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Abstract

Future formation flying missions are being planned for fleets of spacecraft in MEO, GEO,
and beyond where relative navigation using GPS will either be impossible or insufficient.
To perform fleet estimation for these scenarios, local ranging devices on each vehicle are
being considered to replace or augment the available GPS measurements. These estimation
techniques need to be reliable, scalable, and robust. However, there are many challenges
to implementing these estimation tasks. Previous research has shown that centralized ar-

chitecture is not scalable, because the computational load increases much faster than the
size of the fleet. On the other hand, decentralized architecture has exhibited synchroniza-
tion problems, which may degrade its scalability. Hierarchic architectures were also created
to address these problems. This thesis will compare centralized, decentralized, and hier-
archic architectures against the metrics of accuracy, computational load, communication
load, and synchronization. It will also briefly observe the performance of these architectures
when there are communication delays. It will examine the divergence issue with the EKF
when this estimator is applied to a system with poor initial knowledge and with non-linear
measurements with large differences in measurement noises. It will analyze different decen-
tralized algorithms and identify the Schmidt-Kalman filter as the optimal algorithmic choice
for decentralized architectures. It will also examine the measurement bias problem in the
SPHERES project and provide an explanation for why proposed methods of solving the bias
problem cannot succeed. Finally, the SPHERES beacon position calibration technique will
be proposed as an effective way to make the SPHERES system more flexible to a change of
testing environment.
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Chapter 1

Introduction

Future formation flying missions are being planned for fleets of spacecrafts in MEO, GEO

and beyond, where relative navigation using GPS would either be impossible or insufficient.

To perform fleet estimation for these scenarios, local ranging devices on each vehicle are

being considered to replace or augment the available GPS measurements. 1-1 Besides being

identified as an enabling technology for many types of space science missions [9], the concept

of formation flying of satellite clusters has also been identified as one of the enabling tech-

nologies for the NASA exploration initiative [10]. Examples include ground-exploration in

remote destinations where vehicles have to work together to be more efficient than a single

vehicle 1-2.

The use of many smaller vehicles instead of one monolithic vehicle can have several

benefits:

" improving the science return through longer baseline observation.

" enable faster ground track repeats.

" provide a high degree of redundancy and reconfigurability in the event of a single

vehicle failure.

17



Figure 1-1: A fleet of spacecraft in deep space with relative ranging and communication

capabilities

However, the guidance and navigation system for these large fleets is very complicated and

requires a large number of measurements. Performing the estimation process in a centralized

way can lead to a large computational load that can make the system unusable. Therefore,

there is a need for distributing the computational load using decentralized or hierarchic

estimation architectures.

This work will focus on extending the previous work of Plinval [1] and Ferguson [22]. It

will also provide the analysis that shows the benefits of using Schmidt-Kalman filter as a

choice for decentralized estimators.

In addition to this topic, two more ideas will be explored. The first is the analysis

of EKF divergence in the presence of so-called divergence factors such as non-linearity in

measurements with distinct accuracies and large initial co-variance.

The second is the SPHERES bias estimation problem and potential solutions. Also, the

18



Figure 1-2: Ground exploration vehicles at the Aerospace Controls Lab, MIT

beacon position calibration technique for SPHERES will be introduced and presented as a

part of the chapter. This technique will show a simple estimation approach in determining

the beacon positions in the SPHERES test environment, which would provide great flexibility

for the SPHERES system.

1.1 Thesis Outline

This thesis consists of six chapters. After the initial introduction, the second chapter will

focus on the divergence issues with the extended Kalman filter. Previous work will be briefly

described, followed by new insights and simulations.

Chapter 3 examines the analysis of decentralized estimation filters for formation fly-

ing spacecraft, in which bump-up decentralized algorithms (more specifically, the Schmidt-

Kalman filter) are shown to have an advantage over the non-bump-up estimators. The

analytical derivation is shown, followed by the simulation results.

Chapter 4 describes the various estimation architectures and compares them against sev-

19



eral different metrics. This, in essence, is a continuation of the work done by Plinval [1} with

an improved simulator. A brief, qualitative discussion of robustness of various estimation

architectures is included.

Chapter 5 describes the measurement bias problem in SPHERES and potential ap-

proaches to solve it. However, the specific nature of the biases in the SPHERES measurement

system creates a much more complex problem, which cannot be solved easily and efficiently

using estimation techniques. This chapter also describes the SPHERESs beacon position

calibration technique, which allows the SPHERES system to be more flexible when changing

test environments.

Finally, the last chapter summarizes the work of the previous chapters.

20



Chapter 2

Mitigating the Divergence Problems

of the Extended Kalman Filter

2.1 Introduction

The Extended Kalman Filter (EKF) is the most common non-linear filter for estimation

problems in the aerospace and other industries. The EKF performs very well in solving

problems with non-linear measurements and/or non-linear dynamics. However, the filter

is not optimal due to the approximation that is performed using the linearization method

(i.e. Taylor series expansion). This linearization can also cause undesirable effects on the

performance of the filter [3, 4]. We will consider how the EKF can diverge when applied

to a system with a large initial state-error covariance that uses non-linear measurements of

distinct accuracies [1].

The EKF divergence issues are well known and documented [3, 4, 5, 6]. Several studies

have already described the causes of divergence in the EKF for relative navigation prob-
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lems [8, 22, 25]. The recent work of Huxel and Bishop [8] addresses the divergence issue

of EKF in the presence of large initial state-error covariance,inertial range (large p) and

relative range (small p) measurements. They concluded that EKF divergence is caused by

ignoring the large second order linearization terms in B that correspond to relative (short)

range measurements. The B term is included in the Gaussian Second Order Filter (GSF),

which allows the GSF to converge. Because the measurements used in their analysis were

of equal accuracy, they did not explore the effect on the system when some measurements

had different accuracies than others. Plinval [1] described the effect of using sensors with

different accuracies on the performance of the EKF. He geometrically explained the reason

behind the divergence of EKF when the non-linearity in the sensors is coupled with their

different accuracies. This chapter will extend that analysis to show that the EKF can have

divergence issues when three different divergence factors are combined (see Problem State-

ment). We will also provide a more general discussion of the problem presented by Plinval

and introduce two methods (GSF and Bump-up R) to address the problem.

2.2 Problem Statement

As discussed in Ref. [1], the problem of EKF divergence due to non-linear measurements of

substantially different accuracies can be explained geometrically. The problem lies in the

process of linearizing the non-linear measurements, in which some information is lost. This

means that in every subsequent step, the measurement matrix H in the EKF measurement

update equation is incorrect. This error can become even more significant during the es-

timation process if the measurements being linearized have different accuracies. However,

for this effect to actually become significant, the filter needs to rely mostly on the measure-

ments. This will be the case if there is a large initial state-error covariance P. Therefore,

the divergence of the EKF can be caused when three "divergence factors" are combined:

22



" Large initial state-error covariance PO. Large means much larger than measurement

noise covariance R.

" Significant non-linearity in measurements.

" Large difference in the measurement errors.

2.2.1 Problem Walkthrough

Let us consider a system where a state vector of size 2 is estimated using non-linear sensors

of significantly different accuracies and with poor initial knowledge of the states (i.e. large

Po). This is similar to the system used in Ref. [1]. After the first measurements are collected,

the state error covariance matrix P can be updated as

P+ = (I - KH)P~ (2.1)

Since Po is large, the filter will give preference to the measurements rather than the previous

knowledge. After the first update, the state error covariance matrix will have a very small

eigenvalue in the direction associated with the more accurate measurement. However, it will

still have a large eigenvalue in the direction associated with the less accurate measurement.

The new measurements collected after the first update will now be linearized around the

newly acquired estimate. This means that the directions of the linearized new measurements

will be different from the directions of the previous measurements. During the second update,

the more accurate measurement will cause a further decrease in state error covariance in

the direction corresponding to that measurement. However, this direction is not the same

as in the previous update step. This can lead to a significant decrease in the state error

covariance in a wrong direction. This can be observed in Figure 2-1. Furthermore, as the

state error covariance matrix, P, decreases in directions other than the ones corresponding

23



Actual Position Actual Position

Dirction of Direction of Direction of Direction of

Sensor Accurate Sensor Accurate
Sensor Sensor

Confidence Confidence
Area Before Area Before EstimatedUpdate Update Positon

Estimated
Position

Confidence Confidence
Area After Area After

Update Update

Figure 2-1: The Update Step as it should occur (left), and as it actually occurs (right). The

curved line is the level line of the range measurement: on this line, the range is constant.

to the direction of the accurate measurement, the EKF will become decreasingly responsive

to measurements in those wrong directions and it will become increasingly confident in its

prior state knowledge. If the state error covariance becomes sufficiently small with the state

estimates still far away from the true state, the EKF will diverge. This phenomenon is called

spill-over of good measurements in the wrong directions.

2.2.2 Divergence due to Three Divergence Factors

In the problem statement, we referred to the three factors that are responsible for the

divergence of the EKF. Of course, it is possible to have divergence with only two of those

factors, especially when highly non-linear measurements are involved. However, when all

three factors are included, the EKF can diverge easily. In order to confirm this, we will

show a series of simulations with various factors included in the simulation section. The

simulations will show that when one of the factors is accounted for or is minimized, the EKF

will converge.
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Figure 2-2: The divergence of the EKF when all three divergence factors are present. On

the left, range measurement is much more accurate than the bearing measurement. On the

right, the bearing measurement is much more accurate than the range measurement

Figure 2-2 shows the performance of the three different filters, EKF, GSF and Bump-up

R when all three divergence factors are present (the details of these simulations are given in

the Simulation section, 2.4). That is: the EKF filter diverges when non-linear measurements

of highly different measurement noises are used for updating the system with large Po.

The performance of the GSF and Bump-up R filters is also shown in Figure 2-2. Their

performance is superior to the performance of the EKF filter, as they are accounting for one

of the three divergence factors. This will be examined in the following sections.

2.3 EKF, GSF and Bump-up R Algorithms

This section will focus on the derivation of the three filters. We will use the system similar

to the one described in chapter 6 of [1]. The system is in 2D, and we are trying to estimate

the position of the fixed object using two non-linear measurements: range and bearing.

In addition, we will use the scalar update approach to show the evolution of the B term
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described in the GSF algorithm. System state model is as following:

Xk
Xi1

2
-k

where the states: x1 = x, X2 = y, are coordinates of the fixed object

Xk+1 [#1 0

0 #2 k-[X1

X2
. k

+4Wi1

W2
- k

Setting the process noise w to zero and using the fact that, in order to simplify the analysis,

there are no dynamics

AXk = 0 => xk+1 = zk and xk+1 = X k (2.4)

or equivalently that 41 = 02 = 1. The time propagation equations for state error covariance

simplified to

P4+1 = Pk+ (2.5)

This allows us to focus on the measurement update equations. The non-linear range and

bearing measurements can be written as:

h1= p = + 2

h2=6 = arctan (-)
with corresponding Jacobian:

±1

-x 2

P2
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(2.6)

(2.7)

(2.8)
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The measurement accuracy is:

(2.9)
o o2

where o- and of are range and bearing measurement noise covariances, respectively. The

initial conditions are:

x 1 = X0

x 2  =o

PO = 0
0o 2

(2.10)

(2.11)

(2.12)I
whereoji = .2 = o'0

Having all the initial values, we can proceed with analyzing different filters. The analysis

of the EKF and its related divergence problem is closely tied to the results obtained for the

GSF case, so only the GSF analysis will be presented.

2.3.1 Gaussian Second Order Filter

the measurement update equations for the Extended Kalman Filter (EKF) and the Gaussian

Second Order Filter (GSF) [?) are:

K = P-HT (HP--HT + R) 1  fo

K = P-HT (HP-HT + R + B)-

r EKF (2.13)

(2.14)for GSF
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where B is the covariance term due to the second order terms. B is calculated using Hessians

H' and H2, by calculating each member of matrix B separately:

1
Bik = trace(H'P-HP-) j,k = 1, 2 (2.15)

Hessians H' and H are defined as second order derivatives of measurement functions hi and

h2. Note that the Hessian of h is a tensor:

0 2 hi (k)
H= O 2

H' =0 2 h2 (i)
2 aiC2

(2.16)

(2.17)

In this case H' and H2 are:

x 2  X

P3 P3
p p

4

-

p 
4

I'2 '2

x2
4 4

2x 1 x 2

(2.18)

(2.19)I
Then, the initial matrix B can be calculated:

4
go0

2Up4
I (2.20)

Using the initial value of B, P, H, and R, we can proceed and calculate the B term after

the first update step. To do this, we will perform the first measurement update step on the

GSF, one measurement at the time (scalar update approach [81). We will then apply the
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approximation used by Huxel and Bishop [8], to obtain bounds for B:

1
0 < Bh:h < -(lDhl|trace(P~))2

2
(2.21)

where Bhkk corresponds to B, and Dh corresponds to Hessian in our case. Performing the

measurement update with the first (range) measurement:

(2.22)
P

Where H1 corresponds to the first row of the Jacobian matrix H. Therefore:

H1 PoHi
-[ 1

p2

P

~][
2-(.0 + i)

p2

2
Oro0

and

2- 21 2

K2 002

.p 1 -

where 042 p2

02 0 1

0 o- 2
00 [p

2
(2.23)

(2.24)

(2.25)

+ a2 +
" 2p 2 (2.26)

= B11, as calculated earlier in equation 2.20. In order to compute the bounds on

B we need to calculate the trace(P). Therefore, the elements on the main diagonal of the

state error covariance matrix pu and p+ can be calculated as:

P+ = (I - KH)P- (2.27)
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p = oo 1  (2.28)(1 2 00- + U 2 + 4)

+ = a 1 - (2.29)P22 0 2 (2 + U2 +

Simplifying the expressions for pn and p2:

h= 1 (2.30)
p2 (0- o +p

( 2

>o-2 2 0 (2.31)
2 2+,-~ /

= + 
(2.32)

2~ + U2+ O

and the similar result (using x 2 instead of 1) can be obtained for p2 after the update with

the first measurement. A detailed analysis of equation 2.32 reveals several key properties

for various important cases. For example, depending on the relative values of o-o, u, and p,

the expression 2.32 will show what influences p+ and p+ the most. The range p plays an

important role in determining the significance of non-linearities in measurements. Therefore,

we will observe two different cases with respect to the size of p:

* P > go > 0
7p

0e- ~ -o >a p

Case 1: p > uo > o-

In the first case, p > oo > ,, the Eq.2.32 collapses to the following expression:
(22

+ 0 c , 2 P

30



A similar expression can be obtained for p2. This expression shows that for a large range,

p, the p' term is very small. This is as expected, since when the state error covariance is

relatively large compared to the measurement error covariance, the Kalman filter will mostly

rely on the new information coming from the measurements, rather than on the previous

information. After using the same approach for the second measurement, and applying the

equations 2.5 and 2.21, similar results were reached, which were confirmed in the simulations

(I|BII is on the order of measurement noise). The analytical derivation of the measurement

update with the second measurement is avoided here since it is long and does not add much

weight to the discussion.

