAC = find flight low(g3(1))

ans = f£indinDB3 2 (targetAC,q3(2))

submit (ans)

g4 = new_question_info

targetAC = find flight low(qg4 (1))

ans = findinDBS*Z(targetAC,q4(2))

submit (ans)

g5 = new_question_info

targetAC = find flight low(g5(1))

ans = findinDB3_3(targetAC,qS(Z})

submit (ans)

g6 = new_gquestion_info

targetAC = find_flight low(g6(1l))

ans = findinDB3_2(targetAC,g6(2))

submit (ans)

q7 = new_question_info

targetAC = find flight low(g7(1))

ans = findinDB3 2 (targetAC,q7(2))

submit (ans)

g8 = new_question_info

targetAC = find flight low(g8 (1))

ans = findinDB3 2 (targetAC,g8(2))

submit (ans)

g9 = new_question_info

targetAC = find flight low(g9(1))

ans = findinDB3_4 (targetAC,q9(2))

submit (ans)

ql0 = new_question_info

targetAC = find flight_ low(ql0 (1))
ans = findinDB3 2(targetAC,ql0(2))
submit (ans)

qll = new_question_info

targetAC = find flight low(gll(l))
ans = findinDB3_2{targetAC,qll(2))
submit (ans)

gl2 = new_gquestion_info

targetAC = find flight low(ql2(1))
ans = findinDB3 4 (targetAC,ql2(2))
submit (ans)

ql3 = new_question info

targetAC = find flight low(ql3(1l))
ans = findinDB3_5 (targetAC,ql3(2))
submit (ans)

gl4 = new_question_info

targetAC = find_flight_low(ql4 (1))
ans = findinDB3_3 (targetAC,ql4(2))
submit (ans)

gl5 = new_question_info

targetAC = find_flight_low(ql5 (1))
ans = findinDB3_2(targetAC,ql5(2))
submit (ans)

qlé = new_question_info

targetAC = find flight low(ql6(1))
ans = findinDB3_2(targetAC,ql6(2))
submit (ans)

scanpath_low

dl = seedot

if dl ==

report

end

scanpath_low

d2 = seedot

if d2 ==
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98. report

99. end

100. scanpath_ low
101. d3 = seedot
102. if d3 ==
103. report

104. end

105. scanpath_low
106. d4 = seedot
107. if d4 ==
108. report

109. end

C.8 Scenario 222

The chart representing scenario 222 is shown in Figure C7. The algorithm follows

after the chart.

scanpath_high |« — 4x 16x
———— i find_flight_high
15x
seedot I+ 4 |
Cognitive Interaction Algorithm ] ‘
(Scenario 222) 1(‘}
report -t 4 X
¥ 12 j-16X 3x
: 6x |
selectAC
5 10x— 2
- » findinDB3_2
command_hdg 2% v i«
: ) new_question_info ;
_command._ . findinDB3_3
“»{ findinDB3 5

Figure C7. Scenario 222 algorithm function calls

1. acl = selectAC
2 command_alt(al)
3: command_spd(al)
4. ac2 = selectAC
5. command_alt(a2)
6. command_spd(a2)
= ac3 = selectAC
8. command alt(a3)
9. command spd(a3)
10. ac4 = selectAC
11. command_hdg (a4)
12 command_alt(a4)
13. command_spd (a4)
14. ach = selectAC
15 command hdg(a5)
l6. command_alt(ab)
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command_spd(a5)

act = selectAC

command_hdg (a6)

command_spd (a6

ac7 = selectAC

command hdg(a7)

command_alt (a7)

command_spd (a7)

ac8 = selectAC

command_alt (a8)

command_spd (a8)

ac9 = selectAC

command alt (a9)

command_spd (a9)

acl0 = selectAC

command_hdg(al0)

command_alt(al0)

command_spd(al0)

acll = selectAC

command_alt(all)

command_spd(all)

acl2 = selectAC

command_hdg(al2)

command_ spd(al2)

gl = new question info

targetAC = find flight high(ql (1))
ans = findinDB3_3(targetAC,ql(2))
submit (ans)

g2 = new_question_info

targetAC = find flight high(g2 (1))
ans = findinDB3 2 (targetAC,qg2(2))
submit (ans)

g3 = new_question_info

targetAC = find flight high(g3 (1))
ans = findinDB3 2(targetAC,g3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight high(g4 (1))
ans = findinDB3 2 (targetAC,qg4(2))
submit (ans)

g5 = new_question_info

targetAC = find flight high(g5(1))
ans = findinDB3 2 (targetAC,g5(2))
submit (ans)

g6 = new_gquestion_info

targetAC = find flight high(g6(1))
ans = findinDB3 3 (targetAC,q6(2))
submit (ans)

