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Abstract

This thesis presents an approach for predicting operational performance of airlines
on the basis of flight schedules and aircraft assignments. The methodology uses
aggregate measures of properties of aircraft assignments, called Aircraft Assignment
Key Performance Indicators (KPIs), and aims to find correlations between them and
the operational performance of the airline. A simulation experiment is prepared to
gather a large set of data points for analysis. A motivation is given for the use of
control theoretic approaches in airline operations to utilize the KPIs as a basis for
initial planning and corrective actions.
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Chapter 1

Introduction

1.1 Motivation

Delays are an expected part of air travel today. Over the last seven years, approxi-

mately one fifth (21.5%) of all domestic flights in the United States of America (USA)

were either delayed' or canceled [22]. The situation in Europe is similar [11]. A study

estimates that flight delays in scheduled European air traffic in 1999 cost airlines

between EUR3.0 and EUR5.1 billion [9]. With the recent strengthening of passenger

rights in the European Union [24, 20], the cost to airlines is likely to increase further.

One possible way to reduce delays during operation is to design robust airline

schedules [4]. By rearranging existing and adding additional reserves or buffers into

a schedule, delays can be reduced and their propagation can be limited. However, a

tradeoff exists between cost efficiency and robustness. While the cost impact of adjust-

ments to improve robustness is easily determined from the schedules and accounting

data, the operational improvements are difficult to estimate. As a result, reactive

approaches, i.e., airline recovery, are more common than proactive approaches, i.e.,

robust scheduling. It is relatively easy for the mid-level decision maker to justify costs

created by bad weather. It is much harder to justify costs for proactive adjustments

that will reduce costs in the case of bad weather in the future. This is especially true

1A delayed flight in this statistic is defined as a flight that arrives at the arrival gate 15 minutes
or more after the scheduled time.
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because it is usually uncertain how well the proactive measures will reduce costs on

a bad weather day.

To reduce delays through robust scheduling, an understanding of the effects of

possible airline schedule adjustments on the airline operation is required. An airline

needs to be able to predict the performance of its schedule in order to make successful

adjustments. Such predictions can be based on past performance, if the environment

and the parameters of the operation remain similar. In fact, a structured analysis

of the relationship between scheduling factors and operational performance should

provide insight into the operation and assist with future predictions.

However, airline operations are complex. The airlines within the Lufthansa Cor-

poration 2, for example, operate more than 1500 flights on a typical day transporting

128,000 passengers [3]. Not only does the airline schedule vary, but there are also

varying uncontrollable external factors that influence the operation, such as weather

conditions. Thus, variations exist and no day of operation is like another. Therefore,

it is extremely unlikely that a large set of identical schedules in different weather con-

ditions or different schedules in identical weather conditions would exist in historic

data. Such sets are, however, required to conduct structured factor analysis to iden-

tify what properties of a schedule make it more robust to the uncertain conditions in

which the schedule is operated in.

In this thesis, a simulation platform is developed for creating such a data set, an

approach to analyze aircraft assignment measures and their correlation to operational

performance is presented, and a set of simulation input data is described. In the

proposed approach, the airline operation is simulated using an air network simulation

and an airline recovery tool and multiple schedules are examined over a range of

different weather scenarios to provide a level of granularity of data points that is

unavailable in historic data. Multiple Leading Key Performance Indicators (LKPIs)

aggregating information on the aircraft routing are presented and an analysis of their

correlation to operational performance measured by output measures is suggested.

Also, a view on airline operations, based on control theory, is introduced as a potential

2Deutsche Lufthansa, Lufthansa City Line, Lufthansa Cargo, Condor
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framework for utilizing the LKPIs examined in the analysis.

1.2 Thesis Outline

This thesis is divided into the following chapters:

In Chapter 2 an overview of airline processes is provided. This includes the

airline scheduling, operation, and recovery processes.

In Chapter 3 a general definition of the term Key Performance Indicator and

definitions and examples of the Leading Key Performance Indicators and output mea-

sures that should be examined in the analysis are presented.

In Chapter 4 an alternate view of airline processes is introduced. This view is

based on control theory and is intended to provide a framework for the use of Key

Performance Indicators in airline scheduling and recovery.

In Chapter 5 the simulation platform and inputs are presented. This includes

a description of the MIT Extensible Air Network Simulation (MEANS), the Inte-

grated Operations Control System (IOCS), the simulation environment, and detailed

information about the benchmark simulation inputs.

In Chapter 6 the proposed analysis for determining the correlations between the

Leading Key Performance Indicators and output measures based on the simulation

results is presented.

In Chapter 7 shortcomings of simulation environment and the proposed anal-

ysis are identified and suggestions are made for for further research leading to the

application of the approach.
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Chapter 2

Overview of Airline Scheduling,

Operation, and Recovery

2.1 Airline Scheduling

An airline typically plans its operation ahead of time in an airline schedule. Generally,

the airline schedule consists of three major parts: a) the flight schedule, b) the aircraft

assignment and c) the crew schedule (Figure 2-1).

1~
Airline Schedule

Flight Schedule

Aircraft Assignment

L Fleet Assignment Aircraft Routing J
Crew Schedule

Crew Pairings C Crew Roster J

Figure 2-1: Parts of an Airline Schedule
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2.1.1 Flight Scheduling

The basic "building block of a flight schedule is the flight leg. A flight leg is defined

by a departure airport and time and an arrival airport and time. For the departure

and arrival times there exist two different time references, shown in Figure 2-2: block

time and flight time.

off-blocks take-off landing on-blocks

taxi-out time flight time taxi-in time

block time

Figure 2-2: Time Terminology

Block time is the time between departure from the gate at the departure airport

(off-blocks) and arrival at the gate at the arrival (on-blocks). The terms off- and

on-blocks refer to blocks (or chocks) that are put in front of and behind the aircraft

wheels on the ground to stop the aircraft from moving. The exact definition of the

beginning and ending of block time varies. Often, off-blocks is defined as the time at

which the aircraft begins to move on the ground and on-blocks as the time at which

the aircraft comes to a complete stop at the final parking position on the ground.

In some cases, off- and on-blocks times are defined in relation to the engine state,

where off-blocks will be the time at which the first engine is started (which does not

necessarily have to be prior to aircraft movement, e.g., in the case of a push back at

the gate) and on-blocks will be the time at which the last engine is shut down. Flight

time is the time between take-off (at which the aircraft leaves the ground and goes

airborne) and landing.

A flight schedule is a list of flight legs. The design of a flight schedule is based on

numerous factors, among which are market demands, expected revenues and costs,

crew constraints, aircraft availability and performance, minimum ground times, legal

18



constraints, route restrictions, overall airline strategy, competitor behavior, and air-

line alliances. In the creation of flight schedules, the airline network strategy plays

an important role.

A B A B

C D C D

(a) Hub-and-Spoke (b) Point-to-Point

Figure 2-3: Network Strategies

For example, consider a typical hub-and-spoke network as shown in Figure 2-3(a).

Airport A serves as a hub and passengers who want to travel from one spoke (airports

B, C, or D) to another spoke have to connect through the hub. An alternative

network strategy is that of the point-to-point network shown in Figure 2-3(b), where

all airports are connected by direct flights. In the hub-and-spoke case the airline

operates only three different routes compared to the point-to-point case where it

operates six routes. Given the same availability of resources, the flight frequency

in the hub-and-spoke network is higher than in the point-to-point network. The

thickness of the flight connection arrows between the airports in Figure 2-3 indicates

the number of flights per days. Large carriers usually operate a mixed network of

both hub-and-spoke and point-to-point flights, where the hub-and-spoke portion is

dominant. To provide service between different spokes, the flight schedule has to be

created in such a way as to enable passengers to connect between flights. This results

in banks at the hub in the schedule during which connections between important

spokes are available.

For most major scheduled airlines, flight schedules are set and published multiple

months before the day of operation. Although major scheduled airlines operate the

majority of flight legs daily, some variation in flight schedules between different days

exists. These variations could be, for example, driven by passenger demand or aircraft

19



availability. As a result, the flight schedules for any two days will almost never be

identical.

2.1.2 Aircraft Assignment

During aircraft assignment, a specific aircraft is assigned to each of the flight legs

in the flight schedule. Often, aircraft assignment is broken down into two sequential

parts: fleet assignment and aircraft routing. The reason for this separation is that the

required computing power is reduced significantly and that the fleet assignment can

be created earlier because the required input data for the fleet assignment problem

is available earlier than the required input data for the overall aircraft assignment

problem. The fleet assignment process only requires aggregate aircraft availability

and maintenance requirements which are available much earlier than detailed air-

craft availability and maintenance requirements. As a result, fleet assignment can be

carried out soon after flight schedule design.

The fleet assignment for a flight schedule assigns each flight leg in the schedule

to a specific fleet. A fleet is a group of aircraft with a common property. Often, that

common property is aircraft type (e.g., the Boing 747 fleet or the Airbus A300 fleet),

stage length (e.g., long haul fleet and short haul fleet), or crew requirement (e.g., the

Boeing 757 and 767 fleet can be operated by the same pilots). Fleets can be broken

down into subfleets (e.g., the Airbus A320 series fleet could include the Airbus A320

and the Airbus A321 subfleets).