It can be concluded that the compensation term due to the non-linearities in the mea-

surements, B will be very small, and as stated in 2.21 the non-linear effect of measurements

will be small. The initial B shown in the equation 2.20 is also very small due to large p. This

means is that the large p diminishes the non-linear effect of the non-linear measurements.

Therefore, the large p can account for one of the divergence factors and EKF can converge,

as shown in Figure 2-3. (Large number (50) of initial conditions were tested and Figure 2-3

is a representative sample.)

Case 2: p ~~ Oo > p

The previous case has shown that the compensation term B may not have a large effect on

the performance of the EKF filter when p is large. However, in this case, p is of the same

order of magnitude as o-o. The equation 2.32 can not be approximated as in the previous

case and it remains:

pii =- 2 +U2 (2.34)
O 2p2
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Figure 2-3: The range p is large, making the B term small. The performance of the EKF
and GSF does not differ much, even though the measurements still have a large difference
in their noises.

Therefore, according to Eq.2.21, the linearization compensation term B will become signif-

icantly larger than in Case 1. Of course, this is expected since the non-linearity becomes

significant for small ranges, and the second order terms compensated by B can not be ignored

anymore without risking the divergence of the filter.

GSF Analysis Conclusion

The two cases clearly show an important trait: when P is relatively large compared to R, and

the range p is of the same order of magnitude as P, then the B term becomes important in

order to prevent the EKF from diverging, by avoiding the "spillover" effect discussed earlier.

If p is much larger than the other values, the EKF can converge even without the use of B.
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The reason is that the non-linear effects of the measurements are not significant, as shown

earlier in the discussion of Case 1.

Also, when P is small enough op > o, equation 2.32 collapses to:

P = o2 (2.35)

Again, there is no need for the compensation term B, by using the same reasoning as in

Case 1.

Since P is usually large initially, it can be concluded that bringing P down slowly by

some estimation method other than EKF and then allowing the EKF to take over, as shown

in Section 2.4.4, can be beneficial. Of course, there are other ways of solving the diver-

gence issue with EKF, namely the Bump-up R method. However, the true benefit of the

GSF and the analysis shown above is to explain how the measurement errors coupled with

the non-linearities and large state error covariances can have a negative effect on the filter

performance.

2.3.2 Bump-up R method

This method has been shown to be an efficient way of fixing the problem of EKF divergence.

The main idea behind the bump-up R method is to set the measurement error covariance R to

a value somewhat larger than the original measurement noise in order to compensate for the

non-linearities and differences in the measurement noises among various measurements [7].

As proposed in the Ref.( [1]), the bumping-up term Rbump that will successfully resolve the

divergence problem is:

Rbmmp = HP-H T (2.36)
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Rnew = R + Rbump

Plinval further explained how this specific form of Rbump actually helps. As shown earlier,

the reason why EKF does not converge is explained by the reduction of the state error

covariance in a wrong direction after the measurement update. By keeping the measurement

error covariance large, this fast reduction is not permitted, but rather the reduction occurs

much slower. Ultimately, the goal is to reach a small enough state error covariance P, after

which, as shown by Case 2 of the GSF analysis, the filter will not rely on the measurements

to the same extent that it does initially (when the P was large).

According to Plinval [1], this form of Rbump is selected because it allows the accuracy

of the sensors to follow the evolution of the state error covariance P, thus preventing P

from becoming ill-conditioned. He shows that this approach slows down the convergence

of the filter, but also prevents the divergence, by preventing the over-reduction of P in the

direction of the coarse sensor. In fact, the Bump-up R method increases the measurement

error covariance, R, so that the filter does not rely solely on the measurements (which, due

to their non-linearity, are less accurate than expected) but also on the previous knowledge.

Essentially, the Bump-up R method eliminates one of the three divergence factors: Uo > o.

This approach has also been used by Huxel and Bishop [8], with the same Rbump term

but without the analytic explanation offered, for solving navigation problems involving large

state error covariances P and ranging measurements of different orders of magnitude. It

was shown that these types of problems can also cause divergence of the EKF, and that the

above mentioned Rbump term can avoid it. The simulation results will further confirm the

benefits of this approach.
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Bump-up R Analysis Conclusion

It is interesting to note that the compensation term B in the GSF analysis also behaves as

the bump-up term. The main difference is that B is actually computed as the compensation

for the second order terms in the Taylor series expansion, that were initially ignored in the

EKF approach. The Rbump term is an artificial way of slowing the reduction of P, which was

analytically shown in [1]. It makes the measurement noise larger, in order to prevent the

filter from focusing too much on measurements. Since both terms yield similar results, in the

simulation section we will explore how some other similar bump-up terms perform in attempt

to prevent the divergence of EKF. Also, it is important to note that the computational load

for calculating B is larger than that for Rbump, since B is calculated using Hessian tensors of

measurement functions h.This makes the Bump-up R method better for practical purposes.

The simulations will also show that the bump-up R method tends to be the more accurate

of the two methods.

2.4 Simulation

The simulation section will present the performance of the various methods mentioned in this

chapter. First, we will describe the system that will be used for simulation. In addition, the

results generated with different methods and different initial conditions will be presented.

This will include the performance of EKF, GSF and Bump-up R methods; the effects of

varying bump-up terms; and a two-step method. Finally, conclusions will be drawn to state

how well the simulated results follow the analytical.
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2.4.1 Plinval's Example revisited

In the work published by Huxel and Bishop [8], the divergence of EKF was observed when

the system involved the measurements whose order of magnitude was of the same order

as the state error covariance. Plinval ([1], Chapter 6) described the divergence of EKF in

the presence of non-linear measurements with very different measurement noises. Fig. 2-4

shows the example examined by Plinval, and it clearly presents the advantages of GSF and

Bump-up R methods over the EKF. The GSF method converges faster, but eventually the

Bump-up R method reaches the same and even better accuracy. In this case, the initial state

error covariance (Po) and measurement error covariance (R) are:

1002 0
PO = (2.38)

0 1002

2.5- 10-5 0
R = (2.39)

0 6.0- 10- 3

Also the initial position estimate was set at:

20
xIi = (2.40)

80

Since, in this specific case, the range is of similar order as the state error variance p 141.4

and oo = 100, this example clearly shows the divergence effect when all three divergence

factors are involved. Also, it shows the convergent behavior of the two methods, the GSF

and the Bump-up R. Plinval has also has shown that this is true for a large number of initial

conditions.
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Filter comparison: EKF, GSF, Bump-up; sigma = 100
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0
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iterations

Figure 2-4: Performance of EKF, GSF and Bump-up R methods with oo = 100. The GSF

and Bump-up R methods perform much better than the original Extended Kalman Filter.

2.4.2 The Simulated System

The simulated system is similar to the system described by Plinval ([1], Chapter 6). The

equations are already included in the Analysis section (Eqs. 2.2 - 2.12). In order to focus

on the effects of the measurements on the performance of the filter, the target has a fixed

position and the non-linear measurements involved are range and bearing from the coordinate

center. The true position of the target is at:

1001
Xtruth = (2.41)

100
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The initial position, state error covariance and the relative size of measurement noises will

vary. Since the measurements are of different types, the order of magnitude of the mea-

surement noise is not the most representative way of comparing the accuracies of these two

measurements. In general the measurement noise in the bearing angles can be much more

significant than the ranging noise, especially if the range is of large magnitude.

Performance of EKF, GSF and Bump-up R methods

For Figures 2-5 - 2-7, the plots on the top show the performance of the three filters discussed

in this chapter. The plots on the right show the conditional number P, which is identified

as one of the symptoms of divergence (or convergence) by Plinval [1]. Different divergence

factors are introduced or removed. For example, the plots on the top in Figures 2-5 and 2-6

show the performance of the filters when there is a significant difference in the errors of

the two measurements. In both cases, p is comparable in size to Uo, which is much larger

than the measurement errors. This combination of the three divergence factors leads to an

ill-conditioned P matrix, and may lead to divergence [1].

The Gaussian Second Order filter accounts for the non-linear effect of the measurements,

which effectively removes one of the divergence factors. This translates directly to the

convergence of GSF. Cond(P) is kept low in the initial steps, which was sufficient enough

time to allow the filter to converge and avoid significant spill-over.

The Bump-up R method converges somewhat more slowly than the GSF, since it degrades

the accuracy of the measurements by a much larger amount than B. This, as described

earlier, prevents the filter from focusing too much on measurements, which leads to slower

convergence. In the steady-state, the Bump-up R method actually performs better than

GSF. Again, the cond(P) is kept low for long enough to allow the filter to converge.
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Figure 2-5: The divergence of the EKF when all three divergence factors are present(bearing
measurement error is much larger than range measurement error). On the left, the graph
shows the estimation error for three different filters. On the right, the condition number for
P is plotted.
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Table 2.1: Computational load for the EKF, GSF and Bump-up R methods

Method EKF GSF Bump-up R
Computational load (ms) 0.13 0.29 0.13

Figure 2-7 shows the performance of the three filters when the measurement errors are of

the same order of magnitude. The EKF in this case converges since not all three divergence

factors are present. This effectively confirms our hypothesis that the three factors described

in this chapter can easily lead to divergence. Again, the Bump-up R method converges

somewhat more slowly than the GSF. The plot of cond(P) shows that all three filters keep

the P well-conditioned, which in this case translates to convergence.

Computational Load

While the first few simulation results show the superiority of the GSF and Bump-up R

methods over the Extended Kalman Filter, it is also of great importance to see how practical

these methods are. The EKF is widely used, as it can be easily and efficiently implemented

on the computers. Table 2.1 shows the computational load of each of the methods while

running on the Pentium IV, 2.6GHz processor. The EKF and Bump-up R methods perform

better than the GSF method because they does not require the computation of the Hessian

tensors of the measurement functions h, that are required for GSF. The EKF and Bump-up

R have about the same computational effort, since the bump-up term in Bump-up R method,

HPHT, is a already calculated in the Kalman gain expression.
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Figure 2-6: The divergence of the EKF when all three divergence factors are present (range

measurement error is much larger than bearing measurement error). On the top, the graph

shows the estimation error for three different filters. On the bottom, the condition number

for P is plotted. 41
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Figure 2-7: The convergence of the EKF when measurement noises are of the same order

of magnitude (not all divergence factors are present). On the top, the graph shows the

estimation error for three different filters. On the bottom, the condition number for P is

plotted. 42
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2.4.3 The Effect of Varying the HPHT Bump-up Term

As presented in the analysis section, the term B that appears in the derivation of the

Gaussian second order filter behaves similarly to the HPHT term in the Bump-up R method.

The previous figures show that these two approaches also prevent the extended Kalman filter

from diverging. Therefore, it is of some interest to see how small variations in the HPHT

term can affect the performance of the Bump-up R method.

Figure 2-8 shows the effect of multiplying the HPHT term in the Bump-up R method

with a constant. On the top is the plot when the initial state error standard deviations are

set to 20. In the steady-state, it can be seen that the performance of the original Bump-up

R method with the HPHT as a bump-up term performs worse than the methods in which

the HPHT term is multiplied by the constant. In this specific case, the best accuracy is

achieved when the multiplier a = 4. For a > 4 the accuracy degrades. The plot on the

bottom in Figure 2-8 shows that the performance of the Bump-up R methods with the

varying multipliers (a) actually depends on initial conditions. For the case of o-o = 10, the

best performance is achieved with the multiplier a = 6. The improvement observed by

multiplying the HPHT term with a constant is very small, but it shows that there is a limit

to how far the bumping-up method can go. When a is set to a very large number (i.e. 100

or 1000) the Bump-up R method consistently diverges, similarly to EKF, for various initial

conditions.

On the other hand, the plots in Figure 2-9 show the effects on performance of a filter

when the HPHT term is multiplied with a constant a > 1 and 0 < a < 1. Figure 2-9

demonstrates that all three of the bump-up R methods solve the divergence problem of the

EKF. The only significant difference among the Bump-up R methods is observed in the

bottom plot of Figure 2-9, where the steady states are compared. This figure shows that
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INIT: x = 87, y = 113, sigma = 20

0.065-

0.06-
alpha=1

-0 alpha=2
0.055- - - - alpha=3

- B - alpha=4
- + -alpha=5

E 0.05-

- * -alpha=7
o 0.045a-

0.04-.0 ............. 0 ................. ............ ........... 0

0.035 - - - - - - .x - .-. -. - ---

197.5 198 198.5 199 199.5 200
iteration

INIT: X = 94, Y = 106, SIGMA = 10

0.16-
--- alpha = 1

-e - alpha = 2

0.14- - - alpha = 3
-S - alpha = 4
-+ - alpha = 5

E
9 0.12 -- alpha = 60.12-

P- - alpha = 7

0.1 -
--- - - - --- 8- - - -0- - - -0- - - -o

0.08--

0.06 -
194 195 196 197 198 199 200

iterations

Figure 2-8: On the top: the effect of varying the HPHT bump-up term when -0  20.

The HPHT term is multiplied with constant a = 1, 2.. .7. The best accuracy is achieved

with a = 4. On the bottom: The effect of varying the HPHT bump-up term. In this case,
uo = 10. The HPHT term is multiplied with constant a = 1, 2.. .7. The best accuracy is
achieved with a = 6. 44



when the HPHT term is decreased, the steady state performance of the filter degrades.

2.4.4 The Two-Step Approach

The Two-Step method mentioned in the analysis section originates from the observation that

the EKF filter will not diverge when initial state-error covariance is low (or in other words,

when there is a high confidence in the initial state of the system). A similar observation

was made by Huxel and Bishop [8]. In essence, this method effectively removes one of the

divergence factors (large Po) and allows the EKF to converge.

The Two-Step method is not a new concept. It has been explored by Kasdin [2] and

discussed in technical comments by Lisano [7]. The basic idea is to bring the initial state

error covariance to a sufficiently low level so that the EKF can take over the estimation

process, which then will not lead to divergence. Based on the results presented in this

chapter, it can be seen that one way of fulfilling the requirement of lowering the state-error

covariance is by running the Bump-up R filter during the first few time steps. Following that,

one can switch to using the EKF. Figure 2-10 demonstrates this case. This figure compares

the performances of the regular Bump-up R method that runs continuously versus the Two-

Step method, in which the EKF method starts at time step 15. The EKF converges very

well, and its performance is almost as good as the performance of the Bump-up R method.