g7 = new_question_info

targetAC = find flight_high(q7(1))
ans = findinDB3 2 (targetAC,q7(2))
submit (ans)

g8 = new_question_info

targetAC = find_flight_high(g8(1))
ans = findinDB3 2 (targetAC,q8(2))
submit (ans)

g9 = new_gquestion_info

targetAC = find flight high(gq9(1))
ans = findinDB3 2 (targetAC,q9(2))
submit (ans)

ql0 = new_question_info

targetAC = find flight_high(gql0(1))
ans = findinDB3 4 (targetAC,ql0(2))
submit (ans)

gqll = new question info

targetAC = find flight high(qll(1))
ans = findinDB3 2(targetAC,qll(2))
submit (ans)

ql2 = new_question_info

targetAC = find flight high(ql2(1))
ans = findinDB3 4 (targetAC,ql2(2))
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124.

submit (ans)

gql3 = new_question_info

targetAC = find flight high(ql3(1))
ans = findinDB3 5(targetAC,ql3(2))
submit (ans) -

ql4 = new_question_info

targetAC = find flight _high(ql4 (1))
ans = findinDB3_2 (targetAC,ql4(2))
submit (ans)

gl5 = new_question_info

targetAC = find flight_high(gql5(1))
ans = findinDB3 2 (targetAC,ql5(2))
submit (ans)

qlé = new _question info

targetAC = find flight high(glé6(1))
ans = findinDB3 3 (targetAC,ql6(2))
submit (ans)

scanpath _high

dl = seedot

if dl ==

report

end

scanpath_high

d2 = seedot

if d2 ==

report

end

scanpath_high

d3 = seedot

if d3 ==

report

end

scanpath_high

d4 = seedot

if d4 ==

report

end



C.9 Scenario 311

The chart representing scenario 311 is shown in Figure C8. The algorithm follows

after the chart.
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| 16x
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Figure C8. Scenario 311 algorithm function calls

Tz acl = selectAC

2; command_alt(al)

3. command_spd (al)

4. ac2 = selectAC

B command alt (a2)

6. command_spd (a2)

7. ac3 = selectAC

8. command_hdg (a3)

9. command_alt(a3)

10. command_spd(a3)

11. acd = selectAC

12. command_hdg (a4)

13. command_alt (ad)

14. command_spd (a4)

15. acb = selectAC

16. command hdg(a5)

17. command_alt (a5)

18. command_spd(a5)

19. ac6 = selectAC

20. command_alt (a6)

21. command_spd(a6)

22. ac7 = selectAC

23 command_hdg(a7)

24. command_alt(a7)

25 command_spd(a7)

205 gl = new_question_info
27 . targetAC = find_flight low(gl(l))
28. ans = findinDB4 2 (targetAC,ql(2))
29. submit (ans)

30. g2 = new_question_info
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targetAC = find flight_low(g2(1l))
ans = findinDB4_5(targetAC,q2(2))
submit (ans)

g3 = new_question_info

targetAC = find flight low(g3 (1))
ans = findinDB4_3 (targetAC,q3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight low(g4 (1))
ans = findinDB4_3 (targetAC,q4(2))
submit (ans)

g5 = new_question_info

targetAC = find flight low(g5(1l))
ans = findinDB4_4 (targetAC,g5(2))
submit (ans)

g6 = new_question_info

targetAC = find flight_ low (g6 (1))
ans = findinDB4_4 (targetAC,g6(2))
submit (ans)

q7 = new_question_info

targetAC = find_ flight low(g7(1))
ans = findinDB4_2 (targetAC,q7(2))
submit (ans)

q8 = new question info

targetAC = find_flight_ low(g8(1))
ans = findinDB4_5 (targetAC,q8(2))
submit (ans)

g9 = new_question_info

targetAC = find flight low(g9(1l})
ans = findinDB4 3 (targetAC,q9%(2))
submit (ans)

ql0 = new question_info

targetAC = find flight_low(qlO (1))
ans = findinDB4 5 (targetAC,ql0(2))
submit (ans)

qll = new_question_info

targetAC = find flight_low(qll(l))
ans = findinDB4 2 (targetAC,qll(2))
submit (ans)

gl2 = new question info

targetAC = find flight low(ql2 (1))
ans = findinDB4_4 (targetAC,ql2(2))
submit (ans)

ql3 = new_question_info

targetAC = find_flight low(ql3(1))
ans = findinDB4_ 2 (targetAC,ql3(2))
submit (ans)

gql4 = new_question_info

targetAC = find flight low(ql4 (1))
ans = findinDB4_3 (targetAC,ql4(2))
submit (ans)

gql5 = new_question_info

targetAC = find flight_low(ql5(1))
ans = findinDB4 4 (targetAC,ql5(2))
submit (ans)

qlé = new_question_info

targetAC = find flight low(gl6(1))
ans = findinDB4_5 (targetAC,qlé(2))
submit (ans)

scanpath_low

dl = seedot

if dl ==

report

end

scanpath_low

d2 = seedot

if d2 ==

report

end

scanpath_low

d3 = seedot



102.
1033
104.
105.
106.
107.
108.
109,

C.10 Scenario 312

if d3 == 1
report

end
scanpath_low
d4 = seedot
if d4 ==
report

end

The chart representing scenario 312 is shown in Figure C9. The algorithm follows

after the chart.
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Figure C9. Scenario 312 algorithm function calls