The modern fleet assignment process for large airlines utilizes mathematical pro-

gramming methods to optimize an objective function (usually expected profits). This

optimization is restricted by a number of constraints: Cover constraints require that

each flight leg will be assigned to exactly one fleet. Balance constraints ensure that

aircraft departing an airport have arrived at that airport before and have had at least

the minimum ground time on the ground at the airport. Fleet size constraints ensure

that the number of aircraft required in the assignment does not exceed the size of

the available fleet. Additional operational constraints (e.g., minimum ground times

for aircraft turnarounds or noise restrictions at airports prohibiting certain fleets to

20



operate there) may also need to be satisfied. The minimum ground time (MinGT) for

an aircraft at an airport between two flights is the minimum time required between

on-blocks of one flight and off-blocks of the next flights to prepare the aircraft for

the next departure (a process also called turnaround). During the turnaround the

aircraft is unloaded, refueled, serviced (e.g., cleaned and catered) and loaded again.

MinGT depends on multiple factors, among which are airport, number of passengers

and cargo, aircraft type (e.g., size, break cooling time) and services provided (e.g.,

catering, cleaning, fuel). The first published modern fleet assignment method was

developed by Abara in 1989 [2] and many extensions and reformulations exist today.

During the aircraft routing (or aircraft maintenance routing) process, a specific

aircraft (or tailnumber) of a given fleet type is assigned to each of the flight legs that

was assigned to the fleet during the fleet assignment process. In addition to satisfying

cover, balance and fleet size constraints, as in the fleet assignment, the maintenance

routing also has to provide maintenance feasibility. Aircraft need to undergo routine

maintenance checks prescribed by the airline's maintenance manual, which needs to

be approved by the competent authority. These checks are usually time-based (e.g.,

daily or weekly checks), flight-time-based (e.g., 500 hour check) or cycle-based (5,000

cycle check). While time-based check requirements are known well ahead of time, the

due dates for flight-time-based and cycle-based maintenance depend on the usage of

the aircraft and, therefore, cannot be scheduled many months ahead. For example,

the maintenance system of Lufthansa is shown in Table 2.1.As can be seen, some

variability exists in both the intervals and ground times per event. More precise

estimates of the values within these ranges become available as the time of the event

draws near.

In addition to routine maintenance, aircraft will also need to undergo non-routine

maintenance. Non-routine maintenance includes the repair of technical failures and

the implementation of Airworthiness Directives issued by the authorities or service

bulletins issued by the manufacturer. Non-routine maintenance requirements are

usually not known well ahead of time. Due to this limited availability of maintenance

information ahead of time, the aircraft maintenance routing is usually done a few
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Table 2.1: Example Overview of an Airline's Maintenance System [3]

Event Interval Ground Time Work Hours
per Event per Event

Pre-Flight-Check before every flight 30-60 minutes 1
Ramp-Check daily 2 - 5 hours 6-35

Service-Check weekly 2.5 - 5 hours 10-55
A-Check ca. 350 - 650 flight hours 5 - 10 hours 45-260
B-Check ca. 5 months 10 - 28 hours 150-700
C-Check 15 - 18 months 36 - 48 hours 650-1,800
IL-Check 5 - 6 years ca. 2 weeks up to 25,000
D-Check 5 - 10 years ca. 4 weeks up to 60,000

weeks before the day of operation.

2.1.3 Crew Scheduling

The crew schedule for a flight schedule is the assignment of crew members to flight legs.

A typical crew for a passenger airline flight consists of a flight-deck (or cockpit) crew

and a cabin crew. The flight-deck crew usually consists of a Captain (or Commander,

Pilot in Command) and a First Officer (or Copilot, Second in Command). The cabin

crew usually consists of a Purser (or Chief Flight Attendant, Chef de Cabin) and one

or more Flight Attendants (or Cabin Attendants). Depending on aircraft type and

purpose of flight, additional crew members such as a flight engineer, a load master, a

translator or long range relief crew may be required.

The modern crew scheduling process consists of two phases: creation of a) crew

pairings and b) crew rosters. A crew pairing is a list of flight legs that can be

operated by a single crew member. A crew roster is the assignment of individuals to

these pairings. In the creation of both crew pairings and rosters, multiple constraints

need to be considered, among which are cover constraints, balance constraints, crew

availability constraints, crew qualification and training requirements, legal constraints

(e.g., maximum duty time rules), and labor agreements. Crew scheduling is usually

carried out three to six weeks before the day of operation.
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2.2 Airline Operation

Generally, the goal of airline operation is to execute the airline schedule with minimum

costs and maximum passenger satisfaction. Airline operation is cost-driven; very few

revenues can be raised within the operations domain of an airline since, by the time

of operation, tickets have already been sold.

Execution of an airline schedule is complicated by the fact that assumptions made

during the scheduling process are not always valid. There exists a wide range of

influences that cannot be controlled, or even accurately predicted, by the airline.

These influences include meteorological conditions, other air traffic (e.g., flights by

other airlines, the military, and general aviation), Air Traffic Control (ATC) actions,

equipment failures, and crew member absenteeism. They have the potential to cause

significant differences between the environment for which the airline schedule was

designed and the environment in which that schedule must be implemented. This

change of environment can cause the airline schedule to become infeasible.

A disruption in an airline operation is an event that causes infeasibilities in the

future of the airline schedule. For example, consider a snow storm at an airport

which will require aircraft to de-ice before the flight. As a result, the time between

off-blocks and take-off of the aircraft will be increased. Assuming that the off-blocks

departure cannot be made earlier (since passengers will arrive for the scheduled off-

blocks departure time) the take-off is also delayed and a disruption occurs. If the

aircraft can compensate for the delay en route (by reducing the actual flight time)

and land at the scheduled time, the disruption will have been recovered. However, if

this is not possible, the resulting arrival delay may cause more infeasibilities in the

airline's schedule (e.g., delay propagation to other flights) or in passenger travel plans

(e.g., missed connection flights).

Arrival delays often cause schedule infeasibilities through delay propagation to

other flights. Delay propagation to other flights occurs when an aircraft or crew

arrives at a destination behind schedule and is scheduled for another flight which it

can no longer serve at the scheduled time. As a result, the next flight of the aircraft
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and/or crew will be delayed until the aircraft or crew are ready. This kind of delay is

called propagated delay or reactionary delay [11]. For example, consider the timeline

for a specific aircraft shown in Figure 2-4. The top row represents the schedule and

the bottom row represents the actual events for the aircraft. The horizontal axis

represents time. A disruption in time occurs during taxi out of flight 111 and the

take-off of the flight is delayed. The delay propagates through to the next flight of the

aircraft, flight 112, since the delay cannot be recovered during flight 111 (by flying

or taxing faster) or on the ground between flight 111 and 112 (because the scheduled

ground time is equal to MinGT).

scheduled 111 -- 2 112actual 111 112 time

original delay minimum ground time

Figure 2-4: Example of Delay Propagation

Frequently, disruptions will span across resource boundaries such that a single

disruption can have a negative impact on multiple resources. If, for example, a flight

arrives delayed, both the aircraft and the crew are delayed. If the crew is scheduled to

fly on other aircraft following the delayed flight, at least two additional flights could

be delayed as a result: the next flight of the aircraft and the next flight of the crew

(or even more flights if the crew does not stay together).

In the USA, approximately one quarter of all delayed flights (or about 4.5% of

all flights operated) are delayed due to delay propagation to other flights (aircraft

arriving late), where a delayed flight in this statistic is defined as a flight that arrives

15 or more minutes after its scheduled arrival time [22]. An overview of the causes of

flight delays in the USA in October 2005 is given in Figure 2-5.

The distribution of causes for flight delays by delay minutes is shown in Figure

2-6. There are three major causes for flight delays: weather (5.8% + 33.9% * 76.6% =

31.8%), propagation delay (32.5%) and air carrier delay (27.6%).

For every propagated delay there must be an original cause, i.e., the cause for the

first delay in a propagation sequence. The portion of propagation delay in Figure
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Aircraft Arriving Late
26.7%

Not On Time
18.7%

Air Carrier Delay
25.4% Cancelled

9.5%

National Aviation System
Delay
34.0%

Security Delay
0.2%

Diverted
0.6%

Weather Delay
3.6%

Figure 2-5: On-Time Performance and Delay Causes by Number of Operations in
October 2005 (USA only)

Weather
76.6%

Aircraft Arriving Late

Security Delay
0.2%

Weather Delay
5.8%

Air Carrier Delay
27.6%

National Aviation
System Delay

33.9%

Closed Runway
6.6%

Other
2.7%

Equipment
3.3% LVolume

10.8%

Figure 2-6: Delay Causes by Delay Minutes in October 2005 (USA only)
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2-5 can be assigned to these original causes. If it is assumed that the distribution of

original causes for the propagation delays is equal to the distribution of causes shown

in Figure 2-6, excluding the portion due to aircraft arriving late, a distribution of

original delay causes (shown in Figure 2-7) can be derived. Approximately half of

Other
12.0%

Weather Caused Delay
49.5%

Air Carrier Delay
38.5%

Figure 2-7: Original Delay Causes by Delay Minutes in October 2005 (USA only)

all delays in the USA are originally caused by weather (see Figure 2-7). Within this

group of weather causes, there exist two subgroups depending on where the weather

occurs. En route weather is weather that the aircraft encounters during the flight

between airports. Examples of unfavorable en route weather are strong turbulence or

hurricanes. They may require the pilot to take a less direct flight path, which may

result in a longer flight time. Also, if certain sectors of the airspace become unusable

due to en route weather, the remaining sectors will be utilized more which may lead

to capacity bottlenecks and ATC driven delays. Airport weather affects departing

and arriving traffic flows to that airport. When the weather at an airport becomes

unfavorable it can either slow down certain segments of the flight process for individual

aircraft (e.g., freezing rain that requires aircraft to de-ice) or reduce the capacity of

the airport as a whole (e.g., heavy crosswinds that make runways unusable). In the

latter case, the departing and arriving flows at the airport are affected as a whole.