2.5 Conclusion

This chapter examined the divergence issue of the Extended Kalman Filter (EKF), which

occurs in the presence of non-linear measurements with large accuracy differences and large

initial state-error covariance. Indeed, the analysis presented here has shown that the con-
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Figure 2-9: The effect of multiplying HPHT term with a positive constant a
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Figure 2-10: The performance comparison of the regular, continuous Bump-up R method
and the Two-Step method with the EKF method starting at time step 15. The EKF alone,
without the Bump-up R "help", diverges

vergence of the EKF depends on a combination of factors: the size of the initial state error

covariance, P, the relative sizes of the measurements noises and the non-linearity of those

measurements. This is also confirmed by Plinval [1], with the use of a geometric argument.

The basic idea is that the initial state error covariance needs to be large enough to allow the

filter to focus on the measurements. These non-linear measurements are highly dependent

on the state estimates, as their linearization is performed in the vicinity of those estimates.

Those state estimates can be far off as a result of the spill-over effect described in the Prob-

lem Statement section of this chapter and also in [1]. This combination may lead to filter

over-reliance on the measurements that are actually less accurate than what their measure-

ment noise covariance shows. As the process iterates based on these corrupt measurements,

the EKF can diverge.
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A couple of methods have been presented that seem to solve the divergence problem of

the EKF. The Gaussian second order filter (GSF) includes the second order terms from the

Taylor series expansion (which are ignored by the EKF) and therefore somewhat accounts for

one of the factors responsible for the divergence. These second order terms are represented

in the filter equations as a compensation or as a bump-up term B. This term is added to the

measurement noise covariance, R. The simulations show that this effectively improves the

convergence of the filter. However, this method is of less practical value as it is accompanied

with a large computational load.

Another way of solving the divergence problem is by developing another bump-up term,

HPHT. Again, this term is added to the measurement noise covariance, R. Similarly to the

GSF method, this bump-up term makes measurements less accurate and diverts the filter's

attention away from the measurements. This method is more practical, as the computational

load is comparable to the one of EKF. Although the convergence is shown to be a bit slower

than in the case of the GSF, it is still sufficiently fast. The effect of varying the HPHT term

is also presented in the Simulation section.

Finally, the Two-Step method is presented as the combination of the Bump-up R method

and the EKF. The purpose of the Bump-up R method is to bring the error covariance P to

a low value, after which the EKF can continue without diverging. The reason is that when

P is low, the EKF does not rely on the measurements as much. Essentially, this removes

some of the divergence factors mentioned above.
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Chapter 3

Analysis of Decentralized Estimation

Filters for Formation Flying

Spacecraft

3.1 Introduction

The concept of formation flying of satellite clusters has been identified as an enabling tech-

nology for many types of space missions [9], [10] '. In the near future, some formation flying

technologies may fit well into the new NASA initiative. An example of this is ground explo-

ration of remote destinations, where having a group of vehicles working together may be far

more efficient than a single vehicle. The use of fleets of smaller vehicles instead of one mono-

lithic vehicle should (i) improve the science return through longer baseline observations, (ii)

enable faster ground track repeats, and (iii) provide a high degree of redundancy and recon-

figurability in the event of a single vehicle failure. The GN&C tasks are very complicated

'This chapter has been pubished at the AIAA GNC conference, August 2004 [24]
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for larger fleets because of the size of the associated estimation and control problems and

the large volumes of measurement data available. As a result, distributing the guidance and

control algorithms becomes a necessity in order to balance the computational load across

the fleet and to manage the inter-spacecraft communication. This is true not only for the

optimal planning, coordination, and control [11], but also for the fleet state estimation, since

the raw measurement data is typically collected in a decentralized manner (each vehicle takes

its own local measurements).

GPS can be used as an effective sensor for many space applications, but it requires con-

stant visibility of the GPS constellation. In space, GPS visibility begins to breakdown at

high orbital altitudes (e.g. highly elliptic, GEO, or at L2). Thus, a measurement augmen-

tation is desired to permit relative navigation through periods of poor visibility and also to

improve the accuracy when the GPS constellation is visible [13, 14, 15, 16, 17].

However, the local range measurements taken onboard the spacecraft strongly correlate

the states of the vehicles, which destroys the block-diagonal nature of the fleet measurement

matrix [12, 18] and greatly complicates the process of decentralizing the algorithms [20]. In

contrast to the GPS-only estimation scenario, which effectively decentralizes for reasonable

fleet separations, this estimation problem does not decorrelate at any level. As a result,

Ref. [20] investigated several methods to efficiently decentralize the estimation algorithms

while retaining as much accuracy as possible.

To populate the decentralized architectures, Ref. [20] developed a new approach to esti-

mation based on the Schmidt Kalman Filter (SKF). The SKF was shown to work well

as a reduced-order decentralized estimator because it correctly accounts for the uncertainty

present in the local ranging measurements, which is a product of not knowing the loca-

tion of the other vehicles in the fleet. Since this correction is applied to the covariance of

the measurement, this property of the SKF is called the Schmidt covariance correction
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(SCC).

We extend the covariance comparison in Ref. [20] to consider the transients that occur

as ranging measurements are added to the estimator. Ref. [201 performed a similar compar-

ison on the steady-state covariances from the various filter and architecture options. This

enabled a comparison of the filter performances, but it could not explain why some of the

decentralized techniques performed better than others. The investigation in this paper of

what we call the "transient response" of the filter provides further insight on the relative

performance of these filters. This analysis also indicates the advantage of using the SCC,

which can be extended to other estimation algorithm/architectures.

The following section discusses prior work on reduced-order decentralized filters, which

is followed by a detailed investigation of the covariance for different algorithms.

3.2 Reduced-order Decentralized Filters

Recent work by Park [21] introduced the Iterative Cascade Extended Kalman Filter (ICEKF),

a reduced-order estimation algorithm for use in decentralized architectures. This filter is used

for local ranging augmentation in applications where GPS-only measurements are not suffi-

cient. The ICEKF filter uses an iterative technique that relies on communication between

each vehicle in the fleet and continues until a specified level of convergence is reached. It

was shown that the ICEKF can incorporate local ranging measurements with GPS levels of

accuracy, producing nearly optimal performance. However, Ref. [22] demonstrated that the

filter performance can deteriorate when highly accurate local measurements (i.e., more ac-

curate than GPS) are added, and that this performance loss occurs when error/uncertainty

in the relative state vectors is not correctly accounted for in the filter.
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One way to account for this uncertainty in the relative state is to include it in the

measurement noise covariance R, which is the approach taken in the Bump Up R method:

Rbump = R + Jyy jT (3.1)

where J is the measurement matrix for all non-local measurements in the fleet and Pyy is

the initial covariance matrix for all non-local states in the fleet state vector. Equation 3.1

implies that the measurements now have larger noise covariance, making them less accurate

than was initially assumed.

Another approach examined in Ref. [22] is the Schmidt Kalman Filter (SKF). This filter

also increases the variances in the R matrix, but in contrast to Bump Up R, this approach

is dynamic and also accounts for the off-diagonal blocks of the error covariance. The SKF

eliminates non-local state information, thereby reducing the computational load on the pro-

cessor. This elimination is accomplished by partitioning the measurement and propagation

equations:

[ Ox2 ]k[Ylk X(3.2)

Y k+1 0 $Y ky k W

zk = H J + vk (3.3)

.. k

P 1

where z represents the vector containing the states of interest (called the local state,
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which includes the positions, velocities, and time of the vehicle relative to the fleet origin)

and y represents the remaining states (the positions, velocities, and time of all other vehicles

relative to the fleet origin). After partitions of Eqs. 5.8 and 5.9 are applied to the general

Kalman filter equations, each block is solved, and the gain for the y states is set to zero [23]:

=H P-H I+ HkP-J
ak kP1 H X+kP J±R(35

Jk PYX -k Y H + JkP,-, JT + Rk (3.5)

Kk (PXkHk+ Pk JT>-1 (3.6)

4 = + Kk(zk - Hk- - JJo) (3.7)

PL+k (I- KkHk)Pk -K Jk PY-k (3.8)

P+ (I - KkHk) - KkJP,-j (3.9)

P+ P- (3.10)
YXk XYk+1

P+ P- (3.11)
Yyk Yyk

Schmidt-Kalman Time Update

'x 2kk (3.12)

P = XkP+ 4T + Q, (3.13)

P- = xk P &T (3.14)

p- = P-k (3.15)
N k+1XEk+1

P- = Yk P+ rT + QYk (3.16)

In order for the SKF to compute an appropriate amount to increase R, each spacecraft

communicates both its local state vector and its local error covariance matrix to the next

spacecraft in the fleet. This change to R is called the Schmidt Covariance Correction.
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The additional error covariance information, which is not transmitted when using Bump

Up R, allows a more appropriate correction, but also requires additional inter-spacecraft

communication.

The analysis performed in Ref. [22] showed that the error covariance in the ICEKF

method is relatively close to the error covariance of the optimal, centralized case. However,

this observation was described as misleading, because it was not a good indicator of the filter's

performance. The filter's unrealistically high trust in the measurements, due to the assumed

low error covariance, was conjectured to be the primary reason for this poor performance.

The following section explores this point in more detail. It also presents an equivalent

derivation for the SKF approach, which demonstrates how increasing the measurement noise

covariance improves the actual filter performance.

3.3 Covariance Comparison

Previous research in Refs. [19, 20] and [21] showed that results from the ICEKF are worse

than might be expected. The ICEKF produces these poor results, because it makes unreal-

istic assumptions about the uncertainty associated with the ranging measurements from the

other vehicles, since this filter does not include the position uncertainty of other vehicles.

These unrealistic assumptions are captured in the measurement noise covariance (R), which

provides a measure of the "quality" of each measurement. One way to investigate this prob-

lem is to analyze the error covariance matrix (P), and to understand the true impact we

take the approach of investigating the transients immediately after ranging measurements

are added to the estimator. This approach differs from that of Ref. [20], which compares

steady-state covariances. The steady state values are a good way to compare the overall

performance values, but they tend to obscure the reasons why some filters diverge and oth-
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Figure 3-1: ICEKF and Bump-Up R; at the 20th iteration, new measurements are introduced

ers do not. Using the transient covariance analysis more clearly shows the difference in

covariances that occur when new, corrupt measurements are introduced to the filter, as is

shown in Figure 3-1. This figure was obtained for a SISO system, for which Bump Up R is

essentially equivalent to the Schmidt-Kalman Filter (SKF). Analyzing P across the transient

step should show how the incorrect modeling of R impacts the filter's confidence in the state

estimates.

The ICEKF filter error covariance is much lower than it should be at this stage of the

estimation, thereby corrupting all future measurement updates. The analytic derivation of

this phenomenon is provided in Section 3.3.1. The results also show that this problem can be

partially alleviated by increasing the R value in the algorithm using a systematic approach,

such as the Bump Up Rt or SKF formulations. For the scalar case, the error covariances

resulting from the two methods are related by:

PCu> f.(.7
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where the error covariance matrix Pf is analyzed using Rf with the gain based on Rf, and Pbu

is analyzed using Rbu with gain based on Rbu. After the update step, the error covariance

using the Bump Up R approach (Pu) is larger than the ICEKF result (Pr), so Bump Up R

should avoid the problems with the ICEKF technique.

Since these analytic results were based on several approximations, a simulation was con-

ducted to confirm that the Bump Up R method performed better than ICEKF regardless of

the assumptions. This simulation computed the transient behavior of the error covariance

using various filters that were based on different assumptions about the measurement noise

covariances R. The results are shown in Figures 3-2 and 3-4. These results show that the

Bump Up R method provides a better prediction of the best possible filter performance,

confirming the analytical predictions. Similar results would be expected for the SKF, due

to its equivalence with the Bump Up R method in a scalar case.

3.3.1 Effects Of Using Corrupted Measurements

The purpose of this section is to analyze the impact of adding new ranging measurements

to the estimator, and in particular, to determine how the covariance matrix changes. The

bumped-up case is included, because our ultimate goal is to show the effect of using the SCC

on incorporating new measurements in a filter. The Schmidt-Kalman filter is a dynamic

version of the Bump Up R filter, in the sense that it uses a better technique to increase the

noise covariance. First, the analysis will be restricted to the scalar case, which should provide

adequate insights into the result. Second, the values associated with the actual values are

noted with the subscript a, filter values with the subscript f, and bumped-up values with

the subscript bu. In the following derivation, Ra > Rbu > Rf. The derivation begins with a
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Figure 3-2: Error Covariance Comparison. Differences between the various covariances are

all non-negative, which means that P+ > P' > PR

measurement update for the error covariance [23]

P+ = (I - KH) P- (I - KH)T + KRKT (3.18)

where K is the Kalman gain, I is an identity matrix, and H is the measurement matrix.

The symbols I and H represent scalars in this case. The error covariance P- represents the

filter error covariance based on the measurements available prior to adding the set of ranging

measurements. These measurements could be obtained from GPS or other external sources.