W oo Wwhe

acl = selectAC
command_alt (al)
command_spd(al
ac2 = selectAC
command_hdg (a2)
command_alt (a2)
command_spd (a2)
ac3 = selectAC
command_alt (a3)
command_spd (a3)
acd4 = selectAC
command_alt (ad)
command_spd (a4)
acb = selectAC
command_hdg (a5)
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command_alt (ad)

command_spd (a5)

achb = selectAC

command_hdg(a6)

command_alt (a6)

command_spd(a6)

ac7 = selectAC

command_hdg(a7)

command_alt (a7)

command_spd(a7)

ac8 = selectAC

command_hdg (a8)

command_alt(a8)

command_spd (a8)

ac9 = selectAC

command_alt(a%)

command_spd(a%)

acl0 = selectAC

command hdg(al0)

command_alt(al0)

command_spd(al0)

acll = selectAC

command_alt (all)

command_ spd(all)

aclZ = selectAC

command_alt(al2)

command_hdg(al2)

command_spd(al2)

gl = new_question info

targetAC = find flight high(ql (1))
ans = findinDB4_5 (targetAC,ql(2))
submit (ans)

g2 = new_question_info

targetAC = find flight high(g2(1))
ans = findinDB4_3 (targetAC,q2(2))
submit (ans)

g3 = new_question_info

targetAC = find flight high(g3(1))
ans = findinDB4_2 (targetAC,g3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight high(qg4 (1))
ans = findinDB4_3 (targetAC,q4(2))
submit (ans)

g5 = new_question_info

targetAC = find flight high(g5(1))
ans = findinDB4 2 (targetAC,q5(2))
submit (ans)

q6 = new_question_info

targetAC = find flight high(g6(1))
ans = findinDB4_4 (targetAC,g6(2))
submit (ans)

q7 = new_question_info

targetAC = find flight_ high(qg7(1))
ans = findinDB4_ 4 (targetAC,q7(2))
submit (ans)

g8 = new_question_info

targetAC = find flight high(g8 (1))
ans = findinDB4 4 (targetAC,g8(2))
submit (ans)

99 = new_question_info

targetAC = find flight_high(g9(1))
ans = findinDB4_5 (targetAC,q9(2))
submit (ans)

ql0 = new_question_info

targetAC = find flight_high(ql0(1))
ans = findinDB4_5(targetAC,ql0(2))
submit (ans)

gqll = new_question_info

targetAC = find flight high(gll (1))
ans = findinDB4_2(targetAC,qll(2))



123
124.
125.
126.
127.

submit (ans)

gl2 = new _question_info

targetAC = find flight_high(gl2(1))
ans = findinDB4 2 (targetAC,ql2(2))

submit (ans)

gl3 = new_question_info

targetAC = find flight_high(ql3(1))
ans = findinDB4_3 (targetAC,ql3(2))

submit (ans)

qld4 = new_question_info

targetAC = find flight high(ql4 (1))
ans = findinDB4 4 (targetAC,qld(2))

submit (ans)

ql5 = new_question_info

targetAC = find flight_ high(gl5 (1))
ans = findinDB4_5 (targetAC,ql5(2))

submit (ans)

gql6 = new_question_info

targetAC = find flight_high(ql6(1l))
ans = findinDB4 4 (targetAC,glé6(2))

submit (ans)

scanpath_high

dl = seedot

if dl ==

report

end

scanpath_high

d2 = seedot

if d2 ==

report

end

scanpath_high

d3 = seedot

if d3 == 1

report

end

scanpath_high

d4 = seedot

if d4 ==

report

end
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C.11 Scenario 321

The chart representing scenario 321 is shown in Figure C10. The algorithm

follows after the chart.
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Figure C10. Scenario 321 algorithm function calls

L acl = selectAC

2 command_alt(al)

3 command_spd(al)

4. ac2 = selectAC

= command hdg(a2)

6. command alt(a2)

s command_spd(a2)

8. ac3 = selectAC

9. command alt (a3)

10. command_spd(a3)

11: acd = selectAC

12. command hdg(ad)

13. command_alt (ad)

14. command_spd(a4)

15. ac5 = selectAC

16. command_hdg(a5)

17. command_alt(a5)

18. command_spd(a5)

19 ach = selectAC

20. command _alt (a6)

21. command_spd(aé)

22. ac7 = selectAC

23 command_hdg (a7)

24.. command_alt(a?)