For example, Boston's Logan airport (BOS) operates on three runways in favorable

weather conditions, however can be restricted to the usage of only one runway in the

case of strong North-Westerly winds. The reduction of capacity in this case might be
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as great as 50%, from approximately 120 operations per hour in favorable weather to

as few as 60 operations per hour in poor weather [6].

In addition to the airline schedule, passenger travel plans may also become in-

feasible due to disruptions. If a passenger travels only on a single delayed flight leg,

the passenger will also be delayed. if a passenger travels on an itinerary of multiple

flights and needs to connect between flights, a delayed flight could cause the passenger

to miss his or her connection and his or her itinerary will not be feasible any more.

Missed connections are especially frequent in hub-and-spoke operations, because they

rely on passengers to connect between flights.

2.3 Airline Recovery

Airline recovery is the management of disruptions. The goal here is to restore airline

schedule feasibility while keeping costs and negative impact on customers low. To

achieve this goal, airlines adjust their schedules. Common adjustments are intentional

delaying of flight departures, swapping of aircraft, ferrying of aircraft (relocating an

aircraft with a non-revenue flight), cancelation of flights, activation of reserve aircraft

or crew, and rescheduling of aircraft or crew.

Due to complexity of the airline schedules and constraints on computing power,

a general approach is to first attempt recovery within a single resource domain. For

example, when a crew disruption occurs, the airline will try to recover this disruption

within the crew domain without changing the aircraft routing or flight schedule. If a

satisfactory solution cannot be found within a single resource domain, other resources

will be included in the recovery. Today, this usually occurs sequentially: A change will

be made in one resource domain and then the other resource domains are adjusted to

the change sequentially. For example, a change could be made to the flight schedule

and then the aircraft schedule and finally the crew schedules will be adjusted to this

change.

If passenger travel plans become infeasible due to disruptions, airlines also need to

recover their passengers. Common actions by the airlines are rebooking the passenger
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onto another flight or itinerary (with the same or a different airline) and compensating

the passenger for the disruption of their travel plans (e.g., through restaurant and

hotel vouchers).

While recovery personnel and systems today understand a wide range of correla-

tions between different resource domains, state-of-the-art recovery is rarely globally

optimal due to the sequential approach. Multiple airlines and decision support soft-

ware developers are developing a new generation of integrated recovery tools that will

find a global optimum over multiple domains, including aircraft, crew and passengers.
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Chapter 3

Key Performance Indicators and

Output Measures

3.1 General Definitions

The term Key Performance Indicator (KPI) is used in a variety of contexts. It is

commonly used within the business administration context [191, where it typically

describes "a significant measure used on its own, or in combination with other key

performance indicators, to monitor how well a business is achieving its quantifiable

objective" [28]. Other areas in which the term KPI is used include product optimiza-

tion [25], education [10, 21, 32] and public administration [12, 13]. KPIs are frequently

used to benchmark a business against its competitors or its own past performance

[19].

An indicator can be defined as "that which serves to indicate or give a suggestion

of something; an indication of" [26]. An indication can be defined as "a hint, sugges-

tion, or piece of information from which more may be inferred" [26]. Following this

definition of an indicator, we define the term Key Performance Indicator as a metric

used to indicate or estimate one or more critical success factors of an operation, where

this operation is the airline operation, defined as the operation of aircraft to transport

passengers between airports of their choice at the time of their choice.

Considering the temporal relation between KPIs and performance, there exist
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three types of KPIs: lagging, coincident, and leading KPIs. The time difference

between KPIs and the performance they indicate is called lead time or lag time.

Lagging KPIs trail behind the measure. For example, consider the landing time of

an aircraft as the performance (Figure 3-1). A lagging indicator for the landing time

could be the on-blocks time. Knowledge of the on-blocks time provides information

about the landing time, because both are related through the taxi time. However,

the on-blocks time lags the landing time and, therefore, has no predictive value.

time
gear extension landing on - blocks

tire rotation

leading coincident lagging

Figure 3-1: Temporal Relation of KPIs and the performance

Coincident KPIs occur concurrently with the performance. In the example above,

the time at which the tires of the aircraft rotate for the first time since take-off is

a coincident indicator for the landing time; they occur simultaneously, because the

tires start rotating when they touch the ground. Leading KPIs change before the

performance, giving them predictive value. In the example above, the extension of

the landing gear is a leading indicator of the landing time, because the landing gear

must be extended before landing. Knowing that the landing gear is usually extended

a few minutes before the landing, the gear extension time can be used as a leading

indicator (i.e., predictor) for the landing time.
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3.2 Aircraft Assignment Related Key Performance

Indicators

The flight schedules and aircraft assignments have a great influence on the opera-

tional performance of the airline (see Chapter 2). Therefore, the properties of the

flight schedules and aircraft assignments are expected to have predictive value for

the operational performance. The following KPIs, based on flight schedules and air-

craft assignment, are suggested for further analysis of their correlation with output

measures.

3.2.1 Fleet Assignment Buffer Statistics

The number of buffers within an airline schedule influences the airline's ability to

recover from disruptions. A buffer, in the context of fleet assignment, is extra (or

slack) time between the arrival and the departure of an aircraft during which the

aircraft is idle. A timeline for an aircraft on the ground between two flights is shown

in Figure 3-2. When an aircraft arrives, a post-flight service (e.g., disembarkment,

unloading) is conducted at the airport. Before the aircraft departs again, a pre-flight

service (e.g., embarkment, loading, refueling) is conducted. The sum of the time

required for both post- and pre-flight service is the MinGT (see Section 2.2). While

the post-flight service can be conducted without any knowledge of the next flight of

the aircraft, the pre-flight service requires this information. It must be known where

the aircraft will fly next to determine the required fuel and catering to be loaded.

In the actual operation, buffers exist in between post- and pre-flight service. How-

ever, an abstraction can be made by shifting the buffer, as shown in the lower part

of Figure 3-2. For this abstraction to hold it must be assumed that the next flight of

an aircraft is known early enough for the pre-flight service to be performed. Here we

assume that this abstraction holds and we define a buffer as the time span between

the arrival of an aircraft plus the minimum ground time of that aircraft at the airport

and the next departure of the aircraft. A buffer can be expressed as < a, f, t, d >,
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Figure 3-2: Timeline of the Ground Process Between Two Flights

where a is the airport at which the buffer occurs, t is the time at which it begins, d

is its duration, and f is the fleet type of the aircraft.

To obtain the set of buffers from an airline schedule, the set of all aircraft ground

arcs (i.e., the period when the aircraft is on the ground) is created from the arrival and

departure times of the aircraft. In the set of ground arcs, the arrival times are shifted

by the MinGT to find the set of buffers. If the aircraft routing for the schedule is

unknown, a feasible aircraft routing is created using a feasible fleet assignment and a

first-in first-out (FIFO) methodology. In this case, for each fleet, the aircraft arriving

at an airport depart from the airport in the same order in which they arrived.

From the set of buffers the average weighted buffer per departure (WBD) can be

computed using

w(a, f, t, d)

WBD = <a,f,t,d>EB (3.1)
|LI

where B is the set of all buffers, L is the set of all flight legs, and w(a, f, t, d) is a

weighting function of a, f, t, and d. In a simple case, the weighting function is the
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duration of the buffer, w(a, f, t, d) = d. In this case, Equation 3.1 is simplified to

(7 d
total buffer minutes _ <a,f,t,d>EB

number of aircraft ILI

z z ( (dept) - 1 (arri + MinGTa,,)
acA rR iEOa,r iEIa,r

IL~ (3.2)|L|

where Ia,r and 0 a,, are the sets of all flights of aircraft r that are arriving at and

departing from airport a respectively, depi and arri are the departure and arrival

times of flight i respectively, R is the set of all aircraft, and Mi'nGTa,r is the minimum

ground time of aircraft r at airport a.

The weighting function may also be any function of any group of the parameters

of a buffer, namely a, f, t, and d. Three examples of weighting functions are shown

in Figure 3-3. The first example weighting function is a piecewise linear function of d

(3-3(a)). It is based on the assumption that the value of an extra minute in the buffer

decreases with the overall length of the buffer. This is because the probability that a

delay is as long as the buffer decreases as the length of the buffer increases. Thus, an

additional minute of buffer time will become less useful as the buffer becomes longer.

The second example weighting function is a piecewise linear function of t (3-3(b)).

Buffers in the early morning (e.g., before the first flights departs) are less useful than

buffers later in the day because in the morning delays will not have occurred yet.