Since the new, added ranging measurements are more accurate than the previous, the error

covariance should substantially decrease. It is essential to observe the transient behavior

of the covariance in the first step after the new measurements are added, because the filter

performance is heavily impacted at that time. For example, if the measurement noise (R) is
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too low, the filter might continue to have a high confidence in erroneous measurements and

the estimation results will degrade. In the scalar case, Eq. 3.18 can be rewritten as

P+ = (I - KH)2 P-+ K 2R (3.19)

The corresponding Kalman gain is

K~PHTHPH -1 P-HK = P-HT HP-H T + R = (3.20)
H 2P-+ R

Thus, for a filter using the incorrect covariance R = Rf, the gain matrix would be

P-H
K = H2 H (3.21)

H2P- + Rf

in which case Eq. 3.19 can be rewritten as

P+ 1P- 2 P + Ra (3.22)(f H2P-+ Rf) H2P- + Rf

where Paf is used to designate that this corresponds to the "actual" error covariance that

one might expect when using this filter. Essentially the gain is based on the assumed Rf, but

the error analysis is based on the more realistic Ra. To proceed, two quantities are defined

/P-H 2 2
M = 1H- R) P- (3.23)

H2P- + Rf)

N (H2-H )
2  (3.24)

H2P- + Rf

So that Eq. 3.22 becomes

Pa> = M + NRa (3.25)
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and similarly

Pf+ = M + NRf (3.26)

so, from Eqs. 3.25 and 3.26

P+ - Pf+ - N ( Ra - Rf) > 0 -> P > P+ (3.27)

3.3.2 Comparing Pabu and Pbu With Paf and P

The second step in this derivation is to compare Pabu and Pbu with Paf and Pf. Consider

the case where a modified value of the measurement covariance Rbu is developed using the

Bump Up R algorithm. Starting from the equations for the error covariance in Eq. 3.22

p + 1 _ p-H2 ) 2 P+ ( j ) 2 Ra (3.28)
H2P- + R H2P- + R

P1H - P-§I2) 2 P- +( P-± ) 2 Rbu (3.29)
buH 2p- + Rbu) H 2P- + Rbu

several assumptions and approximations are made to compare these error covariances. For

the scalar case, define -Y = P-H 2 , then

p (1 _ )IP~ ( ) Ra (3.30)
P~f -y+Rf) -y+Rf) H2 (.0

p+ - 1 (3.31)
bu + gbu 7y + Rbu fH2

Now if Rf < y, which is equivalent to assuming that the new measurements are much more

accurate than the previous, then the following is true

~1-y , <y (3.32)
y + X y
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Then Eq. 3.28 reduces as follows

P 
1 -(

P- + (1 R f )2Ra
- H2

Ra
r H 2

Rf<
-y

The error covariance for the bumped up method, Eq. 3.29, becomes

-y + Rbu -

H2-y + Rbu

H 2 (-y + Rbu)V

P- + )2 Rb 1"

\7 + Rbu H 2

7y R" b

H2 ( + Rbu) 2

1_ Rbu7 (7Y+ Ru)

2- H2 (y + Rbu) 2

ar

With these results, a comparison can be drawn between Par and Pbu. Assuming

(3.39)

which, using Eqs. 3.34 and 3.38, can be rewritten as

Ra RuP-

H2 y + Rbu

Ra7y RaRbu > RbuP~
H 2 H 2

-P RaH 2
-Rbu +)

-> P(Ra- Ru) + RaRbu > 0
H 2
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(3.34)

Pbu

Rb1 u)

H 2 (y±+Rb1 )

(3.35)

(3.36)

(3.37)

(3.38)

RaRbu > 0
H2 >

(3.40)

(3.41)

(3.42)

1 
2

P~- + 1 -



which is correct if Ra > Rbu. Note that if Rf had been used instead of Ra, a similar expression

is obtained

P- (Rf - Rbu) + RfRbu _- (Rf - RR) < 0P>R-Rb)+H 2 -PR-b)0(.3

which is correct if Rf < Rbu < 1. These results lead to following set of inequalities

Paf > Pb+u > Pf+ (3.44)

It is also important to show that Pf > P+> Pbu

Ra
P H 2

P (+ _ 7 + 2p-
7+ Rbu

(3.45)

(3.46)+ ( 1 _) 2RaH(7 + Rbu)

Similar to the derivation of P+

R2Uy + 7y2 Ra
Pabu H 2 (7 + Rbu) 2 (3.47)

Therefore,

Paf abu
Ra

H 2
Rbu7 +7}2 Ra
H 2 (y + Rbu) 2

RaY2 + 2RaRbuY + RaR 2 - R 2uY - Y2Ra
H 2(7 + Rbu )2

yRbu(2Ra - Rbu) + RaRbu >
H2(7 + Rbu) 2 0

(3.48)

(3.49)

(3.50)

Using a similar approach, the following result can be reached

P+ - P+abu bu
R 2 .y + Ra72 - R 2 u?) - Ru-y2

H 2 (y + Rbu )2
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_ y2 (Ra - Rbu)
> 0 (3.52)

H 2 (y + Rbu) 2

In conclusion,

Paf > Pa+b u > Pb+u > Pf+ (3.53)

or equivalently

Paf - Pf+ > pa+b u - Eb+u (3.54)

which confirms that after this update step, the error covariance using the Bump Up R

approach (Pt ) is larger than the ICEKF result (P+) and is a better indicator of the actual

filter covariance. The main factor that makes Pabu closer to Pu than Paf is to P is the

amount by which the noise covariance has been magnified. Since the actual noise covariance

Ra is not known, the bumped-up noise covariance attempts to estimate the value of actual

noise covariance.

3.3.3 Measure of improvement

To measure the improvement obtained by the Bump Up R method, Equation 3.52 can be

normalized. First assume aRbu = Ra for some a > 1

Pa - Pa+b u H 2 yRbu(2Ra - Rbu) + RaR (

P - Ra H 2 (y + Rbu) 2

Substitute Rbu = R, and Eq. 3.55 becomes

P _ - P U Ray + a 2 2

Pa (ay + Ra) 2
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Figure 3-3: - +" as a function of R""; When " = 1, then P+ p and the difference
~af Rat- b
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shows a certain difference, which is due the approximation used for calculating P+

Figure 3-3 shows the normalized difference between the actual covariances, Pabu and Paf,

with -y = 1 and Ra = 1. The value of the normalized difference decreases with increased a,

which means that as Rbu decreases, Pabu gets closer to Paf, which agrees with the analytic

derivation. Then, for a = 1, Pabu = Pbest and the difference is the largest (in this specific

case the difference is 50%). The strength of the SKF approach is that it calculates the best

possible value for bumping up the measurement noise covariance at every step.

3.3.4 Simulation

A simulation was conducted to validate approximations made when obtaining the analytic

results and verify that the Bump Up R method performs better than ICEKF. The analysis

computed the transient behavior of the error covariance using various filters that were based
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on different assumptions about the measurement noise covariances R. The measurement

covariance matrices used in this study are

" The actual value Ra

" What is assumed in the ICEKF Rf, which is lower than actual Ra

" Increased (Bump Up R) value Rbu, which takes on values between the actual Rj and

the filter Rf

Several different cases were examined:

1. The actual error covariance matrix Pa is computed using Ra, but when the gain is

calculated with Rf (Rbu) it is called Paf (Pabu).

2. The error covariance matrix Pf is analyzed using Rf with the gain based on Rf. The

same relationship holds for Pbu and Rbuc.

3. Pbest corresponds to the optimal result with the filter designed and analyzed using Ra.

The results obtained from comparing these cases are shown in Figs. 3-4. The results confirm

the analytical comparisons for a wide range of possible Rf and P- values. They also show

that Pabu is much closer to Pbest than Paf, indicating that Pabu is a much better predictor of

the best possible filter performance. A similar result is expected for the SKF.

3.4 Application of SKF to Hierarchic Architectures

Previous work has shown the relative merits of centralized and decentralized navigation

architectures [22]. The principal disadvantages of centralized architectures are high com-

putational load and susceptibility to single-point failure. In a centralized architecture, the
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primary computational burden is placed on a single spacecraft, severely limiting the size

of a formation. Likewise, routing all communication and computation through a single

spacecraft creates the potential for a single point failure for the entire formation, should

that spacecraft malfunction. Decentralized architectures can avoid both problems by dis-

tributing computational load across the formation, with very little performance loss relative

the centralized architecture [22]. Section 3.3 showed that of the decentralized estimators

considered, the Schmidt Kalman Filter provides the best performance. This performance

advantage is derived from the way the SKF shares and incorporates new information into

the estimate. The approach used by the SKF to share specific information between satellites

can be applied to other filters, including those using more centralized architectures. This is

achieved using the Schmidt covariance correction (SCC), which allows the various estimation

architectures/algorithms to correctly account for errors in the range measurements without

needing to estimate the states of those vehicles. This can greatly improve the performance

and adaptability of the estimation approach, both of which are important properties for

reconfigurable networks.

Although using decentralized architectures improves fleet scalability and robustness, it

adds complexity to communications and information sharing. This puts limits on the size of

the fleet running the decentralized filter. We are currently exploring into the possibilities of

developing a new type of hierarchic architecture that will incorporate the use of SCC. This

architecture will be different from a traditional hierarchy, because spacecraft will be allowed

to communicate with vehicles in their local cluster and with vehicles in other clusters. We

will accomplish this without having to increase the estimator size, by using the Schmidt

Covariance Correction. The SCC will enable each spacecraft to range off the spacecraft in

other clusters (cross-team ranging) without having to estimate their relative states. The

SCC essentially provides each spacecraft with a way to receive and correctly implement new
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information, regardless of where this information is coming from.

3.5 Conclusion

This chapter investigates various approaches to design highly distributed estimators for for-

mation flying applications. It presents a detailed investigation of the covariances for the

different distributed estimation algorithms, showing that the Schmidt Kalman Filter and

Bump Up R approaches are much better predictors of the best possible filter performance.

Finally, we indicate that the main concept behind the Schmidt Kalman Filter (called the

Schmidt covariance correction) can be used to develop a reduced-order hierarchic estimator

that offers distributed computation and can improve the scalability limitations of the cen-

tralized and decentralized architectures. The comparison of the different architectures is pre-

sented in the following chapter. The comparison is also made for the hierarchic architectures,

including hierarchic centralized-centralized (HCC) and hierarchic centralized-decentralized

(HCD). The decentralized algorithm of the HCD is running in the sub-clusters and uses the

Schmidt covariance correction.
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Chapter 4

Improved Comparison of Navigation

Architectures for Formation Flying

Spacecraft

4.1 Introduction

This chapter focuses on the comparison of different navigation architectures for formation

flying spacecraft. It is an extension from the comparison work of Plinval [1]. In his work,

Plinval developed a metric system to compare several different architectures. The metric

consists of several different parameters in order to properly identify the advantages and

disadvantages of various architectures. The metrics are:

" Accuracy

* Computational Complexity

* Communication load

" Level of Synchronization

69



The following architectures were analyzed:

" Centralized

" Decentralized

" Hierarchic Centralized-Centralized

" Hierarchic Centralized-Decentralized (not considered in [1])

Each of these architectures have issues associated with them. One of the issues with the

centralized architectures is the lack of scalability, due to the computational effort required to

perform estimation for a large number of state variables. Also, the centralized architecture

is often considered to have low robustness in the case of master spacecraft failure [22]. The

decentralized architecture also has a problem with scalability due to the high synchronization

requirement, defined in section 4.2. Splitting the time step into many sub-steps during which

each of the spacecraft in the decentralized architecture needs to complete its estimation pro-

cess puts a high demand on the communication subsystem to deliver important information

at specific time intervals. Although the decentralized architecture is considered more robust

to single point failures than the centralized architecture, it still has robustness issues with

respect to communication delays, which can damage the performance of the estimation pro-

cess due to the high synchronization requirement. This concern will be addressed in the

section on robustness 4.6. However, in order to test our assumptions we needed to develop

a communication simulation, that can be used to show the effects of communication delays

on the performance of various architectures.

The comparison of these architectures based on the metrics mentioned above, was pre-

viously done on a simulator involving up to 24 spacecraft. One of the contributions of this

chapter is expanding the scale of the fleet to 50 spacecraft by improving the efficiency of the

simulator. This will also allow us to perform a relevant comparison of different hierarchic

architecture. A fleet size of 24 is not large enough to allow more detailed comparison of
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hierarchic architectures, since the sub-cluster sizes are small (4-5 spacecraft). Increasing

the number of spacecraft to 7-8 per cluster can provide us with an answer to how different

hierarchic architectures respond to the increased fleet size.

Finally, this chapter will give a brief qualitative description of robustness of various

estimation architectures to communication delays.

4.2 Evaluation Metrics

This section briefly describes the evaluation metrics used in evaluating the performance

of different navigation architectures, as a more detailed description is available in [1]. The

evaluation metrics consists of accuracy, computational complexity, synchronization and com-

munication.

Accuracy Metric The accuracy metric is defined in two possible ways:

" Average accuracy, which is computed as the error over time, after the steady state is

reached

" Worst-case accuracy is defined as the average of errors before the measurement updates

occur. It is the worst error that can be produced by an algorithm, over time.

Computational Metric The computational complexity metric presents the computa-

tional effort exerted by the spacecraft in order to compute the desired estimates. It is

computed as the average of the maximum time it takes for each computational loop to fin-

ish. In centralized architecture, it is the time it takes for the master of the fleet to compute

the estimates for all the spacecraft. In decentralized architecture it is the maximum time
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required for a single spacecraft to complete its estimation process.

Synchronization Metric The synchronization metric is defined as the total number of

times a spacecraft needs to wait for other spacecrafts in order to be able to complete its

task. For example, in the centralized architecture, the master spacecraft has to wait for

all the other vehicles to send the relative measurements to it (N - 1), and since only the

master computes the estimates and communicates them to the other spacecrafts (N - 1),

the resulting synchronization will be 2(N - 1).

Communication Metric Finally, the communication metric is used to capture the amount

of information exchange within the fleet. The communication metric is defined as the average

amount of information (size of data) exchanged between the spacecraft per iteration.

4.3 Improvements to the Simulator

In his thesis, Plinval explored and compared the performance of different estimation architec-

tures, with the main focus on centralized, decentralized and hierarchic centralized-centralized

architectures. He included several measurement metrics which are mentioned earlier and ex-

plained in more detail in his thesis. However, while the comparison did show the differences

among the different architectures, it still lacked several important factors that could influ-

ence the performance of the filters and perhaps change the overall conclusions reached in his

thesis. The simulator has been modified in several areas:

" Scalability Improvement

" Communication Simulator

" Addition of Hierarchic Centralized-Decentralized Architecture
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This chapter briefly describes the modifications to the simulator and present the performance

of the above mentioned architectures under new conditions.

4.3.1 Improvement of Scalability

The previous simulation included fleets with up to 24 spacecraft. While the number is large

indeed, when the fleet is split in clusters, the number of spacecrafts in each cluster becomes

small, up to 5 spacecraft per cluster. If the cluster has less than 4 spacecraft, the number

of relevant measurements may become a problem. We wanted to develop a fleet of larger

size that would allow a wider spectrum of comparison among the architectures, where more

than 50 spacecraft could operate under a single architecture. This will also allow us to run

hierarchic architectures with up to 8 spacecraft per cluster, which in return allows us to make

scale comparison of hierarchic architectures, and determine how scalable these architectures

are.

The main problem with scalability of this simulator was the fact that the simulator

had a high computational load that was increasing dramatically with the increase of the

number of spacecraft. While this is expected to cause very slow simulation of the centralized

architecture, it appeared that the decentralized architecture was also performing very slowly.

After a thorough investigation, we determined that the lag was due to the inefficient part of

the code which ran nested loops. The simulator, coded as a Matlab program, was therefore

running into large delays as the number of spacecraft increased. Using the Matlab profiler,

we identified exactly where the inefficiency occurred Figure 4-1. By vectorizing the code, we

were able to decrease the order of complexity from O(N 2 ) to O(N) for that segment of the

code. This made a significant improvement in the efficiency of the simulator and allowed us

to run simulations of much larger fleet size. The limit of 60 spacecraft is reached due to the

73



Generated 07-Feb-2006 15:18:21 using real time.

Funeo~aeCalls Total Time Self Tune*' Total Tune Plot
(dark band= sel1f time)

Spheres3D 1 27.031 s 0.016s

1ierCentDec3D 1 26 953 s 2.269 s

take estin 5472 12.433 s 12.433 s

Measupdate hcd3D 684 5.157 s 5.063 s W

Measuements3 684 3.512s 2.525s

Tine update decent3D 684 2.252 s 2252 s

Figure 4-1: Profile of the simulation with 16 vehicles. It shows the "take-estim" function as

one of the most computationally demanding functions (dark color means the computations

are actually performed inside the function as opposed to inside the sub-functions)

limited computer memory.