25:. command_spd(a7)

26. gl = new_question_info
27. targetAC = find_flight_low(ql (1))
28. ans = findinDB4 2 (targetAC,ql(2))
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submit (ans)

g2 = new_question_info

targetAC = find flight low(g2(1l))
ans = findinDB4 3 (targetAC,q2(2))
submit (ans)

g3 = new_question_info

targetAC = find flight low(g3(l))
ans = findinDB4_2(targetAC,q3(2))
submit (ans)

q4 = new_question_info

targetAC = find flight low(g4 (1))
ans = findinDB4 2 (targetAC,qg4(2))
submit (ans)

g5 = new_question_info

targetAC = find flight_ low(g5(1))
ans = findinDB4 3 (targetAC,q5(2))
submit (ans)

g6 = new_question_info

targetAC = find flight low(g6(1l))
ans = findinDB4 2 (targetAC,g6(2))
submit (ans)

g7 = new_question_info

targetAC = find flight low(g7(1))
ans = findinDB4_2(targetAC,q7(2))
submit (ans)

g8 = new_question info

targetAC = find flight low(g8(1))
ans = findinDB4_2(targetAC,g8(2))
submit (ans)

q9 = new_question_info

targetAC = find flight low(g%(1))
ans = findinDB4 4 (targetAC,q9(2))
submit (ans)

ql0 = new_question_info

targetAC = find flight low(ql0(1))
ans = findinDB4 2 (targetAC,ql0(2))
submit (ans)

qll = new_question_info

targetAC = find flight_low(qll (1))
ans = findinDB4 2 (targetAC,qll(2))
submit (ans)

ql2 = new_question_info

targetAC = find flight low(gl2(l))
ans = findinDB4 4 (targetAC,ql2(2))
submit (ans)

gl3 = new question_info

targetAC = find flight low(ql3(1))
ans = findinDB4_5(targetAC,ql3(2))
submit (ans)

ql4 = new_question_info

targetAC = find flight low(ql4(l))
ans = findinDB4 3 (targetAC,ql4(2))
submit (ans)

ql5 = new_question_info

targetAC = find flight low(gql5(l))
ans = findinDB4 2 (targetAC,ql5(2))
submit (ans)

glé = new_question_info

targetAC = find flight_ low(glé(1l))
ans = findinDB4 2 (targetAC,ql6(2))
submit (ans)

scanpath_low

dl = seedot

if dl1 ==

report

end

scanpath low

d2 = seedot

if d2 ==

report

end



100. scanpath_ low

101. d3 = seedot
102. if d3 == 1
103. report

104. end

105. scanpath_low
106. d4 = seedot
107. if d4 ==
108. report

109. end

C.12 Scenario 322

The chart representing scenario 322 is shown in Figure C11. The algorithm

follows after the chart.
> submit
“scanpath_high |« . 16x
: 5% find_fight_high
16x
dot < 4x— |
2
il | Cognitive Interaction Algorithm (
report (Scenario 322) 1ﬁx
3x
2x
| findinDB4_2
1x
|
! »| findinDB4_3
—w| findinDB4_4
L». findinDB4_5

Figure C11. Scenario 322 algorithm function calls

acl = selectAC
command_alt(al)
command_spd(al)
ac2 = selectAC
command_alt (a2)
command_spd(a2)
ac3 = selectAC
command alt(a3)
command_spd (a3)
10. acqd = selectAC
11. command_hdg(ad)
12. command_alt (ad)

O Joa s Wk
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command_spd (a4)

ac5 = selectAC

command_hdg (a5)

command_alt (a5)

command_spd (a5)

acé = selectAC

command_hdg (aé)

command_spd(aé)

ac7l = selectAC

command_hdg(a7)

command_alt(a7)

command_spd(a7l)

acB8 = selectAC

command alt(a8)

command_spd (a8)

ac9 = selectAC

command_alt(a9)

command_spd(a9)

acl0 = selectAC

command_hdg (al0)

command_alt (al0)

command spd(al0)

acll = selectAC

command_alt (all)

command spd(all)

acl2 = selectAC

command hdg(al2)

command_spd (al2)

ql = new_question_info

targetAC = find flight high(qgl (1))
ans = findinDB4_3(targetAC,ql(2))
submit (ans)

g2 = new_question_info

targetAC = find_flight high(qg2 (1))
ans = findinDB4 2 (targetAC,q2(2))
submit (ans)