Therefore, the weighting function is 0 up to 6am, at which point it rises to a value of

1 until 8am. During the day, buffers are useful to reduce delays and, therefore, the

weighting function remains at a value of 1. The later a flight departs, the fewer flights

will follow it and, therefore, the fewer flights can be affected by delay propagation.

In the extreme case no other flights will follow a flight on that day. Buffers become

less valuable as fewer flights can be affected by delay propagation. Therefore, the

example weighting function value is again reduced from a value of 1 to a value of

0 between 3pm and 10pm. The third example weighting function is the product of

the previous two example weighting functions (3-3(c)). Not shown are examples for
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weighting functions that depend on airport or fleet.

I
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(a) function of duration d (b) function of time of occurrence t
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Figure 3-3: Example Buffer Weighting Functions

The following example illustrates the impact of different weight functions on the

weighted buffer per departure. Consider the flight schedule for an airport served by

two fleet types shown in Figure 3-4. Assuming the MinGTs are 0:40 and 0:50 for the

Boeing 737-500 and the Airbus A300, respectively, and FIFO aircraft routing, the set

of buffers is

B = [< DUS, B, 7:30,0:30 >, < DUS, A, 8:30,0:20 >, < DUS, B, 8:50, 0:10 >]
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Figure 3-4: Timeline of Aircraft Arrivals and Departures

where A represents the Airbus A300 and B represents the Boeing 737-500. Note that

the last arrival does not have any buffer and departs again after the MinGT.

The buffer per departure using w(a, f, t, d) = d according to Equation 3.2 is 0:15

(0.25(((8:00+9:00+9:10) - (6:50+8:10+8: 30+3*0: 40))+(8:50 - (7: 40+0: 50)))).

Using the weighting function shown in Figure 3-3(a) the weighted buffer per depar-

ture is 25 (0.25(w(0:30) + w(0: 20) + w(0:10))). Using the weighting function shown

in Figure 3-3(b) the weighted buffer per departure is 0.6875 (0.25(w(7: 30) + w(8:

30) + w(8: 50))). Using the weighting function shown in Figure 3-3(c) the weighted

buffer per departure is 22.1875 (0.25(w(7:30,0:30)+ w(8:30, 0:20)+ w(8:50, 0:10)))

The choice of the weighting function depends on the airline and its operation.

Potential weighting functions can be evaluated with historic and/or simulation data

for the correlation of the WBD with the operational performance. Also, parameters of

those weighting functions that provide the best correlation between the WBD and the

operational performance can be determined by a best fit optimization of the historic

and/or simulation data.. Only values of the WBD computed using identical weighting

function can be used to compare and benchmark different airline schedules.

3.2.2 Global Fleet Composition Indicators

When aircraft must be swapped between flights as part of a recovery measure, it is

usually less complicated to switch two aircraft of the same fleet type than of different

fleet types. In this case the capacity, the performance, and the crew requirement of the

aircraft servicing each of the flights remains unchanged. If two aircraft of different fleet

types are swapped, passengers may be disrupted if, after the switch, the capacity of
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the aircraft operating a flight is less than the number of booked passengers. Additional

fuel stops may be necessary or other performance based restrictions may apply. Also,

wider crew recovery may be required due to the initial crew assignment no longer

being valid since the fleet types on some flight legs have changed. Therefore, in a

homogenous fleet aircraft swaps are usually less complicated than in a heterogenous

fleet.

Global fleet composition indicators (GFCIs) give an overview of the fleet homo-

geneity of an airline as a whole. A general formulation for the global fleet composition

indicator is

(wf) 2

GFCI = f EF 2 (3'3)

(f EF

where F is the set of fleets and wf is the weight that fleet f carries. The definition

of different fleets within F may be varied (see 2.1.2). The weight wf for each fleet

type can be defined in multiple ways: by number of aircraft, number of total seats,

or number of scheduled departures of fleet f.
In Figure 3-5(a) the GFCI with wf = number of aircraft for an airline with two

fleet types is shown. The GFCI value is plotted in the vertical axis and the percentage

of aircraft that are of one of the two fleet types is plotted on the horizontal axis (the

percentage of the other fleet type is 100% minus the value shown). In Figure 3-5(b)

the GFCI with wf = number of aircraft for an airline with three fleet types is shown.

The percentages that two of the three fleets take are shown on the two horizontal axes.

From the plots it can be seen that the maximum value of the GFCI is 1. A maximum

occurs whenever one fleet holds 100% of the weight. The minimum value of the

GFCI in the two and three fleet scenario is 1/2 and 1/3, respectively. Generally, the

minimum GFCI value is 1/|FI which occurs when all fleets share the weight equally.

The definition of the weight wf a fleet type carries has a significant effect on

the GFCI as the following example shows. Consider an airline that operates Boeing

737-500 and Airbus A321 aircraft. These aircraft types differ in size and range. The

36



0.7-

0 .5 - -. -. -.. . . . . . - . . . . . . -.-- - - -. ..-- -.-- -.-.- -- - -

I I III|

0 10 20 30 40 50 60 70 80 90 10
percentage of fleet type A

(a) Fleet with two Aircraft Types

0.9

0.8

0.7

0.5

0.4... .

100

80 -.. . . .

60. -

40-

40 ~~ 70... 90. 10

(977 20500

(b1Fee wit thre Aiprcaftages 019

0

(b) Fleet with three Aircraft Types

Figure 3-5: GFCI examples

37

0

0



Airbus A321 has a 77% greater seat capacity than the Boeing 737-500 and due to its

almost 70% greater range, the Airbus A321 operates on longer flights and thus has

fewer departures per day than the Boeing 737-500 [3]. The properties of these two

aircraft in this example are shown in Table 3.1.

Table 3.1: Properties of Aircraft for Example Airline

fleet number seats departures
of a/c per a/c per day per a/c

Boeing 737-500 10 103 6.2
Airbus A321 variable 182 4.7

In Figure 3-6 the GFCI values as a function of the number of Airbus A321 aircraft

are shown for three different definitions of the weight wf. The three curves have the

same basic shape and minimum GFCI value (0.5), however, are spread out along the

horizontal axis differently due to the different weights, which in this case are linearly

related.
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Figure 3-6: Influence of Choice of wf on GFCI
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3.2.3 Swap Option Indicators

If multiple aircraft are at the ground at the same airport at the same time, these

aircraft could potentially be swapped between flights[5, 29]. The global single swap

options per departure (GSD) are calculated using Equation 3.4. The term global

indicates that it is assumed that swapping can occur globally within or between

fleets. The term single indicates that single swap options are considered, i.e., swaps

between only two aircraft at a time. The GSD is given by

ZZ Z, (6g,h)
aEA gEGa hEGa/{g}

GSD=2 x |D| (3.4)

where A is the set of all airports serviced, D is the set of all departures, Ga is the set

of all ground arcs at airport a, and og,h is equal to 1 if ground arcs g and h overlap

in time and 0 otherwise.

Swapping two aircraft of the same type will likely be less complicated than swap-

ping two aircraft of different type (see 3.2.2). To account for this difference in ease

of swapping aircraft, each swap option is multiplied by a weighting coefficient cf1 ,f2,

which is representative of the ease of swapping aircraft of fleet type fi and f2. In-

corporating these weighting coefficients into Equation 3.4 yields the weighted single

swap options per departure (WSD)

1I X: S (Cf(g),f(h) X 6g,h)

WSD = aEA gEGa hEGa/{g} (3.5)
2 x |D|

where Cfi,f 2 a measure of the ease of swapping two aircraft of fleet type fi and f2, and

f(g) is the fleet type of ground arc g. Larger and lower values of cf 1, 2 indicate that

swapping of aircraft of fleet types fi and f2 is less and more complicated, respectively.

Note that cf 1,f2 = cf 2 fi1 because a switch from fleet type fi to fleet type f2 on one

flight also means a switch from fleet type f2 to fleet type fi on another flight.

The following illustrates the computation of the GSD and WSD for the example
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introduced in Figure 3-4. In this example, the GSD and WSD are given by

GSD= 1+3+2+2 8
2x4 8

and

WSD = CBA + 3 CA,B + CB,A + CB,B + CB,A + CB,B _ 6CA,B + 2 CB,B

2 x4 8

For CA,B = CB,B = 1, the values for the GSD and the WSD are identical.

The choice of the weighting coefficients depends on the airline and its operation.

Sets of weighting coefficients can be evaluated with historic and/or simulation data

for the correlation of the WSD with the operational performance. Also, the set

of weighting coefficients that provides the best correlation between the WSD and

the operational performance can be determined by a best fit optimization of the

historic and/or simulation data. Only values of the WSD computed using identical

sets of weighting coefficients can be used to compare and benchmark different airline

schedules.

In the above indicator, the possible swaps are assessed once for the duration of

each ground arc. A different way to assess the possible swaps is to assess all possible

swaps at each time step. Here we use consecutive minutes as time steps, because

airline time data is typically available in a resolution of minutes. The number of

possible swaps within fleet f at airport a at time step t, N', is given by

N =' = ffat! if rf,a,t > 2; (3.6)
at 0 if nf,a,t < 2.

where nf,a,t is the number of aircraft of fleet type f that are on the ground at airport

a at time step t.