4.3.2 Incorporation of the Communication Simulator

The original simulation included the measurement of the communication load, but the com-

munication delay that is associated with the communication systems was not included in

the simulator. In other words, the communication load was calculated, but had no effect

on performance of the filters. The addition of the communication simulator, which uses the

TCPIP protocol for transmitting data, allows us to more properly compare the performances

of different architectures. Figure 4-2 shows the effect of communication delays on the accu-

racy levels of the decentralized algorithm. One area that will be examined specifically is the

relative performance of the centralized (low level of communication) and decentralized (high

level of communication) architecture.
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Table 4.1: Communication delay

amount of data size average time
(class 'double') (bytes) for transmission (sec)

100 800 0.084
182 1456 0.1520
200 1600 0.1630
500 4000 0.2590
1000 8000 0.3626
2000 16000 0.4497

Also, with the addition of the communication simulator, we have the ability to control

the behavior of the communication system. We are able to simulate the communication

glitches and their effect on the performance of the filters. Moreover, it allows us to develop

the analysis of robustness of the system to various failures of the communication channels.

We can inspect whether the decentralized algorithms, which depend heavily on communi-

cation, are indeed very robust systems and if they can recover from the serious glitches in

communication. Table 4.1 shows how communicating large amounts of data can indeed cause

significant delays. This is achieved by using the communication simulator and measuring

the time it takes to complete the exchange of information.

4.3.3 Performance comparison of the decentralized algorithms with

and without communication delay

Another important addition is the hierarchic centralized-decentralized architecture. This

architecture has a special significance, as it combines two different type of architectures at

two levels of hierarchy. Increased size of fleet will allow us to make comparison between

already existing hierarchic centralized-centralized architecture and newly developed hierar-

chic centralized-decentralized architecture. Moreover, the addition of the communication
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Figure 4-2: Performance comparison of the decentralized algorithms with and without com-
munication delay

simulator will allow us to control the communication, which is a much more significant part

of the estimation process in decentralized than in centralized architecture.

Initially only the centralized and decentralized architectures were considered [22). It was

noticed that centralized architecture lacked scalability due to the overwhelming computa-

tional load imposed on the central data-processing vehicle. The decentralized architecture

was shown to effectively distribute the computational load, at the expense of worse accuracy.

Deterioration of accuracy was the result of not having all the information available at every

node/spacecraft as in the case of centralized architecture. This lack of information led to

the suboptimal decentralized filter compared to the centralized filter, which was consider

theoretically to have the most optimal results.

While the lack of optimality and consequent degradation of accuracy (fig. accuracy his-
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togram) was a small price for achieving better scalability of the system, the decentralized

scheme does have a drawback with respect to scalability. In order to distribute the computa-

tional load, some additional information has to be distributed in order to permit successful

filter operation at all nodes of the fleet. Indeed, for the Schmidt Kalman Filter used for

the decentralized architecture, current estimates and current partitions of the state error co-

variance have to be transferred to designated nodes in order to have improved performance

of the decentralized filter [20, 24]. Therefore, the communication system becomes a very

important segment of the overall performance of the estimation architectures.

As the size of the fleet increased [1] it was noticed that the communication requirements

of these decentralized architectures were putting a strong pressure on proper and fast per-

formance of the communication system. In this case, the time-step becomes longer due to

the delays caused by the communication of required information to members of the fleet.

Eventually the step size was forced to be long enough that the nonlinear effects of the mea-

surements and the dynamical model interfered with the proper functioning of the estimation

filter. Furthermore, possible failures in the communication system may lead to undesirable

effects depending on the severity and size of the failures. As mentioned earlier, this is one of

the main reasons for the introduction of the communication simulator, which will allow us

to simulate the effect of communication failures on the performance of the filters.

Therefore, one way to approach this problem is to develop the Hierarchic Clustering. The

idea was initially proposed in [22] and [241, and further explored in the work of Plinval [1].

Plinval developed a hierarchic centralized-centralized architecture. The main characteristic

of this architecture is two levels of hierarchy, with each of them running the centralized

estimation filter. This thesis presents the hierarchic centralized-decentralized architecture

and compare its performance with the other architectures, namely: centralized, decentralized

and hierarchic centralized-centralized.
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4.3.4 Definition of Hierarchic Architectures

The idea of hierarchic architecture is based on splitting the fleet into several sub-clusters,

with one member of each sub-cluster belonging to the higher level of hierarchy, called the

"super-cluster", Figure 4-3. Both levels of the hierarchy independently perform their own

estimation filters, giving rise to several architectural possibilities. The two levels of hierarchy

can exchange information,which allows proper performance of the overall estimation process.

This in essence splits the fleet into several independent clusters working separately from

each other and their link is through the super-cluster. There is also the option of using

the dynamical hierarchic architecture, which allows the sub-cluster members to range off the

members of non-local sub-clusters. Each of the sub-clusters needs to have a sufficient number

of measurements to work properly. However, for a small number of spacecraft, the hierarchic

architecture may not be necessary. The reason is, as mentioned earlier, that the need for the

hierarchic architecture appears when fleet scalability became a problem in centralized and

decentralized architectures. This is one of the main reasons the simulation had to be scaled

up to include more than 24 spacecraft.

The two hierarchic architectures to be described are: centralized-centralized and centralized-

decentralized. The main difference between the two schemes is in the sub-clusters, which

run different estimators.

The hierarchic centralized-centralized (HCC) architecture has two levels of hierarchy.

The super-cluster is formed with a spacecraft from each cluster. Both levels of the hierarchy

run centralized filter, represented by the EKF, described in chapter 2. In this case, the only

necessary information sent to the central vehicles of each cluster are the absolute and relative

measurements for the non-master vehicles. The full explanation of the cluster is given in [1].

The hierarchic centralized-decentralized (HCD) architecture is identical in the form to
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Figure 4-3: Hierarchic Clustering. Super Cluster and the sub-clusters may run different
estimation algorithms.

the HCC architecture. The primary difference is that the sub-clusters in the HCD are all

running decentralized algorithms. The decentralized algorithm running in the sub-clusters

is identical to the decentralized algorithms also examined in this chapter. This algorithm

is using the Schmidt-Kalman filter that was identified as the best performing algorithm in

the work of Plinval [1]. The information circulating within the subcluster are absolute and

relative measurements, states and corresponding blocks of state error covariance P. The

equations for Schmidt-Kalman filter are presented in chapter3.

4.4 Effect of Communication Delays

Communication delay can play a major role in the performance of estimation algorithms for

formation flying satellites that use relative measurements. Depending on the architecture,
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different kinds of information needs to be transmitted from one location to the other. For

example, the relative measurements (i.e. ranges and bearing angles) are obtained among all

the possible spacecrafts. Therefore, certain range measurements are not available to every

spacecraft in the fleet/cluster. This limitation applies to architectures with a centralized

filter such as fully centralized architecture or hierarchic centralized-centralized and hierar-

chic centralized-decentralized (only in super-cluster) architectures, but not to decentralized

architecture.

Sometimes the estimated states of a spacecraft need to be communicated to other mem-

bers of the fleet, as is the case in decentralized architecture. More specifically, for the

decentralized architecture using Schmidt-Kalman filter, parts of the state error covariance

matrix need to be communicated to the other members of the fleet/cluster in order to avoid

the problems described in [22] and proved in Chapter 3.

The next section describes the effects of communication delays on centralized, decen-

tralized, hierarchic centralized-centralized, and hierarchic centralized-decentralized architec-

tures.

4.4.1 Centralized Architectures

In general, centralized estimation architecture for formation flying spacecraft does not have

a large communication load. However, for relative measurements to be incorporated in

architectures with a centralized filter, they have to be communicated to the central processor

(i.e. the master vehicle) of the fleet/cluster. Also, it is needed for those measurements to

be sent at specific time intervals so that they are available for the processor before the next

estimation process. Therefore, in order for the estimation process to proceed to the next

estimation step, the central processor needs to complete its current estimation process and
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wait for the relative ranges and bearing angles among the other vehicles to be communicated

to it.

In most practical applications, the estimations need to be sent back to the remainder

of the fleet/cluster for purposes other than the estimation process. This additional com-

munication adds to the overall communication load of the centralized architecture. In the

purely estimation scenario, the central processor does not need to send the estimation results

back to the other members of the fleet/cluster. We will only focus on the communication

requirement with respect to the estimation process.

Analysis The communication burden is defined as the amount of data transmitted through-

out the whole fleet during one estimation step. In the centralized case, the data transmitted

can be separated into two different sections. One is the transmission of all the measurements

among all the spacecrafts to the central vehicle. The other is the transmission of calculated

estimates from the central processor to the rest of the fleet.

During each estimation step, each vehicle collects relative measurements from other ve-

hicles in the fleet and also collects absolute measurements. Since each vehicle has N-1

relative ranges, N-1 relative bearing angles, four absolute attitude measurements, and two

absolute range measurements, this amounts to 2N + 4 measurements. In total, there are

(N - 1) * (2N + 1) measurements that need to be communicated to the central processor.

Since in the simulation we are using a type "double," which corresponds to 8 bits, the total

amount of data sent is 8 * (N - 1) * (2N + 4).

As mentioned earlier, in centralized architecture, for estimation purposes, it is not nec-

essary to communicate the calculated estimates from the central processor to the rest of the

fleet. If this is necessary, then the state estimate vector of size 13 will be communicated back

to all the members of the fleet, which would amount to 8 * 13 * (N - 1) bits of data.
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4.4.2 Decentralized Architectures

Decentralized architecture was developed to address the issue of computational burden as-

sociated with centralized filters and, in effect, improve the scalability of the system. Various

decentralized algorithms have been developed to populate decentralized architecture. Some

algorithms (e.g. iterative cascade extended Kalman filter, ICEKF) requires each member of

the fleet/cluster to communicate its calculated state estimate to the rest of the fleet/cluster.

Since this is an iterative process, the high frequency of communication limits the amount

of time spent on each computation. In [22], it was shown that communicating only state

estimates in a decentralized scheme produced incorrect measurement matrix H and Kalman

gain K, which led to unreliable results of the ICEKF filter.

To address this problem, Schmidt-Kalman filter was introduced as another decentral-

ized filter, which required communicating blocks of state-error covariance matrix P. This

increased amount of communication puts additional pressure on the already limited amount

of time allowed for computation. Therefore, the communication delay associated with com-

municating pieces of state-error covariance matrix and state estimates can play a major role

in the performance of a decentralized filter. Furthermore, it is this communication delay

that prevents greater scalability.

In previous work [1], the effect of communication delays was not included in examining

the performance of simulations of various filters. We intend to use a communication simulator

to repeat the simulations and measure the effect of communication delays on various filters.

Analysis In decentralized architecture, each spacecraft runs its own estimation filter based

on measurements available only to that vehicle. Therefore, unlike in the centralized case,

the spacecraft that is performing the estimation does not receive communication of all the
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measurements available to the rest of the fleet.

However, in the case of a decentralized filter such as the Schmidt-Kalman filter, each

spacecraft needs to send its state estimate and state-error covariance matrix to every other

vehicle in the fleet. Since this is an iterative process, this communication can occur several

times during a single measurement update cycle. Therefore, if the number of iterations is

denoted with k and the size of the state-error covariance matrix is 13x13, then the amount

of data communicated is 8 * k * N * (N - 1) * (13 + 13 * 13).

4.4.3 Hierarchic Architectures

The hierarchic architecture was developed as an attempt to address the scalability issue

associated with centralized and decentralized architectures. By splitting fleets into clusters,

we are allowing estimation filters to operate on a smaller number of spacecraft, therefore

eliminating the need for a very scalable algorithm. Each sub-cluster is populated with an

estimation algorithm and all the sub-clusters are coordinated among themselves through

the super-cluster, which runs its own estimation algorithm. This gives rise to several filter

combinations depending on which level of hierarchy the filter is incorporated; we will examine

two of them: hierarchic centralized-centralized and hierarchic centralized-decentralized.

Hierarchic C-C Architectures

In hierarchic centralized-centralized architecture, each cluster (sub-clusters and super-clusters)

runs a centralized filter. Likewise, it is affected by communication delays in a similar way as a

fully centralized architecture is affected, with some differences. In addition to communicating

relative measurements within clusters, hierarchic centralized-centralized architecture requires

communication between the two levels of hierarchy. Communication between the two levels
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of hierarchy is necessary in order to coordinate all the sub-clusters among themselves. If the

inter-cluster relative measurements are allowed, this further adds to the communication load

of the hierarchic centralized-centralized architecture.

Analysis In the hierarchic centralized-centralized architecture, the communication mostly

occurs within the clusters themselves. Therefore, if the number of clusters is C, then the

number of vehicles per cluster is equal to N/C.

Within a sub-cluster, each vehicle communicates all of its measurements to the master

of the cluster. This amounts to 8 * [(N/C - 1) * (2N/C + 4)]. If the cluster master sends the

information back to the rest of the cluster, that would amount to 8 * 13 * (N/C - 1).

In the super-cluster, there will be C spacecrafts. Therefore, analogous to the sub-cluster

analysis, the amount of information communicated to the master of the super-cluster is

C * (2C+ 4). Again, if the super-cluster master sends computed state estimates back to the

rest of the super-cluster, then the additional communication load is equal to 8* 13* (C - 1).

The total communication is therefore equal to the sum of the communication within the

sub-clusters and the super-cluster.

Hierarchic C-D Architectures

Similarly to hierarchic centralized-centralized architecture, hierarchic centralized-decentralized

architecture requires communication between the two levels of hierarchy. The only differ-

ence is that the sub-clusters run decentralized filters (e.g. Schmidt-Kalman filters, SKF).

Therefore, the effect of communication delays on sub-clusters is similar to that described in

decentralized architecture while the effect on the super-cluster is similar to that described

in centralized architecture.
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Analysis In hierarchic centralized-decentralized architecture, we have the combination of

the centralized filter at the super-cluster level and the decentralized filter at the sub-cluster

level. The communication load observed in this architecture can easily be calculated by

combining the two analyzes of centralized and decentralized architectures.

In the super-cluster of the hierarchic centralized-decentralized architecture, the commu-

nication load is equal to (C -1) * (2C+4). Again, if the super-cluster master sends computed

state estimates back to the rest of the super-cluster, then the additional communication load

is equal to 8 * 13 * (C - 1).

At the sub-cluster level where the decentralized filter runs, the communication load is

equal to 8k * [N/C * (N/C - 1) * (13 + 13 * 13)].

4.5 Modified Simulation Results and Architecture Com-

parison

In this section, different architecture have been compared using the simulation results. The

simulation setup will be described and the comparison will be performed against several

metrics mentioned earlier in this chapter.