q3 = new_question info

targetAC = find flight _high(g3(1))
ans = findinDB4 2 (targetAC,g3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight high(qg4 (1))
ans = findinDB4 2 (targetAC,g4(2))
submit (ans)

g5 = new_question_info

targetAC = find flight high{(g5(1))
ans = findinDB4_ 2 (targetAC,g5(2))
submit (ans)

gé = new_question_info

targetAC = find flight high(g6 (1))
ans = findinDB4_ 3 (targetAC,g6(2))
submit (ans)

q7 = new_question_info

targetAC = find flight high(g7(1))
ans = findinDB4_2 (targetAC,g7(2))
submit (ans)

g8 = new question info

targetAC = find flight high(g8(1))
ans = findinDB4_2 (targetAC,qg8(2))
submit (ans)

q2 = new_question_info

targetAC = find _flight_high(g9(l))
ans = findinDB4_2 (targetAC,q%(2))
submit (ans)

gql0 = new_question_info

targetAC = find flight high(gql0(1))
ans = findinDB4 4 (targetAC,ql0(2))
submit (ans)

qll = new_question_info

targetAC = find flight high(ql1(1))
ans = findinDB4_2 (targetAC,qll(2))
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submit (ans)

gl2 = new_question_info

targetAC = find flight_high(ql2(1))
ans = findinDB4_ 4 (targetAC,ql2(2))

submit (ans)

ql3 = new_question_info

targetAC = find flight_high(gql3(1))
ans = findinDB4_5(targetAC,ql3(2))

submit (ans)

ql4 = new_question_info

targetAC = find_ flight_high(qld4 (1))
ans = findinDB4 2 (targetAC,ql4(2))

submit (ans)

gl5 = new _question_info

targetAC = find flight_high(ql5(1))
ans = findinDB4_ 2 (targetAC,ql5(2))

submit (ans)

ql6é = new_gquestion_info

targetAC = find_flight _high(qlé (1))
ans = findinDB4_3(targetAC,qgl6(2))

submit (ans)

scanpath_high

dl = seedot

if dl == 1

report

end

scanpath_high

d2 = seedot

if d2 ==

report

end

scanpath high

d3 = seedot

1f d3 == 1

report

end

scanpath_high

d4 = seedot

if d4 ==

report

end



C.13 Scenario 411

The chart representing scenario 411 is shown in Figure C12. The algorithm

follows after the chart.

> submit
scanpath_low L — s
- 4x 16"| » find_fight low
16x s
seedot M 4x
_ : Cognitive Interaction Algorithm
report l‘— -— (Scenario 411) 4'><
I R £ 16x 4x
; —5x =
selectAC
& 7x: ax ¥
- findinDB5_2
; nd_hdg | F— 7x 4x
Y | new_question_info -
command_alt | - “—» findinDB5_3
h 4
command_spd L—»{ findinDB5_4

| findinDBS 5

Figure C12. Scenario 411 algorithm function calls

1. acl = selectAC

2. command_alt(al)

3. command_spd(al)

4. ac2 = selectAC

5. command_alt(a2)

6. command_spd (a2)

7. ac3 = selectAC

8. command_hdg (a3)

9. command_alt (a3)

10. command_spd (a3)

11. acd = selectAC

12. command_hdg (ad)

13. command_alt (a4)

14. command_spd (ad)

15. ach = selectAC

16. command_hdg (a5)

L7 command_alt (a5)

18. command_spd (a5)

19. acé = selectAC

20. command_alt (a6)

21. command_spd (a6)

221, ac7 = selectAC

23. command_hdg (a7)

24. command_alt (a7)

25.. command_spd(a7)

26. gl = new_question_info
27, targetAC = find_flight_low(gl(1l))
28. ans = findinDB5_ 2 (targetAC,gl(2))
29. submit (ans)

30. q2 = new_question_info
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targetAC = find_flight low(g2 (1))

ans = findinDBS 5(targetAC,qg2(2))

submit (ans) -

q3 = new_question_info

targetAC = find flight low(g3(l}))

ans = findinDB5 3 (targetAC,g3(2))

submit (ans)

g4 = new_question_info

targetAC = find flight_ low(g4(l))

ans = findinDBS5_3(targetAC,q4(2))

submit (ans)

g5 = new_question_info

targetAC = find flight low(g5(1))

ans = findinDB5 4 (targetAC,g5(2))

submit (ans)

g6 = new_question_info

targetAC = find flight low(g6(l))

ans = findinDB5_4 (targetAC,g6(2))

submit (ans)

g7 = new_question_info

targetAC = find flight low(g7(1l))

ans = findinDB5_2 (targetAC,q7(2)}

submit (ans)