The number of possible swaps between two different fleets f and g at airport a at

40



time step t, Nf'-, is given by

N = fat! x gat! = nf, a,t x ng,a,t iff # g. (3.7)at (-(nf,a,t - 1) (ng,at - 1)!

The total number of possible swaps at airport a at time step t, Na,t, is given by

Nt NS' (3.8)
fEF gEF/{f} )

The factor of - is introduced in Equation 3.8, because every possible swap between2

different fleets is counted twice, once each way.

Evaluating Equation 3.8 for all airport and all time steps gives an overall measure

of possible swaps. This number divided by the number of time steps and the number

of departures gives the global time averaged swap options per departure (GTSD)

EyNa,t

GTSD = aEA tET (3.9)
|T\ x |D|

aEA tET f EF N ' + Nf'9 (3.10)
TIx ID ~ at 2 gC afgEF/{f}

where A is the set of all airports, T is the set of all time steps and F is the set of all

fleets.

Equation 3.10 is in a form in which weighting coefficients can be applied which

yields to weighted time averaged swap options per departure (WTSD)

WTSD = aEA tET cf x NfI (3.11)
x I cf,, 2 gEF/{f}

The following example illustrates the computation of the WTSD. The shaded scale in

Figure 3-7 represents the number of aircraft on the ground in the example introduced

in Figure 3-4 as a function of time. The number of Boeing 737-500 and Airbus A300
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aircraft on the ground are shown above and below the time axis, respectively.

MB735,DUS,t
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mA3oo,DUS,t Boeing 737-500 """"* Airbus A300

Figure 3-7: Timeline of Ground Arcs of Aircraft of Different Fleet Types

The WTSD evaluated for DUS from 6:30 to 9:30 in one minute time steps is

1
WTSD = (80CA,B + 3 0CB,B + 80CB,A)2 x 180 x 4

1 1
= -CB,B + CA,B48 9

As before, For CA,B = CB,B = 1, the values for the GSD and the WSD are identical.

The choice of the weighting coefficients depends on the airline and its operation.

Sets of weighting coefficients can be evaluated with historic and/or simulation data

for the correlation of the WTSD with the operational performance. Also, the set

of weighting coefficients that provides the best correlation between the WTSD and

the operational performance can be determined by a best fit optimization of the

historic and/or simulation data. Only values of the WTSD computed using identical

sets of weighting coefficients can be used to compare and benchmark different airline

schedules.

3.3 Output Measures

The operational performance of an airline can be assessed in different ways. Here we

will assess it by measures of on-time performance and delays. On-time performance

and delays can generally be assessed by four different references: off-blocks, take-off,

landing and on-blocks. Here we will use on-blocks on-time performance and delays
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because it is the most meaningful for aircraft and passenger connections. The on-

blocks time determines the next possible earliest departure time for aircraft (after

MinGT) and for passengers (after minimum connection time). Thus, it determines

whether a passenger or an aircraft can make a connection. Other time references

have additional non-deterministic time spans in between them and the next possible

departure (e.g., the taxi-in time in case of the landing time). Therefore, they are

less predictive of the next possible departure time of a aircraft or passenger than the

on-blocks time.

3.3.1 Delay Minutes

The number of delay minutes per flight is defined as the difference between the actual

on-blocks time and the scheduled on-blocks time of the flight. If a flight arrives prior

to the scheduled arrival time, we will consider the number of delay minutes for this

flight to be zero. For some airlines, early arrivals may result in operational difficulties

(e.g., if no gates are available at the earlier time) and in these cases early arriving

aircraft need to be considered in the output measure. Here we assume that no penalty

for early arrivals exists. The number of total delay minutes (TDM) is defined as the

sum of the number of delay minutes of all flights.

Two basic statistics can be computed for the set of the delay minutes for all

flights: the mean and the standard deviation. The mean of the set provides the

average number of delay minutes per flight arrival and is defined as the ratio of TDM

to the total number of flight arrivals. The variance of the set provides a measure for

how wide the distribution of the delay minutes for all flights is.

The distribution of on-blocks delays for an example day at a hypothetical airline

is shown in Figure 3-8(a). The large spike at zero occurs since all flights that arrived

at or before the scheduled on-blocks time are included in this bin and not only the

flights that arrived at the scheduled on-blocks time. The mean of the distribution,

and thus the average flight delay per aircraft, is 8.1 minutes.
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3.3.2 On-Time Performance

On-time Performance (OTP) is typically measured as the ratio of delayed flights to

overall flights. A flight is on time if it arrives at the gate (on-blocks) before, at or

within a certain cutoff time, t, after the scheduled on-blocks time. Correspondingly,

a flight is delayed if it arrives more than t minutes after its scheduled on-blocks time.

Canceled flights are not included in the denominator or the numerator. Often, airline

OTP is evaluated using a cutoff of 15 minutes because the Federal Aviation Authority

(FAA) in the USA measures OTP in this way [22].

The OTP as a function of cutoff time t for the delay distribution presented in

Figure 3-8(a) is shown in Figure 3-8(b). The OTP will always be monotonically

increasing with increasing cutoff time, because an larger cutoff time will never result

in fewer flights to be on time than a smaller cutoff time. The OTP approaches 100% as

the cutoff time approaches the largest flight delay in the set of flight delays considered

(here 51 minutes).
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Figure 3-8: Example On-Blocks Delay Distribution and On-Time Performance
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Chapter 4

Application of Control Theory in

Airline Operations

Control theory is a field of study that examines the control of the behavior of dynamic

systems [30, 23, 8]. Control engineering is the application of control theory to design

systems that change real world dynamic plants so that their behavior becomes more

desirable. To achieve this, the plants are modeled as mathematical abstractions and

controllers for these models are designed within the framework of control theory.

4.1 Background

In control theory two major groups of controlled systems exist: Open loop and closed

loop controlled systems. The general block diagram for an open-loop controlled sys-

tem (enclosed by the dashed line) is shown in Figure 4-1(a). The input to the system

is a desired output and the output of the system is the actual output. Within the

system a controller creates a control signal based on a model of the plant to achieve

a desired actual output from the plant. Disturbances may affect the plant in its

behavior.

A simple example of an open loop system is a heater that does not consider the

current temperature in a room. The desired temperature (output) is entered through

the thermostat. The controller opens or closes the hot water valve to the heater
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Figure 4-1: Control System Block Diagrams

according to the thermostat setting and based on a model for how heat is lost to

the outside world. The room is the plant and its output is the room temperature. A

disturbance could be an open window that leaks cold air into the room at an unknown

rate and temperature. If the thermostat is set to a certain setting with the window

closed, the room will reach and maintain a certain temperature due to the heater. If

now the window leaks cold air into the room, the heater will still output the same

amount of heat as before, however now the cold air from the outside will cool the

room and the new room temperature will be colder than the room temperature in

the case of the closed window. In this open loop case the hot water value depends

only on the thermostat setting and not on the actual temperature in the room.

If, as in the example above, unknown disturbances exist or if the model of the plant

which the controller is based on is not accurate, the actual output of the closed loop

system will deviate from the desired output. Since the controller does not know about

the current state of the system, it is unable to adjust the control signal accordingly.
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This problem is overcome by closing the loop, i.e. feeding the actual output back

to the controller. The resulting system is called a closed-loop (or feedback) control

system (see Figure 4-1(b)). In the example above, this feedback may be completed

with a thermometer that measures the current room temperature. A closed loop

controller would take into account not only the thermostat setting but also the current

temperature of the room and open or close the hot water valve considering information

from both sources.

In classical control engineering, a three step approach is taken to implement a con-

trolled system. The first step is the system identification in which the input-to-output

characteristics of the plant are determined. The plant is probed in a structured way

and its response is analyzed. For this step, the plant needs to be built or simulated.

In the case of an airline the likely choice is simulation, since it would be very expen-

sive to probe an actual airline for its response to extreme inputs. The second step is

the system modeling in which a mathematical model of the plant is developed based

the knowledge of the system gained during system identification. The third and final

step is the controller design. A controller is developed to control the plant such that

the overall system has a desirable behavior.

4.2 Example of an Application of Control Theory

in Airline Operations

The following simplified example demonstrates a possible application of control theory

to an airline operation. Suppose that the management of an airline sets an acceptable

level of delay minutes per flight arrival (DMPA) (see 3.3). The management might

base the decision for this level on its understanding that a lower DMPA will be

expensive to reach and a higher DMPA will make customers unhappy. Initially, the

acceptable level DMPA is 14 minutes. The airline's scheduling department (SD)

therefore adjusts delay buffers to achieve the desired DMPA as well as possible over

time.
1Note that all variables used in this example are scalar and that the system is linear.
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In this example, the following abstraction of the airline operation (plant) is used:

The number of DMPA at a given discrete time t is DMPAt, where we will use the

abbreviated notation t + n to indicate the time at n time steps after t. DMPA is

measured in units of minutes. Due to delay propagation it is assumed that DMPAt

depends on DMPAt_ 1. Here we assume that delays cannot be reduced during flight

so that DMPAt oc DMPAt_ 1. For this example we also assume that delay can be

reduced by buffers such that DMPAt+1 oc -BPDt where BPDt is the buffer per

departure at time t in minutes. A third component that influences DMPAt is the

weather. Here, the weather impact, Wt, expresses the delay equivalent effect of the

weather at time t. Using the approximation that DMPAt oc Wt, a high value of Wt

represents bad weather that will cause more delays. Wt is also measured in units

of minutes. Combining the components affecting DMPA yields the following plant

model:

DMPAt+ 1 = DMPAt - BPDt + Wt (4.1)

The airline has no influence over the weather Wt. It also cannot change the past

and therefore, has no influence on DMPAt. It can, however, adjust the buffers in

the schedule by rerouting aircraft and/or making use of reserve aircraft. Thus, BPDt

can be considered the control signal in this example. The block diagram shown in

Figure 4-2(a) illustrates this airline as an open loop system. The airline scheduling

department is not aware about the current state of the operation, i.e., DMPAt. Flight

scheduling is conducted ahead of time and can therefore only be based on estimates of

the operational environment. The scheduling department can therefore only provide

open loop control. In this example this means that the airline cannot adjust to

weather changes or recover from weather driven delays; the scheduling department

will not have knowledge about the weather changes or the delays.