4.5.1 Simulation Setup

The simulation was performed using the core of the simulator presented in the work by

Plinval [1] . The setup represents the SPHERES testbed with test space of 1m3 . The

SPHERES testbed is explained in more detail in chapter 6. All of the initial conditions

presented in Plinvals work remain the same, except the initial velocity, which was increased in
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order to put more emphasis on the dynamics of the system, as this can affect the performance

of the systems with large computational or communication delays. The main additions to

the simulator have already been described in previous sections of this chapter.

The measurements used are satellite-to-satellite range and elevation, and also range mea-

surements from satellite-to-wall beacons (two beacons). The number of vehicles is varied

between 4 and 25 for the comparison of all four algorithms. For the comparison of the two

hierarchic algorithms the number of vehicles was varied between 16 and 50, since the size of

the clusters in the hierarchic architecture increases with a square root of the total number

of the vehicles. The simulation is performed in the in 3D space. The measurement covari-

ance remains at 10- 4 and process noise at 10-6. The process noise was kept slightly above

zero in order to allow the system to always track the true system by never disregarding the

measurements [26].

4.5.2 Algorithm Comparison

Accuracy Comparison In the accuracy performance we can notice that for the low num-

ber of vehicles, Centralized architecture performs the best. This is as expected since the

computational time for the small number of vehicles is comparable to the computational

times for the other architectures. The decentralized architecture also performs worse for

smaller systems, since not all information is available to all vehicles and the communication

delay plays an important role.

The decentralized architecture performs very well for the larger number of vehicles. While

the centralized architecture is affected by the large computational load, the decentralized

architecture benefits by distributing this load. However, we do see that the communication

and synchronization level in the decentralized case are quite high, which implies a high risk
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Figure 4-4: The comparison of various architectures: centralized, decentralized, HCC and

HCD. The range of vehicles used in this comparison is from 4 to 25 spacecraft

of running into problems if the system has communication delays. In this simulation the

communication was running without problems, and that allowed good results.

The two hierarchic architectures perform also very well and in general they have the

best overall performance. Their accuracy is good and comparable with the other two archi-

tectures, in great deal thanks to the distributed computational load. Their lack of larger

number of measurements (due to clustering) also results in a slightly degraded accuracy, but

as the number of vehicles increases, this accuracy improves.
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Comparison of the Computational loads As expected, the computational load for

a centralized architecture is very large for large fleets. When the number of vehicles is

lower, the computational load for the centralized architecture is somewhat comparable to

the other architectures, which allows it to perform so well in those cases. However, as the

computational effort increases the performance of the centralized architecture worsens.

All other architectures, including hierarchic centralized-centralized architecture have low

computational loads. In the decentralized case, the computational load is spread across the

fleet, while in the hierarchic cases the load is spread among the clusters.

Comparison of the Communication loads The communication load comparison re-

veals that the decentralized architecture indeed makes the highest strain on its communi-

cation systems. As the number of vehicles increases, the information flow increases. The

amount of communication required by the hierarchic centralized-decentralized architecture

is significantly smaller, as the decentralized scheme is running only on the sub-cluster level.

The centralized and hierarchic centralized-centralized architecture are with the lowest com-

munication loads as the primary source of communication load is from communicating the

measurements to the cluster masters.

Synchronization comparison The synchronization graph shows that the decentralize

architecture has the tightest synchronization. Of course, this means that small, unexpected

perturbations to the system can cause the decentralized architecture to perform worse than

it is shown in this simulation. On the other hand, the synchronization is significantly reduced

in the hierarchic centralized-decentralized architecture, thanks to the cluster division of the

fleet. The centralized and hierarchic centralized-centralized architectures have the lowest

synchronization requirement. Thanks to this fact and also to the communication comparison,
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we can see that hierarchic architectures distribute the computation, communication and

synchronization in the most optimal way while not taking too much damage in performance,

unlike the centralized architecture for example.

Summary This section shows that the centralized architecture achieves best accuracy for

a small number for vehicles, but it quickly shows its lack of scalability due to enormous

increase in computational load as the fleet size increase. The decentralized architecture

performs the best in terms of accuracy when the number of vehicles increases. However,

the decentralized scheme does have a large communication load and tight synchronization,

which may lead performance degradation if the system is not well synchronized or if there are

problems with communication. The hierarchic architectures are introduced to address these

issues with centralized and decentralized architecture. The hierarchic centralized-centralized

architecture performs best overall, keeping the accuracy high while not taking a hit on

computational or synchronization performance. The hierarchic centralized-decentralized also

has the overall advantage over the centralized and decentralized scheme, but does not perform

as well as HCC.

4.5.3 Large scale architecture comparison

The simulator improvements allow us to run larger fleet sizes. This is particularly important,

considering that one of the objectives of this technology is improvement in scalability. For

fleet sizes up to 50 vehicles, we compared the two best overall architectures, the hierarchic

centralized-centralized (HCC) and hierarchic centralized-decentralized (HCD) architectures.

As we can see the accuracy of the HCC actually improves as the number of vehicles

increases. The reason is that the computation time is still very low, as the cluster size is
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Figure 4-5: The comparison of the two hierarchic estimation architectures. The range of
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approximately the square root of the total number of vehicles in the fleet. Therefore, while

still having a low computational load, we are able to increase the number of measurements

and the fleet size, while actually improving the performance of the fleet. The communication

and synchronization levels remain low. Similarly, the HCD architecture performs quite well,

following the trends established in the previous, smaller size fleet simulation. However, even

for the larger fleet sizes, HCC performs better than the HCD. The main advantage for HCD

architecture is the fact that the estimator doesn't rely on the single spacecraft in the cluster,
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which may play an important role in the case of cluster master vehicle failures. This problem

in HCC and centralized architectures can also be addressed by redistributing the tasks and

capabilities to the next available vehicle in the fleet/cluster from the master vehicle that is

experiencing failures.

4.6 Robustness of Estimation Architectures

In order to qualify certain system or algorithm as robust, robustness need to be defined.

More specifically, the idea is to determine what the systems or algorithms need to be robust

to. In our case, we want to focus on the robustness of estimation algorithm to communi-

cation failures and communication delays that may lead to temporary break in information

exchange. It is well known that centralized architectures are extremely vulnerable to failures

of leader vehicle. The answer to this vulnerability is to decentralize the fleet using decentral-

ized estimators. However, decentralized estimators rely heavily on communication system.

Therefore, this section will address the effect of communication problems on the performance

of decentralized architectures. First of all, in order to qualitatively engage in this issue, some

assumptions about the system need to be set.

4.6.1 Assumptions

1. We are considering an N-member fleet with the mission requirement of having M

vehicles operational.

2. Probability of communication failure is Pcomm.

3. All CPU's are the same, one per vehicle. Probability of CPU failure is pc..

4. Probability of single vehicle failure due to causes other than communication and CPU
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failure is Pveh.

5. Centralized fleet has only one vehicle capable of being leader (while having redundancy

in that sense is possible, it is not considered in this analysis).

6. Probability of communication delay is modeled based on the amount of time delay

(shorter delays occur more often - an assumption):

Pd = pgeTd 7(4.1)

where Td is duration of time delay in sec and pg is the constant that keeps the area

under curve equal to 1 (Fig. 4-6). That is, the probability that a glitch occurs and

delays communication for at least the time period of Td is Pd. In order to simplify

things, we will ignore the communication path delay Tpath = LDpath, where Dpath is

approximately the communication path delay per km (Dpath 3.5p.)

7. Time required for regular communication between 2 satellites for the centralized case

is Tjm and for the decentralized is Tdcm, where Tim > Tcm due to larger infor-

mation packages sent in the decentralized case.

8. Computation time for the centralized case is Tun and in the decentralized T , with

T," generally being much larger than T ,c.

9. Time step TTS is the shortest amount of time required for the filter to produce reason-

able/usable results before causing science interruption.

4.6.2 Robustness

The robustness issue is very case-dependent and there are many different aspects of robust-

ness. We will address the two most obvious and diverse cases of architectures - centralized
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using EKF, and decentralized using Schmidt Kalman Filter - and also we will address differ-

ent types of hierarchic architectures. We are looking at robustness with respect to failures

that can cause either a mission failure, or a science experiment interruption. Also, for com-

munication issues, one has to determine the wait-time after which if no data is being sent,

one can conclude that the link is broken.

Some possible impacts of communication delays on mission performance are shown by

J.A. Leitner et al [28] and Yu-Han Chen [29]. These two papers show that there indeed can

be a serious impact on the performance.

In this analysis the robustness to the following failures will be considered:

1. Single vehicle failure.

2. Single communication delay

3. Communication channel failure.

4. CPU failure.
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4.6.3 Centralized Architecture

We are considering an N-member fleet with the mission requirement of having M operational

vehicles. In centralized case, it can be seen that type 3 failure can have quite similar effect as

type 1 failure. If the leader vehicle loses the ability to communicate, or if its CPU fails, this

is essentially the cause for mission failure and/or science interruption. However, a filter can

adjust to failures of follower vehicles by removing their states and covariance blocks from

computation as long as there are enough measurements available.

Therefore for a leader failure, the probability that the whole mission will fail or that

there is a science interruption is:

Pfail = (Pcomm + Pcpu + Pveh) (4.2)

Otherwise:

f ail N- 1) (Pcomm + Pcpu + Pveh)N-M-1 (43)

For the type 2 failure, or the communication delay, we have to note that in general this

problem will not cause the failure of the mission, but it could cause a science interruption

event. In this case, the maximum amount of time for data transmission is TTs - Ts,;. Since

the followers are not doing any computation, that means each of them has TTs-TJen -T c"m

amount of time for communication delay. We then conclude that the probability of a single

spacecraft having a communication failure due to communication delay is

Pd p9T -Td (4.4)

-pg e( 'TPTm (4.5)
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Therefore, the probability of having a science interruption event will be:

P N = N -1)NM1 (4.6)

since we need at least M vehicles to still communicate with the master in order for the

mission to operate. Since we know that the computational time for centralized filters in

not well scalable with the number of the satellites in the fleet, we can conclude that the

communication delay can have a serious effect. However, since T,", is in general much larger

than Td, the science interruption event is much more likely to happen due to large T=. This

is a much larger problem that needs to be addressed, which is done by decentralization. In

next section we will take a look how Td will gain on importance due to the synchronization

issue.

4.6.4 Decentralized Architecture

In the case of iterative decentralized approach, a CPU, communication or vehicle failures will

have similar consequences. Since we are looking at the iterative method, once the failure is

detected, the next vehicle can remove this satellite from the iteration and proceed with the

previous information. Therefore, the mission is operational, as long as there are M working

vehicles.

Pf ail Pcomm + Pcpu + pveh)NM (4.7)

There is also type 2 failures or the communication delays. Each vehicle needs to do some

computation, and it has to iterate within the single time step. Assuming that we need k

iterations to converge to a solution, then the maximum time that a single spacecraft can
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experience a communication delay is very scarce:

Td- TTS - kN(T + Tec) (4.8)
Td - CPU± comm(48

kN

- TTS - T m (4.9)

Therefore the probability of a single spacecraft having a communication failure due to its

communication delay is

Pd pge-Td (4.10)

= p N -T - mTm (4.11)

This shows that the computational effort plays a very important role in iterative decentralized

case as well, while before it was considered to mainly affect the performance of the centralized

algorithms. Tg is kept pretty much constant as N increases, but the maximum time allowed

for computation is decreasing. The equation 4.11 gives a clear explanation as to why iterative

decentralized estimation filters are not scalable, which their constant computation time would

suggest. The mission can have a science interruption event due to communication delays

with a probability:

(N -

Psi = p(4.12)

4.6.5 Robustness Analysis for Hierarchic Architectures

The notion of robustness can be applied to different hierarchic architectures. The motivation

for the decentralized architectures arose from the need for a more scalable and single-point

failure robust fleet, which was unachievable with the centralized architecture due to the
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high computational efforts and single processor. Using the decentralized approach, we were

able to distribute the computational load across the fleet; however, new problems were

introduced in the decentralization procedure. The high level of synchronization required for

the decentralized architectures leads to the introduction of hierarchic architectures. In the

following robustness analysis, we will show how hierarchic architecture has advantages over

the decentralized architecture with respect to synchronization issues.

At the very beginning, we will make an assumption that the fleet can be split into two

levels of clusters, super-cluster and sub-clusters. We will assume for simplicity reasons that

the total number of spacecrafts is N = Q2, where Q is number of spacecrafts in both the

super-cluster and sub-cluster. Also, we will focus mostly on the effects of communication

failures on the robustness of the system, as the other types of robustness can be easily

determined using the equations derived in the centralized and decentralized architecture

sections of this chapter.

Centralized-Centralized Architecture

The Centralized-Centralized architecture may be defined in two different ways with respect

to the synchronization of the super-cluster and sub-clusters. If the two levels of clusters

are working in parallel, then the time delay for each of the clusters can be presented sepa-

rately. Since both clusters are using centralized architecture, this example boils down to two

centralized architecture analyzes presented earlier. For the super-cluster:

Pd = pge-Td (4.13)

= pge(T PU T SUPOMM) (4.14)
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where Tsup refers to the time values of the super-cluster. Similarly for the sub-cluster:

pd = pge-T (4.15)

= p-e(ITs-"T"ub "nm) (4.16)

where Tsub refers to the time values of the sub-cluster. It is important to realize that the

values for Tsup and Tsub are much smaller than in the purely centralized case, since the

number of the spacecraft is square root of the total number of the vehicles in the fleet [1].

These two equations show that the resulting probability of science interruption in either of

the two levels of clusters is:

psi = Q~ )Q.R1 (4.17)

where R is the number of vehicles that need to still communicate with the master in order

for the mission to operate.

The second option would be that the two levels of clusters work sequentially. This would

mean that the super-cluster waits for the sub-clusters to finish their estimation step, collect

the needed information, and perform the update again. This would force the masters of each

of the clusters (which are also the members of the super-cluster) to perform the estimation

twice within the single time step, and that would lead to having a better estimate. The

probability of having a delay due to the communication failure will be:

Pd = pge-Td (4.18)

- -(TTs-TSUPC Tsupcen,Tsube cornm)e (419
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Again, the probability of science interruption will be:

P Q = Q-R~1 (4.20)

While this approach makes the system less robust than the parallel approach, it is still an

improvement over the centralized architecture.

Centralized-Decentralized Architecture

The Centralized-Decentralized architecture uses two different algorithms to solve the estima-

tion problem on different levels of hierarchy. Again, we will observe two different approaches

in synchronizing the two levels of clusters. The super-cluster running the centralized filter

can run in parallel or in sequence with the sub-clusters that are running the decentralized

architecture.