g8 = new_question_info

targetAC = find flight_low(q8(1l))

ans = findinDB5 5 (targetAC,q8(2))

submit (ans)

q% = new_question_info

targetAC = find_flight_low(g9(1))

ans = findinDB5_3 (targetAC,gq9(2))

submit (ans)

ql0 = new_question_info

targetAC = find flight low(gl0(1))
ans = findinDB5_5(targetAC,ql0(2))
submit (ans)

qll = new_qguestion_info

targetAC = find_flight_ low(qll(l))
ans = findinDB5 2(targetAC,qll(2))
submit (ans)

ql2 = new_question_info

targetAC = find_flight low(gl2(l))
ans = findinDBS5 4 (targetAC,ql2(2))
submit (ans)

ql3 = new_question_info

targetAC = find flight_ low(gl3 (1))
ans = findinDB5_2 (targetAC,ql3(2))
submit (ans)

gld4 = new_question_info

targetAC = find flight low(gl4 (1))
ans = findinDB5_ 3 (targetAC,ql4(2))
submit (ans)

ql5 = new_question_info

targetAC = find flight low(qgl5 (1))
ans = findinDB5_ 4 (targetAC,ql5(2))
submit (ans)

qlé = new_question_info

targetAC = find flight_low(glé6(l))
ans = findinDB5 5 (targetAC,qlé(2))
submit (ans)

scanpath_low

dl = seedot

if dl ==

report

end

scanpath_low

d2 = seedot

if d2 ==

report

end

scanpath_low

d3 = seedot



102.
103.
104.
105+
106.
107,
108.
109.

C.14 Scenario 412

if d3 ==1
report

end
scanpath_low
d4 = seedot
if d4 == 1
report

end

The chart representing scenario 412 is shown in Figure C13. The algorithm

follows after the chart.

submit

scanpath_high 4————— 16x
4;’( r » find_flight_high
16x
seedot B —4x—| !
siEEr [ Cognitive Interaction Algorithm ‘
report — gy} (Scenario 412) 41)(
h J 12x 16x 4x
7x
selectAC
: 12x— 4x 7
! " findinDB5_2
command_hdg | | 12x Y h ax ;
— ¥ new_question_info :
command_alt - S ! findinDB5_3
command_spd »{ findinDB5_4
»| findinDBS.5

Figure C13. Scenario 412 algorithm function calls

W oo do b WM

acl = selectAC
command_alt (al)
command_spd (al)
ac2 = selectAC
command_hdg (a2)
command_alt (a2)
command_spd (a2)
ac3 = selectAC
command_alt (a3)
command_spd(a3)
acd = selectAC
command_alt(ad)
command_spd (ad)
ac5 = selectAC
command_hdg (a5)
command_alt (a5)
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command_spd(a5)

acé = selectAC

command_hdg(a6)

command_alt(a6)

command_spd(ab)

acl! = selectAC

command_hdg(a7)

command_alt (a7)

command_spd(a7)

acB = selectAC

command_hdg (a8)

command_alt (a8)

command_spd (a8)

ac9 = selectAC

command alt (a9)

command_spd (a9)

acl0 = selectAC

command_hdg(al0)

command_alt (al0)

command_spd (al0)

acll = selectAC

command_alt(all)

command_spd(all)

acl2 = selectAC

command_alt(al2)

command_hdg(al2)

command_spd(al2)

gl = new_question_info

targetAC = find_flight high(gl (1))
ans = findinDB5_5(targetAC,ql(2))
submit (ans)

g2 = new_question_info

targetAC = find flight high(gq2 (1))
ans = findinDB5_ 3 (targetAC,g2(2))
submit (ans)

g3 = new_question_info

targetAC = find flight_high(q3(1l))
ans = findinDB5 2 (targetAC,q3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight_high(qg4 (1))
ans = findinDB5_3(targetAC,g4(2))
submit (ans)

g5 = new_question_info

targetAC = find flight high(g5(1))
ans = findinDB5_ 2 (targetAC,g5(2))
submit (ans)

g6 = new_question_info

targetAC = find flight high (g6 (1))
ans = findinDB5_4 (targetAC,g6(2))
submit (ans)

q7 = new_question_info

targetAC = find flight_high (g7 (1))
ans = findinDB5_4 (targetAC,qg7(2))
submit (ans)

g8 = new_question_info

targetAC = find flight _high(qg8 (1))
ans = findinDB5 4 (targetAC,g8(2))
submit (ans)

q9 = new_question_info

targetAC = find_flight_high(g9(1))
ans = findinDB5_5 (targetAC,q9(2))
submit (ans)

ql0 = new_question_info

targetAC = find flight_high(ql0(1))
ans = findinDB5 5(targetAC,ql0(2))
submit (ans)