In addition to the Scheduling Department, airlines have an Operations Control

Center (OCC), which monitors the operation and takes recovery actions if necessary.

The OCC is aware of the current state of the operation and thus a feedback loop is
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Figure 4-2: Airline Delay Control System

added to the system (see Figure 4-2(b)). If the desired DMPA and the actual DMPA

differ, the error Et = DMPAdeired - DMPA, is nonzero and the OCC should choose

a BPD value to reduce the error. In this example, a possible implementation of the

OCC is

BPDt = k x Et = k x DMPAdesirea - k x DMPAt

where k is a constant gain. The controller in this case is called a proportional con-

troller, because it creates a control signal proportional to the error. Using this im-

plementation of the OCC, Equation 4.1 becomes

DMPAt+1 DMPAt - (k x DMPAdesired - k x DMPAt) + Wt

=(1 + k) x DMPAt - k x DMPAdesired + Wt (4.2)

The response of the proportionally controlled system to a change of the desired

DMPA in good weather with k = -0.5 is shown in Figure 4-3. At time t = 15, man-
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agement decides to fight the airline's reputation of being often delayed and changes

the desired DMPA from 14 minutes to 10 minutes. In this example, it is assumed

that the weather is constantly good and thus Wt = 0 for all t. When the change in
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Figure 4-3: Response of the P-controlled System to a Change in DMPAdesired

DMPAdesired occurs, the error becomes negative (E = -4). As a result, the P con-

troller issues a positive control signal (BPD = 2). Conceptually speaking, the OCC

implements buffers to reduce delays. Over the next few time steps the actual DMPA

approaches the new desired DMPA and the error becomes zero, as does the control

signal.

The choice of the controller gain k determines the performance of the system.

There exist a range of values for k at which the system will reach the desired DMPA

over time. In this example, the range is -2 < k < 0. For any value of k within

this range, the system will be stable and the actual DMPA will approach the de-

sired DMPA (see Figure 4-4(a)). For k = -1 Equation 4.2 becomes DMPAte± =

DMPAdesired + Wt and in the absence of weather effects this system will have the
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Figure 4-4: Response of the System for Different Gain Values

most desirable performance in terms of fast, accurate tracking of DMPAdesired.

This controller is called an inversion of the plant. Unfortunately, for complex

systems it is often costly or impossible to construct a controller capable of inverting

the plant. Outside the range -2 < k < 0 the system becomes unstable. For a positive

value of k (e.g., k = 0.03), the error increases exponentially, and the desired DMPA is

never achieved (see Figure 4-4(b)). For values of k smaller than -2 (e.g., k = -2.1),

the system oscillates with increasing magnitude.

In the above example it was assumed that Wt = 0 for all t. Now we introduce

negative weather effects. In a simple weather scenario, initially constant good weather

(Wt = 0) exists for t < 15 and constant bad weather with Wt = 2 exists for t > 15.

The response of the system with k = -0.5 is shown in Figure 4-5(a). The proportional

controller is unable to compensate for the weather disturbances and the system settles

with a steady error E = -2. A way to improve the steady state performance of the

system is to introduce an additional term to the controller. A possible addition to the

proportional term that will improve the system's performance is an integral term. The

resulting controller is called a proportional-integral (PI) controller. In the integral

term, all errors in the past and the error at the current time are summed up (or in a

continuous system the integral of the error is taken). It is the sum of all errors from

the beginning of the controlling of the system, i.e., It = E<t E,. Multiplied with a
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gain m this sum is used as part of the control signal to eliminate steady state offsets

in the system. The PI controller is described by

BPDt = k x Et +,m x It

The response of the system to the change in weather described above with the PI

controller with parameters k = -0.5 and m = 0.1 is shown in Figure 4-5(b). The

response of the proportional and the proportional-integral controlled systems to a

random weather disturbance that is uniformly distributed between Wt = 1 and Wt = 3

for t > 10 is shown in Figure 4-6. While the P controlled system's output DMPA

6 6

0 5 10 15 20 25 30 35 40
timestep t

(a) P (b) PI

Figure 4-6: Response of the System to Random Weather
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stays constantly above the desired DMPA, the PI controlled system operates closer

around the desired DMPA. The mean errors are -2.2078 and -0.4124, and the mean

squared errors are 5.565 and 0.739 for the P and the PI system, respectively.

Even though the above example relies on a highly simplified model of the airline

operation, it can serve as a motivation to further investigate ways to apply control

theory to airline operations. Modern control theory provides methods and tools to

develop controllers for a wide range of plants, including nonlinear and/or time-variant

plants with multiple input and/or output variables. To take advantage of these meth-

ods and tools in airline operations the properties of the operation need to be deter-

mined and input and output variables need to be chosen. The proposed simulation

study presented in Chapter 5 and the proposed analysis described in Chapter 6 are

initial steps in determining the properties and corresponding modeling parameters of

airline operations.
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Chapter 5

Simulation Setup

A simulation study should be conducted to provide data for an initial analysis of the

KPIs described in Chapter 3. The simulation environment and a benchmark data

set are described in this chapter. A proposed analysis of the data gained from the

simulation is presented in Chapter 6.

The goal of this simulation experiment is to create a airline operation that is

representative of real airline operations. Therefore, even though the simulation setup

is based on the operation of Lufthansa, it does not model Lufthansa's operation in

all details and cannot directly be utilized to predict future performance of Lufthansa.

However, the simulation can serve as a source of data for fundamental research and

as a testbed for airline scheduling strategies.

5.1 MIT Extensible Air Network Simulation

The flow of aircraft through the air network and the effects of weather on airport

capacity are simulated with the MIT Extensible Air Network Simulation (MEANS).

MEANS is an event-based simulation of traffic flows in the air transportation network

[14, 18, 16]. It simulates the flow of aircraft, crew and passengers through a network

of queues to model capacity constraints in the air transportation network. MEANS

was initially designed in 2001 [17] and has been expanded in subsequent years. It is

written in C++ and can be run on Linux and Unix systems. MEANS is used for the
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research of new concepts in traffic flow management, airline schedule planning, and

operations.

The modular structure of MEANS is shown in Figure 5-1. Aircraft flow through

the different flight stage modules (gate, taxi, tower, en route) along the dotted lines.

Two more modules (TFM, airline) make decisions about the schedule to be executed

by the flight stage modules. An additional weather module provides weather infor-

mation to other modules.

For each of these modules there exist a variety of implementations that can be

used. The gate module determines the aircraft off-blocks time considering the airline

Weather
Module

En Route Module
------- I

En
Route

TowerModule

Arrival Departure
Queue IQueue

~17
TFM Airline

Module * Taxi Module Module
- - - -- - -I -- - - - - --

Taxi- Taxi-
In Out

Gate Module

Gate

Figure 5-1: MEANS Modular Structure

schedule, the last on-blocks time of the aircraft, the MinGT for the aircraft, and traf-

fic flow management programs. The implementation used in the simulation platform

presented here utilized MinGTs provided by Lufthansa. No model for aircraft unavail-

ability resulting from mechanical failures is used. The taxi module determines the

taxi-out time (off-blocks to runway departure queue) and taxi-in time (landing to on-
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blocks). The implementation of the taxi module used here determines the taxi times

from taxi time distributions derived from historic data provided by Lufthansa (see

5.3.3). The tower module controls the departure and arrival queues at the airports.

It also determines the available capacity at an airport using airport capacity profiles

(see 5.3.5) and assigns take-off and landing times to flights. The en route model

determines the flight time for each flight between take-off and the arrival queue of

the destination airport. The implementation of the en route model used in the simu-

lation platform described here does not model the details of en route flights such as

actual aircraft routings, wind and weather effects, or en route congestion. The flight

times are drawn from flight time distributions derived from historic data provided

by Lufthansa (see Section 5.3.4). The Traffic Flow Management (TFM) module im-

plements traffic flow management programs, such as ground delay programs (GDP).