In the case of parallel execution, the equations for the super-cluster remain the same as

in the previous section:

Pd = pgeTd (4.21)

9 -(TTs-Tsup"-Tsup enm
-pge(T CPTU -SUPCOMM) (4.22)

with the probability of science interruption occuring due to the communication problems at

the super-cluster level:

Q~K ) Pd 1 (4.23)
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On the sub-cluster side, the decentralized algorithm will lead to the following equation:

pd = pge-Td (4.24)

and the probability of science interruption at this level is:

Psi = ) ~ (4.26)

If the two levels of clusters are working sequentially, the probability of the communication

delay occuring would be different for the two levels of clusters. In the super-cluster case the

super-master needs to wait until the decentralized sub-clusters finish their estimation step:

Pd = pge-Td (4.27)

= pge-(TS-Tsup" -T"upm ,"~kQ(Tsubd; +Tsubdgem)) (4.28)

On the other hand, the probability of communication delay occuring on a member of the

sub-clusters is as follows:

Pd = PgeTd (4.29)
TTS - Tsup~ -Tsupccel Tecdc m

= pge_-T - mm T nm) (4.30)

While it may seem that this makes a very tight synchronization constraint, it is still better

than in the iterative decentralized case. Also, Tsupepu is still a reasonable amount of time,

as the super-cluster master is working on estimating the states of Q vehicles, instead of Q2

vehicles. The equations for the probability of science interruption are equivalent to the ones

in the case of parallel execution.
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Summary This section has shown how different delay terms, such as computational and

communication time, may affect the probability of having science interrupt. It also shows

that the decentralized architectures are not very robust to delays in communication, since the

communication time may already pose significant pressure on the size of the time-step. This

was also shown in Figure 4-4. Next section, 4.6.6, will show how frequent communication

problems can affect the performance of the decentralized schemes.

4.6.6 Simulation

The simulation section presents the performance of estimation algorithms when there are

problems with the communication system. The simulator remains the same as described

earlier in section 4.5. The only difference now is that the communication among the vehicles

is being interrupted randomly. The probability of communication interrupt is varied.

The communication system interrupts are introduced when the system reaches the steady

state. When the probability of communication interrupts is kept low, the effect on the

decentralized estimation scheme was very small. The decentralized estimator was able to

perform very well even with occasional satellite not communication with the rest of the fleet

for a short period of time.

However, Figure 4-7, shows the effect of the communication interruption on the decen-

tralized and hierarchic centralized-decentralized architectures when the probability of having

communication problems is high. This leads to long periods of time where large number of

spacecrafts has no information from parts of the fleet. Since these two architectures highly

depend on the communication of state estimate and state error covariance, their perfor-

mance deteriorates. Clearly, under such conditions, the hierarchic centralized-centralized

architecture shows the best performance.
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Figure 4-7: The performance comparison of various filters when communication delays are

introduced

4.7 Conclusion

This chapter presented three improvements to the simulator presented in [1). The first im-

provement increased the computational efficiency of the simulator, which allowed the fleets

to run with double the size. Secondly, the communication simulator showed the effect of com-

munication delays on the performance of various algorithms. It also allowed for brief anal-

ysis of robustness of various architectures to communication delays. Finally, the hierarchic
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centralized-decentralized architecture was developed in order to compare the performance of

two different hierarchic schemes.

In conclusion, the hierarchic centralized-centralized architecture seems to have the best

overall performance against the five metrics used in this analysis. The HCC architecture

also appears to be the most scalable architecture among the four discussed in this chapter.

The qualitative discussion of robustness of various architectures to communication delays

showed that architectures incorporating decentralized architectures tend to have degraded

performance when those delays are significant.
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Chapter 5

Analysis of SPHERES Bias Problem

and Calibration of SPHERES

Positioning System

5.1 Introduction

This chapter presents work done on the SPHERES system. This chapter focuses on two

main topics:

" The SPHERES bias problem

" Calibration of the SPHERES positioning system

First we describe the SPHERES testbed and its metrology system. This is followed by a

discussion of the general bias problems and possible solutions for it. Also, we explain why

those proposed methods of solving the bias problem are not applicable to the SPHERES

bias problem.
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Figure 5-1: SPHERES satellite

The chapter also presents a new calibration method for determining the positions of the

wall beacons in order to facilitate the initialization of the metrology system and to make the

overall system more flexible.

5.1.1 SPHERES testbed

The SPHERES testbed was developed by the MIT Space Systems Laboratory. This multiple-

spacecraft testbed, designed to test and mature satellite formation flight control and estima-

tion algorithms, is to be launched onboard the International Space Station (ISS) where the

tests can be performed in a real environment [27, 35]. As such, this testbed is intended to

mitigate the risk associated with the distributed autonomous spacecraft control, by providing

a risk-tolerant medium for the development of control and estimation algorithms [30] The

SPHERES testbed consists of several spacecraft, 5 ultrasonic beacons distributed around

the test space and a desktop control station(Figure 5-2). Each of the spacecraft (also called

"spheres", Figure 5-1) contains an onboard propulsion system, power system, communica-
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Figure 5-2: SPHERES 2D test at the MSFC

tions system and metrology system. The metrology system consists of 24 ultrasonic sensors

distributed on the sphere's surface, and one ultrasonic beacon placed on the sphere's face

corresponding to the negative X-axis. Currently, the testbed is located in the Space Systems

Laboratory, in the 2-dimensional setup. The detailed description of the entire metrology

system is provided in the Guest Scientist Paper [33, 34]; however, for the purposes of this

chapter, the metrology system is described in more detail.

This chapter focuses on two major issues with this system. The first issue is related to

the metrology system, which contains a significant amount of bias, which tends to spoil the

measurements. The chapter presents the problem and several options that were considered

in solving this problem. It also explains in detail the complex nature of these biases and

why the offered solution would not be applicable and successful.

Also, we look at the SPHERES beacon position calibration technique. Currently, no

procedure exists to automatically perform this calibration. The goal is to automatically

determine the positions of the beacons in the test space, only by using the available metrology
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Figure 5-3: Schematic of SPHERES lab (2D) space, with four beacons mounted on the walls

system and the estimation algorithms. This is a feasible idea, especially since relatively good

initial beacon locations guesses, that are required for this technique, can be obtained from

previously performed manual measurements.

5.1.2 The SPHERES Metrology System

The SPHERES metrology system is known as the Position and Attitude Determination Sys-

tem (PADS). It has inertial and global elements which provide information about the sphere's

position and attitude. Inertial navigation sensors are accelerometers and rate gyroscopes.

The global navigation sensors, which provide low frequency measurements of the sphere's

position and orientation with respect to the laboratory reference frame consist of five fixed

"wall" ultrasonic beacons and 24 ultrasonic receivers (microphones) mounted onboard of the

spheres. The PADS global metrology provides each sphere with range measurements from

five wall beacons to the receivers on the spheres surface. (Figure 5-3).
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The process of updating the global measurements is initiated with the infrared signal.

Once the signal is received by the spheres, they wait for the ultrasonic signal sent from the

beacons, which transmit the signal sequentially, in specific time intervals. Once the signals

are detected on the ultrasonic receiver end, spheres measure the "time of flight", that is the

time elapsed between the moment of beacon signal transmission and the signal reception

on the spheres' ultrasonic receivers. The schematic of the process by which the ultrasonic

signal triggers the receiver is shown in (Figure 5-4). Also, each of the spheres is equipped

with the onboard beacon, which allows determining inter-satellite the range and bearing.

This is an important characteristic of the spheres system, as it allows to perform the wall

beacon position calibration in the manner described in calibration section of this chapter.

The receivers positions relative to the sphere's center is given in [33].

5.2 The Techniques of Solving the Bias Problem

This section tries to address the bias problem occurring the PADS global metrology system.

In the previous work with the spheres, [31], [30] it was determined that there are sources

of biases in the range measurements between the wall beacons and receivers in the spheres.

These biases were held responsible for degraded performance of the estimator. The spheres

estimator was built robustly, meaning that the pre-filter was developed, which rejected all

the poor measurement data that were entering the measurement matrix. This allowed the

estimator to work with more relevant data. However, the biases in the states were still

present.

There are several approaches to addressing the bias issue. Those are:

" Overbounding

" The Bias Estimation
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" The Bias Elimination

" Schmidt-Kalman Filter

5.2.1 Overbounding

The overbounding method incorporates the bias in the states that are being estimated.

This leads to a degraded performance of the estimator, since it cannot distinguish the bias

from the state. The measurement equation for overbounding approach can be presented as

following:

y = x+b+v (5.1)

- x+v' (5.2)

where x is the state of interest, b is the bias, v is the measurement error and v' = v + b is

the measurement error "bumped up" with the bias. When the system can permit degraded

accuracy of the measurement, this could be the method to account for biases.

5.2.2 The Bias Estimation

Another standard approach to solving the bias problem is to attempt to estimate the biases

[261. This can be done by augmenting the state vector with biases, which are now treated

as states themselves. Also, it requires sufficient number of measurements which allows these

extra states (biases) to be estimated. The downside of this approach is that the state vector

is increased, which will add to the computational burden and to the time required to perform

the measurement update. The measurement equations corresponding to this approach are:

y = x+b+v (5.3)
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and x1 = x, x 2 = b (5.4)

where x1 and x2 are the states, and v is a measurement error with a covariance R. Therefore,

in this simplified case:

Y1 C F 1k + [1k (5.5)
Y2 k C2 1 X2 k V2k

where vi and v2 are measurement errors with covariances R1 and R 2 respectively.

5.2.3 The Bias Elimination

The biases can be eliminated if there are sufficient measurements of the same state. If the

bias is considered non-variable, then by differencing the measurement equations, the biases

can be discarded. This reduces the number of measurement equations, which is acceptable

since we are eliminating the states in the same process. The main goal is to avoid estimating

the biases, and to reduce the computational burden. Therefore:

Y1 C X1 V1(5.6)

Y2 1 C2 [ X2 [ V2

After differencing yi and y2:

Y= (c1 - c2)xI + 6v (5.7)

where 6v is a measurement error with covariance R = R1+ R 2. If the biases are very small

compared to the measurement error, then this increase in measurement error covariance

can be significant, and even further degrade the measurements. However, if the biases are

significant, then this approach can be beneficial in attempting to decrease the state vector
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size and therefore the computation associated with the estimation process.

5.2.4 The Schmidt-Kalman Filter

Another approach is the Schmidt Kalman Filter (SKF) [23]. The original application of

the SKF is to eliminate the states of no interest from the estimation process, while still

using some information about those states thought the error covariance matrix. This allows

reduction of the computational load on the processor. This elimination is accomplished by

partitioning the measurement and propagation equations:

(5.8)

[;]k+1 -- k L][Jk WYk

Zk = H J] +vk (5.9)

k] 1 Yk

Pk= (5.10)

where x represents the vector containing the states of interest. More detailed explanation

of the SKF filter has been shown in Chapter 3. This approach is closely related to the bias

estimation approach described earlier. The main difference is that the new states, that is the

biases which augmented the state vector, are not being estimated as they have no practical

importance for the system. However, the information about the biases is conserved through

the error covariance matrix. Also, Schmidt-Kalman Filter requires observability of the biases

for it to be successful.
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5.2.5 Comparison of Bias Estimation and Elimination

The performance of the Schmidt-Kalman Filter is known to be sub-optimal since the ap-

proach deliberately eliminates states of no interest from the estimation process. As the

equations in Chapter 3 show, the computed Kalman gain is sub-optimal. In addition to this,

it is of interest to compare the performances of the two other methods: the bias estimation

and the bias elimination.

To compare the performance of these two approaches, it is necessary to see how their

error covariance behave in a steady state. In this case, a simplified example is observed using

the system state model:

Xk X1 (5.11)

where: x1 = x, x2 = b, with b being the bias,

Xk+1 = 0 + [1 (5.12)

0 1k L -k - -k

and measurement equations:

Y1k [ +1 F21k (5.13)
-2 k -2 k -2 k -2 k

The assumptions are that the process error covariance is Q = 0 and that

Axk = 0 => x1 = const and x 2  const (5.14)

so that

k+1 = Xk and x k+1 = k (5.15)
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and #1 = #2= 1. This set of equations simplify the time propagation equations for error

covariance to

P; 1 = Pk+ (5.16)

Steady state derivation for the bias estimation only consists of the measurement update,

because the states are random constants in this example:

c1 11
c2 ,
C2 1

R1 0

0 R 2

(5.17)

After setting coefficients to some arbitrary values, to simplify the derivation, ci = 2, c2 = 1,

R1 = R 2 = r, Pio = P20 = p (initial condition), these values can be inserted in the equation

for Kalman gain:

Kk = P Hk[HkP; HkT + Rk|-

The Kalman gain is then used to update the error covariance matrix:

Pk+- (I - KkHk)PT

After iterating this process the resulting steady state error covariance is:

P 8 =
P21 P1 2

P21 P22J

where the variances for states x1 and x2 are:

Pn = rp(2kp + r)
k 2 2 +7kpr +r 2

rp(5kp + r)
k 2 2 +7kpr +r 2
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which was confirmed using Matlab symbolic toolbox. This shows that the error covariance

tends to zero in steady state.

Steady state derivation for the bias elimination is also consisting of only measurement

update. However, the system simplifies to scalar problem:

H = c1- c2 =h, R=R1+R 2 = r and Po =p (5.23)

After substituting these values in the equations 5.18 and 5.19, the steady state covariance

becomes:

PIS = (5.24)
kph 2 + r

This result shows that in the error covariance behaves similarly in both cases when k grows

very large, so there is no steady state performance disadvantage if biases are eliminated in

the proposed way. On the other hand, is the biases are eliminated, the state vector is smaller

and therefore the estimation process can be done faster and more efficiently.

5.3 The Sources of the Bias in SPHERES

Typical sources of bias in sensing systems are due to imperfect hardware. Examples of

imperfect hardware are the analog receivers used in the SPHERES project. As it turned

out, those analog receivers were a source of bias in the SPHERES project. Another source

of bias originated from the bearing angles of the beacons with respect to the SPHERES

satellites. Since this second type of bias was removed by creating a calibration map, this

section focuses on the more important source of bias, which originates from the analog nature

of the receivers.
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Figure 5-4: Receiver triggering schematics. The threshold is raised to a certain level in order
to filter the noise.

5.3.1 Receiver Biases

The biases originating from the ultrasonic receivers are due to their analog nature (Figure 5-

4), as confirmed by results obtained from the experiments performed by Serge Tournier.

These biases are not constant but rather distance-dependent. The threshold level shown in

Figure 5-4 indicates the signal intensity required for the measurement to be detected by the

ultrasonic receiver. Since the signal strength is inversely proportional to the square of the

distance, the signal strength drops quickly as the distance between the receiver and beacon

increases. That means according to Figure 5-4, the time required for the signal to be detected

increases as the distance between the receiver and beacon increases. The bias is equal to

the time elapsed between the moment the signal reaches the receiver and when the receiver

actually detects the signal.