gll = new_guestion_info

targetAC = find_ flight_high(gll (1))
ans = findinDB5_ 2 (targetAC,qll(2))
submit (ans)
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gl2 = new_question_info

targetAC = find flight high(gl2(1))
ans = findinDB5 2 (targetAC,ql2(2))

submit (ans)

gql3 = new_question_info

targetAC = find flight high(gql3(1))
ans = findinDBS 3 (targetAC,ql3(2))

submit (ans)

ql4 = new_question_info

targetAC = find_flight_high(ql4 (1))
ans = findinDB5_4 (targetAC,qléd (2))

submit (ans)

ql5 = new_question_info

targetAC = find flight_high(gl5(1))
ans = findinDB5_5 (targetAC,ql5(2))

submit (ans)

glé = new_question_info

targetAC = find flight_high(qlé6(1l))
ans = findinDB5 4 (targetAC,qlé(2))

submit (ans)

scanpath_high

dl = seedot

if dl ==

report

end

scanpath_high

d2 = seedot

if d2 == 1

report

end

scanpath_high

d3 = seedot

if d3 ==

report

end

scanpath_high

d4 = seedot

if d4 ==

report

end
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C.15 Scenario 421

The chart representing scenario 421 is shown in Figure C14. The algorithm

follows after the chart.

scanpath_low € — [ 16x s
4 s s
X B ﬂm_ﬂlgm_'m
16x -
seedot Y
Cognitive Interaction Algorithm
report ———— 4x (Scenario 421) 10x
¥ Tx 16x 3x
- - ‘
selectAC
e o | e
| — findinDB5_2
command._hdg e T
- ¥ new_question_info —
command_alt ——»{ findinDB5_3
command_spd -—'Tﬂﬂmnsiﬁ}

Figure C14. Scenario 421 algorithm function calls

1. acl = selectAC

2. command_alt(al)

3. command_spd (al)

4. ac2 = selectAC

5. command_hdg(a2)

6. command_alt (a2)

7. command_spd (a2)

8. ac3 = selectAC

9. command_alt (a3)

10. command_spd(a3)

11. acd = selectAC

12. command_hdg (ad)

13. command_alt(a4)

14. command_ spd(ad)

15. ach = selectAC

16. command_hdg (a5)

17. command_alt(a5)

18. command_spd (a5)

1., acé = selectAC

20. command_alt (a6)

21. command_spd (a6)

22. acl = selectAC

23. command_hdg (a7)

24. command alt (a7)

25. command_spd (a7)

26. ql = new_question_info
iy targetAC = find flight low(ql (1))
28. ans = findinDBS5 2 (targetAC,ql(2))
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submit (ans)

g2 = new_question_info

targetAC = find flight low(g2 (1))

ans = findinDB5_3(targetAC,q2(2))

submit (ans)

g3 = new_question_info

targetAC = find flight low(g3(1))

ans = findinDB5_2 (targetAC,q3(2))

submit (ans)

g4 = new_question_info

targetAC = find flight low(g4(1l))

ans = findinDB5 2 (targetAC, g4 (2))

submit (ans)

g5 = new_question_info

targetAC = find flight low(g5(1l))

ans = findinDB5_ 3 (targetAC,g5(2))

submit (ans)

g6 = new_question_info

targetAC = find flight_low(g6(1))

ans = findinDBS5 2 (targetAC,g6(2))

submit (ans)

q7 = new_question_info

targetAC = find flight_ low(g7(l))

ans = findinDBS5_2(targetAC,q7(2))

submit (ans)

g8 = new_question_info

targetAC = find flight low(g8(1l))

ans = findinDB5_2(targetAC,g8(2))

submit (ans)

q% = new_question_info

targetAC = find flight low(g9(1))

ans = findinDB5 4(targetAC,q%(2))

submit (ans)

ql0 = new_gquestion_info

targetAC = find flight low(gl0(1))
ans = findinDB5 2 (targetAC,ql0(2))
submit (ans)

qll = new_question_info

targetAC = find flight low(gll (1))
ans = findinDB5 2 (targetAC,qll(2))
submit (ans)

gl2 = new_question_info

targetAC = find flight low(ql2(1l))
ans = findinDBS5_4(targetAC,ql2(2))
submit (ans)

ql3 = new_question_info

targetAC = find flight low(ql3(1))
ans = findinDB5_5(targetAC,ql3(2))
submit (ans)

gl4 = new_question_info

targetAC = find flight low(gl4(l))
ans = findinDBS 3(targetAC,ql4(2))
submit (ans)

ql5 = new_question_info

targetAC = find flight low(ql5(1))
ans = findinDB5 2 (targetAC,ql5(2))
submit (ans)

qlé = new_question_info

targetAC = find flight low(glé6(l))
ans = findinDBS 2 (targetAC,qlé6(2))
submit (ans)

scanpath low

dl = seedot

if dl ==

report

end

scanpath_low

d2 = seedot

if d2 ==

report

end



100. scanpath_low

101. d3 = seedot
102. if d3 ==
103. report

104. end

105. scanpath_low
106. d4 = seedot
107. if d4 ==
108. report

109. end

C.16 Scenario 422

The chart representing scenario 422 is shown in Figure C14. The algorithm

follows after the chart.