Here, no traffic flow management programs are used and the TFM module performs

no function. The weather module determines the actual weather and forecasts at

the airports and provides this information to the en route and tower modules. In

the simulation platform presented here, en route weather is not simulated and only

actual airport weather without forecasts is considered (see Section 5.3.6). The air-

line module tracks and recovers the airline schedule. It can make recovery decisions

for aircraft, crew, and passengers. In the simulation platform presented here, crew

and passengers are not tracked or recovered and the aircraft tracking and recovery is

performed by the Integrated Operations Control System (IOCS).

5.2 Integrated Operations Control System

The Integrated Operations Control System (IOCS) is an airline operations control

tool by Carmen Systems AB 1 [1]. It provides an interface for tracking and managing

airline operation and decision support as well as automated recovery solvers. IOCS

covers the aircraft, crew, and passenger domains and solves for optimal or close to

optimum recovery options across the three areas focusing on passenger service and cost

'Carmen Systems AB, Odinsgatan 9, SE-411 03 G6teborg, Sweden
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control. The scalable design of IOCS allows stepwise implementations and integration

with existing systems. IOCS can be run on Unix or Linux servers in conjunction with

an Oracle2 database and takes standard and specialized Extensible Markup Language

(XML) input streams.

The implementation of IOCS used in the simulation platform described here acts

as the airline module within MEANS. It tracks aircraft and provides aircraft recovery

decision. Crew and passengers are not tracked or recovered. IOCS reevaluates and

resolves the aircraft situation every 30 minutes in simulation time.

5.3 Simulation Input

5.3.1 Flight Schedules

The benchmark input flight schedules used in the simulation study are based on

Lufthansa's continental flight schedule of the months November 2004, December 2004

and January 2005. For each simulation run, one benchmark flight schedule is created

by extracting three consecutive days from the historical flight schedule. Only the

first of these three days is simulated. The remaining two days are included in the

simulation to enable IOCS to make recovery decisions that consider the next two

days.

5.3.2 Aircraft Assignments

The benchmark aircraft assignments are based on the aircraft assignments provided

by Lufthansa along with the flight schedules. For each day, the chains (or strings) of

flights that are serviced by a single aircraft in the original schedules are kept intact.

Between days, each of these chains of one day is matched with a chain of the next day

on a first come first serve basis at the overnight station while ensuring that matched

chains have the same fleet type. Specific aircraft (tailnumbers) are then assigned to

the resulting, jointed chains. For some simulation runs the global fleet composition

2 Oracle Corporation, 500 Oracle Parkway Redwood Shores, CA, 94065, USA
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is changed from the one provided with the schedules. In these cases, one or multiple

chains that are originally operated by the Boeing 737 fleet are changed to be operated

by the Airbus A320 fleet.

5.3.3 Taxi Times

In the benchmark input data sets, all aircraft types have the same distribution of

taxi times. For FRA and MUC, taxi time distributions are derived from historic data

provided by Lufthansa for April, May, August, and September 2005. These warmer

months of the year were chosen to avoid expected effects of deicing in the winter

months. The taxi times available from historic data include the actual time required

to taxi to/from the runway, as well as waiting time during the taxi process and at

the runway before take-off. To derive the actual time required to taxi to the runway

as an input for the simulation (the waiting time on the ground is added by the tower

module of MEANS), the number of historic samples was significantly truncated to

exclude flights that were likely to have waiting time.

FRA and MUC have night curfews which prohibit aircraft from taking off or land-

ing during the night. One exception to these curfews are domestic mail flights. Since

almost no other traffic exists at night, it is assumed that mail flights during curfew

hours never have to wait on the ground before departure due to traffic. Therefore,

the taxi times recorded for these flights are assumed to not include any holding time

on the ground and are used to derive the distributions of taxi times. The derived dis-

tribution for taxi times is shown in Figure 5-2. The cumulative distribution function

(CDFs) are smoothed by a linear interpolation between integer minutes because the

granularity of time in MEANS is seconds.

For all airports other than FRA and MUC deterministic taxi-in and time-out

times based on historical data are used in the benchmark input data sets.
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5.3.4 Flight Times

Because airport traffic other than that of the airline in focus is not simulated at any

airport other than FRA and MUC (see 5.3.7), it is not possible for any other airport

to reach capacity. Therefore, only the simulation arrival queue in FRA and MUC

will reach a notable size. The simulation arrival queue at the other airports will

remain very small and, therefore, no significant simulated in-flight waiting time is

expected at these airports. To account for this phenomenon, two different methods

of determining the benchmark input flight times to MEANS are used, dependent on

the arrival airport of the flight. Historic flight time records show the actual flight

time, including in-flight waiting. For flights arriving at any airport other than FRA

or MUC, this overall flight time is used as an input to MEANS. For flights arriving

in FRA and MUC, the in-flight waiting time is determined by the MEANS tower

module. Therefore, the flight time input to MEANS for FRA and MUC needs to be

unimpeded (i.e., it cannot include the waiting time).

To derive unimpeded flight time distributions for flights arriving at FRA or MUC

and overall time distributions for all other airports, an assumption is made that

the total flight time consists of two components. The first component is the direct

flight time without any traffic-induced in-flight waiting. The main influence on this

component is the wind the aircraft encounters during its flight. It is assumed that

the wind effect is distributed as a Gaussian distribution around a mean wind effect.

As a result we assume that the direct flight time is also distributed as a Gaussian

distribution. The second component is the in-flight waiting time. Here we assume

that short in-flight delays occur much more frequently than long in-flight delays and

are, therefore, assumed to be Exponentially distributed. The total flight time is a

random variable T = D + W where D and W are independent random variables

that have Gaussian and exponential distributions, respectively. The derivation of the

probability density function of T, fT(t), is given in Appendix B. The distribution of

T is dependent on three input parameters: the mean (p) and the standard deviation

(a) of the Gaussian distribution and the Poisson arrival rate (A) of the Exponential
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distribution. For each flight leg, these three parameters are determined for a best fit

of fz(z) to the historic data'. The mean direct flight time is u, and the mean in-flight

waiting time is

Four examples of the best-fit Gaussian-exponential distribution for flights arriving

at airports other than FRA and MUC are shown in Figure 5-3. The frequency of

occurrence in the historical data is shown in the gray bars and the probability density

function of the best-fit Gaussian-exponential distribution is shown as a solid line. The

parameters of the best-fit Gaussian-exponential distribution as well as the R2 values

of the best-fit are shown below the graphs.
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Figure 5-3: Example Flight Time Distributions

Four examples of the best-fit Gaussian-exponential distribution for flights arriving

3using the fit function provided with the Curve Fitting Toolbox of Matlab, Version 7.0.1.24704

(R14) SP1 by The MathWorks, Inc, 3 Apple Hill Drive Natick, MA, USA
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at FRA and MUC are shown in Figure 5-4. In addition to the historical data (gray

bars) and the best fit Gaussian-exponential distribution (solid line), a Gaussian using

the parameters of the Gaussian part of the Gaussian-exponential distribution is shown

as a dashed line. The Gaussian distributions shown in the plots peak at a lower flight

time value than the Gaussian-exponential distributions and the historic data. The

addition of nonnegative in-flight waiting times will shift the peak to the right in the

graphs. The Gaussian distributions are also narrower than the Gaussian-exponential

distributions. The variance of a sum of two random variables, D and W is given by

Var(D + W) = E [(D + W - E[D] - E[W]) 2]

= E [(D - E[D]) 2 + (W - E[W]) 2 + 2(D - E[D])(W - E[W])]

= Var(D) + Var(W) + 2Cov(D, W)

Since here D and W are independent,

2Cov(D, W) = 0

and, thus,

Var(D + W) = Var(D) + Var(W)

and because the variance of a distribution of real numbers is always nonnegative

Var(D + W) > Var(D)

Here Var(W) = 1/t 2 , which will in all practical cases be a positive number. Therefore,

the Gaussian distribution will always be narrower than the Gaussian-exponential

distribution.
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5.3.5 Airport Capacity Profiles

An airport capacity profile defines a maximum number of operations (departures

and arrivals) per given time frame envelope for an airport under certain conditions

[7]. It provides the maximum number of possible departures per given time frame

as a monotonically decreasing function of the number of arrivals and vice versa.

An airport's capacity depends on many conditions: the number of runways, their

layout, and whether they are used for take-offs, landings or both; the wind conditions

which specify which of the available runways can be used (certain cross- and tail-wind

limitations apply to aircraft taking off or landing); and the separation requirements

between the aircraft, which are governed by the ceiling and visibility conditions.

In the benchmark input data sets, four different airport capacity profiles for differ-

ent weather scenarios are used for both FRA and MUC: (1) a Visual Meteorological

Conditions (VMC) profile represents the best weather case at which the maximum

airport throughput is achieved; (2) a marginal VMC (MVMC) profile represents a

case of poorer weather which, however, still enables at least some of the aircraft to

operate at the airport with visual separation of other traffic; (3) an Instrument Me-

teorological Conditions (IMC) profile represents the scenario under which all aircraft

and, therefore, need to maintain radar separation from each other (which is greater

than visual separation); (4) a Low Visibility (LowVis) scenario under which special

approach and departure procedures are in use and the throughput is lowest. The

choice matrix for the airport capacity profiles is given in Table 5.1.

The airport capacity profiles in the benchmark input data sets are based on data

provided by the Airport Coordination of the Federal Republic of Germany 4 and Ger-

man Air Traffic Control 5 [31]. The derived airport capacity profiles for FRA and

MUC are shown in Figure 5-5.