As the distance between the beacon and the receiver increases and thus, the signal
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strength decreases, it requires more half-waves to elapse before their amplitude reaches the

threshold level (as shown in Figure 5-4). This leads to the variable bias that is dependent

on the distance, as observed on Figure 5-5.

40
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Figure 5-5: Error graph,
configuration)

from Serge Tournier (1 beacon, 2 receivers, same beacon-receiver

In addition to this type of bias, this hardware and the setup lead to another type of bias,

which is of smaller scale and also low observability. This bias can be explained using the

following example. When the distance is such that the signal reaches the threshold with

exactly the tip of one of its half-waves, the slightest perturbation can cause the signal to be

detected at the next half-wave. This is shown in the Figure 5-6. Since the distance between

the two half-waves corresponds to approximately 5mm, this can cause additional bias in the

measurement system.

These highly unobservable biases cause many problems when trying to account for them
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Figure 5-6: Standard deviation graph, from Serge Tournier (1 beacon, 2 receivers, same

beacon-receiver configuration)

in an estimation process. As seen in Figure 5-5, not all receivers exhibit the same bias at

each position. This means that there is a large number of biases in the measurement system.

As a result, it is extremely time-consuming and computationally inefficient to attempt to

identify the biases by using the bias estimation technique. The following section shows a

simplified model of the SPHERES measurement system, which will study the possibility of

solving the bias problem using one of the methods described earlier.

5.4 Simplified SPHERES Measurement System Setup

The setup consists of two beacons of known positions and one face of the SPHERES satellite.

The SPHERES satellite includes four ultrasonic receivers located at the four corners of the
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Beacon I Beacon 2

Figure 5-7: 3D setup (with z component constant) with 2 beacons and 4 receivers on a single

SPHERES face

face. The setup is in two dimensions, where the z-axis is fixed to represent the lab setup of

the SPHERES. The detailed configuration is schematically shown on figure (Fig. 5-7). Using

this setup, we develops the measurement equations to analyze the system and to determine

if any of the proposed methods can address the bias problem.

5.4.1 Measurement Equations

The measurement equations between the two beacons and four receivers are:

h i(x - - Lcos )2 + (y - y1 + L sin 0)2 + ci b(p) + bR1(r1) + vI (5.25)
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- x1 + L cos 9)2 +

- xi + L cos 9)2 +

- x1 - Lcos 9)2 +

- x 2 - Lcos 9)2 +

- x2 + L cos 9) 2 +

- X2 + L cos 9) 2 +

- X2 - Lcos9)2 +

(Note: Subscripts for h

measurements are:

(y - y1 - Lsin 9)2 +

(y - y1 - Lsin 9)2 +

(y - y1 + L sin 9) 2 +

(y - y2 + L sin 0) 2 +

(Y - Y2 - Lsin 9)2 +

(Y - Y2 - Lsin 9)2 +

(y - y 2 + L sin0)2 +

Cl

C2

C2

Cl

C2

C2

are (receiver number, beacon number)) Therefore, the linearized

zi1 = x
Ox

O~h 21
z 2 = xOx

O9h31
z3 = x

Oh41
z 4 = xOx

Oh12
z5 = x

Oh22
z 6 = x

Oh32
Z7 = XOx

Oh42
OxX

+ Oh +
± Oy +

+ Oyy

Oh 12

+ Oy +

+ yy +
Oh3

±Oy+

OhA4 2 +
a y+

+ b(o) + bRi(rl)
O

6 + b(p) + bR2(ri)
O

6 + b(p) + bR3(rl)

Oh419 + b(p) + bR4(rl)
09

O620 + b(y) + bR1(r2)
O

A22 0+ b( y) + bR2(r2)

6320 + b(y) + bR3(r2)

A0 + b(y) + bR4 (r2)

The terms are:

1. X: x position of center of the SPHERES face
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(5.31)

(5.32)

+ vi

+ V2

+ v 3

+ V4

+ V5

+v 6

+ V7

+ vs

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)



2. Y: y position of center of the SPHERES face

3. 0: Angle of rotation about z-axis

4. x 1, x 2, y, y2: x and y positions of the centers of the beacons 1 and 2

5. c1, c2: constants for z-axis displacement of receivers

6. b(cp): bias due to bearing angle (o) of beacon 1

7. b('y): bias due to bearing angle (-y) of beacon 2

8. bRi(ri): bias due to receiver i (i = 1,..,4) at distance r1 from beacon 1

9. bai(r2): bias due to receiver i (i = 1,..,4) at distance r 2 from beacon 2

10. vj: measurement error (j= 1..8)

We have 8 equations and 13 unknowns, but only 3 states (x, y, and 9) are of interest. The

assumption is that the beacon-to-receiver distance is much larger than receiver-to-receiver,

so that the bearing angle p from beacon 1 to each receiver is approximately the same (similar

assumption can be applied for bearing angle y from beacon 2). Trying to go to 3D increases

the number of unknowns, and make bias analysis even harder. Another difficulty arises from

the variable biases, although they are not explicitly included in the equations. Even the

fact that b(p) and b(y) have been removed using the calibration map does not improve the

situation since there are still more unknowns than the equations.

5.5 Resolving the Bias Problem in SPHERES

In previous parts of the chapter 5.2 we described several different methods of solving esti-

mation problems with biased measurements. All of these cases require that the biases of the
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measurements are observable. For example, in the bias estimation method, the biases are

considered states and therefore, in order for the estimation process to be successful, we need

a sufficient number of measurements.

We also showed the source of bias in the SPHERES system. The tests done by Tournier

show that due to the analog nature of the receivers and the measurement system in general,

these biases are not only dependent on the distance but can even oscillate at certain distances.

The simplified 2D model presented in this chapter also shows all the measurement equations

and corresponding biases according to the measurement system used in SPHERES.

The immediate conclusion is that there are more unknowns than the measurements avail-

able from that system. Unfortunately, when faced with such a scenario, very little can be

done in the estimation process to account for those biases. Therefore, all of the proposed

methods fail to enhance the estimation results. For the bias estimation method, the cause

of failure has already been described (lack of measurements). Similarly, in the bias elimina-

tion method, we also lack measurements, because when we try to eliminate a bias, we also

lose a measurement. The Schmidt-Kalman filter also needs more measurements, because it

requires observability of the biases [23].

The only method that does not fail is the over-bounding method, because it ignores the

biases, or more precisely, they are included as part of the measurements. This method has

essentially already been used on SPHERES and produced relatively poor results, which led

to the search for better methods.

The only remaining approach to solving this problem is to create a look-up table. This

table is used before the measurements are included in the estimation process. In this table,

values of range measurements correspond with values of bias, which are measured with

Tourniers approach. While this approach leads to eliminating the most significant biases
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that are dependent on the distance, the variable bias that occurs at certain distances will

still be present.

5.6 Calibration of the SPHERES Positioning System

In general, the calibration of the positioning systems is essential for their proper perfor-

mance. Otherwise the system is very inflexible, and poorly transferable. Calibration of

the SPHERES measurement system can be an important part of the SPHERES initializa-

tion process. In this calibration process, we attempt to determine the positions of the wall

beacons using the measurement system itself. This can be done, with certain restraints,

by placing the sphere in various positions and collecting measurements. After a sufficient

number of measurements, we are able to determine the positions of all beacons.

The calibration process has not been used on SPHERES, since it was believed that

the beacon positions were well-known in the lab space. This assumption turned out to be

false with one of the beacons, creating the need for the calibration process. Furthermore,

the SPHERES are sent on the International Space Station, where they perform tasks in

a different environment that will likely require different beacon positions. The calibration

process bypasses the need to know exact positions of the beacons, thus making the SPHERES

system much more flexible.

In this section, we present the requirements that need to be satisfied in order for the

calibration process to be successful. We will also describe the calibration process and the

idea behind it, and finally, we will present the simulation results.
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5.6.1 Calibration Approach and Requirements

As mentioned before, the calibration is performed in the following way. First, a sphere is

placed at a random position in the test space. The measurement system is then initiated and

the measurements are collected. Following that, the sphere is moved to a different position

and a new set of measurements are collected. After a certain number of measurements

are collected, the number of unknowns accumulated during the position-changing process

will be equal to or smaller than the number of measurements collected. For this to be

possible, at every sphere position where the measurements are collected, the number of new

measurements must be greater than the number of new unknowns. If we are working in the

3D space, the number of new measurements acquired at each test position must be greater

than 3. For example, in the SPHERES case, there are 5 wall beacons. This means that every

time the sphere changes its position in the test space, we acquire 5 new range measurements

and 3 new unknowns. Therefore, in the SPHERES case, this calibration process is possible.

Also, it is important to determine how many test positions are required for collecting

enough measurements. This can be obtained using following derivation:

3nb +3N, <_ nbN (5.41)

N, 3 b (5.42)

where N, is the number of required test positions for the sphere, and nb is the number of

beacons for which we are determining positions and nb > 3. Therefore, if we apply this

equation to the SPHERES system (nb = 5) we get:

N> > 7.5 = N, n = 8 (5.43)
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It is, however, possible to decrease the number of unknowns and therefore the number of

necessary test positions, by using the beacons to determine a coordinate system:

1. The coordinate center is placed at the position of one the beacons

2. The beacon at the coordinate center and another beacon define an x-axis

3. The two beacons on the x-axis and another beacon define an x-y plane

This procedure decreases the number of unknowns by 6, and Equation 5.45 becomes:

3nb- 6 + 3N, < nbNp

> 3nb-
6

nb3
> 3+ 3

nb -3

(5.44)

(5.45)

(5.46)

Therefore, in the SPHERES case (nb = 5):

N, > 4.5 = N" = 5 (5.47)

In addition to this, the SPHERES should be positioned in order to maximize the observability

of the system. Otherwise the estimation filter might not be able to converge. For example,

two test positions should not overlap, as no new information can be provided from a second

test position.

One benefit of the SPHERES measurement system is that it allows us to treat the spheres

as a single point. The spheres are capable of determining the position of a beacon in its own

coordinate system, thus allowing us to collect the exact range measurement from the center

of the sphere to the beacon. This is possible because the face of each sphere has multiple
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receivers due to which the spheres are capable of computing the two bearing angles from a

beacon to the sphere in addition to the range measurement [32].

5.6.2 The Estimation Process

To perform the calibration, the collected measurements need to be fed to the estimation filter

in order to determine the positions of the beacons. The system has no dynamics, the mea-

surements are non-linear and are all collected before running the filter. Therefore, one good

approach to solving this problem is using the weighted non-linear least squares approach.

The algorithm is very similar to the linear least squares approach with the measurement

matrix H being replaced by H2 which is the Jacobian of h(x).

Weighted Non-linear Least Squares Algorithm

This algorithm is in the essence the Newton-Ralphson method. It is laid out as follows [36]:

1. Make an initial guess for x

2. Compute h(x) and H2

3. Compute the covariance of the estimate, P using:

P1 = (Po- 1 + HTR 'H)-l (5.48)

4. Compute the gradient, GR at current x, using definition of GR:

GR P -'(x - xo) - HR-1 (y - h(x)) (5.49)
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where P0 is the covariance of the prior estimate, xo is the prior estimate, and R is the

measurement error covariance.

5. Optimal value of x is computed when GR = 0. To make GR = 0 we compute:

dx = -P1GR (5.50)

6. Stop and exit the loop if ||dxl| < E. This means that the algorithm stops when the

change in x is insignificant.

7. Otherwise, add dx to x.

This algorithm has been applied to this problem and produced good results, which are

shown in the simulation section.

5.7 The Calibration Simulation Results

The weighted non-linear least squares method has been simulated using Matlab. The test

positions have been selected randomly. The following table shows the performance of the

algorithm described earlier with minimum (in our case, Np = 5) or more test points used

and also with the measurements accuracies o-, varied. The performance is measured with the

average error, which is the sum of distances of each of the final beacon position estimate to

its true position divided by the number of beacons. It is also averaged over a large number

of simulations (with the non-convergent cases excluded). The results are presented in Table

5.1, which lead to several observations. First, if a larger number of test locations for a sphere

are considered, the results tend to be more accurate. Also, the method converges more often

with a larger number of test locations, as it can work with a larger amount of information,
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Table 5.1: Calibration results

N, o(m) Average Error (m)
5 0.01 0.098
5 0.001 0.021
8 0.01 0.043
8 0.001 0.004
12 0.01 0.029
12 0.001 0.002

and therefore be lees sensitive to possible overlap of test locations.

Another conclusion can be drawn from the calibration table. If the measurement system

is more sophisticated and provides a better accuracy, the calibration method gives better

results. For example, the average error for the case of 12 test location and u- = 0.001 leads

to an average error of only slightly more than 0.2cm, Figure 5-8.
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5.8 Calibration Conclusion

Section 5.6 offered a new way of defining the coordinate system of the SPHERES test space.

Currently, the positions of the transmitters are determined for the lab space, without the use

of the positioning system. Using this calibration method, the SPHERES have a much better

flexibility in the event of possible change of the test space, either for the ground tests, the

KC-135 tests or for the incoming ISS testing. The calibration using the weighted non-linear

least squares method has performed very well with the use of better measurement system

and with a larger number of test points. Figure 5-9 shows the performance of this approach.
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Chapter 6

Conclusion

This thesis investigates various topics. First, it focuses on divergence issues with the ex-

tended Kalman filter (EKF), which is extensively used in space science missions. The EKF

is also used for centralized architecture, which is compared along with decentralized, hierar-

chic centralized-centralized, and hierarchic centralized-decentralized architectures. Several

metrics are used to compare the architectures: accuracy, computational load, communi-

cation load, and synchronization. This work shows that centralized architecture is poorly

scalable due to the rapidly increasing computational load as the fleet increases. Decentral-

ized architecture attempts to distribute this computational load at the expense of a small

reduction in accuracy. The analysis of various decentralized algorithms that populate the de-

centralized architecture is also presented in this work and it singles out the bump-up method

(the Schmidt-Kalman filter) as the most optimal way of distributing the computational load

throughout the fleet.

However, decentralized architectures also require a lot of communication and tight syn-

chronization. The robustness discussion in chapter four explains the disadvantages of de-

centralized architecture due to possible communication delays. The hierarchic architecture
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appears to have the most optimal balance between the performances against the four metrics.

This specifically applies to hierarchic centralized-centralized architecture.

Finally, some special topics are presented for the SPHERES system. The SPHERES

measurement bias problem is described along with possible approaches to solve it. However,

due to the specific nature of the problem, these estimation approaches failed to solve it.

Also, the SPHERESs beacon positioning calibration technique is investigated and shown to

be a very good approach to determining the positions of beacons in the SPHERES testing

area. This approach can provide the SPHERES system with great flexibility for future

experiments.
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