E— submit
I [
it 4 16x
—p| find__flight low
A5 16x
seedot e
. Cognitive Interaction Algorithm L
report ——— —Ax———— T (Scenario 422) 10%
¥ 12 ~16x 3x
6x
selectAC
: re e 10%-— | & ¢
| i s findinDB5_2
command_hdg [ 1% - 1% :
| new_guestion_info -
command_alt L »| findinDB5_3
command_spd | Lop{ findinDB5_4
L »l findinDB5_5

Figure C15. Scenario 422 algorithm function calls

1. acl = selectAC
2. command_alt(al)
3. command_spd(al)
4. ac2 = selectAC
5. command_alt (a2)
6. command_spd(a2)
7. ac3 = selectAC
8. command_alt(a3)
9. command_spd(a3)
10. ac4 = selectAC
13 command_hdg(a4)
12. command_alt (ad)
13. command_spd(a4)
14, acS = selectAC
15. command_hdg(a5)
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command_alt (ab)

command_spd(a5)

acé = selectAC

command_hdg (aé)

command_spd(a6)

ac7 = selectAC

command_ hdg (a7)

command_alt (a7)

command_spd (a7)

ac8 = selectAC

command_alt (a8)

command_spd (a8)

ac9 = selectAC

command_alt (a9)

command spd(a9)

acl0 = selectAC

command_hdg (al0)

command_alt (al0)

command_spd (al0)

acll = selectAC

command_alt (all)

command_spd(all)

acl2 = selectAC

command hdg(al2)

command_spd(al2)

gl = new_question_info

targetAC = find flight high(ql (1))
ans = findinDB5_3(targetAC,ql(2))
submit (ans)

g2 = new_gquestion_info

targetAC = find flight high (g2 (1))
ans = findinDB5_2(targetAC,q2(2))
submit (ans)

g3 = new_question_info

targetAC = find _flight high(g3(1))
ans = findinDB5_2 (targetAC,q3(2))
submit (ans)

g4 = new_question_info

targetAC = find flight high(g4(1l))
ans = findinDB5S_ 2 (targetAC,q4(2))
submit (ans)

g5 = new_question_info

targetAC = find flight high(g5(1))
ans = findinDB5 2 (targetAC,q5(2))
submit (ans)

gqé = new_question_info

targetAC = find flight_high(g6(1))
ans = findinDBS 3(targetAC,g6(2))
submit (ans)

q7 = new_question_info

targetAC = find flight high(gq7(1l))
ans = findinDBS5 2 (targetAC,q7(2))
submit (ans)

g8 = new guestion info

targetAC = find flight high(g8(1))
ans = findinDBS_2(targetAC,q8(2))
submit (ans)

q9 = new_question_info

targetAC = find flight_high(g9(1))
ans = findinDBS5 2 (targetAC,g9%9(2))
submit (ans)

gql0 = new_question_info

targetAC = find flight high(ql0(1))
ans = findinDB5 4 (targetAC,ql0(2))
submit (ans) -

qll = new_question_info

targetAC = find flight_high(gqll (1))
ans = findinDB5 2 (targetAC,qll(2))
submit (ans)

ql2 = new_question_info

targetAC = find flight high(ql2 (1))
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ans = findinDB5_4 (targetAC,ql2(2))
submit (ans)

ql3 = new_question_info

targetAC = find flight_high(gl3(1))
ans = findinDB5 5 (targetAC,qgl3(2))
submit (ans)

ql4 = new_question_info

targetAC = find_flight high(gqld4(1l))
ans = findinDB5_ 2 (targetAC,qld(2))
submit (ans)

gql5 = new_question_info

targetAC = find_ flight_high(ql5(1))
ans = findinDB5_2 (targetAC,ql5(2))
submit (ans)

glé = new_question_info

targetAC = find_flight_high(qlé6 (1))
ans = findinDBS5_3 (targetAC,ql6(2))
submit (ans)

scanpath_high

dl = seedot

if dl ==

report

end

scanpath_high

d2 = seedot

if d2 == 1

report

end

scanpath high

d3 = seedot

if d3 ==

report

end

scanpath _high

d4 = seedot

if d4 ==

report

end