4 Airport Coordination Federal Republic of Germany, Terminal 2-E, FAG-POB 37, D-60 549
Frankfurt/Main, Germany

5 DFS Deutsche Flugsicherung GmbH, Am DFS-Campus 10, 63225 Langen
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5.3.6 Weather Scenarios

The weather inputs to MEANS in the benchmark input data sets are Meteorological

Terminal Area Reports (METARs) provided by the Aviation Digital Data Service

(ADDS) 6 of the National Weather Service (NWS) 7 . For FRA and MUC, the weather

given by the METARs is assigned to a weather category according to the choice

matrix given in Table 5.1. These weather categories determine the airport capacity

profile used (see 5.3.5). The benchmark weather conditions at FRA and MUC for

each simulation day are shown in Appendix C.

Table 5.1: Weather Categories [27]

Category Ceiling Visibility
VMC greater than 3,000 feet AGL and greater than 5 miles
MVMC 1,000 to 3,000 feet AGL and/or 3 to 5 miles
IMC 500 to below 1,000 feet AGL and/or 1 mile to less than 3 miles
LowVis below 500 feet AGL and/or less than 1 mile

5.3.7 Airport Traffic

Even though Lufthansa is the dominant carrier at both of its major hubs, it only

accounts for 52% and 43% of the total operations at FRA and MUC, respectively

[15]. Therefore, in any weather scenarios other than LowVis, neither of those two

airports will be utilized up to its capacity by flights of Lufthansa only. Therefore,

traffic other than the Lufthansa continental flights, which are included in detail in

the benchmark flight schedules, (i.e., Lufthansa regional and intercontinental flights,

flights of other airlines, the military, and general aviation) have to be modeled in the

simulation to project realistic holding times in the air and on the ground at FRA and

MUC.

In the benchmark input data sets, one such traffic scenario for each FRA and MUC

6http://adds.aviationweather.noaa.gov/
'US Dept of Commerce, National Oceanic and Atmospheric Administration, National Weather

Service, 1325 East West Highway Silver Spring, MD, 20910, USA
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is used. They are derived from airline schedule data from [15] and are presented in

Figure 5-6. The traffic in Munich occurs mainly in two waves, a wave occurring in

the morning and the afternoon. In between the two waves there is a two hour period

of low traffic density. During the strict night curfew between 0:00 and 6:00 there is

no scheduled traffic in MUC.
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Chapter 6

Proposed Analysis

The simulation platform described in Chapter 5 can be used to gather large sets

of data for analysis. The benchmark input data prepared as part of this thesis as

described in Chapter 5 will provide such a data set. This chapter proposes a method-

ology for analysis.

6.1 Initial Analysis

To analyze the correlations between the KPIs and the output measures, first calculate

the KPIs defined in Chapter 3 for each input schedule in the input data set for a set of

weighting coefficients and functions. Then compute the the output measures defined

in chapter 3 for each simulation output. This provides a set of points, one for each

KPI and output measure combination. The points lie on a two-dimensional coordinate

system with the KPI values on one axis and the output measure values on the other

axis.

Each of these sets of points is tested for correlation. A variety of fit-types (e.g.,

linear, exponential, polynomial) can be examined. A hypothetical plot of the values

of a KPI (here GSD) vs. the corresponding values of an output measure (here 15

minute OTP) is shown in Figure 6-1(a). Each input schedule, which determines the

GSD value, is simulated in a set of different weather scenarios and with different

taxi and flight times, which are drawn randomly from the distributions described in
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Sections 5.3.3 and 5.3.4, respectively. Therefore, identical schedules will produce a

range of OTP values. As a result, there exist multiple OTP values for each GSD

value.

The curve can be fitted to all available data points (see Figure 6-1(a)). To avoid

strong influences of outlying data points, the curve fit can also be applied to a set

of points that are derived from the complete set of data points. One such approach

is to use the mean value of the set of output measure values for each KPI value (see

Figure 6-1(b)). Another approach is to use the median value of the set of output

measure values for each KPI value (see Figure 6-1(c)). The choice of approach for

the analysis depends on the properties of the original complete set of points. Here,

both approaches result in significantly different best fit curves, because the mean and

median values differ. A concave curve is used for the mean and a convex curve is

used for the median.

6.2 Optimization of Weighting Coefficients and Func-

tions

In the initial analysis described in Section 6.1, the weighting coefficients and weighting

functions for the KPIs were given. In addition to the optimization of the curve fit (e.g.,

minimizing the mean squared error) by adjusting the curve parameters, the weighting

parameters of the KPI can be optimized to yield a better curve fit. For each distinct

set of weighting parameters of the KPI, one best fit curve can be determined with

standard curve fitting tools. The goodness of fit of these curves (e.g., R2 value)

will vary for different weighting parameters of the KPI. By varying the weighting

parameters, the KPI values can be adjusted while the corresponding output measure

values remain unchanged. Thus, when including the weighting parameters in the

optimization, a better fitting curve can be should be found for the correlation between

KPI and output measure. The process of optimizing the weighting parameters of a

KPI for a set of data can be computationally costly, however, the procedure will only
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Figure 6-1: Plot of Hypothetical Correlation between GSD and OTP
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be required infrequently. Once a set of optimized weighting parameters is found, it

can be used for the computation of the KPI until significant changes occur in the

environment in which the schedules are operated. In practice, a re-optimization of

the weighting parameters every month should be sufficient, because the environment

of the operation does usually not change significantly in a shorter time frame.
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Chapter 7

Directions for Future Research

Multiple extensions to the proposed simulation study can be carried out with addi-

tional data sources. Airport capacity profiles, weather, and other airline traffic are

currently only modeled for the airports FRA and MUC. Additional airports can be

modeled without great difficulty given the required data. While multiple weather

scenarios are considered in the study presented in this thesis, only one airport traffic

scenario for FRA and MUC is considered. Additional weather and airport traffic

scenarios can increase the sample space for analysis.

Expansions to the simulation platform can increase its fidelity. Currently only

aircraft are tracked and recovered. A valuable addition to the simulation would be

the tracking and recovery of crew and passengers. A more detailed en route model

considering en route winds and weather can capture correlation between the flight

times of different flights that operate along similar flight paths at a similar time.

These correlations are currently not considered in the simulation. Models for reduced

aircraft dispatch reliability due to technical failure and for a maintenance system can

increase the fidelity of aircraft availability in the simulation.

With the integration of crew and passenger tracking and recovery into the simu-

lation, the analysis of KPIs that include crew and passenger data can be conducted.

These KPIs can potentially cover the situation of the airline operation more com-

pletely than those analyzed in this thesis.

An analysis of different time frames for which the KPIs are evaluated can help
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to identify the most meaningful KPI and time frame combinations. The KPIs and

output measures analyzed in this thesis are aggregated over a day, however, the length

of the time frame for the computation of a KPI can be varied.
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Appendix A

Acronyms and Initialisms

ADDS Aviation Digital Data Service

AGL above ground level

ATC Air Traffic Control

BOS three letter IATA code for Boston Logan International airport

CDG three letter IATA code for Paris Charles De Gaulle airport

DUS three letter IATA code for Duesseldorf International airport

DFS Deutsche Flugsicherung (German Air Traffic Control)

FIFO First-In First-Out

FRA three letter IATA code for Frankfurt Rhein-Main airport

GFCI Global Fleet Composition Indicator

GSD Global Single Swap Options per Departure

GTSD Global Time Averaged Swap Options per Departure

HAM three letter IATA code for Hamburg Fuhlsbuettel airport

IATA International Air Transport Association

IFR Instrument Flight Rules

IMC Instrument Meteorological Conditions

IOCS Integrated Operations Control System

KPI Key Performance Indicator

LHR three letter IATA code for London Heathrow airport

LowVis Low Visibility conditions
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MAN three letter IATA code for Manchester Ringway airport

MEANS MIT Extensible Air Network Simulation

METAR Meteorological Terminal Area Reports

MinGT Minimum Ground Time

MIT Massachusetts Institute of Technology

MUC three letter IATA code for Munich Franz Josef Strauss airport

NWS National Weather Service

OCC Operations Control Center

OTP On-Time Performance

STR three letter IATA code for Stuttgart Echterdingen airport

TDM Total Delay Minutes

TFM Traffic Flow Management

TXL three letter IATA code for Berlin Tegel airport

USA United States of America

VFR Visual Flight Rules

VMC Visual Meteorological Conditions

WBD Average Weighted Buffers per Departure

WSD Weighted Single Swap Options per Departure

WTSD Weighted Time Averaged Swap Options per Departure
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Appendix B

Derivation of Probability Density

Function of Flight Time

D ~ Normal(p,,a)

W ~ Exponential(A)

T = D+W

fT(t)
= L0fD(t - x) x fw(x)dx

Since fw(w) = 0 for w < 0 the integration limits can be reduced to 0 and oo.

fDz - x) xfw(x)dx

f O 1 -(z_ -jd)

Sex=0 I x AeAxdx
X=0 a -/2-7

-A eA+5o2A2 -Az

2
+ erf(Z + y + A2) V2

2a
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Appendix C

Weather Scenarios

Scenario 1 MFA
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FRA
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